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VB234FD101

1.0 SCOPE

This document summarizes the function and elements of the Guidance snd Control Sub-

system. It defines the functions and the equipment make-up of each subsystem forming

Guidance and Control. The operation of the subsystem is described in the context of

the mission.
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3.0 DESCRIPTION

The Guidance and Control Subsystem is comprised of five equipment subsystems:

Attitude Controllo

2.

3.

4.

5.

Cold Gas Jet

Autopilot

Articulation

Approach Guidance

The relation between these five is depicted in Figure 3-1. The electronic assembly of this

subsystem is depicted in Figure 3-2.

These subsystems maintain the spatial attitude of the Voyager Spacecraft and articulated de-

vices during the four major mission phases:

i. Cruise

2. Maneuver

3. Guidance correction

4. Orbital.

During the approach phase the subsystems also perform measurements of the angles between

the Spacecraft line of sight to Mars and the Sun and Canopus. These are used in the orbit

determination system to supplement the DSIF measurements.

3.1 ATTITUDE CONTROL

The attitude control subsystem acquires and stabilizes the Spacecraft to the external

attitude references from any initial attitude and rates up to three degrees per second. It

then maintains the Spacecraft attitude relative to these references to less than 3/4 degree

during the heliocentric cruise and Mars orbital phases. It also maneuvers the spacecraft,

by sequential rotations, to any arbitrary spatial attitude necessary to perform velocity

change or capsule separation maneuvers.

The attitude control subsystem consists of: optical sensors (Sun sensors in pitch and yaw

and star sensor in roll) to determine attitude deviations from the references; gyroscopes

which provide rate signals during acquisition of references and position signals during

maneuvers; and electronic circuitry which processes the sensor signals to operate the

appropriate solenoid valves of the Cold Gas Jet Subsystem.
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The subsystem has three basic functions or modes of operation:

1. Acquition mode

2. Cruise mode

3. Maneuver (or inertial) mode

In the acquition mode the roll star sen_or is initially locked out, wide field of view sun

sensors are used in pitch and yaw, and rate signals are provided by the gyroscopes. The

system acquires the sun reference in two axes in less than 20 minutes from the start of

acquisition. After this the narrow field of view cruise sun sensors are switched in, the

Canopus sensor enabled and the vehicle is made to roll about the sun line in search of

Canopus. When the star comes in the field of view of the sensor, acquisition is completed.

The Canopus search and acquisition can take up to 70 minutes.

In the cruise mode the cruise (narrow field of view) sun sensors are controlling pitch and

yaw axes and the Canopus sensor the roll axis. The gyros are off and damping is obtained

by passive means such as derived rate.

In the maneuver mode the optical sensors are replaced by the gyros operating in position

mode. Gyros are torqued in sequence to produce a vehicle rate about the desired axis. The

time the gyros are torqued is controlled to yield the desired rotation. This same basic

mode is employed during an inertial hold except that the gyro torquers are not energized.

3.2 GAS JET SUBSYSTEM

The Cold Gas Jet subsystem applies torques to the Spacecraft as required by the attitude

control system to perform its function of acquiring and holding its references and to

maneuver the spacecraft to desired attitudes. This subsystem also imparts a small

velocity to the spacecraft after capsule separation. This velocity increment is normal

to the capsule separating direction and assures that the capsule will not impact the space-

craft after the application of the capsule deflection impulse.

The Gas Jet Subsystem consists of: tanks which contain the propellant (Freon}; regulators,

filters, fill valves, solenoid valves and nozzles. The electrical signal which actuates the

solenoid valves is provided by the attitude control system.

3.3 AUTOPILOT

The Autopilot maintains the inertial attitude of the vehicle during propulsion thrusting and

shuts off the rocket engines when the desired velocity has been achieved.

Functionally this subsystem consists of: gyroscopes, signal processing electronics, jet

vane and throttle valve actuators, velocimeter and switching logic. The mutual operation

of these components perform the autopilot function. The gyroscopes and the velocimeter
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are functionally a part of the autopilot. Physically they are in the attitude control system

and described as part of that subsystem. The jet vane and throttle valve actuators are

physically a part of the rocket engines and as such provided by the propulsion system.

The specification and design of these actuators are dictated by the autopilot subsystem.

The gyroscopes generate signals proportional to spacecraft angular position. These signals

are processed by lead networks and amplifiers in the antopilot electronics. The amplified

signals actuate throttle valve actuators to result in pitch and yaw control torques. In the

roll loop the signals operate jet vane actuators.

3.4 ARTICULATION SUBSYSTEM

The articulation subsystem points the high gain antenna to Earth and the planet scan platform

package to Mars.

This subsystem consists of stepper motors, a horizon sensor, and circuitry to actuate

the stepper. The physical gimbals and bearings are part of the Engineering Mechanics

subsystem VB235FD108 and VB235FD109.

The articulation subsystem employs the attitude stabilized characteristic of the spacecraft

and the known ephemerides of the spacecraft, Earth and Mars to operate the gimbals open

loop, that is by programmed or commanded steps. The outboard gimbal of the planetary

scan platform is operated closed loop employing an IR horizon sensor.

_. 5 APPROACH GUIDANCE

The Approach Guidance subsystem measures the angles between the spacecraft, the Sun,

Canopus and Mars and telemeters this data to Earth for use in the orbit determination

system. The equipment consists of optics, an image forming tube and appropriate circuitry.

The function of the Approach Guidance Subsystem is one of data taking and not of calculating,

inasmuch as the data is used to supplement the radio tracking data in the orbit determination

program on Earth.
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4.0 MISSION SEQUENCE

The operation of the Guidance and Control subsystem can be summarized in the context of

the mission sequence.

Shortly after separation from the Launch Vehicle, the Attitude Control Subsystem is

energized. It goes into its acquisition mode and stabilizes the spacecraft to Sun and Canopus.

It is then in the cruise mode until the first mid-course maneuver which occurs several days

after separation from the Launch Vehicle. At this point the attitude control subsystem is put

into the maneuver mode and the spacecraft is rotated to the desired attitude for execution of

the mid-course maneuver. During rocket engine thrusting the maneuver attitude is maintained

by the autopilot which also terminates thrust when the proper velocity has been achieved.

After termination of thrusting, the attitude control subsystem goes into its acquisition mode and

reacquires Sun and Canopus.

The system is then in the cruise mode. During this cruise the articulation subsystem

periodically updates the two high-gain antenna gimbal angles to maintain pointing to the

Earth. Cruise continues until the second mid-course maneuver which may occur several

weeks or months after the first. The sequence of the first maneuver is then repeated.

Cruise continues until about four days before encounter at which time the approach guidance

equipment is turned on. Measurements begin about 500,000 km from the planet or

two days before encounter and continue for one day. Shortly after the approach guidance

measurements have been completed and the data processed, the attitude control system is

placed in the maneuver mode and rotated to place it in the appropriate attitude for capsule

release. The capsule is then released and a small velocity change applied to the spacecraft

normal to the capsule separation direction. After a ten-minute delay to permit spacecraft -

capsule separation, the spacecraft, which is still in the maneuver mode, is rotated to put

it in the appropriate attitude for the final mid-course correction. At termination of that

maneuver Sun and Canopus are reacquired. "Cruise proceeds for about a day at which time

the maneuver mode is again assumed and the spacecraft is rotated to the appropriate

attitude for the orbit insertion maneuver. During orbit in§ertion as the rocket engines are

thrusting the autopilot maintains the attitude of the vehicle and terminates thrust when the

desired velocity change has been achieved.

After orbit insertion has been accomplished the attitude control system again reacquires

Sun and Canopus and the system is in the steady state cruise or orbit mode.

The planet scan platform is deployed and the articulation subsystem rotates the two inboard

gimbals to errect a perpendicular to the orbit plane. A horizon sensor, which controls

the outboard gimbal, acquires the planet and then rotates the outboard gimbal to point the

science instruments to the local vertical. The two inboard gimbal angles are periodically

updated to keep the final axis normal to the orbit plane as it precesses and as Mars progresses

around the _un.

Finally during the latter portions of the mission the Sun may be occulted by Mars. In as

much as this event is anticipated and accurately predictable in time, the attitude control

system will be commanded to go into the inertial mode in the pitch and yaw axes. The

gyros then hold position during the occultation.
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i.0 SCOPE

The Voyager 1971 Attitude Control Subsystem controls the angular orientation of the space-

craft at all times, except during "launch-to-initial-turn-on" and rocket motor firing periods.

This functional description presents a delineation of the operation of the preferred design of

the Attitude Control Subsystem (ACS). In addition, compilations are presented of all ACS

interfaces and pertinent ACS performance parameters. Also presented are defined ACS

physical characteristics and the safety factors given consideration in formulating the ACS

operational procedures.

2.0 DOCUMENTATION

The following are supplementary and supporting documents to this functional description.

VB220FD101

VB220F DIIO

VB220FD111

VB220FD112

VB234FD101

VB264FD104

Standard Trajectories

Telemetry Channel Assignments

Maneuver Exercution Accuracy

Flight Sequence

Guidance and Control Subsystem

Attitude Control and Approach Guidance OSE

3.0 ACS OPERATION

The mission requirements of the ACS are:

a. To acquire external attitude

b. To stabilize the spacecraft to these references for the purposes of providing

• Efficient solar power conversion

• Antenna earth-pointing reference

a Planet Scan Platform Mars-pointing reference

Co To provide self-contained inertial references, for the purposes of maneuvering the

spacecraft to any spatial orientation, and maintaining that orientation for guidance

and capsule separation purposes

2 of 42
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The external references chosen for Voyager ACS are the Sun and the star Canopus.

The following sections of this paragraph describe the mechanization of the ACS to achieve

these objectives, the pertinent subsystem performance characteristics, the ACS operational

modes and sequences, and those modes that enhance the ACS functional reliability.

3.1 MECHANIZATION

The three ACS objectives are illustrated in Figure 3-1. Solar panel orientation is accomplished

by pointing the panel surfaces normal to the Sunts radiation. (The spacecraft negative roll axis

is pointed at the center of the Sun. ) Holding a fixed orientation to the Sun and the star Canopus

is accomplished by pointing the spacecraft roll-yaw plane so that Canopus lies in it. The cap-

ability of maneuvering the spacecraft to any orientation is provided by the use of three strapped-

down gyros (aligned respectively to the spacecraft pitch, yaw and roll axes) which can be

switched by command to operate in a position mode and torqued by a precision gyro torquer

for a precise time increment. The following is a description of the mechanization of the ACS

by component assemblies to perform the required functions.

3.1.1 SOLAR ORIENTATION LOOPS

Solar orientation is accomplished by controlling spacecraft motions about its pitch and yaw

axes. Both control loops are identical except for the amount of thrust provided by the cold gas

Jet system which is sized in relation to the spacecraft inertias to give equal control angular
accelerations about beth axes.

The basic components of each of the solar orientation loops are a sun sensor with a spherical

field of view to provide an error signal and a Cold Gas Jet system to provide control torque.

Auxiliary components to process the error signal and to provide loop compensation for control

of the torque, are the threshold detector, the rate gyroscope and the gas jet driver. Inter-

connection of these components is depicted in Figure 3-2 for the pitch and yaw loops. Correlat-

ing this diagram with Figure 3-1, it can be seen how the pitch and yaw loops point the space-

craft at the S_n.

3.1.2 ROLL-YAW PLANE ORIENTATION LOOPS

The roll-yaw plane orientation is accomplished by controlling spacecraft motion about the

roll axis while the negative roll axis is pointed at the Sun as previously described.

The basic components of the roll axis control loop are a star sensor with a 4 degree by 32 de-

gree total field of view (selectable in four steps of 4 by 10 degrees) to provide an error

signal, a rate gyroscope for acquisition rate control, and a Cold Gas Jet system to provide

control torque. A threshold detector and a gas jet driver process the error signal to

control the torque. Their interconnection is depicted in Figure 3-3. Correlating this diagram

with Figure 3-1, it can be seen how the roll loop, in conjunction with the solar orientation

loops, orients the spacecraft to Canopus. The spacecraft negative yaw axis will not neces-

sarily point directly at the star, since the spacecraft-Canopus line is not perpendicular to

the spacecraft-Sun line at all points along the heliocentric orbit. The negative yaw axis will

point perpendicular to the spacecraft-Sun line, such that Canopus will lie in the spacecraft

roll-yaw plane. 3 of 42
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Figure 3-1. Voyager 1971 External Configuration

4 of 42



VB234FD102

ACQUISITION
SUN SENSORS

CRUISE
SUN SENSORS

COARSE ]
SUN GATE

RATE GYRO

FINE I
SUN GATE

_CRUISE

LEAD

A C Q 'N_____

' II
I

lIVINPUT

THRESHOLD

DETECTOR

DERIVED

RATE

TO

JETS

Figure 3-2. Pitch or Yaw Acquisition and Cruise Modes-

Simplified Block Diagram

RATE GYRO

CA LIBRATION_ BIAS

OR CANOPUS
SEARCH GENERATOR

FINE
SUN GATE

I ROLL

GANOPUS ERROR

STAR

SENSOR ACQ'N

GATE

ROLL OVERRmE

GROUND COMMAND

I ROLL ACQ'N.
I

I

i

I
I

NETWORK

L
I

CRUISE/ACQ'N.

CRUISE

c_,_

CQ'N.

---_----_ INTEGRATOR

TtlRESHOLD _._DETECTOR

DERIVED
RATE

TO

JETS

Figure 3-3. Roll Acquisition and Cruise Modes -

Simplified Block Diagram

5 of 42



VB234FD102

3.1.3 COMMANDEDORIENTATION LOOPS

Maneuvering the spacecraft to any orientation desired is accomplished by switching the control
loops to the gyros, which are in position mode, and then commandinga specific angle of turn
for each axis sequentially. All the axes operate in the same manner.

The basic componentsof eachof the commandedorientation loops are a gyro to provide an
error signal referenced to the spacecraft's position at the time of switching andaCoLdGasJet
system to provide control torque. Auxiliary componentsto torque the gyro andprocess the
error signal are: the torquer current generator; the gyro output amplifier, demodulator and
torquer amplifier; the gyro buffer amplifier; the threshold detector; andthe gas jet
driver. The interconnection of these componentsis depicted in Figure 3-4. By commanding
rotations of the spacecraft through precalculated angles about any of the spacecraft axes, any
desired spacecraft orientation can be obtained in an optimum sequence.

CRUISE INPUT

INERTIAL

MODE

COMMAND

Z--
T

RATE GYRO

CURRENT ]GENERATOR

CRUISE

LEAD

NETWORK i INERTIAL

I

I

!

I
t

!

J

TIIRESHOLD _ TO JETSDETECTOR

MANEUVER

COMMANDS

(POLARITY, START,

STOP, INCREMENT)

Figure 3-4. Intertial/Maneuver Modes, Typical Pitch, Yaw, Roll -

Simplified Block Diagram
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3. I. 4 COIMPLETE MECHANIZATIONOF THE ACS

Figure 3-5 is a diagram of the complete ACS mechanization. The previous block diagrams

are simplified descriptions of the individual control loops abstracted from Figure 3-5. All

component assemblies depicted in this diagram are considered a part of the ACS except for

the Gas Jet Subsystem. (See VB234FD104 .) Also, the accelerometer and its associated

electronics within the Gyro and Accelerometer Package are functionally a part of the Auto-

pilot Subsystem. The accelerometer was packaged with the gyros because these components

have similar mounting and alignment requirements and can possibly be obtained from one

vendor source. All other significant components within the ACS which have not been dis-

cussed thus far, are covered in paragraphs 3.3, Modes and Sequences, and 3.4, Functional
Reliability.

3.2 PERFORMANCE CHARACTERISTICS

The following pertinent performance characteristics indicate subsystem performance capa-
bility, rather than all subsystem parameters.

a. Pointing Accuracy - The control dead-band is plus or minus eight milliradians and

the null-offset is no greater than four milliradians about each of the control axes.

b. Maneuver Rate - The controlled angular rate for commanded turns is 3.14 milli-

radians per second about each axis.

Co Search Rates - The control angular rates about the roll axis for Can.pus search and

magnetometer calibration are 1.7 and 3.9 mflliradians per second respectively, with
a rate dead-band of 0.4 milliradians per second for both.

d. Acquisition Time - It takes no longer than 20 minutes to stabilize to the Sun and no

longer than 70 minutes to stabilize to Can.pus after the Sun has been acquired.

e. TTansfer Functions - Significant component transfer functions are depicted in

Figure 3-5 for individual blocks. See paragraph 3.5 for detailed functional descrip-
tions of all the ACS component assemblies.

3.3 MODES AND SEQUENCES

The following is a description of the ACS in each of its modes of operation. The automatic

sequencing of the ACS is initiated by the logic control unit. Based on digital information re-

ceived from the three control loops, the sun gate sensors, the Command Decoder, and the

Computer and Sequencer, the logic control unit makes decisions as to the ACS situations and

sends digital signals to the loops to change component interconnections. In this manner the

ACS is sequenced through the following modes of operation to fulfill its mission of controlling
the angular orientation of the spacecraft:

• Cruise Mode

7 of 42
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• Pitch and Yaw Acquisition Mode

• Roll Calibration Mode

• Roll Acquisition Mode

• Reacquisitions

• Maneuver Mode

• Occultations

3.3.1 CRUISE MODE

This mode applies to the operating condition of the ACS when the components of the individ-

ual loops are interconnected as indicated in Figures 3-2 and 3-3. (Normally, this condition

exists when the celestial references have been acquired. ) When the cruise mode inter-

connections are changed, the ACS will be performing in either the acquisition or maneuver
mode. The roll calibration and roll override situations are just particular phases of the

acquisition mode. The cruise mode also pertains to normal operating conditions of the

spacecraft in orbit about Mars as well as during the interplanetary cruise phase.

3.3.2 ACQUISITION MODE

In this mode the ACS rotates the spacecraft from any arbitrary attitude, to accomplish the

acquisition of the basic celestial references by the three controlled axes.

For normal acquisition, the components are interconnected for cruise mode operation and

the gyros are at operating temperature. Upon receipt of power to turn on the ACS at sep-

aration of the spacecraft from the booster, the following connections are made under the

direction of the logic control unit: the acquisition sun sensors are switched in and the

cruise sun sensors out of the pitch and yaw loops; the gyros are switched to their rate mode

and connected to their respective control loops; and the Canopus sensor is deenergized. The

pitch and yaw loops drive the spacecraft negative roll axis toward pointing at the Sun. When

the negative roll axis is within 10 degrees of the sun line, the coarse sun gate signals the

logic control unit and the acquisition sun sensors are switched out while the cruise sun

sensors are switched into the pitch and yaw loops. When the negative roll axis is within

two degrees of the sun line, the fine sun gate signals the logic control unit and the Canopus

sensor is energized simultaneously with applying a search rate bias of 1.7 miUiradians

per second from the roll bias generator to the roll loop. During this previous activity the

roll loop has no controlling position signal, and the gyro serves to limit roll rotation rates

to plus or minus 0.2 milliradians per second. The pitch and yaw gyros also serve to limit

rates about their respective axes in acquiring the Sun. Under the influence of the roll bias

signal the spacecraft rotates at 1.7 milliradians per second about its roll axis. When the

star Canopus or any other star of sufficient brilliance comes within the star sensor's field

of view, the star sensor signals the logic control unit and the gyros are switched out of the

loops. The ACS is now operating in the cruise mode.
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Confirmation that the star acquired by the Can.pus sensor is indeed Can.pus is based on

proper performance of the Communication loop pointing in the high gain antenna for peak

performance. (While it is recognized that the high gain antenna gimbal arrangement defined

in the recommended Articulation Subsystem does not allow the high gain antenna to point

toward the earth prior to the first mid-course correction, a change in gimbal order as

recommended in document VB234AA108, Articulation Subsystem Tradeoffs, Volume B, will

provide for proper confirmation early in the mission. )

If, after the cruise mode has been established, it is determined that the star sensor has

erroneously identified and locked onto a celestial object other than Can.pus, a roll override

command may be sent. Upon receipt of the command, the logic control unit will turn the

gyros back on in the rate mode and connect them to their respective loops. Roll search

rate bias is then applied and the remainder of the normal acquisition sequence takes place,

terminating in the cruise mode.

After stabilizing on the sun in the initial acquisition sequence, a stored command in the

Controller and Sequencer subsystem will inject a roll calibration procedure unless it is in-

hibited from the ground. This procedure is used to calibrate instruments in the Science

Package and is the same as the Can.pus search except that the rate is 3.9 milliradians per

second and the star sensor is left deenergized. Upon completion of this roll calibration pro-

cedure, the Controller and Sequencer signals the logic control unit and acquisition is resumed

at the point of energizing the star sensor and applying the roll search bias.

3.3.3 REACQUISrrION SEQUENCES

Part or all of the automatic acquisition sequence will occur in the following situations:

a. With the spacecraft stabilized to the Sun and Can.pus, any non-catastrophic dis-
turbance that results in the loss of either of these references will cause the logic

control unit to automatically turn on the gyro heaters. When the gyros are up to

temperature they are turned on in their rate mode and the logic control unit re-

directs the necessary portions of the acquisition sequence to return the ACS to the

cruise mode.

be With the spacecraft operating in the maneuver mode, the signal to switch to the
cruise mode will cause the logic control unit to immediately redirect acquisition

as the gyros will already be at their operating temperatures. This same condition

applies to reacquisitions after occultations of the Sun or Can.pus in orbit about

Mars.

(NOTE: It is not recommended that gyros be energized prior to being brought up

to normal operating temperature. However, if the Spacecraft power status warrants

emergency procedures, the gyros will provide degraded rate information for use

in reacquisition. The possibility exists, under these conditions, of permanently

degrading gyro performance.)
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3.3.4 OCCULTATION DURING ORBIT MODE

Since unanticipated occultations of the sun or Canopus will not occur in Mars orbit, the

following command sequences together with automatic reacquisition sequences will provide

control during occultation periods.

Sixty minutes before the anticipated onset of an occultation, a command is given the ACS

to turn on gyro heaters. Thirty minutes later the required gyros are turned on (roll gyro

for Canopus occultation; pitch and yaw gyros for Sun occultation}. Virtually all probable

orbits, however, do not encounter a Canopus occultation. Just prior to occultation, the

affected axes are switched to inertial mode, and maintained so until completion of the event,

when the ACS is commanded to re-acquire references. Automatic reacquisition and turn-off

of gyros results. (The command system is set up so that either all gyros may be energized

or deenergized by a single command; or just pitch and yaw gyros, by a second command.

A similar situation exists in switching the ACS to cruise versus inertial modes. Thus, in

order to achieve a situation wherein only the roll gyro is energized and only the roll loop is

in inertial mode, a sequence of all gyros on - all axes to inertial mode - pitch and yaw axis

to cruise mode - pitch and yaw gyros off - is required. This is presumably the optimum

switching sequence, since the use of only the roll gyro is an unlikely situation.)

3.3.5 MARS LIMB AND NATURAL SATELLITE INTERFERENCES

The Canopus sensor may be caused to lose track of its target star if either excessive light

from the Mars limb enters the sensor shield, or if one of the natural Mars Satellites passes

through the sensor's field of view. It is shown in VB220FD101 that the minimum Canopus -

Orbiter-near-limb angle is greater than 35 degrees for the 1971 Satellite design orbit, which

indicates that interference from this source should not be a problem. The orbits and phases

of the natural Satellites are known, and therefore possible passes through the sensor's field

of view can be predicted. Since such passes would cause loss of tracking of Canopus, the

ACS will be commanded to either a roll drift mode or a roll inertial hold mode during those

periods when such interference is anticipated.

3.3.6 MANEUVER MODE AND SEQUENCE

In this mode the Controller and Sequencer (C&S) takes direct control of the attitude control

logic functions in maneuvering the spacecraft to a precalculated attitude in space for the

purposes of trajectory corrections, capsule separation cr orbit insertion.

Initially the components are interconnected for cruise mode operation. Before the start of

maneuvers the following preparations are made: sixty minutes before, the gyro heaters are

turned on; thirty minutes before, all three gyros are turned on; and ten to six minutes be-

fore, the high gain communication antenna is reoriented to its expected final position. Just

prior to initiating the first turn, the three control loops are switched to the inertial mode

(gyro in position mode as input to the loop}. The C&S signals the torquer current generators

in the Integrating Gyro Package to torque their respective gyros for a predetermined time

increment. This is done for one axis at a time in any combination of axes for one to three

turns. At the completion of the final turn, forty minutes are allowed for Earth communica-

tion to verify the maneuver. Then the intended event is performed while the spacecraft
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remains in this inertial mode. At the completion of the event the C&S relinquishes control

of the attitude control logic functions to the logic control unit by the command to switch to

the normal (cruise) mode of spacecraft control. At this point reacquisition of the celestial

references is obtained as described previously under "Reacquisition Sequences." When the

spacecraft attitude has been stabilized in the cruise mode, the high gain communication
antenna reorientation is initiated.

3.4 FUNCTIONAL RELIABILITY

The following is a description of those items which contribute to the reliable performance
of the ACS functions:

ao Attitude Control Gas Jet Subsystem - (See Figure 3-5. ) Coupled pairs of gas jets

are used on each axis with two valves controlling each jet. These valves are connected

in parallel electrically and in series pneumatically. The jets of each couple are

supplied from separate tanks and regulators. Two single, particular valves must

fail in the primary failure mode (leakage) before excessive loss of gas occurs. In

this case, control angular acceleration is cut to half its existing value, which is

toward the nominal value in the orbit phase of the mission. (See paragraph 3.5.4 for

a description of redundant valve drivers. )

be Lead Network Back-up - Each control loop contains a lead network which may be used

in the position signal path with some success during acquisition in case of a gyro

failure. While it is recognized that three-axis acquisition with lead networks applied

to position signals from sensors having limited linear range is unlikely to be success-

ful, settling with a single gyro failure holds some promise of success. In addition,

the lead networks may be used as back-up for derived rate networks. Trade offs

will be required during the next phase to determine whether compatibility exists, and

the emphasis required.

Co Command Turn Back-up - A gyro turn control unit is included in the Integrating Gyro

Package which can store magnitude and polarity for a maneuver consisting of a roll-

pitch-roll sequence, based on inputs from the Command Decoder in case of a C&S

failure. Decrementing of the storage register, is obtained from digital reset inte-

grators which monitor the integrated current passing through the gyro torquer windings.

dQ Roll Search Inhibit Logic - In the event of a failed roll gyro (provided the output is

near zero), the roll search bias will be removed after a slightly greater than normal

jet firing time. This prevents spin-up and allows other back-up measures to be in-

voked by ground command.

e. Roll Back-up Mode - In case of a Can.pus sensor failure, the roll gyro can be invoked

to provide a_titude control of the roll axis. Incremental adjustments (positive or

negative) of the roll axis may be obtained by ground command.

f. AC Electronics Reliability - See paragraph 3.5.4.2 for discussion.
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3.5 COMPONENTDESCRIPTIONS

Although Phase IA study is a system design study, the following paragraphs are included to

indicate some approaches to component design whichwill be considered, and to provide

preliminary information on selection of vendor supplied components. It is naturally not

intended to show results of formal design effort, or firm decisions on purchased parts and

components.

Figure 3-6 is an isometric view of the Guidance and Control Electronics Assembly, Bay XII,

showing the ACS Gyro and Accelerometer Package and the Attitude Control Electronics

Package.

3.5.1 VOYAGER SUN SENSORS

The sun sensor consists of a series of photoelectric angle detectors (hereafter called eyes)

placed about the vehicle to provide a 4 _ steradian field of view. It has two output control

axes. This type of sensor is space proven on vehicles such as OSO, Aerobee, and is being

used on future missions such as OAO & LOS. The sensing element in these detectors is a

silicon solar cell. The eyes themselves are made by the Ball Brothers Research Corp. in

Boulder, Colorado. Materials used in the manufacture of the eyes are selected for long-

term operation in a space environment. These sensors have been fully qualified to with-

stand the temperature, vibration and shock normally expected in satellite applications. The

lens which is placed in front of the silicon cell is made of Borosilicate Crown with Serium

Oxide added to protect against radiation browning.

For the Voyager application 8 acquisition eyes, 4 cruise eyes and 2 gating eyes (a total of

14 detectors) constitute a complete 2-axis sun sensor. The acquisition eyes provide a

rough indication of the location of the Sun within the field of view. These sensors provide

a signal that determines the direction of the angle through which the spacecraft should be

rotated to bring the Sun within the field of view of the cruise eyes. There is an unstable

null located 180 degrees from the true system sensor null. If the Sun is on either side of

this null, the vehicle is commanded to rotate away from this poh_t. The .....,._o_*^_'....l,_" is

only a small region and any spacecraft movement will cause the sun direction to shift from

this point.

The cruise sun sensor is composed of four solar cells each of which consists of a lens, a

cutoff plate and a silicon cell. The lens focuses the light beam and provides the means of

interrupting the beam with the cutoff plate as the angle of the light beam is varied. The

field of view of the combined cruise sun sensor is 15 degrees half angle, and is conical.

The acquisition eyes will each have an angular range of +__90degrees (hemispherical).

Figures 3-7 and 3-8 illustrate the positions of the sensor eyes.

The acquisition eyes at the +Z side of the paddles (secondary sensors) are placed on four

separate mounts, while the primary sensor (eyes located on the negative Z side of the

paddles) may all be placed on the same mounting plate or pad.
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Figure 3-6. Isometric View - Guidance and Control Electronics Assembly, Bay XllL I

16 of 42



VB234FD102

A = ACQUISITION

+X

VIEW IN - Z DIRECTION

Figure 3-7. Secondary Acquisition Sun Sensors

/
/

_ / @ \ \

®®>j

\

A = ACQUISITION

C = CRUISE

G = GATE

VIEW IN + Z DIRECTION
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In Figure 3-8, the two eyes marked "G" are gating eyes. One gate provides indication that a

null has been achieved, for sequencing purposes, while the other gate provides a logic signal

for switching out the acquisition eyes when the sun is in the field of view of the cruise eyes.

The field of view of the null-sensing eye will be a 1 or 2 degree half angle conical detector

while the logic eye will have a field of view based on the possible albedo problem of Mars but

will be less than 12 degrees half angle.

Tables3-1 and 3-2 show the performance characteristics of the acquisition and cruise sun

sensors, for a distance of 1 AU.

Field of View

Linear Range

Accuracy

Sensitivity

Cross Coupling

Power

Reliability

Weight

Table 3-1

Acquisition Sun Sensors

360 ° (single axis)

+ 40 degrees

+ 1.0 degrees (anti-null}

11.0 Ma/degree (anti-null)

8% of Max. output (anti-null)

None

0. 9996 1 year life

_1.2 lb.

Table 3-2

Cruise Sun Sensors

Field of View + 15 degrees

Linear Region + 1 degree

Accuracy Null 0.05 degrees at 1 sigma

Sensitivity 1.0 ma/degree Peak _ 1.7 Ma

Linearity + 5% of 1° output

Cross Coupling 2 minutes for 1° travel

Power None

Weight _ 1.2 lb.

Figures 3-9 and 3-10 are the transfer functions of acquisition and cruise eyes.
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3.5.2 CANOPUS SENSOR

The Canopus Sensor is essentially that flown by J-PL on the Mariner Spacecraft. It is re-

cognized that it may be desirable to improve certain characteristics of this sensor, based

on JPL experience. The characteristics cited below are based on the "System Description

and Performance of a Canopus Star Tracker", by the Barnes Engineering Company.

3.5.2.1 BRIEF DESCRIPTION

This sensor incorporates an electrostatically focussed and deflected version of the image

dissector tube, similar to CBS Laboratories Type CL-1147. It has a slit aperture defining

an instantaneous field of view which can be electronically scanned across the sensor view

field. In operation the slit view field is caused to oscillate or dither in short strokes in a

direction orthogonal to the long axis of the slit. Also, by program or command, the slit

field of view can be shifted along its long axis to any of a series of fixed, overlapping

positions.

The sensor is mounted on the spacecraft such that the dither motion of the instantaneous

field will detect Canopus direction changes due to roll, but the length of the slit permits some

change in pitch without effect. During the relatively long Voyager mission, however, Canopus

will gradually move toward the end of the slit field. Therefore, periodically the field is

electronically stepped to the next fixed position, restoring Canopus to near the center of

the field.

A roll axis null error signal is generated by a phase sensitive demodulator and a dc bipolar

output is supplied to the ACS.

3.5.2.2 PERFORMANCE PARAMETERS

1. S/N Canopus

2. Field of View

3. Instantaneous Field of View

4. Optical Resolution

5. Gimballing and Scan

6. Roll Scan

7. Pitch Deflection

8. Star Acquisition

greater than 100/1

+ 2 ° roll x + 16 ° pitch

O. 86 ° roll xl0 ° pitch

0.05 °

All Electronic

1000 cps sinusoidal

6 positions (4.6 ° overlap)

Between 1/4 and 4 times Canopus

brightness

3.5.2.3 PHYSICAL CHARACTERISTICS AND CONSTRAINTS

1. Size

2. Weight
3. Power

Approximately 4 x 5 x 11 inches

Approximately 6.25 lb.

Approximately 1.75 watts
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3.5.3 GYRO AND ACCELEROMETER PACKAGE

This unit is physically a part of the ACS, and electrically a part of both the ACS and the

autopilot. The accelerometer is electrically a part of the autopilot. Since it is physically
in the ACS it is described herein.

3.5.3.1 CONFIGURATION SELECTION

The technique selected for Voyager application is shown in Figure 3-11. This approach

has the capability of rate or position information with rate-plus-position information being

generated by the means of lead networks which are included as part of the attitude control

and autopilot electronics.

3.5.3.2 PACKAGE DESCRIPTION - GENERAL

The package contains three rate integrating gyroscopes, one force balance accelerometer,

gyro and accelerometer loop electronics, gyro temperature controls, torque generators

(precision current supplies), logic circuitry, relays, relay drivers, regulated dc power

supply and gyro torquing control unit (back-up maneuver electronics).

Upon receipt of a "gyros on" command, unregulated dc and 400 cycle power is applied to

the temperature controls. The 400 cycle power sets the "nominal" frequency of the pulse

width modulated temperature controller.

When the gyros reach temperature, a signal from the temperature controls is sent to a

logic circuit which, when combined with a "roll on" and/or "pitch and yaw on" supplies

400 cycle wheel power and 2400 cycle power to the gyro, gyro electronics and the regulated

dc power supply. This function is capable of being obtained separately, as a back up, from

a ground command override. The gyro portion of the package is now ready for operation and

is capable of furnishing rate or position information depending on the state of the cage/

uncage command.

When a command is received for autopilot mode, 2400 cycle and regulated dc power is

applied to the accelerometer and accelerometer electronics. Figure 3-11 shows the accel-

erometer power switches in series, because the gyros are on in either autopilot or attitude

control, but the accelerometer is on in only the autopilot mode. The analog outputof the

accelerometer is converted to digital information which in turn is sent to the autopilot where

it is counted to form velocity information. Since the normal failure mode of the accelerometer

loop is an open, a clock in the autopilot can serve as a velocity control back-up.

Each gyro loop is capable of supplying vehicle maneuver signals from receipt of positive

on, negative on, and off commands via the torque generator and logic circuits. These

circuits then apply a precision current to the gyro torque motors to obtain a new vehicle
position.

The roll torque generator is also capable of receiving positive or negative incremental

commands which are converted to incremental gyro commands.
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The gyro torquing control unit (back-up maneuver capability) is similar in function except

that it contains integral registers and control logic, and that it operates independently of

the computer and sequencer.

3.5.3.3 THERMAL CONSIDERATIONS

All three gyros and the accelerometer are thermally connected. Each gyro has an

individual temperature control, each of which has the capability to temperature control the

entire sensor block. This capability adds redundancy, in that the package can operate

without degredation after loss of two temperature controls. In addition, each gyro

contains an over -heat thermostat to prevent temperature run-away in case of a full-on

controller failure. The aecelerometer does not have a heater or temperature controller,

but because of thermal connection to the gyros, it is thermally s_abilized.

It is presently planned to operate the gyros at approximately 100°F. This will tend to

minimize operating heater power and warm-up time as well as not causing any great diffi-

culty in selecting the proper thermal resistances.

3.5.3.4 ANALOG TO DIGITAL CONVERTER

It is necessary to employ analog to digital converters to supply digital acceleration infor-

mation and to form the decrement pulses from the torque generator to the control logic

when the gyro torquing control unit is in use.

The analog to digital converter is an integrator that is reset by a capacitance discharge.

The input to the converter is integrated by a Miller integrator. When the output of the

integrator reaches a prescribed level, it triggers a delay multivibrator that resets the

integrator and delivers an output pulse. Thus, the device is a voltage-to-frequency con-

verter whose sum of output pulses is the integral of the input voltage. This device has

the capability to deliver 10,000 pulses per second.

3.5.3.5 GYRO TORQUING CONTROL UNIT

The GTCU, shown in Figure 3-12 is a midcourse maneuver system designed to operate

from the command decoder independent of the computer and sequencer. It is composed of

an input register designed to operate as a serial shift register and "psuedo-noise generator"

counter, control logic to generate the proper sequencing for the maneuver, and a current

monitor to control the integrated torque applied to each gyro.

Receipt of an "alert" command clears the finite maneuver flip-flops causing the input

register to operate as a serial shift register. Some arbitrary time later, coded steering

commands are gated into the input register via the INFO and SYNC lines. Thirty-six bits

of information are required to accommodate sign and magnitude commands for a roll-pitch-

roll maneuver. The information is maintained in the input register until receipt of initiate

maneuver command.
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Initiate maneuver command sets the initiate maneuver flip-flop (IMF) in the "one" state

which allows the input register to function as a pseudo-noise generator counter. IMF is

also gated with the contents of the eleven magnitude bits of the Roll-1 section of the input

register. If Roll-1 section contains any information other than a zero roll command the

R1MF flip-flop is set. Accordingly the roll torque current generator is turned on and

allowed to remain on until the RIMF flip-flop is reset. The integrator and detector (analog
to digital converter) monitors the torque generator and generates decrement pulses accord-

ing to the amount of current delivered to the gyro torquer. Each decrement pulse will

step the input register converter section appropriate to the Roll-1 magnitude until a zero

command code has been reached. This will cause the R1MF flip-flop to be reset stopping
the torquing action.

At the same time a delay is triggered allowing the roll control to settle before continuing
with the maneuver.

If the contents of the Roll-1 section of the input register had been a zero command at the

receipt of the initiate maneuver, the roll maneuver would have been omitted and the delay

triggered directly. At the end of the delay the pitch maneuver is initiated. This operates

exactly as the Roll-1. Completion of the pitch maneuver or a zero pitch command causes the

triggering of the delay which starts the Roll-2 maneuver, completion of the Roll-2 maneuver

clears the IMF causing all action to cease.

3.5.3.6 GYRO SELECTION

The Kearfott Alpha Ball Bearing Gyro has been selected as the most suitable considering

all the Voyager requirements. The following table compares the key features of the alpha

gyro to the Voyager specifications.

Table 3-3. Key Features of the Alpha Gyro

Voyager Spec. Alpha Gyro

Input angular freedom

"G" Insensitive drift

Controlled temperature

Motor excitation frequency
Motor Power

Torquer scale factor

Torquer Linearity

+ 6 deg + 6.1deg

< 0.25 deg/hr < 0.25 deg/hr

100°F 100OF

400 cps 400 cps

>1.5 2.5

< 400 deg/'hr/ma 134/deg/hr/ma

0.1% 0.02%

3.5.3.7 ACCELEROMETER SELECTION

For the Voyager Gyro and Accelerometer package, the Bell VII B Force Balance Accelero-

meter has been chosen. Since all accelerometers investigated met the accuracy require-

ments, final selection was based on lowest size, weight and input power.
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3.5.3.8 MECHANICAL CONFIGURATION

The gyro and accelerometer packageare contained in a single _mit having a physical size

of 6.45 inches by 6.0 inches by 20 inches.

Due to its location in the vehicle (Bay 12), the package requires an off axis alignment of

7.5 degrees for the pitch and yaw gyros.

3.5.4 ATTITUDE CONTROL ELECTRONICS

3.5.4.1 DESCRIPTION

Circuitry for the pitch and yaw axes are identical. Inputs are provided by the acquisition and

cruise sun sensors, and the rate gyros. Separate amplifiers are employed for the acqui-

sition and cruise sun sensors, with gains controlled by signals from the Logic Control Unit

(LCU) of the Control Electronics to adjust for decreasing sun intensity as the vehicle-sun

distance increases. As control passes from the acquisition to the cruise sun sensors,

,power is removed from the acquisition sun sensor amplifiers, thereby disabling this signal

path and preventing reflections from the vehicle or the albedo of Earth, Moon, or Mars from

producing null offsets.

A buffer amplifier is provided in the rate gyro signal path to split the input signals into

redundant paths and to facilitate switching in a lead network during slewing maneuvers.

The outputs of the gyro amplifier and the sun sensor amplifiers are summed by a third

amplifier. The sun error signal is coupled to the summing amplifier through a resistor

network which limits the position signal at a desired level and through a lead network having

a time constant on the order of 1 to 2 seconds. In the transition from acquisition to cruise

modes, the gyro signal is disabled by means of switch $2. The derived rate network

functions during all modes, with the charge and discharge time constants set to different

values by R1 and R2. The charge time constant is of the order of 20 to 30 seconds.

The derived rate network shown in Figure 3-13 is one possible implementation. When the

threshold of either detector is exceeded, an analog switch connects the RC network to

either a positive supply or a negative supply initiating the "derived rate" feed-back signal.

Minimum solenoid "on" time would be controlled by the analog switches. Because of the

long time constant, the analog switch leakage must be low. One possible implementation

of this switch would employ field effect transistors.

Following the summing amplifier are threshold detectors, which are triggered when the

combined rate and position inputs exceed the limits defined by the switching line equations.

Der_ting the three channels as A, B, C, the logic circuits following the threshold detectors

perform the function: F = MAj (A, B, C) = AB + AC + BC. Parallel majority voter circuits,

connected to each threshold detector output, drive a series-parallel redundant output stage.
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Roll Channel

The inputs of the roll channel are the Canopus Sensor signal, the gyro and the roll bias,

which generates the roll search after sun acquisition. In addition to the derived rate

feedback, a roll integrator limits solenoid firing in the event of gyro failure during

roll search. The remaining portions of this axis are identical to the pitch and yaw axes.

Logic Control Unit

The Logic Control Unit (LCU) processes commands from the C and S system and the

Command Decoder, and handles the automatic sequencing of the control subsystem

logic.

Power Supply

Power at several voltage levels at one percent and three percent regulation is required.

These voltages are obtained by transforming the 2400 cps, 50 volt input, rectifying,

filtering, and in some cases regulating the filtered output. The voltage levels are

+ 12 volts and + 6 volts. The use of a transformer-rectifier-regulator supply within the

Attitude Control Electronics provides isolation of the circuitry from disturbances

emanating from other components. Conversely, transients generated within the Attitude
Control Electronics will be attenuated.

Components and Circuits

Figure 3-13 illustrates a possible approach to implementing the control functions. The

component types mentioned in the following section are under active consideration. A

final choice of parts will be made during the next design phase. The summing ampli-

fiers, sun gates and threshold detectors may be integrated differential amplifiers. In

the Biosatellite Jet Controller the T.I. SN522 is being used both as a summing ampli-

fier and as a threshold detector. Figure 3-14 shows the circuit configuration employing

the SN522 in the Biosatellite Jet Controller. Over a -30 ° to 150 ° F temperature range,

changes in threshold points are less than + 2.5 percent and can be further improved

by temperature and load compensation of the reference voltages. During a 1000 hour

test, variations in triggering points and hysteresis were less than 0.5 percent. Figure

3-15 shows another configuration employing the TI SN524. During temperature tests
over a range of -30 ° to 150°F, triggering point variations of this circuit were less

than one percent.

Logical functions will be performed by integrated DTL NAND gates and J-K flip flops.

A single "family" of commercially available circuits will be utilized. It is anticipated

that most switching will be done with solid state devices rather than relays.

Solenoid drive will be provided by either conventional transistors or compound-connected

(Darlington) transistors in single packages.
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3.5.4.2 USE OF REDUNDANCY TECHNIQUES TO IMPROVE COMPONENT RELIABILITY

To achieve the highest possible reliability of the electronics subsystems extensive use of

redundancy and voting techniques has been made. Because of the availability of integrated

linear and digital circuits, the weight-power-size penalty incurred by the use of redundant

circuitry is much more reasonable than that which would be incurred using conventional

piece parts. Figure 3-16 illustrates the redundancy-voting technique for the Attitude

Control Electronics. The desired result of this configuration is that no single component

failure will degrade performance.

Each control axis consists of three identical channels from the sensor outputs to the output

of the threshold detectors. At the output of the threshold detectors a pair of voters produces

a solenoid drive signal whenever two of the three channels indicate their position-rate

threshold has been exceeded. The solenoid valves are in parallel electrically. The driver

stages are connected in a series-parallel arrangement. Either majority gate can provide

sufficient power to all four driver stages to fire the solenoids. The driver stages consistoftwo

two switching transistors in series. Lathe event of afailure of one of these transistors by short-

ing, the series arrangements prevent a solenoid from being held on and depleting the gas supply.

The solenoid power is supplied by the three battery busses in an "or" arrangement, permit-

ting the loss of two supply lines. The diodes shown in Figure 3-16 would be located at

the Power Supply Panel.

Logic Control Units

Each sun gate null is available to the LCU on three separate lines. Commands from C&S

or CD to the LCU, and outputs from the LCU to the C&S, and the Canopus sensor

are single lines. The form of the LCU will be DTL NAND logic, with logical functions

being generated in triplicate and voted. The majority voting will most likely be done

with NAND gates rather than majority gates because of the absence of commercially

available majority logic integrated circuitry.

Power Supply

Two independent transformer-rectifier filter systems are provided in the power supply.

Standby redundancy will be used with the failure of one supply causing the second system

to be switched in place of the failed system.

SuInmary

1. A failure in the sensor output to threshold detector chain does not affect performance

because of the voting gates following this chain.

2. A failure in either of the majority gate networks does not affect system performance

because either circuit can drive all solenoids.

3. A failure in a driver transistor (either open or short) does not prevent solenoid

firing since a second driving stage remains.
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Testing Redundant Circuitry

The use of voting techniques permits operation of a component despite a failure of one

channel. While this quality improves reliability, it does complicate component testing.

In order to test each of the individual channels, provisions for testing individual channels

must be provided. Test points on each channel must be provided after circuits having

calibrated or adjustable gain or trigger level.

In testing any axis of the Attitude Control Electronics, the following steps are taken

to test both the individual channels, and the functioning of the voting logic:

1. Each of the individual channels is tested, simulating the gyro and sensor inputs,

one channel at a time. Gain and threshold levels are measured using test points

after each of the amplifiers and detectors. (These points are marked (T} on

Figure 3-16. }

2. The voting and solenoid drives are tested by energizing each channel individually,

then each combination of 2/3 channels and finally all three channels. It should not

be possible to energize a solenoid with a single channel. The combination of 2/3

and all three channels should energize the proper solenoids at the required position

and rate thresholds.

4.0 INTERFACE DEFINITIONS

The overall functional boundaries of the ACS are the radiation inputs to the celestial sensors

and spacecraft motion to the inertial sensors, and the output torques applied to the space-

craft by the gas jets. _ addition to these functional boundaries, mechanical and electrical

interfaces with other subsystems exist. The various interfaces are defined below, with
sources and destinations identified.

4.1 INPUTS TO ACS

4. I. 1 DIRECTLY SENSED INPUTS

a. Solar radiation to the acquisition, cruise and sun gate sun sensors. Solar intensity

varies as the square of distance to Sun (1 to 1.67 AU when the entire Mars orbit is

considered).

b. Canopus radiation to the Canopus sensor.

c. Spacecraft body rates about the three control axes as inputs to the Gyro and

Accelerometer Package.

4.1.2 INPUTS FROM OTHER SUBSYSTEMS

a. Power Subsystem - The ACS receives power from three power sources:

2400 cps square wave, 50 V RMS

400 cps square wave, 3 phase

Unregulated DC, 30-44 VDC
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Table 4-1. ACSCOMMANDINPUTS

QC

CODE

EC De

1

1

2

3

4

2

5

6

11

12

10

3

11

4

12

13

i4

7

9

10

15

16

17

8(3

NO ME NC LA TURE

Change Attitude Control State (Inhibit/Enable)

Change Canopus High Gate State (Override/Normal)

Change Conopus Low Gate State (Override/Normal)

Change Roll Search Auto Mode (Dn/Off)

Change Roll Search Auto Bypass Mode (On/Off)

Change Roll Turn Mode (Calibration/Search)

SOURCE

PRIMARY BACK-UP

Sep. Sw C.D.

C&S

C.D.

C.D.

C.D.

C.D.

C&S C.D.

_.I_LCCh/_f)Canopus Sensor Auto Mode C.D.

Change Car, opus Sensor Auto Bypass Mode C.D.

(On/Off)

Roll Override C.D.

Load Canopus Sensor Cone Angle Register C.D.

and Execute

Step Canopus Sensor Cone Angle (+) C&S

Step Canopus Sensor Cone Angle (-) C&S

Change Gyro and Accelerometer Heater Auto Mode (On/Off) C.D.

Change Gyro and Accelerometer Heater Auto Bypass

Mode (On/Off)

Change Gyros (All Axes) / Gyro Electronics C.D.

Auto Mode (on/off)

Change Gyros (All Axes) / Gyro Electronics C&S

Auto Bypass Mode (On/off)

Change Spacecraft Control Mode (Inertial/ C&S

Cruise) (All Axes) G&C

Change Spacccraft Control Mode (Inertial/ C&S

Cruise) (Pitch and Yaw Axes)

Load Turn Register

Initiate Maneuver Register Turns

6 Initiate Positive Pitch Turn C&S

7 IniUtate Negative Pitch Turn C&S

8 Initiate Positive Roll Turn CaS

9 Initiate Negative Roll Turn C&S

Roll Negative Increment C.D.

}toil _ositive Increment C.D.

10 Initiate Positive Yaw Turn C &S

11 Initiate Negative Yaw Turn C&S

12 Stop Pitch, Roll and/or Yaw Turns C&S

Change Derived Rate State (Cruise/Orbit) C&S

Change Sun Sensor Amplifier Gain State (High/Medium) C&S

Set Sun Sensor Amplifier Gain State Low C&S

Change Yaw Lead Network State (Derived Rate/ C.D.

Lead Network)

Change Pitch Lead Network State (Derived Rate/ C.D.

Lead Network)

Change Roll Lead Network State (Derived Rate/ C.D.

Lead Network)

C.D.

C.D.

C.D.

C.D.

C.D.

C.D.

C.D.

C.D.

C.D.

C.D.

COMMENTS

Controls the operational status of the ACS

Allows Canopus Sensor to recognize stars brighter than normally

Allows Canopus Tracker to recognize stars

dimmer than normally

In combination, DC 3 and DC 4 provide for

either automatic (ACS LCU) initiation of

roll rate mode, or commanded on or commanded

off states

Input to LCU as to next roll turn rate magnitude

requzred

In combination, DC 5 and DC 6 provide for

either automatic (ACS LCU) control of Canopus

Sensor Power, or commanded on or commanded

off states

Provides for rejection of acquired star and

re-initiation of roll search

Provides direct command of Canopus Sensor

cone angle, by magnitude

These two signals (EC 11 and EC 12) provide for

incrementing Canopus Sensor cone angle in either

direction

In combination, DC 10 and EC 3 provide for either

automatic (ACS LCU) control of heater power state,

or commanded on or commanded off states

In combination, DC 11 and EC 4 provide for either

automatic (ACS LCU) control of gyro operating power,

or commanded on or commanded off states

In combination, EC 5 and EC 6 provide for either

automatic (ACS LCU) control of signal interconnections

and gyro rate/position mode to provide inertial or cruise/

aeqdisition operating mode, or commanded inertial or

commanded cruise/acquisition mode

Provides magnitudes and polarities of CD initiated

maneuver turns

Initiates ACS maneuvering after storage of magnitudes and

polarities

These (DC 13 and DC 14) provide for incrementing

Provides for changing derived rate network parameters

(if advantage accrues from such changes)

EC 9 and EC 10 provide three steps in Sun Sensor Amplifier

gain to compensate for reduced sun intensity

DC 15, 16, 17 provide for insertion of lead networks

operating on Sen or Canopus error signals, in case of

gyro or derived rate network failures
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bm

Co

Separation Switch - An input from the booster separation switch initiates attitude

control performance.

Command Decoder and Computer & Sequencer Subsystems - The ACS receives

commands from both the CD and the C&S. Table 4-1 which is an excerpt from

VB220FD112, Flight Sequence Functional Specification lists the commands,

identifies each with an alpha-numeric code, and indicates source and priority of

each. A "comments column clarifies the operation resulting from each command.

Four classifications are assigned: QC - Quantitative Command, all of which

originate in the Command Decoder; EC - Either Command, discrete commands which

originate in the C&S normally, with CD back-up; DC - Discrete Command; which

originate in the CD only, and SC - Stored Commands, which originate in the C&S
with no CD back-up.

4. 2 OUTPUTS OF THE ACS

ACS outputs include driver signals to the 24 cold gas jet solenoid valves, telemetry, test

points and thermal outputs.

4.2.1 DRIVER SIGNALS

The ACS generates appropriate signals which drive the redundant, coupled cold gas jet

subsystem solenoid valves as required to perform the specified control functions.

4.2.2 TELEMETRY

Various points in the ACS will deliver information for telemetry to Earth, for operational

and diagnostic purposes. Table 4-2 is an excerpt from the overall Voyager telemetry list,

presented with additional detail in Document VB220FDl10, Telemetry Channel Assigzunents.

Table 4-2. ACS Telemetry

Pitch Cruise Sun Sensor

Yaw Cruise Sun Sensor

Pitch Acquisition Sun Sensor

Yaw Acquisition Sun Sensor

Pitch Gyro Output

Yaw Gyro Output

Roll Gyro Output

Threshold Detector Inputs Pitch

Threshold Detector Inputs Yaw

Threshold Detector Inputs Roll

Can.pus Sensor Error

Can.pus Sensor, Pitch Angle

Accelerometer Output

Gyro Torquer Input, Pitch

Gyro Torquer Input, Yaw

Gyro Torquer Input, Roll

Can.pus Sensor Intensity
Fine Sun Gate
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Table 4-2. ACS Telemetry (Cont)

Coarse Sun Gate

Canopus Acquisition Complete
Attitude Control Logic Status

Gyro Loop Status

Gyro Temperature, Pitch

Gyro Temperature, Yaw

Gyro Temperature, Roll

Canopus Sensor Temperature

Coax Sol. Valve Temp. #1

Coax Sol. Valve Temp. #2

Coax Sol. Valve Temp. #3

Coax Sol. Valve Temp. #4

Pitch Acq'n Sun Sensor Temp.

Pitch Acq'n Sun Sensor Temp.

Yaw Acq'n Sun Sensor Temp.

Yaw Acq'n Sun Sensor Temp.

4.2.3 TEST POINTS

The following test points (Table 4-3) will be available by direct access for system testing after
assembly of the spacecraft.

Table 4-3. ACS Test Points

Attitude Control Electronics:

Acquisition Sun Sensor Simulation Inputs

Cruise Sun Sensor Simulation Inputs

Canopus Simulation Inputs

Threshold Detector Outputs

Majority Gate Outputs
Solenoid Drvie Current

Roll Integrator Output

Sun Gate Amplifier Output

3 per 2 axes 6

3 per 2 axes 6

3 per 1 axis 3

6 per 3 axes 18

4 per 3 axes 12

4 per 3 axes 12

2

Gyro Accelerometer Package

Gyro Output Amplifier

Accelerometer Output Amplifier

Accelerometer Torque Input

Gyro Logic Circuits

Accelerometer Logic Circuits

1 per 3 axes

4.2.4 THERMAL OUTPUTS

The thermal interfaces of the various components will be designed to remove the heat in

excess of that required for proper temperature control; or will (in the case of several of

the pneumatics components) provide additional heat inputs to the components where such

is required. (Ref. VB220FB103, Spacecraft Component Design Parameters.)
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5.0 ATTITUDE CONTROL PERFORMANCE PARAMETERS

5.1 CONTROL ANGULAR ACCELERATION

The nominal value of control angular acceleration at booster separation will be 0. 225
m rad/sec each axis. Failure of a single nozzle of a couple reduces this value to 0. 1125

m rad/sec 2 . Use of expendables, and lander separation, will reduce moments of inertia

such that control angular acceleration will be increased by factors of 3.86, 7.38, and

2.15 for the X, Y and Z axes respectively, during the orbit phase.

5.2 CONTROL DEADBAND

The nominal control ',deadband" is + 8 m rad from the nominal zero position about each of

the three control axes in all operation modes. Since the radiation intensity from the Sun

decreases during transit phase by a factor of from 0. 525 to 0.37, depending on Mars position

at arrival date, the deadband will vary by the inverse of the applicable factor. Command-

generated gain changes (3 increments) incorporated in the Attitude Control Electronics

(pitch and yaw channels) provides capability to compensate for the gain changes of the

cruise sun sensor, in order that the deadband variation be minimized.

5.3 COMMANDED ANGULAR RATE

The angular rate during commanded turns is 3.14 m rad/sec for each axis.

5.4 ACQUISITION TURN RATES

Limited acquisition rates in pitch and yaw axes during sun acquisition are nominally 17.5

m rad/sec. Roll rate during sun acquisition is limited to approximately 0.2 m rad/sec.

During magnetometer calibration the commanded roll turn rate is 3.9 m rad/sec, with a

rate deadband of 0.4 m rad/sec. During Canopus search the roll turn rate is 1.7 m rad/

sec with a deadband of 0.4 m rad/sec.

5.5 LIMIT CYCLE RATE

The nominal limit cycle rate is 3.375 x 10 -6 rad/sec.

5.6 NULL OFFSET

Alignment errors, null offsets and drifts in sensors and electronics, etc. results in

a shift of the mean value of the pointing direction of each axis of not more than 4 m rad
for each axis.

5.7 FREQUENCY - SHAPING NETWORKS

Three networks are indicated for each control axis: derived rate network, lead for gyro

control compensation, and a lead which is used as a back-up for gyro failure during

acquisition, or for derived rate network failure during cruise mode. While none of the
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time constants have been specifically identified, the lead networks have lead time constants

on the order of 10 sec, corresponding to a rate/position gain ratio of 10.

5.8 MANEUVER ACCURACY

While a complete maneuver error analysis has not been accomplished, maneuver accuracy

for three maneuvers (typical large mid-course correction maneuver, lander separation

followed by final midcourse correction maneuver, and orbit insertion maneuver) has been

determined on the basis of the more significant error contributors. For details, see

Document VB220FD111.

Large Midcourse Maneuver

Per axis error, total through verification:

Roll 7.04 milliradians, 1_

Pitch 7.51 milliradians, 1 a

Yaw 7.51 milliradiaus, 1

Half-cone angle, roll axis to desired direction:

11.4 milliradians, 68% probability

Lander Separation

Per axis error, total through maneuver verification:

Roll 20.44 milliradians, 3

Pitch 23.25 milliradians, 3

Yaw 20.44 milliradians, 3a

Half-cone angle, roll axis to desired direction:

23.25 milliradians, 99% probability

26.75 milliradians, 99.7% probability

ill bt:_ .IU

Per axis error, total through verification:

Roll 7.33 milliradians, 1

Pitch 9.07 milliradians, 1 a

Yaw 7.33 milliradians, 1 (/

Half-cone angle, roll axis to desired direction:

13.6 milliradians, 68% probability

Orbit Injection

Per axis error, total through verification:
Roll 7.04 milliradians, 1

Pitch 7.51 milliradians, 1

Yaw 7.51 milliradians, 1 a

Half-cone angle, roll axis to desired direction:

11.4 milliradians, 68% probability
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5.9 RELIABILITY

The reliabilityof the ACS calculated from expected failurerates is given below for the various

phases of the mission, and for the totalmission (through 30 days in Mars orbit).

Phase 1 Phase 2 Phase 3 Phase 4 Mission

(Injection) (Transit) (Orbit Inj.) (Mars Orbit)

1 Hour 178 Days 2 Days 30 Days 210 Days

0. 999 0. 989 0.999 0. 996 0. 984

6.0 ACS PHYSICAL CHARACTERISTICS AND OPERATIONAL CONSTRAINTS

The first part of this section defines the physical characteristics of the complete ACS,

which is composed of the component assemblies as previously defined and depicted in the

Functional Block Diagram, Figure 3-5. The second part of this section defines the operational

constraints placed on the ACS, which have evolved from the design effort.

6.1 ACS PHYSICAL CHARACTERISTICS

The estimated weight, and power input and dissipation for the various ACS components

are indicated in Table 6-1.

Table 6-1. ACS Component Physical Characteristics

Component Weight, LBS Power In, W

(Average)

Power Dis, W

(Average)

Secondary Sun Sensors

(4 total)

Cruise Sun Sensor Assembly

(Includes all primary

sun sensors)

Canopus Sensor
Gyro Accelerometer Package
AC Electronics

1.2

1.2

6.25 1.75 1.75

14.5 27.0 27.0

8.6 7.8 7.6

TOTAL ACS 31.75 36.55 36.35

6.2 ACS OPERATIONAL CONSTRAINTS

The following constraints, which have either evolved from the design of the Spacecraft and

the ACS, or which are estimated to evolve from proposed configurations are imposed on

the overall system.
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6.2.1 TURN LIMITS

a. In normal operation, as commanded by the C&S, maneuvers of up to 180 degrees

magnitude, either polarity, about all three control axes, in any sequence may be
performed.

b. In the back-up configuration, as commanded by the CD, maneuvers of up to 180

degrees in either polarity about the roll and pitch axes, may be made. The sequence

of turns in this mode is restricted to roll-pitch-roll.

6.2.2 TIME TO COMPLETE STABILIZATION

Stabilization to the Solar reference will be accomplished within 20 minutes after initiation,

including reduction of initial rates as high as 3 degrees per second.

Acquisition of a guide star by the Canopus sensor will be accomplished with an additional

70 minutes, if no calibration turn maneuver is required. Calibration turn requires an

additional 32 minutes per 360 degree turn.

6.2.3 INITIAL RATES

The ACS is anticipated to be able to control from initial rates of greater than 5 degrees

per second without degradation of performance.

6.2.4 ENVIRONMENTAL CONDITIONS

Canopus Sensor - This sensor must be mounted in the vehicle, and vehicle structure and

appendages must be located such that no light is reflected into the shield of the sensor.

Sun Sensor - Reflected light inpingement on the Solar sensors must be prevented. Albedo

inputs to the acquisition sensors have not been determined, but are estimated to be such

that on the order of 8 degrees pointing error will be introduced until the acquisition sensors

are switched out. The alignment of the various acquisition sensors must be such as to
minimize the effect of albedo.

6.2.5 SEPARATION MANEUVER NOZZLE

This nozzle shall be aligned, and the thrust controlled, such that the angular torque

developed due to misalignment and center of gravity location error shall not exceed

25 percent of the control torque available from ACS control gas jets.

7.0 SAFETY CONSIDERATIONS

The following are the factors concerning the ACS that were considered in the formulation

of operational procedures to ensure the safety of personnel and equipment:
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a. Internal damage to the gyros by not warming them up before turning them on

b. Damage to the Canopus Sensor's sensitive element by exposure to intense

light

c. Damage to the optical surfaces of celestial sensors by improper handling.

The operational procedures that were formulated concerning the above components are
located in Document VB264FD104.
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i. 0 SCOPE

This document describes the function of the Attitude Control Cold Gas Jet Subsystem, its

functional boundaries, performance parameters, physical characteristics, component

design and safety considerations.

2.0 APPLICABLE DOCUMENTS

VB234FD101 Guidance and Control Subsystem

VB234FD102 Spacecraft Attitude Control Subsystem

VB220SR101 Design Characteristics

VB220SR102 Design Restraints

3.0 FUNCTIONAL DESCRIPTION

The cold gas jet subsystem will perform the following functions:

a. Apply torques to the spacecraft upon receipt of electrical signals - See Figure 3-1.

b. Provide translatory force to impart lateral velocity to spacecraft following capsule

separation - See Figure 3-2.

3.1 ATTITUDE CONTROL COLD GAS JET SUBSYSTEM

The attitude control pneumatic subsystem consists of two separate subassemblies, as used

on Mariner each containing about 28 pounds of Freon 14.

These 28 pounds of Freon-14 consist of:

15.70 pounds -basic requirement (this corresponds to 7595 ft-lb-sec of angular

impulse, the amount required to complete mission).

2.80 pounds - for leakage and crosscoupling effect due to nozzle misalignment.

9.50 pounds - to offset the effect of catastrophe leakage through one nozzle.

Each subassembly contains six reaction jets, one in each axis-direction. The corresponding

reaction jets of the two subassemblies comprise a couple, i.e., the pitch jet of one sub-

assembly and the pitch jet of the other subassembly are positioned on opposite sides of the

vehicle such that when they are actuated pure torque is exerted on the vehicle about the

pitch axis. Command to operate control solenoid valves will be generated by jet drivers

which are part of attitude control electronics.

In case of failure of either jet to operate, (e. g., if a valve fails to open) the remaining

jet will be able to carry on the function alone. The torque exerted will then be halved, and
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the vehicle will also be subjected to linear as well as angular acceleration. To minimize

the effect of excessive seat leakage or failure of any of the solenoid valves to close, two

solenoid valves are used in series with each nozzle. In addition pressure regulators having

two seats in series, are used to minimize the most common regulator failure - seat leakage.

Thus it is seen that the chance of catastrophic failure occurring has been greatly reduced.

FILL

CONNECTION

PRESSURE

TRANSDUCER

f I

GAS

RESERVOIR

i

_EXPLOSIVE

VALVE

J

NOZZLE

Figure 3-2. Separation Propulsion Schematic

3.2 SPA CECRA FT SEPARATION PROPULSION

The Separation Propulsion portion of the subsystem is used to accelerate the spacecraft

in a direction perpendicular to the roll axis, in order that the lander will not impact the

spacecraft during the lander trajectory deflection.

The Separation components consist of a gas storage reservoir containing 0.52 pound of gaseous

nitrogen stored in a titanium container at 525 psia, two normally closed explosively actuated

valves in parallel and one nozzle. A pressure transducer to monitor nitrogen pressure is

also included. See Figure 3-2. The Separation Propulsion imparts a velocity of about

0.2 ft/sec to the spacecraft. At the end of 15 minutes the separation distance between the

capsule and spacecraft is 160 feet. The thrust generated by the escape subsystem decays

exponentially from a peak value of 0.45 pound. At the end of 240 seconds 90 percent of the
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stored mass is expelled, while the pressure decays to below four percent of original value.
0oGas temperature at this condition will be below 22 R.

The actuating fluid is assumed to have a specific impulse of 58 seconds, under the conditions

of continuous blowdown and minimum heat transfer from surrounding areas.

3.3 COMPONENT DESIGN

Components will be selected based on their suitability for the Voyager mission and compati-

bility with over-all system requirements (weight, size, power, operating characteristics).

Components successfully qualified and used on other programs will be preferred.

3.3.1 GAS STORAGE RESERVOIR

The tanks are made of 6AL-4V Titanium, spherical and heliarc welded about the girth.

The burst to operating pressure ratio is 2.2 at ambient conditions based on a boss weld

and scratch allowance of 25 percent.

3.3.2 CHECK VALVE

The check valve at the fill connection prevents back-flow and escape of gas while'the charging

equipment is being disconnected following completion of charging, and before fill fittings

are capped. The check valve is constructed of aluminum with a soft elastometer seal at the
valve seat.

3.3.3 RELIEF VALVE

The relief valve is constructed of a suitable (magnetically compatible} stainless steel, and

titanium. The valve seat is of elastometer or plastic material. The design maintains con-

stant seat load up to the instant of opening. Anti-reaction fittings are used at the outlet

af _,al_nf ,,¢_1,,n¢_ ÷a a_,c_4rt cr_n_rst_ th_l_t if the relief valve ouens.

3.3.4 PRESSURE TRANSDUCER

The pressure transducer is of the potentiometer type containing a bellows or a bourdon tube

pressure sensing element. The applied voltage is 3.2 volts, with power consumption on

the order of milliwatts.

Pressure transducers used are in three ranges: 0-50 psi to sense the pressure down-

stream of pressure regulators, 0-4000 psi to sense the stored gas pressure in the pneumatic

attitude control subsystem and 0-600 psi to sense the pressure in the spacecraft Separation

Propulsion unit.

3.3.5 FILTERS

Filters are installed to remove any particulate contamination from the gas as it leaves the

reservoir. Filtration elements are woven stainless steel wire screens that prevent the

passage of particles of a pre-determined size.
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3.3.6 PRESSUREREGULATORS

Pressure regulators are single stage units containing two seats in series for redundancy

against leakage, the most common failure mode of regulators. Designed for a nominal

outlet pressure range of 38 ± 3 psi, the regulator normally utilizes one seat for flow control

and lock-up that maintains outlet pressure at 36.5 +- 1.5 psi. If the seat fails, the second

seat takes over and maintains outlet pressure in the range of 39.5 + 1.5 psi.

3.3.7 SOLENOID VALVES

The valves are of the direct acting co-axial type, constructed wherever possible of material

compatible with Voyager magnetic constraints. To reduce the magnetic field generated by

the valves when energized the following can be done: twist and shield the electrical wires

to each solenoid, shield each solenoid valve, arrange pairs of solenoid valves such that

their magnetic fields external of the valves mutually cancel each other.

Two types of seat materials will be considered for use in these valves. One is a soft seat

(plastic or elastometer) the other is a hard seat (metal to metal). The advantage of the

soft seat is that it is more tolerant to contamination, while hard seat valves exhibit better

response time characteristics (short and repeatable response action). Although at present

hard seat valves are the likely candidates for Voyager, a more careful investigation in this

area will be required.

3.3.8 EXPLOSIVE VALVES - See VB235FD104 for details

3.3.9 NOZZLES

The nozzles are made of Titanium having 100:1 area ratios, with 30 degree straight exit

cones.

3.4 ASSEMBLY CONSIDERATIONS

To minimize leakage, the interface within system will be hermetically sealed wherever

feasible. This will be accomplished by welding of tube and component fittings and soldering

or brazing of component body seals. It is planned to use titanium to a large extent in the

system. Gas storage tanks, pressure regulators, tubing and fittings made of titanium

alloys are already available. The advantages of titanium are its high strength to weight

ratio; weldability, machinability, magnetic properties and resistance to corrosion. Other

materials will be used, however, as necessary, based on their compatibility with overall
Voyager constaints.

