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FINAL REPORT

NASA Grant No. NsG-326-63

| During the grant period we have investigated a number of problems
associated with the use of space-time coordinates in physical theory. Part
of the results of this investigation are coﬁtained in the preprint and re-
print at the end of this report. We have given special attention to the use
of coordinate conditions in general relativity. The paper "Coordinate
Conditions and Canonical Formalisms in Gravitational Theory" reviews the
various types of conditions that have been proposed and shows in what sense
they are related to each other. It also discusses the construction of a
Hamiltonian formalism when coordinate conditions are employed and demonstrates
the equivalence of various methods employed in these constructions. In the
paper "Maximal Covariance Conditions and Kretchmann's Relativity Group" we
examined the question of what constitutes a maximal set of coordinate con-
ditions using the gauge group of electrodynamics as a model. The maximal
question bears directly on the Kretchmann definition of the relativity group
of a theory. We were able to show that the Kretchmann definition leads
general, to a triviel group. "Twins, Clocks and Geometry" (reprints submitted
November 1964) was concerned with the problem of making space-time measurements
and in particular with the problem of constructing a model clock within the
framework of a space-time theory. Our main conclusion was that the construction
of such & clock is independent of the coordinate system employed in its con-
struction., We also showed that the usual assumption that a model clock reads
proper time is, in general, unwarranted since the behavior of such a clock

depends on how it is constructed.




Unfortunately, & number of results having to do with the principle of
general covarisnce have not as yet been written. While the paper "Twins,
Clocks and Geometry" alludes to some of these results, the rigorous dis-
cussion is only now being completed. The main idea involved is the
distinction between the absolute and the dynamical elements of a theory.

In special relativity, for example, the metric is an absolute object while

in general relativity it is a dynamical object. We have used this distinction
to define two different groups of & physical theory, the covariance group and
the symmetry group. The former group is the group of transformations that map
a8 solution of a set of equations onto another solution. The symmetry group,
on the other hand, is the subgroup of the covariance group that leaves
invariant the absolute objects of the theory. Of course, if there are no
absolute objects then the two groups are identical. Using this definition

we can show that the symmetry group of general relativity is Jjust the

Poincare group, regardless of whether the covariance group is the group of

all ccordinate mappings or just the Poincare group. We have also extended

these ideas to the problem of defining internal symmetries of a theory.
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Maximal Covariance Conditions and Kretschman's Relativity Group”+

by
James L. Anderson
Department of FPhysics

Stevens Institute of Technology
Hoboken, New Jersey

ABSTRAYCT 200 3 4

The general problem of how large a set of covariance conditions one can
impose on a theory with a covariance group is discussed., In imposing such
conditions one makes the natural requirement that such conditions must be
satisfiable by at least one member of every equivalence class of physically
distinct solutions. Even so we have shown in the cases of electrodynamics
and relatively theory that one can impose a number of conditions sufficient
to reduce the covariance group down to the identity, As a conseqﬁence ve
conclude that the Kretschman definition of the Relativity group of a theory

is not a useful definition since it always leads to the Relativity group

being the identity group. d) W

* Dedicated to Professor Vaclav Hlavaty on his seventieth birthday

+ This research has been supported in part by NASA Grant No. NsG 326-63.



I, INTRODUCTION

Whenever a system of physical laws admits a covariance group it is
possible to separate the dynamically possible traj)ectories into equivalence
classes, two trajectories belonging to the same equivalence class if it is
possible to transform one into another by an element of the group. In fact,
the possibility of such a separation is just what we mean when we sty that
a system of laws aduits a covariance group, When we come to interpret
such a system of laws and the dynamically possiblé trajectories admitted
by them it is clear that all of the trajectories belonging to a particular
equivalence class must be considered as describing the same physical state
of the system, Otherwise the dynamical laws must be considered as being
incoﬁplete since they by themselves do not allow a distinction to be made

between the various elements of an equivalence class.

As a consequence of the existence of a covariance group, some part of
the collection of configuration variables used to describe the trajectories
of the system in question is superfluous as far as the characterization of
physically distinct states of the system is concerned. The possibility exists
therefore in such cases of imposing additional non-covariant restrictions on
the configuration variables. These restrictions, being non-covariant, will
be satisfied only by a subset of elements in each equivalence class, One
can, for instance, eliminate the translational covariance associated with an
N-body system by taking the center of mass of the system to be at the origin

of coordinates, Another familiar example is the Lorentz gauge condition one



sometimes employs in electrodynamics. In what follows we shall refer to

such conditions as covariance conditions,

The need to impose covariance conditions arises most strongly in
cases where the covariance group is a gauge group, i.e., a group whose
various elements are specified by one or more space-time functions, as is
the case for the gauge group of electrodynamics and the group of arbitrary
coordinate transformations of space-time theories. Except in special
instances one cannot solve the dynamical equations of motion in such cases
unless one brings in covariance conditions. Théy are also needed if one
wishes to construct an unambiguous Hamiltonian for such a theory.(l)

In imposing covariance conditions the question arises as to how far one
can go, i.e., what are the maximal number of conditions one can impose on
a theory. It is to this question that we address ourselves in this paper.
From the practical point of view it is desirable to know the answer to this
question since it will tell us what part of the collection of configuraticn
variables corresponds to physically observable aspects of the.system and
consequently how much information is needed in order to specify a state
of the system. Furthermore the imposition of covariance conditions may lead
directly to the elimination of non-physical degrees of freedom of the system
and hence simplify the problem of solving the equations of motion of the

system. Of course one would want to effect as great an elimination as possible,



The question of how many covariance conditions can be imposed on

a. given theory was actually first raised by Kretschmann(Z)

shortly after

the advent of thé General Theory of Relativity. Kretschmann criticized

the principle of general covariance on the grounds that any theory cogld

be made to conform to it by the device of introducing additional degrees

of freedom into the theofy. As an alternative he attempted to define

vhat he called the Relativity group of the theory. Im order to determine

this group one imposes the maximal number of covariance conditions on the
configuration variables of the theory, maximal in the sense that any additional
conditions would eliminate one or more equivalence classes by being unsatis-
fiable by any member of these classes., The Relativity group of the theory is
then the covariance group of the original dynamical laws plus the supplementary
conditions, Of course, if it is always possible to eliminate the covariance

group entirely by the jJudicious choice of covariance conditions, Kretschmann's

definition would not be too meaningful,

In this paper we shall discuss those aspects of the problem of the im-
position of covariance conditions that bear on the points raised above, Unfor-
tunately one cannot arrive to any general conciusions since the situation varies
from group to group and from theory to theory, In specific cases we shall
see that it is always possible to reduce the covariance group down to at most
a finite parameter Lie group. In these cases such a reduction is sufficient
to allow me to construct Dirac brackets for the theory. Any further reduction

will in general depend upon the group in question and the configuration variables

available for the reduction. However, in important cases of the gauge group




and the full coordinate group we will see that it is possible to restrict
the covaiiance group down to the identity element even though the theory
possesses weak, proper conservation laws and consequently, by Noether's
theorems, a symmetry group. For these theories Kretschmann's Relativity
group would be empty and hence we conclude that this Relativity group 1s

not a useful concept in analyzing dynamical laws,
II. GENERAL REQUIREMENTS ON COVARIANCE CONDITIONS

In order that a given covariance condition be compatible with a given
set of dynamical laws it is necessary that it can be satisfied by at least
one member of every equivalence class of possible trajectories, If this
were not the case its imposition would eliminate one or more equivalence
classes and hence change the physical content of the original equations of
motion, Aside from this requirement there are no other hard and fast require-
ments one can make on possible covariance conditions. However, there are a
number of additional requirements one might wish to impose from the stand-

point of convenience.

Since one of the reasons one imposes covariance conditions in the first
place is to enable one to construct a canonical formelism from the corresponding
Lagrangian formalism one would want to require that these conditions can be
expressed in terms of the canonical variables of the theory., If we accept
this requirement then we can no longer use the Lorentz condition of electrody-
namics or the corresponding de Donder conditions of general relativity, The

Lorentz condition involves the time derivative of the scalar potential while

i




the de Donder conditions involve the time derivatives of the Goy components
of the metric tensor, neithef of which can be expressed in terms of canonical
varisbles, One would also like to require that, once satisfied, a covariance
condition will remain satisfied throughout the temporal evolution of fhe',
system, We make this requirement in order that the condition can be employed

to eliminate non-physical'degrees of freedom,

There is an additional requirement one might wish to make, ﬁamely that
of locality. We impose this condition in keeping with the local nature of
most dynamical laws, Suppose that we have carried out a series'of local
measurements on a system described by a set of equations with a‘cdvariance
group. In order to check the validity of these equations §n¢ would impose
covariance conditions in sufficient number to lead to a determination of the .
configuration variables sufficient to carry out this chéck. However, if the
conditions were non-local a knowledge of the results of the local measure-

ments would in general be insufficient for this purpose,
ITI, GAUGE INVARIANCE

Before we try to arrive at any general conclusions it will be helpful
to examine in some detail one relatively simple group, namely the gauge group
of electrodynamics, In spite of its simplicity this group contains many

features of the more complicated groups that arise in physics.