Components, wherever possible, will be mounted in clusters. Roll and yaw control

solenoids and nozzles, would represent one such cluster, that would be entirely self con-

tained, having one gas inlet connection and one electrical connector, all mounted on a

suitable honeycomb bracket with internal interconnecting tubing. Other clusters would

consist of pairs of pitch nozzles and corresponding control solenoid valves, regulator,
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filter pressure transducer and relief valve assemblies. Each component would first be

tested individually for performance, then assembled into the proper cluster. All environ-

mental tests will then be performed on complete clusters.

The tank, tubing and valves are equipped with strip heaters and surrounded with several

layers of superinsulation for temperature control.

4.0 INTERFACE DEFINITION

4.1 MECHANICAL

Nozzle Alignment - Mounting Interface with Spacecraft Structure.

4.2 ELECTRICAL

Solenoid Valves - Input: 30 to 45 V from Attitude Control Electronics

Explosive Valve - Input: Pyrocontroller (Capacitor Discharge)

Pressure Transducers -Input: 3.2 V from Attitude Control Electronics

- Output: 0-3.2 V to Data Handling and Storage.

4.3 THERMAL

Stripheaters - Power from Temperature Control Subsystem.

4.4 CAPSULE INTERFACE - Gas from cold gas jet subsystem will not contaminate capsule.

4.5 OSE INTERFACE - The gas jet subsystem shall be charged by the appropriate OSE
function as follows:

Attitude Control tanks - Freon-14 @ 2500 psia and 70°F

Separation Propulsion tanks - Gaseous Nitrogen @ 525 psia and 70°F.

5.0 PERFORMANCE PARAMETERS

The attitude control cold gas jet subsystem will impart to the vehicle an acceleration

Torque_
[Inertia' of 0.225 m rad/sec 2 in each axis. This corresponds to thrust levels per nozzle

of 0.0625 pound, 0.0578 pound and 0.0408 pound about the Pitch, Yaw and Roll axis re-

spectively for the spacecraft moments of inertia during cruise, with the nozzles being

located on 11 ft. moment arms (cg to thrust center line distance). The angular acceleratien

increases after capsule separation and expending of retro propulsion fuel. Although the

predominant length of valve "on-time,, will be 30 ms, the system can tolerate "on-times"

as low as 14 ms with good repeatability. Although specific impulse is affected by short

"on-times. ,, The decrease of specific impulse Occurs because transient (pressure rise and
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decay) rather than steady rate conditions, predominate. By making the thrust chamber

vokune (volume between valve seat and nozzle throat) as small as practically possible,

the transient portion of the thrust profile is minimized. Tests at Aerospace Corp. have

shown that for pylses of down to 10 ms there was no appreciable decrease in specific

impulse.

As shown in Volume B, Section VB234AA104, the reliability of the selected Attitude Control

Cold Gas Jet Subsystem and Spacecraft Separation Components is 0.9998 and 0. 99967 re-

spectively, based on failure rate data reported in General Electric Reliability Manual

TRA873-74 using high-reliability and space application modifiers.

6.0 PHYSICAL CHARACTERISTICS AND CONSTRAINTS

6.1 WEIGHT

Total loaded cold gas jet subsystem weight will be about 102 pounds. Refer to weights

table in Section VB220FD103 for weight breakdown by components. The Separation Pro-

pulsion Unit will weigh about 3.2 pounds.

6.2 VOLUME

The total volume of the cold gas jet subsystem and Separation Propulsion unit will occupy
about 1.75 ft 3. Solenoid and relief valve seat leak rate is below 3 scc/hr. Static Seal

leakage shall not exceed 1.0 scc/hr.

6.4 POWER CONSUMPTION

Average power consumption is negligible. Peak power required, when three couples are

commanded, will be 24 watts.

6.5 CLEANLINESS

Although pneumatic components are not unique in their sensitivity to contamination, their

performance characteristics and processing criteria (manufacturing, testing, installation)

make contamination the prime hazard to successful performance. Two types of contaminants

may be present in the system: 1) those carried in by the actuating gas and contained in the

components at assembly and 2) contaminants generated internally by the rubbing, sliding and

impact action of component operation.

The amount and size of contaminants carried in and contained in components can be reduced,

if not entirely eliminated, by filtration of gas and cleaning components during and after
assembly. In addition, precautions snatt De taken during every phase of processing, such

as inspection, testing and installation, to minimize the possibility of contaminating the

components and assembly. The environment in which processing of pneumatics will take

place, shall conform to class 10,000 Fed. Std. 209 (10,000 particles per cu. ft. greater

than 1/2 micron). Components and assembly shall be protected by filters and shall be

8 of 10



VB234FD104

purged and sealed at the end of each stage of processing. To reduce the amount of self-

generated contamination will require careful selection of materials in sliding contact with

each other and exhaustive determination of surface finishes and forming or machining

processes that result in sliding surfaces that are least likely to shed contaminant without

exceeding Voyager design constraints or impairing component performance.

7.0 SAFETY CONSIDERATIONS

The pneumatic subsystem as a whole and its individual components, will be extensively

proof tested to assure safe operation. Test levels shall be as follows:

Rem Proof Pressure Burst Pressure

Gas Bottle

Components (valves,

regulators, etc.)

Tubing and Fittings

Subsystem Assembly

1-1/2 x oper. press.

1-1/2 x oper. press.

1-1/2 x oper. press.

1-1/2x oper. press.

(Qual. unROnly)

2.2 x oper. press.

2-1/2 x oper. press.

4 x oper. press.

In addition, components using electrical power for actuation or excitation will be subjected

to insulation resistance tests at up to 1000 vdc and dielectric strength tests (Hi-Pot) of

up to 60 cycles, 1000 vac.

To ascertain personnel safety, proof and burst pressure tests are to be performed in

high pressure test cells (Refer to VB291FD105 and VRIlOVP005 for details}.

For loading procedure and handling limitations see VB280FD109 and VB280FD110.
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I.0 SCOPE

This document describes the function of the Voyager Autopilot, its functional boundaries,

the subsystem performance factors, its interfaces with other subsystems and the physical

makeup of the recommended preliminary design.

The function of the Autopilot is to provide control of the velocity increment, both magnitude

and orientation, imparted to the vehicle during the propulsion operations of mid-course

corrections and of Mars orbit insertion.

A functional block diagram showing the major interfaces and functions of the Autopilot is

shown in Figure 1-I.

2.0 APPLICABLE DOCUMENTS

The following documents are applicable to this functional description:

VB220SR101 Design Characteristics

VB220SR102 Design Restraints

VB220SR103 Mid-Course Maneuver Accuracy

and Propellant Requirements

VB220FD103 Spacecraft Component Design Para.

VB220FD110 Telemetry Channel Assignment

VB220FDlll Maneuver Execution Accuracy

VB234FD101 Guidance and Control Subsystem

3.0 FUNCTIONAL DESCRIPTION

The Autopilot controls the orientation of the velocity vector to an accuracy of 20 mr 3 a

from the position at which autopilotcontrol is started. The magnitude accuracy is less

than I percent 3 _ for velocity increments greater than I meter per second and less than

3 percent 3 _ in the 0.1 to 1 meter per second range.

w_ A,,+,,_,I,,+,._,,,o n_+_h y_,,,,and roll vehicle attitude_rrnra from _vros in the

AttitudeControl Subsystem from the time that the spacecraft is in proper orientation for

propulsion operations untilthrust is terminated by a signal generated within the Autopilot.

The Autopilot converts the gyro attitudeerror signals into appropriate flow control com-

mands for the four throttlablemidcourse correction engines and to four jet vane actuators

for pitch and yaw and for roll control respectively. The magnitude of acceleration is

sensed and integrated within the Autopilot Subsystem and is compared with a pre-set desired
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value. When the spacecraft has achieved the desired magnitude of velocity, the Autopilot

generates a signal to cause termination of the thrusting. The Autopilot acts in accordance

with commands from the C&S or Command Decoder for desired velocity increment, mode

(midcourse correction or orbit insertion), engine start and stop commands, and a veloci-

meter disable command. Diagnostic and status information is provided to the Telemetry

Subsystem.

The signal flow diagram of Figure 3-1 shows the implementation of the autopilot. The

section dealing with the control of the orientation of the velocity vector increment will

be discussed, followed by a discussion of that part which controls its magnitude. The

torque for pitch and yaw axis control is generated as shown in Figure 3-2 by differentially

throttling pairs of thrusters whose nominal thrust vectors are p_rallel to the roll axis at

a distance of 50 inches and which pass through the pitch and yaw axes. The control loop

is designed to have all four engines operating at minimum thrust, 25 pounds, with zero

error signal. At saturation actuation signal , 55 pounds thrust is available which is suf-

ficient to offset the disturbance of the Retro Propulsion System 2200 pound thrust-engine

with a center of mass uncertainty of location of 0.5 inches. Having the Mid-Course

System engines operating at the low end of the throttling range for zero error signal yields

least weight when center of mass uncertainties increase with time as happens during RPS

engine operation. The amplifiers K 2 of Figure 3-1 contain the lead-lag networks required
for pitch and yaw channel servo loop stabilization. The signals for increased thrust are

detected and separated by the polarity sensors and are directed to the proper throttle valve

amplifiers K 3. A bias is introduced in each amplifier to insure that a minimum of servo

dead zone is present in the pitch and yaw channels of the autopilot. Parallel summing

of the control signal and position transducer signal is accomplished in the K 3 amplifiers.

Roll control torques are generated by a single jet vane placed in each of the MCS engines

in such a fashion as to develop a lift thrust vector normal to both the engine thrust line and

to a line normal to the roll axis passing through the center of lift. The Autopilot receives

roll position information from the attitude control subsystem and processes it through the

amplifiers K !which contain lead-lag: networks required for loop stabilization. The ampli-

fiers also have the parallel summing networks for taking the jet vane angle pickoff informa-

tion to generate the jet vane actuation position error signal. Closed loop control of the

jet vane angle then causes roll torque in proportion to roll position and rate.

This mechanization of the control of the orientation of the velocity increment will cause

the total force vector applied to the vehicle to pass through the vehicle center of mass

Control of the magnitude of the velocity increment is obtained by sensing the acceleration

along the nominal thrust axis, integrating, and comparing the result with the pre-set

value to generate a thrust termination signal. The desired velocity is received in pseudo-
random pulse code from the command decoder and is shifted into the shift register. The

desired velocity is received a second time and as it is shifted into the register, the input

pulses are compared with the overflow content and compared. If the overflow is the same

as the second word, no alarm is made; if an error is detected, an incorrect velocity alarm

is sent to the telemetry subsystem and the process may be repeated.
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Commands for mid-course corrections mode or retropropulsion mode, engine start and

velocimeter disable are received either from the C&S or from the command decoder. Back-

up engine stop signals from the C&S are processed through the autopilot which will termi-

nate thrust in the event that the velocimeter fails to generate the thrust termination signal.

The backup signal is timed to prevent premature shutdown with lowest thrust level expected.

In general, this will be 5 percent longer than the nominal time.

Receipt of the engine start signal changes the operation of the shift register to that of a

counter. The counter, having been loaded with the l's complement of the desired velocity,

will trigger the logic OR gate when the register indicates all ones. When in the mid-course

correction mode, signals are sent to the MCS engine solenoid valves to cause termination

of these engines. When in the orbit insertion mode, the engine fire signal causes signals to

be sent to the MCS engines and the signal is delayed a sufficient number of seconds before

initiating ignition of the RPS engine to cause RPS propellant settling. The outputs of chamber

pressure transducers are sent to an OR gate whose output indicates that at least one MCS

engine is firing and this output is added with an indication that the gyros are not at their

stops in an AND gate• When this logic is satisfied, the vehicle will be under full auto-

pilot control with MCS engines, and RPS engine propellants will have been settled• A signal

is then sent to the pyrotechnic subsystem to initiate RPS engine firing. Thrust termination

is caused in the same manner as for MCS firing with termination signal going also to the

pyrotechnic subsystem for RPS engine. Actual MCS engine shut-off is prevented until the

acceleration level indicates RPS engine has terminated.

The sequence of operation of the autopilot is as follows:

Required maneuver velocity is received and stored.

Required maneuver velocity stored is verified.

Autopilot power is received.

Engine start signal is received and sent to MCS engine.

MCS engines start.

RPS engines start, signal sent after time delay (RPS engine mode only).

Stored velocity is achieved.

RPS engine stop signal is sent (RCS engine mode only).

RPS engine thrust t_rminates (RPS engine mode only).

Sensed acceleration is below threshold value.

MCS engine stop signal sent.

MCS engine thrust terminates.
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The autopilot consists physically of 10operational amplifiers, compensationnetwork, a
20 stage shift register and associated logic circuitry located in Bay 12 and also four jet

vane actuators located in the expansion cones of each MCS engine. Micro electronics is used

in redundant fashion where voltage and power levels will permit. The jet vane actuators are

limited rotation brushless DC torque motor with position feedback transducers.

4.0 INTERFACE DEFINITION

4.1 FUNCTIONAL INTERFACE

The Autopilot has major interfaces with the Attitude Control Subsystem, the Propulsion Sub-

system, the vehicle configuration and structure, C&S and ommand ecoder.

The autopilot receives DC signals proportional to roll, pitch, and yaw vehicle attitude error

from the Attitude Control Subsystem. The signal must be capable of being processed by the lead lag

network of the Autopilot to derive the rate information required for autopilot loop stabilization.

In turn, the Autopilot must prevent input axis rotations under disturbance from reaching

50 percent of the linear range of the gyro or about 2 degrees. Further, due to voltage satura-

tion in the Autopilot, vehicle angular rate should be limited. The Propulsion Subsystem
interface with the autopilot includes engine start and stop signals, control signals for each

of the four MCS throttlable engines and jet vane shaft angle positions. Also, the dynamic

properties of the fuels and oxidizer in the tanks affect the Autopilot. Autopilot signals

operate directly the MCS start and stop solenoid valves. Fuel flow command signals are

sent directly to the MCS flow control valves. Jet vanes actuators provide a shaft angle

position in proportion to the autopilot generated error signals which causes roll control

torques through the lift action of jet vanes of the propulsion subsystem attached to the actu-

ator shaft.

The vehicle configuration and structure affect the autopilot through the location of principal

axes, sensor axes, and control axes. Design philosophy requires that the lowest natural

frequency of the structure be above 10 cps which will be above any frequency of interest in

the autopilot control loop or that lower frequencies be well damped and constant over the

propulsion operation conditions. Higher frequency phenomena during propulsion operation

may affect gyro performance, particularly through the effect of the lead networks. When

these modes are uncovered in test, they will be filtered electronically or altered mechani-

cally such that autopilot control is not affected.

The nominal alignment of the principal axes, sensor axes and control axes is possible with

the recommended configuration. This eliminates the needs for any uncoupling circuitry

within the autopilot

An autopilot interface exists between the Command Decoder and the C&S. The command

decoder provides the alert signal, sync signal, and the 19-bit message for loading the velo-

cimeter in the primary mode and, in event of C&S failure, further provides signals to start

engines, change from MCS to RPS mode, engine start, velocimeter disable and engine stop

signals.
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The Autopilot is turned on by receipt of power from the Attitude Control Subsystem in two

categories: 1) those functions related to the velocimeter which require activation a long

period of time prior to use and 2) those remaining parts of the Autopilot which require acti-
vation just prior to propulsion operations.

4.2 MECHANICAL INTERFACES

The jet vane actuators mate mechanically with the MCS engines and also with the jet vanes.

The Autopilot mechanical interface with the vehicle structure consists of the vehicle mass,

moments and products of inertia, center of mass locat ion and uncertainities, and structural

resonance phenomena. The structural interface also includes alignment of sensors and rocket

motors which affect autopilot operation.

4.3 ELECTRICAL INTERFACES

Gyro outpost signals are received from the Attitude Control Subsystem. Actuation signals

generated by the Autopilot are sent to the MCS throttle valves and the signals proportioned

to throttle valve position are received by the Autopilot. The MCS start solenoid valves are

controlled by the Autopilot. Start and stop signals for the RPS are generated by the Pyrotech-

nics Subsystem from standard pulses generated by the Autopilot. Basic power for the Auto-

pilot is supplied from within the Attitude Control Subsystem. Commands are accepted from

the C & S and also directly from the Command Decoder. Hardwire test points are incorporated

for system checkout. Properly buffered signals are provided to the Telemetry Subsystem for
transmission.

4.4 AUTOPILOT INPUT INTERFACES

A. Attitude Control Subsystem

Roll, Pitch, and Yaw Attitude Error Signals

Scale Factor _. 3 mv/mr

Linear Range + 4 °

+6 °Stops _

B. Propulsion Subsystem

MCS Pitch and Yaw Control Torque 125-ft pounds at saturation input

MCS Roll Control Torque 21-ft pounds at saturation input

Misalignment -. 625 ° and. 1875 inch
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Ce

Do

MCS Engine Firing Indications (4)

MCS Throttle Valve Position (4)

Engineering Mechanics

Moments of inertia as below:

MOMENTS OF INERTIA SLUG-FT 2

MCS operation

RPS operation

Roll Pitch Yaw

Min. Max. Min. Max. Min. Max.

3728 3750 5203 5243 4771 4811

1358 1789 971 1311 634 878

Center of Mass location uncertainties as below:

Condition Uncertainty

X Axis Y Axis Z Axis

MCS Operations + . 126 in. +. 133 in. +. 741 in.

RPS Start +. 110 +. 120 + .761
B m

No structural resonance below 10 CPS unless well damped and possessing invariant

characteristics

C & S Command Decoder

, Source

Command Decoder

Command Designation

QC3

EC 35 & EC-36

EC-37

Function

Alert

SYNC Pulses

Velocity Set Command

Mode

MCS Start

EC-34 Velocimeter Disable
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C&S

4.5

EC 35 & EC-36

EC-37

EC-34

SC -34

AUTOPILOT OUTPUT INTERFACES

Propulsion Subsystem

MCS Solenoid Valves

Voltage 30 VDC nominal

Current 1.3A initial

0.3A holding

Opening time 12 MS

Closing time 8 MS

MCS Throttle Valves

Power 1 Watt

Pyrotechnic Subsystem

Mode

MCS Start

Velocimeter Disable

MCS Stop

Standard Pulse Errors Engine Start & Stop

Antenna pointing Subsystem

Standard Pulse At Thrust Termination

Cheek out and Telemetry
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Function

MCS Engine Control

Velocimeter

Checkout

5.0

Telemetry

Function

Accelerometer Temperature

Pitch Lead Network Output

Yaw Lead Network Output

Roll Lead Network Output

Accelerometer

Velocimeter

PERFORMANCE PARAMETERS

Test Point

8 error signals

8 feedback signals

Engine Cutoff

Channel

M701

Cll

C12

C13

A5

A6

Under these interface conditions, the Autopilot, having attitude control loop gains of about

6.25 will contribute a pointing error of about 20 mr 3 c_ and velocity magnitude error of

less than 1 percent 3 c_ down to velocity corrections of slightly less than 1 meter per second.

For a A V of 0.1 meter per second a 3 percent 3 c_ error will result. The closed loop

band pass of the pitch and yaw channels of the autopilot is approximately 3.5 rad/sec and for

roll, about 1.5 rad/sec.

6.0 PHYSICAL CHARACTERISTICS AND CONSTRAINTS

The autopilot electronics are located in Bay 12 Guidance and Control Equipment Bay. (See

Figure 3-6 VB234FD102. ) Input power is 6.9 watts average and 14.5 watts peak while dis-

sipated power is 6.7 watts average and 6.9 watts peak.

For purpose of this study, the jet vane actuators are considered a part of the autopilot and

these actuators are located on the expansion section of each MCS engine with a total weight

for the four of 8 pounds. They consume 14 watts average and 16 watts peak.
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7.0 SAFETY CONSIDERATIONS

The only way that the autopilot could present a safety hazard would be a premature engine

firing in that the firing signals are processed by the autopilot. MCS engine firing is pre-

vented by not having power available for application to the solenoid valves until ready for
use.

The RPS engine cannot be fired prematurely due to safety provisions in the pyrotechnic

subsystem.
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1.0 SCOPE

This section describes the Approach Guidance Subsystem, the function of which is to provide

precise navigational measurements during the planetary approach phase of the interplanetary

trajectory. These data, together with the radio guidance data from the Deep Space Instru-

mentation Facility {DSIF), will allow a more accurate determination of the required bus

orbital insertion and capsule deflection maneuvers than DSIF data alone can provide. As a

result, the accuracy of the capsule landing site and the bus orbit will be improved.

2.0 APPLICABLE DOCUMENTS

VB234FD101

VB220SR101

VB220SR102

VB220FDl10

VB220FD112

Guidance and Control Subsystem

Design Characteristics

Design Restraints

Telemetry Channel Assignments

Flight Sequence

3.0 FUNCTIONAL DESCRIPTION

The Spacecraft Approach Guidance Subsystem consists of on-board angle measuring and data-

processing equipment. The sensor measures the direction of a vector from the spacecraft

to Mars with respect to a celestial coordinate system. This measurement is independent of

spacecraft attitude as long as the sensor field-of-view limitations are not exceeded. The

measured angles are used in the orbit determination program to improve the estimate of

impact parameter vector.

The DSIF measures range and range-rate between Earth and the spacecraft. These measure-

ments, combined with the ballistic constraints of free fall through space, determine the

velocity and the three components of spacecraft position to a reasonable accuracy. If DSIF

provides a dispersion of 350 km in the impact parameter, a single on-board sensor measure-

ment taken just before capsule separation will reduce this dispersion to about 35 km

1
The Approach Guidance Sensor is a modification of the "Optical Inertial Space Sextant."

It has covers to protect the optics during the launch and transit modes. These covers are

jettisoned 4.5 days prior to Mars encounter. Power is applied to the sensor 4 days prior

to encounter, at a distance of approximately 1,000,000 km from Mars. Measurements are

taken over a range of 500,000 km to 200,000 km from Mars which covers a time period of

approximately 2 to 0° 8 days to encounter.

The sensor contains three optical assemblies which, by means of fiber optics, present a

non-overlapping field array to a single vidicon image tube as shown in Figure 3-1. The

optical assemblies simultaneously view Mars, Canopus and the Sun. Although Mars and the

Sun will provide considerably brighter images than Canopus, their brightness is reduced to

approximately that of Canopus by the use of smaller apertures and optical filters. No

electrical compensation is required when passing from one field to the next.

1See NASA Contractor Report No. CR-133, "Optical Inertial Space Sextant for an Advanced

Space Navigation System" by W. D. Foley, etal, of the Armament Control Product Section
of the General Electric Company under contract No. NA52-1087 from the Ames Research

Center of NASA.
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CANOPUS

CAMERA

ELECTRONICS &

VIDICON

SUN

OPTICS

ASSEMBLIES

FIBER

OPTICS

DATA

PROCESSOR

MARS

Figure 3-1. System Concept
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The vidicon, which has an integral reticle pattern to initialize and linearize the sweeps,

serves as the primary sensing element. The video output of the vidicon is amplified by a

chain of camera electronics. Pulse center-detection circuits generate pulses which define

the Canopus and solar disc centers, as well as the planet edge crossings. These signals

are provided to a digital data processor which relates them to pulses obtained from the re-

ticle pattern and provides the image plane coordinates of these points as output words.

The data is read out of the processor serially to the Telemetry Subsystem and transmitted

in real time. During readout the processor is inhibited from updating the data. A full

frame of data includes the address of the center of Canopus, the address of the center of the

Sun and the addresses of six points on the horizon of Mars. Figure 3-2 is a block diagram

of the sensor, while Figure 3-3 shows the field array.

The field-of-view is made narrow to obtain the best accuracy. The fields of view indicated

in Figure 3-3 have been chosen to account for the target size, the target motions during

the approach phase of the trajectory from 500,000 km to 200,000 kin, the spacecraft attitude

control errors, and sensor misalignments. They are not large enough, however, to account

for the variations in approach geometry due to the various possible launch and arrival dates.

Thus, pre-launch adjustments of the sighting directions are required for the Mars and Canopus

optics. Since the integrity of the spacecraft shroud cannot be violated, this adjustment is

done remotely. Two possibilities are under consideration. The first is to take advantage of

the flexibility of the fiber optics and actually deflect the optics, while the second possibility

would be to rotate an optical wedge assembly in front of the optics. Further study is required

in this area before the appropriate technique may be chosen.

4.0 INTERFACE DEFINITION

4.1 MECHANICAL

The sensor reference axes will be parallel to the attitude control axes to within + 0.05

degrees.

4.2 ELECTRICAL POWER

The sensor will operate from 50 VRMS, 2400 cps power and consume approximately 20 watts.

Power will not be supplied during the cruise mode, but will be applied four days prior to Mars
encounter.

4.3 PYROTECHNICS

The pyrotechnic subsystem shall remove the Approach Guidance Sensor covers 4.5 days prior
to Mars impact.

4.4 TELEMETRY SUBSYSTEM

The Approach Guidance data (160 bits) will be provided on a single output line. The Telemetry
Subsystem will provide sync pulses which will be used to establish the readout rate and a

voltage level which will be used to inhibit updating of the data.
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4.5 LCE

Four hardwire lines will be provided for remotely adjusting the sensor orientation.

5.0 PERFORMANCE PARAMETERS

Range of Operation - the design range is 500,000 to 200,000 km from Mars.

Accuracy - the sensor measurements will allow ground calculation of the true center

of Mars with respect to celestial references to within at least 0.3 milliradians.

Angular Motion of Mars - the Mars clock angle variation will be approximately one

degree maximum while the Mars cone angle variation is approximately 1.5 degrees

maximum during the planetary approach phase.

Angular Motion of Canopus - the Canopus cone angle will vary less than 1 degree during
the approach phase

Target Size - the angle subtended by the Sun is approximately 0.35 degrees,

while the Mars subtended angle will vary from 0. 766 to 1.94 degrees over

the range of operation.

Vehicle Stability - the vehicle must be stabilized to a Sun-Canopus reference to within

+ 0.75 degrees, with slew rates not exceeding 0.03 degrees/second.

Fields-of-View - the Sun field is 2.0 x 2.0 degrees, the Canopus field is 3.5 x 2.0

degrees, and the Mars field is 5.5 x 5.5 degrees.

Optical Apertures - the aperture for the Canopus optics will be one inch. The Sun and

Mars optical apertures will be smaller and depend upon the efficiency of the optical

filters chosen to reduce the brightness of their images.

Focal Length - the focal length of the combined field is 4.34 inches.

Quantization - the composite field-of-view will be quantized into 1024 parts in both the

x and y directions.

Output Word Length - the address of each data point consists of a 20-bit word, with

10 bits defining the x position and 10 bits defining the y-position. A total of 20 eight-

bit words will be transmitted per observation defining the addresses of the Sun, Canopus

and six points on the Mars limb.

Frame Rate - the frame rate is four frames/second.
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SUN FIELD
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MARS FIELD - EXTREME POSITIONS ILLUS.
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/

Figure 3-3. Combined Fields of View
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6.0 PHYSICAL CHARACTERISTICS

The size, weight and power for the sensor is as follows:

Optics/Vidicon Camera Assembly

Data Processor

Totals

7.0 SAFETY CONSIDERATIONS

Size Weight

(in) 0bs. )
10 x 10 x 16 19

2°5x6x20 6

Power

(watts)
15

5

1900 cu. in. 25 lbs. 20 watts

The Approach Guidance Subsystem presents no pre-launch safety hazards to personnel,
equipment, or facilities.
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1.0 SCOPE

A functional description of the Controller & Sequencer; and definitions of interfaces, per-

formance parameters, and physical characteristics and restraints therefor are contained

in this document.

2.0 APPLICABLE DOCUMENTS

VB220SR101 -

VB220SR102 -

VB220FD112 -

VB233FD103 -

Design Characteristics

Design Restraints

Flight Sequence

Flight Command Subsystem

3.0 CONTROLLER & SEQUENCER FUNCTIONAL DESCRIPTION

The Controller & Sequencer (C & S) Subsystem receives command data from the Flight Command

Subsystem, stores the data in an electrically alterable memory, and reads out at times speci-

fied by the data, commands to other subsystems on the spacecraft; and provides cyclic timing

and control signals to other spacecraft subsystems. Command execution times are deter-

mined by comparing time tags contained in the stored command data words with either the

Master Timer, which operates continuously throughout the mission, or the Sequence Timer,

which only operates during a maneuver sequence of events or during the orbital phase of the

mission when it is recycled once per orbital period. The timer to which each command is

keyed is specified by one bit in the stored command data word.

Figure 3-1 is a block diagram of the C & S. The C & S has two modes of operation:

1. The Memory Update Mode is used when new command data are being written

into the C & S magnetic core memory

2. The Memory Scan Mode Is used when the memory contents are being examined for

commands requiring execution.

A pulse appearing on the alert Line from the Flight Command Subsystem places the C & S

in the Memory Update Mode. The alert pulse is followed by a command data word (described

in Figures 3-2 and 3-3). The first ten bits of the command data word are shifted into the

Address PNG (pseudo-noise generator) which functions as a simple shift register in the

Memory Update Mode. The last 27 bits of the command data word are written serially in the

address of the Memory or Memories specified by the bits in the Address PNG. This procedure

is repeated each time a pulse appears on the alert line. If two successive alert pulses do not

occur within a fixed period (approximately two minutes), the Memory Scan Mode is auto-
matically initiated by the C & S.

In the event that an ____.. bit is detected by the Flight Command Subsystem while a command

data word is being relayed to the C & S, an "erase" signal from the former to the latter sub-

system results in erasure of the memory address contents if more than ten bits of the command

data word have been received by the C & S. Erasure consists of writing all "zeroes" in the

address. If ten or fewer bits have been received by the C & S, no action is required because

no part of the invalid word has been written in the Memory or Memories.

2 of 52



(

VB234FD 107

F. om _m

{D <zJz

<

'llI

o
g

0

N
0

0

I

0

°_,,t

3 of 52



4 of 52

VB234FD 107

<

O

¢r

OH:]Z AH GSLLON_(] SI

(INVlhI_IOO H:_II.L H_t,LSVI_ __:

rr

<

rr
O

o _

:_,_ .- _._

og = "

m % m o m o

_ o o

O9 m

o

z

_.o ,_

o

0

0

d
!



!!

z

m 0

VB234FD107

_E .-I . • •

m

__ o_

.... o=o '._

_-.._ _ _._

0J :

._ o _

e- =

o

o

o

0

o
o

o

o

I
O3

0

5 of 52



VB234FD107

In the Memory Scan Mode, the Address PNG, functioning as a pseudo-noise generator, is

shifted 255_mes follo_g the occurrence of each0ne-secon d pulse from the Countdown

Chain, thereby generating 255 different memory address numbers. Between Address PNG

shifts, the contents of the memory address (in all memories) specified by the PNG are

examined for coincidence of command time tag and the time registered by the pertinent

timer. The first bit of the word in the memory address is read out and rewritten in its

original location. The contents of the timer specified by this bit are transferred in parallel

to the Shift Register so that the least significant time bit is contained in the output stage of

the register. The second bit of the memory word is read out and rewritten. This bit (the

least significant bit of the command time tag) is compared with the number in the output

stage of the Shift Register. If a mismatch is detected, readout of the memory address is

discontinued and the Address PNG is shifted. If a match is detected, the Shift Register is

shifted once placing the next least significant time bit in the output stage of the register and

the memory output in the input stage. The third bit of the memory word is read out (and

rewritten) and compared with the number in the Shift Register output stages. Once again,

if no match is detected, readout of the address is discontinued. If a match is detected,

the Shift Register is shifted and the next bit of the memory word is read out and rewritten.

The readout of time tag bits from the memory and comparison with time bits continues until

a mismatch occurs or a complete match of time tag and time is found to exist. When the

time tag of a Master Timer Command matches the time registered by the Master Timer, an

execute signal is immediately conveyed to the destination determined by the Command Matrix
and Combining Logic from the number in th_P-l_G. When the time tag of a Sequence

Timer Command matches the time registered by the Sequence Timer, the last eight bits

(command destination) of the memory word are read out (and rewritten) and shifted into the

Shift Register. An execute signal is then conveyed to the destination determined by the

Command Matrix and Combining Logic from the eight destination bits contained in the Shift

Register. Whenever an execute signal is generated, scanning of the memory contents is

suspended until the start of the next one-second interval.

Unless a complete match is detected and an execute signal generated, the time tag of every

command stored in the memory is examined once a second for coincidence with the time

registered by the pertinent timer. Examination of one memory word requires from 150 to

490 microseconds. One complete scan cycle, therefore, requires from 38 to 125 milliseconds,

approximately. Thus, the memory is dormant during a large portion of each one-second

interval.

The Master Timer is a 26-s_ counter which counts pulses occurrin_ once per second. It

is started shortly before launch and continues to operate throughout the mission. Commands

which are keyed to the Master Timer are, for the most part, predictable as to timing of

execution.

The Sequence Timer is an 18-stage counter which also counts pulses occurring once per

second. Commands pertaining to maneuver or orbital events are keyed to the Sequence

Timer. The timer is started by a Master Timer Command to initiate a maneuver sequence

or orbital operation. At the completion of a maneuver sequence the timer is reset and halted

by a Sequence Timer Command. During orbital operation, the timer is in continuous operation

but is reset to zero once per orbit by a Sequence Timer Command.
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Most of the Master Timer Commands and those Sequence Timer Commands which pertain

to maneuver events and are predictable with respect to the start of a maneuver sequence are

loaded into the Memory from the LCE via the Flight Command Subsystem prior to launch.

Other commands are loaded at appropriate times after launch by ground command via the

Flight Command Subsystem. Words containing "all ones" or "all zeroes" are written into

all memory addresses not occupied by active commands.

Prior to launch, a voltage level change on the "inhibit count" line from the LCE inhibits the

1-pps signal from the Cout_lown Chain to the Master Timer. A few seconds after initiation

of the inhibit signal, the Countdown Chain and the Master Timer are preset, and the Sequence

Timer is stopped (if counting) and cleared by a pulse on the "clear registers" line from the

LCE. The Master Timer is then updated bypulses on the "update pulses" line from the LCE.

The timer is started by removing the inhibit voltage level. The inhibit signal is restored

during "holds" in the pre-launch procedure to maintain synchronism of the timer with launch

time.

All C & S outputs except telemetry and cyclic outputs are inhibited by a circuit using the

spacecraft-booster separation connector. At separation, the circuit is interrupted and the

inhibit removed.

3.1 COMPONENT FUNCTIONS

Detailed functional logic of the C & S components is shown in the accompanying figures and

described briefly in the following paragraphs. Redundancy approaches are also described.

In general, redundancy is applied wherever a failure can disable several or all of the C & S

functions. Redundancy is not applied to the individual command outputs. Logic symbols used

herein are identified in Figure 3-4.

3.I.1 ADDRESS PNG

Figure 3-5 is a functional logic diagram of the Address PNG. The Address PNG receives

shift pulses, preset pulses, and signals denoting operating mode from the Control Logic,

and information pulses from the Flight Command Subsystem. It provides enable signals to

the three Memories, and eight-bit memory address numbers to the three Memories, to the

Control Logic, and to the Command Matrix Input Gates.

Shifting or presetting of the Address PNG is triggered by the trailing edge of a positive pulse

appearing on the "shift Address PNG" or "Preset Address PNG" line, respectively. In the

Memory Update Mode, it functions as a simple shift register. The first ten bits of each
command data word are shifted into the register. The contents of stages 9 and 10 are decoded

to determine the Memory or Memories which shall store the last 27 bits of the command

data word. The contents of stages 1 to 8 specify the memory address in which the 27 bits

are to be written.

In the Memory Scan Mode, all Memories are enabled regardless of the contents of stages 9

and 10. Stages 1 to 8 function as a pseudo-noise generator. The outputs of stages 1 and 8
are combined in an "exclusive OR" to form the input of stage 1. Each shift pulse applied to
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Figure 3-4. Logic Symbols
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the Address PNG produces a different state of stages 1 to 8. All possible states of stages

1 to 8 except the "all-zeroes" state can be generated in this way. Thus, 255 different

memory addresses can be specified by the Address PNG.

Redundancy approaches are shown in Figures 3-6 and 3-7. Three complete Address PNG's

are used with voting in triplicate between stages 3 and 4 and stages 7 and 8. The majority

gates and inverters used for this internal redundancy also provide the redundant outputs from

stages 3 and 7. Voting in triplicate is performed on the three sets of outputs of stages

1,2,4,5,6, and 8 to provide the redundant outputs of these stages. Voting in triplicate is

also performed on the three sets of outputs of the logic connected to stages 9 and 10 to pro-

vide the redundant memory enable signals.

3.1.2 MEMORY

Figure 3-8 is a block diagram of the Memory. Each Memory is composed of a core matrix,

read and write word selector switches, read and write bit selector switches, diode matrix,

word and bit number decoder gates, current stabilizers, sense amplifier, and output flip-

flop and associated gates.

The core matrix is arranged in 255 words with 27 bits per word. That is, 255 word lines

(X-lines) each thread 27 cores, and 27 bit lines (Y-lines) each thread 255 cores. The total

number of cores is 6885. A single sense winding threads every core in the matrix.

The cores are addressed serially. A core is read out (or placed in the "zero state") by

coincidence of aiding half-select read currents in the X-line and the Y-line which intersect

at the core. A "one" is written by coincidence of aiding half-select write currents (opposite

in polarity to read currents) in the X- and Y-lines. A "zero" is written (i. e., the core is

left in the "zero" state) by omitting the half-select write current in the Y-line.

Figures 3-9 and 3-10 indicate the selection of X- and Y-lines, respectively. Closure of two

switches is required to provide half-select current in an X-line. One of the switches is

selected by decoding four bits of an 8-bit word contained in the address PNG. The second

switch is selected by decoding the other four bits of the 8 -bit word. Closure of one switch is

required to provide half-select current in a Y-line. The switch is selected by decoding a

6-bit number in the 6-stage counter of the control logic.

In the Memory Update Mode. the output flip-flop is set by a "one" information bit in conjunc-

tion with a sync bit. The core being addressed is then read out. Sense amplifier output is

inhibited in this mode so that the flip-flop is unaffected by readout (or clearing) of a core.

The content of the flip-flop is then written into the core being addressed and the flip-flop is

reset by the trailing edge of the write pulse.

In the Memory Scan Mode, the sense amplifier output is not inhibited. The output flip-flop

is set by readout of a "one" from the core being addressed. The content of the flip-flop is

then rewritten in that core and the flip-flop is reset by the trailing edge of the write pulse.
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Figure 3-9. C & S Memory X-Lh]c Selection
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Three complete memories are used with voting in triplicate on the contents of the output

flip-flops as shown in Figure 3-11. The three memories can be loaded independently

or simultaneously in the Memory Update Mode but are read out simultaneously in the

Memory Scan Mode. Critical commands are transmitted three times and loaded in a dif-

ferent Memory (but in the corresponding address in each Memory) each time. Unless an

error occurs in the corresponding bit positions of at least two of the three words, errors

will be corrected by the voting at the outputs of the memories.

Non-critical commands are transmitted once and loaded in three memories simultaneously.

3. I. 3 CONTROL LOGIC

Figures 3-12 and 3-13 are functional logic diagrams of the Control Logic. The Control

Logic receives alert and synchronization pulses and commands to inhibit or enable C & S

command outputs, to erase invalid command word data and to initiate the Memory Scan Mode

(backup for automatic function)fromthe Telecommunications Subsystem; 76.8 Kc, 1 pps, and

0.125 pps timing signals from the Countdown Chain and Master Timer; indications of match

or lack of match of time tag and timer bits from the Comparator; 8-bit memory address

numbers from the Address PNG; and Memory output signal. It provides preset and shift

pulses, and C & S operating mode signals to the Address PNG; read and write timing pulses,

C & S operating mode signals, and bit selection numbers to the Memories; shift pulses to the

Shift Register; enable pulses to the shift Register Input Gates; and enable and execute signals

to the Command Matrix Input Gates.

The timing (see Figures 3-14 and 3-15) of all Control Logic output signals is controlled

by a 6-stage binary counter which is stepped by the trailing edges of sync, timing, or erase

pulses. The counter contents, in conjunction with the Address PNG contents, also determine

which memory cores are being addressed. The Memory Update Mode is initiated when the

6-state counter contents equal zero if an alert pulse is present. A 4-stage counter begins

counting pulses occurring every eight seconds. Overflow of the 4-state counter initiates the

Memory Scan Mode. The counter is recycled if an alert pulse is received before overflow

occurs.

In the Memory Update Mode the first ten sync pulses are used as Address PNG shift pulses.

The tenth sync pulse changes the 6-stage counter contents from binary 9 to binary 10. This

resets a flip-flop which prevents further shifting of the Address PNG and enables an erase

operation if an erase command is received from the Telecommunications Subsystem. The

next 37 sync pulses trigger read and write pulses to the memories. A delay of four micro-

seconds between the trailing edge of each sync (or timing) pulse and the leading edge of the

read pulse allows transition of the 6-stage counter contents to occur before any memory core
is addressed. The 6-stage counter is then reset by a succeeding alert pulse or by a pulse

which presets the Address PNG in the Memory Scan Mode.

Should an erase command be received by the C & S while in the Memory Update Mode, the

6-stage counter is stepped by the erase pulses until another alert pulse is received or the

C & S returns to the Memory Scan Mode automatically. The result is the writing of "all

zeroes" into the memory address.
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In the Memory Scan Mode, the Address PNG is preset and the 6-stage counter reset by the

trailing edge of a pulse occurring once per second. A train of timing pulses is initiated by

the leading edge of the next one-second pulse. The tenth timing pulse changes the 6-stage

counter contents from binary 9 to binary 10, which sets a flip-flop to enable the eleventh and

succeeding timing pulses to trigger read and write signals to the Memories.

When the contents of the 6-stage counter equal binary 11, the trailing edge of the write pulse

sets or resets a flip-flop depending on the output of the Memories to indicate whether the

command under scrutiny is a Master Timer or Sequence Timer Command.

The twelfth timing pulse changes the 6-stage counter contents from binary 11 to 12, setting

flip-flops which enable checking of the output of the Comparator whenever the write pulse

occurs and shifting of the Shift Register by the trailing edge of each write pulse. The read

pulse occurring while the counter contents equal 12 produces a signal to the Shift Register

Input Gates to store Master Timer or Sequence Timer contents in the Shift Register.

The 6-stage counter is reset either by the trailing edge of the write pulse when comparison

is enabled and a mismatch is indicated by the Comparator or by the trailing edge of the execute

signal. The Address PNG is shifted each time the 6-stage counter is reset.

Unless disabled earlier by a mismatch indication, comparison of command time tag and timer

bits continues until occurrence of the write pulse trailing edge when 6-stage counter contents

equal 29 for a Sequence Timer Command or 37 for a Master Timer Command.

The execute signal (200 milliseconds duration) is initiated when the 6-stage counter contents

change from 37 to 38 which occurs only when a complete match exists between command time

tag and timer contents. Timing, read, and write pulses are disabled for the duration of the

execute signal. The 6-stage counter and the flip-flops enabling timing, read, and write

pulses are reset by the trailing edge of the execute signal.

Stepping and resetting of the 6-stage counter and shifting of the Address PNG continue until

an execute signal has been generated or until the contents of the Address PNG change from

"all ones" to the next state indicating that all stored commands have been scanned once.

Operation then ceases until the start of the next one-second interval. When an alert pulse

occurs, during a memory scan cycle, the Memory Scan Mode is replaced by the Update Mode

only when the 6-stage counter contains "all zeroes". This prevents loss of stored information

as a result of changing Memory address information before a bit has been rewritten in the

Memories.

Redundancy approaches are indicated in Figure 3-16 and 3-17. Three complete sets of logic

elements are used with voting in triplicate on the output signals. In addition, voting in

triplicate is performed on the Outputs of the one-shot multivibrators used to generate the read

and write pulses.
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Figure 3-16. C & S Control Logic Redundancy
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3.1.4 OSCILLATOR

The crystal oscillator provides 307.2 Kc pulses to the countdown chain. Alternate redundancy

approaches are shown in Figure 3-18. In one case, the voltage drop developed across the

capacitor when one oscillator is functioning is used to bias off the other oscillator. In the

other case, the voltage drop is applied to digital logic to inhibit the output of one oscillator

when the other is functioning.

3.i.5 COUNTDOWN CHAIN

Figure 3-19 is a functional logic diagram of the Countdown Chain. The chain consists of a

series of frequency dividers which provide 153. 6Kc, 76.8 Kc, 38.4 Kc, and 1 pps cyclic out-

puts. Stages 1 to 3 and 11 to 19 each perform division by two. Division by three is performed

by Stages 4 and 5 and associated gates; and division by 25, by Stages 6 to 10 and associated

gates. Provision is made for presetting the Countdown Chain by a "clear registers" pulse from

the LCE to insure that all redundant elements are synchronized with one another.

Countdown Chain redundancy approaches are shown in Figures 3-20 and 3-21. Three complete

chains are used with voting in triplicate performed within the input logic and between Stages 2

and 3, 5 and 6, 8 and 9, 10 and 11, 14 and 15, and 18 and 19. Voting elements used between

Stages 2 and 3 also provide the outputs of Stage 2 to the Control Logic. Single majority gates

provide the outputs of Stages 1, 3, and 19 to other spacecraft subsystems. Voting in triplicate
is performed on the outputs of Stage 19 to the Control Logic and the Master and Sequenc_ Timers.

3.1.6 MASTER TIMER

The functional logic of the Master Timer is shown in Figure 3-22. The timer is a 26-stage

binary counter which counts Countdown Chain output pulses occurring once per second. Means

are provided for presetting, inhibiting, and updating of the timer prior to launch by signals

from the LCE. The outputs of the 26 stages are connected to input terminals of the Shift

Register Input Gates.

Operation of the Master Timer is initiated by the following sequence of events prior to launch.

An "inhibit count' signal (voltage level) from the LCE inhibits counting of the one-second pulses

by the timer. The start of the inhibit signal is followed shortly by a "clear registers" pulse

from the LCE which presets all counter stages to a coarse initial value. A train of "update

pulses" then presets the timer to the desired initial value. Counting of one-second pulses is

resumed upon removal of the inhibit signal. During "holds" in the launch sequence, the in-

hibit signal is restored to maintain synchronism of the timer with launch time.

Master Timer redundancy approaches are shown in Figures 3-23 and 3-24. Three complete

timers are used with voting in triplicate occurring within the input logic and between stages 2

and 3, 6 and 7, 10 and 11, 14 and 15, 18 and 19, and 22 and 23. The voting elements used for

this internal redundancy also provide the output signals for Stages 2, 6, 10, 14, 18, and 22.

Voting in triplicate is performed on the output signals of Stages 1, 3 to 5, 7 to 9, 11 to 13,

15 to 17, 19 to 21, and 23 to 26.
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3.1.7 SEQUENCE TIMER

The functional logic of the Sequence Timer is shown in Figure 3-25. The timer is an

18-stage binary counter that counts pulses occurring once per second. Means are provided

for starting, resetting and stopping, or resetting and continuing timer operation by C & S

stored commands; and for clearing the timer by a pulse from the LCE. The outputs of the

18 stages are connected to input terminals of the Shift Register Input Gates.

Prior to launch, a pulse on the "clear registers" line stops the timer if it has been counting

and resets every stage to "zero".

Sequence Timer redundancy approaches are shown in Figure 3-26 and 3-27. Three complete

timers are used with voting in triplicate performed between Stages 2 and 3, 6 and 7, 10 and

11, and 14 and 15o These voting elements also provide the output signals for Stages 2, 6,

10, and 14. Voting in triplicate is performed on the outputs of Stages 1, 3 to 5, 7 to 9, 11

to 13, and 15 to 18.

3.1.8 SHIFT REGISTER INPUT GATES

The functional logic of the Shift Register Input Gates is shown in Figure 3-28. When a

"transfer Master Timer contents" pulse is received from the Control Logic, the contents of

the Master Timer are presented to Shift Register Stages 1 to 26 for the duration of the pulse.

The most significant time bit is presented to Shift Register Stage 1 and the least significant

bit to Stage 26. When a "transfer Sequence Timer contents" pulse is received, the contents

of the Sequence Timer are presented to Shift Register Stages 9 to 26. The most significant

time bit is presented to Stage 9 and the least significant bit to Stage 26. Three complete

sets of gates are used with no internal or output voting performed.

3.1.9 SHIFT REGISTER

The Shift Re_ster functional logic is shown in Figure 3-29. The various stages are preset by

pulses appearing on the set or reset lines from the Shift Register Input Gates. The Shift

Register is shifted by pulses received from the Control Logic. Whenever shifting occurs,

memory output information is shifted into Stage 1 of the register. The outputs of Stages 1 to 8

are presented to the Command Matrix Input Gates. The output of Stage 26 is presented to the

Comparator.

Shift Register redundancy approaches are shown in Figures 3-30 and 3-31. Three complete

registers are used with voting in triplicate performed between Stages 4 and 5, 8 and 9,

12 and 13, 16 and 17, 20 and 21, and 24 and 25. The voting elements used for the internal

redundancy also provide the output signals for Stages 4, 8, 12, 16, 20 and 24. Voting in

triplicate is performed on the outputs of Stages 2, 3, 5, 6, 7, and 26. No voting is performed

on Stage 1 outputs.
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3.1.10 COMPARATOR

Figure 3-32 shows the functional logic of the Comparator. The Comparator receives voltage

level signals from the Memories and the Shift Register. It provides to the Control Logic

voltage levels indicating match or lack of match of input voltage levels. That is, ff both

inputs are logical "ones" or both are logical "zeroes", the Comparator provides a logical

"one" output level. Otherwise, a logical "zero" output is provided.

Three complete Comparators are used. Each is connected to a different set of input lines

and provides a separate output. No internal or output voting is performed.

3.1.11 COMMAND MATRIX INPUT GATES

The functional logic of the Command Matrix Input Gates is shown in Figure 3-33. When a

Master Timer Command indication and an execute signal are received simultaneously from

the Control Logic, the contents of Address PNG Stages 1 to 8 are presented to the Command

Matrix when a Sequence Timer Command indication and an execute signal occur simultaneously.

Three complete sets of gates are used. No internal or output voting is performed.

3.1.12 COMMAND MATRIX

Command Matrix/logic is shown in Figure 3-34. The Command Matrix decodes a maximum

of 255 different stages of an 8'bit word presented to it by the Command Matrix Input Gates.

Matrix outputs are connected to the Combining Logic and Output Switches. The Command

Matrix redundancy approach is shown in Figure 3-35. Single voting is performed between

the second and third logic levels of the matrix. Three complete sets of first and second

logic level elements and a single set of third level elements are used.

3.1.13 COMBINING LOGIC & OUTPUT SWITCHES

Matrix and provides command signals to the using subsystems. Examples of the various

component functions are shown in Figure 3-36. Example (a) occurs where two or more

memory addresses are allotted to a Master Timer Command so that two or more time tags

can be stored simultaneously. Example (b) is a case of commands to two or more destinations

always occurring simultaneously. A single command data word in the Memories is sufficient

to initiate output signals to two or more destinations. Example (c) is the common case of a

single input signal from the Command Matrix being routed to a single destination. Example

(d) is the unique case of stored engine-burn commands requiring enable commands from the

ground prior to execution time. Engine burn is a maneuver sequence event. Should inhibit-

ing of engine burnbe necessary, commanding of the succeeding events of the sequence will

normally be required. Therefore, special provision is made for inhibiting only the engine-
burn commands.

Output switches provide closures of approximately 200 milliseconds to the using subsystems.

A pulse transformer is incorporated in the circuit configuration to provide isolation of the

using subsystems from the C & S. No redundancy is provided in the Combining Logic & Output

Switches.
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3.I.14 POWER SUPPLY

The Power Supply input is 50v, 2.4 kc square-wave primary power, from the Electrical

Power Subsystem with transformer isolation at the interface. The outputs are+ 15, + 6,

+_ 3, and - 3 vdc.

Three complete Power Supplies are used. Each provides power to one set of those C & S

components which are triply redundant. Decoupling networks are used at the output of each

Power Supply and at a number of points in the Components comprising the load of each supply

to protect against short circuits in the load. The location of these networks to most advantage

requires a thorough failure-mode analysis as does any approach to providing power to the

Oscillators and the non-redundant elements of the C & S.

The use of redundant supplies provides a means of checking operation of all circuits in the

triply redundant area of the C & S. If the output of one supply is interrupted, the C & S

should continue to operate normally only if all circuits in the loads of the other two supplies

are functioning properly. All circuits can be checked by interrupting the outputs of only

two power supplies, one at a time.

4.0 INTERFACES

4.1 BOUNDARY DEFINITIONS

4.1.1 INPUT BOUNDARIES

Input boundaries of the C & S are the lines carrying 50v, 2.4 kc square-wave primary

power; discrete and quantitative command signals from the Flight Command Subsystem;

pre-launch operations signals from the LCE; and C & S output inhibit from the spacecraft-

booster separation connector.

4.1.2 OUTPUT BOUNDARIES

Output boundaries of the C & S are solid-state switch closures or interruptions of circuits

provided by the using subsystems.

4.2 INTERFACE DEFINITIONS

4.2.1 INPUTS

From LCE:

a) Step changes in voltage level to inhibit or enable counting of one second pulses by

the Master Timer.

b) Pulses to preset the Countdown Chain and Master Timer and reset and stop the

Sequence Timer.
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c) A train of pulses to up-date the Master Timer.

d) Power supply output inhibits

From Electrical Power Subsystem:

50v, 2.4 kc square-wave primary power with transformer isolation at the interface.

Power consumption will be essentially constant throughout the mission.

From Flight Command Subsystem:

a) A discrete command to inhibit or enable C & S outputs.

b) A discrete command to select the Memory Scan Mode.

c) A discrete command to erase an invalid word from the Memory or Memories.

d} A discrete command to enable engine burn.

e) Command data words (quantitative commands) described in Figures 2 and 3. A

portion of each command data word is stored by the C & S for later read out to

control sequencing of other spacecraft subsystems and of the C & S Sequence Timer.

From Spacecraft-Booster Separation Connector:

An inhibit on C & S discrete command outputs which is removed at separation.

4.2.2 OUTPUTS

To LCE:

Quantitative commands as they are received from the Flight Command Subsystem by the

C&S.

To Guidance & Control Subsystem:

a)

b)

Discrete commands listed in VB220FDl12. These are 200-millisecond closures of

circuits supplied by the G & C Subsystem.

A 1 pps square-wave signal to control antenna and scan platform articulation. This

is an alternating closure and interruption of a circuit supplied by the G & C Subsystem.

To Pyrotechnic Subsystem:

Discrete commands listed in VB220FD112. These are 200-millisecond closures of

circuits supplied by the Pyrotechnic Subsystem.
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To Electrical Power Subsystem:

a) Discrete commands listed in VB220FDl12. These are 200-millisecond closures of

circuits supplied by the Electrical Power Subsystem.

b) A 38.4 kc square-wave signal to control power output frequency. This is an alter-

nate closure and interruption of a circuit supplied by the Electrical Power subsystem.

To Telecommunications Subsystem:

a) Discrete commands listed in VB220FDl12. These are 200-millisecond closures of

circuits supplied by the Telecommunications Subsystem.

b) A 153.6 kc square-wave signal to control telemetry data rates. This is an alternat-

ing closure and interruption of a circuit supplied by the Telecommunications-

Subsystem.

c) An "even_' indication each time a C & S command is issued. This is a 200-milli-

second closure of a circuit supplied by the Data Handling & Storage Subsystem.

d) An indication of the C & S operating mode (Memory Scan or Memory Update).

This is a closure or interruption (maintained for the duration of the mode) of a

circuit supplied by the Data Handling & Storage Subsystem.

e) An indication of the state (enabled or inhibited) of the C & S command outputs. This

is a closure or interruption (maintained for the duration of the state) of a circuit

supplied by the Data Handling & Storage Subsystem.

Indications of the states of all Master and Sequence Timer stages. These are

closures or interruptions (maintained for the duration of each state) of circuits

supplied by _e Data Handling & Storage Subsystem.

To Capsule:

Discrete commands listed in VB220FD112. These are 200 millisecond closures

of circuits supplied by the Capsule.

To Data Automation Equipment:

Discrete commands listed in VB220FD112. These are 200-millisecond closures of

circuits supplied by the Data Automation Equipment.
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5.0 PERFORMANCE PARAMETERS TIMING ACCURACY

C & S basic timing tolerance is + one part in 104 or 0.01 percent over a temperature range

of 40 ° to 90°F. Spacecraft power frequencies and event initiation are subject to this toler-

ance°

6.0 PHYSICAL CHARACTERISTICS AND RESTRAINTS

The C & S receives 50v, 2.4 kc square-wave primary power. Power required is

200 watts.

The weight of the C & S is 16 pounds.

Volume of the C & S is 600 cubic inches packaged in two double (300 cubic inches}
modules.

Umbilical lines are required for the following signals:

To the LCE from the C & S:

Alert, information, and sync signals as these are received from the Flight Command

Subsystem by the C & S.

From the LCE to the C & S:

Inhibit power supply outputs, inhibit count, clear counters, and up-date Master Timer

signals to C & S components.

Figure 6-1 is an isometric drawing of the C & S.
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1.0 SCOPE

This section describes the articulation subsystem, which orients the High Gain Antenna

(HGA) and the Planetary Science Package (PSP). The description covers gimbal require-

ments, actuation, and control. A discussion of bearings, housings, and supporting

structure associated with the gimbals is contained in the Engineering Mechanics section.
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2.0 APPLICABLE DOCUMENTS

VB220SR101

VB220SR102

VB220 FDll0

Design Characteristics

Design Restraints

Telemetry Channel Assignments
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3.0 FUNCTIONAL DESCRIPTION

3.1 HIGH GAIN ANTENNA ORIENTATION

The HGA is oriented to the Earth throuthout the mission except during slewing of the
antenna or the spacecraft, or if the communication distance is less than 15 million kilo-

meters. When the communication distance is less than 15 million kilometers another

antenna (rigidly mounted to the spacecraft) is used.

3.2 PLANETARY SCIENCE PACKAGE ORIENTATION

The orientation requirements of the PSP are defined by the following constraints:

a. In order to presarve image orthogonality, the zenith angle should be less than

30 degrees. The zenith angle is defined as the angle between the instrument

line of sight and the local vertical of the observed point on the surface. The

zenith angle is 0 when the observed point is the sub-spacecraft point.

b. The region of planetary surface which is of interest consists of the sunlit

side and that portion of the dark side that is within 10 degrees of the terminator.

3.3 SPACECRAFT ORIENTATION

Since the orientation of the HGA and PSP is referenced to the orientation of the space-

craft, it is appropriate at this time to briefly describe the orientation of the spacecraft.

The reference coordinate system has its origin at the spacecraft center of mass and

consists of the following right-hand triad:

Z axis: The Z axis is parallel to the spacecraft - sun line and is directed away from the
Sun.

Y axis: The Y, Z plane contains the guide star, Canopus, with the Y axis directed away
from Canopus.

X axis: The X axis completed the right-hand triad, where the order is X, Y. Z.

During midcourse correction maneuvers, the Z axis of the spacecraft is oriented in the

direction of the desired _V. During separation of the lander, the spacecraft Z axis is

pointed in the direction of lander separation. During all the above maneuvers, orien-

tation about the Z axis is used to augment the HGA gimbal.

At all times other then during maneuvers, the spacecraft in in its normal cruise attitude.

In the cruise attitude, the spacecraft X, Y, and Z axes are oriented to the reference

coordinate subsystem X, Y, and Z axes respectively.
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3.4 HIGH GAINANTENNA GIMBAL ARRANGEMENT

The High GainAntennais mountedto the spacecraft through a 2-axis gimbal. Figure 3-1
depicts the gimbal arrangement. At gimbal null the antennais oriented to the sun. The
inboard gimbal (A) rotates the axis of the outboard gimbal (B) about the spacecraft -
X axis. The outboardgimbal (B) rotates the antennaaboutthe spacecraft intermediate
Y axis. The gimbal ranges are the following

-25 < A < +15

-50 < B < +206

Thesegimbal ranges are adequatefor Earth orientation of the antennafor all conditions
specified in Section 3.1.

X

1 Y
Y

\\

///
/ , l

/ /

Z

A

ANTENNA AXIS

Figure 3-1. Antenna Gimbal Arrangement

In the normal cruise attitude both gimbals are used to orient the antenna. In maneuver

attitudes gimbal A is set to 0. Gimbal B and orientation about the Z axis of the spacecraft
are used to orient the antenna to the Earth.

The time history of gimbal angles in the cruise mode are given in Figures 3-2, 3-3, 3-4,

and 3-5. These figures represent extreme conditions which arise from the earliest and

latest possible launch dates for both the 1971 and 1973 missions. Actual conditions will be

somewhere between these extremes.
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3.5 PLANETARY SCIENCE PACKAGE GIMBAL ARRANGEMENT

The Planetary Science Package (PSP) is mounted to the spacecraft through a 3-axis gimbal.

Figure 3-6 depicts the gimbal arrangement. Two axes of this gimbal erect a perpendicular

(W) to the plane of the orbit. The third axis rotates the instruments about this perpend-

icular in such a way that the line of sight of the instruments (L) is parallel to the local

vertical. L is maintained parallel to the local vertical throughout the portion of the orbit

where the subspacecraft point is on the sunlit side and on the dark side within 10 degrees

of the terminators. At gimbal null, W is along the +Y axis of the spacecraft and L is along

the -X axis of the spacecraft. The inboard gimb_l (C) is a rotation about the +Z axis. The
intermediate gimbal (D) is a rotation about the +X axis. W is at an angle D from the +Y'

axis. The outboard gimbal (E) rotates L about W. Thus, L is at an angle E from -X'.

+ YV + yt W

_ NORMA L
TO ORBIT

E PLANE

INSTRUMENT

AXES

Figure 3-6. Planetary Science Package

Gimbal Arrangement
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The gimbal ranges are functions of orbit parameters. For the selected orbit of 3000kilo-
meters periapsis, 25,000 kilometers apoapsis, and 40 degrees inclination the ranges are
as follows:

-23 < C < +53

-57 < D < +6

-10 < E < +190

The time history of gimbal angles for the selected orbit are given in Figures 3-7, 3-8,
3-9, and 3-10.

3.6 GIMBAL ANGLE CONTROL

The primary mode for controlling HGAgimbals A and B and PSPgimbals C and D is through
the C & S. Backup mode for these gimbals is directly from the commanddecoder. Either
mode is available at all times.

The primary mode for controlling PSPgimbal E is closed loop through a horizon sensor.
Backup mode for this gimbal is through the C & S.

3°°
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m 0 o
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_20 o

o
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Figure 3-7. PSP Gimbal Angles C & D as a Function of Time

(Nov. 13, 1971 Arrival) 9 of 24
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The block diagram for the gimbal drives is shown in Figure 3-11. All gimbal drives are

identical except for components set off in dotted lines. Gimbal angles A, B, C, and D in

either mode may be changed one positive or negative increment per command.

A "step 1+" or "step 1-" command from either the C & S or the command decoder is applied

at the input of a stepper motor. The motor execuCes .qn-degree ¢+_p¢ _ +_e _^_^_ _'-^-" ....

These steps are geared down to 1/4 degree at the gimbal.

In the C & S mode all gimbals may be commanded to slew in a positive or negative direction

at a rate of one increment (1/4 degree) per second. A C & S command to start positive or

start negative slew is used to set a flip-flop. The output of the flip-flop is combined with

a clock signal from the C & S. The resulting train of pulses is applied at the input of the

stepper motor. Slewing may be stopped by a C & S command. If gimbal stop is encountered,

slewing stops automatically.

Gimbal E of the PSP can be commanded to change from the primary to the backup mode

(and vice versa) by either the C & S or the command decoder.

During engine firing the stepper motors for gimbals A and B are energized in such a way

that they are stalled. Thus, stall torque is available to prevent the gimbals from moving

due to engine acceleration.
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When E is in the primary mode the gimbal attitude error is sensed by an IR horizon scanner.

If the error is less than -1/4 degree but greater than -10 degrees and the positive gimbal

stop is not encountered, gimbal E is advanced at a rate of +1/4 degree per second. When

E is in the primary mode and the positive gimbal stop is encountered (10 degrees beyond

the evening terminator) the gimbal automatically slews at a rate of -1/4 degree per second

until the negative gimbal stop is encountered. Gimbal E is then in the proper position for

operation at the morning terminator. After slewing to the sunrise position the gimbal is

automatically switched into the backup mode. The C & S returns the gimbal to the primary

mode just prior to the start of operation at sunrise.

Gimbal pickoff is accomplished by means of a step sensor on the output shaft of the stepper

motor. The step sensor drives a reversible counter. The counter is located in the tele-

metry subsystem. Each time negative gimbal stop is encountered the counter is set to

zero. Thereafter the counter is made to count up the positive steps and count down the

negative Steps that are sensed by the step sensor. The output of the counter provides a

direct indication of gimbal angle. This output is telemetered to the ground along with the

positive gimbal stop indicator output.

3.7 GIMBAL DRIVE COMPONENTS

The following is a functional description of the key components that make up the gimbal

drive• Such standard components as flip-flop, "and" gates, "or" gates, etc., are not
described.

3.7.1 STEPPER MOTOR

A stepper motor is used to drive the gimbals. The motor is the IMC Magnetics Corp.

Model Number 020-800, which has the following key characteristics:

Input Voltage

Stall Power

Stepping Torque

Stall Torque

Detent Torque
Rotor Inertia

Weight

28 volts
_._ _xT_tt_-_,_n_rl _,_ _÷_n

30 watts

8 oz. in.

25 oz. in.

0.8 oz. in.

15.4 gm cm 2

26 ozs.

The controller for this motor is the IMC Model No. 1905-103 modified in that it is hermet-

ically sealed.

The operation of this motor and controller are such that for a positive or negative pulse at

the input of the controller, the motor executes a positive or negative 90 degree-step of its
rotor.
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The motor can be put in a "stalled mode." In this mode the motor is emergizedand acts
like a brake. The available holding torque is equal to the stall torque. If the motor is
not energized it has someresidual holding torque. This torque is referred to above as

detent torque.

The output of the motor is geared down to provide the required running or holding torque

(whichever is greater) at the gimbal. In general, the required gear ratio is greater than

360 to 1. Therefore, the gimbal will advance less than 1/4 degree per pulse at the input

of the controller. The gimbal resolution required is 1/4 degree. An interface component

at the input of the motor controller will provide the necessary number of pulses to the

controller for every input command, so that the gimbal will execute a 1/4 degree change

for every input command to the interface component.

During engines operation the motors that drive gimbals A and B are energized in the stall

mode. The resulting stall torque prevents motion of the high gain antenna gimbals due to

thrust induced angular acceleration.

3.7.2 STEP SENSOR

A step sensor is provided for each gimbal to monitor 1/4 degree steps of the gimbal. The

sensor is basically comprised of a pair of magnetically actuated switches positioned in

such a manner that the time sequence of their closure will indicate the occurance and

direction of each step change in angle. The switches are mounted parallel to the axis of

a rotating shaft in the drive mechanism and are actuated by one more more equally spaced

bar magnets attached to a shaft. In each actuator drive the number of magnets, the number

of switched pairs, and the gear ratio of the shaft carrying the magnets, are selected so

as to provide one pulse pair for each 1/4 degree step of the outboard end of the gimbal.

Table 3-1 specifies the above parameters for the various gimbals.

3.7.3 GIMBAL STOP SENSOR

Limit sensors are provided to detect full positive and full negative angular displacement

of each gimbal. The sensors consist of a pair of hermetically sealed snap action switches

(e. g., Microswitch 1 HM 1). These switches require a differential travel of. 006 in.

maximum and therefore can be operated to sense 1/4 degree shaft motion at a radius of
1.5 in.

3.7.4 HORIZON SENSOR

A dither type horizon sensor, made by Advanced Technology Division of American Standard,

is used for the horizon sensor. In this sensor, the projected fields of view of 2 thermistor

bolometers are made to oscillate (or dither), across the horizon - space interface, at

diametrically opposed points on the planetary disc. The action of the sensor causes the

center of each dither field to lie close to the horizon edge. The two dither fields are in-

dependently controlled to track the horizon edges. The local vertical is determined by

bisecting the angle between the dither fields. The local vertical can be determined to with-

in 0.10 degree. The valid error range of this horizon sensor is a function of altitude. At

all altitude of interest range is at least + 45 degrees.
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4.0 INTERFACES

The following is a definition of the key interfaces between the articulation subsystem and the

various other subsystems.

4.1 MECHANICAL INTERFACES

4.1.1 ATTITUDE CONTROL INTERFACE

The gimbals in the articulation subsystem are referenced to the spacecraft coordinate

system. Therefore, the articulation subsystem is dependent on the attitude control for

orientation of the gimbal references.

4.1.2 ENGINEERING MECHANICS INTERFACE

The articulation subsystem is dependent on the engineering mechanics for rigid alignment

of the gimbal references to the spacecraft coordinate system. Bearings, housings, and

mechanism sealing is also provided by engineering mechanics.

4.1.3 PYROTECHNICS

Both the HGA and PSP are caged in the launch configuration. The articulation subsystem

is dependent on the pyrotechnics for uncaging and deploying the HGA and the PSP.

4.2 ELECTRICAL INTERFACES

4.2.1 C &SINTERFACE

Primary controls for gimbals A, B, C, and D and backup control for gimbal E are derived

from signals provided by the C & S. Gimbal E switching from primary to backup mode and
vice versa is also derived from the C & S.

The gimbal angle control signals from the C & S to each of the gimbals are as follows:

Step 1 (+):

(all but

gimbal E)

This signal is used to advance the gimbal +1/4 degree

(E.C. 20, 22, 24, 26}

Step 1 (-):

(all but

gimbal E)

This signal is used to advance the gimbal -1/4 degree

(E.C. 21, 23, 25, 27}

Start (+} Slew: This signal is used to start the gimbal slewing at a rate

of +l/4 degree per second. (S.C. 18,20,23,25,27}
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Start (-) Slew:

Stop Slew:

One Plus Per

Second Clock:

This signal is used to start the gimbal slewing at a

rate of-1/4 degree, per second (S. C. 19,21,24,26,29)

This signal is used to stop all gimbal slew. (S. C. 22, 28)

This signal is used as the stepping rate during gimbal

slewing. It is provided to the gimbal drive at all times.