It is well known that the Klein-Gordon equation for a complex field ¢
in the absence of electromagnetic fields admits the group of gauge transformations

of the first kind




b+ o=elay (1a)

A (1b)

where a is an arbitrary constant. The existence of this group leads to the
continuity equation for particle number or charge. Nevertheless one can fix

the value of a by requiring that

W=y (2)

at the origin of the coordinate system. This covariance condition satisfies
our fundamental requirement on such conditions, Eveh wvhen ¥ happens to be

zero at the origin the condition is obviously satisfiable even though o is

not determined, However, once we impose the condition (2) on the theory

we no longer have the freedom of performing further gauge transformations of
the type.(l) If we were to define a Relativity group for such a theory
following the procedure of Kretschmann it would be the trivial group consisting
of the identity transformation, Nevertheless one still has a conservation law

2
for the theory in spite of the imposition of condition.( )

One can extend the gauge transformations of the first kind to those of
the second kind by allowing a to become an arbitrary space-time function. In
order to do so it is necessary to replace ordinary derivatives of the ¢y field

(3)

by "covariant" derivatives defined by

BTt IA Y (3)

where Au is the affinity. By requiring that w.u transform like § under an
]

- extended pauge transformation one is led to the transformation law for A ,
i

namely

-6~




A A=A +a (1)

The analogue of the Riemann tensor for thisconnection is defined in terms of

the commutator of two covariant derivatives

‘p;‘;‘\’-“’;\’u B - iFu\) ‘P . (5)

and is given by
va = A\,’u - Au.v° (6)

| At this point one could take Fuv = 0 as a possible set of equations
governing the Au. Doing so would obviously not alter the physical content
of the original field free Dirac equation. The vanishing of Fuv is the
necessary and sufficient condition (in a simply connected domain) that A,
is the g}adient of a scalar, Taking a to be the negative of this scalar
would produce an AL_= 0 and hence reduce the covariant derivative to an
ordinary derivativef However, when the Au is not so reduced the covariance
group of the Dirac equation plus equation (5) is the group of gauge transfor-

mations of the second kin

The example discussed here is of course just a simplified version of what
one does in Special Relativity when one enlarges the covariance group to include
arbitrary coordinate transformatiom by bringing in explicitly the metric tensor
Buv® The physical coﬁtent of the theory is unaltered if one requires thgt the

u .
Riemann-Christoffel tensor R Voo = 0, By making such an extension of the



éovariance group it would seem at first sight that the special position

Qf the inhomogeneous Lorentz group is lost Just as the special significance
of the gauge transformations of the first kind is lost in our example
above, - It was for Just this reason thet Kretschmann introduced the notion
of the Relativity group. At least in the case of'thé gauge group the
Relativity group is not the group of gauge transformations of the first kind

as one might expect.(h)

If one does not require that Fuv = () but rather that it satisfy the usual
Maxwell equations in the presence of charge it is necessary to impose gauge
conditions on the AU in order that one be able to solve these equations, A

number of different conditions have been used for this purpose, Among the most

common of these is the Ldrehtz condition
=0, (1)

We have already pointed out that the Lorentz condition is not useful in a

canonical formalism, containing as it does Aoo. It also suffers from other
]

defects, By itself it is not sufficient to fix the gauge function a, Any

2 _
solution of D'Alembert's equationfl o = 0 can be used to generate a gauge.

transformation that 1s a covariance transformation of Eq. (7). One could

of course work with the Lorentz condition as it stands as one does, for instance,

in most treatments of quantum electrodynamics. But then it is necessary to
check that all final results are invariant with respect to the restricted

gauge group generated by solutions of the D'Alembert equation, However, such

-8~




a procedure has led to much confusion in the past, both in quantum electro-

dynamics and in the theory of superconductivity.

To overcome the above mentioned difficulty one might try to impose
additional conditions on the A, that will further restrict the permissible

gauge functions. Fock(B)

has discussed the question of the unjqueness of
solutions of the wave equation., He has shown that, if in addition to
satisfying the wave equation, a is uniformly bounded, it, together with itsA
first derivatives, falls off fagter than 1/r for large spatial distances r and

gatisfies the outward radiation condition

then a is identically zero, These conditions can be formulated in terms of the
Au but are non-local in character, But more important they rzstrict the class
of physical solutions of the original Maxwell equations. In particular they

exclude all advarnced solutiona.

A more tractablegauge condition is the radiation gauge condition

A =0 (8)

As in the case of the Lorentz gauge condition the radiation gauge condition does
not fix the gauge completely. However it is now possible to find additional
conditions that fix the gauge function up to an additive constant without, at
the same time, eliminating any equivalence classes of solutions of the original

Maxwell equations, A possible condition is
nrAr = 0 ' (9)

on a boundary surface S, Here n¥(x) is the unit normal on S. One can show

-9=




that Eqs, (8) and (9) together with the part of the defining equation (6) for Ay,

namely

AL v A = F (10)

lead to & unique, up to an additive constant, determination of the vector
potential for erbitrary F.; at any time t, Since different F . correspond
to different equivalence classes we see that our gauge conditions (8) and (9)

do not rule out any equivalence classes,

To prove our assertion let us suppose we have found a particular solution
of Eqs (8) and (10) that does not yet satisfy condition (9), Now perform a
gauge transformation that 1is a covariance transformation of Eq, (8)., The

gauge function of such a transformation must satisfy
¥ a =0, (11)

We will try to find an a such that A' = A +a , also satisfiea condition (9).

For this to be the case we must have

3
2
=]
-
+
3
e}
>
1]
o]
PSS

p

n
~

This additional restriction on o is compatible with Eq. (11) since we have the

chain

2 r e r r
OSJR'VadV=g(:rn -gArn dS=£A.rndS=0_
Consequently one can solve the Laplace Eq, (11) with the Neuman type boundary

—10-




conditions (12). The solution is

a(x) = é G(x,x')nr(x')Ar(x') dS' + const.

where G(x,x') is a Green's function satisfying
2
9" G(x,x') = §(x=-x")
with the boundary condition
n"(x')aG(x,x')/3x'" =1, «x'es,

The conditions (8) and (10) fix the gauge up to an arbitrary function
of t, Such a gauge transformation does not effect A, but does add to the
- scalar potential A, a term da(t)/3t, We can fix a up to an arbitrary constant
by requiring, for instance, that A, = 0 at the origin of spatial coordinates,

Then since

Ao,r = Aro = Fro

we have that

X

_ X r_ r
A (x) = é Ao % {) (Fo + Ar’o) dx

for arbitrary F.,. Finally ve can fix the constant by requiring that Eq, (12)

is satisfied,

While useful for many pruposes the rad.ation gauge has the defect that,

~-]11-




in order to compute A‘_I and its first few derivatives at a point with its
help it is necessary to know va over a finite region of space-time. A
set of gauge conditions that does mot have this defect is the so-called

(6)

longitudinal gauge condition
Alx) =0 (13)

for all xeR. For simplicity we shall assuwe that the boundary of R is
everywhere convex. Then condition (13), together with the defining equation

(10) allows one to write

xl
Ay = J Fyp dx1 + fz (xo’xz.x3’)
0
and
x 1 0 2
Ay = [ Fla8x + f,(x % .x3)
o

where f2 and f3 are arbitrary functions of their arguments, Since Fuv satisfieg

F + + =0
UV,p FQV:“ FVD’“

it follows that

1

f3,2 = T2 3 = Fp5(x

= 0) (1)

In order to fix the functiens f, and f3 we require, in addition to the conditiop

(13) that

Ay (X7 =0) =0 (15)

-12-




so that fp = o, Then from Eq. (14) it follows that

x°
1 2 0 3
f3 = é F23(x = 0)dx" + g(x WX )

‘ 0 3
where g(x ,x ) is an arbitrary function of its arguments, To determine it

i ve require further that.

Aj(xl = =0)=0 ' (16)

so that g = 0,

The gauge conditions (13), (15), (16) thus lead to a unique determina-
tion of A, corresponding to a given Fps+ Again the remaining arbitrariness

in the gauge fix by requiring that
At =2 =x3=0) =0 (a7)

Then again A, will be given by Eq. (12). One sees thus that the longitudinal
gauge is quasi-local, One can compute A'J and its first few derivatives in

the neighborhood of a point solely from a knowledge Fuv in this neighborhood,
IV, COORDINATE COVARIANCE

All space-time theories can be made covariant with respect to arbitrary
coordinate transformations, These transformations form a group whose elements
are specified by the four arbitrary space-time functions that define the trans-

formation, The problem of formulating covariance conditions for this group is

-13-




much harder.than in the case of the gauge group since, among 6ther things
the group is no longer Abelian, Usually tﬁey involve restrictions on the
mefric tensor 8uv and its derivatives, The most used of such conditions

are the de Donder conditions.(7) The use of these conditions has been
eleyated to & physical principle by Fock, For him the resultant coordinates
are the analogues of thé Cartesian coordinates in Special Relativity, The
difficulty with this position of course ls $hat one is able to form scalars
other than the Riemann curvature scalar in such a coordinate system and one
“looses thereby the prime justification for the field equations of General
Relativity proposed by Einstein, We have mentioned previously that the

de Donder conditions depend upon the time derivatives of gou and hence

are not ugeful in a Hamiltenian formulation of this theory. Furthermore,
they suffer from the same defect as does the Lorentz gauge conditions, In
order to restrict the possible coordinate transformations compatible with
the de Donder conditions one must impose boundary conditions that. are
satisfied only for a subclass of solutions of the Einsteip equations, Fack
argues, but does not prove, that after imposition of these additional conditions
one is left only with the freedom to perform inhomogeneous Lorentz trans-
formations., This group would then be Kretschmann's Relativity group were it
not for the fact that not all solutions are compatible with the boundry

conditions,

Another set of coordinate conditions that have been used were first

8
introduced” by Kretschmann(2) and later used by Komar( ) for the purpose of

constructing coordinate invariant quantities, To set these conditions one

~1l-




first constructs four scalars from the curvature tensor, (There are just
four such scalars that. may be non-zero when the Ricei tensor vanishes, )

a
Let these scalars be K , One then uses coordinates such that
= k% (x). (18)

These conditions have the great advantage that they are truely local conditions
and furthermore can be easily incorporated into a canonical scheme, . However,
whenever\a particular solution g, of the field equations possesses an intrin-
sic symmetry, e.g., the Schwartzschild solution, one or more of the scalars

K% vanish, Consequently the conditions (19) do not fullfill Kretschmann's

requirement, as he himself pointed out,

A set of coordinate conditions that does meet all of our requirements ia
those leading to a Riemann normal coordinate system, In a given space Riemann
coordinates are obtained by first constructing all of the geodesica passing
through some point P,+ Each such geodesic can be characterized by the unit
vector tangent to it at Po and hence by the components " of this vector along
four mutually orthogonal directions at Py, Since, in a finite region arowd
Po there is only one geodesic that passes through a given point P of this

region and P,, we can ass;gn to the point P the unique coordinates
U u
y =68 (19)

where S is the geodesic distance between P, and P and §¥ are the

components of the unit tangent vector to the geodesic passing through

~15-




P, and P, The y“ are then the Riemannian coordinates of the point
P, In this coordinate system it is well known that all components of the
" .
affine connection Ppavanish at the origin (the point Po). Furthermore, it
can be shown that, in this coordinate system, at any point
r* yPy%= o, (20)
po
Conversely, if eq, (20) is satisfied at all points and the components of the

affine connection vanish at the origih then we have a Riemannian coordinate

system,

Let us consider these conditions (20) on a space-like hypersurface where

o]

y° is the time-like coordinate corresponding to the time-like direction at Po.

They can be written in the form

r yy=0 (21)
rs
and
3u r s )
r yy=9 (22)
rs

2y
s TN ¥ 3
where Frs are the Cristoffel symbols constructed from the three-dimensirnal

. . . rs .
metric grs and its inverse e induced on the hypersurface by the four-dimensional

1h)

X - rs
metric gu@' Now Dirac( has shown that the momentum densities p canonically

o
conjugate to g are related to I.o by the relation

l6m



0 o0y1/2 -1 1 rs
Fap = (=&7)'° K77 (g R = 58,8, )P (23)

where K2 is the determinant of Bgo Thus condition (21) can be rewritten as

ab r s

lgg)p yy =0 (21)

(gragsb T2 ®rs®ab

end is thus seen to depend only on the canonical variables grsand prsand the

coordinates,

Condition (2L) is linear in p'> and so can be solved for one of its com
ponents in terms of the other thus leading to the elimination of this variable
and its conjugate from consideration as dynamical field variables, Condition
(22) is still too éomplicated for such pruposes. However we ﬁotice that,
because of condition (22) the yr form a Riemannian coordinate system on the

(10)

hypersurface y° = 0., We now make use of a result due to Vermeil that the

metric on this hypersurface must be of the form

abuv,© ,
h + 2
grs erau sbv vy grs ( 5)

. o
wﬁere_erau is the Levi-Civita tensor density of rank three and Brg is the

three~dimensional metric at the origin and equal to 6rs° If we multi,ly

- 8
this equation by y and sum we have that

4 8 = yr : (26)

as’'an alternate form of the coordinate conditions that lead to Riemannian

-17-



coordinates on the hypersurface, The conditions (26) are now linear in grs

and can thus be solved for three of its components in terms of the other

three, Thus‘we have succeeded in finding a set of coordinate conditions appli-
cable to the hypersurface y° = 0 <that satisfy all of our requifements since,
aside from picking the point Po and the construction of a local orthogonal
coordinate system there, Riemannian coordinates are uniquely determined in a

finite region around Py

Our construction‘is sti1l not complete however since our conditions (2l )
and (26) only apply on the hypersurface yo = 0, We can fill in coordinates
‘in the rest of space-time by first drawing the geodesic that passes through
P, and is tangent to ﬁhe time-like axis there. This line will be our'yo axis
throughout the finite region of space«time considered. Times measured along it
will Jgst be equal to the proper-time figured from P0 as the starting point.
. Takihg now some point on this axis we use it for the origin of a new Riemannian
coordinate system. Following the procedure employed at the origin we construct
a space~like hypersurface through this point and normal to the tangerc to the
yo axis at this point. We then require that conditions (4 ) and (6 ) ve
satisfied on this new surface., Since it is uniquely defined these conditions
| will lead to a unique coordinate system on this surface. We see that in this
menner we can construct a unique coordinate system that satisfies all of our
basic requirements by .requiring tﬁat (24) and (26) be satisfied everywhere in

our space~time domain.

There remains now only the question of the characterization of the point

P, &nd the four mutually orthogonal directions at Po.used to define the components

~18-




of the tangent vectors to the geodesics passing through this point, If

the metric {tself has symmetries it will in general be impossible to
characterize these quantities uniquely., For our purposes however it is

only necessary to find a method that does not excluge ihese symmetric
solutions even though it does not lead to a unique characterization in

these cases, This was just the procedure we followed in the géuge case when
we used the condition (2), One possibility is to pick P, as the point where
the absolute value of the curvature scalar is an absolute minimum, The ortho-’

gonal directions at P, could then be fixed by taking gradients of the scalars

k” at this point, The condition that Po is the point where |R| is & minimum
dééérnoi rule out the case when |R| has no minimum, it just doesn't determine
Py in this case, However, once we impose this condition (and in fact, even
before we impose it) the group of transformations leading from one coordinate
system satisfying conditions (24) and (26) to another no longer involve
uniform translations, Likewise, by fixing the orthogonal directions at PO

ve no 1onger have the possibility of performing homogeneous Lorentz transfor-
mations, In any case the coordinate conditions (24) and (26) do not lead to an
interesting Relativity group for General Relativity and certainly do not lead

to the inhomogeneous Lorentz group.

If one were to restrict oneself to Special Relativity one could not use
the metric aloné to restrict the covariance group beyond the inhomogeneous
Lorentz group since this is Just the symmetry group of the metric in this case.
However one can make use of other dynamical objects to effect a further reduction,

(We assume there are such objects available since the case of an empty flat space

~-19




s not very interesting.) Thus, if we had a scalar field ¢ we could proceed
to use it in place of the curvature scalar R but following the same pro-
cedure as outlined in the above paragraph., Consequently, even in Special
Relativity it is seen that the maximal set of coordinate conditions is

sufficient to reduce the covariance group to the identity.