In addition to the above signals, Gimbal E derives the following signal from the C & S:

Change Gimbal This signal is used to change gimbal E from the primary

E Mode: mode to the backup mode or vice versa.

In addition to the above commands, gimbals A and B derive the following commands from
the C & S:

Initiate Engine Burn: This signal is used to energize the stepper motors in

a stall mode (E. C. 37)

Stop Mono-Prop This signal is used to turn off the stepper motor stall

Engine Burn: mode (S. C. 34)

All of the above signals are pulses with a trailing edge transient suitable for triggering a
flip-flop.

If the C & S is used to drive the gimbals while the spacecraft is in the cruise mode, the
drive requirements are as depicted in Figures 3-2, 3-3, 3-4, 3-5, 3-7, 3-8, 3-9, and 3-10.

The number of C & S commands required to drive the various gimbals while in the cruise

mode axe given in Table 4-1.

4.2.2 INTERFACE WITH THE COMMAND DECODER

Backup control for all gimbals (except E) is derived from the command decoder. The

gimbal angle control signals from the command decoder to each of the gimbals (except E)
are as follows:

Step 1 (+): This signal is used to advance the gimbal +1/4 degree.

Step 1 (-): This signal is used to advance the gimbal -1/4 degree.

Gimbal E receives the following signal from the decoder:

Change gimbal This signal is used to change gimbal E from the primary

E mode: mode to the backup mode or vice versa.
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Horizon Error: This signal is an indication of the

error output of the horizon sensor.

The signal ranges from -1.6 to +1.6

Volts DC.

4.2.4 POWER SUBSYSTEM INTERFACE

Electrical power for operation of the articulation subsystem is derived from the power

subsystem. The required power is 50 volts at 2400 cycles per second square wave. Power

switching for the articulation subsystem is contained in the power subsystem.

4.2.5 INTERFACE WITH THE DATA AUTOMATION EOlIrPME._T _A_ -

Gimbal E, in the horizon sensor mode provides a logic signal to the DAE. Logical 1

indicates that gimbal E is properly aligned and is not undergoing a step change in attitude.

_!: l i+!I_t ¸

_[+: Q _i _
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All of the above signals are pulsed with a trailing edge transient suitable for triggering a

flip-flop. If the command decoder is used to drive the gimbals during the cruise mode,

the drive requirements are as depicted in Figures 3-2, 3-3, 3-4, 3-5, 3-7, 3-8, 3-9,
and 3-10.

The number of commands required to drive the various gimbals while in the cruise mode

is given in Table 4-1, Section 4.2.1.

4.2.3 INTERFACE WITH THE TELEMETRY SUBSYSTEM

All gimbals have the following interfaces with the telemetry subsystem:

+ Step Sensor

(-Step Sensor): These signals are provided to the

telemetry subsystem as an indication

of a change in gimbal angle. The signals

are pulses suitable for driving a flip-

flop. The differences between the

number of + step signals and - step

signals received is accumulated in a
reversible counter located in the

telemetry subsystem. The state of the

counter is telemetered to the ground.

+ Gimbal Stop

(-Gimbal Stop): These signals are provided to the

telemetry subsystem to indicate that

positive or negative gimbal stop has

been encountered. When negative

gimbal stop is encountered the reversible

counter in the telemetry subsystem is set

to zero. When positive gimbal stop is

encountered, an indication of this fact

is telemetered to the ground. Gimbal

stop signals are in the standard logic

level format.

Motor Temperature: This signal is an indication of the

gimbal motor temperature. The signal

range is 0 to 100 millivolts DC.

Housing Pressure: This signal provides an indication of the

pressure in the gimbal actuator housing.

The signal ranges from 0 to +3.2 volts DC.

In addition to the above signals gimbal E provides the following signals to the telemetry
subsystem:
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5.0 PERFORMANCE PARAMETERS

The following is a description of performance parameters for the various components which

make up the articulation subsystem. In addition to these performance parameters, there is

provided in this section an error budget for the HGA and PSP orientation.

5.1 STEPPER MOTOR PARAMETERS

The critical parameters of the stepper motor are as follows:

Stepper Torque/Speed: The torque/speed characteristics of

the motor is such that it can drive the

gimbal load in a zero-G field at a

speed of 1/4 degree per second.

Holding Torque: For gimbal A and B the holding torque

is sufficiently high to prevent motion of

the gimbal during firing of the retro-

engine. During retro engine firing,

the gimbal motors are energized so that

the full stall torque holds the gimbals.

For gimbals C, D, and E the detent

torque is sufficiently high to prevent

motion of these gimbals (during) firing

of the attitude control jets.

5.2 STEP SENSOR PARAMETERS

The step sensor senses the occurance of each 90-degree change in motor shaft angle for
any speeds from 0 to 2 steps per second.

5.3 GI1VIBAL STOP SENSOR PARAMETERS

The gimbal stop sensor detects the occurance of gimbal stop with an accuracy of 1/4
degree.

5.4 HGA ERROR BUDGET

The following is an error budget for all of the elements of the systems which affect the
orientation of HGA:

Cruise

Antenna Beam Alignment to Antenna Geometry 0.1

Antenna Geometry Alignment to Gimbal 0.05

Gimbal Alignment to Spacecraft 0.05

Maneuver

0.1

0.05

0.05
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Attitude Control SensorError (2 axis RSS)

Gimbal Backlash (2 axis RSS)

RSS

Cruise

0.18

o.o__77

0.23

Attitude control Error (2 axis RSS) 0.67

Gimbal Quantization (2 axis RSS) 0.18

C & S Error nil

ARITHMETIC SUM 1.08

5.5 PSP ERROR BUDGET

Maneuver

O. 32

0.07

0.35

1.4

0.18

nil

1.93

The following is an error budget for all of the elements of the system which affect the
orientation of the PSP:

Instrument Alignment to Structure

Structure Alignment to Gimbal

Gimbal Alignment to Spacecraft

Spacecraft Attitude Control Sensor Error

(2 axis RSS)

Gimbal Backlash (2 axis RSS)

Horizon Sensor Error

Horizon Sensor Alignment

Spacecraft Attitude Control Error

(2 axis RSS)

Gimbal Quantization Error (2 axis RSS)

C & S Error

Gimbal E Control Error

0.10

0.05

0.05

0.18

0.07

0.10

0.05

RSS 0.27

0.67

0.18

nil

0.10

ARITHMETIC SUM 1.22
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6.0 PHYSICAL CHARACTERISTICS

The following are the key physical characteristics for the components which make up the

articulation subsystem:

COMPONENT QUANTITY WEIGHT POWER

5 1.6 lbs 30 watts*

.3 W avg.

5 .5 lbs (included

above)

1 6.5 lbs 4.4 W avg.

Stepper Motor

C & S and C.D.

Interface Electronics

Mars Vertical Sensor

(Control and
Horizon Sensor

SUBSYSTEM TOTALS

* During Engine Burn, Gimbals A & B only.

8.6 lbs 5.9 W avg.

The following is the estimated reliability of the articulation subsystem during

the various phases of the mission:

MISSION PHASE

Separation and

Acquisition

DURATION

i hr.

RELIABILITY
HGA PSP

Transit

Orbit

Injection

Orbit

TOTAL

MISSION

178 days

2 days

30 days

210 days

.976

.999

.996

.971

.977

.977
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7.0 SAFETY CONSIDERATIONS

7.1 OPERATOR SAFETY

There are no operator safety hazards in the articulation subsystem.

7.2 EQUIPMENT SAFETY

The equipment shall be designed with the following equipment safety considerations:

a. There will be no damage to the equipment if stepper motors are commanded to

drive while the gimbals are caged or against gimbal stop.

b. There will be no damage to equipment if the gimbals are driven, by an external

torque applied to the outboard end of the gimbal, at less than 10 degrees per
second. If the gimbals are uncaged in a one-G field, care must be taken to pre-

vent unrestraining motion of the outboard end of the gimbals.
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I.0 SCOPE

This functional description describes the method of Flight Spacecraft temperature control

for all mission phases along with an identification of the associated subsystem boundaries,

performance parameters, physical characteristics, constraints and safety considerations.

2.0 APPLICABLE DOCUMENTS

1. VB220SR101 - Design Characteristics

2. VB220SR102 - Design Restraints

3. VB220FD103 - Spacecraft Component Design Parameters

4. VB220FD113 - Layout and Configuration

5. VB220FD105 - Launch Vehicle interface

6. VB220FD106 - Flight Capsule interface

3.0 FUNCTIONAL DESCRIPTION

3.1 INTRODUCTION

The purpose of the temperature control subsystem is to maintain all equipments within

specified temperature ranges to enhance and maintain operational reliability. The

Ag-Cd batteries must be maintained between 40 ° and 80°F. The monopropellant (hydrazine)

must be kept above 35°F. The biopropellants should be held between 40 ° and 80°F with a

maximum temperature difference between them of 10°F. The Freon gas must be main-
tained between 40 ° and 100°F. Therefore, the average temperature of all assemblies is

maintained between 40 ° and 70°F thereby allowing for a 10°F difference between sub-

assemblies and their mounting panels. It is recognized that local temperatures beneath

some high dissipating sub-assemblies (the power amplifier, power supply in the radio sub-

system for example) will measurably exceed 80°F. These exceptions are not detrimental

to sub-assembly performance. Practical temperature limits for all equipment are listed

in the Thermal Balance Drawing, (Figure 3-1).

The methods of thermal control employed for various parts of the vehicle for the several

mission phases are described below.

3.2 GROUND TEMPERATURE CONTROL

3.2.1 GROUND TRANSPORT

The ground transport spacecraft container is covered with an insulated blanket to reduce

solar heat loads or nocturnal cooling effects. Temperature and humidity conditioned air

are also supplied to the transportation container.
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3.2.2 LAUNCH PAD

The preferred method of temperature control with the shrouded flight spacecraft on the

launch pad is to duct filtered air directly through a fly-away disconnect in the nose fairing

such that the air enters in the area of the thermal control shutters and also flows over the

Flight Capsule as illustrated in Figure 3-2. This air should enter the shroud on the side

closest to the high heat dissipating radio subsystem. The shutters are capable of normal

operation while on the ground. An air flow rate of 10 pounds/minute at 40°F and 50 percent

relative humidity (to eliminate moisture condensation within the nose fairing} is sufficient to

handle the heating loads of both the Bus section (300 W} and the Flight Capsule (150 W).

See appendix for analys_. The external surface of the nose fairing should have a low solar

absorptivity to minimize the solar load.

3.3 ASCENT TEMPERATURE CONTROL

A maximum average electronic assembly temperature of 65°F at lift-off ensures tolerable

temperatures during the ascent phase. The internal surface of the shroud should have a

low emissivity to minimize radiant heat flow from the hot shroud durin_ the Dowered flight
heating interval. After shroud separation the spacecraft experiences a short (a few

minutes} transient burst of free molecule heating. The inherent thermal mass of the space-

craft is sufficient to endure this molecular heating transient without detriment.

3.4 SPACE ENVIRONMENT TEMPERATURE CONTROL

3.4.1 SPACECRAFT BUS SECTION

All electronic assemblies, tanks, plumbing and structure are thermally integrated to the

maximum extent possible within a superinsulation cocoon (see configuration in Figure 3-1}.

This thermal coupling is achieved by the use of (1} high emissivity surfaces, (2} an open

type internal structure, and (3) silicone grease between heat dissipating sub-assemblies and

their mounting plates. Advantage is token of _e Spacecraft's S_-n-Canopus orientation

during the transit and Mars orbit phases by allowing some solar energy (4.6 watts/ft 2 near

earth, 1.9 watts/ft 2 in Mars orbit} to penetrate the normally illuminated surface of the

Bus super insulation cocoon to aid in keeping the several enclosed tanks warm. Excess

heat is released from within the super insulated enclosure by means of eleven sets of

shutters (one set on the external surface of each electronic assembly except for the bay

whose external surface is blocked by the scan platform) which control the emittance of the

heat rejection surfaces. Each shutter is actuated by a two phase fluid sensor/bellows/drive

rod/return spring arrangement as illustrated in Figure 3-3.

3.4.2 APPENDAGE SUPPORT STRUCTURE

All support structure for appendages such as solar arrays, antennas, the scanplatform,

retro and mid-course engines, and booms are conductively insulated from the Bus structure.
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3.4.3 EXTERNAL SENSORS

The various Guidance and Control sensors are mounted in good thermal contact with the Bus

section and augmented with coatings and superinsulation as appropriate.

3.4.4 PLANET SCAN PLATFORM

Present knowledge regarding the science instruments and design of the scan platform is

insufficient for thermal design purposes. However, the preferred approach is to employ

passive temperature control methods (i. e., coatings, superinsulation blankets, conduct-

ively insulated mountings, thermostatically controlled heaters, etc). S_ould the individual

science instruments have markedly different allowable temperature ranges (such as is in-

dicated in the JPL EPD 250 report}, each instrument would then be thermally isolated from

all others even though they all might be housed within a common structure. Louvers

would be used only if a significant advantage could be demonstrated.

3.4.5 F LEXIBLE CABLING & ARTICULATION DEVICES

The movable cables to the High Gain Antenna and to the scan platform are kept warm by

means of thermostatically controlled heaters attached to the cables and wrapped with

superinsulation.

The articulation devices are _rrapped in superinsulation and conductively insulated from

their support structure. A very small amount of heater power may be required for the

seldom operated stepping motors.

3.4.6 SOLAR ARRAY, ANTENNAS, MAGNETOMETER AND ROCKET ENGINES

These items are passively temperature controlled by means of coatings.

3.4.7 ATTITUDE CONTROL GAS LINES, SOLENOIDS AND NOZZLES

The portions of the Freon lines which are external to the Bus section are wrapped with

superinsulation. Thermostatically controlled heaters are attached to the lines along their

superinsulated length. These lines are conductively insulated from the solar array.

Conductive heat transfer from the lines to the solenoids assures proper solenoid temper-

atures. The several nozzle/solenoid assemblies are clustered into four groups to increase

their effective thermal mass.

3.4.8 G&C GYROS AND ACCELEROMETER

The three gyros and the accelerometer are thermally integrated as one assembly. Propor-

tional controllers regulate each gyro heater separately. The gyro heaters are commanded

on one hour prior to any maneuver sequence. Each heater has the capacity (35W} to ac-

complish the warm-up without the aid of the other two heaters in a half-hour period
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(see appendix for analysis). The thermal resistance between this gyro/accelerometer

assembly and its surroundings is fixed such that the gyros do not exceed 100°F during

operation.

3.5 SHUTTER DESCRIPTION

3.5.1 MECHANICAL DESIGN

3.5.1.1 ACTUATOR

A two-phase fluid-bellows-piston type actuator has been selected to actuate the ganged

shutters. (See Figure 3-3).

The bellows actuator employed is a pressure compensated design such that ambient

pressure does not influence piston travel. The control fluid is Ethyl Chloride with its

normal operating pressure ranging from 10.8 psia at 40°F to 20 psia at 70°F. The fluid

is contained in a beryllium copper bellows that is silver soldered to the housing and to the

piston stop. The space between the housing and the bellows is evacuated to approximately

10 microns Hg. No "O" rings or gaskets are employed to contain the fluid.

The louvers, suspended on their inboard faces by supports on either end, open and shut

as each drive drum rotates 90 degrees. The method of suspension minimizes envelope

requirements and permits a full louver opening even in the face of an individual closed

(failed) louver. Due to dimensional limitations, the actuators are offset from the basic

drive linkage, by an aluminum crosslink bar, which runs the length of the panel. The actuator

piston is connected to the crosslink through an individual sidelink joined to the crosslink to

compensate for the offset. The crosslink moves linearly, in response to actuator piston

motion, over two end supports and beneath the column of drive drums. It is joined to the

drums by twin beryllium copper drive tapes.

Linkage failure including tape drive failure, although remote, is not catastrophic. Hmn.g

up of the linkage is prevented by the positive constraints provided by the actuator piston (on

one end) and by the drive drums and end supports (above and below). Redundant sidelinks

are provided to continue operation in the event of a primary sidelink failure. A tape drive
failure results in an individual shutter closing without affecting the other blades.

No conventional bearings are employed. Flexure pivots are employed at the undriven end

while torsion springs integral with the drive drums serve as support at the driven end. The

flexure pivot has a restraining ring overhang as a lateral stop to prevent reverse load damage.

The torsion spring serves as a restraining force (acting against the actuator force) for

positioning the louver in the closed position.

All materials employed are non-magnetic.

Support bracketry is fiberglass with hard anodized aluminum fittings. Super insulation

surrounds each assembly up to the fiberglass mounts.
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3.5.1.2 TEMPERATURE SENSOR

The aluminum bronze sensing tube is permanently connected to the bellows and is installed

snake fashion on the space facing side of an equipment mounting panel to cover potentially

hot areas.

3.5.1.3 BLADE DESIGN

The louver blades operate in parallel fashion, as shown in Figure 3-3, and consist of a

lightweight phenolic honeycomb bonded between outer and inner surfaces of three-rail

aluminum. A 4 percent overlap between blades is provided to achieve a tight radiation seal

in the closed position. This is achieved with flush blades and by intermeshing undercut

edges between adjacent blades.

In addition, a tooth edge contact is provided to assure a positive radiation seal during

closure even under adverse blade warping. There is no metal to metal contact between

blades in the closed position or between outer and inner surfaces.

3.5.1.4 ACTUATOR REDUNDANCY

Redundant actuator-sensor tube assemblies are provided for each shutter assembly. An

initial adjustment setting at the piston end permits bias control. Should either bellows

lose pressure, the secondary bellows assembly, operating in parallel, automatically

overcomes the position bias and assumes operation for that heat rejection panel. Thus, the

vehicle continues to operate under its normal mode of temperature control.

3.5.1.5 FAIL-SAFE POSITION

The principal fail-safe position for the louvers is the closed position. In the event both

actuators lose fluid, all louvers are closed by the force of the return springs.

3.5.2 THERMAL DESIGN

3.5.2.1 CONTROL TEMPERATURE RANGE

The control temperature range of the primary actuators is 40 ° to 70°F thereby providing

for a 10°F temperature difference between the sub-assemblies and the heat rejection

surface. The secondary actuators operate in essentially the same temperature range but
biased by about 2°F.

3.5.2.2 COATING DESCRIPTION

The internal and external blade surfaces are coated with an electron beam vacuum deposited

A120._ (a GE operational process initially developed by Dr. Hass at Fort Belvoir, Va.)
yie-ldf_ng a solar absorptivity of 0.12 and a hemispherical emissivity of 0.12. The heat re-

jection surface beneath the shutters is coated with ALZAC (a commercial alodine process)

to yield a = 0.16with c =0.74.
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3.5.2.3 EFFECTIVE RADIATION PROPERTIES

Figures 3-4 and 3-5 show the effective emissivity and solar absorptivities for a diffuse,

parallel-type shutter assembly. The analyses are presented in the appendix.

3.6 THERMOSWlTCH CHARACTERISTICS

3.6.1 DESCRIPTION

Klixon type lVI2S bimetallic thermoswitches (made by the Metal and Controls Division of

Texas Instruments Co. ) are preferred for the control of all heaters. Tolerances can be

guaranteed as follows: set point + 2°F, differential 5°F maximum, drift ± 2°F. Normal

installation of the heater controllers involves a group of three thermoswitches, two con-

trol temperature thermoswitches wired in parallel and one over-ride thermoswitch wired
in series.

3.6.2 EMI CONTROL

EMI control of the thermoswitches for generated or conducted noise is obtained by using a

petted module (wired within four inches of the switch} consisting of a capacitor, a resistor
and a diode in parallel.

3.7 TELEMETRY CHARACTERISTICS OF TEMPERATURE CONTROL S/S

3.7.1 REQUIREMENTS

The number, location, range and priority of the temperature sensors and shutter position

indicators are shown on the Thermal Balance Drawing (Figure 3-1. )

3.7.2 TEMPERATURE SENSOR DESCRIPTION

The transducers for temperature measurement are resistance thermometers. The re-

sistive material is pure, annealed strain-free platinum wire mounted upon an insulating
base.

Each temperature sensor is placed in a simple circuit containing, in general, a resistor

in parallel connection. The resistor and sensor resistance values are chosen such that

the combination provides a net resistance which will vary from 500 to 600 ohms as the

temperature varies from the cold end to the hot end of its range. The linearity and temp-

erature sensitivity of the net resistance is negligibly altered from that of the sensor alone

if the sensor resistance and its parallel connected resistance are chosen appropriately.

precision one milliampere current provided by the data encoder converts this resistance

to a voltage ranging from 0.50 to 0.60 vdc. This one current supply is the only one to be

used for all temperature measurements and its current is switched from one sensor to

another in the data sampling sequence.

A
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The sensitivity of the measurement may be estimated by considering a temperature band

from -100 ° to 100°F. This 200°F degree range is spread over a voltage range of 100 mv

resulting in a sensitivity of 2°F deg/mv. If the smallest voltage change discernible by the

encoder is 0.8 mv, then the smallest discernible temperature change is 1.5°F.

3.7.3 SHUTTER POSITION TRANSDUCER DESCRIPTION

The position of the temperature control shutters is measured by a variable reluctance type

of linear position transducer, frequently called a linear differential transformer. It is

directly connected to the actuator drive rod mechanism such that any motion of the rod re-
sults in an identical motion of the transducer shaft.

The linear differential transformer is essentially a transformer with a movable mass of

magnetically permeable material which magnetically links the primary and secondary

windings. As the transducer shaft and the permeable material move, a voltage is induced

in the secondary ranks in the proportion to the distance moved.

4.0 INTERFACE DEFINITION

Thermal interface requirements between the Flight Spacecraft and Flight Capsule, between

the Flight Spacecraft and Booster and between the Flight Spacecraft and Shroud are de-

lineated on the Thermal Interface Drawing Figure 4-1.

5.0 PERFORMANCE PARAMETERS

5.1 TEMPERATURE PREDICTIONS

5.1.1 BUS SECTION

All temperatures (both the Bay Averages and the Individual Sub-assembly temperatures)

presented herein are based on the equipment assembly locations and dissipations as shown

in the Thermal Balance Drawing Figure 3-1. Subsequent to the thermal analysis, some

relocation was required to achieve a better location for the spacecraft center of mass with

the final arrangement shown in VB220FD113. These changes have not created any thermal

problem. Thus the temperatures presented herein can be considered typical.

5.1.1.1 EQUIPMENT ASSEMBLY AVERAGE TEMPERATURES

The average expected temperatures of the various assemblies for the several mission

phases are listed in Table 5-1. The midcourse maneuver transient bay temperatures are

shown in Figure 5-1.

Bay average temperatures for the abnormal conditions of equipment shutdown (science and

radio subsystems) and shutter failure (designed for closed position) are listed in Table 5-2.

Any additional temperature rises due to midcourse maneuver sun impingement on a bay

with a failed closed shutter assembly are negligible over those temperatures already shown
in Table 5-2.
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TABLE 5-1

AVERAGE BAY TEMPERATURES (°F) VS. MISSION PHASE

Earth

Bay Subsystem Orbit

1 Command 64

2 Radio 71

3 Radio 74

4 Power 65

5 Power 61

6 Power 59

7 G&C 57

8 C&S 57

9 Science 62

10 DAS & Science 62

11 DH & S 57

12 DH & S, Relay 55

Trans_ Mid Course Mars Orbit

Max. Min, Correction* Max, Min.

48 44 52 56 50

48 43 59 54 49

62 52 89 65 63

53 50 68 58 55

49 45 60 60 48

58 53 53 61 58

48 42 58 56 45

45 42 49 54 46

46 46 47 56 47

53 52 54 58 55

45 42 47 54 48

44 41 45 57 51

ou _o 53 5_ 52

*Maximum temperatures after two hours of direct solar flux (280 Btu/hr ft 2) on Bay 3.
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TABLE 5-2

AVERAGE BAY TEMPERATURES (OF) FOR ABNORMAL CONDITIONS

Bay Subsystem

Shutter Assembly

Failed Closed*

Component Shutdown

In Bays 2, 3, & 9**

1

2

3

4

5

6

7

8

9

10

11

12

Command -- 31

Radio -- 4

Radio" 102 23

Power 82 46

Power 75 40

Power 92 50

G & C 77 36

C&S -- 33

Science 79 30

DAS & Science 71 46

DH & S -- 35

DH & S, Relay 71 31

Center Tanlmge 64 4O

* Shutter assembly fialed on only one bay at a time

** With 6.2 Watts of heater power in center node (on tanks)

18 of 32



VB235FD101

;!?
g

_I_̧__-i_41!_i_

a t t! l_!:ii 11'-t_-i-i_

:,lill;il_}i_

I

_o

II

0

0

0

cq

r/l

N

%1

o,.-i

0

r/1
°_.,.I

I

19 of 32



VB235FD101

5.1.1.2 INDIVIDUAL SUB-ASSEMBLIES

The maximum local base temperatures of the individual electronic sub-assemblies

(assuming a 60-rail aluminum mounting plate with a conductivity of 70 Btu/hr ft°F) are

shown on the thermal balance drawing, Figure 3-1. The mounting panel temperature dis-

tributions are shown in the appendix for 30- and 60-mil panel thicknesses.

5.1.2 SOLAR ARRAY

Figure 5-2 shows the radial temperature distribution for a solar panel near earth, at

Mars encounter and after bio-barrier ejection. Temperatures versus distance from the

Sun are shown in Figure 5-3. The transient cooling curve expected during the Mars shade

time is shown in Figure 5-4. Analyses are presented in the appendix.

5.1.3 HIGH GAIN ANTENNA

The expected gross temperature of the dish is shown in Figure 5-5 as a function of distance

from the sun. The cooling transient expected for the Mars shade period is given in

Figure 5-6. Analyses are presented in the appendix.

5.2 HEATER POWER REQUIREMENTS

A total of 57W of heater power could possibly be used. However, of that amount 30W are

for contingency purposes and 12W are estimated for gyro operation. Thus 15W will be a

much more realistic mission average value. The locations of the heaters and the predicted

wattage required are listed on the Thermal Balance Drawing (Figure 3-1).

5.3 RELIABILITY CONSIDERATIONS

5.3.1 THERMOSWITCH OPERATION

Experience to date with the Klixon thermoswitches used to control the heaters on a flown

GE classified satellite program has shown a failure rate of 0. 00001 per 500 cycles. This

figure is based on both calculated and operational experience. Acceptance testing of the

thermoswitches (involving about 2000 switches) have shown no rejections. Furthermore,

the actual tolerance of the switches is much tighter than the value assigned as a limit

(3 or 4°F range versus an expected 7°F range).

5.3.2 CONTINGENCY HEATERS

The four monopropellant and two Freon tanks each have a 5-Watt thermostatically controlled

heater for contingency purposes, although heaters are theoretically not required.
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5.3.3 SHUTTER ACTUATORS

Dual actuators are employed on each shutter assembly to ensure operation in case of pres-

sure loss in one of the actuators. Should both actuators fail (on any given assembly mount-

ing panel) individual return springs will close the shutters. Should this occur in the worst

steady state case (Mars orbit) a failed closed shutter assembly will cause a rise of 37°F

in the average temperature of the heat rejection surface of the highest dissipating bay (the

radio subsystem).

5.3.4 COATING DEGRADATION

5.3.4.1 ROCKET PLUME IMPINGEMENT EFFECTS

Should rocket exhaust particles decrease the T_ of the normally illuminated superinsula-

tion blanket, the resulting change in heat input to the Bus section can easily be accommodated

by the inherent flexibility of the shutter assemblies.

5.3.4.2 NUCLEAR RADIATION EFFECTS

A rise in the value of the solar absorptivity on the Bus section heat rejection surfaces due

to exposure to nuclear radiation would cause increased electronic assembly temperatures

on the bays exposed to the sun during mid-course or retro maneuvers. However, this is

not considered to be serious due to the stability of the Alzac coating.

5.3.5 COMPUTED RELIABILITY

The computed reliability of the temperature control subsystem for the various mission

phases is presented in Table 5-3. The reliability analysis (see appendix) is based on the

premise that all shutter assemblies and heaters must work properly to ensure mission success.

However, if one assembly fails, the heat from that bay could be dissipated to space via its

two adjacent bays. Only the failure of three adjacent panels could present a major problem.

Using the reliability of one shutter assembly as 0. 99808, the probability of three adjacent

failures is computed to be less than one in a million. This probability results in a shutter

reliability of 0. 999999 rather than 0. 97922 and raises the temperature control subsystem

reliability to 0. 99493 rather than 0. 97421.

It should be also noted that failure of an individual thermoswitch or heater will probably re-

sult in a degradation of some mission function rather than a complete mission failure.

Thus the overall subsystem reliability is believed to be conservative.

6.0 PHYSICAL CHARACTERISTICS AND CONSTRAINTS

6.1 THERMAL BALANCE DRAWING

Figure 3-1 is a complete description of the temperature control subsystem. It includes

equipment locations, dissipations and temperatures versus mission phase, temperature
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TABLE 5-3

TEMPERATURE CONTROL SUBSYSTEM RELIABILITY

Phase # Mission Event Reliability

laud2 Launch,

Cruise mode acquisition,
First and second midcourse

maneuvers, Pre-encounter

checkout, Flight capsule

separation.

0. 98192

Third midcourse maneuver,

Mars orbit injection

0. 99699

4 Mars orbit 0. 99515

Overall Reliability (all phases} 0.97421
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limits, heater requirements and locations, telemetry sensor information, coating require-

ments, superinsulation blanket locations and compositions, shutter sizes and views of

the spacecraft configuration.

6.2 SUPERINSULATION CHARACTERISTICS

The super insulation blanket covering the normally non-illuminated Bus surfaces consists

of a 2 mil outer layer of aluminum foil and 25 layers of 1/4 rail aluminized Mylar in an

overall thickness of 1/4 inch. The outer layer is coated with the Fairchild-Hiller MTL-3

alodine process (developed for Pegasus) yielding an _ = 1.0 with _ -_ 0.38. This en-
sures that the maximum external surface temperature of the blanket will not exceed 250°F

in Earth Parking Orbit.

The normally illuminated surfaces of the super insulation blanket consist of a three-rail outer

layer of dimpled aluminum foil ( Ea--_-- about 4.0) followed by eight pairs of two rail Tissuglas/
one rail aluminum foil which are followed by 20 layers of 1/4 rail aluminized Mylar in a

total thickness of 0.4 inches.

The super insulation blanket in the immediate vicinity of the midcourse and retro engines

consists of a 3 mil outer layer of non-magnetic stainless steel followed by 3 pairs of non-
magnetic 1 rail stainless steel foil/0.1 inch Q felt followed by 28 layers of 1/4 rail

aluminized Mylar in a total thickness of 0, 6 inches.

A typical superinsulation attachment method is illustrated in Figure 6-1. Note that the

non-magnetic, low thermal conductivity stainless steel thread is attached to the Velcro

tape and not directly to the spacecraft structure, thereby significantly reducing any

potential heat leak.

Figure 6-2 shows the method of attaching the high temperature resistant superinsulation

blanket around the midcourse engines.

6.3 SHUTTER ASSEMBLY CHARACTERISTICS

The 2 ft 2 shutter assembly weighs 3 pounds and has three blades each measuring 4 by 20 inches.

The 4 ft 2 shutter assembly weighs 6 pounds and has six 4 by 20 inch blades.

The actuator characteristics are:

Piston face area

Maximum piston travel

Return Spring Constant

&o/aT
Return Spring Force

Fluid Pressure

1.22 in2

0.44 in

25.8 lb/in. _

0.31 psia/uF

0.5 lb.

10.8 psia at 40°F

20 psia at 70°F

65 psia at 140°F
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6.4 THERMAL SUBSYSTEM CONSTRAINTS

6.4.1 ELECTRONIC ASSEMBLY DISSIPATION LIMIT

The maximum allowable thermal dissipation is 234 watts per assembly.

6.4.2 SHUTTER SUN IMPINGEMENT LIMITATION

The maximum allowable solar energy input to an assembly is 560 Btu/ft 2 of shutter surface.

This is equivalent to direct solar impingement for 1.3 hours near earth and for 2.5 hours
at Mars encounter.

6.4.3 EARTH ALTITUDE LIMIT

The minimum allowable circular earth orbit is 90 nautical miles.

7.0 THERMAL SUBSYSTEM SAFETY CONSIDERATIONS

All personnel associated with vehicle handling should exercise caution with respect to the

following items:

1. Cleanliness of thermal control coatings

2. Integrity of superinsulation blanket attachments

3. Maintenance of shutter blade alignment

4. The susceptability of the aluminized Mylar superinsulation blankets to

temperatures above 300°F
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i.0 GROUND COOLING ANALYSIS

The maximum allowable rise in the cooling air temperature (assuming a 40°F shroud in-

let condition) is (60 ° - 40°F) or 20°F to prevent overheating of the electronic equipment.

The thermal dissipations for the 1971 Flight Spacecraft are assumed to be 300W and 150W

for the Bus and Flight Capsule, respectively. For the 1973 and subsequent missions a

dissipation of 2800 W is considered for the Flight Capsule assuming it contains a radio-

isotope thermoelectric generator. From this information the theoretically required air
flow rates are:

For 1971 Spacecraft

1530 Btu/hr

0.24 Btu/lb F x 20F
= 320 lb/hr = 5.33 lb/min.

For 1973 Spacecraft

10,570 Btu/hr

0.24 Btu/lb F x 20F
= 2200 lb/hr = 36.7 lb/min.

However, to make allowances for inefficiencies in air flow distribution and a small solar

load, nominal flow rates of 10 and 50 Ibs/min are recommended for the 1971 and 1973

spacecraft, respectively.

2.0 BUS SECTION THERMAL ANALYSIS

2.1 PROBLEM DESCRIPTION

In support of the thermal design of the Bus section, an analog study was performed to

predict the gross thermal behavior of the system, to determine the method of temperature

control, heat rejection areas, heater power requirements and coating properties. Con-

straints on the overall system design were also determined. Due to numerous changes

in sub-assembly locations and dissipations, it was irLtended to arrive at a representative

approach based on the sub-assembly locations and dissipations as shown in the thermal

balance drawing (see Volume A, VB235FD101, Figure 3-1) rather than a firm final design.

The results of this study, therefore, demonstrate the capability to devise a suitable

control system for a given set of thermal characteristics.

The problem was simulated in an Electronic Associates, Inc. 231R Heat Transfer Analog

Computer, employing the Oppenheim radiation network technique. Thirteen computer

nodes were allocated as follows: nodes 1-12 corresponding to equipment bays 1-12 which

includes the sub-assemblies, mounting panels, and structure; node 13 corresponding to
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tankage, structure, propellants, and plumbing centrally located within the Bus section. The

analog wiring diagram for solution of the heat balance is shown in Figure A-1.

Figure A-2 is a schematic of the Bus section showing the arrangement of all nodes and the

heat paths for three typical nodes. Table A-1 lists the significant properties of each node

used in the analog simulation.

2.2 SHUTTER PROPERTIES

Parallel type shutter geometry was employed. All heat rejection surfaces were assumed

to be diffuse with an emissivity of 0.9 and a solar absorptivity of 0.3. The effective

radiating properties of the shutter system, as predicted by a digital computer program

are shown in Figures 3-4 and 3-5 of VB235FD101. The curve for direct sun incidence was

selected as the most appropriate for this study because of the narrow range of possible

sun incidence angle due to Flight Capsule and solar array shading. Shutters were assumed
to be fully opened at 70°F and fully closed at 40°F.

2.3 RADIATION TO SPACE CONSIDERATIONS

Several effects combine to reduce the total effective radiation areato space. Total external

surface of each bay is approximately 4.75 ft 2, but only 4.0 ft 2 of this area is available for

heat rejection due to mechanical considerations. An eighty percent fin effectiveness

factor was then applied to this area to account for the distribution of heat from hot spots to

the remote areas of the space facing plate (this same factor was applied to all internal

radiating areas}. Hence, the maximum effective radiating area to space for any bay is

3.2 square feet.

Allowance was made for the effect of the Flight Capsule biological barrier by considering

the radiant interchange between the shutter base and a black, adiabatic barrier. It is

estimated that five percent of the radiant energy leaving the shutters will return by re-

_--_-" .......... _'-*-'^-- _--^_ *_^ "1_._,.-,1,_,,.e._,_1 h,_',,,,-v,'ha-v, T-T_no_a, _ N_95 vlP W f_etor to suace.Ll_;::_tJblUll U.IL" .I.'CJL_I.UJ.CI..b.ILUII IJ..UIJ.I I,.u,_ r,..,pJL,_.,,a.v_E_,,..,u* _,,,v*. .................... ,

is used on all 12 assembly nodes.

Additional external blockages are experienced during various mission phases on bays (nodes}

9, 2, 3 and 4 due to the folded scan package and high gain antenna. The scan package

geometry was not defined at the time of the analog study. Therefore, a radiant blockage of

fifty percent was assumed for node 9.

During the earth parking orbit, the high gain antenna is folded in front of bays 2, 3, and 4.

The extent of this blockage is estimated at 95 percent on bay 3 and 70 percent on bays 2

and 4 (i.e., view factors to space are . 05 and. 30, respectively).
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Figure A-1. Voyager Bus Section-Analog

Thermal Model (Sheet 1 of 3)
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2.4 SUPERINSULATION HEAT LEAK

All surfaces of the Bus section, except for the heat rejection areas, are covered with

superinsulation. It is estimated that a heat leak of approximately 0.5 watts/ft 2 on non-

illuminated superinsulation surface will exist. Working against this heat leak is a conser-

vatively estimated heat input of 0.91 watts/ft 2 to all superinsulation directly illuminated

by sun. The resulting net superinsulation heat leak for the Bus section is about 13 watts.

This lost heat tends to lower temperatures in the Bus section. Therefore, during

minimum cases, the dissipation in each bay was reduced by 1 watt to account for this loss.

2.5 MISSION PHASES

The Bus analog study considered the following mission phases: 1) Earth parking orbit

through acquisition, 2) Transit, 3) Mid-Course maneuver and 4) Mars orbit.

2.5.1 EARTH PARKING ORBIT

The profile assumed for the Earth parking orbit is shown in Figure A-3. Bay 3, contain-

ing the highest thermal dissipation, is oriented towards earth, and subsequently towards

the sun during acquisition. The Orbital Heat Flux digital computer program was used to

calculate the incident fluxes using the following orbit parameters:

a Circular 100 nautical mile orbit

b • Launch at 0600 local time

c • Inclination = 28.5 °

d • Day 182

e . Solar constant = 434 Btu/hr=ft 2, Albedo Factor = 0.38,

Earth flux = 68.2 Btu/hr-ft z

f . Vehicle path stabilized.

Acquisition was assumed to consist of a 90 degree pitch of the vehicle to bring the roll

axis pointing toward the sun in 30 minutes. Because of shading of the solar arrays, the

Bus is occulted after 8.3 minutes. This shading effect and that of the Flight Capsule

was not considered in the earth orbit portion of this phase. The results then are necessar-

ily conservative. AGE Shaded Orbital Heat Flux program, which is now in the final

stages of checkout, could be used in Phase IB to improve the accuracy of this analysis.

Figure A-4 shows the simulated fluxes on node 3. This plot is typical of all 12 assembly
nodes.

13 of 60



VB235FDI01

ORBIT

LAUNCH T = 0

_ / A CQ UISITIO N

T = 88 MIN T =
118 MIN

INJECTION INTO ILLUMINATED
PERIOD ( 8.3 MIN. )HE LIOCENTRIC
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Figure A-3 Earth Orbit Phase Profile

2.5.2 TRANSIT PHASE

The transit phase of the mission is characterized by no external flux impingement. Max-

imum and minimum dissipations were used in each node. Because of the lack of fluxes

and the relatively low minimum dissipations, this case was used for trade-offs requiring

a cold case, as well as for heater sizing.

2.5.3 MID-COURSE CORRECTION PHASE

Two mid-course maneuvers were considered in this analysis. The first maneuver will

occur between 2 and 10 days from launch, so that a full solar constant (434 btu/hr-ft 2)

must be used. However, because of the short communication time at this distance, the

total duration of the correction can be limited to one hour. The second maneuver was

assumed to occur near the midpoint in the transfer orbit (90 days from launch, 1.25 AU)

with a solar constant of 280 btu/hr-ft z. The duration of this course correction was assumed

to be two hours because of the longer communication time. Because the exact spacecraft

orientation, with respect to the sun during the mid-course correction, cannot be predicted,

it was assumed that the sun directly impinged on the hottest node (3). A case was also

studied for the sun centered about node (5) to input the maximum flux to the critical

battery bays. Table A-2 compares the two cases employing maximum dissipations.

In the actual case, the spacecraft rolls at a typical rate of 0.2 degrees per second for a
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total of 90 degrees (worse case). The solar flux incident on a particular sub-assembly

mounting panel builds up sinusoidally as the maneuver starts, holds constant for the

telecommunications and engine firing, then falls off sinusoidally. However, the solar

array shades the Bus until the spacecraft has rolled 65 of the 90 degrees. The remaining

25 degree roll takes only a little more than two minutes, which is negligible as compared

to the duration of the maneuver. The solar fluxes during this mission phase were therefore

approximated as a square wave pulse.

Table A-2. Maximum Battery Node Temperatures (OF) During Mid-Course Maneuver

B_ttery
Node No.

Sun On Nodes

1_ 2_ 3, 4, & 5

Sun On Nodes

3_ 4 r 5_ 6_ & 7

4 68 63

5 60 65

6 53 59

2.5.4 MARS ORBIT

In the Mars orbit, two distinct cases were considered - maximum and minimum. In the

minimum case, no external fluxes were considered and sub-assembly dissipations were

at their lowest. The zero external flux case is reasonable considering the high altitude

orbits which can be expected (300 x 30,000 Km). A 4000 Km circular orbit with a period

of 318 minutes was used for Mars planetary flux of 60 btu/hr-ft2. This orbit will provide

an average of 4 btu/hr-ft 2 to every node, with a peak of 12.5 btu/hr-ft 2. Albedo fluxes

for an albedo factor of 0.15, provide only about 0.6 btu/hr-ft 2 average flux, and can

therefore, be neglected. When this maximum case was run, however, it was found that the

planetary flux raised the temperature of the hottest node by, at most, 1.5°F. Because

of the inconvenience of simulating these fluxes, it was decided to consider them negligible

and use the no flux, steady state solution as maximum case. The Mars orbit dissipations

are the highest of all the mission phases, so that this case was used for sizing of areas
and emissivities.

2.6 EXTERNAL AREA DETERMINATION

The external radiating areas of all nodes were determined in the Mars maximum case with

no external fluxes. The heat rejection areas on all nodes were then varied until all

temperatures were 70°F. Since all bays were actively controlled, this provided a maximum

emissivit_ to space of 0.53. Actually, this could not be exactly achieved since the maximum
area (4 ft "_) is not sufficient to dump the high dissipation of node 3. The temperatures of

nodes 2 and 4 were kept at 62 and 63 degrees respectively to provide an additional sink for
this node 3 heat. Based on the resulting areas, two standard sizes (4 ft 2 and 2 ft 2) were

selected, for ease of manufacturing and handling and lower cost. Since all these areas are

the same or slightly larger than that required to maintain 70°F, for any particular bay, the
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thermal capability of the Bus is greater than the Mars maximum case requires.

2.7 PASSIVE NODE EXTERNAL SURFACE PROPERTIES

Passive thermal control is feasible on nodes 11, 1, 2 and 8 which have constant dissipations

throughout the mission. Though the decision has been made to use active control on every

node to provide greater flexibility in accommodating design changes, the performance of

partial passive control has been studied. The external surface properties of these nodes

were determined using Mars maximum dissipations (no external fluxes) and external areas

as sized above. The emissivity on each of the passive nodes was then varied until its

temperature was 55°F (the midpoint of the desired control band). The solar absorbtivity

was selected as low as possible (0.15) in anticipation of solar incidence during mid-course

maneuver. Table A-3 shows the required emissivities. The thermal performance of the

Bus with the four passive nodes is documented throughout this study. The trade-off of

active versus passive control is discussed in Volume B (VB235AA101).

Table A-3. Surface Properties of Passive Nodes

Node External Solar

No. Area (ft 2) Emissivity Absorptivity

11 2.0 0.3 0.15

1 2.0 0.75 0.15

2 4.0 0.5 0.15

8 2.0 0.5 0.15

2.8 FAILURE MODES

Two general types of failure modes were considered in this study -- (1) assembly and

(2) shutter failures. There are very few assembly failures which would not be critical to

the success of the mission. A partial or complete failure of the science equipment in Bay 9

would not abort this mission since valuable engineering data could still be obtained. This

system could also be temporarily turned off during eclipse periods to save battery power.

Similarily, the radio subsystem in bays 2 and 3 could be temporarily shut down. No other

assembly failures can be considered. When these assemblies are off (nodes 9, 2 and 3), all

temperatures in the Bus drop as shown in Table A-4 and 6.2W of heater power is required

in node 13. This effect was considered with Transit phase minimum dissipations.

Two types of shutter failures can also be considered - opened or closed. A failed opened

shutter has an emissivity of .53 and the temperatures of all nodes are pulled down, with

heater power being required in some cases. These cases were run for Transit minimum

dissipations. A failed closed shutter has an emissivity of. 15 and all Bus section temp-

eratures are increased. Mars orbit maximum dissipations were used for these runs.

Shutters were failed one at a time in either position and the effects noted. The results of

this analysis and the tradeoffs made as to a preferred position are presented in Volume B

(VB235AA101).

17 of 60



VB235FD101

Table A-4.

Node

Nodal Temperatures - SubAssemblies in Nodes 9, 2 & 3 Off

Temperature (OF)

1 31

2 4

3 23

4 46

5 40

6 50

7 36

8 33

9 30

10 46

11 35

12 31

13 40*

*6• 2 watts heater power required

2.9 ASSEMBLY MOUNTING PANEL TEMPERATURE DISTRIBUTIONS

A 90-node two-dimensional steady state digital computer analysis was made on each

assembly mounting panel using boundary conditions obtained from the analog computer

analysis described previously• Both 30 mil and 60 mil plate thicknesses were used for

highest dissipation case (Mars Shade). These temperature distributions (in OF) are shown

in Figures A-5 through A-16• The Transit phase results, Figures A-17 through A-28

were determined for the 60 mil plate thickness only. A thermal conductivity of 70 btu/hr-

ft OF was assumed for the plates.

3.0 SHUTTER ANALYSIS

3.1 ASSUMPTIONS

a • Shutter systems are infinitely long

b . Diffuse surfaces are gray

c . Specular surfaces are perfectly smooth, perfectly flat and perfectly specular,

thus the angle of reflectance equals the angle of incidence.

4
d . Specular surfaces radiate ( _ T ) according to Lambert's law.

e • There is no conduction in the system•

f •

g ..

18 of 60
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3.2 NOMENCLATURE

G - Total energy incident on a surface (Btu/Hr ft 2)

J - Total energy leaving a surface (radioslty) (B_u/Hr ft 2)
Q Internal - Internally generated heat (Btu/hr ft )

T - Surface temperature (°R)

_- Surface hemispherical emissivity

_- Surface solar absorptivity

_b- Angle between the normal to the base (assembly mounting panel) and the sun's rays

F.. - Configuration factor from surface i to _urface ] 2
v-Y Stefan -Boltzmann consta_ (0. 1713 x 10 -_ Btu/hrft °R4)

S - Solar constant (Btu /hr ft')

S.1 - Incident solar energy on surface i (S i = cos _; where _ is the angle between the normal
to surface i and sun's rays)

Subscripts on symbols

S - in the solar regime

1, 2, etc. - pertaining to surface number 1, 2, etco

Subscripts on surface numbers (images) (see figure A-29)

3 - image of the surface in specular surface 3

2 - image of the surface in specular surface 2

Exa_nple 1:13 - The image of surface 1 in surface 3

Example 2: 13, 2 - The image of 13 in surface 2

I I I
I I I

132,_,2 [23,2 132
L___J_ 1

12, 3, 2 13, 2 12 1

I _ I I

I I I
3 231 3_,31 23,2,31

.1 I _[
13 12, 3 13, 2, 3

SURFACE 1 - DIFFUSE

SURFACE 2 - SPECULAR

SURFACE 3 - SPECULAR

Figure A-29. Specular System in Full Open Position
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3.3 ANALYS_

3.3.1 INTRODUCT_N

The following analysis was performed to determine the effective thermal radiative surface

properties of three basic types of shutter systems under the influence of incident solar

energy so that a choice of one system could be made based on the relative properties of each.

3.3.2 DIFFUSE SYSTEM

In this system, both shutter blades and the base surface are diffuse.

3.3.2.1 SOLAR BALANCE

For each surface:

N Jsil
JS. = (I-°_S.) Si + Z F.. (i)

I I j=i Ij

The solar radiosity is calculated from the above simultaneous equations.

total incident solar energy on each body is found.

From this, the

JS.
1

GS. -

1

(2)

3.3.2.2 IR BALANCE

Again, for each surface:

N

Ji=Qi+ _ F..J.
j=l 11 J

Where:

(3)

Qi = GS. aS. + Qinternal
1 1

(Q Internal = 0 for all surfaces on the shutter blades )

(3a)
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Again, solving the above simultaneous equations, the IR radiosity of each surface is found.
Equation (3) is then rewritten as:

N
TJ.= _ v + Z; F..J. (4)

i 1 (z-¢i) ]=1 lJ J

G A
s. s. in equation (3a) represents the total absorbed solar energy. Since this energy is1

reradia_ed in the IR regime, equation (3a} provides a link between the solar and infrared

regimes.

Equation (4) is solved for surface temperatures. The temperatures across the base are

used in Equation (29) to determine the effective radiative properties of the surfaces. The

blade temperatures provide a criterion for the choice of a bonding material used in the
shutter blades.

3.3.3 SPECULAR SYSTEM (FIGURE A-29)

3.3.3.1 SOLAR BALANCE

The incident solar energy on each body in the case where both blade surfaces (2 and 3) are

specular and the base surface (1) is diffuse, can be determined by a combination of geometric

and radiosity calculations. With the shutters in the full open position, where the sun impinges

on a specular surface, an equivalent geometric arrangement can be made up of images to

trace the solar reflections. Each time the sun is reflected from a surface, it is diminished

by the solar absorptivity of that surface. Thus, in Figure A-29

S = SOLAR CONSTANT (5)

S v - _ 1]-_ _ i_

_- --$31 _"1

s" = s(Z-_s3)(z-O_s2) (7)

The incident solar energy is determined by using the appropriate values of S, S' and S"

(the progression continues for successive reflections where the sun angle is greater than that

shown in Figure A-29). Since all solar energy reflected from the base will leave the system
without being re-reflected to the base,

GS = S1+ S'z +S"1+ .... iS)
1
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(9)
W

for all nodes across the base.

The incident solar energy on the blades, however, consists of direct energy and energy re-

flected from the base. Again using the images to represent successive reflections

G
s 3

GS2 = S'2 IF2:1+(I-¢:_$3)F2(:_)S2 + +S" 2 +...+

+(1-_$2)(1-_83)F2(12,3) + .... ] Js 1

is similarly determined to be:

(lOa)

Gs 3 = $3 + S'3 + S"3 + .... + [F31+(1-C_s2)F3(12) (10b)

+(1-(_S3)(1-%2)F303,2 )+''"] Js 1

3 . 3.3.2 IR BALANCE

The IR radiosity is obtained in a manner similar to that used for the solar energy, exc_ept
that the blades now contribute to the radiosity of the base by their own radiation (¢_T-)

q

= IF ,2)FI(32)+(I-%)(I- +...J1 Q1 + 13+(1- <3)FI(32,3)

+ [FI2+(1-_3)FI(23)+(1-_)(1-_)FI(23,2)+'''] J2

I J3 (ii)

Where Q1 -- GSI_S 1 + Qinternal (12)

4 (13a)
J2 = _2(rT2

4 (13b)
J3 = E3_ T3

Since it was assumed that the blades have adiabatic back surfaces, the blade temperatures are

solely dependent upon the energy absorbed through their front surfaces. Again, using the

images to account for specularly reflected energy:
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J2=_2c T2=Q2+¢2 I+(1- ¢3)F2_!3)+(1-_2)(1-¢3)F2(12,3)

+"'] Jl+ IF23+(1-'2)(1- _3)F2(32,3)+"••] J3

+ [(1-¢3)F2(23)+(1-¢3)2(I-¢2)F2(23,2,3 )+'''] J2
(14)

Where: (15)
Q2=Gs2_s2

An equation for JA can be set up in the same manner. The radiosities (J) of each body can

be determined by3solving equations (11), (12) and (14) simultaneously. Knowing the radiosi-

ties, the base temperatures can be found by:

4+(1-
Jl = _i_ T1 _i)

F13 + (1-c2)F1(32) + (1-¢2)(I-C3)F1(32,3)

+'''] J3+ IF12+(1-¢3)F1(23)+(1-c2)(1-¢3)Fl(23,2 )+'''] J2

(16)

These temperatures are used in equation (29) to determine the effective thermal radiative

surface properties of the system. The blade temperatures are found using equation (13).

3.3.4 SPECULAR - DIFFUSE SYSTEM (FIGURE A-_30)

3.3.4.1 SOLAR BALANCE

In this system, only one blade surface (2) is specular. All other surfaces (1 and 3) are

diffuse. With the shutters in the full open position and the sun incident upon the specular

surface:

S = Solar Constant (17)

s'--s (is)

(Equations (19), (20) and (21) are also valid for cases where the sun strikes only the diffuse

surface since S = 0 in this case).

The Total solar energy leaving each surface is:

47 of 60



VB235FD101

32.' 12J31
SURFACE 1 - DIFFUSE

12 1

SURFACE 2 - SPECULAR

SURFACE 3 - DIFFUSE

Figure A-30. Specular-Diffuse System in Full Open Position

JS2 + JS3=(1-_$2) [S2+F21Js1 F23 1

I •= (1_s3) s3 + +JS3 S' 3 [F31 + F3(12))(1"_S2) ] Js 1 +(l'(Xs2)F3(32)Js3

(19)

(20)

(21)

Equations (19), (20) and (21) are solved simultaneouslY and the resultant J's are applied to

equation (2) to determine the total incident energy.
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3.3.4.2 IR BALANCE

The IR radiosity is obtained by using a combination of the methods used to obtain the equa-

tions in the diffuse and specular systems

J1 = Q1 + F12 J2 + [F13 + (1-¢2) F1(32) 1

J2 =Q2 + _2 IF21J1 +F23J3]

J3=Q3 + [F31+F3(12)(1-_2)] J1

J3 (22)

(23)

+ F32 J2 + (1-¢2)F3(32)J3
(24)

Where: Q1 =Cl 1Gs1 + Qinternal (25)

(Qinternal = 0 for all blade surfaces)

Solving (22), (23) and (24) simultaneously yields the values of J to be used in the following

equations to yield the temperature of each body

J1 = _1 _ T1 + (1-_1) 12 J2 + 13 + F1(32)(1-_2 ) J3
(26)

J2 = _2 _ T24 (27)

The temperature of surface 1 is used in equation (29) to determine the effective thermal

radiative surface properties. The temperatures of surfaces 2 and 3 are considered in the

choice of a bonding material used in the shutter blades.

3.3.5 EFFECTIVE RADIATION SURFACE PROPERTIES

The effective radiation surface properties are defined herein as: The properties which

a flat plate would have to possess in order to exhibit the same temperature characteristics

as the shutter system under the same conditions of solar energy and internal dissipation.

Thus for two levels of internal heat generation:
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Qinternal 1 = Ceffa T14-_eff S cos
(29a)

= 4

Qinternal 2 Ceff v T2 "_eff S cos • (29b)

Having found the temperature distributions at two different values of Qinternal' Equations

(29a) and (29b) are solved simultaneously for _eff and Ceff.

Equations (1) through (29) were programmed for an IBM 7094 computer. Allowance was

made to divide the three-surface system into as many as 45 nodes. The configuration

factors were calculated by the program using the Hottel method. The results are present-

ed in both the Volume A (VB235FD101) and Volume B (VB235AA101) temperature control

subsystem sections.

4.0 MID-COURSE ENGINE ANALYSIS

The effects of four different superinsulation configurations on the steady state and transient

cooling temperatures of the midcourseengines are presented in Volume B. The analysis

of the preferred superinsulation configuration is shown below.

4.1 STEADY STATE HEAT BALANCE

(_A t + ¢ A F dr 4 +_AcF Sc c a to space ) = _ A t S a to insulation

Where:

_= Surface hemispherical emissivity

= Surface solar absorptivity

A = Surface area

F = Geometric View Factor
S a Solar flux constant

t, c subscripts refer to inside of nozzle, and outside of case, respectively

Assumptions:

a. _/¢ of both surfaces is 1.0

b. _ =0.8. _ =0.85
C I;

c. Irisulation is adiab_ic
d. S = 228 Btu/hr - ft"

e. Approximate engine geometry by a 3-inch diameter by 9 1/2-inch long cylinder

F from the surface of the cylinder to space is estimated to be 0.38

F a from the surface of the cylinder to the insulation is estimated to be 0.56. This

fator accounts for the angle between the suns rays and the insulation blanket, and for

the portion of the engine which hangs below the blanket. Substitution of the above into

the heat balance yields:
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T 4 = 320 Btu/hr-ft 2

4.2 TRANSIENT HEAT BALANCE

T = 197°F

-Wc AT : (_e A +E t At) vT 4
p o

Where:

W = weight

c = specific heat
r = time increment

c = total radiant interchange factor between surface of engine and space

Assumptions

a. _ insulation is very cold ( T _ R)

b. W = 9 pounds

c. c = 0.2 Btu/lb-°F

d. _ p= 0.4 on insulation

The factor_ is estimated to be 0.83
"c

Substitution into the heat balance for a two hour time increment yields

After several interations

A T = -137°F

T = 60°F after 2 hours

5.0 SOLAR ARRAY ANALYSIS

5.1 RADIAL TEMPERATURE DISTRIBUTION

Steady State Heat Balance

(_f+_b) ¢rw4 =0"94 _ S cos {_

Where:

f' _b = Net radiant interchange factor to space for front and back faces respectively.

a = Stefan -Boltzmann Constant (0.1713 x 10 -8 Btu/hr-ft 2 - °R4)

T = Temperature (°R)
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= front face solar absoriptivity 9
S solar constant (BTU/HR FT ")

e = angle between surface normal and sun's rays

Assumptions:

a. Six percent of solar energy is converted to electrical energy, hence 0.94 factor in heat
balance

b. Conduction is negligible in radial direction

c. Heat interchange between the array and the Bus and between the array and Flight Capsule

does not occur. However, these items are considered in calculating geometric view

factors to space.

d. Radiant interchange with the solar array support frame is negligible. The radiant

interchange factors were calculated from the following relations:

f = (Fa) f _f

y b -- (Fa)b Cb

Where:

(Fn) f , (Fb) b are the geomet_c view factors to space of the front and back faces respect-
ive"l_.

el, eb are the surface emissivities of the front and back faces respectively.

View factors for the back face were calculated using Hamilton and Morgan, "Radiant

Interchange Configuration Factors," NACA TN 2836 as follows:

WITH BK)-BARRIER

NODE (Fa) b

1 (closest to Bus) 0.083

2 0.111

3 0.145

4 0.20

5 O. 56

6 0.82

7 0.86

8 (furthest from Bus) 0.88
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NODE

1 (closest to Bus) 0.60
2 0.74

3 0.80

4 0.83

5 0.87

6 0.90

7 0.93

8 (furthest from Bus) 0.94

Front face surface properties are

Back face emissivity

_= 0.90

Temperature curves are shown in Volume A VB235_D101 (Temperature Contr_ Section)

for values of the solar constant from 434 Btu/hr-ft (1.0 AU) to _59 Btu/hr-ft" (1.65 AU)
with separation of the bio-barrier occurring at S = 228 Btu/hr-ft (1.38 AU)

5.2 MARS SHADE COOLING

Transient Heat Balance

-W C A T = (o_" +d_.) vT 4

A P Ar

Where:

W = weight per square foot of frontal surface
A

c = specific heat (Btu/lb-°F)
P

A T = temperature increment (o F)

A _ = time increment (hours)

o_ f, _b = radiant interchange factors to space from front and back faces respectively

¢ = Stefan-Boltzmann constant

T = Temperature (°R)

53 of 60



VB235FD101

Assumptions:

The same assumptions apply as for the steady state radial distribution analysis

W/A was assumed to be 0.5 lb/ft 2 with a Cp = 0.2. Initial temperature was taken as

-8°F for the coldest node (node 8) at 1.5 AU

f and _b factors were the same as in the steady state analysis

Method:

A finite difference technique was used.

An initial time step of one minute was calculated, until the temperature increment became

sufficiently small (after 10 min. )

Then a 5 minute time step was used, again, until a small temperature change was calcu-

lated (50 minutes)

Finally, a ten minute time step was used to complete the 180 minutes maximum shade time.

The resulting curve (Volume A, Temperature Control Section VB235FD10_ shows a temp-

erature of -308F after three hours in the Mars shade.

6.0 SIZING OF GYRO HEATERS

The gyro/accelerometer assembly dissipates 9 watts at 100°F. Assuming the surroundings

to be at 80°F, the thermal resistance between the assembly and its surroundings must be

no greater than 2.22°F/Watt.

The thermal capacitance of the gyro/accelerometer assembly is 1.2 Btu/°F. Any one of

the three gyro heaters must have the capacity to raise the temperature of this assembly from

40°F to 100°F in 0.5 hours. Thus, 21 watts are required to take care of increasing the

temperature of the thermal mass. To this amount must be added an amount of heat equal

to that leaking from the assembly to its surroundings. Based on an average assembly temp-

erature of 70°F during this warm-up period, a surrounding temperature of 40°F and a

thermal resistance of 2.22°F/Watt, the leakage heat is 13.5 Watts. Thus, each heater

should be capable of producing at least 34.5 Watts.

7.0 TEMPERATURE PREDICTIONS FOR HIGH GAIN ANTENNA

High gain antenna steady state temperatures were predicted with the following:

s SAfp cos_= cfAfpVT 4+_bAb v T4
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The transient temperature drop during Mars shade time was predicted by integrating the

following relation:

W c d T = - (EfAfpCrT4+_lebAb c_T4)
P_"_

Where:

S = Solar constant-varying with distance from the sun (Btu/hr-ft 2)

= Angle between the sun's rays and the normal to front of the antenna. This angle
varies with time in the mission as the antenna turns to face earth.

= Solar absorptivity

= Emissivity of front surface of the antenna

= Projected area of front of antenna (Ft 2)

= Surface area of back of antenna (Ft 2)

a_fb = Radiant interchange factor from back surface to space = product of geometric view
actor to space and back surface emissivity

W = Weight of Antenna (lbs)

c = Specific heat (Btu/lb-°F)

Time (hours)

T = Average antenna temperature (°R) -8
= Stefan -Boltzmann constant (0.1713 x i0 Btu )

Hr - Ft 2 - °R4

As sumptions:

a. The effective radiating area of the front of the antenna is equivalent to its projected

area.

b._ =0.25 cf = 0.85S

Results:

The steady state temperatures are presented in Figure A-31. The Mars shade Cooling

transients are shown in Figure A-32.

8.0 RELIABILITY ANALYSIS

The reliability analysis of the temperature control subsystem is based on the block diagram

shown in Figure A-33. The mathematical reliability model forthis subsystem is:

 2,0 11[ ]9[ 1R = (1- -RI& 2 " R4 " " R 6 " R 7 R 8 . R7a R 8

4
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where the subscripts to each of the "R" factors refer to the component numbers as assigned

in Table A-5. The overall subsystem reliability is the product of the individual mission

phase reliabilities.

Substitution of the Table A-5 reliability values into the above mathematical model results in

the reliability values for the various mission phases as presented in the Volume A temp-

erature control text (VB235FD101).
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I.0 SCOPE
......... •_ .... • ..

This document describes the complete Flight Spacecraft (FSC) structure which includes the

spacecraft (S/C) bus structure, the S/C science payload structure, the S/C retropropulsien

st_etare, and the S/C adapter structure.

2.0 APPLICABLE DOCUMENTATION

VB220SR101

VB220SR102

VB220FD103

VB220FD105

VB220FD106

VB235FD103

VB235FD106

Design Characteristics

Design Restraints

Spacecraft Component Design Parameters
Launch Vehicle interface

Capsule Interface

Structural Design Criteria

Electr(mic Packaging

3.0 FUNCTIONAL DESCRIPTION

The FSC structural subsystem serves to support and protect all Voyager system compenents

from the various load environments encountered during the Voyager mission. These include

ground handling, transportation, and pre-launch loads, in addition to all launch, boost,

trsnsit and orbital l_ads.

The structure also inherently serves as an integral part of any pointing/aiming alignment

system of the various sensing, transmitting, and ejection devices necessary to perform the

mission. In addition, the structural subsystem must be an integral part of the thermal

control system providing shading, conduction paths and radiation fins as required.

Figure 3-1 describes the structural subsystem orientation as part of an overall Voyager

functional description. This second level is the starting point for the following functional

description of the struotural subsystem presented as follows:

3.1 SPACECRAFT BUS STRUCTURE

The primary structure is defined as the structure which provides basic load paths for the

introduction of boost loads to the launch vehicle structure.

The secondary structure is the structure which transmits specific compenent loads to the

primary structure; the major design requirement being that allowable component levels for

vlbratien frequency, amplitude, and shock are not exceeded by responses to the launch
vehicle envtrcmnent.

This necessarily includes the effects of the structural stiffness characteristics of the primary

structure to which it is attached. Figure 3-2 shows the major componealte of the S/C primary

structure, static_ locations, and radial element locations used in the text of this functional

description. The Voyager Spacecraft Basic Geometry is presented inF_e 3-3. Figure

3-4 shows the Structural General Arrangement.
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Figure 3-2. Structural Components
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3.i.1 CAPSULE SUPPORT STRUCTURE

This structural assembly is presented as Figure 3-5. The primary capsule support structure

is a semi-monocoque conical shell which receives loads from the flight capsule at the flight

capsule/spacecraft interface at station 59.0 and transmits them to the equipment module at

station 46.0. It consists of an interface ring at station 59.0, six primary longerons which

pick up the six attachment fittings on the capsule adapter, six intermediate longerons,

stiffened skin panels, and a closing ring at station 46.0 which also serves as a manufacturing

joint between this structure and the equipment module. The interface ring reacts and re-

distributes the radial components of the longerons, in addition to transferring the shear due

to lateral and torsion loads into the shell. The primary longerons at locations 2L, 4L, 6L,

8L, 10L & 12L receive axial and bending loads from the flight capsule, the primary load

source on this structure. The six intermediate longerons located between the primary

longerons pick up approximately 45 percent of these total loads through shear lag of the skin;

in this way flight capsule loads are distributed to the twelve longerons in the equipment
module.

The stiffened skin is therefore broken up radially into 12 panels, six of which are fixed, and

six removable (for access to propulsion components, test harness and sensors). In addition,

to distributing a proportion of the axial load mentioned above, the skin also serves to react

the high shear flow due to load condition 2B (Ref. Table IV of appendix). Secondary structure

is provided for the deployed planet scan platform support in the vicinity of Bay 9. It is a

short stiff beam mounted off the capsule support structure, affording an aligned, v_ration

free mounting for the actuation mechanisms which point the scan platform. The requirement

for absolute alignment is not particularly critical because the closed loop control system will

point the platform as desired. The natural frequency of this structure is such that coupling

with the attitude control correction impulse is negligible.

There are two fittings of a flexible organic material located near Station 49.0 in the vicinity

of longeron locations 4L, 3L and 5L to act as snubbers for the antenna during flight con-

dition. These snubbers act as end-beam supports for the antenna and are preloaded by
the main tiedown fitting at the antenna feed. The preload is sufficient to ensure contact

with the snubbers throughout the loading environment.

3.1.2 EQUIPMENT MODULE (E/M) (STATION 20-46)

The equipment module shown in Figure 3-6 houses the majority of the S/C electronic equip-

ment, transmits the primary shear, axial, and bending loads and supports the propulsion
module.

The basic structure is a framework of two rings, upper and lower, 12 longerons, and 12

shear pahels, which pick up secondary loads and transmit primary loads.

The upper ring transmits the shear load from the capsule support to the shear panels of the

12 sided E/M, and reacts the kick loads from the 12 longerons of the capsule support

structure. It also serves to transmit the radial loads from the equipment bay modules and

Propulsion Module into the basic structure. The lower ring acts simit_arly to the upper ring

except that the shear loads are transmitted from the 12 sided structure to the adjacent space-
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Figure 3-5. Capsule Support Structure

13_ of 28



\
\

i ' \\
i \ -

\,

/

,/

/

//"
/

/

/

I'
s

/

/
i

i

\

\

I'
:; i_ I,

!'

!_ I_ :i

_: j ,i,
___ I ± r



J
j-J

\

'1! i

!i tl il
! I il

--.-4L_4,--4--

7 ,/

/

/
/

2d,7_

/

/

/

212S A/c,eo._S

Sv_ O/4-rc/.r/¢r_ I/_.Es

'l

I: i

, i!

_-M"

.ze-e

! lr --./_

/, h '__' ' ' _.'-_- _

/ _-T_"-r __ j
l,y-. _ 7_ --

/ , !/o::
L _ .._,_7, ,

l D_r_/z "A'"

z_..._J
I

i

(

i

.....

_\-Ii_-I_ _'P=-

b_

.._....---

d_/,_



az$7Dm.

: " -' i

-4
i

1.30 : I.?_.*_'o_1_E_ '.

I f

._#-5

) -1_2o



VB235FD102

iI '_ i'4 r !',_I
i i_ ' _H

t

5UPPOR 7- _r_dc Td_"

Figure 3-6.

Equipment Module_

15716 of 28



VB235FD102

craft support structure. The 12 longerons carry all of the primary axial aud bending loads

as columns and also serve to introduce the propulsion subsystem loads into the primary

structure. In addition the individual electronic submodules are attached directly to the

longerons, providing significant stability.

The upper ring of this portion of the structure provides mounting surfaces for the following

components:

1) Canopus sensor

2) Approach Guidance sensor

3) Body mounted scientific equipment.

The equipment module front cover plates serve to assemble the individual electronic mounting

boxes into a unit by providing a plate to which each box is assembled using seven attachments

per submodule. Attachment of the submodules provides a conductance path for the heat loads

therein and the panel thus helps to balance the submodule temperature and act as a radiation

fin. The last function of these panels is to provide a support base for the thermal shutter

assemblies: inn]ud!ng the tube required for the liquid-bellows actuation system.