-20=



V. CONCLUSIONS

We have seen, in the two important cases of electrodynamics and relativity
theory, how it is possible to impose a number of covariance conditions on the
theory sufficient to reduce the respective covariance groups from gauge
groups to at most Lie groups on a finite dimensional parameter space, Then,
depending on the variables available for the purpose one can effect a further
reduction of the covariance group down to the identity transformation. In
effecting this additional reduction one ﬁust be sure that no physical state
of the system is eliminated thereby, In electrodynamics one can effect this
final reduction provided one has a source field for the electrodynamic field,
In gravitational theory the situation is less clear because of the greater
complexity of the covariance group involved, However it appéars certain that
one can always effect a reduction to a group which is at most a subgrbup of

|}
the Poincare group.

Aside from their pertinance to the general problem of the reduction of
the number of dynamical fields in theories with gauge groups these conclusions
bear on Kretschmann's definition of the Relativity group of a theory. At least
as it stands the definition does not lead to the desired group of the theory, e.g.
the Poincar; group for space-time theories, but rather leads to the trivial

group of the identity transformation. While we have been unable to prove such

a conclusion for an arbitrary convariance group it seems to be the case.

«2]-
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Coordinate Conditions and Canonical Formalisms

in Gravitational Theory*
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Stevens Institute of Technology, Hoboken, New Jersey

I. INTRODUCTION

An expression for the Hamiltonian of general rela-
tivity has been given by Dirac! that is especially simple
in form and so allows one to proceed further with the
study of the canonical formalism of this theory than
was possible using the older, more complicated expres-
sions for this quantity.2® ® This Hamiltonian is
given by

H= [{(~g) Wertpie) dw  (1D)
where 3C; is the Hamiltonian constraint of the theory
and 3¢ are the longitudinal constraints. They have the
form

3CL= K (grageb— 3grewr) p"p**+K(*R)  (1.2)
and

= pim, (1.3)

where p™ is the momenta conjugate to the spatial
part of the metric g,,, K? is the determinant of g,
and 3R is the scalar curvature formed from g,,.2

As it stands, the Hamiitonian (1.1) is incomplete
because of the appearance of gy, in it. In the formula-
tion given by Dirac that leads to this Hamiltonian,
the momenta p% conjugate to gg, vanish weakly. This
has as a consequence that the degrees of freedom
associated with go, disappear from the Hamiltonian
formalism. It therefore becomes necessary to assign
values to the go, by some means in order to make the

Hamiltonian definite. The method of assignment has
varied from author to author and has resulted

.
i
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seeming disparate expressions for the Hamiltonian, We
discuss here the various methods used to fix the gy,
the Hamiltonians that result therefrom, and the
relations between these various methods.

II. COORDINATE CONDITIONS

In all the methods that we discuss here the values
of the go, are fixed by the introduction of coordinate
conditions into the theory, albeit not necessarily in the

* Supported in part by NASA Grant NsG-326 and Air Research
and Development Command, United States Air Force, WADD
through its European Office.

! P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958)

2 (a) P. G. Bergmann, R. Penfield, R. Schiller, and H. Zatzkis,
Phys. Rev. 80, 81 (1950). (b) F. A. E. Pirani and A. Schild, Phys.
Rev. 79, 986 (1950) ; Phys. Rev. 87, 452 (1952).

3 We follow here the notation used by Dirac in his papers. Latin
indices run from 1 to 3 and represent the spatial part of an index
set. Indices are to be raised or lowered with the help of g,.. The
notation |s indicates the three-dimensional covariant derivative
formed using g,.. Finally, we use a metric with signature +2.

most obvious manner. One might imagine that the
simplest thing to do would be to require that one
always work in a coordinate system in which the gy,
are specific space-time functions.* Thus one might
introduce a Gaussian normal coordinate system in
which go.=—8p,. Such a coordinate system can be
shown to always exist in every finite region of space-
time that is topologically Euclidean.

There are, however, a number of reasons why one
does not assign values to the gy, directly. For one thing
it does not fix the coordinate system uniquely. In
general it leaves arbitrary one surface %= const as well
as the coordinates in that surface. In order to remove
this arbitrariness it is necessary to impose additional
conditions on the metric and its derivatives on a =
const surface. Since the values of the g, are already
fixed this means that these additional conditions must
involve the g.., the p™, and their spatial derivatives,
Thus one might require, as does Dirac,® that one of
the ©=const surfaces should have a maximum three-
dimensional “‘area.” This condition can be expressed
in terms of the g,, and p™ by requiring that

=g p™ R0, (2.1)

To fix the coordinates within this surface we could
require in addition that the harmonic conditions in
three dimensions,

(Ke) =0 (2.2)

be satisfied. Here e™ is the inverse of the matrix formed
from g,
eraga'= 6,'-

(2.3)

While we are free to impose these conditions on any
one = const surface, they will not, in general, remain
satisfied on the other #=const surfaces since their
time derivatives, formed by taking their Poisson
brackets with the Hamiltonian (1.1), will not vanish
weakly, either as a consequence of the coordinate
conditions (2.2), (2.3), or the secondary constraint
equations

and

300, (2.5)

It would thus be extremely awkward to work with
such conditions in studying the dynamical evolution of
a metric field.

4 See, for example, P. G. Bergmann and A. 1. Janis, Phys. Rev.
111, 1191 (1958).
5 P. A. M. Dirac, Phys. Rev. 114, 924 (1959).
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The difficulty that the secondary coordinate condi-
tions (2.3), (2.4) do not remain satisfied in the course
of time if we first assign values to the gy, is directly
related to a second difficulty of this way of doing things
and is assnciated with the existence of the secondary
constraints (2.4) and (2.5). They arise as a consequence
of requiring that p% vanish weakly throughout the
temporal evolution of the metric field. Since they
depend only on the g, and p™ they represent restric-
tions on the values that one can assign to these quan-
tities initially. Furthermore, since 3¢, and JC" are gen-
erators of infinitesimal coordinate transformations,® all
physical observables, which are a fortiori invariants,
must have vanishing Poisson brackets with the 3¢, and
J¢r. The construction of initial corditions and ob-
servables is therefore greatly complicated by the
existence of the secondary coustraints. Furthermore,
the existence of constraints such as (2.4) and (2.5)
implies that not all of the apparent degrees of freedom
of the field are real. As in the electrodynamic analog
where only the transverse components of the field
represent dynamical degrees of freedom of the field,
only a subsct of the g, p™ represent true dynamical
degrees of freedom of the metric field.

In attempting to overcome these difficulties as-
sociated with the existence of the secondary con-
straints, many authors have made use of coordinate
conditions. It is clear, for instance, that once a co-
ordinate system is fixed, any functional of the g,, and
¢ constructed in that coordinate system is an ob-
servable. However for this purpose of constructing
observables the coordinate system must be fixed up to
a point where any additional arbitrariness resides in at
most a finite dimensional Lie group of transformations.
Thus it would not do simply to assign values to the
gu; We must impose additional, secondary conditions
such as (2.1) and (2.2) on the g, and p=. If these
conditions would remain satisfied throughout the course
of time then we could alleviate to some extent the other
above mentioned ditficulties. In particular we could
then use the conditions on the g,, and p together with
the constraint equations (2.4) and (2.5) to climinate
the nonphysical degrees of freedom from the field
equations for the metric as is done in electrodynamics.
There the Coulomb gauge condition V<A =0 together
with the secondary constraint V-P=--p is used to
eliminate the longitudinal components of the vector
potential AL and the conjugate momenta P from the
theory. If we could effect this elimination of the non-
physical degrees of freedom of the metric field through
the use of coordinate conditions, then the remaining
degrees of freedom would constitute the physically
observable parts of the metric and at the same time
could be assigned arbitrary (to the extent that the
reality conditions oa the metric are not violated)
initial values.

‘. l;;rr.‘\xltjer51,w(1 and P. G, Bergmann, Phys. Rev. 83, 1018
(1951)

If we are going to introduce coordinate condition
into the theory we see that we would like them to
involve restrictions on the g, and p™ that remain
satisfied in the course of time. In almost all of the work
that involves coordinate conditions this is accomplished
by determining values for the g, that keep the co-
ordinate conditions satisfied once they are satisfied
initially. In other words, one first decides upon the
conditions that involve the g,, and p and then finds
those values for the gg, that maintain these conditions
in the course of time. Thus in electrodynamics, the
Coulomb gauge condition V-A=0 will remain satis-
fied in the course cf time provided we require that the
scalar potential ¢ satisfies —V?¢=p. Had we started
out by setting ¢=0, we could still have found a gauge
in which V-A=0 at some one time but, because of the
field equation — V- (dA/di+V¢)=p, it would not re-
main zero in the future. It should be noted that, while
neither the condition V-A=0 nor the condition
— Vip=p is sufficient by itself to fix the gauge, the two
together, along with the boundary conditions that
¢=0and n-A=0 on the boundary of the spatial region
und: - investigation (# is the outward directed normal
to this boundary) are sufficient to fix the gauge up to
an arbitrary constant, which is the best we can hope
to do.

In general relativity, various authors have used
different types of conditions and have woven them
into the cannonical formalism in different ways, leading
to what appears at first sight to be unrelated expres-
sions for the resulting Hamiltonian for the theory. The
coordinate conditions fall into two main classes, those
which involve the coordinates themselves such as
those by Arnowitt, Deser, and Misner” and Bergmann
and Komar® and those which do not and which are
used by Dirac? and the author.!®

ITII. MODIFIED CANONICAL FORMALISMS

The use made of coordinate conditions varies from
author te author and depends upon the type of co-
ordinate conditions employed. We give a brief survey
of these different approaches in this section and then
show their equivalence in the next section.

Dirac was the first to set up a formalism!! that would
allow one to make explicit use of coordinate conditions
in the canonical formalism of general relativity. His
method is general enough to be applicable to all tvpes
of coordinate conditions. Furthermore, as we shall
show, the other approaches are all variants on this
general method, We therefore begin our survey with a
description of this method.

TR, Arnowitt, 5. Deser, and C. W. Misner, Phys. Rev. 116,
1322 (1959); Phys. Rev. 117, 1595 (1900).

8P, Gl Bergmann and A. Komar, Phys. Rev. Letters 4, 432
(1960).

4P AL M. Dirac, Phys. Rev. 114, 024 (1959).

[ Anderson, Les Theories Relativistes de la Gravitution
(Centre National de 1a Recherche Scientifique, Paris, 1962},
p. 372

P, A, M. Dirac, Can. J. Math. 2, 129 (1950).




A. Dirac’s Method

In order to make use of the constraint equations
(2.4) and (2.5) to eliminate a corresponding number of
degrees of freedom from the theory they must somehow
be converted into strong equations. (In Dirac’s termi-
nology, an equation is considered weak if its satisfac-
tion violates the basic Poisson bracket relations of the
theory while a strong equation is consistent with these
relations). One cannot use them directly for this
purpose by, for example, solving them for some of the
canonical variables in terms of the others and making
use of these solution to eliminate the variables solved
for from the Hamiltonian. By doing so one would
change the equations of motion of the theory since,
as they stand, the constraint equations are weak equa-
tions and so can be used to eliminate variables from the
theory only after all Poisson brackets have been com-
puted.

In order to convert the constraint equations into
strong equations Dirac introduced a new type of
bracket expression into the theory which we shall
refer to as a Dirac bracket (Db) in contradistinction to
a Poisson bracket (Pb). The ability to introduce these
new bracket expressions into the theory depends upon
the concomitant introduction of coordinate conditions
into the theory. Because the coordinate conditions must
single out a particular coordinate system, given the
values of the metrical quantities, they cannot be an
invariant and consequently they must have non-
vanishing Pb’s with the constraints 3C; and 3C". They
have the effect of converting the constraint equations
from what Dirac calls first-ciass constraints (the Ph’s
of a first-class constraint with all the other constraints
and the Hamiltonian must vanish weaklv) into second
class constraints {some of the Pb's with other con-
straints do not vanish even weakly) if the coordinate
conditinons themselves are considered to be constraints.

To define Db expressions we first compute the Pb’s
of all the second-class constraints of the theory with
each other. Let us call all of the second-class constraint
equations of the theory x equations and distinguish
between the different x’s by an indexs that can and
will take on both discrete and continuous values. We
next construct the inverse ¢, to the matrix [x,, x. ]
of the Pb’s of the x’s with each other. It satisfies

Csa'[Xu’, X,,'/]:ts,,,”, (31)

where 8, is a gencralized delta, i.e., a Dirac delta
function when s and s” vary continuously. The matrix
o Was shown by Dirac to always exist provided that
no linear combination of the x’s is first class. The Db
of any two functionals A and B of the canonical
variabies is then defined by the equation

[A: ijz [A» XJC“'[X«', B]+[Ar B] (3 2)

where the bracket expressions appearing on the right
side of this equation are ordinary Pb’s. Dirac has shown
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that the Db’s satisfy all of the usual relations, e.g., the
Jacobi identity, satisfied by the Pb’s. Furthermore, and
this is the main reason for introducing them, the Db
of a x with anything is automatically zero as can be
seen immediately from the above definition. As a
consequence one can now consider the x’s as strong
equations and can be used before a Db is calculated.

A particular simplification in the construction of
Db’s occurs when one or more of the x's are just the
canonical variables p themselves so that the corre-
sponding equations of constraint look like

p~0, (3.3)

where p, can be either a momentum or coordinate
variable. Then, since Eqs. (3.3) are supposed to be
second-class equations, the canonical conjugates g,
must appear in enough of the other x equations to allow
us to solve for these variables in terms of the remaining
variables so that we have

9.~ (3, P), (3.4)

where § and $ represent the remaining canonical
variables. In this case the Db reduces to an ordinary
Pb where Egs. (3.3) and (3.4) have been used as
strong equations to eliminate the p, and ¢, from the
guantities whose Db one wishes to compute and where
differentiations are only with respect to the ¢’s and
#'s. Here one accomplishes a reduction in the number
of degrees of frcedom of the system directlyv. In the
more general case one retains all of the original ca-
nonical variables but the use of the Db effectively
takes account of the fact that constraint equations
together with the coordinate conditions effectively
serve to reduce the number of degrees of freedom of the
system.

In order that one can replace the Pb’s by Db’s in the
theory it is necessary that the equations of motion are
not altered and this is the case provided that the Pb’s
of all the x’s with the Hamiltonian of the theory vanish
at least weakly. If this is so then

[gr H]DZ [g1 H]—[g, XUJC“’[XR’) H]:[g) H]
=¢
showing that one can indeed use the Db’s in construct-
ing the equation of motion for any dynamical variable g.

In applving the above procedure to the case of
general relativity Dirac introduced the coordinate
condition (2.1) into the theory as an additional con-
straint on the canonical variables. While the Pb of p
with the 3¢” vanishes its Pb with 3¢z, does not. Thus 3C,,
is converted into a second-class constraint. Dirac then
introduced a new set of canonical variables that include
p, its conjugate In k where x= K13, pr=«*(pr—ipe™)
and §,,=g./«?. He then indicated that one would pro-
ceed by solving the constraint equations 3¢, =0 for
In « in terms of ™ and §,,. However, at this point a
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difficulty occurs that is not common to other theories
with constraints. The Hamiltonian of general relativity
(1.1) is a homogeneous, linear functional of the con-
straints so that one cannot simply substitute the ex-
pression obtained for In « by solving the constraint
equations directly into the Hamiltonian since this
would lead to a vanishing modified Hamiltonian. To
overcome this difficulty Dirac rewrote the Hamiltonian
(1.1) in the form

H=Howint [[{(= g9~ 1)1+ go3T 2, (3.5)
where
Hmninzf{JcL_ (K—l(KQE")7 ’) y Sl d:!x.