The Propulsion Module attachment structure consists of eight fittings which serve to introduce

the loads from the propulsion system into the basic structure at longerons 1L, 2L, 4L, 5L,

7L, 8L, 10L, and 11L at Station 34.90,

The equipment submodule is comprised of a series of separate boxes on which are mounted

the cordwood modules and printed circuitry of the electronic assemblies. The boxes provide

necessary structural stiffness and thermal conductance to satisfy the operating environment.

The loads of each box are directly introduced into the longerons by attaching at either end.

This box structure serves a multi-function by stablizing the outer covers which carry the

primary shear load. The potential exists for utilization of these electronic boxes to carry

longitudinal loads if required but the existing structural configuration, and necessity for

ease of assembly, testing, and maintenance does not require longitudinal load capability.

Connector support bracketry includes the submodule inner panels and attached angles. See

VB235FD106 for detail discussion. The primary electrical harness extends around the in-

side circumference of the equipment module on a circular shell, 92.4 inches in diameter,

which hangs down 15.8 inches from the lower ring. The harness cabling is distributed on the

inner surface of this shell, except that a local tray is provided for harness rerouting at the
areas where the attitude control tanks are mounted. This shell introduces the harness loads

into the lower ring of the equipment module _nd is stabilized at the lower end by the meteo-
roid bumper/thermal shield which also serves to support the midcourse propulsion system

engines.

Clevis fittings on the planet scan platform support the science instruments during the boost

environment, transmitting loads to longerons 8L & 9L by means of shear pins. Pin pullers

are provided at these attachment points for release of the platform. See section 4.5 for the

interface of the thermal control louvers with the equipment module.
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3. i. 3 SPACECRAFT SUPPORT STRUCTURE

This structure shown in Figure 3-7 serves as the transition from the equipment module to

the spacecraft adapter and supports the following components: The solar array for the

photovoltaic power system, the antennas for the radio system, various sensors and body

mounted scientific equipment. Consequently the spacecraft support forms a critical element

of the overall spacecraft component support and alignment system.

The primary load carrying semi-monocoque structure consists of upper and lower rings,

stiffened skin and twelve tapered longnrons which transmit the primary loads to a near uni-

form distribution at the lower ring in order to comply with the requirement for a fully

monocoque structure at the separation joint (due to the usage of the encapsulated Mild

Detonating Fuse (MDF) separation device - see VB235FD104).

The upper ring (Station 20) primarily serves to introduce the basic shear loads from the

equipment module and the kick loads from the solar array support ribs into the shell, and

secondarily helps the equipment module lower ring carry the kick loads introduced by the

longerons. The plane defined by the mating surface of this ring with the lower ring of the

equipment module serves as the basic alignment reference plane for the spacecraft and is

also a manufacturing joint.

The stiffened skin accommodates the high shear flows of condition 2c (reference Table IV of

Appendix ) and also functions to distribute the axial load component in the 12 longerons to
a more uniform distribution at Station 3.5.

The lower ring at Station 8 serves to react the kick loads from the solar panel support ribs

and those from the longeron eccentricity. In addition, tangential loads from the solar panel

structure will be introduced uniformly and distributed into the basic shell by the ring.

The twelve primary longerons are those receiving the loads from the equipment module at

Station 20. Longeron area tapering exists in conjunction with variable thickness skin to

force the load to a more uniform distribution at Station 3.5 (separation plane). The inter-

mediate stiffeners serve to introduce the loads from the solar panel support ribs and act as

panel breakers for shear buckling requirements.

The solar array structure consists basically of the 22 panels and 23 support ribs, although

some of the ribs and panels must be specially designed as support structure for other com-

ponents. They are designed to support their own weight and that of the components under

dynamic boost loads and provide a natural frequency which will prevent coupling with the

autopilot system.

The structure of the 22 solar panels is an aluminum alloy honeycomb supporting the silicon

solar cells. The solar panel support rib structure is a tapered cantilever rib structure which

varies to accommodate the special load requirements in areas such as the antenna supports.
Refer to VB235FDl10 for more detailed discussion.
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Figure 3-7, Spacecraft Support Structure
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The high-gain antenna support rib serves to introduce the antenna inertial loads into the basic

structure at stiffener location 3S. Those load components normal to the rib in the X-Y plane

will be transferred into the solar panels and the support rib reacts the kick loads produced

there in shear. The support ribs are backed up by two tube ties running from the outboard

end of the rib to the E/M upper ring.

The medium-gain antenna support structure is a two I-beam cantilever structure bridging

across two support ribs as shown in Figure 3-4, and the loads are transferred to the support

ribs at locations 3S and 3L.

The primary low-gain antenna is cantilevered from the solar panel support r_ at radial

element 9S through a cut-out in the solar panel structure.

The secondary low-gain antenna is supported from the side of the solar vane honeycomb

panel in Quadrant HI, providing necessary antenna alignment.

The VHF relay antenna support structure consists of two fittings attached to the support

ribs at 1S and 1L.

The launch antenna is a fixed mount from support rib 3S. There is a tie-down fitting and

snubber fitting provided on the support rib at 4L, completing the high-gain antenna tie down.

The magnetometer support is a tubular boom which extends in the X-Y plane of the vehicle

and positions the magnetometer 5 feet away from the basic body structure. It mounts into

an aluminum alloy tubular support and is deployed with a spring damper system released by

a pin-puller. The boom design maintains alignment of one axis of the magnetometer to with-

in 1 degree of the Z axis, and prevents excessive deflection during engine operation.

The attitude control hardware support system includes the control nozzles, plumbing, solenoid

valves, initiation squibs, etc. necessary for operation of the attitude control nozzles. The

12 nozzles and associated 24 valves are all permanently affixed to the four support ribs which

lie on the X and Y axis. The tanks for the cold gas system are two 12.25-inch diameter

titanium tanks containing Freon at 4500 psi. They are trunnion-mounted at two diametrically

opposed points which attach to a truss system mounted from the longerons and rings, utilizing
intermediate stiffeners and intercostals as required. The two tanks are located diametrically

opposite on the S/C to maintain better mass property control.

The meteoroid bumper structure is a multi-functioning structure in that it takes advantage of

the attaching thermal super-insulation blanket as an outer bumper. The bumper structure

itself is a polystyrene foam-filled aluminum sandwich structure which extends across the

lower end of the S/C to protect the propellant tanks from puncture during transit. Thus it is

a three layer structure as shown in the following Figure 3-8. An additional function of this

bumper is to provide a distortion-free, vibration-free mounting surface for the cruise sun-

sensor and the mid-course engines.
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Figure 3-8. Meteoroid Bumper

3.1.4 SPACECRAFT ADAPTER STRUCTURE

This structure serves to transmit all primary loads thru the overall flight spacecraft to the

launch vehicle adaptor at the field joint at Sta. 0.00. Loads are distributed to this adaptor

at the spacecraft/launch vehicle separation plane at Station 3.5 in as uniform a manner as

poss_le through the continuation of the support structure skin. This structure is basically

a monocoque conical frustrum designed by the high bending load of condition 3b (reference

Table IV of Appendix). The aforementioned joint structure contains the expansion of the

encapsulated MDF so that the impulse energy severs the skin rather than being dissipated

elsewhere. This structure is then an integral and critical part of the separation reliability.

3.2 SPACECRAFT SCIENCE PAYLOAD STRUCTURE

3.2.1 PLANET SCAN PLATFORM

This package is provided as a complete unit, and therefore the primary concern is the inter-

face and provision of rotation mechanism. The package structure itself is designed to be tied

down for boost loads and is sufficiently stiff to provide alignment. The rotating interface is

similar to that shown for the high-gain antenna.

3.2.2 BODY MOUNTED SCIENTIFIC INSTRUMENTS

Mounting surfaces for any scientific instruments necessary for the Voyager mission are

discussed in Section 3.1.2 and Section 3.1.3.

3.3 SPACECRAFT RETROPROPULSION STRUCTURE

The propulsion system is discussed in VB238FD101 and this discussion will be of a prelimi-

nary nature. Refer to Figure 3-4 for a sketch of the propulsion unit integration into the

spacecraft.
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There are 12 spherical tanks which are trunnion-mounted, comprising 4 tanks containing

liquid fuel and oxydizer, 4 tanks containing hydrazine for midcourse and thrust vector control,

and 4 gas pressurant tanks. These tanks are symmetrically arranged about the roll axis

with the engine in the center and its thrust axis coincident with the roll axis. The tanks and

engine are joined by a truss and shear beam structure oriented radially at the mid-point of

each quadrant. Each of these four members then spreads out to a Y structure (plan view)

which picks up the equipment module at eight longerons (longerons 1, 2, 4, 5, 7, 8, 10, 11).

At the vicinity of the Y beam the pressurant and monoprellant tanks are located upper and

lower and are supported by truss members picking up the trunnion points.

Machined fittings attach to the eight longerons to transfer the primary propulsion module

loads to the basic structure. The multi-cell torque box longeron serves to distribute shears

and local moments to the rings which serve to react and redistribute these into the basic

shell, while the longitudinal loads are transmitted down by the longerons and partially dis-

tributed laterally to adjacent longerons less highly loaded.

Mid-Course Engines and Support are located at a radius of 50 inches on the principle space-
craft (X & Y) axes and are mounted on the meteoroid/thermal shield at Station 3.5. The

engine mount fitting is a tension cone, (see Figure 3-7) with highly reflective surface insula-

tion on the interior surface. The joint between the mount and the honeycomb is provided with

adjustments for aligning the engine thrust axis.

3.4 SEPARATION SYSTEMS (REFERENCE FIGURE 3-4)

The spacecraft Launch Vehicle separation system is an encapsulated mild detonating fuse
(MDF) employed at Station 3.5 and provided with two initiators. The fuse is confinea between

the skin and a segmented ring structure. Upon initiation, the elastomer tube jacket encap-

sulating the charge transmits the parting and separating force to the skin structure and

ruptures the skin where is has been sculptured to control and provide a preferred separation
plane. The segmented ring structure which also contains the initiators, remains with the
booster.

The spacecraft/flight capsule biological barrier (lower section) separation comprises captive

separation units on the six flight capsule attachment bolts, at the interface at Station 59.0.

The six units are connected by a manifolded line to a pressurized gas bottle, and actuated by

two squibs connected in parallel which release gas pressure to the units (See Figure 3-9).

Belleville washers are provided at the separation joint, imparting the required separation
velocity.

4.0 INTERFACE DEFINITION

4.1 OPTICAL

The optical interface with the structure is defined as tl_ intersection of the structure with

the fields-of-view of the sensors and antennas. _(Reference VB220SR102)
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J SQUIB INITIATED VALVE

_- PRE SSURE GAS TANK

Figure 3-9. Biological Barrier Manifold Separation System Schematic

4.2 MECHANICAL

The mechanical interfaces are located so as to satisfy equipment location requirements and

to facilitate manufacture, assembly, and minimum weight design. Some of the mechanical

interfaces are defined by VB220SR102, VB220FD105, and VB220FD106. The specific inter-

face location of the structure with a component is described in Section 6.

The structural subsystem includes all of the vehicle structure, except that which is internal

to a subsystem component. Every component has a definite interface with the structure, which

is most cases will be a mounting surface. The structural subsystem will thus be responsible

for introduction of loads to the individual components, and in most cases the component

structure will accommodate the imposed load environment. In some cases, the desire to

make certain structures be multi-functioning (e. g. the equipment modules, the solar array

support, etc. ) will make the interface less clear and the structural subsystem then includes

the internal structure of these components as they affect overall structural load paths.

4.3 ELECTRICAL

The structural-electrical interface is limited and, in fact, is confined to the measuring de-
vices to determine vibration and acceleration data. These consist of 18 vibration pick-ups

and associated wiring to the Centaur T/M system.
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4.4 THERMAL CONTROL INTERFACE

This will consist of an attachment system for insulation blankets, thermal shutter support

and insulation for portions of the structural system which pierce the insulation blanket.

4.4.1 SHUTTER SUPPORT

This bracket introduces the loads from the thermal shutter system directly into the longeron

through nine of the vertical attachments along the edges of the E/M shear panel.

4.4.2 THERMAL LNSULATION SUPPORT

The insulation is supported by the basic shell wherever feasible, in which case the support

is the attachments which hold the superinsulation blanket. In the instances where the basic

shell cannot support the blanket with the necessary spacing of attachment, a separately

provided framework supports the blanket during boost load environment and transmits the

load to the basic structures. The superinsulation blanket completely encloses the exterior

surface of the S/C support cone and will have the 24 support ribs protruding through it. The

mating surfaces of the exposed structure and the basic shell are separated by insulatien

strips of Textolite or Fiberglass and, if necessary, the attachments will also be insulated

with non-conductive bushings and washers. This applies to attachmentof the support ribs,

the Station 20 ring, and the S/C adapter at Station 3.5.

Two solar panels (radial element 2S to 3S in Quadrant I) are removed to accomodate the in-

stallation for the intermediate-gain antenna. The surface area of these panels is covered

by a fiberglass panel to shade the E/M radiation surface area and flight capsule from sun

impIngement.

4.5 RADIOACTIVE OR NUCLEAR RADIATION

_pp,._u,,x_y'-"-- to the _-_-....-_,,-ol............... m,hQyqtam is limited to the effects on mechanical properties

of materials, metals and non-metals. Radiation levels encountered are not sufficient to

effect the metals used in S/C construction, but the effect on insulating materials, lubricants,

etc., has been investigated in a preliminary nature.

5.0 PERFORMANCE PARAMETERS

The usual performance measuring parameters of a structural subsystem are the weight in

relation to the loading index as compared to cost, ease of manufacture, structural in-

tegrity (reliability), state-of-the-art, etc. Design constraints such as compatibility of

1971 E/M with the 1969 test shot shroud, number of load introduction points at interfaces,

etc. serve to influence the efficiency of a specific structural design and make comparison

of one structure to another difficult. An absolute measure of performance is the ratio of

operating stress level to material allowable stress which is easily obtained for tensile

loadings but much more complex for components critical for stability modes of failure.

Another measure of performance is the natural frequency of the final structural design as

compared to other designs.
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A discussion of the constraints on structural design performance and general philosophy con-

cerning overall structural optimization is presented in Volume B., (VB235AA102), and

absolute measurements of performance are evidenced in the supporting structural analysis

in the Appendix to Volume A.

6.0 PHYSICAL CHARACTERISTICS

The general structural arrangement is shown as Figure 3-4 (ref). Detailed drawings of the

Capsule Support Cone structure, the Equipment Module structure and the S/C Support Cone

& Adapter structure, have been shown in Figures 3-5, 3-6, and 3-7, respectively.

A summary of pertinent structural component details such as material, geometry, and

method of manufacture along with references to the pertinent text, drawing, or calculations
shown elesewhere in the report is presented in Table 6-1.

7.0 SAFETY CONSIDERATIONS

Safety considerations related to the structure include design factors of safety, toxicity of

materials, methods of assembly, location of work platforms, eliminating sharp edges and

corners, and the like. Design factors of safety have been accounted for in the analysis,

and material selection presents no problem to date. The other factors are taken care of

with proper attention during detail design.
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TABLE 6-1

Fu_tiona[ Description Number _d Name

3. i Spacecraft Bus Structure

3.1. i Capsule Support Structure

Basic Structure

interf_e Rmg

Longerons

Skin Panels

Aft Closing Ring

Equipment Support

CanOlYaS Tracker Mo_t

Approach guid_ce sensors mount

High-gain _tcnna tie_own

Thermal Control interface

insulatinn Attachment

Capsule Sep_ation S/C V Motor Support

Pl_et Scar Platform Support

3.1.2 Equipment Module Structure

Basic St_cture

Ringu

l_ngerons

Front cover plate

Propulsion Module Support

Electronic Package Structure

lnt,.rnal b_r ucture

inner Panel

Electrical Co_ector Support

Antenna Actuator Tie-Down

Thermal Control Interff_e

Shutter Support

Insulation Support

Pipet Scanner Support

Electrical Harness Support

3.1.3 S/C Support Structure

Basic Structttre

l_or wm'd Ring

Conical Shell

Aft Ring

I_ngerons

Solar Array St_cture

Solar Panel Structure

Solar Panel Support Ribs

Iligh_gain Ante_a Support

a. Pivot rod support

b. B_st load support

intermed. Gain Ante_a b_apport

Low-Gain Antenna Support #1

Low-Gain Ante_a _upport #2

V. H.F. Antenna z#apport

Launch Antenna Sopport

Mngnetometer Support

Attitude Control Hardware

Acquisition Sensor Support (4)

Solar V_e Support

Guidance and ContTol Equipment

Cold Gas System

a. Tanks

b. Supports

Cruise Sun Sen_r Mount

Mid-Course Prop• Systm. Interface

qhermai Control Interface

rhermal Insulation Support

tleater System

Meteoroid Bumper

Spacecraft Adapter Structm-e

Forward Joint

Basic shell

Alt Field Joint

Scparatmn Joibt Startle

3.2 S/C Scie_e Payload Structure

3,3 s/c Prop_lsinn Module Structure

Tanks and Support Fittings

Mare Propellant Tanks

Mid-co_se System Tanks

Pressurization Ta_ks

Main Support Struet_e

Retro Engine and Support

Mid-Course Engines and Support

NOTES:

1. N/A - Not Applicable

2. NP - Not Provided

3. SA - ,_e Appendix

Location

rein • or Rad

Axis Station Element

0-59 N/A

49 -59 N/A

49-59

4O 59 N/A

N/A 46-59 Eq. bpace

N/A 46-59 N/A

5O 46 N/A

48 47 IV;IlL

48 47 Ill;7L

45 49 ll;3 L, bL

47 5O I L

4O 64 46-59 lit; 9S

2O-46

47 2O-46 N/A

49 2O-46 Eq. Space

5O 2O-46 N/A

34.9

444_50 _4-42 N/A
Z0-46 N/A

46 4.5 20 N/A

52 46 h2L

100 _1-45 N/A

Entire _urrace

5O Z0-46

46.2 4.2-2O

N/A 5.7 -2O

49 2O

56

-- 8-2O

50-117 8.5

50-117 8-2O

105 35

Same as above

72 l0

83 10

167 8

114 10

112 8tl 5-178

119 l0

100 10

117 10

47

53 5

50 10.0

N/A N/A

5.8 3.7

55 5.7

N/A 0to5.7

6O 0

5S 3.5

24.0 36

29.5 18.7

32.0 50

53 (to head

end)

50" lo,o

I11; 8L-9L

N/A

N/A

N/A

N/A

N/A

Eq. Space

N/A

N/A

15° spacing

I; 35

If; 4L

I; 2L-35

lIl; 9S-9L

IV-1

1; 12 L-IS

[; as

ll; 5L

X & Y Axes

X&Y AX_s

llI; 9S

1 & 1II; 2g, 8S

on X axis

x&Y _.xes

N/A

N/A

N/A

x&Y

All quads

All quads

Figure

or sketch

Ref, No.

3-4 Mostly Ainm.

-5 High Strength

Alumin_

7075-T6

3_-5

3 -6

3-6

3-7

3-7

34

:_d-7

3-7

3-4

r

3-4

Mater inl Physical Geometry

2024 - T3

2219 - T87

Org_ie

2024-T3

2024-T3

7075-T6

7075-T6

HM21A-T8

AZ3IB

AZ31B

202,I-T3

Ftberglass

N/A

2024-T3

AZ31B-H24

7075-T6

Aluminum

2024-T3 core

2024-T3

2o24--r3

2024-T3

6A L-_V Tit-Ann•

zvz_-Iz

2219 T87

e024-T3

2024-T3

2024-T3 faces

Alumin_

7075-3"6

ritanium

6A L-4VTi -

165,000 yield

i65,000 yield

6A I,-,tV Ti-

Annealed

Ik,ryllium

Ik ryllium

Supporting

A_lysis

Reference

See Separate components

_c 1°
Conical ",mi-mo_coque (37_ half angle)

Conical Scmi-monocoquv (371 half-_gib) SA
2

: Scalloped I-Sectlon approx.4x2x, l0 SA

.081 Hat _,etion Ixl•bxl,5x I SA

.972 (beaded at mInimum spacing) SA

.O80 Angle 1.5 x 1.5 SA

Flanged open box with smgin mo_tmg

surface

Flanged oi_m box with two mounting surfaces

Snubbing bl_ks preloaded in compression

4 In. dis. sphere with _zzle

4 in. wide box beam,. 040 sheet and

lxl×.08 angle

12-sided ring, 6" radial dcpth. 26" long SA

6 x 1.5 x ,080 Ch_nel Section SA

Muitieell box section . 06O Wall Thickness SA

.058 ib, thick SA

One bolt bathtub 3" x 1.5" x 1.5" x. 15 NP

()pen Face box 1.09" deep x 6 x 18 x .064 NP

,060" thick NP

.060" thick NP

•10 thick semi bathtub fitting NP

,080" x 2 x I _gle with gussets

N/A N/A

• 080 lug fittings to accommodate shear pins NP

•040 skin stiffened by flanged lightening holes NP

o

Semi-Monocoque Cone (26,_ half angle) SA

2 x 1.5 x .080 angle SA

• 064 (beaded at minimum spacingl SA

2 x 1.5 x 080 "T" section NP

Tapered Channel (Approx• 2 x 2 x 2 x. 09 max)

Disk (i0' i_er dia. -18' outer dia) 12" SA

50 m thick honeycomb - fiberglass faces

"T" caps. 70 x 1.5 x . 06; . 016 in, shear x_eb SA

6" deep Hanged channel NP

Pre -tension mechanism attacks to _tu_a feed

2 5" deep chapel beams mounting ring

7" long tube with swaged end fittings

10" long tube with swaged end fittings

l)ag -_]po Fitt ulg

Sheet Metal Bracket (. 050 m. )

2" dia. Tubing 63" long

• o60 br anketry

• 060 Box N P

Double hingc bracket SA

12.25 in.din, spherical trunnion mounted 2 pies NP

• 060 ot>x _i_h lluugt-d iiBh/c,,i,_ b_lt-s NP

31o_tlng Plato Box _iib Ribs and Gussets NP

Conical Structure Attaching to Meteoroid NP

Bumper

Angle Support Bracketry --

1.0" thick honeycomb with foam core SA

2 rows of 3/t6" hi shear rivets in .08(I sheet

• 072 skin

• 18 in. flange; (48 _ " bolts)

.20 in thickness

See text

30.25 m dia spheres - trunnmn mtd.

t_ (21 places

18.38 india spheres -trunnionmtd2 [)laces

17.0 in. dia. spheres-trunnionmtd2 places

t8.7

Truss-beams

15 in. dia ring

SA

NI'

Probable

Method of Manufacture

Assembled in master jig

Machined from roll ring forging
Machined from bar

Die formed

Machined

Mach reed bar

Machined weldment

Mounting surface machinedlrom bar

Extruded caps and sheet riveted

Assembled in master jig

Machined from roll-ring forging

Welded extrusions

Sheet stock

Machined from bar stock

Machined from plate

_eet stock

Brake-formed sheet

Machined from bar

Laminated lay-up

Math reed bar

Rolled sheet riveted to end rings

Machined from roll-ring forging

Die-formed

Machined from roll ring forging

Mach med from bar

Bonded sandwich

Extruded caps riveted to sheet web

Built-up formed sheet metal

Machining

Beams are formed sheet metal, and

mounting fl_ge is machined

Machined from bar

For nmd/r iveted

'rubmg with swaged end fittings
Formed sheet metal

Budt up formed sheetmetal

2 machined forging domes (weLded}
F.rmcd _¢_..cct mcta !

Machined Weldment

Sp_ Ainmmum

Bonded sandwich

Machined from roll ring forging

Machined from roll ring forging

X:achined from roll-ring forging

2 nntchtned t,n gilxg domes xseldccl

2 machined forging domes welded

2 machined lnrging d,,mes w,dded

W_.hb,d or brazed

m:,ehmcd from lvrgm d
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APPENDIX

I. SUPPORTING STRUCTURAL ANALYSIS

1.0 SCOPE

The analytical substantiation of the structural design of the preferred Voyager 1971 Spacecraft

is presented below. The analysis is based on state of the art preliminary design analytical

methods and construction practices, and is performed in sufficient detail to size main struc-

tural items. Conservative approaches have been taken to allow for a growth potential within

the specified weight limitations, and to further emphasize the structural integrity of the

design. The structure presented here will serve as a base for the computerized optimization

studies which will subsequently be performed.

In order to Introduce the basic design philosophy and the analytical approaches, a description

of the structure and primary load paths is given.

The meteoroid protection design and analysis and the dynamic analysis are presented as

separate entities at the conclusion of the stress analysis.

2.0 BASIC DESIGN PHILOSOPHY

Considerable attention has been devoted toward insuring that the flight capsule loads are

carried by the structure and diffused to the base of the spacecraft support structure with

the maximum possible efficiency, consistent with a minimum weight design. A major portion

of the analysis is to quantitatively evaluate the "shear lag" or load diffusion effect of intro-

ducing a concentrated axial load at one or more of the flight capsule support points and

determining the resulting load distribution at the spacecraft separation plane. An overall

objective is to obtain, within the limits of practicality, a resulting distribution that is uniform

for axially applied loads and conforms to elementary theory for bending loads.

The basic philosophy in the load diffusion design was to fully utilize the shear structure

required for other loading or thermal conditions. The axial or bending structural configuration

was then suitably adjusted to maIntain optimum stress levels In the longerons and stringers.

In this manner an acceptable load distribution was obtained at the base of the spacecraft

support structure with very little weight penalty Involved.

The shear structure is designed from considerations of the torsional accelerations (See

Table 4-1, Limit Design Loads, design load condition 2c as applied to the 75/77 mission

configuration) in conjunction with a "minimum gage" thermal requirement in the equipment

module section. The lateral vibration design load condition 3b of the 75/77 mission

configuration) is critical for the axial and bending structure and therefore is the only loading

condition to be considered in the load diffusion analysis. Only the most severely loaded

segment of the structure from the flight capsule interface to the base of the spacecraft
support structure has been considered.
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3.0 STRUCTURAL DESCRIPTION (REF. FIGURE 3-2)

In order to provide a torsionally shear resistant structure at limit loads and also minimize

the structural weight, 7075-T6 aluminum alloy panels, with minimum bead spacing, of gages

0.072 inch and 0. 064 inch respectively are required for the flight capsule support structure

and for the spacecraft support structure. Thermal conductivity requirements in the

equipment module section necessitated the use of 0. 055 inch minimum thickness of 7075-T6

aluminum alloy for the outer shear structure. This particular gage and alloy was selected

over others suitable for the thermal requirement, because of its superior bearing allowables

which minimize the number of attachments required for the removable panels. Functional

multiplicity is obtained by utilizing the module subassemblies as panel stiffners and thereby

insuring a shear-resistant structure at ultimate loads.

All structure with major axial load carrying requirements is constructed of closed sections

of 7075-T6 aluminum alloy to minimize the effect of flange crippling and thereby permit

higher operating stress levels. A beneficial side effect of such construction is the additional

edge restraint provided to panels critical from stability considerations. The lesser loaded

members in the flight capsule support structure and the spacecraft support structure are

constructed of open sections of 7075-T6 aluminum alloy to enhance fabrication.

While it is evident that the optimum structural configuration features direct load paths with

full section tension and compression capability, certain deviations from this philosophy were

necessitated by the packaging requirements of the equipment module and the overall assembly

and access requirements of the three basic sections of the spacecraft.

The change in direction of the axial load originating at the flight capsule interface as it travels

thru the spacecraft necessitates the inclusion of kick frames at stations 59, 46, 20 and 0. In

keeping with the conservative approach, all frame design is based on elementary theory, i.e.

rigid rings loaded via Mc/I and VQ/I distributions. In actuality, ring loading is dependent

on the shear lag effects of the structure and the relative stfffnesses of the rings and skins.

Inclusion of these refinements will allow further optimization of the sections chosen.

Preliminary analysis has shown that condition 3b of the 1975/1977 mission configuration

Induces the highest stress resultants in the rings, however, ring design must be consistent

with the shear transfer requirements of condition 2c. A frame of 7075-T6 aluminum alloy

at station 59 is subjected to a large in-plane kick load at each of the six flight capsule support

longerons in addition to in-plane loads at the shear pin locations. The design of this ring will

allow yield compression stresses in the inner flange with no crippling or lateral instability

of the section. The frame at station "O" is also designed to the same philosophy and benefits

from distribution of loads at the base of the spacecraft.

The upper and lower equipment module support frames at stations 46 and 20 are 7075-T6

machined channels. The geometry of the channel has been chosen to be compatible with the

electronic packages which provide the restraInt against lateral instability. An additional

ring is required at the aft support point of the solar panels to absorb the panel kick loads and

to serve as shear mounting structure.
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4.0 AXIAL LOAD PATHS

In order to fully clarify the assumptions made later in the detailed analysis, a description

of the axial load paths is presented.

One of the critical design parameters encountered in the determination of the structural load

path is the concept of modular._ty in the equipment section. This concept is enhanced by

minimizing the number of equipment modules within handling and servicing limits. The

choice of 12 equipment modules, mounted in twelve bays, allows for axial load to be transferred

and diffused only through 12 "hard" points. This is true even on the compression side of the

structure due to the required geometric mismatch of the shear panels of the three basic sections.

This limits the capability of the shear structure to act as effective axial structure except in

the spacecraft support structure where the interface configuration at station O tends to develop

the tension and compression capability of the shear panels. The net result of this is that the

axial loads applied to the six hard points at the flight capsule interface diffuse slowly through

the flight capsule support structure. This rate of diffusion could have been increased by

adding additional area to the intermediate stringers, but only at the cost of a considerable

weight penalty. The same condition exists in the equipment module section with loads tending

to equalize between adjacent longerons. The shear structure between station O and station 20

is effectively used as axial structure resulting in a favorable distribution Of loads even though

the length of the section is relatively short.

5.0 LIMIT DESIGN LOADS

Limit design loads used to design the structure presented in the preferred 1971 spacecraft

configuration are given in this section. Axial tensile and compressive forces, transverse

and maximum running skin shears and overturning and torsional moments have been evaluated

at discrete vehicle stations. A lumped parameter approach has been taken in that loads from

steady state accelerations have been derived with masses for two spacecraft configurations

introduced at their respective C. G. 's as shown in Figures 1 and 2 of Table I-1. The most

adverse C.G. location has been assumed for the capsule. The dynamic model is more detailed

and includes the flexibility of the propulsion unit. Details of the dynamic model and analysis

are given in the dynamic analysis section.

The basic environmental conditions are given in the structrual design criteria specification

VB235FD103. The four design load conditions given in the specification are expanded to nine

conditions when the quasi-static ahd dynamic loads are combined in the required manner.

These nine conditions are listed in Table 1-1. All load factors and forces given are limit
and are taken in combination.

Given in Table 2-1 are dynamic loads due to a unit sinusoidal vibratory input. These loads

are the results of the second iteration analysis of dynamic response as influenced by the
stiffness of the support structure. Structural stiffnesses used in this analysis are from

structure designed using dynamic responses analytically obtained from a first cut structure.

Good correlation of dynamic loads from the first two analysis was evidenced and the design

loads presented here are quite indicative of the loads that will be obtained from more
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Table I-i. Limit Design Load Factors - Inputs at Base

Design Load

Condition

la

lb

2a

2b

2c

3a

3b

3c

Quasi-static-g's

Longitudinal Lateral Longitudinal

0.8

1.2

1.6

4 1.6

Vibratory (0 to Peak g's)
Lateral Torsional

(Radians/Sec 2)

0.5

0.75

6O

1.0

6O

CAPSULE

STA 122 slug ft 2

STA 59

CAPSULE

I SUPPORT "kN
STA 46

,, . _ L

MODULE STA 20-1 Z000_I

SPACECRAFT -'-'----'_ I

___ SUPPORT STA 8// 500# , STRUCTUREdTA 0 /--'_ _.

4_----T p p

v -.----2---_p t V_p t

• Includes 3500 lbs. for ** Includes 500 lbs for

propulsion Propulsion

Figure i. 1971-1973 Mission

Configuration
Figure 2. 1975-1977 Mission

Configuration
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refined analysis. Never the less, a subsequent dynamic analysis has been performed

utilizing the structural stiffness of the preferred 1971 design, and is the last iteration

performed for this study. These latter dynamic loads given in the dynamic analysis section,

which will serve as a basis for initial Phase IB design have not as yet been incorporated into

the design.

Loads at two frequencies in each of the torsional and longitudinal modes are given for the

1971/1973 configuration, reflecting the modes governed by the propulsion mass and the lander

mass respectively. The highest load at each station from either frequency is taken as the

design load. The fundamental system mode is critical for lateral loading at all stations.

Tables 3-1 and 4-1 list the resulting forces at the interfaces. The tensile and compressive

axial forces reflect the vibratory nature of the loads and are not taken in combination with

each other, but are combined individually with the other forces.

The present design philosophy is to design a single structure compatible with all mission

configurations. Therefore, critical loading conditions are obtained from either table and
can be intermixed from one station to another.

Table 2-1. Summary of Dynamic Loads Due to Sinusoidal Vibration

A. Axial Vibration - lg (0 to Peak) Base Excitation

Config-

uration

71/73

Frequency
CPS

30.7

98.8

70.375/77

S.

Sta. 59 Sta. 46 Sta. 20

LOADS - lb.

Sta. 0

2200

23000

47000

22000

23000

47000

39000

24000

52000

40000

26000

53000

At Propulsion

Syst. Supports

Acceleration

36000

2500

Torsional Vibration - 1.0 Radian/sec 2 (0 to peak) Base Excitation

Capsule Propulsion

Lander System

- g's

0.97 10.76

10.0 .93

10.57

71/73

75/77

TORQUE - in. - lb.

35.2 1550 1550 37000 72700

147.2 37500 37500 46000 54800

65.8 200000 200000 206000 212000

Lateral Vibration -1 g (0 to Peak) Base Exc_ationCo

69700

2600

1900

RADIANS/SEC 2

0.47

11.4

10.3

10.4

0.38

71/73 32.2

75/77 23.8

6of146

S - SHEAR LBS; M - BENDING MOMENT in. lb.

30000 61000 63000

2100000

42000i

S 26000

M 1800000

S 40000

M 3200000 3800000

3600000

44000

4900000

4800000

45000

5800000

11.4

8.95

gl S
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Due to geometry, the frame at Station 46 is subjected to higher loading under

condition 3b than the frame at Station 20. This can be readily seen from

comparison of the loading parameter M tan_ for each ring.

M = applied bending moment

s angle of inclination of the longerons from vertical

At Station 46 i

M tan_ = 3.6 (lO) 6 (.675) = 2.43 (lO) b

At Station 20

M tan W = 4.9 (lO) 6 (.4245)-2.08 (10) 6

In consideration of the minimum :reasonable machining gages (.07) and the

minimum thermal requirement (.055 if 7075!-T6A1 alloy is used) both rings

are constructed of the same section. Therefore, the frame analysis is

performed only for station 46. Torsional loads are higher at Station 20,

and consequently this frame is analyzed for condition 2c.

METHOD OF ANALYSIS

As an example of the computorized methods of analysis available, the analysis

has been performe_umln_the Ge_r_ectric Co'sMASS computor program.

This program is based on the Matrix Force Method of analysis and is readily

adaptable to any three dimensional space framework. Additional routines,

which permit the introduction of shear panels and bending plates in combination

with straight and curved members, can be used to allow a completely computorized

analysis of the equipment module and propulsion system support aasemblyJ

The program calculates deflections, loads and stresses in six directions. It

includes features for pinned and sliding connections anywhere in the structure,

unsymmetrical bending, distributed mass, eccentric connections, shear distortion,

variable material properties and loads, and thermal gradients through and along
members.

Some simplifying assumptions are made in the analysis, such as

i) A constant member section is assumed

2) Local loads from planet scanner, canopus tracker and other frame

mounted components are neglected.

3) Secondary forces from lateral bending and twisting of the

equipment modules are neglected.

In view of these assumptions, a cross sectional configuration giving the

highest compression strength utilizing the minimum manufacturing gage is

chosen for the frames and the resulting margins of safety appear generous.

I I I i I , i I i i , , i ,
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H METEOROID PENETRATION ANALYSIS

DESIGN PHILOSOPHY

Two sections of the spacecraft that would jeopardize the mission if penetrated by a meteroid
are the Equipment Module and pressure vessels.

. The electrical components in each bay of the Equipment Module are protected from

a radial impact by a double wall of. 055 inch thick aluminum and. 06 inch thick

magnesium. Components are protected from impact along the axial direction by the

capsule at the forward end and. 06 inch thick aluminum and a foam-filled bumper at

the aft end. Since a bumper is being employed, it is assumed there cannot be any

penetration through the interior face of the Electronics Module. Shielding from

longerons and other built-up areas has been neglected.

A preliminary analysis was performed for the extreme upper limit fluxes. The

results were such as to preclude the practicability of protecting against these en-

vironments. The reliability against meteoroid penetration is based on upper limit

fluxes for a cruise of 180 days and the nominal flux for an elliptical orbit of 30 days,

with the consideration that the probability of encountering the extreme upper limit

case will be factored into the overall spacecraft reliability analysis on the basis of

probability of occurrance. The travel time to escape the Earth's environment is

sufficiently small to neglect the near Earth flux. A reliability of. 995 against
meteoroid penetration is required.

e The pressure vessels present a special problem when designing against meteoroids

because it is not sufficient just to prevent penetration. Impacting particles can pro-

duce localized pressure stresses exceeding the design limit of the tank and causing
failure.

Since the tanks are to be designed to a 2.2 hazard factor as per VB235FD103

there is some inherent meteoroid protection. The additional thickness required by
the load factor will be neglected in designing a main protective wall. It will be

assumed that this will be sufficient to withstand any pressure increase and redistri-

bution of stresses that may occur due to spalling or penetration of the bumper.

It is assumed that there cannot be any penetration through the flight capsule or Equip-

ment Module. The only exposed area, therefore, is at the aft end. In orbit, after

the lander has been ejected, it is assumed that tanks are no longer pressurized and

any penetration will not endanger the orbital mission.
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A foam-filled bumper will be employed to ensure a reliability of. 995 against mete-

oroid penetration. The proportions of the bumper chosen are such that it ensures

meteoroid protection in addition to providing adequate bending stiffness to support

its own weight and the weight of the insulation blanket which is attached to it. A

honeycomb core concept has been avoided as it aggravates rather than aids in mete-

oroid protection.

SUMMARY OF DESIGN CRITERIA AND ASSUMPTIONS

1. Flux - Reference VB235FD103. Assume all hits are normal impacts.

2. Probability of penetration based on Poisson distribution.

-NAT
a. Probability of zero penetrations P = e

o
b. Assume area is total projected area.

3. Herrmann and Jones Logarithmic criteria

EI J3Ptv2]d \Pt] \Pt] 4 Htg

P = Density of meteoroid

vP_t = Density of target
= Velocity of meteoroid

H t = Brinnel No. of material

4. Penetration in thin wall material t = 1.5 1_

Penetration in 1" deep foam-filled sandwich structure t = . 33t =. 51_

Reference Frost, V.C. "Recommendations for Revised Meteroid and Penetration

Criterion" - Aerospace Corporation Memorandum. (A complete list

of references is given in VB235AA102).
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I. SCOPE

APPENDIX

STRUC TURA L DYNAMIC S

The major structural dynamics considerations associated with the design of the preferred

1971 spacecraft are presented in this section. The structural dynamics studies have been

carried out in sufficient depth to define the major structural design requirements and provide

a basis for more detailed design and analysis.

2. SINUSOIDA L VIBRATION

2, 1 MATHEMATICAL MODE LS

The basic structure recommended for the 1971 Voyager spacecraft has been designed to with-

stand the most severe loading condition combinations occuring during any of the 1971 through

1977 missions. Two mathematical models have been derived for use in determining the

limiting dynamic loads acting in the structure. One model is representative of the 1971-1973

version and incorporates a 3500-pound propulsion system and a 2300-pound flight capsule.

The other model is representative of the 1975-1977 version and incorporates a 500-pound
propulsion system and a 4500-pound flight capsule.

One basic spacecraft structure has been assumed for both models. The inertia and stiffness

characteristics of the propulsion systems have been based on representative configurations and

do not represent precisely any specific propulsion systems shown as typical in other sections
of this study.

All appendages have been treated as rigid attachments to the basic structure with the exception

of the solar array. The solar array has been represented by an annular ring, concentrated

at the radii of gyration and supported by springs which yield a component natural frequency

both along the Z axis and about the Y axis equal to the predicted fundamental frequency of the array

(approximately 12 cps).

The resulting models, which permit longitudinal vibration along the Z axis, lateral vibration

in the X-Y plane and torsional vibration about the Z axis are illustrated by Figure III-1. The

corresponding inertial and stiffness coefficient matrices are given in Tables III-1 thru III-4

for the 1971-1973 mission and in Tables III-5 thru III-8 for the 1975-1977 mission.

These models represent the final design iteration of this study and therefore the dynamic loads

and characteristics differ slightly from those used in the stress analysis section, which are
based on the previous iteration.
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2.2 EFFECTS OF TRANSIENT NATURE OF EXCITATION

The resonant response of a structure to a sinusoidal excitationoccurringfor a specific number

of cycles is a function of the level of damping in the s tructure. Based on the results of

vibratory testing of similar structures at GE-MSD, the proposed structure, having numerous

removable elements such as doors and equipment modules in parallel with the basic load paths,

is anticipated to exhibit a structural damping level of approximately 0.1. An approximation

of the ratio of the maximum transient response to the steady state resonant response as a

function of the number of cycles of excitation is shown in Figure III-2. The minimum number

of cycles of excitation is ten and occurs in torsion in the 40 - 160 cps range(l). As shown in

Figure IH-2, the resultant maximum response is nearly equal to the steady state response.

Therefore, for the purposes of this study, the discrete transient vibration input levels have
been treated as steady state levels.

i

©

r_

_1.01

©
r_

N .5

r_

r_

STRUCTURAL DAMPING: g=0.1

I I I I

0 5 10 15

NUMBER OF CYCLES OF EXCITATION

Figure ITI-2. Maximum Transient Response of System as a

Function of the Number of Cycles of Sinusoidal Excitation

(1)Reference Table
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2.3 ANALYTICAL APPROACH

The normal modes, natural frequencies and dynamic response of the models have been

determined using the modal analysis approach outlined briefly below:

The normal modes and natural frequencies are determined by solution of the standard

eigenvalue problem. The dynamic equilibrium equations for free undamped vibration can

be expressed:

l l+
m = inertia matrix

k = stiffness matrix

{q } displacement vector

Assuming harmonic motion, equation (1) can be written:

(i)

where:

IA] = [In] -1/2 [k]Im]-l/2

2
k = u_

lq} = Iml -1/2 IYl

(2)

The application of a diagonalizing technique (the Jacobi Method) to matrix A results in

two matrices; one of which is a matrix of normal mode shapes (as columns) and the other

a diagonal matrix of the squares of the modal frequencies.

The response to sinusoidal excitation (amplification factors) were determined from solutions

of the following equation:

where:

[4 F]

m*] = d Tm_ = Unit Matrix
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2 _ = % structural damping

k* = d TKd

I_] = modeshapes

Modal forcing function

The solution of Equation (3), assuming harmonic motion, can be written as follows:

• x2
Q

(3)

where

XR} = Real Displacement

:[_k-I_2)2+ (2_l) 2 (_X. 1/2) 2]-1 k- It_ 2) FR* ] (4)

XQ : Quadrature Displacement

[_] [(_,-- I_2)2 + (2{_)2 (_kl/2) 2]-1[- (2_, (_ kl/2 FR,]

The corresponding load distributions were calculated as follows:

(5)

F_ = Real Forces

FQ : Quadrature Forces

}= [k] ] Q

: _ shear & }Forces tmoments For the lateral analysis

= Torques for the torsional analysis

(7)

The real and quadrature forces were summed by a suitable matrix developed for each

model. The total loads are given by the relationship:
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Ftotal

location

+ 2_(_ FR}2 (_ FQ} (8)

2.4 RESULTSOF ANALYSIS

Fixed-free mode shapes, natural frequencies, responses and load distributions are given in

TableIII-9 for the proposed 1971 total spacecraft. These results are based on sinusoidal

excitation of lg lateral-along X axis, lg longitudinal-along the Z axis and 1 rad/sec 2 about

the Z axis, input at the launch vehicle - spacecraft interface.

The corresponding results for the model of the 1975-1977 spacecraft, based on the same

basic structure, are given in Table _H-10.

The sinusoidal excitation specified for preliminary design purposes results in dynamic

loads which contribute a major part of the total load distribution in the structure. These

loads appear to be overly severe and should be re-evaluated during the next phase

of the program. The final structure design loads should be the combined quasi static and

dynamic loads derived by "flying" a mathematical model of the spacecraft-launch vehicle

total system through the limiting launch environments.

3. RANDOM VIBRATION

The estimated random vibration occuring at the spacecraft-launch vehicle interface during

launch, 0.07 g2/cps, is less severe than the sinusoidal vibration design environment and

did not influence the preliminary structural design. The effect of the random environment

on components requires investigation during phase lB. It is not anticipated that random

vibration will influence the design of the basic structure.

4. SHOCK LOADING INTRODUCED BY PYROTECHNICS

The firing of pyrotechnics to separate the total spacecraft and shroud from the launch vehicle

and to separate the biological barrier and flight capsule from the spacecraft will result in

high amplitude, high frequency shocks. Test data for shaped charge applications has shown

typical shock pulses of several thousand g's amplitude and pulse durations of 0.1 ms in the

immediate vicinity of the shaped charge. As the resulting waves travel through the structure,

the filtering and attenuation action of the structure results in the waves decreasing in amplitude

and increasing in period. The characteristics of the waves are a function of the type of pyro-

technic devices employed.

Past experience has shown that shock loads due to pyrotechnics are not normally limiting for

basic structure or component support structure. However, the effects of these shocks on
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components contraining relays, brittle elements or other highly susceptible parts must be

carefully investigated during phase lB.

Since analytical techniques in this area are still open to question, they must be supplemented

by test data. Data is available from similar structures for use in preliminary evaluation

during phase lB.

5. TRANSIENT LOADS ACTING ON DEPLOYED APPENDAGES

Following separation from the launch vehicle, the spacecraft, with deployed appendages, will

be subjected to transient loads resulting from operation of the attitude control jets, firing of

the midcourse and retro propulsion engines and separation of the biological barrier and flight

capsule.

The small accelerations resulting from the attitude control jets will introduce negligible loads

in the deployed appendages and the associated supporting structure. The high frequency accel-

erations due to pyrotechnics will be essentially filtered out by the low frequency deployed

appendage s.

The simultaneous firing of the midcourse and retro engines will produce a maximum thrust

vector of approximately 2200 pounds, resulting in a maximum acceleration of one g for the

total spacecraft. It is anticipated that the initial th_ust over shoot of these engines will be

small. However, because of the short rise time of the thrust, it has been conservatively

assumed that a two to one amplifiuation can occur for the deployed appendages. Therefore,

all appendages deployed during the firing of these engines have been designed for 2.0 g along

the longitudinal axis in the deployed configuration.

6. SERVO-ELASTIC COUPLING BETWEEN AUTO PILOT AND STRUCTURE

To avoid the potential problem of severe servo-elastic coupling between the attitude control

system and the low frequency elements of the spacecraft, such as deployed appendages, these

elements were designed to have all fundamental frequencies above the control system cross

over frequency. An initial target of 10 cps was established to provide a wide margin for

preliminary design purposes. However, during the study it was found that several elements

could not be designed to meet this target without penalizing the design. The element exhibiting

the lowest natural frequency is the high gain antenna which is estimated to have a fundamental

frequency of approximately 3.2 cps due to flexibility of the flexible pivots. Analyses of

the fundamental frequencies of the planet scan package and the high gain antenna are given

following this section.

Further analysis during phase 1B will be carried out to define the interaction of these with

the control system.
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(i08)

Stiffness Matrix

.344

-. 172

-. 172

.299

_.454/10 -4

m

Mass Matrix

• 746

• 943

.943

Table III-3. 1971-1973 Total Spacecraft

2,300 lb Flight Capsule

3,500 lb Propulsion System

-.454/10 -4

-.00412

-. 127

• 184

-. 0565

-. 0565

• 0565

.454/10 -4

1. 059

6.079

• 798

9.065

,°

Z 1

•°

Z2
•,

Z3

rT

"'4

••

Z5

Z6

•°

Z
7

-. 00412

.00412

IZ
I 1

I z2

Iza

[z4

[z5

Iz6

, •

Spring
Forces
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TORSIONAL

(lO11)

(104)

St_fnessMatr_
m

.592 -.256

-.256 .378

-.122

m

Inertia Matrix

5812

• 2360

Table III-4. 1971-1973 Total Spacecraft

2,300 lb Flight Capsule

3,500 lb Propulsion System

-.122

•247

-.122

-. 00337

-.122

.205

-. 0830

-. 0830

• 0830

-.00337

.00337

.2360

•2660

.3290

.595O

-- B m

o•

Ozl
oo

oo

z3

Oz4
°o

ez5
.o

e
z7

n _

0
zl

0
z2

Oz3

ez5

e
z7

= Spring

Forces

= Inertia Forces
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LONGITUDINAL

(lO 8)

StiffnessMatrix

• 344

-. 172

-. 172

• 299

-. 127

-. 454/10 -4

Mass Matrix

.746

• 943

L

Table III-7. 1975-1977 Total Spacecraft

4,500 lb Flight Capsule

500 lb Propulsion System

-.127

• 255

-. 127

-590/10 -3

-.127

.184

-.0565

-.0565

.0565

-.454/10 -4

.454/10 -4

.943

1.059

11.77

.798

-. 590/10 -3

• 590/10 -3

m

Z 1

Z 2

Z 3

Z 4

?

= Spring

Forces

Z 1

.Z.2

z
Z 5

= Inertia Forces

135 of 146



VB235FD102

TORSION

(lO11)

(104)

Stiffness Matrix

• 592 -. 256

-.256 .378

-. 122

m

Inertia Matrix

.5812

.2360

Table III-8. 1975-1977 Total Spacecraft

4,500 lb Flight Capsule

500 lb Propulsion System

-.122

.245

-.122

-.000479

-. 122

• 205

-. 0830

-.0830

.0830

-.000479

.000479

m

.2360

.2660

1. 920

.0850

0 '
z2 I

Oz3 i

Oz4 i

Oz5 i

b

.o

o
zl

0
z2 I

i
,o

0 'i
z3 ]

(}'z4 ] =
• . ]

0z5 i

= Spring

Forces

Inertia

Forces

136 of 146



Coordinate

X
1

8
yl

X
2

0
y2

X3

Oy 3

X
4

8
y4

X 5

Oy5

0
y6

X7

Lateral

Mode _nape s *

11. 997

-.000431

.0000126

-.000313

.0000130

-.000133

.0000135

.0000577

.0000138

.00114

.0000144

.0225

-.000146

,000145

Modal Frequency

30.36

.0131

.000232

.0308

.000477

.0951

.000875

.133

.00121

.283

.00219

-.0000429

.224

.00160

(cps)

36.04 45.18

-.0214 '-,00298

.000463 .000000146

-,0420 -.00646

.00108 .00000845

-.0442 -.0145

.00169 -.00000359

.00745 -.0371

.00212 -.000290

.242 -.111

.00340 -.00117

-.0000578 -.0000000111

-.234 .0527

.00465 .0144

Responses - (Amplification Factors)

I 122.3.132

-.00113

.262

-.00270

.410

-.00348

.564

-.00458

.0345

-.00997

.0000110

-.0492

.000550

Coordinate

X 1

-yl

X2

0
y2

X
3

O
y3

X 4

0
y4

X5

0
y5

ey 6

x 7

0
1,7

11.997 I

1.014

.0001!0

1.031

.000217

1.079

.000456

1.104

.000663

1.189

.00127

.00111

1.185

.000489

Forcm_ Frequency (cps}

30.36 ] 36.04 45.18

1,140

.09912

1.608

.0187

3.934

.0345

5.383

.0476

11.215

.0367

.00169

9.174

.0625

.861

.00407

.732

.00900

.639

.0148

.740

.0193

2.678

.0329

.000505

3.174

.0398

.899

.00107

.756

.00194

.316

.00374

.216

.00553

.690

.0113

.000081

1.088

.0074

122.3

1.736

.01'26

2.997

.0299

4.511

.0383

6.160

.0502

.388

.109

.000122

.543

.00604

* Fixed-free modes normalized to a modal mass of unity.

** Forces and Moments based on 1.g input at base, Torques based on 1.rad./sec 2

input at base.



Lateral

Forces & Moments**

Frequency(eps)

11.997 30.36 36.04

_hear Moment Shear Moment _ear Moment

(#) (in-#) (#) (in-#) (#) (in_#)

9,130 549,78(} 63,250 4,717,900 14,760 1,053,150

8,510 454,930 62,740 4,079,600 14,850 931,370

8,030 368,300 62,280 3,442,800 14,990 812,000

3,350 262,490 28,630 2,516,960 6,440 610,830

2,860 218,520 26,400 2,120,400 6,250 517,900

Frequency (eps)

45.18

Location b_ear Moment

(#) (in-#)

4,710 307,450

4,920 260,120

5,180 210,260

1,650 162,920

1,640 138,980

122.3

_ear Moment

(#) (in-#)

4,750 53,330

4,260 21,310

3,240 30,490

3,430 59,980

920 77,800

FORCE LOCATION DEFINITION

kS_RTION

5 _u

33" P

20"

[()

0
I .....

I

-_ T 10" 6

Coordinate 12.003

Z 1 .000297

Z 2 .000299

Z .000302
3

Z 4 .000303

Z 5 .000305

Z 6 1.119

Z 7 .000345

Respons,

Coordinate 12. 003

Z 1 1.007

Z 2 1.013

Z 3 1.021

Z 4 1.025

Z 5 1.031

Z 6 10.07

Z 7 1.167

Location 12. 003

1 13,630#

2 8,930

3 8,080

4 3,311

5 2,750

6 3,120

7 4, !80



VB235FD102

Table III-9. 1971-1973 Total Spacecraft -

Dynamic Analysis Results

Longitudinal

Mode _apes *

Modal Frequency tcps)

32.55 I 93.14 349.2

.00789 I .0527 .270

.0158 I .105 .484

.0264 .172 .601

.0271 ] .242 .522

.0283 I .383 -.125

-.00124 0.000890 -.000320

.331 -.0263 -.00573

!s - (Amplification Factors}

Forcing Frequency (cps)

32.55 93.14

1.032 1.648

1.124 2.872

1.320 4.596

1.355 6.415

1.423 10.125

.165 .0288

10.74 .708

Forces **

349.2

2.735

4.712

5.798

5.033

_205

i._033

.0555

Frequer :y Icps)

32.55 93.14

43,860# 32,400#

43,100 31,760

42,510 30,640

4,210 26,470

3,570 23,820

50 9

37,720 2,460

349.2

9,740#

8,920

7,190

4,880

2;820

!

193

Torsion

Mode _apes*

Coordinate

0
zl

0z2

Oz3

0
z4

0
z5

e
z7

Modal Frequency Icps)

36.88 116.98

.000135

.000310

.000674

.000692

.000707

.0129

Responses - (Amplification Factors)

.00160

.00350

.00712

.0102

.0130

-.000833

Coordinate

B
zl

0
_2

z3

0
z4

0
z5

O
z7

Forcin_ Frequency (cps)

36.88 116.98

1.023

1.060

1.189

1.223

1.251

10.894

1.866

3.583

7.091

10.137

12.882

.833

Location

Torques**

Frequency (cps)

36.88 116.98

83,440(#-in)

77,500

75,000

7,370

4,110

64,820

110,350(Z-_n)

99,500

91,050

69,350

42,383

4,962
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Lateral

Mode Shapes*

Coordinate

X 1

e
yl

X 2

0
y2

X
3

O
y3

X 4

O
y4

X 5

e
y5

0
y6

X 7

0
y7

11.997

-.000431 -.00101

.0000129 .000311

-.000312 .000895

.0000136 .000692

-.000100 .0360

.0000145 .00115

.000124 .0765

.0000151 .00155

.00138 .265

.0000171 .00284

.0225 -.000120

-.000110 .0534

.0000156 .00155

Modal Fre_uenc7

22.74 38.60

.0142

-.000114

.0297

-.000291

.0546

-.000402

.0497

-.000491

-.00457

-.000888

.0000121

.868

-.00149

(cps)

45.06

-.00332

.0000536

-.00667

.000128

-.00912

.000194

-.0114

.00136

-.0119

-.0000506

-.00000409

.0329

.0402

68.64

-.0572

.000324

-.120

.000859

-.228

.00107

-.3296

.00151

-.0924

.00597

-.0000102

.116

-.00821

Responses - (Amplification Factors)

Forcing Frec_uenc T (cps)

Coordinate

X
1

0
yl

X 2

0
y2

X 3

0
y3

X 4

0
y4

X 5

0
y5

0
y6

X 7

0
y7

11.997

1.005

.000350

1.014

.000773

1.067

.00134

1.122

.00181

1.339

.00321

.00349

1.173

.00144

22.74

1.030

.0103

1.051

.0229

1.561

.0382

2.701

.0512

5.765

.0940

.00395

2.327

.0510

38.60 45.06

1.069 1.041

.00236 .00154

1.153 1.061

.00554 .00336

1.202 .942

.00825 .00524

1.075 .901

.0107 .00716

.255 fln727

.0217 .0164

.000251 .000117

10.523 3.161

.0292 .0525

68.64

1.375

.00578

2.245

.0151

3.971

.0189

5.672

.0264

1.680

.102

.000181

2.027

.01435

* Fixed-free modes normalized to modal mass of unity.

** Forces and Moments based on 1.g input at base. Torques based on 1.rad/sec 2

input at base.



Lateral
Forces&Moments**

Frequencyteps)
11.997

Shear Moment_ear
(#! (in-#) (#)

8,860 857,490 43,530

8,240 766,090 43,050

7,740 682,260 42,760

6,700 580,390 41,200

6,210 492,380 40,080

22.74 38.60

Moment Shear Moment

(in-#) (#) (in-#)

5,762,900 6,600 284,860

5,321, 400 6,280 261,490

4,878,560 6,075 250,300

4,293,340 930 246, 100

3, 731,770 1, 160 232,730

Location

Frequency {cps)

68.64

Shear Moment

(#) (in-#)

45.06

Shear Moment

(#) (_n-#)

1,370 162,430

1,250 156,200

1,380 147,500

510 133,770

400 132,410

11,650

11,230

15,490

10,000

7,670

298,600

186,200

91,020

80,630

183,630

FORCE LOCATION DEFINITION

Coordinate 12.003

Z 1 .000297

Z 2 .000299

Z 3 .000301

Z 4 .000303

Z 5 .000306

Z 6 1.119

Z 7 .000344

Responses - (A2

Coordinate 12.003

Z 1 1.005

Z 2 1.011

Z 3 1.018

Z 4 1.024

Z 5 1.036

Z 6 10.06

Z 7 1.162

Location 12.003

1 12,400#

2 7,730

3 6,880

4 5,700

5 5,150

6 3,110

7 595
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Table III-10. 1975-1977 Total Spacecraft-

Dynamic Analysis Results

mgitudinal

_de Shapes *

Modal Fre_ _ncy Icps)

33.75 67.46

• 00347 .0385

.00694 .0766

.0116 .127

.0122 .177

.0135 .283

••000503 -.00126

•878 -.0433

Lplfication Factors)

336.3

.268

.484

.616

.547

-.0659

-.00342

-.00635

i

Forcing Fre

33.75

.047

• 096

• 162

• 223

• 350

• 152

Forces **

tuency (cps)

67.46

1.670

2.928

4.731

6.539

10.418

•0565

1.616

336•3

2.882

5.028

6.352

5.630

.679

!.00037

.0657

Frequem

33.75

4,305#

3,600

3,106

6,800

6,260

47

5,840
i

y (cps)
67.46

54,660#

53,940

52,770

50,192

47,480

20

800

336.3

10,450#

9,580

7,740

5,390

3,080

1

33

Tors_n

Mode Shapes*

Coordinate

0
zl

0
z2

0
z3

0
z4

0
z5

0z7

Modal Frequency (cps)

37.60 58.60

.0000662

.000152

.000331

.000373

.000429

• 0342

Responses - (Amplification Factors)

Forcing Frequency (cps)

.000634

.00145

.00311

.00472

.00687

-.00221

Coordinate

0
zl

z2

O
z3

0
z4

0
z5

9
z7

37.60 58.60

1.078 1.371

1.169 2.426

1.354 4.932

1.527 7.422

1.753 10.789

13.585 3.508

Torques**

Frequency (cps)

Location 37.60 58.60

1 51,090 (in-#) 252,530 (in-#)

2 44,820 244,500

3 42,060 238,840

4 37,710 226,900

5 33,650 207,160

7 1,155 298
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BY

CK.

DATE REV.

GENERAL 0 ELECTRIC
PAGE

MODEL

REPORT

CoMB/A/ED 32//#FI'- _EA,e FLEX/B/LIT/:

He= ,1._? X'/o-_-/-o, Y?3 x/o-_ o._7 XlO"_2AD
__ i/v Lt_

50P.PQ_P 7" ,_EA/,4 F,_CX/BI/ I TY :

.Te_,-' = AR e 2,Y,O.5-,.YIOX/Y.__._-/z= = _',OG t/V
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i
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VB235FD103

1.0 INTRODUCTION

This specification presents the basic requirements and environmental conditions deemed

significant to the structural design of the flight spacecraft. Its purpose is to insure structural

integrity to a uniform degree by providing the design conditions, requirements and objectives.

The emphasis in this document is placed on the detail definition of environmental factors and

the strength and stiffness requirements for the primary structural elements. The test con-

ditions, especially as they effect deployed appendages in a one G field and the vibration of

small electronic components and system vibration testing are treated in less detail as these

conditions constitute specifications of their own.

The most important restriction placed on this document is in its use in subsequent design

phases. This specification reflects the data available during the Phase IA study period and

the environmental conditions specified by JPL as a design base in Project Document No. 45-

Preliminary Voyager 1971 Mission Specification. Much of this data, especially the powered

flight environment, will be redefined during Phase IB.

2 of 20
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2.0 APPLICABLE DOCUMENTS

The following documents either form a part of this specifications or have been used for

background material in its preparations.

a. Specifications

VB220SR101

VB220SR102

VB220SR103

VB220FD105

VB220FD106

VB220FDl13

Design Characteristics

Design Constraints

Spacecraft Component Design Parameters
Launch Vehicle Interface

Capsule Interface

Layout and Configuration

b. Drawings

1. General Electric Company

(a) SK56152-423 Voyager Basic Geometry.

2. Military

MIL - HDBK - 5 Metallic materials and elements for

flight and vehicular structures -

August, 1962; including change notices

to May 1, 1964.

(b) MIL - HDBK - 23 Composite Construction for Flight

Vehicles - October 1962.

(c) MIL - HDBK - 17 Plastics for Flight Vehicles
November 1959.

3. General Dynamics/Astronautics

Report No. GD/A-BTD64-119 Centaur Capability Handbook.

4. General Electric Company

Structures Manual.

Structural Materials Data Handbook.
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3.0 DEFINITION OF TERMS

3.1 LOAD DEFINITIONS

3.1.1 LIMIT LOADS

Limit loads are defined as the maximum loads, +3or limits, that the structure is expected to

experience under specified conditions of operation, use, and possibly environmental testing.

All loads and load factors specified in this document are limit loads unless otherwise

specified.

3.1.2 DESIGN LOADS

Design loads are limit loads multiplied by an appropriate design load safety factor.

3.1.2.1 YIELD DESIGN LOADS

The yield design load shall be identical to the limit load with the exception that yield design

loads = 1.15 limit loads for structure critical in component alignment.

3.1.2.2 ULTIMATE DESIGN LOADS

The ultimate design loads shall be the limit loads multiplied by the appropriate ultimate load

factor. Ultimate design loads = 1.25 limit loads for powered flight and orbit conditions.

Ultimate Design Loads = 1.50 limit loads for handling, transportation and other conditions

dangerous to personnel.

3. I.3 PRESSURE LOADS

3. I. 3.1 OPERATING PRESSURE

The operating pressure is the limit pressure, namely the maximum anticipated pressure

including transient peaks and 3gvariations that a vessel will be subjected to.

3.1.3.2 PROOF PRESSURE

Proof pressure is the operating pressure multiplied by an appropriate hazard factor. It is

applied to a pressure vessel as a test at room temperature as evidence of satisfactory

workmanship and quanity.

3.1.3.3 BURST PRESSURE

Burst pressure is the pressure which the vessel must sustain, as a singular load condition,

without rupture. It is analogous to the Ultimate Design Load and is obtained by multiplying

the operating pressure by an appropriate hazard factor.
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3.1.4 ALLOWABLE LOAD (OR STRESS}

The allowable load (or stress} is defined as the maximum load that a particular element can

withstand and still perform its intended function.

3.2 ALLOWABLE STRESS DATA AND MATERIAL PROPERTIES

The allowable stress values and material properties used to substantiate the structural in-

tegrity of the spacecraft shall be obtained from:

a. MIL - HDBK - 5 Metallic Materials and Elements for Flight

Vehicle Structures.

Do General Electric Co. Structural Materials Data Handbook. If necessary, reference

may be made to other approved sources listing verified test results. Values used

must consider temperature and instability effects.

3.3 MARGINS OF SAFETY

Margins of safety are defined as M.S. = Allowable Stress (or Load) - 1

Design Stress (or Load}

Margins of safety may also be based on specified deflection limits or stiffness characteristics

as determined by alignment and dynamic characteristics. Margins of safety shall be inves-

tigated at both yield and ultimate load conditions. A negative margin of safety shall be deemed

indicatibe of a structural failure; i.e. the structural element is not considered capable of

performing its intended function.

3.4 COORDINATE AXES

The load factors given in this specification are oriented in respect to the axis shown in

Figure 3-1.

3.5 MASS DISTRIBUTION

The overall mass distribution for the various missions has been specified in the Voyager

mission specification. Detail mass distributions and CG locations shall be obtained from the

Voyager Weight Specification VB220FDl13.
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4.0 REQUIREMENTS

4.1 GENERAL DESIGNPHILOSOPHY

It is required that the structure shall possess sufficient strength, rigidity and other physical
characteristics necessary to insure that it survive the environmental and loading conditions
that occur during the mission in a manner such that the probability of successful completion
of the mission is not reduced. Consistant _ith the above, the structure shall also be designed
to achieveminimum weight wherever practical.

The structural design shall reach the upper limits of but not exceedthe current state of the art.
Reliability will be enhancedby the use of familiar design approaches, materials and fab-
rication methods, substantiatedby proven and acceptedanalytical approaches. Cost, safety,
humanfactors, accessibility, cleanliness, manufacturing and inspection ease shall be con-
sidered during design selection studies.

The structural efficiency, as measured against the critical flight and orbital conditions, will

not be compromised for pre-flight environments such as assembly, handling, and transportation.

The influence of these environments shall be limited by the specification of appropriate fix-

turing, packaging, and handling techniques. The structural efficiency of the spacecraft must

be measured against the design objective of utilizing one basic structure for all mission

opportunities encompassing various landers and propulsion system configurations.

4.1.1 YIELD STRENGTH

The stress in any element of the structure shall not exceed the allowable yield stress when

subjected to the yield design load. The entire structure shall be capable of withstanding the

yield design load without significant permanent deformation.

4.1.2 ULTIMATE STRENGTH

The stress in any element, when subjected to an ultimate design load, shall not exceed the

allowable ultimate stress. The entire structure shall be capable of withstanding the

ultimate design load without failure by rupture or instability, and without loss of mission

functional capability.

4.1.3 DEFLECTION AND STIFFNESS CRITERIA

The structure shall possess sufficient rigidity to permit successful performance and ful-

fillment of the mission objectives _ithout jeopardy from excessive deflections.

Deflections shall be considered excessive if they result in:

a. Significant unintentional contact between various spacecraft components

b. Excursions which exceed the limitations of the specified dynamic envelope.

c. Misalignment of structure and components such to affect performance accuracy.
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4.1.4 PRESSUREVESSELCRITERIA

In the interest of safety, a hazard factor shall be used in the design of vessels pressurized

in the vicinity of personnel.

For Design: Proof Pressure = i. 76 Operating Pressure

Burst Pressure = 2.20 Operating Pressure

An additional requirement is that Ti-6AL-4V Titanium alloy in the annealed condition is

specified as the material to be used for above designed tanks.

4.1.5 SPECIFIED MINIMUM MARGINS OF SAFETY

In keeping with the emphasis on high reliability, specific minimum margins of safety are

designated for structural elements known to be susceptible to random type failures because

of manufacturing and load distribution inconsistancies.

These are:

Structural Element Required M. S.

a. Fasteners in shear +. 15 (Ultimate only}

b. Bolts in tension (Eccentric load only} +. 50 (Ultimate only}

c. Fittings +. 15

d. Lugs +. 25

e. Welds - Electron Beam +. 15

f. Other welds +. 50

g. Bonded Joints +. 50

4.1.6 METEOROID PROTECTION CRITERIA

The governing criteria for evaluating the adequacy of the structural design for the meteoroid

environment shall be a specified probability of zero penetration (Po) for structure-enclosing

components whose failure through meteoroid puncture will Jepardize mission success.

Until the effect of this requirement on the overall mission reliability is assessed,

(Po) = 0. 995 for electronics and propulsion tankage.
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4.2 DESIGNCONSIDERATIONS

Details of the mission associated environmental loads are given in subsequentparagraphs.
The interpretation of these loads in formu]ating designparameters should include the
following considerations.

4.2.1 QUASI-STATIC LOADS

All quasi-static loads and the particular attitude of componentsat the time of their occurrance
must be considered. This includes both Saturnand Centaur thrust and flight maneuver loads,
spacecraft attitude and control thrusts, main orbit injection engine firing loads, andall
static tie downpreloads.

4.2.2 DYNAMIC LOADS

Analysis of the dynamic loads of the spacecraft shall consider the loads induced by the elastic
response of the entire flight vehicle in addition to the rigid body response to excitation.

The coupling of structural modes during launch, midcourse, and retropropulsion sequences
must be considered. During launch it is necessary to consider the dynamic structural inter-
action of the launchvehicle and the flight spacecraft. During mideourse and retropropulsion
sequencesit is necessary to consider the dynamic structural interaction of the flight space-
craft with its autopilot system.

4.2.2.1 TRANSIENT LOADS

The effects of all loads of a transient nature shall be considered. Included shall be suddenly

applied forces, acoustics, separation forces, and engine starting and cutoff transients.