This means that the Hamiltonian of Eq. (3.5) differs
from that of Eq. (1.1) by a surface term. Adding or
subtracting such a surface term from the Hamiltonian
does not change the equations of motion computed
directly from this Hamiltonian. However, Arnowitt,
Deser, and Misner'? have argued that the effective
Hamiltonian obtained after the elimination of degrees
of freedom from the theory by direct substitution might
depend upon which complete divergence is subtracted
from the original Hamiltonian H.
If we could be sure that we could treat the equations
~0 and 3. ~0 as strong equations then, of course,
it would be immaterial which divergence is subtracted
from H. However the following argument shows that it
is not completely obvious that we can treat these equa-
tions as strong equations. In order for this to be so
two conditions must be met. First, both p and 3¢, must
have weakly vanishing Pb’s with # (either H will do
for this condition to be met) and scconda, the Pb matrix
[p, 3¢.'] must possess an inverse. But we sce that
these two conditions are in fact incompatible with
each other. Thus, to satisfy the first condition we must
have

[p, H)= [ {(~g9)4[p, 500 T d2=0  (3.6)

which we could imagine being satisfied by an appro-
priate choice of g%. However, if {p, 3,'] were to
possess an inverse we could conclude that g% would, in
fact, have to be zero. Tt would not do to have g% zero
as this would imply, among other things, that the
determinant of g,, is singular. We must have, therefore,
that the matrix [p, 3¢."] is singular. In fact, whenever
one imposes coordinate conditions that do not explicitly
depend upon the coordinates one must make sure that
the Pb matrix formed using these conditions and the
constraints is singular or else we would be forced to
set g%=0 in order that the coordinate conditions remain
satisfied in the course of time. The quantity (— g®)-)

" R Arnowitt, S. Deser, and C. W. Misner, J. Math. Phys.
1, 434 (1960},

is then determined by requiring that it be a null vector
of the Pb matrix.

One can check that in the present case the Pb matrix
does in fact possess null vectors since, when we work
out the Pb in Eq. (3.6) we obtain an equation for
(—g%)~* which in general possesses nonzero solutions.

If it is true that the Pb matrix is singular, then we
cannot construct its inverse in the usual fashion and so
cannot construct the corresponding Db’s. Note that
in Dirac’s proof of existence of an inverse it was neces-
sary that no linear combination of the x’s used in
constructing the Pb matrix was first class. But in our
case, the linear combination [(—g%®)~4C, d% is still
first class so that the condition for the existence of an
inverse is violated. One could try to work only with
those combinations of constraints and coordinate con-
ditions that are second class. To do this it would be
necessary to introduce a complete set of functions
g(x, x') such that [g(x, =) (g®)~*d%'=0 and work
with the reduced set of constraints [g(x, x')3C. d%«’
instead of the 3¢y in constructing the Pb matrix with
the p's. While this matrix would be nonsingular and so
possess an inverse one would still have to show that one
could determine In « in terms of §,, and p™ from the
reduced set of constraints, in order to justify the direct
elimination, of p and In « from the theory. Rather than
do this we shall show directly that the equations of
motion obtained by direct elimination are equivalent
to those obtained before the redundant variables are
eliminated.

To demonstrate the equivalence between the two
sets of equations of motion let H% be the Hamiltonian
obtained from H given by Eq. (3.5) by setting p=0
and substituting in for In « the expression obtained by
solving for this quantity in the constraint equation
3C=0 in terms of §,, and ™. Then the time derivative
of any functional F(§,,, ™) is given, when we use H Xk
as our Hamiltonian, by

F=[F, Hx]. 3.7)
In computing [ ¥, H>*] we must keep in mind that the
gr and P appear in H* both as they appear in H
directly, and through the factors In « that appear in H.
Thus we have that

F: [F, Ilmnin]*—']‘l:lf‘, ln K*][P, Ilmuin]* d:‘x

+[F, f 203 (s 77) dax]* (3.8)

where we have made use of the chain rule for Poisson
brackets and where a % after a quantity means that
it is to be evaluated by setting p=0 and In « equal to
its value in terms of §,, and p7. It is this expression for
F that we must compare with the onc obtained using
H directly and then starring all quantities, that is, with




the equation
F=[F, H]*k. (3.9)

We have that

[F, H1%=[F, Huun]k= [F, / NoeL d‘x]*

+[F, f g dsx]*, (3.10)

where we have introduced the abbreviation N, for
{(—g0)3-1].

We see that the first and last terms on the right-hand
side of Eq. (3.10) agree with the first and last terms
on the right-hand side of Eq. (3.11) so that all we
must do is to show that the middle terms are equiva-
lent. For this purpose we expand 3. in a functional
Taylor series about In x=1In «%. Since 3¢k =0 we have

scL=—f[p', ge.)k(In K'—In K'%) @4+, (3.11)

Then we have

[p, [ dax]*= JNLE, 3Tk

- f N[, 3, JHLF, In K% ] dix &,
(3.12)

Now we note that we can rewrite Eq. (3.6) in terms
of Ny as

[P,> Hmnin]*+fN0[p,, GCL]* d*x=0. (3 13)

Substituting into the right-hand side of Eq. (3.12) we
have

[F, [No-'lCL d’x]= —/[F, In «'*)][p", Huain] d*%’
(3.14)

which proves the desired result that [F, H]x=
[F, HX].

To complete the elimination of redundant degrees of
freedom from the theory Dirac requires, in addition
to the condition p=0, the conditions

(k™) ,=0. (3.15)

He uses these conditions rather than the harmonic
conditions (2.2) since «%™ has a vanishing Pb with p
while Ke™ does not. The use of the conditions (2.2)
would require a change in the Pb relations between
nongravitational variables when one goes over to
Db’s while the use of the conditions (3.15) would not.

Rather than use the conditions (3.15) to climinate
additional degrees of freedom directly as before, Dirac
chooses to introduce the Db’s in this case and obtains
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an approximate solution for the inverse of the Pb
matrix.

In discussing Dirac’s procedure for eliminating
redundant degrees of freedom from the theory we have
worked with the variables «, p, §., and p™. They have
the advantage that the 3C" can be expressed directly
in terms of the §., and p" since they do not depend
upon «. This also allows one to eliminate the degrees of
freedom associated with 3¢, before dealing with those
associated with 3C* since p has a vanishing Pb with the
3. In the more general case one would introduce a
twelve independent functionals of the original canonical
variables g,, and p™ grouped into three sets of four
each according to the scheme

(g, 2"} =g, P48 000 A=1,2;0=1, ... 4.

(3.16)

The four functionals g,, p* are solved for in the con-
straint equations (2.4) and (2.5) and are referred to as
the “solved for” variables. The four functionals g, are
used to impose the coordinate conditions and are called
the coordinate variables. Finally the remaining four
functionals g4, p# that describe the dynamical evolution
of the system are termed the dynamical variables. In
general we would want g, and p* to be conjugates of
each other and have vanishing Pb’s with the g4 and p4.
Then if we require that

£.~0 (3.17)

as coordinate conditions, we again must have the Pb
matrix formed with the g,, 3Cz, and the 3" be singular
in order to avoid requiring that (—g%)-? be zero in
order to insure that the conditions (3.17) remain
satisfied -in the course of time. The proof that one
can treat these equations together with the constraint
equations as strong equations is then only slightly more
comphcated than in the previous case.

B. Anderson’s Method!®

The method devised by the author to eliminate
redundant degrees from the theory differs in approach
from that used by Dirac although not in the final
results, To simplify the discussion we work with the
Dirac variables In «, p, §., and p™ although again this
imposes no serious restrictions on the procedure and
it can be carried through with only slightly more
trouble in the more general case of the scheme indi-
cated in (3.16). Again we solve the equation 3¢,=0
for In « in terms of g, and p™. We now introduce in
place of In « a new variable A through the equation

In x=1n k4], (3.17)

where a % after a quantity has the same meaning as
before. Setting A=0 is equivalent to treating the
constraint equation 3¢;=0 as a strong equation. We
now determine (—g®)—¥ in H given by Eq. (3.5) by
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the requirement that A appears in I only to higher
powers than the first. Any factors of A higher than the
first do not contribute to the equations of motion when
we set A=0 after the Pb’s have been computed. Thus
the effective Hamiltonian for the theorv is just Ik
again. To show that this effective Hamiltonian gives
the same equations of motion as the original one we
must first determine (—g%)~? to use in the original
Hamiltonian.

When we substitute into H for In « using Eq. (3.17)
and expand about A=0 we obtain

II: II*nmin+/[P) Ilmuin]*)\ d3x+ et

+f/zv0'[p, 3oL TN dx dix'+ -+, (3.18)

where the dots indicate the terms containing higher
powers of A than the first. We see that the terms
linear in A can be made to vanish by choosing Ny such
that it satisfies the equation

[P, lImuiu]*z /NO’EP, JCL’—J* dax'=0.