For example the use of brittle materials and shock susceptible design concepts shall be
avoided.

4.2.2.2 VIBRATION LOADS

All aspects of the flight spacecraft design must consider the requirements which will arise

from vibratory environmental forces prevalent during the mission.

4.2.3 FATIGUE CONSIDERATIONS

Consideration shall be given in the design of spacecraft structure towards obtaining a good

fatigue design. Materials utilized shall exhibit satisfactory fatigue characteristics and care

shall be exercised to avoid excessive residual stresses and stress concentrations, and poor

surface finishes. Areas particularly susceptible to fatigue failure are components subjected

to repeated stress reversals such as may be induced by pressure cycling, sinusoidal, random

and acoustical vibration excitation and possibly thermal cycling.
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4.2.4 THERMAL CONSIDERATIONS

The degrading of material properties, the buildup of thermal stresses in restrained sections

and the adverse effects of thermal distortions shall be considered at each point in mission

time. Mating of dissimiliar materials with widely varing coefficients of expansion in locations

susceptible to high temperature variations will be restricted.

4.2.5 PRESSURE DIFFERENTIAL

Consideration shall be given to the sudden pressure drop occurring during the launch phase

of the flight due to change in ambient pressure. Adequate venting provisions shall be

included. Inadequately vented structure must be designed for internal pressure.

4.2.6 AUTOPILOT COUPLING

Of particular importance in the design is the avoidance of adverse servoelastic coupling of

structural elements with the autopilot system. To avoid degradation of the autopilot system

performance natural frequency requirements of space deployed booms and components will

be specified.

4.2.7 STRUCTURAL NON-LINEARITIES

The Voyager structure shall possess "linearity" to a degree which will allow accurate

prediction of its behavior at any time. Important types of nonlinearities which should be

avoided are adverse nonlinearities in energy dissipating mechanisms, mechanical back-

lash, and to a certain degree, elastic shear buckling in structural elements.

The separation joints shall be designed so that mating surfaces will remain in contact

during the application of the highest separation loads.

4.2.8 METEOROIDS

The possibility of hypervelocity impact of meteoroids on the spacecraft will be considered.

It shall be a requirement of the primary structural elements, augnmented as necessary

with additional bumpers, to provide the necessary protection to sensitive electronics,

mechanisms, and propulsion tankage.

4.2.9 STERILIZATION

It is not a requirement to sterilize the flight spacecraft; however, the influence of the

capsule sterilization requirements on the adapter interface design shall be considered.

For example, the use of materials compatible with ethylene oxide is mandatory in the

design of the capsule-spacecraft adapter, since an ETO purging operation can be expected.

4.2.10 MATERIAL COMPATIBILITY

The materials of construction will be carefully chosen for compatibility _ith the mission

environment. Materials with low levels of outgassing as demonstrated by laboratory tests
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and analytical studies will be used. Thesematerials will not suffer intolerable degredation

such as to jeopardize the mission, nor evolve fractions which could interface with sensors,

experiments or thermal control surfaces. In addition, the materials selected will have the

lowest possible magnetic permiability consistent with functional requirements.

Resistance to terrestial environments will also be incorporated into the design. Materials

which are corrosion resistant or have corrosion resistant finishes will be used. Recommended

practice for prevention of galvanic corrosion between dissimilar metals will be followed.

4.3 LOAD FACTORS AND ENVIRONMENTAL DATA

The following load factors and environmental data shall be used to design the Voyager flight

spacecraft structure. The weight of the structural elements themselves shall be included

in all analysis.

4.3.1 PRE-LAUNCH (SHIPPING, HANDLING, AND STORAGE}

The limiting conditions on the design of the spacecraft shall be the actual flight environments.

Pre-flight environments, such as assembly, handling, transportation, storage and mating
should not influence the structural weight of the flight spacecraft, but be used as a base for

the design of special handling fixtures and procedures that will insure structural loadlngs

that are less severe than flight loads. In most cases the environmental factors specified

below are not applicable to the entire spacecraft but only to discreet subsystem structural
c omponents.

4.3.1.1 STEADY STATE ACCELERATIONS

Nz N x Ny
a. Hoist & Booster-Spacecraft Mating -3.0 + 0.5 + 0.5

b. Air Transportation -3.62 + 1.82+ 3.62
D

e. Ground Transportation - Special handling procedures will be adhered to so that

above factors are not exceeded.

Note: The spacecraft is not complete when shipped (i. e., lander is shipped separately,
fuel tanks empty, etc. )load factors are taken in combination.

4.3.1.2 SHOCK

Shock loading transmitted to the spacecraft from the shipping container shall be attenuated such

that the loads in the vehicle structure do not exceed the powered flight loads.

A free drop of 1/2 inch maximum can be expected on the complete spacecraft under "normal"

handling conditions. Precautions must be taken during the mating procedure to limit free
drop to a minimum.
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4.3.1.3 VIBRATION

Vibration loads will be attenuatedby the shipping container so that the structural member

loads do not exceed those experienced under the launch load conditions.

4.3.1.4 TEMPERATURE

Temperature extremes of -80 ° to 125°F are to be expected during all phases of shipping,

handling, and storage. For the specific components that cannot withstand this environment,

special handling techniques and packaging specifications that limit the temperature ¢dll be

specified.

4.3.1.5 PRESSURE

Items may be stored in containers at 2.5 psig and 5 percent relative humidity referred to

70°F. Other items may be subjected to pressures of 15.4 to 10.2 psia (0-10,000 ft.) and

10.2 to 1.69 psia (10,000-50,000 ft.) during storage and air transportation.

4.3.2 LAUNCH VEHICLE BOOST FLIGHT

4.3.2.1 STEADY STATE AND SINUSOIDAL VIBRATIONS

Table 4-1 lists the load factors designated in the mission specification as a design base at

the start of Phase IA. These loads will be continually upgraded as composite launch vehicle-

payload trajectory analyses are performed.

The loads are applicable only during the boost phase of the mission, while the vehicle is

complete, mounted on the launch vehicle adapter and shrouded for protection against aero-

dynamic loadings. All appendages are in folded or tied down attitudes.

4.3.2.2 RANDOM VIBRATIONS

The significance of the random vibration environment is usually limited to fatigue consider-

ations. As a consequence, the following random environment shall be considered applicable,

but not to the extent that it is addative to peak sinusoidal G's. The omnidirectional input

at the spacecraft adapter-launch vehicle adapter mechanical interface is:

a. Power spectral density peaks of 0.07 g2/cps ranging from 100 to 1500 cps with a

6 db rolloff in the envelope defining peaks below and above these frequencies.

b. Maximum total time is 60 seconds.
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Table 4-1. SteadyStateand Sinusoidal Vibration Loads

DESIGN STEADY STATE
LOADING Longitudinal Lateral
CONDITIONS (-Z axis) (XY Plane)

g g

SINUSOIDAL VIBRATION

Longitudinal Lateral Torsional

0toPeakg,s 0toPeakg,s 0 to Peak

Z axis) (XY Plane) Radians/sec 2

(about Z axis)

1 6 1 0.8 0.5 0

2 2 1 1.2 0.75 60

3 1 0 1.6 1.0 60

4 0 0 1.6 0 0

NOTES:

1. The combined longitudinal and lateral steady state loads are to be combined with

the sinusoidal vibration acting in one most critical direction.

2. Lateral loads are considered acting along any vector in the XY plane.

3. Torsional loads are considered to act about the Z axis.

4. Loads are considered acting at the spacecraft adapter-launch vehicle adapter
mechanical interface.

5. Vibration inputs shall be considered as discrete transients which may occur at

any frequency for the duration as indicated in Table 4-2.

_AA

DIRECTION VIBRATION FREQUENCY RANGE (cps)
2.5 -10 10 - 40 40 - 60

Longitudinal 40 cycles 30 cycles 0.5 sec

Lateral 40 cycles 30 cycles 0.5 sec

Torsional 20 cycles 20 cycles 0.25 sec

NOTE: In addition to the above strength requirements, it is desirable to design

a relatively rigid payload structure.

A recommended lowest cantilever resonant frequency is 20 cps.
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4.3.2.3 COMPONENTVIBRATION LOADS

Vibration loads experiencedby spacecraft mounted components during the mission will be

governed by the resonse to excitation of the mounting structure. It shall be a requirement

of the structure to limit dynamic inputs to mounted components to levels such that the

response of the component at system resonance does not exceed the maximum resonse the

component experiences during its qualification testing.

The dynamic envelope of Centaur and Saturn component qualification levels is shown in Figure
4-1 as an indication of typical component test levels.

4.3.2.4 SYSTEM VIBRATION TESTING

Details of system vibration testing ¢¢ill be given in the appropriate test specification. Flight

acceptance testing will be performed at the 95th percentile predicted flight environment and

type approval testing at 5 db above the FA level.

4.3.2.5 SYSTEM SHOCK LOADING

The significant shock loading expected in the Centaur environment is the separation charge

shock at such times as insulation panel and nose fairing jettison, or spacecraft separation.

Generally, the shock loading can be represented by a half wave length sinusoidal shock of

1000 g's amplitude and 0.4 x 10 -3 seconds duration. This shock can be experienced along

any axis at the point of application.

While a basic design goal shall be to minimize explosive devices, the Voyager Spacecraft

design may incorporate pyrotechnic devices for ejecting the support structure containing

the lander, the biological barrier, and the lander itself. The high frequency impulse data

given above can be taken as representative; however, detail investigations must be performed

to determine the extent and effect, if any, of low frequency impulses.

4.3.2.6 ACOUSTICAL NOISE

While operating, vehicle borne equipment will be subjected to a maximum, broadband, random

incidence, sound pressure field composed of the following levels, wi_in an overall sound

pressure level of 142 decibels (decibels referenced to 2(10)-5 N/mtrZ):

a. SPL of 133.5 db/third octave from 85 to 250 cps

b. Rolloff at 11 db/octave below 85 cps

c. Rolloff at 5 db/octave above 250 cps

Total duration is about two (2) minutes.
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4.3.2.7

a.

b.

PRESSURE

lb/ft. 2)Aerodynamic pressure at max q (estimated at 975 will be taken by the

shroud and is not applicable for spacecraft design.

Table 4-3 gives the assumed nominal environment.

Table 4-3. Time of Flight versus Ambient Pressure

Time of Flight Ambient Pressure

(sec) Cpsia)

0 14.5

10 14.0

20 13.2

30 11.8

40 9.5

50 6.6

60 4.3

70 2.5

80 1.4

90 0.7

100 0.4

4.3.2.8 TEMPERATURE

The temperature profile during the launch flight phase is not usually significant to structural

design. In consideration of the adverse effects of differential expansions on mutually moving

parts and the degradation of material properties, critical areas will be checked on an indivi-

dual basis with temperatures determined from the thermal analysis.

Factors affecting temperature distributions are:

a. Effect of thermal control devices

b. Aerodynamic heating and radiation from walls of shroud

c. Internal power dissipation

d. Thermal capacitance.

4.3.3 PLANETARY TRANSIT AND ORBIT

4.3.3.1 STEADY STATE ACCELERATION, VIBRATORY AND SHOCK LOADS AND ORBIT

RE TROPROPULSION ROCKE T FIRING

Minor vibrations and accelerations as excited during attitude and control and mid-course

engine firing and orientation of deployed appendages will be encountered. While load levels
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are low, structural frequencies must be such that severe servo-elastic coupling between

the attitude control system and the appendages can be avoided.

For initial design of deployment structure and support booms, a minimum fundamental

resonant frequency of 10 cps for motion about the spacecraft X and Y axis and 5 cps for

motion about the spacecraft Z axis is specified. This requirement will be modified as

further iterative analyses are performed.

Loads resulting from four mid-course engines of 40 pounds + 15 pounds thrust, diametrically
located in the XY plane at a radial distance of 38.5 inches from the Z axis shall be considered

in the design.

During rocket firing, a thrust of 2200 pounds will be applied along the Z axis in the positive

sense. Lateral loading in the XY plane is negligible, however, the vectoring effects of

simultaneous control jet firings must be considered in the design of deployed appendages.

Shock and vibration loads on primary structures will in general be much less severe than those

encountered during boost flight. These loads may be limiting on deployed appendages.

4.3.3.2 TEMPERATURE

Component thermal environment _¢ill be passively and actively controlled to maintain temp-

eratures within specified design limits.

Extremes of 200 ° to -310°F can be expected on structural items. Actual temperature
distributions will be a function of:

a. Spacecraft orientation

b. Solar irradiation

c. Planetary flux

d. Planetary albedo

e. Internal power dissipation

f. Thermal radiation to cold walls and free space

g. Retro-Rocket exhaust plume radiation

h. Inter radiation and conduction among components

i. Solar absortivity and emmisivity.
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4.3.3.3 VACUUM

-10
The spacecraft will be designed to operate at ambient pressures less than 10 mm Hg.

4.3.3.4 RADIATION

Charged particles, resultant X-rays and gamma rays associated with artificial and natural

belt radiation and solar flares will be encountered. The environmental criteria given in the

JPL Mission Specification is noted as being applicable and part of this document, and to be

used in the design of such structural shielding as is found necessary.

4.3.3.5 METEOROIDS

The meteoroid flux to be used for design purposes is given below. Also listed are extreme

upper limits of particle fluxes based on Kessler's equation for asteroidal debris. Design

will be based on the normally expected fluxes. The influence of the extreme upper limits

of particle flux will be factored into the reliability analysis on the basis of probability of

occurrance. At the present time it is assumed that this upper limit is a +3_ extreme.

a. Flux Near Earth

1. Particle flux log N = -17.0 - 1.70 log M

N = number of particles/ (m 2 - sec) of mass M and greater.

2. Velocity of Particles _0 to 10 km/sec.

3. Average density of particles _ 0.4 gm/cm 3.

b. Cruise

0.44

1. Particle LogN E = -13.80- LogM+ 2log

to

0.44
-14.48 - 1.34 log M + 2.68 log

P

0.44
logN M < -13.30-1ogM+21og

P

to

-13.98 - 1.34 log M +

0.44
+2.68 log

NE = number of particles/m 2 - sec of mass M and greater and of density D

in the vicinity of the Earth; NM is the particle flux in the vicinity of Mars.
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2. Velocity of particles

.

10 - 70 km/sec (Average _ 40 km/sec).

Average density of particles _0.4 gm/cm 3. An extreme upper limit for N M
(on the basis of Kessler's equation for asteroidal debres);

log NAM

NAM =

= -12.83 - log M

2
number of micrometeorite particles/(m

Mass M and greater.

Velocity of particles _ 20 - 40 km/sec.

Average density of particles _4.37 gm/cm 3.

- sec) in vicinity of Mars of

Elliptic Orbit

1. Particle flux

logN < -17.20- 1.70 logM

N = number of particles/(m 2

2. Velocity of particles

0 to 5 km/sec.

3. Average density of particles

3
o, 4 gm/cm

4. Extreme upper limit

log N A _ -10.13 - 1.70 log M

N A = number of micrometeorite particles/(m 2

Velocity of particles _ 0 to 5 km/sec

Average density of particles _4.37 gm/cm 3.

- sec) of mass M and greater.

- sec) of mass M and greater.
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1.0 SCOPE

This document describes the functional performance of a Pyrotechnic Subsystem for the

Voyager Space Vehicle, intended to accomplish nonrepetitive mechanical actions by explosive

means; and the peculiar design, fabrication, installation, and test requirements for the

following parts and components required for safe and reliable control of explosive type

charges:

a. Parallel redundant Separation Switches are used as positive lockout devices to

safe the subsystem and inhibit the Controller and Sequencer during pad and prelaunch

checkout and powered flight, and to arm the subsystem, Controller and Sequencer,

and the Guidance and Control Subsystem cold gas system upon physical separation
from the launch vehicle.

b. A Pyrotechnic Controller which transforms low level electrical command signals

into high energy pulses.

Co Electroexplosive Devices which generate a controlled explosive force when electri-

cally initiated.

do Pin Pullers, Explosive Nuts, an Electrical Disconnect, and a Separation Joint as the

mechanical devices which are activated by the generated force when electroexplosive
devices are initiated.

e. All harness and electrical connections between the safe and arm devices, the

Pyrotechnic Controller, and the electroexplosive devices, cabled and installed as

separate cables.

2.0 APPLICABLE DOCUMENTATION

Applicable documents are AFMTC 80-2 Range Safety Manual, Interstate Commerce Commis-

sion regulations, and

VB235FD101

VB235FD103

VB220SR101

VB220SR102

Temperature Control Subsystem

Structural Design Criteria

Design Characteristics

Design Restraints

3.0 FUNCTIONAL DESCRIPTION

The Pyrotechnic Subsystem is shown in block diagram form in Figure 3-1. The Pyrotechnic

Controller receives 2400 cycle square wave ac power thru a parallel/redundant connection of

two electromechanical safe and arm devices both of which are positively locked out for pad

safety, but which are activated upon separation of the spacecraft from the launch vehicle.

Separation Switch No. 1 provides immediate electrical continuity from the Electric Power

Subsystem to the Pyrotechnic Controller and enables the Controller and Sequencer and the

Guidance and Control Subsystem cold gas system. These functions are provided by the closure

of normally open electrical contacts which carry signal lines from the Controller and Sequencer

and the Guidance and Control Subsystem.
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Separation Switch No. 2 also enables the Pyrotechnic Controller and the Guidance and Control

Subsystem cold gas system. Separation Switch closure initiates a three minute electronic

timer in the Pyrotechnic Controller. At time-out, a power pulse is given to fire the pyro-

technics to deploy the Antennas, enabling the RF link through low gain antenna No. 2.

Arming of the Pyrotechnic Controller energizes redundant transformer rectifier power

supplies which transform down the ac voltage, rectify it, and charge capacitor banks thru

current limiting resistors. These resistors prevent the initial current drain of the uncharged

capacitors from loading down the transformer. Electrical isolation is provided between the

primary and the secondary of each transformer. Command signals received after a pre-

determined time from Pyrotechnic Controller arming can turn on discrete semiconductor

power switches in the required sequence to accomplish pyrotechnic events. Each semiconductor

switch is a silicon controlled rectifier, selected as being ideally suited to this application.

It is made conductive by a low level gate signal. The magnitude of controlled current is not

dependent on the gate signal amplitude over the minimum amount necessary to fire the silicon

controlled rectifier, and current can continue to flow after the gate signal is removed. Cur-

rent flow continues until the capacitor bank is discharged, or until thebridgewire burns open,

at which time the silicon controlled rectifier returns to its nonconducting state. The current

limiting resistor to charge the capacitor bank must furnish less current than the minimum

holding current for the silicon controlled rectifier to insure turnoff in the event that a bridge-

wire fails to open completely.

Each semiconductor switch delivers electrical energy pulses thru a parallel connection of

from one to six current limiting resistors, each of which has a series connected electroexplo-

sive device. The bridgewire in the electroexplosive device burns open in less than three

milliseconds, effectively opening the circuit. In the event of a malfunctioning bridgewire,

the capacitor would discharge completely, cutting off the semiconductor switch, and allowing

the capacitor bank to recharge for subsequent events. Spurious command signals received

simultaneous with the arm signal as a result of mechanical disturbances associated with

separation are ineffective to cause pyro events, since the capacitors will have accumulated

insufficient energy to initiate the electroexplosive device.

The major elements of a standardized electroexplosive device are shown in Figure 3-2.

This device is designed to meet all requirements of the national ranges, and is used for

operation of Pin Pullers, Explosive Nuts, an Electrical Disconnect, Propulsion Valves, and

as detonators for initiating the spacecraft Separation Joint. All electroexplosive devices

have various pyrotechnic compounds but have identical electrical characteristics, and are

capable of being initiated from a common switching circuit in the Pyrotechnic Controller.

These electroexplosive devices use a common cartridge envelope and match head configura-

tion with pressure cartridge mixes to provide either 3, 5, or 8 thousand pounds per square

inch pressure, and detonator cartridge mixes to provide one of two different pulses to meet

all anticipated Voyager requirements.

Pin Pullers are used as locking devices. Gas pressure released on command by an electro-

explosive device retracts the piston and releases the locked device for deployment. The Pin

Pullers are capable of functioning with single or redundant electroexplosive devices without

release of damaging gases or fragmentation of parts. Pistons are locked in the extended
position by shear pins or shear rings to prevent premature retraction of the piston.
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The spacecraft Separation Joint, as shown in Figure 3-3, will use a Sealed Explosive Appli-

cation for Linear Separation (SEALS} that was developed by the Spacecraft Department of the

General Electric Company and which employs a mild detonating fuze encapsulated in an elasto-

met tube jacket. The elastomer tube jacket ruggedizes and protects the explosive core against

the detrimental effects of handling, installation, and flight environments. This design con-

cept will part a structural ring between the launch vehicle and the spacecraft circumferentially.

Pneumatic Valves are furnished with the midcourse and retrorocket equipment and are fully

described under the Propulsion Subsystem.

Events such as the release of the magnetometer boom and the unlatching of the scan platform

will be sensed as having been accomplished by one or more plunger actuated, miniature

switches. These switches are constructed almost entirely of non-magnetic materials. Stain-

less steels of numbers 310 or higher are used in place of the more common, but potentially

more magnetic, 302, 303, and 304 stainless steels. The switches are bushing mounted to

permit fine adjustment of the height of the switch, and the mounting nuts are safety wired.

The switching chambers are evacuated and filled with an inert gas.

The Pyrotechnic Subsystem is completely redundant, including power supply, energy storage,

arming device, wiring from the Electric Power Subsystem to the Pyrotechnic Controller, and

by dual harness segments downstream of the Pyrotechnic Controller. Two capacitor banks

are discharged into the two bridgewires furnished for each event. Failure of either bridgewire

or either capacitor bank will not prevent the event from occurring. Either harness segment

with its associated electroexplosive device is capable of performing the required functions.
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INTERFACE DEFINITION

COMMAND SIGNALS

VB235FD104

All command signals shall be supplied to the Pyrotechnic Controller.
identified as follows:

Number Phase

EC 57 1

Description

Deploy Solar Pressure Balance Pyro-

Vane, Antennas (2), and technic

Magnetometer Timer

EC 65 2 Remove Science Covers C&S CD

EC 38 2 Initiate Mono-Propellant pressuri- C &S CD

zation Pyro #i

Source Back-up

CD

EC 46 2 Open Mono-Propellant Flow Valve #1 C&S CD

EC 39 2 Initiate Mono-Propellant C &S CD

Isolation Pyro #1

EC 47 2 Close Mono-Propellant Flow Valve #1 C&S CD

EC 40 2 Initiate Mono-Propellant Pressuri- C&S CD

zation Pyro #2

EC 48 2 Open Mono-Propellant Flow Valve#2 C&S CD

EC 41 2 Initiate Mono-Propellant Isolation C&S CD
Pyro #2

EC 49 2 Close Mono-Propellant Flow Valve#2 C&S CD

EC 61 2 Separate Capsule C&S CD

EC 60 2 Initiate Lower Bio-Barrier Electri- C&S CD

cal Disconnect

EC 67 2 Initiate Cold Gas Separation C&S CD

Velocity Increment Pyro

EC 68 2 Jettison Lower Bio-Barrier C&S CD

EC 42 3 Initiate Mono-Propellant Pressuriza- C &S CD

tion Pyro #3

The commands are

Actu-

BW ator Event

6 3 PP

6 3 PP

2 1 NCV

2 1 NCV

2 1 NOV

2 1 NOV

2 1 NCV

2 1 NCV

2 1 NOV

2 1 NOV

12 6 EN

2 1 ED

2 2 NCV'

2 2 EN

2 1 NCV
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Number Phase

EC 50 3

EC 58 3

3

SC 31 3

EC 54 3

EC 43 3

EC 51 3

EC 56 3

EC 66 3

DC 25 *

EC 59 4

EC 44 4

EC 52 4

EC 45 4

EC 53 4

ABBREVIATIONS

BW

CD

C&S

DC

EC

ED

VB235FD104

Open Mono-Propellant Flow Valve #3

Pressurize Bi-Propellant

Start Bi-Propellant Engine

Initiate Bi-Propellant Engine

Upstream Stop Pyro

Initiate Bi-Propellant Engine

Downstream Stop Pyro

Initiate Mono-Propellant Isolation

Pyro #3

Close Mono-Propellant Flow Valve
#3

Unlatch Planet Scanner Platform

Jettison Approach Guidance Covers

Initiate Backup Mono-Propellaut

Regulator Pyro

Remove Instrument Covers

Initiate Mono-Propellant Pressuri-

zation Pyro #4

Open Mono-Propellant Flow Valve
#4

Initiate Mono-Propellant Isola-

tion Pyro #4

Close Mono-Propellant Flow
Valve #4

Bridgewire

Command Decoder

Controller and Sequencer
Discrete Command

Either Command

Electrical Disconnect

Source

C&S

C&S

Auto -

Pilot

Auto -

Pilot

C&S

C&S

C&S

C&S

C&S

Prop

C&S

C&S

C&S

C&S

C&S

EN

NOV

NCV

SC

3WV

Back-up

CD

CD

Actu-

BW ator Event

2 1 NCV

2 2 NCV

4 4 NCV

C &S 4 2 NOV

CD 4 2 NOV

CD 2 1 NOV

CD 2 1 NOV

CD 2 1 PP

CD 4 2 PP

CD 2 1 3WV

CD 6 3 PP

CD 2 1 NCV

CD 2 1 NCV

CD 2 1 NOV

CD 2 1 NOV

Explosive Nut

Normally Open Valve

Normally Closed Valve
Stored Command

Three Way Valve
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4.2 INPUT POWER

The only Electric Power Subsysteminterface is the 2400cycle per secondsquare wave ac
power lines to the safe and arm devices.

4.3 OUTPUTPOWERPULSES

Receipt of a commandsignal causes anoutput power pulse to appear on the number of bridge-
wire electroexplosive device lines shownin the commandlist.

4.4 THERMAL

Normal thermal dissipation of the Pyrotechnic Controller is two watts continuous. The
thermal dissipation of all other componentsandparts in the Pyrotechnic Subsystemis
essentially zero becauseof the low duty cycle.

4.5 MECHANICAL

The mechanical interface is the Pin Puller, Nut, Plug, or Valve actuatedby the electrical
pulse initiating the electroexplosive device bridgewire listed in the commandlist. Vehicle
packagingmust provide accessibility for inspection of shear pins just prior to fairing install-
ation, and mandatory isolation of the piston from disturbance is necessary during the
assembly sequencefollowing inspection.

4.6 TELEMETRY

The Pyrotechnic Controller requires four voltage monitors to determine the condition of the
capacitor banks, andan event counter on each capacitor bank capable of advancing its count
for each occurrence of the 30 events during the phases indicated in the commandlist.

4.7 RF INTERFERENCE

Thepulse power characteristic of the capacitor discharge may be a noise source.

4.8 UMBILICAL OSETEST POINTS

The condition of eachsafe and arm device and the total bridgewire continuity loop is brought
out on the umbilical.

4.9 DIRECT ACCESSOSETEST POINTS

Eachof the 90 bridgewire points with a nominally 500,000 ohm resistance is brought out
to permit monitoring the power pulse delivered to the squib simulator. Each of four capa-
citor bankvoltages is also monitored, as well as the commandpower voltage level, and the
ac input voltage level.
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4. 10 LAUNCH VEHICLE

No direct electrical interface with the launch vehicle is necessary, but the launch vehicle

is expected to furnish the electrical energy at the proper time to initiate the Separation

Joint explosive by energizing the eleetroexplosive devices. The electrical connections for
the Separation Joint are located on the launch vehicle side.

5.0 PERFORMANCE PARAMETERS

5.1 SIMULTANEOUS EVENTS

A maximum of six events can be electroexplosively initiated simultaneously, with a maxi-

mum of two bridgewires for each event.

5.2 SEQUENCE

A maximum of two events may constitute a sequence, with no time limit on the time between
commands.

5.3 REPETITION RATE

The maximum sequence repetition rate is one per three minutes, with at least a three-min-

ute delay following the initial arming of the Separation Switches.

5.4 SENSITIVITY

A command signal of nominally 15 volts dc is applied simultaneously to resistor and capa-

citor networks connected gate to cathode of the silicon controlled rectifier switches feeding

the desired event. The voltage at this gate capacitor must rise above 0.25 volts before the

silicon controlled rectifier can conduct. At worse case, as much as 3.0 volts may be re-

quired. The gate voltage must be kept below ten volts. This provides ample delay to

insure that the silicon controlled rectifier will not fire on expected noise signals. The

Pyrotechnic Controller is designed so it will not respond to a command signal for at least

one millisecond after the signal has reached 90 percent of its nominal value. The command

signal is provided from a direct current two wire floating system which must be kept isola-

ted from all other circuitry external to the Pyrotechnic Controller.

5.5 ELECTROEXPLOSIVE DEVICE SENSITIVITY

Both bridgewires are capable of withstanding simultaneously one ampere/one watt at 120°F

for a period of five minutes without degradation and without firing, but each bridgewire ignites

and burns clear within three milliseconds and the actuator completes its function within

twenty milliseconds of application of a 3.2 ampere direct current pulse or a 0.10 joule

pulse from a capacitor. The one ampere no-fire and the all-fire characteristics have a

0. 999 probability of occurrence with a 95 percent confidence level.
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5.6 OUTPUT PULSES

Receipt of a command signal causes an output power pulse of 0.2 joules minimum per device

to appear within fifty milliseconds at the number of electroexplosive device bridgewires in-

dicated in the command list. The electroexplosive device power leads are capable of trans-

mitting the pulse to arrive at the electroexplosive device with at least the all-fire energy.

5.7 INITIATION TIMER

A single operation unijunction oscillator provides a three minute delay between the arming of

the Pyrotechnic Controller and the initiation of the first event to deploy antennas for the RF
link.

5.8 BRIDGEWIRE RESISTANCE

The bridgewire resistance is 0.9 ohm minimum to 1.1 ohms maximum. Current limiting

resistors are provided in the Pyrotechnic Controller to permit OSE monitoring of energy

pulses to simulators and to insure current sharing to simultaneous events.

5.9 RELIABILITY ASSESSMENT OF THE PYROTECHNIC NETWORK

A reliability assessment of the preferred design of the Pyrotechnic Controller circuitry shown

in Figure 5-1 indicates a reliability of 0. 999 for the complete mission. To assist in the

analysis, the complete mission has been divided into four mission phases defined in the Pre-

liminary Voyager 1971 Mission Specification, JPL Project Document No. 45. The four

phases are defined as launch, cruise, orbit injection, and Mars orbit.

The mathematical model given below is based on the functional block diagram of Figure 3-1

and the data given in Table 5-1.

R(Pyrotechnic = - R(Pyrotechnic Con x R(Timer )

Controller) trol Circuit)

Entering the reliability values tabulated in Table 5-1 into the mathermatical model -gives the

estimated reliability of the Pyrotechnic Controller for each mission phase. These estimates

are also tabulated in Table 5-1.
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The reliability estimate for the Pyrotechnic Controller for the complete mission is:

R(pyrotechnic

Controller)

• R(phase= R (Phase 1) "R(phase 2) 3)

= (• 9999) (. 9999) (. 9999) (. 9999)

= . 999

.R
(phase 4)

TABLE 5-1

PYROTECHNIC CONTROLLER RELIABILITY DATA

Mission

Phase

1

2

3

4

Pyrotechnic

Control

Circuit

.9999

.9991

•9996

.9996

TIMER

•9999

Not Req'd.

tr t!

tt tt

Complete

Pyrotechnic
Controller

• 999

• 999

• 999

• 999

The proposed Pyrotechnic Controller has been designed to achieve an inherently high level

of reliability. The Pyrotechnic Controller circuitry is made completely redundant. The

timer circuit is active for one event only and is backed up by a ground command. Thus, the

basic techniques of circuit simplicity and redundancy are utilized to obtain a highly reliable

design.

6• 0 PHYSICAL CHARACTERISTICS AND CONSTRAINTS

6.1 WEIGHT

The weight of the Pyrotechnic Controller is 7.5 pounds. The weight of Pin Pullers, the

Separation Joint, and all valves are charged against the respective subsystems requiring the

actuation. Each event switch weighs two ounces• The weight of the complete Pyrotechnic

Harness is four pounds•

6.2 VOLUME

The volume of the Pyrotechnic Controller is five hundred cubic inches• Each event switch is

one half inch in diameter and two inches high.
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6.3 POWER CONSUMPTION

The peak power demand on the ac power supply is ten watts decaying to two watts within one

minute following each arming or command initiation. The average power drain is two watts
over the entire mission.

6.4 ENVIRONMENTAL AND OPERATING CONDITIONS

Environmental conditions are as defined in the following documents:

VB235FD101 Temperature Control Subsystem

VB235FD103 Structural Design Criteria

6.5 SEPARATION JOINT

The design of the Separation Joint insures confinement of all explosive by-products and a con-

trollable shock pulse into the spacecraft structure. Minimum weight of explosive core load

is used since the total energy available in the explosive core is directed toward accomplishing

the separation function.

7.0 SAFETY CONSIDERATIONS

The requirements of AFMTC 80-2 and ICC regulations must be complied with during all

activities of transportation, storage, handling, installation, checkout, and range safety.
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1.0 SCOPE

This specification covers the following items:

Functional requirements for design control of rigid-body mass properties of Voyager 71.

General methodsfor determination of mass properties of each flight article.

2.0 APPLICABLE DOCUMENTS

The following documents form a part of this specification:

SPE CIFICA TIONS:

General Electric:

VB220SR101 Design Characteristics

VB220SR102 Design Restraints

VB220FD103 Spacecraft Component Design Parameters

VB220FDl13 Layout and Configuration, Voyager 71

NASA:

M-DE-8000. 006 Mass Properties Standard - reference only

3.0 FUNCTIONAL DESCRIPTION

3.1 GENERAL

Spacecraft weight control during design is essential to the realization and potential up-

grading of mission objectives. Accurate knowledge of the actual weight of each flight

article is essential to mission operations analysis•

The requirements for spacecraft attitude control, in general, and for guidance and control

during maneuvers, in particular, impose design constraints upon center-of-gravity location

and upon mass products of inertia in relation to corresponding moments of inertia.

In the launch configuration a knowledge of mass parameters, to an accuracy commensurate

with stated requirements, is necessary to an evaluation of dynamic loads within the space-

craft and to dynamic loads imposed on the launch vehicle.
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This specification defines the detailed requirements for mass parameter control and
determination.

3.2 PRIMARY REQUIREMENTS

3.2. i WEIGHT

The weight of each Voyager 71 spacecraft shall be determined by components, computa-

tionally, empirically, or experimentally during design and fabrication as an adjunct to V

Weight Control (Reference VBI10VP003 Design and Development Plan, Paragraph 2.3):

a. Structure and Harness - All structure and harness drawings will be computed

utilizing standard calculation procedures. Calculation will be confirmed by actual

measurement of piece parts during assembly.

b. Components - Component weight will be determined empirically and computationally

utilizing specifications, drawings and functional descriptions. These weights will be

confirmed by actual measurements of the completed unit following assembly.

The final weight of each flight article, complete and after final inspection, shall be deter-

mined experimentally to an accuracy of 0.1 percent. An error analysis of the chosen

weighing method shall accompany the test results.

The spacecraft weight shall be determined with the propellant and gas tanks empty, and

with inert pyrotechnics installed. Propellant loadings will be determined at the launch

complex by using a linear, sensitive and stable force sensor, (or load cell) and its associ-

ated electronics. The load cell readout is given a resolution of approximately . 01 percent

of fuel load with an electronics counter. The counter reading would be repeated on digital

tape for verification record. The gas weight will be calculated based on temperature and

pressure of the gases going into a predetermined volume (by calibration tests) of the
• 1 wi_1_ __ _

pressurant and attitude control ranks. ,n,_ i,iformation _.-11,,,_,h_,_,, be "_'-_-s""'_]'_'_sll"T_-v---aaS_Omhl_rl_.... ---_

to the flight spacecraft dry weight (Reference VB2080FD109 Propellant and Gas Loading
Equipment).

3.2.2 CENTER OF GRAVITY DETERMINATIONS

3.2.2.1 Launch Configuration

The spacecraft cg in the launch configuration shall be determined by components computa-

tionally during design and fabrication to assure compliance with launch vehicle require-

ments. Actual centers of gravity will be determined for each subassembly during the actual

weight measurements as described in paragraph 3.2.1. These will confirm the computa-

tions made during spacecraft design. Actual centers of gravity will be separately deter-

mined for the spacecraft and capsule in the launch configuration with propellants and gases

removed and inert pyrotechnics installed. Propellant loadings effect on center of gravity

will be computed using the procedure in paragraph 3.2. I.
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3.2.2.2. Cruise Configurations

Spacecraft Assembly - "C. G. envelopes" defining c.g. migrations as appropriate functions

of variable geometrics hsall be determined computationally during design and fabrication as

an adjunct to c.g. control to assure compliance with guidance and control. Additionally, the

c.g. location of each flight spacecraft shall be determined experimentally for each configura-

tion shown by computation to be marginal in terms of the requirements.

CG shifts due to antenna and scan platform deployment will be determined by actual measure-

ment of the spacecraft without antenna and scan platform and analytically addirig the actual

measurements of the antenna and scan platform in the stowed and deployed positions.

3.2.3 CENTROIDAL MOMENTS OF INERTIA

3.2.3.1 Launch Configuration

Centroidal moments of inertia of each flight spacecraft about axes parallel to the basic

reference axes shall be determined computationally during design to the accuracy required

for dynamic loads analysis.

3.2.3.2 Cruise Configuration

Centroidal moments of inertial of each flight spacecraft about axes parallel to the basic

reference axes shall be determined computationally during design and fabrication to an

accuracy of + 5.0 percent for each basic cruise configuration. Additionally, the centroidal

moments of inertia of each flight spacecraft shall be determined experimentally if it is

shown by computation to be marginal in terms of the guidance and control requirements.

All computations and required measurements will consider deployment of antennas and

scientific experiments. All measurements will be made with the propellant tanks empty

and pyrotechnics removed. Effect of these items will be computed. Moment of inertia

computations will utilize spacecraft component and subsystem actual weight and center of

gravity measurements.

3.2.4 CENTROIDAL PRODUCTS OF INERTIA

3.2.4. I Launch Configuration

Centroidal products of inertia about axes parallel to the basic reference axes shall be

determined computationaUy during design to the accuracy required for dynamic loads

analysis.

3.2.4.2 Cruise Configuration

Centroidal products of inertia of each flight spacecraft for each basic cruise configuration

shall be determined computationally during design and fabrication. Additionally the cen-

troidal products of inertia shall be determined experimentally if it is shown by computation

to be marginal in terms of the guidance and control requirements.
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The vehicle centroidal product of inertia will be determined computationally to an accuracy

+ 7.0 percent for each basic cruise configuration. Product of inertia computation will

utilize spacecraft component and subassembly actual weight and center of gravity measure-

ments.

3.3 SECONDARY REQUIREMENTS

Computational and experimental methods employed in determination of spacecraft cg co-

ordinates, moments of inertia, and products of inertia shall be documented. Additionally,

an error analysis shall accompany all test results.

All actual measurements will be performed on standard industry equipment where possible.

This equipment will include a three scale measurement fixture for weight and center of

gravity determination. A torsional and bifilar pendulum will be utilized for moment and

product of inertia measurements unless accuracy requirements of guidance and control

dictate a more sophisticated approach.
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1.0 SCOPE

This section describes the packaging techniques used in the assembly of the electronic

equipment in the Flight spacecraft.

2.0 APPLICABLE DOCUMENTS

2.1 GOVERNMENT

MIL-STD-275A

MIL-C-26482

MIL-W-16878

MIL-S-7742

Printed Wiring for Electronic Equipment

Connectors, Electric, Circular Miniature Quick Disconnect

Wire, Electrical, Insulated, High Temperature

Screw Threads, Standard Aeronautical

2.2 GENERAL ELECTRIC

S-30000

S-30023

S-30100

VB220SR101

VB 22 0SR 102

VB220FD113

MSD Design Requirements for Electronic Modules

Cross Wire Resistance Welding Process

MSD Design Requirements for the Soldering of Electrical Connections

Design Characteristics

Design Restraints

Layout & Configuration

3.0 FUNCTIONAL DESCRIPTION

3.1 GENERAL

The principal restraints governing the packaging design are 1) a lightweight, flexible and

compact configuration for the spacecraft electronic equipment; 2) mounting and inter-

connection for electronic parts so that they will perform reliably and efficiently during

launch and long-time exposure to space environment, and 3) use of standardization to the

greatest possible extent, to allow parallel development of electronics and vehicle structure.

The concept of structural integration, used on Ranger and Mariner has been actively pur-

sued and adapted to the needs of the Voyager Spacecraft.

3.2 DESCRIPTION

The spacecraft electronic equipment is packaged in the 12 bays of the Spacecraft Bus, in

modular assemblies of standard size and shape (See Figure 3-1). When assembled, these

integrated packages give rigid support to the electronic components, stabilize the equip-

ment module structure against dynamic and static loads, and provide conductive heat paths

from the dissipating parts to the thermal radiating surface.
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A preferred, standard approach is specified with the provision that non-standard solutions

to accommodate special problems may be used with proper approvals. The standard design

involves three levels of interconnections, as defined below:

Level I A functional grouping of parts interconnected and encapsulated to

form a too&fie.

Level II A subassembly of parts and modules in a machined housing of standard

profile.

Level ]3I An assembly of subchasses and plates mounted to, and made integral

with, the vehicle structure.

3.2.1 ASSEMBLY

The assembly package consists of up to 15 level II subassemblies sandwiched between two

plates as shown in Figure 3-2. The inner plate, in the form of a shallow tray, provides

a mounting base for the subassemblies as well as a supporting structure for the assembly

harness and connectors. This harness tray is a magnesium structure, 20 by 20 by 3.5 inches,

which provides locations for 60 float mounted subassembly connectors and 14 system con-

nectors. The upper seven locations have been designated for test harness connections, and

the lower seven reserved for mating with the spacecraft ring harness. In total, provision

is made for 854 connections into and out of each standard assembly; and 3000 pins can be

made available for subassembly interwiring.

The outer plate, stabilized by the subassembly chasses, is the shear panel of the equipment

module structure. It also acts as a radiating surface for heat rejection to space. See

Figure 3-3.

3.2.2 SUBASSEMBLY

The electronic subchassis is of standard profile. Two dimensional standards are specified;

10.0by 6.0by 1.25 inches and20.0by 6.0by 1.25 inches. Thel0- inch subassemblies

are used in pairs, locked and bolted together to satisfy the structural requirements. An

offset web of 0.062-inch section, rib stiffened, is included, pre-drilled with a 0. 100

staggered grid hole pattern. See Figure 3-4. The subchassis is a machined housing of

HM21A-T8 magnesium, suitably finished for chemical compatibility and thermal control.

The housing contains integral bathtub fittings at each end for mounting into the vehicle

longerons. Non-magnetic attachments are used to mount the subchassis to the harness tray

and shear panel. They are located in a standard pattern on each side of the housing. These

attachments are spaced on 2.9 inch centers to provide the required stabilization to the

shear panel.

Each 20-inch subchassis has four standard mounting locations for 50 pin, Cannon Golden D

connectors. A 10-inch subchassis has 2 connector locations. Electrical continuity from

the subassembly circuitry to the assembly harness is accomplished by a connector module.

See Figure 3-5. The connector modules contain guide pins for alignment with the mating
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Figure 3-2 Electronic Equipment Assembly
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Figure 3-3. Installation of Electronic Equipment Assembly
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Figxlre 3-4 Electronic Subchassis
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GUIDE PINS

Figure 3-5 Connector Module
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Figure 3-6 Printed Wiring Through Connection
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connectors which are float mounted in the assembly harness tray. This technique provides
for straight, in-line engagementand disengagementof connectors to reduce the possibility
of bending connector pins.

Interconnection of modules in the subassembliesis accomplishedby a double sided printed
wiring board. The connectionbetweenthe two circuit patterns is effected by a plated-
through hole and a "Z" bar connection. SeeFigure 3-6. Indexing of the subassemblies is
accomplishedby varying the orientation of the "D" shapeof the Cannonconnector 180de-
grees. Since there are four connector locations on each subchassis, there are 16possible
keyed positions.

3.2.3 MODULES

Discreet part circuits are packagedinto encapsulatedcordwoodmodules consistent with
circuit performance requirements. The module dimensions are standardized to assure
maximum utilization of the given subchassisarea without sacrificing flexibility. In con-
formity with the principle of minimizing techniques and materials, the design and fabrication
of the cordwood modules will be in accordancewith GE specification S-30002, or approved
alternative. The encapsulateddesign provides protection against shock and vibration
environments and adequatethermal conductivity to insure componentoperating temperature
within acceptable limits. Buffer coatings are specified to guarantee compatibility of the

encapsulating compound with fragile parts.

The packaging of microelectronics is limited to the use of planar construction, using parallel

gap welding on double sided printed wiring boards; or 3-Dimensional construction of flat

packages in special welded modules. See Figure 3-7.

4.0 PERFORMANCE PARAMETERS

4.1 DYNAMIC RESPONSE

The electronic subassemblies, housed in a rib stiffened machined chassis and assembled

as shown in Figure 4-1 are designed for a composite response of 400 cps or higher.

4.2 THERMAL PERFORMANCE

The longest conductive thermal path from a dissipating part to the radiating panel is six

inches. Series thermal joints are limited to three: part to module encapsulating material;

module to subassembly web; and subassembly to radiating panel.

In the event of temperature control shutter failure, thermal contact maintained between the

subassembly and the harness assembly tray, provides a secondary heat rejection path by

radiation exchange within the spacecraft.
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Figure 4-1. Electronic Subassembly Sandwich Construction 
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4.3 ENVIRONMENTAL PROTECTION

Encapsulated construction and conformal coating is used t6 assure protection of the parts

against handling, dirt, humidity and corrosive atmospheres.

4.4 MAINTAINABILITY

The modular packaging design facilitates repair and revision of electronic assemblies. It

is possible to replace any subassembly without mechanically or electrically disturbing any

other subassembly.

5.0 INTERFACES

5.1 MECHANICAL

The electronic mounting assembly, consisting of the subassemblies mounted to the harness

tray, (See Figure 3-3) is attached to the vehicle structural longerons by means of bolts

passed through integral bathtub fittings on the individual subassemblies. After the mounting

assembly is in place, the thermal control shear panel is bolted to the subassemblies and

the spacecraft structure, completing the load and thermal paths to the spacecraft frame.

The outer panel need not be attached until after the system checkout is complete. This

facilitates removal and replacement of assemblies as required during testing.

5.2 ELECTRICAL

The electronic assemblies are joined to the system harness through a series of system

interface connectors, located at upper and lower ends of the harness tray. Each assembly

is provided with 7 upper and 7 lower positions, in which system or test connectors may be

mounted. After the assembly is mounted to the spacecraft,the system (lower) connectors

are mated by means of flexible pigtails in the vehicle ring harness. Mismating is prevented

by the use of indexed connectors. Pigtails from an external test harness are mated to the
*_* _..... _ con_m'r throuu, h access panels in the lander support cone.

5.3 EMI

In the event of electrostatic interference problems, shielding is applied at the subassembly

level, in the form of RF-tight covers. Back panel wiring geometry is designed to minimize

interference and pickup. (See VB235FD107, Electrical Harnessing)

5.4 MAGNETIC CLEANLINESS

Considerations of magnetic cleanliness are extended down to the module level through

specification of non-magnetic part lead materials, interconnections and hardware. Deviations

from this requirement will be allowed only ff it can be shown that the substitution of para-

magnetic materials is necessary to assure proper performance and/or reliability of the unit.
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6.0 PHYSICAL CHARACTERISTICS AND RESTRAINTS

A level Ill assembly occupies 2.2 cubic feet and may contain from 40 to 80 pounds of

electronic equipment. A drawing of a typical assembly is shown in Figure 3-1. It is com-

prised of three sections, as shown, a) the thermal control/shear panel, b) a group of

electronic subassemblies and c) the harness subassembly.

When the subassembly chasses are bolted to the harness tray, a mounting assembly is

formed which can be transported, tested and assembled into the vehicle as a unit.

In order that the electronic assemblies act efficiently in stabilizing the equipment module

structure, it is necessary that the level II chassis span the 20 inch width between longerons.

In applications where a subchassis width of less than the 20-inch is desired, two 10-inch

subassemblies are bolted and locked together to form a 20-inch overall dimension so that

the structural integrity of the assembly is maintained. (See Figure 6-1)

It is necessary for prevention of shear buckling in the thermal control/shear plate that the

level H chassis be attached at a bolt spacing of 2.9 inches thus requiring that no more than

a single 1.25-inch space be left vacant between any two subassemblies. Where electronic

equipment does not fill a panel to this extent, structural stiffeners are substituted for the
chasses.

To accommodate bulky, non-standard components such as transformers, filter chokes and

capacitors, gyros, tape recorders and radio equipment, the standard profile subchassis

is allowed to vary in integral multiples of its unit thickness maintaining standard connector

and mounting insert locations. High thermal dissipating parts or modules are located near

the edge of the subassembly that is adjacent to the temperature control/shear plate. Thermal

loading of subassemblies is controlled to insure that part operating temperatures are within

the limits for which they have been qualified.

Subassemblies are functional and testable units of the subsystem. The sandwich design of

the subassemblies provides adequate stiffness to insure that components, modules and

printed wiring boards are not damaged from deflections caused by shock and vibration.

All connections between the outgoing module terminals and the printed wiring board is done

only on the exposed side of the board to allow visual verification of the connections. The

module terminal clearance hole through the web is provided with annular insulation in the

form of an injection molded insert.

Subassemblies containing repetitive circuits requiring more than two layers of interconnec-

tions are packaged in a sandwich configuration. See Figure 4-1. Two double sided printed

wiring boards are used to obtain four layers of wiring. Encapsulated cordwood modules

are assembled between a top wiring board and the offset web. Alternate rows of modules

are reversed to mate into their respective wiring boards. Titanium fasteners are used to

seat all modules firmly against the web for maximum heat transfer and to secure the printed

wiring boards. Interconnections between the boards is accomplished by flat cables, soldered
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to terminals, electrically and mechanically secured to the boards. A photograph of a 
typical working subassembly built to the above criteria is shown in Figure 6-2. Sub- 
assemblies containing large variations in part sizes, or  requiring part value changes for 
tuning and adjustment, a re  packaged in a flat layout. Those circuits which are  not part of 
the tuning and adjustment a re  packaged in cordwood modules. The tuning and/or select- 
at-test parts a re  mounted to the printed wiring boards, through a cutout in the web, with 
their leads wired to terminals mounted on the boards. See Figure 6-3. 
any of these parts have high thermal dissipations, they will be mounted on the web with 
their leads wired to insulated terminals passing through the web and into the printed wiring 
board. 

In the event that 

7.0 SAFETY 

Handling - A set of special fixtures will be provided for assistance in handling and positioning 
the electronic assemblies, as their weight (40 to 80 pounds) exceeds allowable limits for 
safe manual handling by an individual. 

Figure 6-2. Attitude Conti-ol Component i n  Standard Subassembly 
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APPENDIX

The drawings reproduced below are representative of the details required to implement

the standard packaging design described in VB235FD106.

I

II

III

IV

V

VI

VII

Drawings

SK56152-436 - 20" X 1.25" Subchassis, Four Connector

SK56152-434 - 20" X 1.09" Subchassis, Four Connector

SK56152-562 - 10" Subchassis, Interlocking

SK56152-437- Harness Tray

SK56152-553 - Temperature Control/Shear Panel

SK56152-551- Stiffener, Bracket

SK56152-564 - Level HI Assembly

VIII

IX

X

XI

XlI

Photos

10" Subchassis

Hybrid Cordwood Module - Instrumented

Hybrid Cordwood Module Incorporating Microelectronics

10" Subassembly - Sandwich Construction

10" Subassemblies- Interlocked Design
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This section shows photographic views of a typical Electronic Assembly as described in

VB235FD106 Electronic Packaging.

Figure II-1 depicts the Harness Tray Assembly, showing standard connector and insert
locations.

Figure 1/-2 shows a pair of standard 10-inch subassemblies mated to the Harness Tray

Assembly. The unit shown is an operational Attitude Control Component.

Figure II-3 represents a completed Electronic Mounting Assembly, ready for installation

into the Equipment Module Structure. Note that the Assembly can be handled, mounted

and tested prior to the attachment of the thermal control/shear panel.

Figure 1/-4 is a view of the inner side of the Harness Tray, showing the subassembly inter-

wiring and cable runs to the system and test connectors mounted at each end of the Tray.
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Figure II-3. Subsystem Assembly 

Figure II-2. Subsystem Baseplate 
with Control Electronics 
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i.0 SCOPE

This section describes the electrical harnessing and cables for the 1971 Voyager Flight

Spacecraft.

2.0 APPLICABLE DOCUMENTS

VB220SR101

VB220SR102

VB220FD105

VB220FD106

VB220FD113

Design Characteristics

Design Restraints

Launch Vehicle Interface

Capsule Interface

Layout and Configuration

Specifications and Standards

General Electric

$30109

$30028

$30011

$30100

$30027

118A1526

NASA

NPC 200-4

Harness Design Requirements Standard

Wiring Harness Fabrication and Installation Standard

Acceptance Criteria for Soldered Corrections

MSD Design Requirements for theSoldering of
Electrical Corrections

Soldered Corrections, Shielding Terminations, and

Wire Dress - Requirements for

Identification Marking

Quality requirements for Hand Soldering of
Electrical Connections

3.0 FUNCTIONAL DESCRIPTION

3.1 GENERAL

The electrical harnesses for the Voyager Spacecraft Bus consists of a main ring harness

assembly of many individual cables, six separate system interconnecting cables not part of

the main harness, individual bay harnesses for each of the eleven electronics assemblies,

and in-flight disconnecting cables to the Launch Vehicle and Flight Capsule.

The harnesses are composed of one or more cables of insulated and twisted wires, either

shielded or unshielded, bundled together and terminated at the ends by connectors.

2 of i0
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The primary objective of the Voyager system interconnections is reliability of operation

i. e., the transportation of electrical energy without degradation, through test and launch and

throughout the mission lifetime in space.

3.2 MAIN SYSTEM HARNESS

The main system harness is made up of a ring of individual cables, each capable of independent

definition, fabrication, test and installation.

The harness is pre-assembled into a ring-type supporting structure to mount into the space-

craft below the electronic bays.

The installed structure is used to provide additional support for other spacecraft items such

as pneumatic lines and tank cradles.

The design of the harness support structure spacecraft provides sufficient access for rework-

ing or removing individual cables without removing the entire harness assembly.

Breakouts of pigtails from the harness mate to hard mounted connectors at the bottom of

each electronic assembly (bay).

3.3 UPPER SYSTEM CABLES

Individual cables connect the Canopus Sensor, Planet Scan Platform and Capsule to the system

via connectors at the top of the associated bays. The flexible cable to the Scan Platform

accommodates the position changes of this unit through deployment and throughout the re-

quired scan angles in operation. Refer to VB235FD108, Planet Scan Platform for details of
this cable.

3.4 ASSEMBLY HARNESS

The harness for each electronic assembly is composed of separated si___a!, com m__a.n.d, te!e-

metry and power bundles from the module connectors to the respective signal connectors and

insulated copper bus bars. Interconnections between subassemblies generally follow the

bundle groupings with short direct connections routed to cross the bundles at right angles.

All connectors are hard mounted. Float is provided in the subassembly connector mounting

to minimize alignment problems. (Reference - VB235FD106).

Most of the system interface connectors are mounted at the bottom of the bay (towards the

S/C booster). Located at the top are the test connectors and those connectors interfacing

with the components at the top of the spacecraft.

3.5 IN-FLIGHT DISCONNECTS

The cables to the Launch Vehicle and Capsule interfaces are each terminated in connectors

which form part of an in-flight disconnecting device at the separation joints. The Launch

Vehicle cable forms part of the main ring harness and the Capsule cable, one of the individual

cables at the top of the spacecraft.
3 of 10
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4.0 INTERFACES

4. I ELECTRICAL

4.1.1 SYSTEM HARNESS

The system harness electrically interconnects the various subsystem and peripheral com-

ponents and provide the connections to the Launch Vehicle and Capsule. (See Figure 4-1

for the various functional cable interfaces).

Cables are segregated into logical groups to reduce complexity, to control electrostatic and

electromagnetic interference and to increase reliability. The basis for segregation is the

destination, characteristics of the current flow and possibility of crosstalk.

System IR drops and power losses are minimized by the use of adequate wire size and judi-

cious routing of cables to reduce wire runs and series-connections.

4.1.2 ELECTRONIC ASSEMBLY HARNESS

The individual electronic assembly harness interconnects the subassemblies in each bay to

each other and to the system interface and test connectors. (See Figure 3-2 for a typical

bay harness).

Control of electrostatic interference and electromagnetic fields is accomplished by segregat-

ing the bay harness into functional cable runs, and the signal cables further segregated on the

basis of the characteristics of the current flowing into high and low level and/or sensitive

and noisy signals.

To minimize power losses and IR drops, to reduce complexity of wiring, and provide the

equivalent of a unipoint ground within the assembly, insulated bus bars distribute power

and collect grounds for each subassembly in the more densely packed bays. Where the

density or power distribution does not warrant power busses, only insulated ground busses

are used to reduce wiring complexity.

All test points are brought out to the test connectors.

4.2 TEST HARNESS

No system test harness is designed into the vehicle. Instead external OSE test harnesses

will be provided for system and subsystem test purposes. These harnesses will be supported

by an external duct or other support temporarily fastened to the vehicle just above the

electronic assembly module, and mate with the test connectors at the top of the bays through

removable access panels. Upon completion of tests, the connectors will be demated, the test

connectors capped, and the entire test assembly detached and removed from the vehicle.
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F_ure 3-2. Typical Electronic Assembly Harness
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4.3 CAPSULE INTERFACE

The Capsule interface cable feeds telemetry data, commands, both stored and ground trans-

mitted, power and on-pad test signals to the Capsule through the Capsule/Bus in-flight-dis-

connect connector.

4.4 LAUNCH VEHICLE INTERFACE

The Launch Vehicle Spacecraft interface physically consists of a cable to the in-flight dis-

connect connector. The cable carries Launch Complex DC power, launch control and monitor

signals from the pad umbilical through the field connection to the Spacecraft. In addition,

on-pad RF signals are interconnected to the Spacecraft and Capsule via coaxial cables and

coaxial inserts in the in-flight disconnect.

5.0 PHYSICAL CHARACTERISTICS

5.1 PHYSICAL CONSTRAINTS

The physical constraints determinIng the harness design are:

a. Minimum weight and size compatible with the reliability and life objectives

b. Layout of the spacecraft structure, and location of the Interconnected assemblies

c. Restricted areas and clearances necessary for optical, rf, radiation and magnetic

particle devices, attitude control and thrust jets or nozzles and articulating members

d. Flexibility and access for rework, adjustment and test without damage to the harness,

spacecraft or personnel

e. Capability for accommodating system and subsystem perturbations which result in

interconnection changes

f. Protection from heat, v_ration and other environmental stresses

g. Quality of interconnected assemblies and connectors

5.2 ELECTRICAL CONSTRAINTS

The electrical constraints include:

a. The multiplicity and characteristics of the signal being routed

b. The possible degradation of these signals by inductive, capacitive and resistive

effects

c. Control of magnetic and electro-static interference (EMI). See VB220SR102 for

specific details of design practices to be followed to control EMI and prevent signal

degradation due to inductive and capacitive effects.
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5.3 RELIABILITY, MATERIALS AND PARTS

The design of the electrical harnesses and cables is based on the same care, consideration

and regard for reliability as any other electronic component or unit. Only parts and materials

proven for their reliability in the pre-space and space environment are used together with

fabrication and handling techniques which do not degrade but rather enhance the reliability of
the installed harnesses.

5.3.1

Materials and parts used in the design, fabrication and assembly of cables and harnesses,

such as wire, insulation, sleeving, connectors, terminal blocks, grounding device, clamps, and
terminals are selected from approved parts and material lists.

5.3.2

Size 24 AWG wire is listed for most signal leads and where potential drop and heat dissipation

are not critical; size 22 and 20 AWG wire, where these factors are critical. Current carry-
ing capacity, as specified in military wire tables, shall be derated fifty percent.

5.3.3

Only non-magnetic materials shall be specified for connectors and hardware.

5.4 SYSTEM HARNESS DESIGN

Lower Ring Harness - The basic system harness assembly consists of a ring of cables clamped
and supported by a ring structure of 0.04 thick magnesium. Individual cables or cable break-

outs (pigtails) connect to the bottom system-interface connectors on the 11 equipment bays.

Breaking out from the ring are cables to the solar array connectors, antenna connectors, pro-

pulsion and pneumatic subsystem connectors, Launch Vehicle in-flight disconnect, and all
other -..k....,___ouuo_ o_,,, cormectors '^_-*_ at +_heL_o_._ ,_ ,h_ _p._,_,..ff The support ring hnlt_

to the bottom of the bays and to 24 magnesium brackets riveted to the lower longerons.

(Reference - VB220FD102).

Upper Cables - Individual cables for the G & C and science subsystems and Capsule interface

run from the top connectors on bays 7, 8, 11 and 12 and from a power bay to the Canopus

Sensor, the Approach Guidance Sensor, the Planet Scan Platform and to the Capsule in-flight

disconnect Connector. These cables are locally supported on top of the bays and upper space-
craft structure.

Routing

Routing problems are minimized on interbay wiring by the relatively large supporting structure

and number of connector location available at the bays which allows for individual cables.
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Those bays which functionally form an interconnection nucleous to many subsystems and

subassemblies such as bay #12 (Guidance and Control, Controller and Sequencer} employ

additional routing measures. Several cables or bundles may be routed through one connector.

However these are categorized as to their destinations. Wires are grouped and separated by

controlled pin assignments in the connector by cable and further by shielded groups.

In general, maximum use is made of the existing structural members which support peripheral

equipment to support the cables to this equipment. However, it is necessary in some cases

to avoid interference with intermediate obstructions, to simplify routing and/or minimize

cable lengths by providing additional local support for cables running between members where

direct structure does not presently exist.

In all cases cables are routed and protected to avoid contact with rough or irregular surfaces

or sharp edges of structure and hardware. Cables passing through holes in the structure

are protected by sleeving and/or grommets or bushing of approved materials.

Cables are routed around or behind intermediate structure to avoid interference with antenna

patterns, sensors, jets, nozzles or articulating members and/or minimize heat effects from

exhausts or other thermal sources. Additional measures to take care of thermal effects on

cables subject to flexing during flight include derating, inclusion of heaters and application of

insulation.

6.0 SAFETY

The harness and cables in themselves do not constitute a hazard to personnel either in the

pre-assembly or assembled stage. Sufficient access exists for personnel to work on the

installed harness providing reasonable care is exercised to prevent damage to propulsion

lines and other equipment in the immediate area of the harness. The harness support ring

design incorporates protective shrouds over the two 12-inch diameter tanks directly under-
neath.
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1 0 SCOPE

This specification describes the actuation mechanism and structure needed to provide support

and orientation capability for the planetary surface observation instruments.

2.0 APPLICABLE DOCUMENTS

VB220SR101

VB220SR102

VB220FDl13

VB220FD101

VB234FD 108

Design Characteristics

Design Restraints

Layout and Configuration

Standard Trajectories

Articulation Subsystem

3.0 FUNCTIONAL DESCRIPTION

Science instruments will be located in a planet scan platform structure which is in a stowed

position during launch, transit and orbit injection, and in a deployed position oriented to the

planet during Mars orbit. Three degrees of freedom are provided by the scan platform

actuators and gimbals. Motion about axes "C" and "D" will erect a perpendicular to the orbit

plane. Motion about Axis "E" rotates the scan platform in the orbit plane as well as pro-

viding an initial rotational motion to position the scan platform in a nominal operating posi-

ition.

The initial deployment of this scanner to a deployed position is done by a separate linear

actuator and hinge. Retraction of the linear activator rotates the planet scan platform in-

cluding axes C, D and E and locks it into the deployed position as indicated in Figure 3-1.

3 1 STOWED POSITION

The stowed position of the scan platform is such that boost loads are not transmitted into

the actuation mechanism. The scanner is mounted to the basic structure of the equipment

module at bay 9 with support brackets attached to four points, two upper and two lower. The

brackets mate with similar supports on the scan platform structure to provide firm support

during boost.

The outer surface of bay 9, will be covered with an insulation blanket (Reference VB235FD101)

and appropriate lens covers. In the stowed position the instrument face of the planet scanner

is oriented so that the instruments are located against the lens covers, thus providing a

"fixed in place" cover for the instruments.

Motion of the planet scanner for deployment will be away from the support points so that

there is no requirement for deployment of instrument covers. The insulation acts both as a

cover and as thermal control for bay 9.
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3.2 DEPLOYMENT

Deployment of the planet scanner will be by means of a linear actuator and separate hinge

as shown on Figure 3-1.. The deployment will be a "one shot" system arranged so that

the planet scanner locks into the deployed position.

The separate hinge for deployment was selected so that the actuation mechanism could re-

main sealed and pressurized.

After the squibs of the pin pullers located at the four support points are actuated (Reference

VB235FD104), the linear actuator retracts and locks the planet scanner into the deployed

position. The locking device is a sprhlg l_aded male fitting which is mounted on the canti-

lever beams extending from the capsule support structures and is inserted into a female

fitting mounted on the planet scan platform. This mechanism was originally designed and

tested for the Advent program and is shown in Figure 3-2.

The linear actuator shown in Figure 3-3 is composed of a DC Servo motor, similar to a

Globe type BL-8, a torque multiplying gear train, and a ball nut-shaft assembly which

converts the rotary torque to a linear force and a structural telescoping housing, with
attachment fittings, sealed with a flexible metal bellows.

The stroke of this actuator is 4.5 inches and contains adjustable limit switches so that the

current will be interrupted at the completion of the desired stroke. The gear reduction is 337

revolutions of the motor per inch of travel so that 9 seconds are taken for one complete
stroke.

The motor output is fed through a spur gear reduction using staddle-mounted spur gears

supported on ball bearings. Translation of rotary to linear motion is provided thru the use of

a re-circulating - ball nut - lead screw combination.

Sealing of the actuator will be accomplished thru the use of a flexible bellows attached to the

two major telescouin_ tubes in such a manner as tn p_rr, it _heir required ,._1o÷_ ..... +_....

while preventing leakage through the gap between them.

The ends of the actuator tubes are welded to the attachment fitting providing a hermetic

seal. The electrical leads are also provided with a hermetic sealed electrical connector.

Ball bearings will be lubricated with a proven low vapor pressure grease (GE Versilube

G 300) throughout the sealed actuator.

The internal pressure will be reduced to one-half atmosphere to reduce the differential

pressure loads generated during both ground testing and actual use, while still providing

a pressure to limit lubricant evaporation.

The bearings on which the planet scanner rotates during deployment as well as the exposed

bearings of the deployment actuator will be self-aligning spherical bearings of "DU material"

(lead-teflon impregnated sintered bronz) which require no other hbrication. All machined
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faces in this area, including the latching mechanism, will be hard anodized and sealed

to prevent cold welding.

3.3 ACTUATION

In the deployed position, the actuation mechanism locates the planet scanner so that the

instruments view the planet. The required view angles, actuation motors, and their control

are defined in VB238FD108. Three axes of freedom are provided by gimbals C, D, and E.

Rotation about axes C and D will errect a normal to the orbit plane, and rotation about E

provides rotation of the scan package in the orbit plane.

The gimbals and actuators required to supply rotation about axis "C" and "D" are positioned

within a sealed pressurized structure. Pressurization is maintained by means of a metallic

bellows which is fitted around the gimbals and actuators as shown in Figure 3-1. Motions

of the planet scanner about axis "C" and "D" flex the bellows. Pressurization is maintained

at 1/2 psi.

The gimbal structure is the connecting link between the rotary actuator in the scan package

and the supporting structure. This gimbal provides for rotation about the C and D axis.

The gimbals are driven by two IMC 020-800 stepper motor prime movers, each driving a

torque multiplying gear train, each gear train engaging internal sector gears secured to a

spider on the C and D axis. Limit switches for both axes of freedom, stepper sensors for

each motor, a temperature indicator for each motor, and a pressure sensor to sense in-

ternal pressure are provided. The area between the fixed face and the moveable face will

be enclosed within a metallic flexible bellows that provides a hermetic seal.

Each motor output shaft will be fed through a spur gear reduction using straddle mounted

gears supported on ball bearings. The total reduction of each gear train is 720 to 1 resulting

in a one-fourth degree rotation of the gimbal moveable face for two 90-degree steps of the :

stepper motor. Low vapor pressure grease lubrication (G300) will be provided.

The step sensors will be mounted on the end of the stepper motor opposite the output shaft

end. The limit switches will be mounted on the sector gears.

The rotary actuator for Gimbal E serves as the structural link between the gimbal output

shaft and the planet scan platform. The rotary actuators outer housing being hard mounted

to the planet scan platform, and the actuator output shaft with integral mounting flange being

hard mounted onto the moveable face of the gimbal structure.

After the linear actuator has completed its operation of positioning and locking the planet

scanner in place, the rotary actuator rotates the scan package from its stowed position of

-90 degrees to its neutral position of 0 degrees at which time the limit switches will become

effective limiting the subsequent motion of this actuator to -10 and _190 degrees.

The actuator is composed of a pr ime mover, an IMC 020-800 stepper motor, a torque multi-

plying gear train, a bell shaped output shaft and mounting flange, limit switches and stepper

sensors mounted in a structural housing and sealed with a Nylon MoS 2 seal rotating on a hard
anodized and sealed aluminum face.
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Figure 4-1. Flexible Hard-wire Conductor

The motor output will be fed through a spur gear reduction using straddle mounted gears

supported on ball bearings utilizing gear material which have been proven in space. The

total reduction is 720 to 1 resulting in a one-fourth degree rotation of the output shaft for

two 90-degree steps of the stepper motor.

G300 low vapor pressure grease used in the other gears and bearings is also used in this
J.l= .... -1 -_ ,L'L _ _,L ............ J- _

...... ,_.. .._ _la _,_u, vv,., ,,.uun_u _n_ _,lu _upp_i" muLoi" opposiLe the out-

put shaft end. The limit sensors will be incorporated in the final drive. Motor temperature

and an internal pressure sensor will be provided.

4.0 INTERFACE DEFINITION

Transmission of data and power from the planet scanner to the spacecraft and return is by

means of hard-wire with flexing provisions incorporated to accommodate the movement of the

planet scanner. Figure 4-1 shows the required type of flexing. Heater wires are incorpor-

ated into the cable and the complete assembly is wrapped in super insulation.

A horizon scanner is mounted on the planet scan package structure and provides outputs for

control of the scan platform about axis E. (Reference VB234FD108)
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All science instruments located within the planet scan platform are provided with a cover,

as previously described, to provide for lens and instrument protection during launch and

transit.

5.0 PERFORMANCE PARAMETERS

Angle Motion Actual Rate

C +53 .25O/sec

-23

D

E

+6

-57

+190

-10

.25O/sec

.25°/sec

The actuation and deployment system operational components are shown in the simplified

block diagram (Figure 5-1) to provide a basis for the reliability analysis.

The mathematical model for the Planet Scan Platform Gimbal system is

R(psP) = R(Gimbal C & D) R(Gimbal "E") R4(pin puller) R(linear actuator)
R 3

(bearings)

Where the mathematical models for the gimbal units are given by

RCD = R14 . R28 . R 3 (C & D combined)

R E=R12 .R24 .R 3

Entering the proper component reliability values tabulated in Table 5-1 into the above

mathematical models results in a reliability prediction of. 99605 for one month in orbit.

Table 5-1

Components

1 Gear

2 Bearing

3 Seal C&D)

Seal (E)

4 Pin Puller

5 Linear Actuator

Quantity

4

15

4

1

Failure Rate

(% per 1000 hrs)

• 001

•002

• O3O

• 070

4 x I0 "_ per

hour

.001 x 10 -5 per

hour

1 x 10 -3 per cycle

.100 x 10 -6 per

hour
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6.0 PHYSICAL CHARACTERISTICS AND CONSTRAINTS

The planet scan platform will be structured to efficiently house and support the required

instrumentation.

This scan platform will be latched down to provide rigid support to the equipment during

the time from lift-off until after orbit injection and will provide protection to the instru-

ments optics during this period.

In order to provide for proper deployment and actuation of the planet scan package, this

lower portion of the biological barrier must be removed from the spacecraft. This opera-

tion will be performed prior to retropropulsion firing.

The weight of this scan platform, and gimbal structure is 50 pounds with a minimum volume

of 5.0 cubic feet being available for science instrumentation.
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1.0 SCOPE

This document describes the high gain antenna deployment mechanism, the gimbal mechanism,

and the structure required to provide the antenna with the capability to be accurately pointed

toward Earth during cruise, interplanetary or Mars orbit, and with the spacecraft in a man-
euver attitude.

2.0 APPLICABLE DOCUMENTS

VB220SR101 - Design Characteristics

VB220SR102 - Design Restraints

VB220FDl13 - Layout and Configuration

VB220FD101 - Standard Trajectories

VB234FD108 - Articulation Subsystem

3.0 FUNCTIONAL DESCRIPTION

A 90-inch diameter parabolic reflector antenna is mounted on a structure capable of pointing

the antenna toward Earth for the useful life of the Voyager spacecraft. There is a stowed

position and a deployed position of the antenna pointing mechanism. The stowed position is

such that the antenna lies within the aerodynamic shroud and is supported primarily by the

spars of the solar array structure. The launch loads imposed on the antenna are therefore

not transmitted into the antenna actuating mechanism. In the deployed position, the antenna

extends beyond the solar panels. Acceleration loads generated during propulsion operations

are carried through the antenna support and actuating structure.

Two degrees of freedom are provided by the gimbal mechanism. This mechanism, with the

antenna in the deployed position, will be capable of rotating the antenna +15 to -25 degrees

about an axis parallel to the spacecraft X axis herein referred to as the "A" axis, and to

rotate the antenna 256 degrees (+206 to -50 degrees} about the antenna support axis, called

the "B" axis (See Figure 3-1}.

The antenna support structure includes upper and lower trunnions, diagonal supports, vertical

members which house the rotary actuator, and gimbal mechanism used to rotate the antenna

about the "A" axis. This structure is located outboard of the equipment module (Bay 3}.

Figure 3-1 shows this support structure and mechanism in relation to the spacecraft in the

deployed condition and references the stowed position.

The antenna is bolted to a circular mounting flange 10.5 inches in diameter with a bolt circle

of 9.5 inches. During launch the antenna is restrained by a release mechanism which con-

sists of a pyrotechnic pin puller mounted on the solar array support between Bay 4 and Bay 5.
The latching and release mechanism is secured to the antenna feed structure. Launch loads
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are carried as axial loads through the feed support tubes. Four compression support pads

are provided at the outer edge of the antenna. These pads are adjusted to provide a support

against the antenna in order to minimize deflections during launch.

3.1 DEPLOYMENT MECHANISM

After separation of the spacecraft from the launch vehicle, a signal is given to deploy the

antenna, and the pin puller releases the antenna feed structure from the spacecraft structure

allowing the spring located in the lower trunnion to rotate the antenna system into its deployed

position. The rate at which the antenna system rotates is controlled throughout its entire

travel by a viscous rotary damper. After deployment is complete, a mechanical lock en-

gages providing maximum stiffness to the structure.

The damper provided to control the deployment spring is of the disc type. The disc type was

selected because it is not limited in amount of motion and need not contain a large reservoir

to contain oil that is used only once per stroke in passing around a piston. The locking

mechanism consists of spring loaded locking lugs which mate with maohined recesses in

the lower trunnion structure. Engagement of the lugs into the machined recess effectively

latches the high gain antenna into the deployed position.

Ball bearings in both the upper and lower trunnions are shielded precision bearings. These

bearings, before assembly into the trunnion, are subjected to a short run-in period using

light lubricating oil, then ultrasonically cleaned and packed with GE Versilube (G300) grease.

Although it is not required that the bearings operate after antenna deployment, these pre-

cautions are taken to insure deployment even if the deployment is subjected to an unexpected

time delay. G300 is a low vapor pressure grease capable of operating for long periods of

time at high rotational speeds in a vacuum.

3.2 LINEAR ACTUATOR

The linear actuator (Figure 3-2) serves as a structural connecting link between the upper

f'P11nn_f_n _n_ _'ha _n_p_p'P_" _nd n_n_71_p._ _hp fln_Pnnfl with its re__,ired rntat_nn mhnut th_ "A"

axis. This is accomplished by extending or retracting the sealed actuator a total of 23 inches.

The actuator is supported at the trunnion with two 3/4-inch "Bendix Flexural pivots," and to

the spacecraft with a self-aligning spherical bearing made from "DU-material," a lead Teflon

in sintered bronze. "DU-materia_' is a self-lubricating bearing material suitable for use in

space, and requires no other form of lubrication. Tests were conducted on "DU-material"

(20 percent Pb, TFE in porous bronze on steel) for 1000 hours without excessive wear at

contact pressures ranging between 10 and 1,500 PSI. Teflon in porous bronze on steel wore

0. 005-inch after 213 hours and graphite and lead bronze wore 0. 010-inch after 158 hours under

the same test conditions. Data obtained from Space Material Handbook ML-TDR-C4-40 March
1964.

The actuating mechanism is comprised of a stepping motor prime mover (IMC 020-800), a

torque multiplying gear reduction, a linear ball screw which provides an axial force to rotate

the antenna, limit switches, stepper sensor, motor temperature indicator and an internal

pressure sensor. This mechanism is enclosed in a telescoping structural housing sealed

5/6 of 14
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Figure 3-2. Linear Actuator
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with a flexible metal bellows.

The stepper motor output which is applied in 90-degree impulses, is fed through a spur gear

reduction using straddle mounted spur gears supported by ball bearings. The translation

from rotary motion to linear motion is accomplished with a recirculating-ballnut-lead screw

combination which incorporates the final reduction stage. Reduction is 2880 to 1 so that eight

90-degree pulses of the stepper motor produce a 0.25 degree rotation of the antenna about

the "A" axis. Sealing of the actuator is accomplished through the use of a flexible bellows

attached to the two major telescoping tubes in such a manner as to permit the required rela-

tive motion without leakage. Stepper sensors are mounted on the motor shaft opposite the

power take off. A motor temperature sensor and an internal pressure sensor are also pro-

vided. The limit switches are mounted at the ends of the leadscrew.

Lubrication is provided by a low vapor pressure grease consisting of a chlorophinyl methyl

silicone oil in a lithium soap thickener (General Electric Versilube G300). During retro-

fire the stepper motors will be put in the stall condition to prevent movement of the antenna.

3.3 ROTARY ACTUAT_N

The rotary actuator serves as the connecting member between the support structures and the

antenna. The actuator output shaft is an integral part of the antenna mounting flange and

provides rotation about the "B" axis. The non-rotating section of the actuator is hard mounted

to the vertical member which provides the nodding motion (axis A) of the antenna.

The actuator is comprised of a stepping motor prime mover (EMC 020-800) a torque multi-

plying gear reduction with a cone shaped output shaft, a set of limit switches, a stepper

sensor, motor temperature sensor and an internal pressure sensor. This mechanism is

assembled in a structural housing containing a Nylon - MoS 2 rotary seal. The stepper motor
output, which is applied in 90-degree impulses, is fed throffgh a spur gear reduction system

using straddle mounted spur gears supported by ball bearings. The final reduction being a

four to one drive of the output shaft. The total reduction is 720 to one resulting in a one-

fourth degree output shaft rotation for two 90-degree steps of the driving motor. The ou_ut

_,lalL is supported on the outboard end with a Torrington needle bearing HJ-9612040 or equiv-

alent, which has an inside diameter of six inches, and is located adjacent to the Nylon-MoS 2
seal. The Nylon-MoSA seal rotates on a hard anodized and sealed aluminum surface, and is

2
spring loaded to compensate for wear or differential expansion thereby approaching the effec-

tiveness of a hermetic seal. The actuator housing also provides for the attachment of the

stepper sensor and the limit sensors which limit the rok_tion to 256 degrees. The stepper

sensor is mounted on the output shaft of the stepper motor opposite the power takeoff. All

electrical connections are made through a hermetically sealed connector. Lubrication is pro-

vided by a low vapor pressure grease, G300° The structure that provides for mounting of

the rotary actuator is a triangular shaped box section of varying thickness which transfers

the antenna loads to the upper and lower trunnions through the ball bearings that provide

for antennas deployment as discussed earlier.
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3.4 SUPPORTSTRUCTURE

The support structure shownin Figure 3-1 includes the vertical member providing attachment
for the rotary actuator andthe diagonal braces giving rigidity to the vertical member. The
linear actuator also serves as part of the support structure.

Two diagonal members or supports extend from the spacecraft structure to the ends of the
structural members in the solar array and provide the mounting structure for the lower
trunnion. The support ties provide a rigid support for the lower support structure. However,
the lower trunnion which is connectedto this support by means of two 3/4-inch Bendix Flexure
pivots doesnot maintain this rigidity. This loss in rigidity is counteracted by one additional
diagonal member extending from the solar array structure to the upper trunnion, so that both
the upper and lower trunnions are supportedby rigid members at two points. Flexure pivots
are used in order to eliminate the needfor lubrication.

The diagonal extending from the solar array to the upper trunnion is required to move when

the antenna is rotated around its "A" axis. To allow this movement, the diagonal member is

equipped at each end with a self-aligning spherical bearing made of "DU-material" (lead

Teflon in a porous bronze}. No lubricant is required under the conditi,ms expected on the

Voyager.

4.0 INTERFACE DEFINITION

Power will be carried through flexible leads between the antenna gimbaling mechanisms and

the spacecraft. Provisions are made to support the flexible leads in such a manner as to

prevent bending stress from reducing the expected life of the leads. RF current is carried

by a one-half inch diameter co-axial cable. This cable requires the use of a hermetically

sealed coax connector to allow the cable to pass through the "B" axis of the rotating mech-

anism. The small degree of bending required of the co-axial cable to allow for the rotation

about the "A" axis can be tolerated without flexible or rotary joints.

5.0 PERFORMANCE PARAMETERS

For proper orientation of the antenna, it is necessary that the rate of motion be compatible

with the antenna control system. The rate of control is as follows:

Angle Motion-degrees Rate

A -25 ° to +15 ° 0.25°/see.

B -50 ° to +206 ° 0.25°/sec.

The high gain antenna is capable of pointing to the earth for the useful life of the spacecraft.

The minimum correction angle is 0.25 degrees with a maximum incorrect angle of 0. 125

degrees around the A and B axis.
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The high gain antennawill be deployed following separation of the spacecraft from the launch

vehicle and will operate during all maneuvers, the transit period after reaching 15 million

km from earth, and the entire orbital period. The deployment system and the operational

gimbal system reliability are shown in simplified block diagrams in Figure 5-1 and 5-2.

Mathematical Model and Reliability Computation

The mathematical model for the high gain antenna positioning system during any mission
phase is:

R(HGA ) = R Deployment System . RGimbal A "RGimbal B

The mathematical model for deployment is:

R(Deployment) R1 • R 2 • R3 • (R4)5 . (R5)4

where the above subscripts refer to the component numbers assigned to each of the components

as indicated below. Substituting the proper reliability values tabulated for each component

into the mathematical model results in the following reliability:

RHigh Gain Antenna = 0.99868

HIGH GAIN ANTENNA DEPLOYMENT SYSTEM

C omp onents Quantity

1 pin puller 1

2 Spring 1

3 Damper 1

4 Bearings 5

5 Gears 4
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PIN DEPLOYMENT
PULLER SPRING

GEAR TRUNNION ]TRAIN BEARINGS

VISCOUS
DAMPER

Figure 5-1. High Gain AntennaDeployment System Block Diagram

GEARTRAIN BEARINGS SEAL

GEAR HTRAIN
BEARINGS

ANTENNA ]
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HIGHGAIN ANTENNAOPERATIONAL SYSTEM

Components Quantity (% per 1000 hrs. )

6 Gear 8 .001

7 Bearings 6 .002

8jSeal ("A") 1 .070

Seal ("B") 1 .030

7.0 PHYSICAL CHARACTERISTICS

The weight of the antenna deployment and gimbal mechanism is 22.9 pounds.

8.0 SAFETY CONSIDERATION

The viscous damper controls the rate of deployment at all times and prevents damage to

equipment and personnel in case of inadvertent deployment during test.

All springs are suitably protected so that they cannot be inadvertently released.
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1.0 SCOPE

This document describes the mechanical and functional characteristics of the preferred

design configuration of the 1971 Flight Spacecraft Solar Array Structure. The solar panels

provide 197 square feet of effective area for mounting photovoltaic solar cells which

furnish the primary electrical power for the over-all Spacecraft System.

2.0 APPLICABLE DOCUMENTS

The following documents apply to this description

VB220SR101

VB220SR102

VB235FD103

VB220FD113

Design Characteristics

Design Restraints

Spacecraft Design Criteria

Layout and Configuration

3.0 DESCRIPTION OF SOLAR ARRAY

3.1 GENERAL

The electrical power for the spacecraft is provided by an array of solar cells mounted on 22

geometrically identical panels. These panels are arranged in 15 degree segments around the

bus with a space of 30 degrees (2 panels) left clear for mounting a fixed antenna. Fixed

panels are supported by tapered spars extending radially outboard from the spacecraft inter-

face. One fold-out panel is employed to compensate for solar pressure on the high gain

antenna and does not require solar cells.

3.2 STRUCTURE

Trapezoidally shaped panels of honeycomb construction are used on both fixed and foldout

panels. Details of construction for foldout and fixed panels and also support spar structure

are included in this section. The fixed panel is securely held along two sides at all times

in contrast to the foldout panel which must survive a 1.13 g (0-peak) retro-rocket excitation

vibration load when extended and supported by two corners only. The balance of many

factors such as temperature drop, fabrication problems, interchangeability, cost, etc.

were, of course, all used in the selection of panel structure. These will be explored in

detail in Volume VB235AA110.

3.2.1 FIXED PANELS (Figure 3-1)

Length along Centerline
Width at Wide End

Width at Narrow End

Panel Thickness

Included Angle

55.88 in.

30.38 in.

15.67 in.

0.50 in.

15 °
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The core selected for the panel is 3/16 inch Hex aluminum honeycomb (vented) with a

density of 1.6 lb/ft 3. The cell side of the panel is fabricated from two layers of fiberglass

cloth which sandwich a thin layer of expanded silver mesh used for cancellation of magnetic

fields. (Inner skin 1 ply 0. 0055 thick #1557 fiberglass-epoxy sheet, 0.002 silver mesh;

outer skin I ply 0. 002 thick #108 fiberglass-epoxy sheet. ) This composite skin is bonded

to the honeycomb core using a film type adhesive (FM-1000). The same adhesive is used

for attaching the skin to the opposite core face (back skin). This back skin is fabricated

from 1 ply 0. 0055 thick #1557 fiberglass-epoxy sheet, since there is no requirement for

expanded mesh on this side.

All panel edges are enclosed by 0. 012 aluminum channels 1/2 x 0.16 inch. The legs of the

channels extend outward to enable tooling to locate and support the channels during pressure

curing. Machined aluminum fittings are bonded inside the structure to react the loads at

attachment points and to spread these loads to the core and skins.

The top fiberglass layer of the front skin is cut out in a pattern at the end of each cell group

to allow electrical connection to the imbedded mesh layer mentioned previously. Electrical

feed-through terminals are provided as required along one side of the panel for transfer
of electrical power from the cell side to a wire harness which connects the various cell

groups and routes the power to the spacecraft. Six terminals are provided at the small end

of the panel for conveyance of harness termination and blocking diode provisions. A bracket

to support a connector plug is also provided. A doubler with threaded inserts is mounted

on the back of the panel to accommodate a diode package. No mounting provisions for

additional equipment or device are anticipated at this time, but additional mount plates,

clips, doublers, etc. could be easily incorporated ff required.

Breather holes 3/16 inch in diameter are spaced at 4-inch intervals through all edge closure

channels. This provision is expected to allow for pressure changes to be encountered.

Additional holes may be added to the back skin if tests indicate a need.

3.2.2 FOLD-OUT PANEL (Figure 3-1)

The basic geometry of the foldout panel is similar to the fixed panels. The core remains

unchanged as do the closeout channels. Aluminum alloy skins are used in place of the

fiberglass skins because of the difference in the method of support during the time of

critical load. The skins (both sides) are fabricated from 0. 0041 aluminum alloy.

Mounting differences require a change in the internal spacer fittings. The general type of

fitting is the same, but the detail parts change in the area of the hinge and latch fittings to

provide additional attach holes and to spread the load more effectively.

3.2.3 SUPPORT STRUCTURE (Figure 3-2)

The 22 fixed panels as well as the foldout panel are supported by tapered spar sections

63 inches in length, 11.3-inch deep at the root and tapering to 1.25 inch at the tip. The

basic construction is an 0. 016 sheet metal web containing various size lightening holes and
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web stiffening angles. The top and bottom caps of the spar are extruded "T" sections 1-1/2"

in width. The bottom "T" section mounts the nut plates for attaching fixed panels. The

top cap supports the damper pads and panel latch which, in turn, support the foldout panel.

The inboard end of the spar contains a hole pattern for attachment to the spacecraft. The

outboard end contains a hole pattern for attaching the hinge fittings and cruise dampers.

No provisions are shown at present for auxiliary equipment mounting to spars, but the

structure is readily adaptable to this eventuality.

3.3 DEPLOYMENT SYSTEM (Reference 8)

The foldout panel is attached by two hinge brackets at the wide end. This arrangement

allows the panel to swing outboard approximately 180 degrees to the deployed position.

The force which causes this movement is provided by two torsion springs (one at each

hinge attachment). The springs are similar in design to those used on Mariner C, however

the spring rate is lower because of a lower mass moment of inertia about the hinge line.

The panel is secured in the stowed position by explosive pin puller latches. An electrical

impulse to the latches detonates the explosive and pulls a pin from two brackets mounted

at each side of the foldout panel. This action allows the torsion springs to rotate the panel

to the deployed position.

A damper at the tip of each of the two tapered spars which support the foldout panel absorbs

the energy at the end of the travel and also latches the panel in the deployed position. These

dampers are capable of reacting loads in two directions and, therefore, are used as cruise

dampers to provide damping for load inputs during midcourse corrections. The dampers
will "bottom out" to react retro-rocket loads.

4.0 INTERFACES

4.1 GENERAL

The major interface areas for solar array attachment to spacecraft are as follows: A

machined ring will provide the attach flange for the panel support spar lower cap attach-

ment. A structural bulkhead frame approximately 11.5 inches from the base ring provides

a surface for attaching the top cap of the spar. The sheet metal cone connecting these two

rings is used for attaching the web of the spar.

Maximum solar array deflection is in the longitudinal direction with reference to spacecraft

centerline. Since deflection is small, the total dynamic envelope was used for array design.

4.I.1 STRUCTURE

The support for the solar panels is provided by the tapered spars previously described.

These spars carry the load induced by the solar panels. The alternating tension and

compression spar cap loads are transferred to the spacecraft frames by the use of 3/16-
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inch diameter bolts in shear at the bottom cap and in tension at the top cap. Spar shear

loads are taken out by an angle stiffener bolted to spacecraft stringers.

4.1.2 ELECTRICAL

The electrical power is routed from the individual panels to the spacecraft by wire harnesses.

Mounting brackets for connector plugs are provided on each panel for termination of panel

wiring and connection of harnesses.

4.1.3 DEPLOYMENT

The outer tip of the panel support spar provides for attaching a hinge fitting for mounting

adjacent corners of two panels. The foldout panel is mounted in this location by simply

inserting a 5/16-inch bolt at each corner and tightening a lock nut. The panel latch is

mounted on the top cap of the spar approximately at 2/3 of the panel length inboard. This

latch assembly is designed to slide outboard to allow the foldout panel latch brackets to

move into a clevis. The latch is then moved inboard to lock the brackets in place and is

secured by an Allen screw thus restricting latch movement. The latch pin at this point is

loaded in double shear to react rubber damper preload forces and panel dynamic loads.

5.0 PERFORMANCE PARAMETERS

The solar array has been designed to survive the various environmental conditions en-

countered from fabrication to mission orbit. Simplicity in the design of assemblies, de-

ployment system and installation of all components was a major goal in the creation of a

design which would be highly reliable in fulfilling the various performance parameters.

5.1 DESIGN CRITERIA

Design criteria are given in Reference Volume VB235FD103.

5.2 DEPLOYMENT SYSTEM (Figure 3-2)

The basic requirement of the deployment system is to extend the foldout panel to the de-

ployed position at a rate acceptable to the structure and stabilization system. This problem

is resolved by mounting a torsion spring at each hinge axis to provide the moving force.

One spring will provide this movement, however_complete redundancy is provided by

having two springs. The two other basic elements of this system are: (1) A latch to re-

strain the panel during boost and release it at the proper time, (2) a damper to absorb the

energy at the end of travel and provide damping during maneuvers.

The requirement for extending the panel in a specified time lapse is not critical if the

system fulfills its other requirements. The approximate time for deployment is estimated

to be six seconds. This rate may fall within a range of 10 degrees/sec, to 40 degrees/sec.,

depending on the final design and if one or two springs are used, i.e., the system must

function acceptably with either one or two springs if the redundancy is to be demonstrated.
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6.0

.

2.

.

.

CONSTRAINTS

The solar panel dynamic envelope is given in Section VB220FD113.

Overall panel flatness to be within + 0.06. Local depressions should not exceed

+ 0.010 within an area of one square inch° (See Reference 7.)

Array location with respect to the spacecraft booster interface is given in Section

VB220FDl13. Dynamic excitation levels at the solar array support are affected

by the location and any deviation would change solar panel design loads.

Solar array weight shall be minimum compatible with intended mission design

requirements.
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Figure 3-1. Solar Panel Assembly
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Figure 3-2. Solar Panel Installation
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This section contains supporting analysis for the selected concept. Analysis for the fold-

out panel is based on a panel equivalent in size to the fixed panel. Justification of this

approach is as follows: In the event that fold-out panels are required for additional solar

cell mounting area it is desirable, for standardization of the solar cell arrangement, to

use the same size established for the fixed panels. The analysis presented for the fold-

out panel is considered conservative based on a more critically loaded, 55.9 inch long

panel, rather than the shortened 40-inch panel required for this configuration.

i.0 STRESS ANALYSIS

Dynamic loads are treated as static loads in this analysis. Only critical loading conditions

are considered for analysis. Elastic buckling of the solar cell mounting surface is con-

sidered a design ultimate to prevent loading the solar cells.

Yield Design Loads = 1.15 x Limit

Ult Design Loads = 1.25 x Limit

1.1 FIXED PANEL-TRANSVERSE VIBRATION MODE

Figures 3-2 through 3-5 (Volume VB235AAl10) show that the lightest substrate configuration

results using honeycomb core with fiberglass skins. Critical load conditions occur during

launch if the solar panel substrate is excited at its natural vibration frequency. Temperature

levels are at room temperature.

Analysis presented is conservative when noting that the attachment of the substrate to the

longitudinal spars provides a small amount of moment restraint which has been neglected.

The effect is to increase the indicated natural frequency (36 cps for a section with 0.5-inch

thick honeycomb core) and decrease the dynamic amplification factor. An amplification

factor of 16.7 at maximum deflection point based on a structural damping ratio of 0.03 and

applied to the 3.2 g excitation level was used for determining the load distribution. A

static 1 g load occurring simultaneously is insignificant and, therefore, neglected. The

0.5-inch thick section was selected to give a reasonable skin thickness for surface flatness.

The substrate is designed based on the maximum transverse span, resulting in a slight

conservatism as the panel width decreases.

From Figure 3-5 (Volume VB235AA110), cross section requirements for a section with

0.5 inch thick core (h) are:

Substrate unit weight = 0.226 lbs/ft 2

I = 6.4 x 10 -4 in4/in of cross section

then,
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Unit weight = 133.33 x 10 -3 h + 288 t + (0.050 + 0.016)

-3
t = unit weight -133.33 x 10

288 p
h - (0.050 + 0.016)

0.226 133.33 x 10 -3
= - x0.5-(0.050+0.016) =

288 x 0.065
O. 005 in.

let t = 0.0055 in. using one layer 1557 Epoxy impregnated glass cloth. (See Table 3-7,

Volume VB235 AAll0. )

Shear is transferred from the honeycomb core and skin-core adhesive into panel edge
attach blocks into which the core is sandwiched and bonded.

rYp

Assuming the shear to be entirely concentrated at the attach blocks:

7
Core shear = 2.06 x (2.5x0.5) = Ii. 5 psi Ult.

Core shear allowable (Ref. 9) = 56 psi Min.

M.S. HIGH

Skin-core Adhesive

Shear = (V) (Q)
shear

(I) (area)

(2.06 x 7
2.5 ) (0.0055 x O.2528)

(7.03 x 10-4) (0.00925)

= 1232 psi Ult.
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Adhesive shear allowable = 4000 psi for FM-1000 (0.025 lbs/ft2)- at room

temperature (Reference 10).

4O00
M.S. - -I = +2.25

1232

F "I
e

M =

F
c

= 2.

E
C

(1 _/2)

2
5x 106 0.0055 2

=2x ( )
1-0.252) 0.1875

= 9176 psi

I = 2t = 2 x 0. 0055

2

(O.5+0.20055 )
= 7.03 x 10-4 in4/in

M

9176 x 7.03 x 10 -4

(O.5 +20.0055 )

= 25.52 in-lbs/in

1 _2
m = 1--'2"(wg)

W (substrate) + (installed solar cell unit weights)

-3
(133.33 x I0 x 0.5 + 288 x 0.065 x 0.0055 + 0.050 + 0.016) + (0.34)

0.575 Ibs/ft2 = O.004 lbs/in2

m
1

12
(0.004 x 16.7 x 1.6 x 2 x 1.25) 30.42 = 21.0 in-lbs/in. Ult.

M 25.52
M.S. =- -1 - -1 = +0.22

m 21.0
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Maximum transverse panel deflection for sinusoidal vibration is calculated as:

386 (g)

(217 f)2

g = output acceleration

f = natural frequency, cps
n

5 = single amplitude, in.

5 - 386 (16.7 x1.6 x 2) = 0.4 in.

(2 _ x 36) 2 ----

1.2 FOLD-OUT SOLAR PANEL - TRANSFERSE VIBRATION MODE

Fiberglass is not considered for honeycomb skins due to its low modulus of elasticity

normal to fiber warp, making the section incompatible with vibration loading conditions

during retro-rocket firing. Figure 3-4 Volume VB235AA110 shows the following require-

ments for an aluminum skinned honeycomb section with 0.5 inch thick core. Design

considerations are similar to that for the fixed panel.
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then,

Substrate unit weight = 0.28 lbs/ft 2

t __

unit weight -133.33 x 10 -3 h -95 x 10 -3

288 p

t

0.28 -133.33 x 10 -3 x 0.5 -95 x 10 -3

288 x 0.1
= 0.0041 in.

Bending in hinge areas

F "I
C

M =

2t (hlt_)2 (0.5+ 0.0041
= 2 x 0. 0041 2

2

) = 5.21 x 10 -4 in4/in

F -- 2 °
c

E
C

(1 _2)
2 10 x 106 0.0041 2( ) = 2x (o.---_-_)=

(1 - O. 322)

10647 psi

M
10647 x 5.21 x 10 -4

(0.5 +20"0041 )

= 22 in-lbs/in

1 _2
m- 12 (wg)

w = (substrate) + (installed solar cell unit weights)

w = (0.28) + (0.34) = 0.62 ms/ft 2 = 0.0043 lbs/in 2

in m

1
(0.0043 x 16.7 x 1.6 x 2 x 1.25) 30.4212 = 22 in-lbs/in Ult.

M.S. 0
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Maximum transverse panel deflection for sinusoidal vibration is calculated as:

m

386 (g}

g = output acceleration

f = natural frequency, cps
n

5 = single amplitude, in.

386 (16.7 x 1.6 x 2)

(2 rr x 38) 2

= 0.36 in.

Shear Concentration at Latch Fitting --

¢,
_YM

CQDSS _je:c"r ion
AT I..OAO C.Q,

x 25 23 25
R = (wg)_" & (T_) = (o.o043x16.7xl.6x2xl.25)x-_-x55.9(T_)

R = 54 lbs Ult.
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S

TTING

HO IME YCOM {3

ULT. PAN E L

Skin-Core Adhesive

Shear = (V) (Q)
shear

54
V - - 13.5 lbs/in Ult.

4

Adhesive shear = (13.5) (0.0041 x 0.2521 = 2897 psi Ult.

(5.2 x 10 -4) (0.009251

Adhesive shear allow. = 4000 psi for FM-1000 (0. 025 lbs/ft2) at room

temperature (Reference 10)

4000
M.S. - -I = +0.38

2897
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Core shear, V =
R 54

Area 4 x 0.5
- 27 psi Ult.

Core shear allowable = 56 psi rain. (Reference 9)

56
M.S. - -i = +1.07

27

Transverse bending at the panel CL is spread over a width compatible with the magnitude
of the bending moment.

PANF.L SYH

ll Ibs,W

54 IbsuL_ J
/ = Iq.5"

DYkJAk41c LOAD DIS'I"I_IBUTIOKI AT _ L.A'T'CI..t
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m = (w) (_)

M = 22 in-lbs/in

1 =I_x (Ii) (19"5)21 23.51
- 14.8 in-lbs/in Ult.

M 22
M.S. = -- -1 = _ -1 = +0.49

m 14.8

Compression in Snubbers --

Maximum compression occurs at Snubber P5"

DYkl_lC LO_D DI$'r_IBLJ'rlO_

R.uSf_I_IZ

_o'_.7_._':

t t t _:o_,-OUT

,,j .,oo •7 7

_ P_I_L

k-x,2"7'--+-
I LO_O OISTQIBUTIDIxl

C_I_QIED BY S'I_UI_E_

x 27
P5 = (wg) _ • _, = (0. oo43 x 16.7 x 1.6 x 2) x -_ x 10.5

P5 = 16 lbs Limit

A static deflection of approximately 0.25 in. is suggested.

Spring constant required -
P5 16

m

5 0.25
- 64 psi/in
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I.2.1 EDGE SNUBBER PRE-LOAD ON FOLD-OUT PANEL

A preload of approximately 0.125 RMS (0.18 inch maximum) in rubber snubbers along the

panel edges is required to eliminate a longitudinal vibration bending mode with the panel

in the launch position. A preload of 2 pounds per snubber for a load area of 1 in. 2 is

suggested.

L_T_ H E5 I

w=. is N/P N L EDC E /

÷ +

NINr_E PIN

_ SNUE:,E:,E_. PP._LOA b

EONVEIZTED TO A

UNIFOIP..M LO_ED _%STV._BUTI(DKJ

preload 2
Spring constant required = deflection - 0.125 - 16 psi/in

I. 2.2 RETRO-ROCKET"G" EFFECTS ON FOLD-OUT PANEL

'fine fold-out panel is extended and the spacecraft in the vicinity of Mars when the retro-

rocket is fired. Panel temperatures are considered no greater than room temperature

(see Figure I-1). A 3 g limit steady state acceleration in the negative thrust direction is

considered for design (per amendment Page 9 of Reference 11). Bending and shear are

transferred into both spars of the fixed panel for greater effectiveness. Whether snubbers

or cruise dampers are used is not considered to affect this analysis. Uncertainties and

unknowns of dynamic vibration 1_v_1_ d,,,-_ng ,-,_f,-,_-,-,_,q-,_÷ _,-_,,,, _,,n n.._._.... _._ ........

maneuvers suggest a conservative analysis based on minimum deflections.

Transverse bending loads are induced in the fold-out panel between the panel hinge fittings

which are treated as rigid beams.
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_OLO-O0_so__A_
PANEL.(AP.EA=-8,9 FT_-)

Bending at Station A:

(WeightA) x g (WeigbtA) x g

_ffe_:0_)__]

= [.(3.1)x3xl.25 26.5 3 (3.1) x3xl.25
10 (1-_._) 1. - 20

[,.o]
_ (2.4) x 3 x 1.25] 120 30.4

- 0.062 lbs/in UIt.

.0o4-1

Sa'IN3 "_ ""

V

o °

" _-- PAN E.L

RIBBON DI _ECT_O_I l ,._U8.._ TRATE-: -X, _0.4 =
Y
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2Core shear - 0.5 " ( ) 0.5 ( ) = 1.9 psi Ult.

Core shear allowable = 56 psi Min. (Reference 9)

M.S. HIGH

Skin-Core Adhesive

Shear = V(Q} _ 3.8 (0.0041 x 0.252} = 811 psi Ult.
shear

I • (area) 5.2 x 10 -4 (0.00925)

Adhesive shear allowable = 4000 psi for FM-1000 (0.025 lbs/ft 2) at room

temperature (Reference 10).

4OO0
M.S. - -I = +3.9

811

Me

fbc - I
(skin)

M
: P(x} 2 _ 0.062 (30.4) 2

8 8
= 7.2 in-lbs. Uit.

fbc
(skin) 5 x 10 -4

= 3629 psi Ult.

2"E 2

c }
F _i$2 ( )c (skin) (1 )

(Reference 21)

F _ 2x 107 0.0041 2

c (skin) (I-0.322) (_)
= 10647 psi

MoS,

F
c 10647

_ m I m

fb 3629
C

-1 = +1.93
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Transverse Deflection,

5 5
6(Max) - 384 E(I) 384

0.062 (30.4)4
X "

(107) (5x10-4)

= O. 14 in.

Bending at Station B:

(WeightA) x gP = lo (_-5_.4 ) xl.3+
(WeightA) x g

20

(WeightB) x g ] 1

+ 20 J 25.5

P = .8 25.5 - O. 15 lbs/in Ult.

P= .Is fl,

X_25.5

/I//

w

71'

I-IONtYCOHS

P
Core shear -

0.5 (2) _ 001_ (25____55)= 3.8 psi Ult.

M.S. -_ HIGH

Skin-Core Adhesive

Shear
V(Q)

shear

I (area)

7.6 (0.0041 x 0.252)

5.2 x 10-4 (0.00925)

= 1633 psi Ult.

M,S.
4000

1633
-i = +1.45

C(skin)

M __

MC
m

I

8
= 0.15 (25.5) 2 _

8
12 in-lbs Ult.
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C{skin)

12 x O.252

5.2x 10-4
= 5815 psi Ult.

Fc 10647
M.S. = _ -1 =

fb 5815
C

-1 = +0.83

Transverse Deflection,

_ 5 . P(x} 4 _ --5 0.15 (25.5) 4 _ .

5(Max) 384 (E) (D 384 x (107) (5.2x 10 -4) _ m.

Longitudinal Bending --

PANEL

-- " = i , fEFFaCl-lVe LON.GI'T'UP, NAL 8SNDiNG Aem_.

._r-

UC'T'_D SI=IAPEE PANEL./ i "-.':;I @

The full panel width is considered effective in bending at Station B:

Core Shear =
(WeightA) x g

25.5 x 0.5

(3.1) x 3 x 1.25

25.5 x 0.5 - 0.91 psi Ult.
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Core Shear Allowable = 32 psi Min. (Reference 9)

M.S. HIGH

Skin-Core Adhesive

Shear =
v(Q)

shear
I (area)

1.82 (0.0041 x 0.252)

5.2 x 10 -4 (0.00925)

= 389 psi Ult.

M.S. --_ HIGH

Me

(st n)

M
(WeightA) x g x 16.5

25.5
_ (3.1)x3x 1.25x 16.5

25.5
= 7.5 in-lb/in Ult.

fbC(skin)

7.5 x 0.252

-4
5.2x10

= 3635 psi Ult.

M.S.
Fc 10647

- -1 - 1 = +1.93
fbc 3635

Hinge and Cruise Damper Reactions --

a ](WeightA+B) x g x 4c. g. 1

1 2

= (5.5) x 3 x 1.25 x 25 ] _1 = 258 lb Ult.

1 J 2

Bending in Hinge Pin (0.156 inch radius Stl. Pin) --

This is due to a 0.2 inch offset of the CL of the ball support bearing in the fold-out panel

hinge fitting with respect to the bearing edge of the fixed panel hinge fitting.

26 of 58



VB235FD110

M = 258 x 0.2 = 52 in-lb Ult.

Mr Mr 4M

4

4x52

(0.156) 3
- 17422 psi Ult.

M.S. _ HIGH

Shear in Hinge Pin,

R
Shear = -- =

2
rTr

258
= 3380 psi Ult.

17(0.156)2

M.S. _ HIGH

Bending in Fold-Out Panel Hinge Fitting --

Stiffness is a prime requirement here and M.S. should be high.

[ ghtA+B) _c.g.] 1 [ ] 1M(Max ) = (Wei x g x 2 - (5.5) x 3 x 1.15 x 25

= 237 in-lb, yield

: .014rZ 4

Mc 237 x 0.7

= 7 0. 0142 - 11682 psi yield

F t = 42000 psi for 2024-T3 Aluminum (Reference 12, Page 43)
u

M.S. --* HIGH
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1.2.3 CRUISEDAMPEREFFECTS ON FOLD-OUT PANEL DESIGN

Reference 1 suggests a sinusoidal excitation level of 1.13 g (0-Peak) in the 2-20 cps

frequency range during retro-rocket firing. Longitudinal bending of the foldout panel is
calculated:

a. Assuming that cruise dampers are not used

g(Avg)l = [ g(in) ] [i ]i_1 = 13x 16.7 x-
x Dyn. Amp. Factor 3 " 3

g(Avg)l = __6"---33g Limit

LOI O
Z)! Ig BU'I OKI

b. Assuming that cruise dampers are used and provide a dynamic damping ratio
equal to that of rubber mounted structure:

Dynamic V1+2 (C/Cc)Z V1+2(0. 1)2

Ampl. = 2 x c/c = 2 x 0.1
Factor c

-5_g
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e,  2.o I
DYlq _/1 IC

L0 _,0 _C.G

DI%TQI_OTI_

. N2

;[, ]1g(Avg)2 (in) x Dyn. Amp. Factor _ = . _ =

Relative longitudinal dynamic bending moment in the panel using cruise dampers:

M 2 x £
= g(Avg)2

= 1.9 x 42 = 80 in-lb Limit

Relative bending moment in substrate based on a 3 "g" steady state retro-rocket limit level:

M3 vg) 3 = __= g(A x Lcg 3 x 25 = __75in-lb Limit

Therefore, the resulting dynamic bending using cruise dampers is comparable to the

steady state bending due to retro-rocket firing,

1.2.4 EFFECTS OF IN-PLANE TORSION VIBRATION

This condition occurs during launch in the plane of the fixed array. A complete modal

analysis is not available at this time. Therefore, the mode for this analysis will be con-

sidered as one which acts as a concentric one-plane rigid body disc _bout the support ring
on the spacecraft. The sinusoidal excitation level of 60 radians/sec at the spacecraft
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booster interface is amplified by a factor of two for use as a (0-peak) limit input level to

the solar panels. Torsion loads are carried in the plane of the fixed panel and transferred

to the lower support ring on the spacecraft. Loads are conservative based on the assumption

that a fold-out panel with solar cells is used.

Tangential shear at lower support ring,

• • i 1-1

q = aSS(Solar Panel) x Torsion Acceleration ] _-_ x 15.7

r13(94) ] 1q = L386"4 x 60x2x 1.25 _ x 15.7
- 47 lb/in Ult.

The in-plane shear is transferred to the spacecraft support ring by both skins of the fixed
panel.

_ _9,. 47
f -- _

s 2t 2 x 0. 0055 - 4273 psi Ult.
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F s = 7400 psi rain. for 1557 epoxy impregnated glass cloth at room temperature
(based on 143 glass cloth, Reference 17, Page 110)

F
s 7400

M.S. = -- -1 = -- -1 = +0.73
f 4273

S

1.2.5 SPAR ANALYSIS - LONGITUDINAL VIBRATION MODE

This loading condition is used for spar design. The condition could occur ff the panel were

excited in a cantilevered mode of vibration during launch. Temperatures are considered

no greater than 75°F. Stiff_ess contributed by the attached substrate affects over-all

stiffness negligibly and is, therefore, disregarded. A dynamic amplification factor of 16.7

at maximum deflection point, based on a structural damping ratio of 0.03, and applied to

the 3.2 g excitation level was used for determining the load distribution. Loads are con-

servative based on the assumation that a fold-out panel with solar cells is used.

gOLDOOT Pa1_ _L

_uSBEI_ QI_OBBE--Q

I::LGLIG[RTE_IN(_

LO_E)
D_;T RI6OTI01_

 9.5 P-
I

N_ __k- LO_D C.G,

Spar Web Shear in Critical Bay --

Analysis is presented for only the critical bay of the spar, i.e., at spar root.

31 of 58



VB235FDl10

w h I_1'_))/' Jo.s
.o_o ---"'I _I __--_ 8, v

IO.4 ----4-
H.s-I I .R_:

.o51 _ lr
ALO_E_T_I_SECT A-A

(sp4_c_p)

v = _ (w)(g)x_I

Let W = Weight of 1 in. wide strip at load c.g. _. 27 lb.

1
V = _(.27) (1.6 x 2 x 16.7 x 1.25) x 61.82 = 372 lb. Ult.

V 372
- - 40 lb/in. Ult.

q(Avg)-- - 9.2 9.2

fS(Avg) = tq- .02040 - 2000 psiUlt.

Note that the objective of the vertical web stiffeners is to increase lateral vibration

frequencies of the webs for decoupling with respect to the cantilever spar mode. The

minimum web thickness chosen was considered to be elastically stable under the shear

loads, not requiring vertical stiffeners for tension field purposes. If the vertical stiff-

ener effects are neglected, (Section 5.3 of Reference 20)

900000(t) 2

q(Allow) - d

900000(.020) 2 = 40 lbs/in, for elastic buckling
q(Allow) = 9.0

q(Allow)
M.S. = -1 = 0

qActual =
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Bending --

Bending is considered carried as an alternating compression-tension couple by the spar caps.

IO._ '°

p___A

Cap load, P

M V{.8 9 372 (49.5) 1.15
= 10.3 - 10.3 -- 10.3 (_=

P 1645
f - - - 14955 psi yield
c (cap) A O. 11

1645 lb. yield

F
C

Y

38000 psi for 2024-T4 aluminum extrusion at room temperature (Reference 12, Pg. 50)

F
C

M.S. = --Y-- -1 = 38000 -1 = +1.54
f 14955

C

Spar Deflection --

Dynamic deflection at the array periphery is calculated as:

(2%)

g = output acceleration

f = natural frequency
n

5 = single amplitude

f = 3.89/ 1

n -_Tip Deflection (ig)

Where tip deflectior_l_, for the tapered cantilever spar is based on spar weight properties
at the C.G. of the d_amic load distribution, and an average stiffness property,
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W &4

Tip Defleetion(lg ) = 8E(--_

• 27 {61.82) 4

8x107 (2x. llx2.752)

f = 3.89 0_- 3 = 23cps

386(16.7xl. 6x2)
5 - (2 Irx23) z = 1.___0in.

Shear in Fixed Panel Tie-Plate

= .03 in.

Calculations are based on average dimensions of the tie-plate,
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q(A11ow)
.(t} . .2

c (b)2 12 (i-_2)

5.35 x 107 • (.020_3 • 2

(3"2-_ 12 (I-.322)

K=

Ec =

• 32

5.35 for simply supported edges

107 psi for aluminum at room

temperature

= 148 lb/in Ult.

q(Actual) = 47 lb/in Ult. (See effects of in-plane torsion vibration)

q 148
M.S. = (Allow) -I = -- -I = +2.15

q(Actual) 47

As noted in previous paragraphs, analysis affecting both the fixed panels and the spars were

based on the use of active fold-out solar panels to provide capability for growth in the event

that this becomes a requirement. However, since this is not an immediate requirement

the following corrections are presented for the analysis affecting the spar caps and spar

shear web. The two spars, which in addition support the existing fold-out panel, will

require a bonded doubler on each spar cap of aluminum alloy. 010" thick.

Effects on Spar Caps

By eliminating 1/2 the load,

f = p
C

cap A

P (_) 2

A(req'd) - f - 38000 - .022 in.
C

Reduction =
.Ii-.022

.ii
= 80 percent

Assume Load Reduction of 50 percent,

w4, 4

Tip Deflection(lg ) - BE(I) -

27 (61.82) 4

8x107 (2x.055x2.75)

.27 (61.82 4
6.65xI0 _ = .06in.
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.7

-- 3.89 - 15.9cps

1.5--1
t_] _-J. 051 Aluminum Tee

[_l Section Chem-Milled to. 027 (46 percent reduction}

.027 }2 = 15552 psi.F = KE (b }2 = 1.2 x107 ( .7-_o
C

-7) x 49.
fb = 10.3A = 10.3x.059 = 15153 psi. Ult.

C

Fc 15552
M.S. =- -1 - 1 = +.02

fb 15153
C

Effects on Spar Webs

Assume 20 percent thickness reduction, and 50 percent load reduction,

900000 4.016) 2 = 26 lb/in.
q(Allow} = 9.0

q(Actual) - 9.2
20 lb/in.

26
M.S. _- ---1 = +.30

20

2.0 WEIGHT ANALYSIS

All weights calculated are considered nominal. A deviation of + 4% from nominal is

reasonable based on Ryan experience with solar panel fabrication.

2.1 FIXED PANEL

Items included are considered a part of the structure of the fixed panel.
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Ryan Dwg.

Dash No.

-5&9

-11

-13

-7

-17

-19 & 20

-21

-23

-37

Ryan Dwg.

Dash No.

Avg. of
-9 &-7

-39

-45

-47

Item

Reference Figure 3-i

Paint

SKins (2)

Mesh (Exmet Corp. )
Dielectric

Skin Adhesive (2)

Honeycomb Core
Dielectric Adhesive

Mesh Adhesive

Channel

Channels (2)

Fittings (2)

Fittings (14)

Fitting

S_Ib- Toi_i (S_bstrate)

Reference Figure 3-2
Item

Reference Figure 3-2

Nut Plates and Screws (18)

Spar Web

Web Angles

1

X, in.

30.95

I
30.95

55.94

27.97

55.14

27.97

1.00

27.97

15.26

15.26

Weight, lb

0.141

0.901

0.265

0.167

0.447

0.596

0.112

0.112

0.029

0.108

0.074

0.601

0.686

2 lx

4.36

27.

8.

5.

13.

18.

3.

3.

1.

3.

4. O8

16.81

0.69

4.239

2

Weight, lb

0.227

0.475

0.189

111.05

89

20

17

83

45

466

466

62

02

1 x 2

6.35

7.24

2 Spar Caps (Tee)

Fitting
Gusset

Angle

Total (Fixed Panel)

25.80

-6.20

25.70

25.70

0. 733

0. 036

0.012

0. 101

6.012

2.88

18.9

-0.22

0.31

2.60

149.11

2
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Structure Unit Weight = _ 2 _ 6.012 = 67 lb/ft 2
Substrate Area/Panel 8.94

Fixed Panel C.G.
1 x 2 149.11

2 6.012
24.8 in.

2.2 FOLDOUT PANEL

Items included are considered a necessary part of the structure of the foldout panel. This

includes all hinge fittings, cruise dampers, latches, and snubber pads. C.G. analysis is

for cruise position.

Ryan Dwg. 1 2 1 x 2
Dash No. Item X, in. Weight, lb

Reference Figure 3-1

Paint 19.3 0. 103 1.99

-31 & 33 Skins (2) 19.3 0. 818 15.80

Skin Adhesive (2) 19.3 0. 326 6.30

-7 Honeycomb Core 19.3 0. 435 8.49

-17 Channel 0.10 0. 029 0.00

-19 & 20 Channels (2) 20. I0 0.078 1.57

-15 Channel 40.10 0. 015 0.60

-23 Fittings (6) 22.00 0. 257 5.65

-25 Fittings (2) 39.50 0. 074 2.93

-27 Fittings (2) 4.22 0. 546 2.30

-29 & 30 Fittings (2) 26.65 0.404 10.80
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I

Ryan Dwg. 1

Dash No. Item X, in.

Reference Figure 3-2

Cruise Dampers -2.60

-61 Torsion Springs (2) 0

Hinge Pins (2) 0

-57 & 58 Hinges (2) 3.00

-59 & 60 Stiffeners (2) 10.25

-55 Hinge -1.70

-53 Snubber Pads (3) -24.00

-49 Latch -26.65

Explosive Latch Pin -26.65

-51 Hooks (2) -26.65

Total (Foldout Panel)

2

Weight, lb

0.170

0.375

0.122

0.174

0.274

0.066

0.052

0.015

0.078

0.041

4.452

x 2

-0.44

0

0

0.52

2.81

-0.11

-1.25

-0.40

-2.08

-1.09

54.39

2 = 4.452 = 0o69 lbs/f 2
Substrate Area/Panel 6.52

C.G. = _ 1 x 2 _ 54.39 = 12.2 in.
2 4.452

3.0 DYNAMICS ANALYSIS

Analysis for the fold-out panel is based on a panel equivalent in size to that of the fixed

panel. The justification for this approach is as follows in the event that fold-out panels

are required to provide additional solar-cell mounting area, it is desirable for standard-

ization of solar cell arrangement, to use the same size as is established for the fixed

panels. Frequencies for the existing fold-out panel should be increased by approximately

the following percentages.

Stowed,

Deployed,

D eployed,

1st plate bending 41%

1st cantilever bending 180%

1st torsion 180%

The result is that frequencies are above the desired minimum of 10 cps which will prevent

dynamic coupling with the auto pilot system.

3.1 SUMMARY OF PRELIMINARY NATURAL FREQUENCY ESTIMATES:

Foldout Panel

Stowed, 1st plate Bending

Deployed, 1st Cantilever Bending

Deployed, 1st Torsion

15.6 cps

4.8 cps

20.1 cps
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Fixed Panel

1st Plate Bending

Spar Web, 1st Transverse Bending

13.1 cps

45.6 cps

3.1.1 FOLDED PANEL - STOWED CONFIGURATION, FUNDAMENTAL PLATE
BENDING MODE

f

The panel is assumed pinned on all

four edges, and an equivalent rec-

tangular panel of the same planform

area and length as the actual panel

is also assumed.

Width of equivalent rectangular panel =
30.9 + 15.8

2
= 23.35 in.

The frequency of a pin supported uniform rectangular plate is given by Reference 18,

4
where c

Eq. 2, Page 371, with m = 1, n = 1 (Fundamental Mode):

1 1

_, = C2 2( a'_ + 7) (rad/sec)

Eh 2 -2)= (in 4 sec

3 D (I-u2)

0¢ = circular natural frequency, rad/sec.

a = length of shorter side = 23.35 in.

b = length of longer side = 55.9 in.

E = modules of elasticity = 10.5 x 106 #/i 2 (AI. alloy)

h __ effective thickness of solid plate, in. (see below)

mass density, # sec 2 in -4 (see below)

U = Poisson's Ratio, a value of 1/3 is assumed for u

Eq. 1)

Eq. 2)
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Effective thickness h

i
/

%1
,, III ,IILIW,,,

l/

For a 1" wide piece of sandwich used

for the foldout panel

I1_ 1 = 2(.004)(1)(.252) 2 = 5.080x10 -4"m4

EII_ 1 = 10.5x106x5.080x10 -4 = 5334 #in 2

For a 1" wide piece of solid plate

1 (h 3) (in 4)
Ii-1 = 12

Equating Ii_l'S and solving for h,

h = 0.1827 in.

Mass density 0

wt/ft 2, sandwich = 0.28 (substrate) + 0.34 (cells and wiring)

= 0.62 lb/ft 2

h 2 0. 62
wt/in- sandwich -

' 144
- 0.004306 lb/i 2

Effective wt/in 3, solid plate -
004306 - .02357 lb/in3-g

• 1827

• 02357 02357 10-5 sec 2 -4p = - " = 6.106 • lb/ in
g 386.04

2
substituting E, h, p and _ in Equation 2) and solving for c gives

2
c = 4.640x104 i2/sec

2
Substitution of c , a and b in Equation 1 gives

o_ = 98.05 rad/sec

f

02
m

2_ 15.61 cps (Fundamental Mode)
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_3.1.2 FOLDOUT PANEL -DEPLOYED CONFIGURATION, FUNDAMENTAL CANTILEVER
BENDINGMODE

Distributed mass m (per inch of span)

Weight = . 004306 lb/in 2

At root, Wt. _- . 004306 x 30.9 = . 1331 lb/in

.1331 1331 2 -2m - - " = 3.447x10 -4 lb sec in
g 386. O4

At tip, Wt. = .004306 x15.8 = .068031b/in

.06803 10-4 2 -2m - - 1.762 x lb sec in
386.04

Since m is linear with span

m = a 1 + a2Xwherea 1 = 3.447x10 -4 lbsec 2

-6 2 -3

anda 2 = -2. 9510x10 lbsec in

-2
in

Stiffness EI

At root, EI =

Attip, EI =

10.5x106x5.080 x10 -4 = 30.9 = 1.6482 x1051bin 2

10.5x106x5.080x10 -4x15.8 = 0.8428 x 1051bin 2

Since EI is linear with span,

EI = a 3 + a4x wherea 3 = 1.6482x1051bin 2

anda 4 = -1410.51bin

The method of analysis is the Rayleigh method

Assumed mode shape:
X

Y = YT (1-cos

L

Y

dx

- _''Io_ dx 2

YT 2

2

YT 4 _2

• sin

COS

_TX

2_

17X

2_
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Note that the assumed mode shape meets the necessary boundary conditions:

yx= o=O, Yx=&= YT

(d_y_) = o, ( d2y ) = o
dx x=o d2 x=

Maximum Kinetic Energy =

4
J

1 2 [ 2

_- _ J my dx
O

Upon substitution of m and y functions of x in the integrand and integrating the expression

over the indicated limits, the result is

1 2 2

Maximum Kinetic Energy = _- cO YT

1 /'_"Maximum Potential Energy =
O

Upon substitution of EI and

over the indicated limits, the result is
4

1 17
Maximum Potential Energy - 2

32 4 4

I 3 4(y- .j- )

EI ( d-_2---2)2 dx
dx

3+ 7 2)]+a2_ ( -7 ,2 ,

Eq. 3)

functions of x in the integrand and integrating the expression

--" YT & 3 + a4 ( 2 y2 )

Equating Maximum Kinetic Energy to Maximum Potential Energy (the heart of the Rayleigh

method), and dividing through by 1 2
2 YT _ ' one obtains

2[- 3 4 3 7 2 .'] _.4 F

_' (-r--;-)+ a2_ ( "4"+ "_- _ )J = --32_ 4 La3

Putting in numbers for a1, a 2, a 3, a4 and the result is:

2 =u_ x .00007818 lb sec 2 in -2 .04654 lb in -2 (Basic Panel) Eq. 4)

The presence of side members, tapered angles, on the foldout panel in the root area requires

modification of Eq. 4.

It is assumed that the Kinetic Energy due to effects of increased mass in the root area is

increased by 10 percent. The KE term, the left hand side of Eq. 4, then becomes

2 2 -2
LHS = 1.10 _ x .00007818 = _ x .000086001bin
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The Potential Energy increase is assumed that of twice the EI of the basic panel (each angle

has an EI approximately equal to the EI of the basic panel). The angles extend over the first

20 inches of panel. Let this distance be b. Integrating the maximum Potential Integral

(Eq. 3) over the limit 0 to b, and multiplying by two, the result is:

I _ 1 _b
4 2 b + _ sin

1 _r " YT _ 2a3 (2_ 2 _r
A Max. PE = 2 16_4

b[.i _ sin Ir___b+ _, (cos _r_bb -1

+ 2a4 L4_ + 2_ _ 2 2

1 2
Dividing this expression by _ YT _ and substituting numbers for a 3, a4, b and _,

obtains for the increase in the right hand side of Eq. 4 ,

-2
A RHS = .03235 lbin

one

and the corrected right side of Eq. 4} is:

-2
RHS = .04654 + .03235 = .078891bin

Thus, Eq. 4)corrected, becomes

2
a_ x .00008600 = .07889 lb in -2 (Panel plus Angles)

Solving for _, the result is

0¢ = 30.29 rad/sec

f = _¢ = 4.82cps
2_

3.1.3 FOLDOUT PANEL -DEPLOYED CONFIGURATION, FUNDAMENTAL TORSION

MODE

Stiffness distribution GJ
P

It is assumed that the sandwich substrate can be represented torsionally by a single cell

torque box as shown. The width c is the actual width of the panel.

-,o04-/

m
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4/_o2 4(. 504c) 2 2 in 4j = = = .002052c ( )
P d d__s 2c + 1.008 c +. 504

t .004

G = 3•9x106 lbin 2 (al alloy)

Assuming 0.504 is negligible in comparison to c (which varies from 30.9 at the root to 15.8

at the tip), for simplicity, justified by the approximate nature of other assumptions and of the

analysis method itself, one obtains, upon multiplication of J by G.
P

GJ = 7925c (lbin 2)
P

Distributed mass moment of inertia _ (per inch of span)

For a 1 inch long strip of width c the weight amount of inertia J lb in2/in, is
XX'

.._ /×

×

J
XX

2
J Wd Faceo Face

= 2 _-_ WFace c +WFace(.252) 2

1 (c 2÷ 1-_ Wcore" + .250) Eq. 5)

J
o Core

• 34
WFace = 0.1 x .004xlxc + 144 c = .00276c (lb)

Sheet Cells, etc.

Core density = 1.6 lb/ft 3 (1/4" HexceU, including bond)

1.6
Wcore _ == .500 xcxlx 144 .0004630c (lb)

Substitution of WFace and Wcore in Eq. 5) gives

3 in 2J = •0004986 c + .00003601 c lb /in
XX

3
The c term is negligible compared with the c 3 term ( c c ; also the coefficient of c is an

order of magnitude smaller). Thus,
3

Jxx .0004986 c 3 2
= - = 1.292 x10 -6 c lbsec in/in

g 386.04
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Measuring spanwisedistance x, in inches, from the root

atx = 0, c = 30.9 in, and atx = _ = 57.1 in, c = 15.8 in.

Thus,

c = -0.2644x+ 30.9orx=-3.781c+ 116.8 (in)

The method of analysis is the Rayleigh method.

x _ d T (-3.781c + 116.8)Assumed mode shape: _ = d T • _

where d = twist angle at Station x (rad), and dT = twist angle at tip (rad).
that the assumed mode shape meets the necessary boundary condition: d

X=O

1 2 dx
Maximum KE = _- _ o

Note

= 0

We change the variable of integration from x to c for convenience.

c = 30.9;atx = _, c = 15.1, 7 = 1.292x10 -6 c3, _2

Atx=O,

gT 2

_,2
(14.29c2 -

883.2c + 13.642), and dx = -3.781 dc. Substitution gives,

f15.1

1 _¢2 _¢_T2 -6 (-3. )(14.29c 5 13.642c 3) dcMaximum KE = _ x 1.292 x 10 781) -883.2c 4 +

30.9

Integrating this expression over the indicated limits, the result is

1 2 CW 2

Maximum KE = _ CO 4.2 x 682.0 lb in

lj "_ 2d8
Maximum PE _ GJ (-¢_x--) dx

o

Changing the variable of integration from x to c again for convenience,

dd dT
with dx - and GJ = 7925c,

I -_T2 ,f 15. i
Maximum PE

- 2 2_2 x 7925 (-3.781)_ c dc
"30.9

- x 1. 089x107 Ibin
2 _2
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1
Equating Maximum KE to Maximum PE and dividing through by 2

2
u_ x682.0 = 1.089x107 lbin -2 (Basic Panel}

_T 2
, the result is

It is assumed that, due to the side members tangles} in the root area, any small increase in

KE from mass moment of inertia increase is balanced by a corresponding small increase in

PE from differential bending stiffness of the angles. Thus, the relationship just obtained

stands, without modification.

Solving for _, the result is:

= 126.4 rad/sec

- 20.12 cpsf - 2_

3.1.4 FL-XED PANEL - FUNDAMENTAL PLATE BENDING MODE

The panel is assumed pinned on all four edges, and an equivalent rectangular panel of the

same planform area and length as the actual panel is assumed. The geometry and analysis

is precisely that for the fundamental plate bending mode of the foldout panel, with the

exception that the. 004 aluminum alloy sandwich faces are replaced by. 0055 fiberglass

faces.

II_ 1 = 2(.0055)(1)(.25275) 2 = 7.027x10 -4 i 4

EII_ 1 _- 5x106 x7.027x10 -4 = 35141bin 2 versus 53341bin2

for the 0. 004 aluminum alloy faced sandwich (per inch of width).

wt/ft 2 = .226 +. 340 =. 566 lb/ft 2 versus 0.620 lb/ft 2 for the. 004 aluminum

alloy faced sandwich (substrate plus cells and wiring}.

Examination of the frequency equation (Eq. 1) or, for that matter, the frequency equation

for any structural system with distributed mass and stiffness, the frequency varies directly

as the square root of stiffness (EII-1 in the case at hand} and inversely as the square root

of mass (which is directly related to wt/ft 2 in the present case). Thus, correcting the

frequency obtained for the. 004 aluminum alloy faced sandwich panel, the result is, for the

present panel.

_3514 .620 = 13.16f = 15.66 533--"_ x .566 cps
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3.1.5 SPARWEB, FUNDAMENTAL TRANSVI_SE BENDING

The analysis made herein of the spar web must be considered highly approximate because

of the questionable nature of the assumptions made. Verification by test is strongly indicated.

I
ASgUI,n_.

t

/ m _

EI = 10.5x106 x 8.5 • (.020) 3
12

L = 2o00, L 4 = 16.00

The largest bay (actually the bay is trapezoidal,

with a large circular flanged lightening hole) is

assumed as shown in the figures to the left.

The mass m, per inch of space along the 2nd

side, is

0.1x 0.020 x 8.5

386.04

2 -2
= 4.4037x10 -5 lbsec in

Assume. 020 x 2 x 8.5 effective, pinned along

edges, free on short edges, 2 inch long beam

on simple supports, 8.5 inches wide.

2
59.50 c in

Referring to Reference 19 (Eq. 21, Page 459), the frequency of a simply supported uniform

beam is given by

_= Ir rad/sec

Substitution of the indicated values for EI, m and 4 (2 = 9.870) in this equation gives

= 286.8 rad/sec

f = _¢ = 45.64cps
2y

3.2 SUMMARY OF OVER-ALL DYNAMICS PROBLEMS

The primary problem, of course, is to ensure that the array will pass its qualification tests

with regard to sinusoidal and random vibration inputs, shock inputs and acoustical noise.

Considerable analysis and test will be required to determine, for the complete array,

magnification factors, which are functions of structural damping mode shapes and freq-

uencies, and which determine dynamic loads. This program would necessarily be a quite

comprehensive and detailed one. It is outlined subsequently.
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In comparison to other arrays with which Ryan has had experience, the sinusoidal inputs
in the 5-50 cps range (where major resonances occur) and in the 50-150cps range are
rather moderate. In the 150-2000cps range, where fairly large sinusoidal inputs are

encountered, responses are expected to be small, and local. Further analysis in the

5-150 cps range is indicated.

In regard to random vibration input for qualification tests, again, the region of high level

input, over the 100-1000 cps band, is outside the region of major resonances. The steep

skirts of the specified power spectral density curve outside the 100-1000 cps band (6 db/

octave is specified) leads to the conclusion that the important 5-50 cps band inputs will be

quite small, e.g. at 50 cps, roll-off gives a P.S.D. of 0.0175 g2 cps as compared with 0.07

specified at 100 cps. The. 0175 g2/cps value is equivalent to,J0.0175x50 = 0.935 g RMS
input at 50 cps as compared to 1.875 g RMS sinusoidaI input slSecified at 50 cps. The random

inputs at frequency samples less than 50 cps are sharply reduced to even smaller values due

to roll-off. It is expected that response to random inputs will be negligible compared to

sinusoidal inputs, in the fundamental modes. Response in higher modes, and in local

modes, requires further analysis and test support.

The effects of shock input also must await further analysis. A 200 g terminal p_ak saw-

tooth input is specified, with 1.0 millisecond maximum rise time. Assuming an array

weight of 216 lbs, 200 g is 43,200 lbs peak applied to the array (assumed in the stowed

configuration). The impulse is 1/2 x 43,200 x .001 = 21.6 lb sec total, or 0.65 lb sec

per panel (23 panels total, 22 fixed and 1 foldout).

Just to get a feel for the response, in an undamped single degree of freedom case, the

response to a Dirac spike (infinite amplitude with infinitesimally small base time, but

with impulseI) is I__ where _¢: K_ If I is 0. 0031b sec andre = .707x6.0
2 -1 m_ _ 386.04 = . 0110

lb sec in (assumes a generalized, i.e., effective mass, of. 707 the actual mass --

with a panel weight of 6.0 lb, and _ = 98.05 rad/sec (foldout panel, stowed configuration,

1st plate bending mode) then the maximum deflection is

.60
Ymax .0110x98.05 = 0.647 inch

which is not small and not large. The conclusion is made that the 200 g shock input may

present a problem. It needs further study.

A launch primary problem is determining the limiting of the response to safe levels for the

so-called torsion input (sinusoidal, + 60 rad/sec 2 amplitude, about the longitudinal axis,

x axis - assumed at major resonances). The fixed part of the array is excited in its

plane, and will present large stiffness in this loading configuration. However, the masses

whose locations are displaced in the x direction from the plane of the fixed part of the array

(these displaced masses are the planet scanner, foldout antenna, and the one foldout panel )

present, under the torsional input, inertia moments about radial axes which will cause the

fixed portion, expecially along the outer rim, to weave. The analysis can be set up as

one phase of the over-all array analysis mentioned previously.

work would logically be accomplished in the Phase II effort.

This detailed and comprehensive
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The response to acoustical noise is a problem less amenableto analysis than to a test
program. Suchthings as fatigue failure in bondedjoints andlocal oil canning are best
solved in the soundchamber, and a strong test program, possibly with structural samples
as well as full scale hardware, is indicated. The specified soundpressure levels (137
db max. in the band600to 1200cps} are levels typical of previous Ryan solar panel exper-
ience, and shouldpresent no large difficulties. However, a strong test program is almost
mandatory to ensure structural integrity, including detection and correction of design de-
ficiencies, if any, with regard to acoustical noise.

A secondary over-all problem, in addition to meeting qualification test specifications, in

the realm of dynamics performance, is that the fundamental guidance system natural

frequency and any of the structural frequencies must be de-coupled so as to prevent structural

feed-back which might cause a serious system instability or performance degradation. The

fundamental frequency for the complete array (which should be around 5 cps on the basis of

the lowest uncoupled frequency obtained in the present analysis) is the important one. Most

guidance resonance frequencies are in the range 1/2 to 2 cps. The degree of de-coupling

necessary is a function of many guidance system parameters and requires detailed study

on the part of specialists in that area before structural isolation requirements can be laid

down.

a 0 THERMAL ANALYSIS

Figures I-1 and I-2 are present best estimates of temperature distributions and Mars sun

occultation transients for the selected configuration. These figures assume the back of the

panel to have the radiative surface properties of a selected white paint (0.9 emissivity).

If the panel back mosaic pattern (described in Thermodynamic Parametric Studies section)

were used, the presented figures would change as follows:

Figure A1 Temperatures from distances 6 to 116 inches would be approximately

the temperatures indicated at a distance of six inches from bus.

Figure A2 Initial temperature would be approximately 75°F and the time to reach

temperatures in the range of -180°F or -200°F would increase 25

percent for the fixed panels and 60 percent for the foldout panel

sections.

Further assumptions and presentation of values of thermal properties and equations used

are presented later in this section.

It is noted that both surfaces and temperature distributions presented for Figure A1 (on

the figure and verbally for the mosaic above} are amenable to the requirements of References

8 and 11. If -180°F is considered to be the minimum allowable temperature, Figure A2

indicates this temperature is reached in 53 minutes for the fixed panel, and 28 minutes

for the foldout panel. Use of the mosaic pattern concept would increase these times to 66

and 46 minutes for the fixed and foldout panel respectively.
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4.1 TEMPERATURE DISTRIBUTION

S (Incident Thermal Flux)

Solar Cell Assembly Including

Filter, Adhesives, Insulation,

etc.

Panel Facing (Front)

Panel Core

Panel Facing (Back)

0

1

2

3

4

Paint 5

The equations below are assumed to govern the heat transfer in the direction normal to the

planes of the figure above in the absence of heat transfer in any other direction. *

a. Heat transfer through surfaces 0 and 5:

Cell filter -- space plane (surface O)

4

A)o = S -c_¢ F T( Q/ eVso o o o

Where

Q/A=
S =

E --

F =

T =

Panel back (painted) -- space plane (surface 5)

(Q/A)5 = _ ¢5 F5 T5 4

heat flux per surface area

incident (solar flux)
Stefan-Boltzmann constant

emissivity

view factor of surface to space

absolute temperature

* This is a conservative assumption tending to increase the severity of the maximum

temperature gradients within the planes (1, 2, 3, etc.) of the figure and in the direction
of the heat transfer considered.
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b. Heat transfer through panel core (surface 2 to surface 3):

(Q/A)2-3 = k2_ 3L2_3(Ax/A2_3) = (T2-T3) + Fe T24-T34

where

The first term on the left side of the equation represents the flux conducted through

the core and the second the radiative flux.