We see that this is just the same condition (3.13) used
to fix Ny so that [p, H] is again zero. In the present
case, since In « no longer appears in the Hamiltonian
except through powers of N higher than the first we can
conclude that [p, H] is again zero. Thus the two
methods are entirely equivalent and we do not need to
give a separate proof of the consistency of our method.
So far we have used coordinate conditions that do
not depend explicitly on the coordinates, e.g., we have
set p=0 or more generally would set the coordinate
variables of (3.16), the g,, equal to zero. 1n order to
insure the consistency of the approach it was necessary
that the Pb matrix of the p* with 3¢, and the 3¢ have
at least one null vector. We now examine a number of
procedures that make use of coordinate conditions that
depend explicitly on the coordinates. Thus, Arnowitt,
Deser, and Misner (referred to in what follows as
ADM) take as coordinate conditions.
g2, (3.19)

Bergmann and Komar (referred to hereafter as BK),
although they do not explicitly introduce new variables
as in Eq. (3.16), work in a coordinate system in which
the coordinates at a point of the space-time manifold
are numerically ¢qual to the values of the four scalars
one can form from the g, and their first and second
derivatives that do not vanish when R,,=0.1314 In
either case the requirement that the coordinate con-
ditions remain satisfied throughout the course of time

B F. Kretschmann, Ann. Physik §3, 575 (1917).
" A. Komar, Phys. Rev. 111, 1182 (1958).

is now that
5.4=[g., I (3.20)

or

b= [ (=) g, 50T+ golg 30N . (3.21)
Naow the Pb matrix of the g with the constraints
should possess an inverse in order to be able to deter-
mine (—g®)~% and g from Eq. (3.21). We now dis-
cuss how these types of coordinate conditions are used

by BK and ADM.

C. The Method of Bergmann and Komar®

In general the Pb matrix depends upon & functions
and their derivatives so that Egs. (3.21) become a set
of coupled differential equations for the (—g%)~% and
gor. Similarly, to find the inverse to the Pb matrix one
must in general solve a set of coupled differential equa-
tions. However, BK observed that in the special case
where the g, are all scalars the Pb matrix involves enly
8 functions and not their derivatives. The reason for this
lies in the fact that the 3¢, and 3C* are the generators of
coordinate transformations and the transformation law
for scalars does not involve the derivatives of the
descriptors (the arbitrary functions) of the transforma-
tion. Thus is the generator of the transformation is
given by

C= | w3+ w3} dix, (3.22)
where the o, and o, are the descriptors of the trans-
formation, we must have, if g, s a scalar, that

—b8g.= it g rwr. (3.23)

But since 6g,=[g., C'] we have that

Fg= f (0 Tg, 302 Twr [ao 3077 di (5 d)

and since the w’s are arbitrary functions of x we can
conclude that the Pb matrix does not involve deriva-
tives of the & function. Consequently, solving Eqs.
(3.21) or finding the inverse of the Pb matrix involves
only algebraic operations. In this regard, however, one
must be sure that the g, do not depend upon (g%)-
or gq.; otherwise what we have said would not be true
and in fact, if this were the case, Egs. (3.21) would
become nonlinear in these quantities. Fortunately such
is not the case as BK were able to show; the four non-
vanishing scalars formed from g the g,, and their first
and second derivatives depend only upon the g, p™
and their spatial derivatives.

Once having set up their coordinate system BK
proceed to construct a set of invariants. Since the
constraints are the generators of infinitesimal co-
ordinate transformations the condition that a func-
tional F of the g,, and p™ be an invariant is that the




Pb’s between it and all of the constraints must vanish.
Without the use of coordinate conditions the con-
struction of such quantities is extremely difficult and
only a few such quantities are known at present.
However, once rne introduces coordinate conditions
into the theory one can construct invariants relatively
=asily. In fact, corresponding to each functional F
there is another one F that has vanishing Pb’s with the
constraints.

For the construction of /* and in what follows it is
convenient to introduce the notation

{JC.} = i"}c'7 :}CL}

(V)= {gor, (=™, (3.26)

where agzin ¢« (not a tensor index) runs from 1 to 4.

(3.25)
and

" Then, given an F we add to it a linear combination of

the constraints and coordinate conditions according to

F=F+ | a,(g.—x*) +B.3C} dix, (3.27)
where the coefficients a, and 8, are determined by the
condition that the Pb’s between F and (g.—=*) and
JC, vanish. If the Pb matrix has in inverse one can
determine the coefficients in Eq. (3.27) directly. Thus
if G (x, ') is the reciprocal of the Pb matrix so that!®

/[g‘, I/ IG\ (X", X') d3x'' =5, 8(x—x'), (3.28)

we can determine the a, by the requirement that
[F, 3¢]=0. If we multiply this requirement by G..,
sum over the indices, and integrate, we obtain

a= = [[F,596.(x, 0 ¢ (3.29)
The 8’s can be obtained similarly. If the g, arc scalars
G, can be found immediately and hence so can the
a’s and 8’s.

As long as we work only with the barred quantities
we see that the constraint equations and coordinate
conditions can be treated as strong equations since
they all have vanishing Pb’s with any barred quantity.
In this regard then the BK procedure is equivalent so
that of introducing Db’s into the theory. In fact one
can show immediately that

[F, R)=[F, K.

If we compute the total time derivative of F we have,
as usual, that

(3.30)

dF/d1=0F /ot4-[F, H]. (3.31)

Since H is a homogeneous linear functional of the 3C,

* We have neglected here the fact that the Pb's [, &7 are
not necessarily zero so that, strictly speaking, G (x, x') is not
reciprocal of the total Pb matrix, However only the reciprocal of
Lg., 11,'] is needed to determine a..
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the second term on the right-hand side of Eq. (3.31)
vanishes [this same result would hold of course if we
had used H given by Eq. (3.5) instead of that given
by (1.1) since we are not using the constraint or co-
ordinate equations as strong equations here]. Further-
more we see from Eq. (3.27) that oF/dl=— fa, dx
so we have finally

d

o S P

i (3.32)

or
d -
9 pe (X, ', (3.33
ZF fj[z«j,sc.]c; (X, %) dxdx.  (3.33)

We notice however that N,, as determined from Eq.
(3.21) by multiplying this equation by G., is given by

N/~ [Gulx,x) o (3.39)
If we make use of this result in Eq. (3.33) we see that
the total time derivative of F is just given by

17'=[I", ] N3, dsx]=[F, H]  (3.35)

so that

dF/dt=dF/dt. (3.36)

This result is, of course, not surprising since F is weakly
equal to F and Eq. (3.36) only holds as a weak equa-
tion.

D. The Method of Arnowitt, Deser, and Misner’

The Hamiltonian employed by ADM is obtained in
the first instance from the Lagrangian formulation of
general relativity by making use of methods developed
by Schwinger.'® By adding suitable surface terms to the
action of general relativity, I'= f(—gR)¥d%, they
show that it can be brought into the form

I= / (p0gra— N3} d, (3.37)
where the quantities appearing herein are defined as
before. The pr* appearing here as the canonical con-
jugates to g,, are defined by

= — K(Dri—ertg ,I'®?) (3.38)

where T'p,=— N, is the second fundamental form
of the surface ¢=axt=const. In analogy with the para-
meterized action for a particle system they look upon
the N, as Lagrange multipliers associated with the
coordinate covariance of the action I. Varying these
quantities gives the constraint equations (2.4) and
(2.5) while a variation of g,, and p™ gives the remainder
of the Einstein field equations. One sees that the Hamil-

18 J, Schwinger, Phys, Rev. 82, 914 (1951); 91, 713 (1953).
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tonian leading to these latter equations, fNJC, d%, is
identical to the one obtained by Dirac. We point out
here that the constraint equations are just the Gauss-
Codazi ecquations that are the conditions that a surface
t=const with first and second fundamental forms g,,
and I, respectively, can be imbedded in a four-di-
mensional space described by the equations R,,=0.