F = emissivity-view factor product between surfaces 2 and 3
e

k2_ 3 = thermal conductivity of metal in core

A = cross-sectional area of metal in core
X

L2_ 3 = distance between surfaces 2 and 3

k2_ 3 (Ax/A2_ 3)

L2 -3
= conductance of panel core which can be determined from a gradient

versus flux plot (such as Figure 3-11 Vol VB235AAl10 if the

second term of the above equation is known.

c. Heat transfer through panel facing (surface 1 to 2 only for a corrugated panel core}

or facings (surface 1 to 2 and 3 to 4 for a honeycomb with front and back skins}:

k1-2

(Q/A)1 2 - _T1 " T2)
- LI_ 2

k3-4

(Q/A)3_4 - (T3 - W4)
L3_ 4

do Temperature gradients through solar cell assembly (surface 0 to 1) and through paint

(surface 4 to 5) are considered negligible in comparison to other gradients so that

To = T 1 and T 4 = T 5.

Figure 3-12 Volume VB235AAl10 has been generated to illustrate the effect of choice of

panel back side properties upon the temperature level of the solar panel. The following

method and assumption were used:

(I) (Q/A)o = (Q/A)5

(2) To = T5
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(3) S = 440 Btu/hr-ft 2 (Earth), 195 BTU/hr-ft 2 (Mars)

(4) {x = 0.81, _ = 0.84 (solar cell and filter)
SO O

(5) F = 1
0

(6) 1_5 F5 varied (abscissa of figure)

Figure A-1 has been generated as a best estimate of the temperature distribution to be

expected for the selected solar panel design. The following method and assumptions were

used:

(1) (Q/A)o = (Q/A)I_2 = (Q/A)2_3 = (Q/A)3_4 = (Q/A) 5

(2) S = 440 Btu hr-ft2 (Earth), 195 Btu hr-ft2 (Mars)

(3) _ = 0.81, ¢ = 0.84
SO O

(4) _ 5 = 0.9 (selected white paint, Reference 14)

(5) F 5 and F (functions of distance from bus,d)O

d (inches) F F 5o

3.6 0.85 0.39

10.8 0.97 0.43

18.0 0.99 0.47

25.2 1. 0.52

32.4 1. 0.58

39.6 1. 0.65

46.8 1. 0.71

54. i. 0.75

83. I. 0.89

112. 1. 0.94

(6) k2-3 (Ax/A2-3)

L2-3

Reference 15 used with an approximation of

the geometry of Reference 16.

= 9.47 Btu hr-ft 2 - OF

(slope of gradient-flux curve, Figure 3-11, Volume VB235AAl10)

(7) F =
e

(8) kl_ 2

0.65 (parallel plates, fiberglass skin emissivity of approximately 0.79)

= k3_ 4 = 0.89 Btu-in/hr-ft2=°F (fiberglass skins)

LI_ 2 = L3_ 4 = 0.0055 inch
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B

<

6O

4O

2O

-2O

-4o

-60

-80

-I00

-120

- 140

-160

-180

-200

-220

-240

-260

-280

PANEL

NO HEAT TRANSFER TO OR FROM

BUS OR BETWEEN FIXED AND

FOLDOUT PANEL SECTIONS

60 80 100 120 1,4'0 160 180

TIME IN SHADE OF MARS (MINUTES)

Figure I-1. Solar Panel Temperature Distribution
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4.2 TRANSIENTS

Transients for the condition of sun occultation (absence of all exterior heat sources) can be

generated for a unit area of solar panel by equating the change in heat content to the radiative
heat loss:

o VC dT F + ¢= T4
A (dt-_ -°(Eo o 5 F5)

After separating variables and integrating over a finite time interval this yields:

At =
OVC/A 1 1

3c;(c° F° _C _5 F5) (Tfinal)3 (Tinitial)3

where

At = finite time increment

, E o' E5' Fo' F5 and T have been identified in previous paragraphs.

D V/A = weight per unit area

= C specific heat

Figure 3-13, Volume VB235AA110 has been generated using the above equation with the

following values:

(I) ( = 0.84, F = 1
O O

(2) ¢5 F5 = 0.25, 0.5, 0.75

(3) oVC/A = 0.1, 0.2, 0.3 Btu/°F-ft 2

(4) Tinitia 1 = from Figure 3-12, Volume VB235AAl10, Mars vicinity, emissivity-view

factor product of ¢ 5 F5

(5) Tfina 1 = ordinate, At = abscissa

For Figure A-2 (the transient for the selected panel design) the equation is used with the

following values:

Fixed panel section

(1) E = 0.84, F = 0.976 (average)
O O
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220

200
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100
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4O

2O

0
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Figure I-2. Mars-Sun Occultation Cool-Down Transient
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5.0

(2)

(3)

(4)

= F 55 0.9, = 0. 563 (average)

o VC/A = 0.16 Btu/°F-ft 2

Tinitia 1 = 511°F (per unit area average of Figure A-l, Mars vicinity)

Foldout panel section

(1) ¢ = 0.84, F = 1
O O

(2) E5 = 0.9, F 5 = 0.915(average}

(3) oVC/A = 0.11Btu/°F-ft 2

(4) Tinitia 1 = 485°F (per unit area average of Figure A-l, Mars vicinity)
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1.0 SCOPE

This functional description pertains to the Voyager spacecraft power subsystem.

2.0 APPLICABLE DOCUMENTS

VB220SR101

VB220SRI02

VB220FDI01

VB220FDI12

VB220FDlI3

VB220FDI03

VB235FDlI0

Design Characteristics

Design Restraints

Standard Trajectories

Flight Sequence

Layout & Configuration

Spacecraft Component Design Parameters
Solar Panels

3.0 FUNCTIONAL DESCRIPTION

3.1 REQUIREMENTS

The power subsystem supplies electrical power to the flight spacecraft from launch through

all mission phases. It also supplies raw power to the flight capsule during periods of solar

array illumination up to the time of capsule separation. Estimates of the average load re-

quirements for each mission phase are presented in Table 3-1 and Figure 3-1.

3.2 POWER FLOW

The power system block diagram is shown in Figure 3-2. Primary power is derived from

the solar array consisting of 22 fixed panels forming a flat annular ring about the space-

craft. Each panel contains two solar cell strings which are diode-isolated and have their

own zener regulators which limit maximum array output voltage to 55 volts. Array output

is fed to the raw array/battery bus and each of three battery charge regulators through an

array enabling switch, SW-I, which is closed by the Launch Complex Equipment prior to
launch.

Power may also be fed to the raw array/battery bus by three diode-isolated silver-cadmium

batteries, depending on relative array power capability and load requirements. Battery

power is transferred through the prelaunch-actuated enabling switch SW-1. The range of

voltage at the raw array/battery bus is 30 to 55 volts, corresponding to the lower level of

battery discharge and the zener regulator cutoff voltage respectively.

The batteries also provide power to a raw battery bus for peak short-term loads. The

range of this bus is 30 to 44 volts, with the latter value corresponding to battery charging

voltage.
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Power from the raw array/battery bus is fed directly to the radio system, the flight capsule,

and the main regulator. This regulator is a series-mvitching type which converts higher

input voltages to a lower regulated output level of 28 vdc at one percent regulation. This

output is directed to a 2400 cps, 50 volt AC square wave inverter, which supplies AC

power to the majority of the user subsystems. Transformer-rectifier units located at the

various points of use convert the AC power to desired DC levels.

The 28 vdc main regulator output is also directed to a 400 cps 3 phase, stepped square wave

invertor for supplying power to the gyros, tape recorder motors, and to Science payloads,
if desired.

Both the 2.4 kc and 400 cps inverters are frequency-controlled by a synchronizer, which

receives a clock signal of 38.4 kc + . 01 percent from the C&S subsystem.

3.3 BATTERY CHARGING

The battery charge regulators are of the series-dissipative type in which the regulator

impedance is varied to limit battery charging voltage and current. With all three charge

regulators in operation, each regulator limits the charging current into its associated

battery to a nominal one ampere. This value is the highest recharge requirement of the

overall mission, which occurs during occulted Martian orbits. See Appendix B for the

specific calculations leading to this value. If faulty battery operation is detected through

telemetry information it is possible, by command, to remove charging power to the parti-

cular battery. Under this condition the current limit to the remaining two batteries is

automatically increased by 50 percent to 1.5 amperes, thus maintaining a total charging

current of 3 amperes. Similarly, with two faulty batteries, the current limit is automati-

cally increased to 3 amperes on the one remaining battery with removal of charge from

the second regulator. By the above means it is possible to maintain the original load

profile, though greater depths of discharge are experienced with the use of fewer batteries.

With all batteries operational the maximum depth of discharge is 56 percent occurring

during a Martian orbit with an occultation time of 3 hours. With a nominal capacity of 25

ampere-hours for each battery, maximum charging occurs at the 8.3 hour rate with one

regulator set at the 3 ampere limit. The charge regulators also provide upper voltage

limits for battery charging. One of three limit levels may be selected by command for
each regulator:

Voltage Limit A : 44.2 volts

Voltage Limit B : 42.65 volts

Voltage Limit C : 41.1 volts

This adjustability is included to accommodate the possibility of battery performance varia-

tions, such as partial cell shorting.
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The information required for modifying the regulator setting is derived from battery voltage,

current and temperature telemetry information. Possible abnormal operating conditions may

be deduced from the following:

ae Uneven sharing of the load during battery discharge cycles. The battery(s) with

partially or fully shorted cells will initially provide a small percentage of the load

current and assume a greater percentage at deep discharges of the remaining good

battery(s).

b. Excessive battery temperature

c. Discrepancy between the ampere-hours removed during discharge periods and re-

stored during recharge periods. The ampere-hour efficiency of silver-cadmium

batteries is on the order of 98 percent over wide ranges of charge and discharge

rates and therefore the restored ampere-hour charge is slighly greater than the

removed ampere-hours. Under normal conditions the regulator voltage limit pro-

vides the means by which charging current is reduced to zero as the battery

approaches full charge. With shorted cells the voltage limit cannot perform this

function and the battery may be excessively charged. The accounting of ampere-

hours in and out of the battery is required as a function of the operational support

during flight in order to forestall the overcharge possibility.

A decrease in the voltage limit, by command, removes the potential danger of overcharge

although the condition described in (2) above will not necessarily be relieved. Unequal

battery sharing, per se, is not considered serious as long as end of discharge voltages are
above specified limits.

3.4 DISTRIBUTION

Power is distributed to the various loads through switching devices located at the user sub-

systemsor in the Power Switching and Logic (PS&L) Unit of the Power System. Those

1....... _.^ _O_T ._.._o th,_ _,_,i_ohing signals externally to the user subsystem, whereas

those located at the user subsystems derive their signals from internal logic.

The functional block diagram, Figure 3-2 shows those switching elements assigned to the

PS&L along with the driving signal sources.

3.5 FAULT PROTECTION

The potential use of fuses are shown in Figure 3-2 and are identified with loads whose loss

are not catastrophic to the mission. The actual use of such protective devices must be

determined from reliability trade studies carried out at a system level.
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Where identified as part of the power system, these devices are located within the PS&L
unit.

3.6 REDUNDANCY

Redundant units along with appropriate fault sensing and switchover circuitry are provided
for the following units:

a. Main Regulator - Fault criterion is based on under- or over-voltage at regulator

output sustained for a period greater than three seconds.

bo 2.4: kc Inverter - Fault criterion is based on exceeding the tolerance limit of the

output-to-input voltage ratio. Signal rectification of the AC output is required for
this purpose.

Co 400 cps Inverter - Fault criterion is based on exceeding the tolerance limit of the

output-to-input voltage ratio of any phase of the output. Signal rectification of the

three output phases is required for this purpose.

do Synchronizer ° The scheme used is identical to that used in the Mariner IV spacecraft.

A 38.4 kc timing signal from C&S drives a frequency divider providing synchronizing
signals to the 2.4 kc and 400 cps inverters. Loss of the C &S results in switchover to a

38.4 kc oscillator internal to the power system. Loss of this backup results in a free-

running mode of the 2.4 kc inverter, but not for the 400 cps inverter which would be
rendered inoperative.

3.7 OPERATIONAL MODES

The principal operational modes of the power system are described below:

3.7.1 PRE-LAUNCH

The sequence of events from hangar checkout to on-pad operations are:

a. The Overall Flight Spacecraft is transferred to the launch pad. The power subsystem

is inoperative, with all contacts of switch SW-1 open.

bo Subsequent to on-pad mating, ground pewer is gradually applied through the umbilical

disconnect and raised to a level of 45 to 55 volts DC. The battery charge regulators
are turned off.

Co Switch SW-1 is closed through umbilical signal leads only after proper ground power

voltages have been established. This sequence prevents arcing across the switch

contacts by eliminating the possibility of large battery currents during switch
closure.
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do Battery charging is initiated, to the degree required, by selection, through the

command link, of proper charge regulator settings. Normal on-pad checkout of

the power system may now proceed.

e. Subsequent to removal of the umbilical, just prior to launch, the batteries supply

all power at a discharge voltage in the range of 32 to 37 volts DC.

3.7.2 LAUNCH PHASE

The batteries continue to supply power. Loads are supplied through load control switches

receiving signal inputs external to the power system.

3.7.3 ACQUISITION

With solar acquisition, the solar array output is established and the conditions of operation

are shown in Figure 3-3. The excess array capability in near-earth operation eliminates

.v. ..... "h'l;_. _,_ ,_,_ a_-_-_.r-.h_fl',-r_z ln_r'l _h_r_ 7r_nn__ _qllilihrium conditions between

array output and load and zener regulator demand occur at point A. The battery discharge

diodes are back-biased and charging commences through the charge regulators at a current

limit of 1 ampere. The capsule load of 200 watts is introduced by command or sequence

logic and has the effect of shifting the load characteristic line to the right. The higher

demand is still significantly less than the array capability and no danger of load sharing

exists. The main regulator receives input power at the array output voltage and converts

it to 28 volts + 1 percent for further processing by the inventor. Raw battery power may be

periodically demanded by heater elements or solenoid valves. The charge regulators will

supply this power up to the limit of three amperes, which is far greater than the anticipated

heater and solenoid loads, and therefore no battery discharge is expected.

3.7.4 CRUISE

Cruise operation is identical to that described above. The batteries will have achieved _--"IU.LI

charge and charging current reduced to very small values by the action of the charge regu-

lator voltage limit. During long periods without battery use the charge regulator voltage

limit will be reduced to its lowest setting to minimize the effect of silver migration into the

cell separator materials. Some period prior to planned maneuvers the highest setting

would be used to assure maximum battery capability.

3.7.5 MID-COURSE AND RETRO-MANEUVERS

The batteries supply full or partial power depending on the degree of array orientation.

Periods between maneuvers are sufficiently long to permit battery recharge. To obviate

the possibility of array-battery load sharing the capsule load in switched on after full

solar acquisition.
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3.7.6 MARS ORBITAL OPERATION

Operation is similar to cruise. Array power capability decreases with time because of the

increasing sun-spacecraft distance. After two or three months of orbital operation sun

occultations may occur and the load-sharing problem may be critical. The conditions of

operation are shown in Figure 3-4. Loads are reduced during occultations until array

output is established upon emergence, thus avoiding the possibility of load sharing. If

large loads in excess of array output are introduced during non-occulted periods, again

load-sharing can be a problem and it would be necessary to temporarily interrupt some of

the loads. So far no such case has been identified.

3.8 HARDWARE DESCRIPTION

3.8.1 SOLAR ARRAY

The solar array consists of 22 trapizoidal solar panels separately fastened to a framework

formed around the periphery of the vehicle.

The panel substrates consist of honeycomb with fiberglass face sheets. The details of

this construction along with the structural framework are discussed in VB235FD110.

Mounted on each panel are eight rows of solar cells as shown in Figure 3-5. Properly

interconnected these rows form two identical solar cell strings: the two shortest and the

two longest rows form one string; the remaining four rows form the second string.

Each string contains 106 submodule elements in series. Each submodule contains eight

2 x 2 centimeter and one I x 2 centimeter cells in parallel.

Each panel contains the equivalent of 1802 2 x 2 centimeter cells. The total array contains

the equivalent of 39,644 2 x 2 centimeter cells.

Solar cell characteristics are as follows:

Type: N/P, silicon

Dimension: 1 x 2 and 2 x 2 centimeters, 13 mil thickness

Effective cell area: 95 percent

Contacts: Sintered titanium - silver, solder-free,

standard top and bottom contact configuration.

Bare cell efficiency: 11.0 percent at zero air-mass at mean
earth-sun distance, cell temperature 28°C.
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Prospective Vendors: RCA, Semiconductor Division

Texas Instruments

Heliotek, Division of Textron, Inc.

Hoffman Electronics

International Rectifier Corp.

Protective solar cell cover windows are bonded to each solar cell. Characteristics are:

Material: Fused silica, Corning #7940

Filter: Blue, . 41 micron cut-on frequency,

deposited on solar cell side of window,

anti-reflection coating on opposite face.

Thickness: 6 mils

The window to cell bond is GE clear silicone rubber RTV-602.

Cells are interconnected by means of 3 rail expandable strips of the type shown on Figure

3-6. Material selection for this strip is not resolved, but the principal contenders are

molybedum and tantulum.

The submodule elements are bonded to the honeycomb substrate using GE silicone rubber

RTV-560°

To minimize the generation of induced magnetic fields the return current path of each

submodule row is through a silver mesh imbedded between layers of the top fiberglass

facesheets of the honeycomb.

3.8.2 ZENER REGULATOR

The Zener Regulator module for each array string consists of three parallel strings of

seven diodes each, and two isolation diodes in parallel as shown in Figure 3-7. The

Zener diodes are 7.0 volt breakdown devices manufactured by Unitrode Transistor Products

Incorporated, Waltham, Mass.

The diodes are encapsulated in a resilient, thermally conductive, electrical insulator in

cylindrical holes in an aluminum monoblock that measures approximately i inch x 3 inch

by one-quarter inch high and weighs approximately 35 grams. The monoblock is capable

of thermal cycling from -260°F to +200°F and is capable of dissipating fifty watts through

a dry interface into an infinite heat sink, maintained at +100°F maximum.

The module must be capable of regulating the voltage from a 12 ohm source variable from

30 volts to 90 volts and current limited to 0.84 ampere to hold 50 volts + 4 volts at its

input terminals over the temperature range from - 170 ° to + 100°F.
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Figure 3-7. Zener Regulator Schematic

3.8.3 BATTERIES

The battery system consists of three independently controlled and identical battery assem-
blies. The characteristics of each battery assembly are:

a. Type: Silver - cadmium, sealed cells

b. Rated Capacity: 25 ampere -hours

c. Number of series cells: 29

d. Schematic: See Figure 3-8.

Each battery assembly is non-magnetic and capable of functioning as a sealed unit for a

period in excess of two years.

Silver cadmium cells of standard design encased in non-magnetic stainless steel are used.

Each cell contains ceramic hermetic seals at each terminal. A safety vent, which is set

at 200 psig, is provided with each cell in the event of overcharge.
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Internal cell separators are designed for the required life while introducing the least possi-

ble internal resistance. Separator material properties are chiefly responsible for restrict-
ing battery operating temperatures to 40 to 80°F.

The positive plates consist of finely divided sintered silver securely attached to a silver mesh

grid. The negative plates consist of a blend of cadmium oxide deposited onto a silver mesh
grid. Active material thicknesses are controlled to ±0.003 inch.

The electrolyte consists of potassium hydroxide in distilled water with concentration estab-

lished by the desired operating temperature range.

An anti-polar mass is added to the positive active material to serve as protection against

over-discharge. This permits up to 2-3 ampere-hours of reverse charge if, as a result

of extensive ground testing, the battery cells become unbalanced and are totally discharged.

In addition to the above precaution, a special access connector is provided to permit dis-

charge of each cell individually prior to its installation in the spacecraft. This permits all

cells to be charged to a uniform capacity level.

The cells are packaged in a magnesium case and interconnected in a figure "8" arrangement

to maintain magnetic cleanliness.

3.8.4 CHARGE REGULATOR

The charge regulator maintains the charging current into the battery at a preset current

until the battery terminal voltage reaches a preset voltage. At this point the regulator

maintains constant terminal voltage by controlling the current flow. In no case will the

current exceed 3 amperes, the maximum preset value.

The charge regulator circuit is a dissipative series regulator which is current limited at

a preset current, and voltage regulated at all lower currents. The regulation voltage is

determined by three "on" commands which set the regulated level at 44.2, 42.65, and

41. I volts. A fourth command shuts the regulator "Off" by grounding the reference voltage.

When all three charge regulators are operating, each one is current limited to 1 ampere.

If one is shut off, the remaining two are current limited to I. 5 amperes. If two are shut

off, the last one will current limit at 3 amperes. The charge regulator control circuits

set the voltage levels by command and set the current levels automatically when any regu-
lators are turned off by command.
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The series regulating transistors consist of an NPN compound transistor driven by a PNP

transistor. These are identified as Q2 and Q3 in Figure 3-9. These are connected to

behave like a single PNP transistor with current gain equal to the product of the three indi-

vidual gains. The series regulator current is controlled by Qi's collector 2 current. For

low battery voltage this current is constant and the regulator current is fixed. As the

battery voltage rises,to the voltage regulating level, section 1 of QI comes on and collector

2 current will start to reduce and will continue to reduce as necessary to prevent the battery
voltage from exceeding the regulating level.

The charge control circuit consists of four multivibrators which are set by command.

(See Figure 3-10.) These are interconnected so that a set command to any one will automati-

cally reset allothers. Three of the multivibrators control shunts from base I of Q1 in the
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Figure 3-9. Charge Regulator Schematic

regulator and thereby set the regulator voltage to any one of three levels. The fourth

multivibrator grounds the reference voltage which reduces the charging current to zero
thereby turning off the charger when "off" is commanded.

A current is taken from each multivibrator and is used to furnish T/M information on the

state of the charge control circuit. Current control logic is used to change the preset

current limit in the charge regulator and this level is determined by sensing if one or both

of the other regulators are off. This logic is as follows:

Current level for Regulator No. 1

lamp=2 • 3

I. 5 amp = 2 +

3amp=2"

Current level for Regulator No. 2

lamp=l • 3

I. 5 amp = 1 +

3 amp = _. 3
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Current level for Regulator No. 3

I amp = 1 • 2

1.5 amp = [ +

3amp =5"

3.8.5 MAIN REGULATOR

The main regulator reduces the unregulated bus voltage to + 28 vdc and maintains this

level independent of load and input voltage variations. In addition, the regulator maintains

a very low +28 volt line impedance, which provides isolation between users at regulated

voltage, even those using inverter voltages. Active regulation with input and output filters

provide effective isolation of the regulated lines from battery and solar array disturbances.

The main regulator is of the high efficiency time-ratio-control type, preset for a fixed

output and with a self contained inverter and dc power supply. Reduction of the unregulated

bus voltage is accomplished by not connecting it to the output bus all the time. This may be

illustrated by assuming the unregulated output is + 56 volts. By connecting the unregulated

bus to the regulated bus 50 percent of the time, the average output voltage is 1/2 the input

voltage of +56 volts or +28 volts. To regulate or maintain +28 volts out as the input voltage

reduces, it is necessary to increase the 50 percent on time to total time. This changing of

the on time to total time ratio identifies this regulating method as time ratio control.

The switch which connects the unregulated bus to the regulated output is transistor Q1 of

Figure 3-11. It is driven on and off by Q2 and Q3 which are in turn switched on and off

by Q4, the time ratio control transistor. The on-off periods occur at a kilocycle rate

established by the inverter consisting of Q6, Q7 and saturable reactor SR-I. The square

wave at the secondary S1 of SR-I is made roughly triangular by an RC network, and am-

plified by Q5. The triangular output of Q5 is summed with a current from the control

circuit and turns A4 on and off. With no current from the control circuit the equal (+) and

(-) currents of the traiangular waveform will turn Q4 on and off with a 50 percent duty

cycle. A (+) current from the control will increase the duty cycle by holding Q4 on longer.

If the (+) control current equals the peak (-) triangular current Q4 will remain on all the
time.

This would connect the unregulated bus to the regulated bus 100 percent of the time and

is the limit of the regulation capability. Similarly, if the control current is (-) and equal

to the (+) peak of the triangular wave Q4 will remain off and there will be no output voltage.

This point however is not practical for regulation and could only be used to shut off the
regulator.

The control circuit is a two stage feedback amplifier consisting of Q8 and Q9. Hence the

regulated voltage is divided down and compared to the reference at Q8 base. Any error

is amplified and causes sufficient swing of Q9 emitter to vary the control current. The
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The gain is such that no more than + 0.5 percent at the regulated bus is required to turn

the regulator completely off. Because this control circuit input is sampled at the filter

output a low regulated bus impedance is assured, even at the resonance frequency of the
filter.

3.8.6. 2.4 kc Inverter

The 2.4 kc inverter (see Figure 3-12) transforms the regulated +28 vdc to regulated 50°vac

at 2.4 kc. This ac is distributed to the various subsystems where it is transformed and

rectified locally to regulated dc for powering electronic circuits. This inverter is the

same as the Mariner C inverter but scaled for higher power.

The 2.4 kc inverter consists of a small 2.4 kc oscillating inverter and a switching power

stage. The small internal inverter drives the output stage and is synchronized but will run freely.

The design uses three transformers; one feedback, one interstage, and one output. The

input to the inverter is LC filtered to protect the +28 vdc bus from current and voltage spikes
generated by the switching transistors.

3.8.7 400 CPS THREE-PHASE INVERTER

The 400 cps three-phase inverter (see Figure 3-13) transforms the +28 vdc bus voltage
to three-phase ac at 26 vac rms with a stepped waveform. This inverter needs three

properly timed drive signals which come from the synchronizer. This inverter is identical
to the Mariner C design.

The three phase inverter consists of three separate switching power amplifiers, each

operating 120 degrees apart. The three outputs are interconnected so that the line-to-line

waveform is a stepped square wave. This circuit uses three drive transformers, three

output transformers with three secondaries each, and a filter choke in the input line. The

choke and a capacitor at the input protect the +28 vdc regulated line from switching transients
originating in the switching power amplifiers.

3.8.8 FAULT SENSORS AND REDUNDANCY SWITCHING

3.8.8. I Main Regulator Fault Sensor

The buck regulator fault sensor must detect an output voltage which is significantly higher

or lower than +28 vdc and, if this condition is maintained for 3 seconds nominal, it must

switch out the regulator No. 1 and switch in regulator No. 2. The fault sensor cannot

switch back to regulator No. I but either No. 1 or No. 2 can be switched in by command.
(See Figure 3-14 . )

The trigger device in the sensor is a unijunction transistor. This drives a transistor which

operates the "set" coil of a latching relay. This relay is a double pole double throw unit

which switches both the input and output lines thereby isolating the defective regulator.

24 of 102



VB236FD101

3
O.

0

bJ

o

o

I

L_ __.

(

t-- ....

17-

z
er

Z

i,i _ l-
IE [--

z Z ('_

N N "

>- --I J
(D :3 :3 (/)

(.9

rr. ,,_

e_ N N eJ u

1

I
J

re) b-

_0

_0 _. c_

o-_- -_i _1_

-- _ re)

--3

I1:

-3

I

.J

i

I-

n
I-

0

O

2

o
0_

g)

a

d

_4
!

25 of 102



VB236FD101

o. a.
Z z

u o
Z z

IT
I

to _

0

t_J (/) Q- W IX

_<
c..:,(...) O_ nu) n.- --
r-, Q > 0

-e-o

] ,° I

0
Z

0
r,-
(.9

<
-I-

0

I

.o

o
t_

0

O_
o

I

:::1

26 of 102



VB236FD101

+28V. BUSS

25.4K

5.6K

BATT , BUSS

19.4K: ', IOK 8K 2W

- = _ 30UF :

lS.IV :5.6K
ZENER

i

COMMAND(+)
RESET TO GO

_ TO UNIT =1_1

COMMAND GROUND
0 TO RETURN TO

UNIT _2

Figure 3-14. Main Regulator Fault Sensor

Both the "set" and "reset" coils may be operated by command. Generation of the unijunc-

tion trigger circuit is controlled by two transistors, one to sense under voltage and one to

sense over voltage on the regulated bus. The sensor is powered by the batteries through
isolation diodes.

3.8.8.2 2.4 kc and 400 CPS, 3@ Inverter Fault Sensors

The inverter fault sensor must switch over from inverter No. 1 to No. 2 in the event the

output goes significantly below nominal for a period of 3 seconds while the regulated bus

is normal. If the regulated bus is significantly below normal when the output drops (fault

in buck regulator but not the inverter) the fault sensor does not switch the inverters. The

fault sensor cannot switch back to inverter No. i but either No. 1 or No. 2 can be switched

in by command. (See Figure 3-15.)

The circuit consists of a transistor inhibit, a unijunction trigger generator, a transistor

amplifier and a latching relay. The presence of a normal output voltage maintains the

inhibit transistor saturated sufficiently to prevent the unijunction trigger circuit from

generating.

If the output drops significantly, the inhibit transistor remains off and the trigger circuit

starts charging. After 3 seconds a trigger is generated and the latching relay changes

inverters. However if the input regulated bus is below normal, there is not enough pulse
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CHANGE DEPENDING ON
GROUNDING OF AC & D.C.
CKTS.

Figure 3-15. Inverter

amplitude to generate the amplifier due to a zener in series with the amplifier input. This

feature prevents switchover of inverters when there is loss of regulation on the main bus.

3.8.9 SYNCHRONIZER

The synchronizer provides sync signals for the 2.4 kc inverters and 400 cps inverters.

These sync signals are timed by a 38.4 kc signal from the C&S clock. The synchronizer

has its own 38° 4 kc oscillator which is switched in if the clock 38.4 kc is missing. (See

Figure 3-16. ) This synchronizer is identical to the Mariner C design.

The input 38.4 kc signal is divided by 16, the resulting 2.4 kc signal is divided by 2 and the

1.2 kc signal produced drives a two flip-flop chain. By proper interconneetion this produces

the three 400 cps signals 120 degrees apart which drive the two 400 cps 3 phase inverters.

3.8.10 POWER SWITCHING AND LOGIC UNIT

The PS&L unit contains:

a. Load control switching devices

b. Switch buffer circuits
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c. Fault protection devices

d. Array/battery enabling switch SW-1

e. Telemetry monitor circuits used for general subsystem measurements such as

bus voltage and current output.

3.8.11 MISCELLANEOUS CIRCUIT ELEMENTS

Each of the functions described above contain circuit elements required for telemetry,

command, and direct access test purposes. Among the more significant circuit elements

are the following:

a. Current T/M Sensors

The sensors used to measure dc current for telemetering are magnetic amplifiers

with the current being monitored flowing through the control winding. The output

current is passed through a feedback winding to cancel the effect of the line current,

hence, the output current by the degenerative feedback is proportioned to the line

current (See Figure 3-17). An inverter, Figure 3-18 is provided to furnish excita-

tion for all the dc current sensors. Output voltage is limited between 0 and +3.2
volts.

Sensors for ac currents are in reality current transformers, the low secondary

currents being rectified and passed through a T/M load resistor (see Figure 3-19).

The drop across this resistor is proportional to current and is sampled for tele-

metering. Both ac and dc T/M current sensors are fully isolated. Output voltage
is limited between 0 and +3.2 volts.

b. Voltage T/M Circuit

Figure 3-20 illustrates the voltage T/M circuit used for all dc battery and bus

voltages, and when used with a half-wave rectifier, all ac inverter voltages. It

is very flexible and can be used to accurately monitor a narrow portion of a relatively

high voltage. The output voltage excursion is limited to 0 at the low end and +3.2

volts at the high end.

4.0 INTERFACE DEFINITION

4.1 TELEMETRY MEASUREMENTS

Telemetry measurement requirements for in-flight evaluation of the power system are

listed on Table 4-1.
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Figure 3-19. AC Current T/M Sensor
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Figure 3-20. AC Voltage T/M Inverter
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4.2 COMMAND REQUIREMENTS

External stimuli for power system and load control are required as follows on Table 4-2.

Item No. * Function Signal Source

Relay No.

K1 on - Power to Fuel Tank Heaters

K1 off - Power to Fuel Tank Heaters

K2 on - Power to Capsule

K2 off - Power to Capsule

K3 on - Power to Science _

K3 off - Power to Science

K4 on - Power to Relay

K4 off - Power to Relay
K5 on - Power to Antenna Electronics

K5 off - Power to Antenna Electronics

K6 on - Power to Scan Electronics

K6 off - Power to Scan Electronics

K7 on - Power to Autopilot Electronics

K7 off - Power to Autopilot Electronics

K8 on - Power to Approach Guidance

K8 off - Power to Approach Guidance

* Item No. refers to command subscripts in Figure 3-2.
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1 Turn off charge Regulator No. 1 CD

2 Setting A - charge Regulator No. 1 CD

3 Setting B - charge Regulator No. 1 CD

4 Setting C - charge Regulator No. 1 CD

5 Turn off - charge Regulator No. 2 CD

6 Setting A - charge Regulator No. 2 CD

7 Setting B - charge Regulator No. 2 CD

8 Setting C - charge Regulator No. 2 CD

9 Turn off - charge Regulator No. 3 CD

10 Setting A - charge Regulator No. 3 CD

11 Setting B - charge Regulator No. 3 CD

12 Setting C - charge Regulator No. 3 CD

13 Switch to Main Regulator No. 1 CD

14 Switch to Main Regulator No. 2 CD

15 Switch to 2.4 kc inverter No. 1 CD

16 Switch to 2.4 kc inverter No. 2 CD

17 Switch to 400 cps inverter No. 1 CD

18 Switch to 400 cps inverter No. 2 CD

19 Enable array and batteries - SW - 1 LCE

20 Disable array and batteries - SW - 1 LCE
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4.3 UMBILICAL DISCONNECT REQUIREMENTS

Item No. Function

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Array/Battery Bus Voltage

Array Enable Switch SW-1 Monitor

Turn-on Enable Switch, SW-1

Turn-off Enable Switch, SW-1

Enable Switch, SW-1, return

External power, 44-55 vdc, 15 amps.

External power return

Battery No. 1 Voltage

Battery No. 2 Voltage

Battery No. 3 Voltage

Battery No. 1 Temperature

Battery No. 2 Temperature

Battery No. 3 Temperature

Battery Temperature Sensor Return

400 cps, _ 1 voltage

400 cps, _ 2 voltage

400 cps, _ 3 voltage

2.4 kc voltage

2.4 kc voltage return

Raw Battery Bus Voltage

4.4 DIRECT ACCESS REQUIREMENTS

Item No. Function

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Main Regulator Voltage

Main Reg,Aa_r Current
2.4 KC Bus Current

Capsule Current
XMTR Current

Battery No. 1 Current

Battery No. 2 Current

Battery No. 3 Current

Array Current

Charge Reg. No. 1- off, A,B, or C Setting

Charge Reg. No. 2 - off, A,B, or C Setting

Charge Reg. No. 3 -off, A,B, or C Setting

Main Regulator No. 1 on/off

Main Regulator No. 2 on/off
2.4 kc Inverter No. 1 on/off

2.4 kc Inverter No. 2 on/off

400 cps Inverter No. 1 on/off
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Item No. Function

18

19

20

21

22

23

24

25

26

27

28

29

30

31-57

4.5

400 cps Inverter No. 2 on/off

Backup Oscillator Input Voltage

Stimulate Fault Sensor - Main Regulator

Stimulate Fault Sensor - 2.4 kc Inverter

Stimulate Fault Sensor - 400 cps Inverter
K1 Switch Monitor

K2 Switch Monitor

K3 Switch Monitor

K4 Switch Monitor

K5 Switch Monitor

K6 Switch Monitor

K7 SwitA_h Monitor

K8 Switch Monitor

Battery cell voltage monitors (3 batteries)

Cells 3, 6, 9, 12, 15, 18, 21, 24, 27

SPECIAL ACCESS REQUIRE MENTS

Re Battery - Special access to each intercell connection will be available for

uniformly discharging each cell prior to installment in the spacecraft. These

access points will be located directly on a connector at the battery case and

will not be available for subsystem or system test.

b. Solar Array - Special access connectors will be provided for testing each solar
panel. These connectors will be located ahead of each isolation diode.

4.6 THERMAL INTERFACE REQUIREMENTS

O
Battery operating temperatures must be limited to 40 to 80 F.

4.7 RETRO-PROPULSION

The plume of the retro-propulsion engine shall not cause more than one percent output

degradation of the solar array.

5.0 PERFORMANCE PARAMETER

5.1 SIZING CRITERIA

Table 5-1 shows the calculation procedures for the sizing determination of the power
system components.

O
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5.2 SOLAR ARRAY CAPABILITY

Usable power from the solar array is shown on Figure 5-1 as a function of mission time.

Usable power is defined as the power availability at 46 volts or greater which is the minimum

required for battery charging. This restriction accounts for the apparent lower power at

the start of the mission though, in fact, greater power is available at lower voltages. See

Appendix A for further analysis. The net array requirements based on the calculations of

Table 5-1 is shown for comparative purposes. The limitation imposed by the possibility

of battery load-sharing is shown as well as potential array degradation from potential
Martian radiation belts 10 4 times greater than earth radiation belts. In the latter case

sufficient power is available for up to 36 days after encounter. Partial operation is possible

thereafter.

5.3 BATTERY CAPABILITY

The installed battery capacity is 2280 watt-hours. It is estimated that the capacity will be

reduced by 30 percent to result in an end-of-life capability of 1600 watt-hours.

Figure 5-2 shows the energy removed for different mission phases and the time required

for recharging. See Appendix II for further analysis. Figures 5-3 and 5-4 show charge-
discharge characteristics and discharge temperature characteristics respectively.

5.4 REGULATION

Estimates of voltage source regulation are presented below on Table 5-2.

Table 5-2

Voltage
Source

2.4 kc

50 volt RMS

400 cps,

3 phase,

26 volt RMS

30-55 VDC

30-44 VDC

Steady-state

Regulation

+2%

5%

Transient

Regulation

+5%

L

C&S Sync

Signal

±. 01%

+ 10%

Frequency

Stability

o1%

Back-up
Oscillator

+2%

+2%

Free-

running

+5%
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5.5 LIMITS OF CAPABILITY

Approvimate power magnitude limits for each voltage source are listed below on Table 5-3.

Voltage
Source

2.4 KC

50 volt RMS

400 cps, 3 phase,
26 volt RMS

30-55 volts DC

30-44 volts DC

Table 5-3

Power

Limit

300 watts

25 watts

1 kw - occultation

1.5 kw - Mars day

lkw

5.6 RELIABILITY

The reliability of the power system in estimated to be 0. 991 up to one month after

encounter. See Appendix HI for the analysis.

6.0 PHYSICAL CHARACTERISTICS

6.1 SOLAR ARRAY

The principal physical characteristics are described below:

a. Form -22 separate & identical honeycomb panels forming an annular ring about

the spacecraft

b. Panel configuration and cell layout - See Figure 3-5

c. Total array area - 196.6 square feet

d. Effective cell area - 162.1 square feet

e. Solar Cell Packing Factor-82.5 percent
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fo

t

h.

i.

Weight

Solar Panels and Support Structure*
Harne s s

Zener Regulator

178.5 lbs.

25.0 lbs.

15.0 lbs.

Total 218.5 lbs

*Breakdown of weight per square foot based on total area:

Item

6-rail cover glass

Cover glass

Cells, solder-free, 12-rail

Cell interconnection strips and solder

Cell-to-substrate bond, 5 mils

Terminals, diodes, wire, etc.

Panel substrate and support structure

Attachment - By means of screw fasteners

Total

Weight, lb/ft 2

•057

• 013

• 136

• 025

• 031

.018

• 628

• 908 lbs/ft 2

_rzc_a_ Mating - Separate operational and direct access connectors

Zener regulators - Consists of 1/4 x 1 x 3 inch monoblocks mounted on back

panel face• Two such monoblocks are required - one for each of two solar

cell strings on each panel assembly.

6.2 ELECTRONIC ASSEMBLY EQUIPMENT

Power system equipment, aside from the solar array, is mounted in Electronic Assembly

Bays 1, 2 and 5. The allocation of equipment for each bay is shown on Figures 6-1, 6-2,

and 6-3.

Weight and volume characteristics for each bay are listed in Table 6-1.
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CHARGE REGULATOR #1

3 _ INVERTER#1

0

0

o
o

0 , 0

0

0 ( 0

0

0

0

MAIN BUCK REGULATOR#l

/-- 2.4Kc INVERTER#I

Figure 6-1. Bay No. 1 Equipment
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CHARGEREGULATOR#3

PYRO CONTROLLER

0

0

0

0

0

0

BATTERY#3
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Figure 6-2. Bay No. 2 Equipment
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Figure 6-3. Bay No. 5 Equipment
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Table 6-1• Power System Electronics Assembly Equipment

Weight, Volume,

Assembly lbs. cu. ft.

Bay No. 1

Battery No. 1

Main Regulator No. 1

Charge Regulator No. 1

Inverter, 400 cps, 3 phase, No. 2

Inverter, 2400 cps, No. 2
Power Harness

Chassis

Miscellaneous

39.0

11.5

1.5

3.5

4.5

3.0

3.8

1.5

.35

.22

• 03

• 06

• 08

.03

m

Total 68• 3

Bay No. 2

Battery No. 3

Charge Regulator No. 3

Synchronizer

Power Switching and Logic

Pyrotechnic Controller*

Power and Pyrotechnic Harness
Chassis

Miscellaneous

39. •

1.5

1.6

5.5

7.5

2.5

3.8

1.5

.35

• 03

.03

• 10

• 13

• 03

Total 62.9

*Included in bay but not part of power system

Bay No. 5

Battery No. 2

Main Regulator No. 2

Charge Regulator No. 2

Inverter, 400 cps, 3 phase, No. 1

Inverter, 2400 cps, No. 1

Power Harness

Chassis

Miscellaneous

39.0

11.5

1.5

3.5

4.5

3.0

3.8

1.5

• 35

• 22

• 03

• 06

• 08

• 03
m

Total 68.3
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7.0 SAFETY CONSIDERATIONS

Precaution must be exercised in handling the batteries for the following dangers:

a. The batteries are high energy, low impedance devices, and inadvertent shorting

of the output terminals can caase personal or equipment injuries.

b. Pressure buildup due to overcharge can result in a battery rupture by explosion.

c. Minor seal or case rupture may permit the leakage of potassium hydroxide electro-

lyte, which is a strong alkali capable of causing serious burns.
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APPENDIX I

SOLAR ARRAY PERFORMANCE

1.0 COMPUTER ANALYSIS OF SOLAR ARRAY

A computer analysis was performed to determine the power output of the Voyager solar

array as a function of sun-spacecraft distance. As solar intensity decreases, the power

output of a solar array also decreases, but the accompanying decrease in array tempera-

ture increases the voltage at which this power is available. Thus, consideration of the

interactions of array temperature and solar intensity is essential in determining the proper

voltage match between the array, the spacecraft loads, and the battery.

The array output computer program calculates the total current and power output of a solar

array taking into account the following parameters:

a. Solar intensity

b° Temperature

c. Angle of solar incidence

d° Number of cells in series in a series string

e. Number of cells in parallel in a series string

f. Number of series strings

g. Basic cell characteristics (efficiency, base resistivity)

h. Losses and uncertainties

The output of the program is a listing, for each set of input parameters, of:

Voltage vs 1. Total current

2. Power

The program calculates the array output based on the characteristics of a single solar cell,

multiplying the voltages and currents by the number of cells in series and parallel,

respectively, to obtain the voltage-current characteristics of the total array.

The voltage-current characteristics of a single solar cellare represented by the following

relation:

sc - Rp - I
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where the variables are:

I = Cell current output

V = Voltage on solar cell

and the coefficients are:

I = Illumination current (virtually equal to short circuit current)sc

R = Shunt resistance of the cell
P

I = Reverse saturation current of the ideal diode characteristic
o

K = Coefficient of the exponential

R

S
Series resistance of the cell

The coefficients are further treated as functions of cell temperature, using sixth-degree

polynomial approximations, to more accurately reflect changes in cell characteristics with

temperature. The coefficients in the cell characteristic equation were derived from the

basic cell V-I curves given in Section 3.1 of this appendix, adjusted to represent 11 percent
efficient cells.

Correction coefficients are added to the above relation to account for various operating and
loss factors, and uncertainties. These are:

CDEG = Short Circuit Current Degradation Factor, containing

Loss factors:

Variations in solar intensity, which term is equal to (AU) -2

_' .ml..mm._.i.bJ. _'ImJL_.LJ-LL_umJL _UDO

Micrometeoroid effects and random cell failures

Radiation degradation effect on current

Uncertainties whose rms effect is

O.94

O.95

O.845

O.9265

Mismatch and manufacturing

Measurement uncertainties

Ultraviolet effects

2%
5%
5%

VDEG = Voltage Degradation Factor, containing

Radiation degradation effect on voltage 0.975

8 = Correction for angle of solar incidence (not used for Voyager studies since the

solar array will be pointed to the sun with an angular error of less than 1 degree).
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The value of CDEG for a sun-spacecraft distance of 1 AU is 0. 6992. The above loss

coefficients are discussed in detail in Section 3.3 of this Appendix.

The resulting cell current-voltage equation appears as:

K (V+R I+V (1 -VDEG} |

"!

I = CDEG(_) I - V - I e s oc - 1Jsc R o
P

where

V = Open circuit voltage (also a sixth-degree polynomial function of temperature).
OC

The computer program also takes into account the voltage drop due to the blocking diode

associated with each series string, and the effects of blocking diode temperature (assumed

to be the same as solar panel temperature).

2.0 SOLAR ARRAY POWER OUTPUT

The calculated solar array voltage -current characteristics are shown in Figure I-1 and the

voltage-power characteristics in Figure I-2. These curves were based on an array of 22

solar cell panels, each containing two series strings of 106 series by 8 1/2 parallel 2 cmx

2 cm solar cells.

The curves show that adequate array power is available at 48 volts for the entire range of

sun-spacecraft distances to be encountered during the 1971 flight. In fact, even though the

maximum power voltage at 1.62 AU is approximately 49 volts, power can be extracted at

46 volts with less than 2 percent penalty. Thus, it will be possible to treat the array as

having a constant range of source voltage characteristics.

Figure I-3 shows the array power output as a function of sun-spacecraft distance. The

curve marked "Power Available at 46 Volts" is the power which can be extracted from the

array at 46 volts. For the portion of the "Maximum Power" curve to the left of the point of

tangency (approximately 1.4 AU) the maximum power can be obtained only at less than 46 volts.

Because a buck regulator is to be used for voltage regulation, the array power actually avail-

able will follow the "46 Volt" curve to the left of the point of tangency, and the "Maximum

Power" curve to the right.

A problem of some interest is the load-sharing condition, where both the array and the

battery supply power to the load, and the array voltage is drawn down to the battery dis-

charge voltage. Under this condition, the array will produce less than its design power

capability and could possibly "lock" in this condition, permitting battery discharge when the

array itself is fully capable of supplying the required power. The power supply can be brought

out of this condition by a momentary interruption of the load to reduce the loads to less than

the "load-sharing" array power output; i.e., to "turn off" the battery. A knowledge of the

value of this load-sharing array power will indicate the mission time and power levels at

which the load-sharing lock-in might become a problem, and the loads can be programmed
to avoid the condition.
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Figure I-2. Solar Array Voltage-Power Characteristics
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The predicted sun-spacecraft distance is shown in Figure I-4 as a function of time since

launch for the extremes in launch date. Factoring this time-distance data into the distance -

power data in Figure I-3 yields, for the latest launch date, the array power output as a

function of time in Figure I-5. Superimposed on this is the power profile. The solid lines

in the power profile represent the power requirements most likely expected. The dashed

lines indicate the increased power required for battery charging, as for several hours after

maneuvers, or during those orbits experiencing solar occultation. Also shown in this figure

is the load-sharing array power output, indicating the load-sharing problem is largely confined
to the last stages of the mission.

Another curve included in Figure I-5 shows the decay of solar array power in Mars orbit

for the case where the Mars "Van Allen" radiation is 104 times greater than that at the earth.

This curve includes the effects of both the radiation and also the increasing sun-spacecraft

distance as functions of time. The power available decreases very rapidly the first few days

in Mars orbit, but sufficient power will be available to operate the spacecraft and complete

science payload for 36 days without requiring the use of the battery and with no degradation of

spacecraft performance. After this, the full science payload may be operated for its required

2 hours per orbit for up to an additional 30 to 40 days, depending on the orbit period, by

cycling the batteries. The science payload may be operated for at least part of each orbit

for up to 87 days from orbit injection, providing there is no eclipse in the orbit. Thus, the

effects of an unexpectedly high radiation environment will be to reduce the performance in the

latter portion of the Mars orbit phase, when such reduction in performance will have the
least effect on overall mission value.

3.0 SOLAR CELL CHARACTERISTICS

3.1 BASIC CELL V-I CHARACTERISTICS

The voltage-current characteristics used as the basis for predicting the solar array output
were derived from V-I measurements made under simulated air mass zero solar illumination

over a range of temperatures (-200F to +200F) on a group of RCA 1 ohm-cm 10.5 percent

efficient N/P silicon solar cells. The averaged (in current, since the cells will be used

connected in parallel) V-I curves for these cells are shown as a function of cell temperature

in Figure I-6. Since cells are presently being delivered for another program with

efficiencies averaging in excess of 11 percent, the V-I curves were adjusted upward in

current to represent 11 percent efficient cells at 85°F. The general temperature-efficiency

coefficient for these cells is - 0.26 percent/°F (referred to 85°F).

3.2 INTENSITY DEPENDENCE

As the solar intensity decreases, the solar cell short circuit current decreases, and in the

normal range of solar intensity, the decrease in short circuit current is proportional to the

decrease in solar intensity.

The characteristics of the solar cell are such that a decrease in short circuit current causes

a linear shift of the V-I curve to lower current values; i. e., a differential current is sub-

tracted from the entire V-I curve. Thus, because of the shape of the V-I curve, the power
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output of the solar array at a fixed voltage will decrease faster than the solar intensity (at

a constant temperature). A second effect must also be included -- because of the series

resistance of the solar cell, a small increase in the voltage values of the V-I curve will

accompany the decrease in cell output current. The computer program takes both these
effects into account.

3.3 LOSS ANALYSIS

In determining the solar array output, certain losses and output uncertainties must be
accounted for. These factors are summarized below:

Losses

Filter transmission loss factor (affects cell current)

Micrometeoroid effects and random cell failures (current)
Radiation degradation - effect on current

- effect on voltage

0.94

0.95

0. 845

0. 975

Uncertainties, with a total rms effect on current of 0.9265

Mismatch and manufacturing
Measurement uncertainties

Ultraviolet effects

2%
5%
5%

A discussion of each of these loss factors follows.

3.3.1 FILTER TRANSMISSION LOSS

When solar cell covers with filters are bonded to solar cells, a loss in cell current output

occurs due to the imperfect transmission of the filter. It is estimated that this loss will be

less than six percent. The exact amount will depend on the spectral reflectance and index

of refraction of the solar cell anti-reflection coating, and the index of refraction of the

organic coverglass bond. Average values less than one percent loss have been reported by
others for filters on polished N/P cells.

3.3.2 MICROMETEOROID EFFECTS AND RANDOM CE LL FAILURES

Measurements made at MSD on solar cell-filter composites indicate the maximum power

degradation from micrometeoroid erosion to be five percent, for the case of complete

surface "sandblasting." There are large uncertainties in the micrometeoroid environment,

but the fraction of surface area erosion is e.xpected to be much less than 100 percent. Also,

there will be random failures of individual cells both from meteoroid punctures and from

solar cell contact and wiring failures due to thermal cycling. A degradation factor of 0.95
was used to allow for erosion, puncture, and random cell failures.
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3.3.3 RADIATION DEGRADATION

The analysis of the radiation degradationof solar cell output is detailed in Section 5.0. The
optimum fused silica cover thickness wasdetermined on the weight trade-off betweenradiation
degradation and array unit weight, and six mils was selected to be the cover thickness. Thus,
the radiation degradation factor used in sizing the array, expressed as the fraction of original
power remaining at the end of the mission, was 0.80. Separationof the effects of radiation
damageon cell short circuit current andopencircuit voltage showsthe two terms to be:

Residual I = 0. 845
sc

Residual V = 0. 948
oc

Examining the effects of the reduction in short circuit current on open circuit voltage shows

that the Isc reduction indicated will result in a Voc reduction of about 0.97 just due to the

V-I characteristics of the cell. Thus, the reduction in cell voltage characteristics due to

radiation will be 0. 975, and the two radiation damage V-I coefficients are

Current Coefficient 0. 845

Voltage Coefficient 0. 975

3.3.4 MANUFACTURING AND CELL MISMATCH

Cell to cell V-I differences result in a net V-I characteristic which may be slightly penalized.
These differences exist initially and may be increased with soldering operations. A two
percent allowance is made for this factor.

3.3.5 MEASUREMENT UNCERTAINTY

The mean solar radiation external to the earth's atmosphere has been determined by deductions

based primarily on earth surface observations. Many values of the solar constant have been

reuorted by different investiggtnr,% the v, hm,q _pO_'tAd h_vlng _n _cr_.,_f,_ ._ f,_l,_a_,_ ,_¢

+_ 3 percent about a nominal 140 mw/cm 2. The tolerance accounts for the uncertainty in the
actual value of the solar constant due to measurement limitations.

Measurements of solar cell output on earth are subject to many errors -- uncertainty in

establishing the spectrum and intensity of the light sources used during testing, instrumen-
tation errors, tolerance due to thermal fluctuations, etc.

For sizing calculations a five percent allowance (rms) is made for "measurement uncertainty,"
which includes the uncertainty in the solar constant as well as the instrumentation errors
associated with solar cell measurements.

3.3.6 ULTRAVIOLET EFFECTS

Extensive testing on composite assemblies of filters, fused silica covers, organic bonds,

and silicon solar cells has led to confidence in the use of organic cover glass bonds. The
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filter (blue or blue-red) reduces the damaging ultraviolet radiation impinging on the organic

bond so that it does not experience discoloration and reduced transmission. However, past

experimental results have indicated that there is an initial decrease of about five percent in

the transmission properties of the filter itself due to the exposure to ultraviolet. Subsequent

work has cast some doubt on these original findings. Until this question is fully resolved a

five percent allowance is made for this factor.

4.0 FILTER SELECTION

A blue filter will be used with the solar cells for the Voyager power supply.

Previous studies have shown that, for P/N cells, using the best extrapolated properties of

blue and blue-red filters, the optimum cover for panel-mounted solar cells at Mars is an

unfiltered cover. The power output of P/N solar cells with plain covers was predicted to be

0.8 percent greater than for cells with the optimum blue-red filter, and 2.8 percent greater

than for cells with optimum blue filters.

Polished N/P solar cells have a higher surface reflectance than P/N cells, particularly in

the near infrared, where the specular reflectance rises rapidly to values of 60 to 80 percent

in the wavelength region beyond 1.1 microns. This built-in filter effect reduces further the

value of bandpass filters (so much so that the measured weighted solar absorptance for

filter - N/P cell composites is the same within measurement error for blue and blue-red

filters with the same blue cut-on wavelength, apparently eliminating the need for blue-red

filters even in earth orbit, since their thermal advantage no longer exists with N/P cells).

Thus, the power output advantage of using unfiltered covers will be even greater for N/P
cells than for P/N cells.

However, the organic adhesives used to bond the covers onto the solar cells are susceptible

to darkening by ultraviolet radiation, and a blue filter will be required to protect the adhesive.

The blue filter cut-on wavelength will be selected as low as possible to minimize the trans-

mission loss to the solar cell, consistent with the required reduction in transmission in the

U-V region to protect the adhesive.

5.0 SOLAR CELL RADIATION DAMAGE

5.1 BACKGROUND

The general effect of energetic particles in solar cells is to cause disordering of the atoms

in the crystal structure of the cells. The high efficiency silicon solar cell is use today is

made from single crystal material and its energy conversion capability is very dependent on

the highly ordered arrangement of the crystal lattice. The disordering caused by charged

particles, such as that found in space, creates defects in the crystal lattice which in turn

serve as trapping centers for the carriers (electrons or holes) created by the absorption of

light energy. Thus, these carriers are absorbed in the solar cell and never appear as

electrical output of the cell. The type of defect formed is very dependent upon the type and

energy of the incident radiation causing the damage.

66 of 102



VB236FDI01

However, insofar as the effect on the electrical output of a cell is concerned, the damage

caused by one type of monoenergetic particle (say 0.5 Mev electrons) differs from that

caused by another type of monoenergetic particle (say 20 Mev protons) by a constant factor

relating the total dose of each type of radiation that causes equal damage to the cell. This

has been shown by experiments conducted in many laboratories (1)*, (2). This implies that

one can determine the flux of radiation of a given type and energy (here called the equivalent

flux) that will cause the same damage to the electrical output of a cell as that due to a com-

plex radiation environment. Also, for cell types that depend upon minority carrier diffusion

for the majority of their power output, this equivalence can be established between different

cell types. P/N and N/P silicon cells are of this type. An example of this is shown in Figure

I-7. Here the effects of 1 Mev electrons in N/P cells (the actual data is given in Figure

I-8) is multiplied by the specified constants and plotted over the effects of 0.5 Mev electrons

in P/N cells.

These curves show the decrease in cell short circuit current and open cirucit voltage. This

cell data is representative of cell degradation under space sun illumination. The P/N data

was taken under a carbon arc solar simulator (1). The N/P data was derived by a technique

which is equivalent to solar illumination (2). This is a very important point to consider if

one desires the absolute value of radiation flux for a given decrease in a cell electrical para-

meter when the cell is to be used in space. The silicon cell is a selective absorber of light

energy. The power conversion capability of these cells for incident light in the wavelength

region from -_0.7 to 1.1 microns is affected more so by the radiation encountered in space

than the wavelength region below_0.7 microns. Therefore, the degradation of the electrical

output of the cell for a given dose of radiation will be dependent upon the type of light source

used to illuminate it for power output measurements. For example, the radiation dose

required to decrease the cell short circuit current by 25 percent under space illumination is

approximately twice that required under 2800°K tungsten light (3). Therefore, in order to

calculate the effects of radiation on satellite photovoltaic power systems, all laboratory

measurements must ultimately be referred back to the measurement of the power output of

the cell under space illumination.

It has further been shown by extensive laboratory work performed at General Electric (1)

that the radiation effect on the voltage-current characteristic of a cell can be defined by a

degradation of the cell short circuit current and open circuit voltage, at least for radiation

doses up to where the cells are rendered useless for most applications. Therefore, the

essence of the radiation effects due to a complex radiation environment on the electrical out-

put of a solar cell of a given type is to calculate the equivalent flux of a reference radiation

in some reference type cell. When this is done for both the short circuit current and open

circuit voltage, the entire voltage-current characteristic can be defined. Here the equiva-

lent flux is taken as 0.50 Mev electrons, the reference cell type is the standard P/N silicon

cell, space efficiency > 9 percent. The effect of 0.5 Mev electrons on P/N silicon cells is

shown in Figure 5-7 for a cell temperature of 85°F. This is taken as the reference decay

curve in the general solar cell radiation damage computer program, and all radiation-effects

data due to electrons and protons in P/N and N/P silicon cells is referred to this curve.

Since the present system design uses the N/P silicon cell, only the calculational procedure

and experimental data for these devices will be discussed.
*See References in Section 5.6.
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The effect of temperature on the damage rate is not considered here, mainly due to lack of

data. Some work has been done at General Electric (1) on the damage rate of electrons in

la/N cells as a function of temperature. This work indicates that over a temperature range

of +- 150°F the equivalent fluxes would not vary more than +- 20 percent from that at 85°F.

This variation would result in a very small error in the cell damage estimate. The Voyager

solar cell damage estimates are given in Section E following a discussion of damage calcula-
tional procedure.

5.2 DEFINITION OF EQUIVALENT FLUXES- N/P CELLS

The equivalent fluxes can be stated mathematically as follows:

¢vn =/E_p (E

,t) Dpin (E) dEdt +fJ_e(E'tE t) Dei n (E) dEdt

,t) Dpv n (E)dEdt +/j_e(E,t) Dev n (E) dEdt
tE

(1)

(2)

where the foregoing symbols have the following meanings:

Dpin = short circuit current proton damage constant

D . = short circuit current electron damage constantem

D = open circuit voltage proton damage constant
pvn

D = open circuit voltage electron damage constantevn

¢. = short circuit current equivalent fluxm

= open circuit voltage equivalent flux
vn

The units of the equivalent fluxes are electrons (0.5 Mev)/cm2/unit time.

Once the equivalent fluxes are determined for each radiation component in the environment,

the total is found by the summation of the components:

¢. =_¢
1 Total J ij

¢ = _ Cvj
V Total j

The damage is found by determining the decay of the short circuit current and open circuit
voltage from Figure I-7, based on the total equivalent fluxes. It can further be shown that

the maximum power point of the cell voltage-current curve is equal to (1):

P = I'V*
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where:

P = fraction of original power remaining

I* = fraction of original short circuit current remaining

V* = fraction of original open circuit voltage remaining

The damage constants defined above are experimentally-determined functions and are des-

cribed in detail in Section 5.3 below. The differential flux spectra are those incident per-

endicular on the cell surface. When a shield material is used, the effect of this shield on

the incident spectrum must be taken into account. Also, when the incident particle spectrum

is isotropic, the effect of the isotropy must be considered.

5.3 THE DAMAGE CONSTANTS

Specifically, the damage constants are defined as @ = D _ z(E) _ x(E). That is, if ff_ (E)
is the incident dose of radiation "X _' of energy "E" _nZcell _e "Z" and ¢ is the dos_ of

0.50 Mev electrons that will cause equal damage to cell parameter "_' inY_/N cells as

_x (E) causes in cell parameter "Y" in cell type "Z", then Dxyz(E ) is the ratio of these two
fluxes. The following describes the damage constants for electrons and protons in N/P

silicon cells. All temperatures are 85°F.

5.3.1 PROTONS

The damage constants for protons are based on the decrease of the minority carrier diffusion

length (L) in the cell base region as a function of dose. This follows a well-established rela-
tion:

1 = 1 + K _ for monoenergetic particles. (3)

L 2 L 2
O

or

1 = 1 /KL 2 L 2 + (E) _(E) dE for a spectrum of energies. (4)
0

This relation holds as long as the fraction of the total collected current coming from the

cell surface layer is negligible since the diffusion length, and therefore K, are determined

by measuring the current output of the cell under electron bombardment (4). The collection

of carriers from the surface layer is not primarily by diffusion, but rather due to electric

field considerations. The above relation holds for either electrons or protons.
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For 1 Mev electrons in N/P cells the value of K is 1.7 x 10-10(2); therefore,

10 -101 = 1 + 1.7 x _ (5)

L2 L 2
O

where _ is the dose of 1 Mev electrons in electron@/cm 2.

Similarly, if the degradation of L is caused by spectrum of protons one can define an equiva-

lent 1 Mev electron flux, from equation (5) as

1(1 mev) eq- L2 x I.--_
O

Using equation (4), this becomes

1010 fK(lmev) eq - 1.7 (E) _ (E) dE (6)

The utility of these relations is the well-known fact that cells with equal diffusion lengths

will have the same output regardless of what type of radiation affected the diffusion length.

Therefore, if the incident radiation is a spectrum of protons, Equation (6) will define an

equivalent 1 Mev electron flux in N/P cells where K(E) is the proper function for protons

and _ (E) is the incident proton spectrum. The function K(E) for protons in N/P cells is

taken from Reference 2 and is given in F igure I-9. This function is approximated by the

following equations for the specified energy intervals:

K(E) = 3.53 x 10 -6 , E < 1 Mev (7)

K(E)=3.53 x10 -6 E -0"778, I<E <10 (8)

K(E)= 5.88x10 -7 , 10 < E < 50 (9)

K(E) = 2.25 x 10-5E -0.914, 50 < E (10)

The value below 1.0 Mev is assumed constant since there is no data below this point. It is

difficult to say how K(E) would vary at these low energies since these particles are being

absorbed in the first few microns of the cell surface. Recent experiments with low energy

protons (E < 1.0 Mev) indicate that the open circuit voltage is more drastically affected than

the short circuit current, implying greater junction damage. This problem is somewhat
lessened as long as there is some shield material on the cell surface. This would tend to

harden the incident spectrum.

Equation (6) can be referred back to the reference decay curve by multiplying Equation (6)

by the previously determined constants relating 1 Mev N/I ) data to the reference curve.
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These are 0. 077 for short circuit current and 0. 0902 for open circuit voltage. Therefore,

the desired damage constants as defined in Equations (1) and (2) are:

D -- 1.6x103 , E < 1 Mev (11)
pin

103 E-0.778 1< E <10-- 1.6x

= 2.67x102 , 10 <E <50

= 1.02x104E -0"914 50<E

and

D = 1.87x103, E<I
pvn

= 1.87 x 103 E -0"778

(12)

I<E<10

= 3.12x 102 , 10<E<50

= 1.19x104E -0"914 50<E

5.3.2 ELECTRONS

The electron damage constants Dei n and Dev n are derived in a similar fashion as the
proton damage constants. Figure 1-10 shows the electron damage function versus energy,

normalized to 1 Mev. This data is obtained from references (5) and (6). The damage constants

Dei n and Dev n are then obt$ ned by referring this relative damage function back to the reference
decay curves of Figure I-7by multiplying this function by the constant 0. 077 to obtain Dei n

and by 0. 0902 to obtain Dev n. The final values for Dei n and Dev n are shown in Figure 1-11.

5.4 SHIELDING EFFECTS

The previous section defined the damage rate in silicon solar cells in terms of the dose of

radiation incident perpendicular to the cell surface. When one has shield material surrounding

• the solar cell, the change in the radiation spectrum as it passes through the shield and the
effect of isotropy (as is usually assumed for space radiation)\must be properly taken into

account in order to apply the previously derived equations. _or a given incident isotropic spec-

trum, one must calculate an equivalent normal spectrum incident on the cell surface that would

cause the same cell damage as the isotropic spectrum.

5.4.1 ELECTRONS

Neglect, for the moment, the effect of isotropy and assume all particles are incident normal
to the cell and shield.

The residual spectrum of electrons that emerges from the under surface of the shield material

can be estimated using range-energy data for aluminum. This method is only an approximate

method and ignores the straggling effect of the electrons. However, for thin shields the net

effect of this will be quite small.
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The range-energy data is taken from Katz and Penfold (7).

less than several Mev can be defined by

The range curve for energies

R (gms/cm2)- = 0.412 E 1.4 (13)
O O

Now the residual range of an electron (i. e. its energy) after it traverses a given thickness
of material is

R = R - R (14)
r o s

where

R = residual range of the electron corresponding to its residual energy, Er r

R ° = initial range of the electron corresponding to its initial energy, Eo

R s = thickness of shield in gms/cm 2

When applying range-energy data to a continuous spectrum one must work in a step-wise

fashion. For instance, it is assumed that electrons having average intensity 2 o and average

energy E o within an energy interval A E o will emerge (providing E o is larger than the cutoff

energy corresponding to Rs) from the other side of the material with intensity $ r, energy

E r and contained within the energy interval A Er"

Now assuming no absorption of these particles as they traverse the shield, then it follows
that:

2o AEo = ErAEr (15)

or

6r = 2o dEo/dEr (16)

where _ represents the electrons/cm2/Mev so that Equation (15) is the total electrons in the

energy interval.

Using Equation (13) and (14), Equation (16) becomes

r°I o}0
Now the energy that a particle loses in traversing a thickness is

(17)
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jZo= j
R-R

o S

0 ] 0. 714
E -1.885 .412 E 1.4_R

0 0 S "

The residual energy is then

2.43R _ 0,714= E - Eloss = E s (18)
Er o o E 1.4

O

Therefore, using Equations (17) and (18) in stepwise fashion from the maximum energy in the

spectrum to the cutoff energy one can calculate the residual spectrum for a shield thickness

R s, where

R = p T, where p = gms/cc (19)
S

T = thickness (cm)

The cutoff energy for electrons is

0. 714
E = 1.885 R (20)

C S

The above discussion does not take into account the effect of isotropy. Consider the diagram

in Figure 1-12. Here the number of electrons/cm2/sec/Mev incident on the shield and

contained between the two cones of semi-aperture e and e + de is equal to

do
_o (Eo) 2 Y '

where d w = 2 _ sin 0 d 8 is the solid angle and _ (E) is equal to 1/4 the total isotropic flux.
o

The electrons contained in this cone will pass throug°h a distance Rs/COS 8 in traveling through

the shield. Therefore, the energy loss for these particles, using equation (18) is

E r (e)= E ° [1 - 2.43Rs/COS e ] 0.714
E 1.4

o

(21)

Similarly, these same particles will enter the cell at the same angle 0, assuming the

electron path has not deviated appreciably from a straight line. If the particle range, R(Er),
after it passes through the shield is greater than the thickness of the active region of the cell,

it will cause more damage than a normally incident particle of the same energy. If the damage

is assumed to be proportional to the path length through the active region and this is assumed

to be a thickness equal to bulk diffusion length, L, then a particle entering at an angle e will

cause 1/cos e times more damage than a normally incident particle of the same energy.
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Figure 1-12. Geometry for Isotropic Flux

2
However, the dose received at the cell surface in particles/cm /sec is reduced to _ cos 8

where _ is the particles/cm2/sec normal to the direction of the incident particles. Therefore,

for particles whose residual range, R(Er), exceeds the path length through the cell, L/cos 8,

for a given incidence angle, 8, the net effect in the cell is the same as particles entering

normal to the cell surface having intensity, _, and energy, Er, since the damage is propor-

tional to the surface dose times the path length. This has been shown experimentally using

1 Mev electrons where the cell damage was found to be independent of angle of incidence when

However, when the angle of incidence and the residual range are such that R (Er)< L/cos 8,

the damage becomes proportional to _ cos 8 x R(Er)/L relative to a particle entering normal

with range R(Er). Further, if the incident particles have a residual range which is less than L,

the incident particles will have the same range in the cell independent of the angle of incidence.