The point of departure of the ADM method from
the others described above lies in the coordinate con-
ditions employed by them and the uses to which they
are put in obtaining an effective Hamiltonian. They
express their coordinate conditions in terms of the
linear orthogonal decompositions of g,, and pr. If f,, is
any symmetric matrix then one can decompose it using
a generalized Helmholtz theorem according to

frlszlTT+leT+(fr.l+fl.") (33())

where f,,77 is the traceless, transverse part of f,, and
satisfies the conditions f,,,"T=0 and f,.77=0; f,7 is
transverse and satisfies thereby the condition f,, ,7=0
and is determined by its trace fT=f,,7. When one
inserts these decompositions for g, and p™ into the
action (3.37) one obtains

I~‘=[{p"7'7'8.g,,”— (__gT‘")a" —_ (ZVQ)—lPT‘

F2(= P 0= p' ) 08— N 3C.} d'z,  (3.40)

where 1/V? is the inverse of the Cartesian Laplacian
with “suitable” boundary conditions. The form of this
action suggested to ADM that they take g,TT and
277 to be the dynamical variables of the theory, g7 and
o as the solved for variables and pT and g, as the
coordinate variables, Because g7 and pr alone appear
in the linear parts of the constraint equations one hopes
that they can be solved for by an iterative procedure.
The coordinate conditions imposed by ADM are

+(2V2)-1pTrt (3.41a)
and
groar, (3.41b)-
They also use the conditions
— (2V3) -1 (pT+ V2pl) ot (3.42a)
and
gr— (4V2)~1gT xr, (3.42b)

These latter conditions have the property that for
g'T=0, the spatial metric reduces to isotropic form,
i.C., Bre™= (1+ &g‘ll) 6rm

If one uses the coordinate conditions and constraint
equations as strong equations, the action (3.40) re-
duces to the canonical form

= /'pnT‘Ta.g"TT__GC(g"'I'T, P"TT) l dlx, (3 , 43)

where 3=V %" is the solution of the constraint equa-
tion 3¢, =0, The form of this action suggests that one

can use H=[JCd* as the Hamiltonian for obtaining
the equations of motion for g.,7T and p"77. In a scpa-
rate paper,'’? ADM show that the equations of motion
obtained using this Hamiltonian are identical to those
obtained using the Hamiltonian given in Eq. (1.1) in
the coordinate system fixed by Eqgs. (3.41).

One can arrive at the same expression for the effec-
tive Hamiltonian as did ADM by requiring that the
coordinate conditions of the type in Egs. (3.19) remain
satisfied throughout the course of time. This will be
the case provided the Pb matrix possesses an inverse
and then the N, are given by Eqgs. (3.34). Let us now
expand the JC, about p'=p*k where a star after a
quantity has the same meaning as before. We have
that

H=/Nl{sc*c-*‘/[gx',GC;]*(P'._?,.*) d’x'-f— e ] d’x,

(3.44)

where again the dots represent terms containing higher
powers of (p*—p*k). Since these terms will not con-
tribute to the equations of motion we can again ignore
them. Also, as before, 3¢,% vanishes. Therefore, when
we substitute the expression for N, from Eq. (3.34)
into the above expression for the Hamiltonian we
obtain

H=[(p‘-p‘*) . (3.45)

If we are only interested in the equations of motion of
the dynamical variables g4 and p# we can drop the
first term in the integrand. Thus the effective Hamil-
tonian becomes

=—/p‘* & (3.46)

which is just the result obtained by ADM. Since we
have not used the coordinate conditions or constraint
equations as strong equations in deriving this result
we see that immediately that the equations of motion
for the dynamical variables obtained using this Hamil-
tonian will be the same as those obtained using the
original Hamiltonian (1.1).

IV. RELATION BETWEEN THE METHODS

At first sight the effective Hamiltonian obtained by
Dirac and by the author, H=HXuain, scems to bear
little relation to that obtained by ADM and indirectly
by BK. The main reason for this apparent difference
lies in the different types of coordinate conditions
employed in the two cases. To explore this difference
further we see that if we were to require that g=0
we could not alternately rcquire that g,=x'. In the
former case we saw that Pb matrix must be singular in
order that N, not be zero while in the latter case it




should possess an inverse in order that we can deter-
mine N, as in Eq. (3.34).

While we cannot use the same g, in the two types
of coordinate conditions we can use closely related
ones. Thus, if we required that g,=x*, we saw that the
N, could be obtained from Eq. (3.21) which we rewrite
as

s= [N g, 501 (4.1)
Suppose now that we introduce a new set of g, coordi-
nate variables §, that are obtained from the g, by
differential operations performed on these latter
quantities. Thus, for instance, we might take §,= V?g,,
etc., where V?is now the generalized Lapacian operator
for the metric g,,. Then it follows immediately from
Eq. (4.1) that

0= [N.[g, 3 . (4.2)
Thus the same N, that satisfy Eqs. (4.1) can satisfy
Eqs. (4.2). But these latter equations are just the
conditions that the coordinate conditions §,=0 remain
satisfied in time. However, if g,=2* and §,= V%, we
have immediately that §,=0 so that the conditions
that the equations §,=0 and g,= x* remain satisfied in
time are seen to be directly related to each other as
above. Furthermore we see that the Pb matrix [ §,, 3¢,"]
will not possess an inverse and that the N, will be null
vectors of this matrix. The difference in the structure
of the two Pb matrices is due, in the final analysis, to
the fact that the conditions §,= 0 contain less informa-
tion than do the conditions g,=x*. Thus, if the g, are
scalars, the latter type of conditions determine the
coordinate system uniquely, since presumably the
values of the g, are known at each point of the space-
time manifold. However, while the related conditions
d.=x* imply the conditions §,=0 the converse is not
true without additional information, e.g., boundary

conditions. This is reflected in the fact that, if the Pb

matrix [§,, 3] is singular it means that some linear

combination of the 3C still vanishes only weakly and
can therefore be used as the generator of a subgroup of
the original symmetry group generated by the full
set of 3C..

To see how effective Hamiltonians that arise from
the use of the two different types of coordinate con-
ditions are related to each other we shall consider the
special case where we use the Dirac coordinate con-
ditions (2.1) and (3.15) and the variables p, x, G,
and p. In terms of these quantities the Hamiltonian
constraint s

SCLEJCIuain+4(C"K,r) .8%0~ (43)

If we were to follow the Dirac procedure we would
solve this equation for «, set its conjugate 2k~'p equal
to zero which is equivalent to setting p equal to zero
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since «x cannot vanish, and taking as the Hamiltonian
J3CK main d3x. Alternately we could solve the above
equatlon for 4 (ex.r) +. The con]ugatc to this quantity
is 1V-2(x~1p) where V-2 is the inverse to the Laplacxan
belonging to the metric §r. Since it is not unique we
suppose that it is fixed by appropriate boundary con-
ditions. If now the Pb matrix of 3V-2(x~1p) with 3,
is not singular we can require, as a coordinate con-
dition, that

— (2921 (x1p) ot (4.4)
We see that this condition implies that p=0 but not
conversely.

Now according to ADM the Hamiltonian in the
coordinate system in which Eq. (4.4) is valid is just
{f4(ex,) . d3x}%k where as before the star means
that the starred quantity is to be expressed in terms
of the solution of the constraint equation. But from
Eq. (4.3) we see that this quantity is just { [3Cumain @ ]k
which is just equal to H*main, the Hamiltonian that
follows from the Dirac procedure. A similar discussion
can be carried out for other types of coordinate con-
ditions. In general one finds that the Hamiltonian
obtained by the ADM procedure is equal to that
following Dirac whenever the coordinate conditions
used in the two cases are related as in the above case.

V. QUANTIZATION OF GENERAL RELATIVITY

Since all of the canonical schemes were devised by
their authors with the idea of using them in the con-
struction of a quantized version of general relativity
we would like to conclude this survey with a brief
comparison of the several attempts in this direction.
Roughly speaking, the aim of Dirac, the author, and
ADM was to eliminate redundant degrees of freedom
from the theory by the introduction of coordinate
conditions. Although they differed in detail it was
necessary that they be able to solve the constraint
equations for certain functions of the canonical vari-
ables, the quantities we have called g,. 'I'o date none of
the authors have discovered a set of g, that would
allow one to solve the constraint equations in closed
form. Consequently these authors must resort to some
sort of iteration scheme to solve the constraint equa-
tions for the g, based upon a weak-field approxima-
tion. But it seems to the author that the use of a weak-
field iteration procedure destroys just that aspect of
general relativity that might be responsible for features
which are quantitatively different from those found in
conventional quantum field theories, namely its
intrinsic nonlinearity.

The approach of BK is essentially different from
that of the other authors in that they do not use the
coordinate conditions to eliminate degrees of freedom
from the theory but merely to construct an observable
F from every F by means of Eq. (3.27). For this
purpose it is not necessary to solve any constraint
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equations. In the quantized version of this formulation
of the theory one would look for an operator representa-
tion for the F's which would reproduce the classical
commutator algebra between the various F’s obtained
from their Pb’s. Since now one has many more ob-
servables than degrees of freedom the observables are
not all independent of one another and so one has
certain consistency conditions to satisfy that are not
present when one eliminates degrees of freedom from
the theory directly. It is not clear at present whether
or not one can satisfy these consistency requirements.

If they can be satisfied then the BK procedure would
have the advantage over the other schemes of quantiza-
tion that it does not require a weak-field approximation
procedure to obtain its results.
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