Therefore, the damage when referred to the cell surface dose should decrease with cos 8 .

Based on the preceding remarks an isotropy-damage function, _ (Er, 8 ), can be defined which
relates the cell damage for isotropic incidence to cell damage due to normal incidence. If

(E r, 8) is the particle flux measured normal to the direction of the particle direction then the

equivalent normal flux, _ (E r, 8 ), which will cause the same cell damage is _ (Er, 8 ) =

(E r, 8 ) _ (E r, 8), where _(Er, 8) is defined asfollows:
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L/cos 8, c; (E r, 8)=

R (Er)

L

L/cos 8, _ (Er, O)= 1.0

cos 8 (22)

The total equivalent-normal flux of energy, E r, is then, using Equation (17)

_- (Er) = _0 16 (E°)\E°/ ff (Er' e ) sin 8d A
(23)

Further, lettingN = cos 8, d_ =- sin _d 8, and using Equation (21),

1 [ E 10(Er) = f 6 (Eo) r2.43 R 0.714 c, (E r, _) d_
-'0

Erl.4 + s

where cr (Er, _ ) is:

(24)

R (Er) < L, cr =

R (Er)
R (Er) < L/_, _ - L (25)

R (Er) > L/_, ff =1.0

If it is also assumed that the environment _ (Eo) can be defined by a number of line segments
of the form _ (Eo) = G Eo -H, where G and H are constants over a specified interval of E o,

then using equation (21) to define E o as a function of E r, Equation (24) becomes

0.4

_0 1 G E _ (Er,U) d
..(Er_ = r (26)

(Erl.4+ 2.43U Rs )0" 714 (H + 0" 4)

and a (E r, D ) is defined by Equation (25) for each value of E and _z.
r
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5.4.2 PROTONS

Identical considerations are used to calculate the equivalent-normal residual proton spectrum

as was used for the electrons. The range-energy data is taken from Reference 9. This is

approximated by:

R (gms/cm 2) = 0. 00334 E 1" 73, E = mev (27)

The resultant equivalent-normal residual proton spectrum is

1 G E 0.73 ff D) dD

(Er) =/0 p r (Er'0. 578 (H

1.73 300 R s
r +

+ 0.73)
(28)

Here cr(E , _ ) has the same definition as given by equation (25) except the range, R (Er)r
now applies to protons in silicon, which is calculated in the same units as the diffusion

length, L.

-H

whereThedifferentialGand H protOnareconstants.Spectrumis also assumed to be defined as, _p (Eo) = GpEo P'
P P

Both the electron and proton differential spectra are defined in particles/cm2/mev/unit

time and represent the dose received per unit time on one side of a flat surface. Therefore,

these spectra are equal to 1/4 the total intensity of the isotropic spectra. The equations

give the value of flux for a given value of E r. By repetitively applying these equations for

different values of Er, one can calculate as many points as desired on the residual spectrum.

5.5 SOLAR CELL DAMAGE ESTIMATES

The specified radiation environments for the Voyager 1969 and 1971 missions were given in

the Preliminary Mission Specification, JPL Doc. No. 45. These environments were used to

calculate the N/P, one ohm-cm, silicon solar cell degradations by the methods described

above. Of course, as a result of the recent Mariner 4 experiment, the intensity of the

Martian radiation belt may be negligible.

In any case, parametric calculations have been performed for various assumptions on the

Martian belt. These results are shown in Figure 1-13 as a function of front shield thickness.

The back shielding for the cells in all eases is assumed to be 0.2 gm/cm 2, equivalent to

approximately 35 mils of aluminum.

Included here are the effects of the solar flare protons for both the cruise and orbit phases of

the mission along with the various assumptions on the intensity of the Martian belt for the

elliptical orbit mission. The Martian environment calculations for the elliptical orbit are
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Figure 1-13. Solar Cell Damage Estimates, 1971 Mission
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based on the assumption that the Martian belt is identical to the Earth's belt in terms of

spatial distribution relative to the planet size.

The curves of Figure 1-13 show the expected degradation of the solar cells at the end of the

entire mission, six months cruise plus six months Mars orbit, for the case where the Mars

belt is equal in intensity to the Earth's belt and for the cases where the Marsbelt is various

orders of magnitude higher than the Earth's belt up to a maximum of 104 times the Earth's
belt.

For the case where the Mars belt is equal to the Earth's belt, the degradation is almost entirely

due to the solar protons. Even for the casewhere the Mars belt is ten times the Earth's belt,

the solar protons are still the predominant environmental component. For higher assumptions

on the Martian intensity, however, the Martian belt becomes the predominant component.

Figure 1-14 shows similar degradation curves for the 1969 mission. The curves show the

degradation at the end of the two-month Earth orbital phase and also the degradation at the

end of the cruise phase. As can be seen, most of the degradation occurs in the Earth orbit
phase.

I00

9O

8O

7O

"' r i

END OF 2-MONTH
EARTH ORBIT PHASE ' i

' 2'o ' ' '30 40

SHIELD THICKNESS, MXLS

Figure 1-14. Solar Cell Damage Estimates, 1969 Mission
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6.0 COVER THICKNESS ANALYSIS

The coverglass thickness is determined by a weight trade.ft. As the coverglass thickness is

increased, the radiation damage is decreased and the required array area is decreased, but

the unit area weight of the array is increased. The optimum coverglass thickness is

theoretically at the point where the resultant weight is at a minimum. The following table

outlines the calculation steps taken to determine the optimum glass thickness. The residual

power fractions are those derived in Section 5.0 for 1 ohm-cm N/P solar cells.

Table I-1. Relative Specific Weight vs. Coverglass Thickness

Glass Param etr ic Residual Relative

Thickness Solar Panel Power Specific Weight

mils Weight, Ib/ft 2 Fraction (Arbitrary Units)

6 .95 .80 1.188

10 .99 .83 1.192

20 1.09 .88 1.24

30 1.19 .905 1.32
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It should be noted that the unit area weights are based on gross array area, and were derived

from approximate array sizing exercises. While an actual design is necessary to determine

the panel weights for a particular design, the parametric weights given are close enough to

correctly indicate the optimum glass thickness. In this case the optimum thickness occurs

at about 6 mils, and since 6 mils is the minimum practical thickness for handling and
manufacturing, it was selected.

7.0 THERMAL ANALYSIS

In designing a solar array, the array temperature and temperature distribution must be taken

into account, since the temperature of a solar celld etermines its voltage characteristics. The

dependence of cell voltage characteristics on temperature was indicated by the V-I curves

shown in Figure I-6. From this data a prime design parameter can be derived -- the voltage
at which maximum power can be extracted from a solar cell. The variation of this maximum

power point voltage with cell temperature is shown in Figure 1-15°

A thermal analysis reported in VB235FD101-Appendix yielded the solar panel temperature

profiles shown in Figure 1-16. Because the panels are not at a uniform temperature, it is

necessary to balance the number of cells in each series string and select their locations on

the panel so that a reasonably uniform voltage characteristic is obtained for all series strings.

As a result, since two series strings are to be placed on each panel, part of one string will

be mounted on the high-temperature end of the panel near the spacecraft body, and the

remainder of the string on the cooler outboard end. The second string will be mounted at the

center of the panel. The resultant maximum power voltages for the two strings are derived

in Table I-2. The temperatures on which the calculation is based are those occurring at

Mars encounter with the bio-barrier in place, since this results in the worst thermal gradient

at the lowest power output capability at which the barrier will be in place.

Table I-2. Voltage Match Between Series Strings

Cell Row No. of Cells

(Thermal Node} in Series

Cell Cell Voltage at Cell Row

Temp. OF Maximum Power Power Voltage

1 19 90

2 21 86

3 23 82

4 25 74

5 28 39

6 30 19

7 32 16

8 34 15

.446 8.47

451 9.47

455 10.46

465 11.62

507 14.19

531 15.93

535 17.11

536 18.22

Rows 1, 2, 7 and 8 are connected in series to form one series string, and rows 3 through 6

to form the other. Thus, the two string voltages are 53.2 and 52.2 respectively, and are

within 1 percent of a median value.
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A second problem of some concern is the effect of a large temperature gradient across a

single row of solar cells. The largest gradient occurs across Node 5, and amounts to 29

degrees F. The highest temperature is 56°F, the average 39°F, and the lowest 27°F. The

cell power point voltages corresponding to the highest, average, and lowest temperatures

are . 486, . 507, and . 522 volts, respectively. The difference between the power point

voltages in cells connected in parallel will cause a mismatch loss. This loss can be estimated

through the use of the normalized cell power voltage data in Figure 1-17. In this graph, the

raw solar cell V-I data from Figure I-6 has been normalized to the maximum power point

at each temperature, showing the cell power output loss as the output voltage deviates from

the maximum power voltage. In the case under consideration, the normalized cell voltages

at which power is removed from the "hot" and "cold" cells are . 507/. 486 = 1. 043 and

• 507/.522 = . 972, respectively. Thus, using the data in Figure 1-17, the relative power

losses will be . 02 and . 005 at the extremes of the cell row. Assuming a parabolic shape for

the loss curve gives an average power loss of 0.4 percent In that cell row, which appears to

be the worst of the lot. Examination of the mismatch curve indicates that the temperature

gradient-voltage mismatch effect is approximately proportional to the square of the tempera-

ture gradient, thus the effects of the temperature gradient on the power output of the other

cell rows will be even less than the 0.4 percent. This loss is so small as to be swamped by

the uncertainties in predicting solar array output, and was ignored.

For predicting the power output of the solar array, an average solar panel temperature was

determined by weighting the temperature of each panel thermal node by the number of solar

cells in that node. The resultant weighted average effective solar panel temperature at

1 AU is 135°F. The panel temperatures a_ other sun-spacecraft distances were determined

using a temperature-distance relationship of (Distance) -1/2, which assumes only solar

heat input to the panels.
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APPENDIX II

1.0 SIZING ANALYSIS

The solar array and battery size requirements were determined with the aid of the Energy
Balance Table in Table II-1. _ The electrical loads are summarized in the table, and the

accounting of the loads includes the various power subsystem losses and is extended to

determine the loads directly at the solar array and the battery.

The following loss and efficiency relationships were used in the load analysis:

Harness Loss - The power loss in the power distribution harness was assumed to

be 1 percent for all loads, both AC and unregulated DC.

2400 cps Inverter Efficiency - The main inverter was taken to be 90 percent efficient
at full load, and the no-load loss to be one-half the full-load loss. The inverter thermal

loss at intermediate power output levels was assumed to vary linearly between the two

defined end points.

400 cps Three Phase Inverter - The thermal loss was assumed to vary similarly to the

2400 cps inverter, with a full load efficiency of 80 percent.

Regulator Efficiency - The regulator efficiency was also taken to be 90 percent at full

load, with a variation in thermal loss similar to the main inverter.

Battery Diode - The battery diode voltage drop was taken to be 0.3 volts (germanium

diode), resulting in an efficiency of 99 percent.

Battery Charger - The efficiency of the battery charger will be proportional to the

output/input voltage ratio, since the charger is a @eries regulating voltage and current

limiter. In the Energy Balance Table the battery charger efficiency and thermal loss

(both indicated by **) are based on an input voltage (solar array voltage) of 46 volts.

For sizing purposes, this corresponds to the worst case, when minimum array power

is available at 46 volts. In actuality, the available array power will be greater than

the minimum required power, and the charger input voltage will be higher than 46 volts,

thus, the thermal loss in the chargers will be higher, ranging up to a maximum steady-

state value of 25 watts.

The worst case for battery charging power is the shortest orbit (12 hours) since the

higher science power requirements occur a relatively fixed 2 hours per orbit, thus a

higher percentage of the shorter orbit.

The battery charging power was determined based on the following data and assumptions:

Maximum Mars orbit eclipse will be 15 percent of the orbit period or 3 hours,
whichever is less.
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• Mars orbit period will range from 12 to 24 hours.

Silver-cadmium battery effective watt-hour charging efficiency when new is 60

percent based on voltage ratio and allowing for current tapering at the end of
the charging period.

A silver-cadmium battery will require approximately 15 percent current over-
charge when old.

The energy which must be returned to the battery is

293. w (1.8 hr) (1.15) = 1011 w-hr.
Ech- .60

To this must be added energy for the gyro heaters (contingency) and the buck regulator fault

detector during the sunlit portion of the orbit, since this energy passes through the battery
chargers.

Batt. Ch. Eou t = 1011 + 10.2 (7) = 1082 w-hr.

Accounting for the battery charger inefficiency yields:

Batt. Ch.E. = 1082 (46) = 1126 w-hr.
m (44.2)

Because the full science payload draws 85.4 more watts at the unregulated bus for two hours

per orbit, the charge power is reduced during the full science period. The charging power

may be obtained using:

2 (P - 85.4) + 8.2 (P) = 1126 w-hr.

The gross battery charging power, P = 127.2 watts. Deducting for the battery bus loads leaves

a charging current of 0.87 amps per battery, or a nominal i ampere.

The idle thermal loss in the battery chargers was taken to be one watt.

The battery charger current limit was sized large enough to provide heater power to the

gyros during the entire sunlit portion of the occulted orbits, as well as the eclipsed portion.

It is expected that the residual vehicle angular rates on entering the shadow of Mars will be

low enough so that gyro operation will not be required to maintain reasonable vehicle

attitudes on emergency into the sunlight, and the normal mode of operation will be not to use

the gyros once the Mars orbit has been established. However, if angular rates are higher

than anticipated, gyros may be required for stabilization during spacecraft eclipse. It is not

necessary to operate the gyros during the sunlit portion of the orbit, but if extra array power

is available, continuous operation of the gyros will permit more reliable, drift-free perform-

ance. Thus, the charge current limit was set high enough to permit gyro operation not only
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during eclipse, but full time. The alternate Mode Full Science column, marked with an

asterisk, outlines the power accounting for full time gyro operation, and indicates that an

additional 20.5 watts would be required.

The battery capacity is determined by the power requirements during Mars orbit eclipse.

The maximum eclipse time will be 3 hours, and the power required at the battery, from the

Energy Balance Table, will be 294 watts. The working energy storage required will be

882 watt-hours. If theldesirable maximum depth of discharge of a silver-cadmium battery

is about 65 percent, and a silver-cadmium battery degrades about 30 percent in capacity

in a year, the battery capacity must be 1940 watt-hours. The capacity provided is 75 ampere-

hours at a discharge voltage of 30.4 volts, or 2280 watt-hours.

The maneuvers are of shorter duration, and the imposed energy storage requirements less

than for the orbit eclipse. The energy requirements will be 640, 881, and 563 watt-hours

for the mid-course, capsule separation, and orbit insertion maneuvers, respectively.

The relation between battery energy capacity, maneuver and eclipse loads, and battery

recharge time is indicated in Figure II-1. This data shows that at least 9 hours are required

between consecutive midcourse maneuvers to allow the battery to recharge.
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1.0 SUMMARY

A reliability assessment of the preferred design of the Power Subsystem which is shown

in Figure 3-2 indicates a reliability of 0. 991 for a total mission of launch, transit to Mars,

and orbiting Mars for a period of one month. This reliability assessment is slightly above

the value of 0. 989 which was apportioned to this subsystem.

To assist in the analysis, the complete mission has been divided into the four mission

phases defined in the Preliminary Voyager 1971 Mission Specification (JPL Project

Document #45).

2.0 MATHEMATICAL MODEL AND RE LIABILITY COMPUTATION

The mathematical model which defines the backup capability and the interaction of all the

components in the subsystem is:

R
(power s/s)

=R

.R

.R

R
(solar array) " (charge Reg. & Batt. package)

.R
(main Reg. Pack) (2.4 KC Inverter Pack)

.R
(400 cps Inverter Pack. ) (Synchronizer)

where:

R

(charge Reg. & _ . R 1 -R

Batt. Pack. ) S=2

and R 1 = R (charge Reg. ) "

R
(main Reg. Pack. )

R(2.4 KC Inverter

Pack. )

R .R
(controls) (diodes)

=
[- (Reg.)

R (Reg.)
oR

Inverter_

•R (Controls)]

.R
(Battery)

[ R (fault Sensor)]

I k (Reg. & Contr.)(controls)]

+ IR(fault sensor_ [ R(inverter)] [
k(Inverter)
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R (_0Ol_.i_s Inverter = IR(400 cps Inv.)l + IR(fault sens. )I IR(Inv. )I I_, (Inverter)t I

Entering the component reliability values tabulated in Table III-1 into the mathematical

model gives the estimated reliability of the Power subsystem as follows:

R(Phase 1) = (1) (1) (.99999) (. 99999) (.99999) (.99997) = .99993

R(Phase 2) -- (1) (.99963) (. 99988) (. 99997) (. 99999) (. 99272) = 99219

Rphase 3) = (1) (. 99999) (. 99999) (. 99999) (. 99999) (. 99991) = 99987

Rphase 4) -- (1) (. 99999) (. 99999) (. 99999) (. 99999) (. 99877) = 99873

For complete mission,

R(Power S/s)=R(Phase 1) "R(Phase 2) "R(Phase 3) "R(Phase 4)

-- (.99993) (.99219) (.99987) (.99873)

= . 991
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TABLE Ill-1 POWER SUBSYSTEMRELIABILITY DATA

COMP.

NO. COMPONENTS Phase 1

1 Solar Array i. 0

2 Charge Regulator .99999

3 Charge Reg. Controls .99998

4 Battery .99974

5 Main Regulator .99997

6 Main Reg. Controls .99999

7 Reg. Fault Sensor .99999

8 2.4 KC Inverter .99999

9 Inverter Fault Sensor .99999

10 40 0 CPS Inverter .99996

11 Synchronizer .99997

RE LIABILITY BY MISSION PHASE

Phase 2

1.0

99805

99234

99848

99102

99846

99820

99498

99823

98660

99272

Phase 3

1.0

99998

99991

99987

99990

99998

99998

99998

99998

99985

99991

Phase 4

1.0

99967

99871

99976

99849

99974

99970

99915

99970

99773

99877

Note -- Due to the short time periods involved in mission phases 1, 3 and 4, the

reliability estimates are taken to five decimal places in order to show the differences in
the distinct mission phases.
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I.0 SCOPE

This section describes the preferred Propulsion Subsystem for the Voyager Spacecraft.

The subsystem provides for midcourse velocity increments of 75 meters/second and an

orbit insertion maneuver of 1_60 meters/second. Fuel not used for midcourse corrections

may be utilized for orbit adjust maneuvers.

2.0 APPLICABLE DOCUMENTATION

VR211SR101 Mission Objectives and Design Criteria

VB220SR101 Design Characteristics

VB220SR102 Design Restraints

VB220FDlll Maneuver Execution Accuracy

VB234FD105 Autopilot Subsystem

VB235FD103 Structural Design Criteria

3.0 FUNCTIONAL DESCRIPTION

The preferred propulsion system for the Voyager spacecraft consists of a monopropellant

hydrazine system for midcourse maneuvers and a liquid bipropellant system for the orbit

insertion maneuver. The monopropellant system has four thrust chambers which are

throttled for thrust vector control in the pitch and yaw planes during all maneuvers including

orbit insertion. Roll control is achieved through the use of a single jet vane in each

monopropellant thrust chamber. No additional thrust vectoring capability is incorporated in

the bipropellant orbit insertion system. Total impulse capability of the system is approxi-

mately 789,000 lb -secs.

3.1 MONOPROPELLANT PROPULSION SUBSYSTEM

3.i.1 SUBSYSTEM DESCRIPTION

A schematic of the Voyager Monopropellant Propulsion Subsystem is presented in Figure

3-1. It is a regulated-gas-pressure-fed system utilizing anhydrous hydrazine (N2H 4) as

the monopropellant. Helium gas, stored at 3500 psia, is used as the pressurant. The

four thrust chamber assemblies are designed to operate over a thrust range of 25 to 55

pounds to meet all thrust vectoring requirements.

Insofar as possible, components are grouped together and connections are welded to

eliminate external leakage. Different functional groups are joined by field brazed joints

where welding is not practical. Squib valves are used, where feasible, to eliminate

solenoid-operated valves and thus assure higher system reliability. Each of the major

functional groups (pressurization, propellant feed and thrust chambers) is described in

the following paragraphs.
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Figure 3-1. Monopropellant Propulsion Subsystem
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3. I. 2 PRESSURIZATIONSYSTEM

The helium gas is stored in two 17-inch diameter titanium tanks which are joined to a bank

of squib operated gas pressurization and shut--off valves. This bank of valves has four

parallel legs with a normally open and a normally closed valve in series in each leg.

Between these valves and the tanks is a manually operated fill valve.

Immediately downstream of the squib valves is a filter to remove any particles which might

be generated by the squib valve actuation. A three-way squib-operated valve below the

filter feeds high pressure gas through a normally open port to the primary regulator. This

regulator provides regulated gas at a pressure of 285 psia directly to the four propellant

storage tanks. To protect the propellant tanks from overpressurization, a burst disc-

relief valve unit is installed downstream of the regulator. Because of the long-life operational
requirements, a redundant filter and regulator leg is provided in the event of failure of the

primary regulator. A malfunction signal to the three-way squib valve causes a switchover to

the second regulator. For filling and venting of the tanks a manual fill valve is provided in

the propellant tank pressurization line. The final component is a pressure switch down-

stream of the burst disc to sense primary regulator failure in a high pressure mode and to

actuate the three-way squib valve. All of the pressurization components, except the tanks,
are tray mounted as a single all-welded unit.

3. I. 3 PROPELLANT FEED SYSTEM

All four propellant tanks are identical. They are fabricated from titanium alloy and contain

butyl rubber bladders which collapse, when pressurized, around a standpipe to assure

positive expulsion. All tank discharge lines feed to a common squib valve manifold. A

manually operated fill and drain valve is located in the common line. The bank of squib

valves is similar to the pressurization system in that there are four parallel legs with a

normally open and a normally closed squib valve in series in each leg. Downstream of the

squib valves is a filter to trap particles generated by squib valve action. A burst disc and

relief valve assembly is provided between the squib valves and thrust chamber assemblies

since liquid will be trapped in the lines subsequent to the first midcourse correction. All

of these valves and the filter are again tray mounted and welded together to minimize leakage.

3.1.4 THRUST CHAMBER ASSEMBLIES

The four thrust chambers are identical units. Each chamber operates over a chamber

pressure range of 75-165 psia and a thrust range of 25-55 pounds. Decomposition of the

hydrazine is accomplished in a catalyst bed made from Shell 405 catalyst. Decomposed

hydrazine at a temperature of approximately 1800 ° F discharges through the 50 to 1

expansion ratio nozzle to provide the desired thrust. A single torque-motor-operated jet

vane in each exhaust jet provides roll control. Although roll requirements do not require

more than one jet vane, the additional vanes permit a single basic thrust chamber config-

uration and higher reliability through redundant components.
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Thrust chamber operation is initiated and terminated by quad-redundant solenoid valves
mounteddirectly on each chamber. Immediately upstream of each quad-redundantvalve
is a throttling valve capableof modulating theoutput of each chamber from 25 to 55pounds.

3. I. 5 COMPONENTDESCRIPTION

The Voyager propulsion system utilizes, wherepossible, materials and manufacturing
methods that have demonstrated successful performance on other spaceprograms with
mission and duty cycles comparable to that assignedto Voyager. Componentswith previously
acquired qualification records were selectedto assure adequacyand maximum confidenceto
meet mission functional and schedule requirements.

3.I.5.1 PRESSURANT TANK

The use of a pressure regulated propellant feed system requires a high pressure gas source.

The midcourse propulsion system is pressure fed from two 3500 psi pressure spheres. Each

tank is 17-inches in diameter and is designed to hold 6 pounds of helium at 3500 psi and

40°F. Proof and burst pressures are 6750 and 9000 psig respectively. The demonstrated

leakage rate will be less than 10 -8 scc/sec of helium at the operating pressure. The tanks

are fabricated from fully annealed 6A1 4V titanium alloy. Each tank is made of two die-

formed hemispheres. Each unit is machined to the required thickness +. 002 inch maximum

tolerance and the hemispheres joined by fusion welding. Final heat treatment and finish

machining are performed to bring the tank to desired dimensional limits and to a fully

annealed condition. Filling and discharge requirements of the tank are facilitated by a tube

extension welded to the tank shell. Experience in fabrication of tanks of this configuration

is currently "state-of-the-art" and has been proven in many space applications. Airite

Corporation is currently active in fabrication of tanks that would satisfy Voyager needs.

3. I. 5.2 PROPELLANT TANKS

Because of the requirement of the propulsion system to function in a zero gravity state,

positive expulsion propellant tanks are required. The tanks and the expulsion system must

provide storage of anhydrous hydrazine for a minimum 300-day period, and provide gas-

free propellant to the engines during midcourse maneuver functions.

The selected propellant tank assembly consists of four tanks of 18.38-inch diameter, con-

taining a total of 444 pounds of anhydrous hydrazine. Each tank consists of, the tank shell,

inlet and outlet ports, Butyl expulsion bladder, standpipe (to prevent entrapment of fluid

during bladder collapse) and mounts. The tanks are fabricated from 6A1 4V titanium in

hemispherical sections of 0. 035 wall thickness. The hemispheres are joined by welding

and finish machined to requirements. Nominal tank working pressure is 285 psi. The design

safety factor exceeds 1.50 and 2.2 times working pressure for proof and burst since a

minimum gage of. 035 inch is used.

The expulsion bladders are made from butyl rubber with a wall thickness of 0. 040 inch.

Bladder outlet wall thickness is increased to 0.1 inch and formed to provide bladder retention

and a seal integral with the propellant tank. The standpipe (perforated tube) is integral with
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the discharge port assembly and is bolted to the tank assembly. The tank assembly is
proof and leak tested as an integral unit. Leakage shall be less than 10-8 scc/sec of
helium at operating pressure. Airite Corporation has manufactured tanks of this config-
uration for other spaceprograms.

3.1.5.3 FILL AND VENT VALVES

The fill andvent valves are required to service the propellant and pressurization system.
Thesevalves are designedto provide a safe, leak-tight meansof filling, venting, purging
and unloading the pressurization and propellant system.

The selected unit is a manually operated poppetvalve which provides redundant seals in
the poppetstem and inlet assemblies for positive sealing against propellant or gas leakage.
The valve inlet will contain a built-in 10 micron wire cloth filter element to provide final
filtering betweenspacecraft andOSEequipment. The proposed fill and drain valves have
been successfully usedon Rocketdynepropulsion systems on various spaceapplications,
the latest being the SE5program. Valve operating characteristics are:

Operating Pressure
Leakage
Inlet andOutlet Size
Life

Seals

4500psi
10-5 scc/sec
1/4" gas, 1[ 2 " liquid
1000repeated openand

close cycles
Teflon

3. i. 5.4 SQUIBACTUATED ISOLATIONVALVES

Isolation valves are used in the pressurization andpropellant control modules for system
lockup during various propulsion system coast periods. Each module contains four normally
closed and four normally openvalves manifolded together in a welded unit. The control
modulesprovide four parallel flow paths each containing a normally openand closed valve
in series. The individual normally openand closed valves are explosively actuated shear
seal design valves to provide positive sealing of the propellant and pressurization feed
systems. A single squib cartridge with dualbridgewires is provided for eachvalve. The
squibprovides theforce to drive a plunger to shear the end caps and allow for a normally
closed valve. Normally openvalves are closed by a plunger that shears the flow tube and
blocks the flow path. Captive cavities are provided within the body of the valves to contain
the sheared fragments. Both Pyronetics and Conaxcorporations are currently producing
these valves.

3.I.5.5 RELIEF VALVES

To protect the propellant tanks from possible overpressurization, a relief valve is used in

the regulated pressure line of the propellant pressurization system. Since this valve is

not normally required to operate, the prime design consideration is long term storage.
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The selected valve incorporates an inverted seal design to maintain narrow limits between

cracking, reset and full flow pressure. The inverted valves also provide superior sealing

capabilities and valve seal life. For minimum leak considerations during long storage

periods a burst disc and filter screen are provided between the valve and the gas pressure.

Valves of this configuration are available from Marotta Valve Corporation. This valve is

similar to relief valves qualified for use in the Gemini, Transtage and Saturn space programs.

The inverted valve design allows the seat and poppet assembly to move against the spring

force until the desired relief pressure is attained. At this preset position, the poppet is

stopped by a retainer. Additional pressure separates the seat from the poppet allowing
relief of the system.

3.1.5.6 REGULATOR

Pressure regulation of the propellant tanks is accomplished through redundant regulators.

The pressure regulators are mounted in parallel with the primary regulator open to the

pressure loop. Activation of the secondary regulator is accomplished automatically by a

pressure switch which fires a three-way explosive valve to seal off the primary regulator

and supply pressure to the secondary unit. The pressure switch will activate the secondary

regulator when the regulated pressure exceeds 335 psi and breaks the burst diaphragm.

Since leakage and failure in the open position are the primary failure modes for the regul-
ators, (which cause overpressure) underpressure will not be sensed.

The selected regulator is constructed of annealed stainless steel and is satisfactory for 4500

psi operation. A single stage, dome-loaded, spring-referenced, pilot-operated regulating

principle was selected to provide simple, reliable operation. The regulator functions

from a discharge pressure sensor which positions a diaphragm-actuated, flow-balanced

throttle valve. The position of the throttle valve regulates the pressure drop across the

valve to maintain the desired propellant system working pressure as the supply pressure

decays. A filter is provided upstream of the valve to minimize failure due to contamination.

Hardware design will feature metallic hard seats, metallic bellows sensing element, low

stress reference spring, bellows contained reference spring assembly, and .... ,_^_ :_1 ....
outlet stems.

Regulator operating parameters are as shown below.

Inlet Pressure

Regulated Pressure

Internal Leakage
Proof Pressure

Inlet

Outlet

External Leakage
Temperature Range

Flow Rate

Min. differential Pressure

4500 psi max.

250 psi + 5 psi

100 scc/hr, max.

6750 psig
660_

10 -8 co/hr.

120°F to -200°F

40 SCFM Nominal

200 psi
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A regulator for Voyager requirements will require minimum developmentsince the basic
design concepts have extensive backgroundand significant reliability datahas beenaccum-
ulated. The National Water Lift Co. has qualified similar regulators on the Rocketdyne
SE5program.

3.1.5.7 THREE-WAY SQUIBVALVE

A three-way two-position squib actuatedvalve is located upstream of the redundant pressure
regulators to switch flow from the primary to secondary regulator. The valve is connected
electrically to a pressure switch. In the normal position, the openflow path is to the primary
regulator. Shoulda regulator failure occur, the pressure switch will provide the electrical
signal to ignite the squibof the three-way valve to position the flow path to the secondary
regulator.

The three-way valve selected is a patenteddesignby SieBelAir Inc. The valve selects the
flow path by positioning a spool that isolates the primary flow path while uncovering the
secondary flow path in a single motion. Tight seals are provided by using a spool with an
interference fit to the valve body (ballizing principal). This design appears suitable for
Voyager application. Sincethesevalves have not beenqualified on previous spaceprograms,
a thorough developmentprogram will be required.

3.1.5.8 FILTERS

Filters are utilized throughout the pressurization and propellant feed systems. They are
located at strategic points to minimize contamination causedby actuation of squib valves and
contamination occurring in filling and draining of the propellant and pressurization system.

The selected filters will be of the inline type with a woven metal screen of a nominal 10
micron filtration rating. The filters will fall into two categories,

1. High Pressure Gas
2. Low Pressure Gas, and Liquid

The high pressure gas filters will be designed to function at 4500 psi. The internal screen

assembly will be structurally supported to prevent collapse upon sudden pressure surges.

The filter body will be constructed from annealed stainless steel with monel wire cloth

screens. Total _ at operating flow rates will not exceed 10 psi. Filters of this type are

•available from Wintec Corporation.

Low pressure gas and liquid filters are designed for operation to 500 psi. The design is

similar to the high pressure filters. The material used is compatible with both helium and

anhydrous hydrazine. Sizes are selected to provide less than 10 psi f_ P during full flow
conditions.
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3.1.5.9 QUAD-REDUNDANTSOLENOIDVALVES

A quad-redundantsolenoid actuated propellant valve is used to control the initiation and
termination of propellant flow to each enginein the monopropellant system• The valve pack-
age is bolted directly to each of the thrust chamber injector assemblies. The quad-redundant
solenoid valves are arranged to provide a series-parallel flow path to the engine• The
parallel valve arrangement provides redundancyin the engine startup mode, while the series
arrangement provides redundancyin the engine shutdownmode• The quad-redundantvalve
assembly is a completely welded unit consisting of four solenoid valves internally manifolded
to provide the series-parallel flow path. Eachvalve consists of a normally closed single
coil solenoid valve utilizing a direct acting poppet• A Teflon insert contained in the end of
the poppet is semi-edged loaded by a metal seat on the valve body to provide a seal-on
closure• The valve incorporates a fail-safe design (fail in the closed position} by providing

a compression spring acting on the back of the plunger (poppet} to close the valve on power

failure. The valve is fabricated from 304 stainless steel with exception of the solenoid and

poppet assembly. The solenoids are designed to have low current drain and to maintain the

lines of magnetic flux within the solenoid for magnetic cleanliness• Additional shielding

can be added if necessary to meet mission magnetic goals•

Valves of this configuration are currently being manufactured by the Valcor Corp. for use

in the SIVB attitude control system• Minor changes would be required to the Valcor valve

to handle Voyager flow requirements and mounting configuration. Valve operating character-
istics are as follows•

Operating Voltage

Current at 26 VDC

Response Time

Close to Open

Open to Close

Internal Leakage

External Leakage

Pressure drop

Weight

3 0 to 44

1.3 amps initial, 0.13 holding

• 022

• 011

01_cc/hr. at 300 psi

10-°SCC/sec helium at 300 psi

7 +1psi at rated flow
5 lb

3.1.5.10 THRUST CHAMBERS

The thrust chambers for the Voyager Monopropellant Propulsion Subsystem are based upon

the proven Ranger 50 pound thrust hydazine units• Modifications will include the elimination

of the Ranger N O injection port and the change of the catalyst bed to use Shell 405 spon-2
taneous catalyst• _rhe optimum bed configuration must be determined experimentally.

Operational margins of the chamber, quad-redundant solenoid valves and the throttle valve

combination will be ascertained to assure that subsystem requirements can be met. The

throttling of hydrazine decomposers is an established technique although no known flight

data exists for this type of system. Recent static tests by TRW Inc., Redondo Beach,

Calif. have demonstrated the operation and throtteability of a basic 50-pound thrust chamber

over a chamber pressure range of 82 to 247 psia.
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Verification of the Shell 405 catalyst operation under space vacuum conditions will be

required before it can be flown on the Voyager spacecraft. It is anticipated that programs

already underway at Rocket Research will provide this information in ample time.

3.1.5.11 TUBING AND FITTINGS

The Monopropellant Propulsion Subsystems will utilize packaging of hardware groups into

functional modules. The functional modules are:

1. Pressurant tank module

2. Pressure control module

3. Propellant tank modules

4. Propellant control modules

5. Engine (thrust chamber) modules.

The pressurization and propellant feed and manifolding lines of the individual hardware com-

ponents of each functional group are welded together to form a module. This modular con-

cept facilitates assembly, disassembly, and testing of the propulsion systems. Each module

is connected to its appropriate functional module within the spacecraft by brazed joints to

form the entire propulsion subsystem.

Welded and brazed joints were selected due to their demonstrated capability to maintain a

leak-tight system on the Mariner program.

The braze fittings selected are of sleeve design manufactured by Aeroquip Corp. (Aeroquip

Spacecraft Fittings). Each sleeve fitting contains the brazing material within the sleeve.

Joints are made by inserting the tube into the fitting and heating the fitting with an induction

heater tool until bonding is complete.

This type of joint has the advantage of ease of installation, less magnetic prone parts, low

temperature fusion and ease of maintenance, over the mechanical or welded joints.

The brazing material will be a nickel gold alloy. Tubing selected to interconnect and mani-

fold the hardware elements will be fabricated from 321 Stainless Steel. Quarter-inch tubing

will be used in the gas system and 3/8" for the liquid systems.

3.1.5.12 PRESSURE SWITCH

A pressure switch is located in the propellant tank pressurization circuit to detect out-of-

tolerance propellant tank pressurization. The selected switch is a hermetically sealed,

snap-action unit employing redundant switching elements. Linear motion is transmitted by

a piston into a snap-action Belville spring. The piston snaps through when the preset load

on the Belville spring is reached. The snap-through allows the piston to activate the elec-

trical contacts which provides the power to the three-way valve.

The switch will be set to actuate at 100 psia + 2 percent. The switch will be constructed of 316
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stainless steel and welded into the regulated pressure module.

3.1.5.13 JET VANES

The jet vanes are identical to existing Ranger jet vanes except that only one is used with

each thrust chamber. Jet Vane actuators are discussed under Autopilot Section VB234FD105.

3.1.5.14 THROTTLE VALVES

Final selection of a throttle valve has not been made. A first analysis of the requirements

indicates that a variable area cavitating venturi type of valve will be employed. This type

permits a bellows seal and thus eliminates the many seal problems associated with rotating

shafts of butterfly or ball type valves. Valve actuator requirements are discussed in Auto-

pilot Section BV234FD105.

3.1.6 SUBSYSTEM OPERATION (FLIGHT)

Following launch and prior to the first operational cycle, the thrust chamber quad-redundant

valves will be opened and closed to permit air trapped in the propellant lines to be vented.

Timing for this operation is not critical. It may be accomplished hours or days before the

first maneuvering operation. The Monopropellant Propulsion Subsystem is prepared for the

first midcourse maneuvering operation by simultaneously supplying power to one of the nor-

mally closed valves in both the pressurization system and the propellant feed system (See

Figure 3-1). This will allow high pressure gas to flow through the filter, the three way

squib valve and the primary regulator up to each of the main propellant tanks. Fluid

pressure will force propellant through the propellant line filter up to each of the quad-redun-

dant main propellant valves.

Again, the timing for this operation is not critical. It may be made several hours or sev-

eral days prior to execution of the anticipated maneuver. One advantage of preparing the

system well in advance of the actual maneuvering time is to permit verification of system

readiness through telemetry indications.

All tank temperatures (two pressurant and four propellant), pressurant tank pressure, pro-

pellant tank outlet pressure, and thrust chamber feed line pressure will be monitored on a

periodic basis. All squib valves will have an event indication circuit which will verify firing

of the squib. With this information, readiness of the system for making a maneuver may be

verified prior to the command for execution.

Upon the maneuver command (with the spacecraft properly oriented), the four quad-redun-

dant valves open with the four throttling valves in minimum thrust position permitting pro-

pellant flow to the thrust chambers. Thrust vectoring is accomplished by modulation of

these four throttling valves as signalled by the guidance and control subsystem.

Upon signal to terminate thrust, the four quad-redundant valves will close,shutting off pro-

pellant flow to the chambers. The system may now be maintained in the ready condition for
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an indefinite period. If another maneuver is anticipated within a few days or even a few weeks,

the system will be ready at all times for the maneuver command. If no further maneuvers

are anticipated until the Mars encounter phase (six months later), the system will be sealed

off by firing the normally open squib valves in the active legs of the pressurant and propell-

ant supply lines. While this does not necessarily relieve pressures throughout the system,

it will prevent catastrophic losses due to small leaks in tank pressurizing line joints or

through the main quad-redundant propellant valves.

Position indicators (open and closed) will be incorporated in each valve. These will serve

for diagnostic purposes only and will not be used for failure sensing. Failure of the mono-

propellant system would be sensed by the guidance and control system and shutdown of the

system initiated only when thrust vector control of the spacecraft cannot be maintained.

With four engines firing during all maneuvers, roll moments may be introduced due to vari-
ations in thrust vector alignment. The jet vanes in each chamber (operating in parallel)

will correct for any roll moments so induced. Position sensors on each jet vane actuator

will permit the telemetry data of vane position to be examined for indications of system
readiness or for post maneuver diagnosis as required. Position sensors on the throttling

valves will serve in the same fashion.

Because of the extended period over which the monopropellant system must operate, a

second gas regulator is provided. The failure mode of the primary regulator is assumed to

be leakage through the regulator seat to give excess propellant tank pressure. If this occurs

the burst disc will fail at 335 psi. A pressure switch, which may be set at a relatively low

pressure (100 psi) will be actuated and will fire the three-way solenoid to divert high pres-

sure gas to the secondary pressure regulator. Failure of the primary regulator to open

will be sensed by ground diagnosis and a ground command will be required to actuate the

three-way solenoid. Difficulties in detecting and evaluating low pressure indications and

the lesser likelihood of this failure mode favor ground diagnosis over on-board diagnosis.

Subsequent maneuvers will follow the same operating sequence required for the first mid-

course maneuvers. The system is placed in readiness, checked and operated. In the Mars

encounter phase there may be one or two course corrections, a firing for propellant acqui-

sition and thrust vector control during retropropulsion, and a possible orbit adjust maneuver

all within a few weeks period. Provision has been made to reseal the system by squib valve

actuation at this point. Additional legs in the squib valve banks are provided for redundancy

in the event of failure of one of the required legs to open when commanded.

Since all pressurant and propellant tanks of the monopropellant system are mounted sym-

metrically about the roll axis, lateral center of gravity shift should, in theory, be zero

during maneuvers. The only shift would be along the roll or thrust axis. Minor differences

in fabrication, line pressure drops or characteristics of the individual bladders could affect

discharge from the individual tanks to give small lateral cg variations. However, the use

of throttling for TVC makes such small variations insignificant in comparison with the

available correcting forces from the four thrust chambers. Sloshing of fuel in the hydrazine

tanks will be minimized by using a standpipe (inside its bladder) anchored to both ends of
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the tank. This will restrain motion of the bladder and tend to damp out any oscillatory motions.

3.2 RETROPROPULSION SUBSYSTEM

3.2.1 SUBSYSTEM DESCRIPTION

A schematic of the Voyager Retropropulsion Subsystem is shown in Figure 3-2. As with the

monopropellant system previously discussed it is a regulated-gas-pressure-fed system uti-

lizing helium gas, stored at 3500 psia, as the pressurant. Propellants are nitrogen tetroxide

(N20.) as the oxidizer and a blend of 50% hydrazine (N,H.) and 50% unsymmetrical dimethyl

hydr_zine (CH._)2 N2H 2 as the fuel. The thrust chamber 1as a fixed (no TVC) installation using
an all ablative-construction. Thrust is 2200 pounds at a chamber pressure of 100 psia.

The relative simplicity of the design permits the mounting of components into welded func-

tional groups to eliminate external leakage. Functional groups are joined by field brazed

joints. Squib valves are used throughout to assure the highest reliability. Following is a

description of the major functional groups.

3.2.2 PRESSURIZATION SYSTEM

Helium gas is stored in two 18.7-inch diameter titanium tanks joined by a common manifold

to two normally closed squib valves in parallel. Between the tanks and the squib valves is a

manually operated fill valve. Downstream of the squib valves is a filter to remove all part-

icles which may be generated by squib actuation. Below the filter a single stage regulator

supplies helium gas at 220 psia to each of the main propellant tanks. A burst disc and relief

valve in series are installed downstream of the regulator to protect the system from leakage

through the regulator which would over-pressurize the propellant tanks. Burst discs are

also provided in both the oxidizer and fuel legs of the pressurization system to keep the pro-

pellant vapors from mixing or contaminating the regulator, during the 9 months storage

period. These burst discs will have a 110 psi breaking pressure. As further protection

during and subsequent to the operational period, two check valves in series are installed in

each pressurization leg. All of the foregoing valves, filter, regulator and burst discs are

tray mounted and welded together to eliminate leakage. A manually operated vent valve is

provided in each pressurization leg to aid in filling and emptying of the tanks as required

during ground checkout cycles.

3.2.3 PROPELLANT FEED SYSTEM

Identical spherical tanks fabricated from titanium alloy are used for the oxidizer and the fuel.

Since propellant settling and acquisition are achieved by firing the Monopropellant Propulsion

Subsystem, no positive expulsion devices are required for these tanks. Each pair of tanks

(oxidizer and fuel) are joined by a common discharge manifold. A manually operated fill or

drain valve connects to each manifold. Both manifolds connect in turn to a redundant squib

network for starting and shutting down of the retropropulsion thrust chamber. Two normally

open squib valves in series are followed by two normally closed valves in parallel in each

propellant leg. A filter downstream of each squib valve leg protects the injector from all
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upstream contamination sources. Orifices in each side of the injector are used to calibrate

all thrust chamber assemblies to identical pressure drops to assure interchangeability. All

of these valves, filters and orifices are mounted directly on the thrust chamber and welded

together to eliminate leakage problems.

3.2.4 THRUST CHAMBER ASSEMBLY

The selected thrust chamber is an all ablative chamber with an expansion ratio of 60:1. The

injector is fabricated from aluminum and uses a conventional doublet impinging injection

pattern. Since the required burn time is less than 400 seconds, the design is well within the

present state-of-the-art and thus provides a high reliability potential. Lack of TVC require-

ments with no need for gimbals, actuators and flexible lines, further enhances the reliability
of the unit.

3.2.5 COMPONENT DESCRIPTION

Components used in the Retropropulsion Subsystem will, in most cases, be similar to those

described for the Monopropellant Subsystem except for size. Those components used only

in the Retropropulsion Subsystem are described in the following paragraphs.

3.2.5.1 BURST DIAPHRAGM ASSEMBLY

Two burst diaphragm assemblies are used on the propellant pressurizing lines to isolate

the fuel pressurization from the oxidizer pressurization during the cruise phase. The burst

discs are ruptured when the pressurization system is activated. The burst disc is designed
to rupture at approximately 30 percent of the operating pressure. The burst disc assembly will

also contain a downstream filter element for containing the particles generated during dia-

phragm rupture. Burst diaphragms of this configuration manufactured by Del Mfg Co have

been qualified and flight proven for GE Spacecraft Dept.

_ _ _ ^_, A,vr_r_-, TT-TRTT,qT_HAMRER ASSEMBLIES

The 2200-pound thrust all-ablative chamber selected for the preferred Propulsion Subsystem

is derived directly from thrust chambers developed on the Saint and Apollo Sub-Scale pro-

grams. No particular Propulsion Supplier is favored at this time for this component. Those

working on the above programs have all demonstrated adequate performance and long life

with their respective designs. It must be remembered, however, that any ablative thrust

chamber design is of necessity a blend of injector characteristics, ablative material pro-

perties and ablative material fabrication techniques. That is, an injector which works suc-

cessfully with one suppliers chamber, might destroy another suppliers proven chamber in

a very short period. Thus the injector-chamber combinations are in general inseparable

and must be procured as a unit. The major change for the Voyager program is an all ablative

expansion section rather than a radiatively cooled skirt. This adds to the weight of the thrust

chamber but minimizes the need for shielding and insulation in the engine compartment. To

keep this weight at a minimum, and yet realize high performance,an 80 percent bell contour is
specified.
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3.2.5.3 PROPELLANT TANKS

The propellant tanks for the Retropropulsion Subsystemare similar to the monopropellant

tanks except that no positive expulsion devices are needed. These tanks will be fabricated

with 0. 035 inch thick walls as previously described. Tank diameter will be 30.25 inches

and working pressure 220 psia.

One area which is not felt to be a problem but which cannot be properly evaluated analytically
is the discharge characteristics of parallel propellant tanks. To maintain C.G. location with

in specified limits, the discharge from the two tanks must be relatively equal at all times.

Therefore some experimental work must be carried out early in the program to determine

how much variation can exist between tanks as the propellant is discharged. If excessive

variations are noted some form of flow equalization device may be required to minimize cg
uncertainities.

3.2.6 SUBSYSTEM OPERATION (FLIGHT)

The Retropropulsion Subsystem may be prepared for operation at any time prior to firing

command. Preferably this should be several hours prior to the anticipated command to per-

mit verification of total propulsion subsystem readiness for the maneuver. To prepare the

Retropropulsion Subsystem, the command will fire both normally closed squib valves in the

pressurization system line. This will permit high pressure helium gas to flow to the gas

regulator. Regulated gas will then flow down each pressurizaion leg, break the two burst

discs and apply full tank pressure to each of the four propellant tanks.

Verification of the ready condition may now be made through telemetry monitoring of all tank

temperatures, helium tank pressure and the two propellant line pressures. Event indicators

in the squib valves will also permit verification of squib actuation.

Five seconds prior to the firing command for the Retropropulsion Subsystem, the Monopro-

pellant Propulsion System will begin firing to settle the propellants in the bipropellant system

tanks and thus assure propellant acquisition.

Upon firing command to the Retropropulsion Subsystem the four normally closed squib valves

in the propellant feed lines (two in each leg) are fired. This permits flow of propellants to

the thrust chamber for the planned duration of the maneuver. The monopropellant engine

will fire continuously during the maneuver to provide thrust vector control.

Shutdown of the Retropropulsion Subsystem is accomplished by firing the upstream normally

open squib valve in each propellant feed line. The second set of normally open squib valves

may be fired anytime after three seconds to secure the system.

Shutdown of the monopropellant system will follow that of the Retropropulsion Subsystem by

five seconds to eliminate potential transient side forces induced in high expansion ratio noz-

zles during thrust termination (even under vacuum conditions).
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The only failure modeprovided for in the system (other than by redundancy of components)

is overpressurization of the propellant tanks by leakage through the regulator. This will

cause rupture of the burst disc and bleeding of excess pressure through the relief valve.

Because of the short operational cycle a redundant regulator does not contribute significantly

to overall system reliability.

4 INTERFACE DEFINITION

Following are the interfaces between the Propulsion Subsystem and the indicated subsystems.

4.1 SPACECRAFT BUS SUBSYSTEM

4.1.1 MECHANICAL INTERFACE

Attachment points between Propulsion Subsystem structure and bus structure,

4.1.2 MECHANICAL INTERFACE

Electrical harness connectors to bus connectors

4.2 TEMPERATURE CONTROL SUBSYSTEM

4.2.1 MECHANICAL INTERFACE

Monopropellant tank heaters and thermostatic controls

4.2.2 MECHANICAL INTERFACE

Insulation and radiation shielding for maintaining the temperature of the Propulsion Sub-

system between +40 ° and +80°F

4.3 PYRO SUBSYSTEM

4.3.1 ELECTRICAL INTERFACE

Commands to squib valve

4.3.1.1 MONOPROPELLANT SYSTEM

Prepare system - 2 squib valves

Secure system - 2 squib valves

Repeat above 3 more times

Switch to back up regulator - 1 squib valve

4.3.1.2 RETROPROPULSION SYSTEM
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Prepare system - 2 squib valves
Start maneuver- 4 squib valves
Stop maneuver - 2 squib valves
Secure system - 2 squib valves

4.4 CONTROLLER ANDSEQUENCERSUBSYSTEM

4.4.1 ELECTRICAL INTERFACE COMMANDSTO SOLENOIDVALVES (MONOPROPELL-
ANT SUBSYSTEM)

4.4.1.1 START MANEUVER-OPEN4 QUADREDUNDANTVALVES

4.4.1.2 STOPMANEUVER- CLOSE4 QUADREDUNDANTVALVES

4.4.1.3 REPEAT STARTAND SHUTDOWNMANEUVERSAS REQUIRED

4.5 AUTOPILOT SUBSYSTEM

4.5.1 ELECTRICAL INTERFACE - COMMANDSFORTHRUSTVECTORING

1° Signals to 4 throttle valves

4.5.2 ELECTRICAL INTERFACE-COMMANDSFORROLL CONTROL CORRECTION

1. Signals t'o 4 jet vane actuators

4.6 DATA HANDLINGAND STORAGESUBSYSTEM

4.6.1 ELECTRICAL INTERFACE

Monopropellant Subsystemsendssignals from

4.6.1.1 7 PRESSURETRANSDUCERS

4.6.1.2 6 TEMPERATURE SENSORS

4.6.1.3 17 EVENTS INDICATORS(SQUIBVALVES)

4.6.1.4 16SOLENOIDVALVE OPEN INDICATORS

4.6.1.5 16SOLENOIDVALVE CLOSEINDICATORS

4.6.2.6 4 THROTTLE VALVE POSITIONINDICATORS

4.6.3.7 4 JET VANE POSITIONINDICATORS
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4.6.2 ELECTRICAL INTERFACE

Retropropulsion Subsystemsends signals from

4.6.2.1 4 PRESSURETRANSDUCERS

4.6.2.2 6 TEMPERATURE SENSORS

4.6.2.3 10 EVENT INDICATORS (SQUIB VALVES)

4.7 OPERATIONAL SERVICE EQUIPMENT

4.7.1 MECHANICAL INTERFACE

Provide hardpoints for support and handling fixtures

4.7.2 MECHANICAL INTERFACE

Provide adjustment for aligning thrust vectors relative to vehicle C.G.

4.7.3 MECHANICAL INTERFACE

Provide fill and drain points as follows

4.7.3.1 MONOPROPELLANT SUBSYSTEM

Helium Tank Fill Valve

Hydrazine Tank Fill Valve

Hydrazine Tank Vent Valve

4.7.3.2 RETROPROPULSION SUBSYSTEM

Helium Tank Fill Valve

Oxidizer Tank Fill Valve

Oxidizer Tank Vent Valve

Fuel Tank Fill Valve

Fuel Tank Vent Valve

4.7.4 ELECTRICAL-MECHANICAL INTERFACE

Harness for connecting subsystem valves and actuators to checkout and monitoring equip-
ment

4.7.5 MECHANICAL INTERFACE

Provide access points to subsystem piping for leak check requirements (to be established
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during final design).

5. PERFORMANCEPARAMETERS

The performance parameters for the Propulsion Subsystem are listed in Table 5-1

TABLE 5-1

PROPULSION SUBSYSTEM PERFORMANCE PARAMETERS

Monopropellant Subsystem (4 thrust chambers)

Delivered Specific Impulse, secs° 230

Thrust (minimum per chamber),pounds 25

Thrust (maximum per chamber}, pounds 55
Chamber pressure range, psia 75-165

Total Deliverable Impulse, lb-secs. 99,000

Retropropulsion Subsystem

Delivered Specific Impulse, secs. 307

Thrust, pounds 2200

Chamber pressure, psia 100

Total Deliverable Impulse, lb-secs. 690,000

Burn Time, seconds (max.) 316

6. PHYSICAL CHARACTERISTICS AND CONSTRAINTS

Major characteristics of the Propulsion Subsystem are presented in Table 6-1.

Constraints placed upon the propulsion system shall be as follows.

6.1 The propulsion subsystem shall be designed to be installed and removed as a

unit from the spacecraft.

6.2 The propulsion subsystem when loaded with propellant and with the pressurant

tanks charged to 3500 psia shall be safe for personnel to work around at temp-

eratures up to 80°F.

6.3 The propulsion subsystem shall not require the use of liquid or gas umbilicals°

6.4 The effective thrust vectors for all thrust chambers shall be predictable to

within + 0.25 degrees and +. 060 inches measured at the mounting plane for

each type of chamber.

6.5 Both the retropropulsion and monopropellant thrust chambers shall provide

adjustments for aligning the thrust vectors with the spacecraft capable of an

angular adjustment of + 2 ° and a position adjustment of + 0.25 inches from the
nominal.
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6.6 The Monopropellant Propulsion Subsystem (MPS) must be capable of imparting

a total impulse of 99,000 lb.-secs, to the spacecraft in a total of 5 operating

periods (max.).

6.7 The MPS shall be capable of imparting a minimum midcourse correction velo-

city increment of 0.1 +. 007 meters/sec, to a 7800 pound spacecraft.

6.8 The Propulsion Subsystem (RPS) shall be capable of imparting a velocity incre-

ment of 1860 meters/second to a 5550 pound spacecraft.

6.9 The propulsion subsystem must ignite and operate in a vacuum environment.

6.10 The MPS must ignite in a zero-g environment.

6.11 The propulsion subsystem temperature limits from the time of loading pro-

pellants through termination of the flight shall be +40°F to +80°F.

6.12 The propulsion subsystem must be capable of vacuum environment storage in

excess of 290 days without detrimental effects on ignition or performance.

6.13 Thrust vector control during both midcourse, retrofire and orbit adjust shall

be achieved by utilizing four thrust chambers in the MPS and throttling each

engine as required to provide control in the pitch and yaw plane.

6.14 The volume within the spacecraft available to the propulsion subsystem shall

be a cylinder 80 inches in diameter by 59 inches high.

6.15 The loads imposed by the Retropropulsion Subsystem on the spacecraft shall

not exceed 4 g's with lower values desirable.

TABLE 6-1

PROPULSION SUBSYSTEM CHARACTERISTICS

Monopropellant Subsystem

General

Propellant
Pressurant

Gross Weight, pounds

Burnout Weight, potmds

Dry Weight, pounds

Thrust Chamber (4)

Type

Catalyst

Expansion Are9 Ratio

Throat Area, sq. inches

Throat Diameter, inches

Exit Diameter, inches

Propellant System
Total Loaded Propellant Weight, pounds

Usable Propellant Weight, pounds

Propellant Tank Pressure, psia

Pressurant System

Pressurant Weight, pounds

NH
2 4

Helium

677

,_4,,

227

Radiatively cooled
Shell 405

50

0.19

0.491

3.480

444

431

285

6
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Initial StoragePressure, psia

Reliability

Probability of Mission Success

3500

• 966962

Retropropulsion Subsystem

General

Propellants - Oxidizer
Fuel

Pressurant

Gross Weight, pounds

Burnout Weight, pounds

Dry Weight, pounds
Thrust Chamber

Type

Expansion Area Ratio

Throat Area, Square inches

Exit Diameter, inches

Throat Diameter, inches

Propellant System

Total Loaded Propellant Weight, pounds

Usable Propellant Weight, pounds

Propellant Tank Pressure

Pressurant System

Pressurant Weight, pounds

Initial Storage Pressure, psia

Reliability

Probability of Mission Success

NO
2 4

N_H./UDMH (50-50)
z 4

Helium

2799

531

455

All Ablative

60:1

12.0

30.3

3.91

2328

2260

220

8

3500

.989216

7. SAFETY CONSIDERATIONS

In formulating operational procedures for the propulsion subsystem, the following factors will
be considered:

1. Transfer and storage of high pressure gases

2. Toxicity of nitrogen tetroxide and hydrazine compounds

3. Fire hazards of hydrazine compounds and their vapors in air

4. Explosive and fire hazards associated with mixing of oxidizer and fuel vapors

5. Decontamination of propellant spills

6. Unloading procedures and disposal of propellants

7. Conformity of design limits with AFETR requirements.

Safety and operational considerations for squib valves are discussed in VB235FD104 Pyro-

technics Subsystem.
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1.0 RELIABILITY

The reliability of the propulsion subsystem recommended for Voyager has been estimated

in detail. This was accomplished by estimating the probability of success in the various

phases of the mission for each engine. These probabilities were combined to arrive at an

estimate of the overall propulsion system probability of success.

1.1 MISSION

The primary mission Voyager as defined in the Preliminary Voyager 1971 Mission

Specification ends 30 days after injection into Mars orbit. This will occur at a maximum

of 210 days after launch. The reliability apportionment has been made on the basis of this

maximum 210 day mission. The propulsion system must have a longer functional capabi-

lity than 210 days since it may provide an additional orbit adjust 270 days after launch.

This requires two sets of mission reliability estimates for the propulsion system.

1.i.1 SUBCONTRACTOR ANALYSES

An apparent anomaly with respect to mission definition will become apparent on review of

the various subcontractor inputs included with this report. The mission durations used in

the estimates are longer than the 270 days. Further, the vendor orbit injections occur

200 to 220 days after launch. This variation in mission definition came about because of

the necessity of providing preliminary information to the subcontractors early in the pro-

gram.

1.I.2 PROPULSION SUBSYSTEM FUNCTION DURING PRIMARY MISSION

During the primary mission, the propulsion subsystem performs up to four trajectory

corrections, injection into Mars orbit, and one orbit adjust.

i.1.3 PROPULSION SUBSYSTEM COMPLETE FUNCTION

The propulsion subsystem overall mission consists of the primary mission described in

1.1.2 above followed by an additional coast period and a possible additional orbit adjust at

the end of the 60 days.

1.2 RELIABILITY ESTIMATE

1.2.1 PROBABILITY OF SUCCESS

Table 1-1 is a summary of the mission phases, time durations and estimated probabilities

of success. The details of the calculations for these phases are contained in Section 6.

1.2.2 FAILURE RATE SOURCE

In making these estimates, most of the generic failure rates for parts were based on infor-

mation taken from a report entitled "Reliability Physics (The Physics of Failure}" by
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TABLE 1-1. PROPULSIONSYSTEMMISSIONPHASES, TIME DURATIONSAND
PROBABILITIES OF SUCCESS

TIME DURATIONMISSIONPHASE

Launch

First Cruise Period

1.

2.

3. First Trajectory Correction

4. Second Cruise Period

5. Second Trajectory Correction

6. Third Cruise Period

7. Third Trajectory Correction

8. Fourth Cruise Period

9. Fourth Trajectory Correction*

10. Fifth Cruise Period

11. Orbit Injection

11.1 Correction Engine Operation

11.2 Injection Engine Operation

PROBABILITY OF SUCCESS***

CORRECTION INJECTION

ENGINE ENGINE

12. First Orbiting Period

13. First Orbit Adjust

14. Second Orbiting Period

15. Second Orbit Adjust

.683 hours .999845 .999888

47.300 " .999791 .999888

.067 " .999190 .999995

432.000 " .998120 .998970

.014 " .999830 .999999

3790.000 " .983300 .991020

.014 " .999827 .999999

24.000 " .999894 .999943

.014 " .999831 .999999

24.000 " .999894 .999943

Engine Cumulative Probabilities of Mission Success

Propulsion System probability of Mission Success .956278

.104 " .997490** --

.101 " -- .999672

48.000 " .999788 _ 1.

.021 " .999742 _ 1.

2110.000 " .990690 _ i.

.021 " .999730 _ 1.

.966962 .989316

For this analysis it is assumed the four corrections may be required.

In making this calculation it was assumed injection engine was firing for full . 104 hr.

Estimates approximated using P = 1 -Xt. The error using this approximation will not

exceed. 03% in these estimates and only effect the 4th or 5th significant figures in some

of the estimates. These errors have been ignored and all numbers carried so that the

critical reliability phases could be easily identified.
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D. R. Earles andM. F. Eddins as published in the "Proceedings of the Ninth National

Symposium on Reliability and Quality Control". The selection of this source of failure

rates was made on the following basis: 1. A broad spectrum of part types are presented

including most of those used in propulsion systems. 2. The failure rates were established

from a quantity of data per component. This is apparent from the fact that a lower limit,

a mean and an upper limit are presented for most components. 3. The source is unbiased

with respect to Voyager i.e. in making a selection of the optimum approach to performing

the propulsion function the data supplied by proponents of particular techniques may possi-

bly be optimistic in favor of these techniques.

In using this data, the lower limit failure rate value was used in all cases. These are

probably applicable to Voyager because of the stringent part program to be followed, in-

cluding part and vendor selection, part testing, vendor control and complete inspection

and quality control.

1.2.3 STATE OF THE ART "IC' FACTOR

The failure rates described above were published and updated by D. R. Earles in 1963. To

bring these in line with the current state of the art a "K" factor as described on page 2-4

of GE Reliability Manual TRA-873-74 was used•

1.2.4 ENVIRONMENTAL "I_' FACTOR

An environmental "IC' factor was applied in the analysis. This factor is defined on

page 2-5 of the GE Reliability Manual. The environmental factor failure rate modifiers

selected for use in the various phases of the propulsion system mission are presented in

Table 1-2. These K values were selected on the basis of an estimate of the anticipated

stress levels during _he mission and a comparison with those presented on page 2-5 of the

GE Reliability Manual. The basic part reliability numerics used in analyzing the propul-

sion system are presented in Table 1-3.

1.3 COMPARISON OF THE RELIABILITY ESTIMATE TO THE RELIABILITY GOAL

The reliability requirement defined in the Preliminary Voyager 1971 Mission Specification

for the primary mission was analyzed at a system level and apportioned as a reliability

goal to each of the various subsystems on the basis of the subsystem functional contribution

to overall system performance and the degree of interfacing the subsystem has with the

other Voyager subsystems. The primary mission ends, as previously mentioned, after one

month of orbit, which is 210 days after launch. This is a shorter mission than is covered

in Table 1-1 and terminates after 28 days of the second orbiting period. The estimate of

probability of success of the propulsion subsystem performing this primary mission is

• 9626 which indicates the propulsion and system reliability will more than meet the allotted
goal.
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TABLE 1-2. ENVIRONMENTAL FACTOR FAILURE RATE MODIFIERS, K
e

MODIFIER MISSION

VA LUE PHA SE

K = 900 LAUNCH
el

K = 90 LAUNCH
e2

K = 5 LAUNCH
e3

K = 5 CRUISE
e3

K = 50 TRAJEC.
e4 CORREC.

K = 1 CRUIBE
e5

Ke6 = .1 CRUISE

K = 100 ORBIT
e7 INJECTION

PARTS TO WHICH MODIFIER

IS APPLICABLE

High pressurized parts

Low pressurized parts

Non-functioning parts

All pressurized parts

All propellant engine parts

Operational parts

Non-operational parts

All propellant engine parts
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1.4 FAILURE MODES AND THEIR EFFECT ON DESIGN

Table 1-4 lists the potential part failure modes and suggestions for alleviating them. Many

of the features have been incorporated into the preferred propulsion subsystem.

I.5 RELIABILITY IMPROVEMENT OF DESIGN CONCEPT

The schedule requirements for this phase of the Voyager study program preclude the

possibility of analyzing further reliability improvement in the preferred propulsion system

design concept at this time. Presented below is a review of the reliability analysis in-

cluded in Section 6 to illustrate the potential reliability Improvement that is possible in

the propulsion subsystem design concept.

1.5.1 MIDCOURSE CORRECTION SUBSYSTEM UNRELIABILITY REDUCTION

Mission Phase ranked in inverse order of reliability (from Table 1-1).

RANK MISSION PHASE RELIABILITY, PS UNRELIABILITY, Q

O
1 6. Third Cruise Period .983300

2 14. Second Orbiting Period .990690

3 11. Orbit Injection Period .997490

4 4. Second Cruise Period .998120

.016700

.O0931O

.002510

.001880

TOTAL .030400

_Q. .030400- = 92%
Corr. Eng. total Q .033038

92% of correction engine unreliability is in the above 4 mission phases.

The ranking was stopped at 4. since these 4 of the 15 phases are responsible for 92% of

the unreliability. Further evaluation of these 4 phases are made below.

I.5. i.1 PHASE 6. THIRD CRUIBE PERIOD

Parts used in this phase are ranked in inverse order of failure rate contribution (partial

list only).

Total Failure

Rank Item Rate F/H x 106

1 i0. Propellant Inner Tank i. 32

2 9. Propellant Outer Tank 1.08

3 2. Fill Valve 0.99

Recommendation

Redundancy (see I. below)

Redundancy (see 1. below)

.Redundancy (see 2. below)

Total 3.39
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1. One solution may be to increase tank size to a point where one of 4 tanks can be

redundant.

2. Add check valves in series with each fill valve or cap off after filling.

Estimate of Q reduction (phase duration = 3790 hours}

Q=k t=3.39 x10 -6x3790=l.29x 10 -2

= 0. 01290

Q 0. 01290
- - 39%

corr. Eng. total Q 0.033038

TABLE 1-4. PART FAILURE MODE ANALYSIS

ITEM FAILURE MODE

POTENTIAL PREVENTATIVE

MEASURES

1. Helium

Pressurant Tank
Leakage or rupture Conservative design, pressure testing,

inclusion of pressurant reserve, if

possible and necessary redundant
tanks.

2. Fill valve Leakage Adding series check valve, sealing

after filling, pressurant reserve

3. Explosive Squib
Valve

Failure of squib to

fire, failure to

open, failure to
close

Addition of redundant squibs, or

redundant valves in series or parallel

4. Filter Leakage, failure

to filter large

particles

Leak testing, filters in series,

pressurant reserve

5. Pneumatic

Regulator

6. Pressure

Switch

High downstream

pressure

Failure to close

Redundant regulators and bypass

provisions

Provide means to activate valve

from ground

7. Burst diaphragm Leakage, early
burst

Provide redundant burst disks or

a backup provision

8. Relief Valve Leakage Back up with burst diaphragm,

pressurant reserve
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e

TABLE 1-4.

ITEM

Propellant Outer

Tank

10. Propellant Inner

Tank (bladder)

PART FAILURE MODE ANALYSIS (Cont'd}

FAILURE MODE
POTE NTIAL' PREVENTIVE

MEASURE S

External leakage,

rupture

Conservative design, pressure

testing, fuel reserve, redundant tank

Rupture, leakage Inspection, testing and conservative

design, fuel reserve, redundant tank

11. Manual valve Leakage Adding series check valve, sealing

after filling fuel reserve

12. Servo Motor Shorted rotor winding

or field coil, bearing
failure, brush wear

Selection of insulation, electrical

derating of motor, derating or

bearings, sealing bearings

13. Solenoid Valve Leakage, failure to

open

Redundancy in series combined with

redundancy in parallel.

14. Thrust Chamber Burn through walls of

chamber, rupture of
weld

Design with safety margin, inspection
of welds and ablative material

15. Fittings Leakage Selection or design of leak resistant

fitting, proper assembly procedure,

pre-launch inspection, pressurant
re serve

16. Lines Rupture Conservative design, control of

handling techniques.

17. Check Valve Leakage Use series arrangement of valves,

pressurant reserve

18. Fixed Orifice Clogging Proper filtering

1.5.1.2 PHASE 14. SECOND ORBITING PERIOD

The same part ranking and recommendations as in 1.5.1.1 are applicable here.

Q reduction (phase duration 2110 hours)

-6 -2
Q= kt=3.39x 10 x2110=0.715x10

= 0. 00715

Estimate of

9 of 24



VB238FD101

Q 0. 00125
- - 3.8%

Corr. Eng. total Q 0. 0330038

1.5.1.3 PHASE 11. ORBIT INJECTION PERIOD

Parts used in this phase are ranked in inverse order of failure rate contribution (partial

listing only)

Total Failure

Rank Rate F/H x 106

1 12,000
2 27.2

1. If possible make two chambers capable of

providing required thrust vector and make the other 2 redundant.

Estimate of Q reduction (phase duration 0. 104 hours)

Q _ ),t 1200. x 10 -6 10 .3= x 0.104 =1. 25 x

Item

14. Thrust Chamber

12. Servo Motor

Four thrust chambers are now used.

= 0. 00125

Q 0. 00125- - 3.8%
Corr. Eng. Total Q 0_33038

1.5.1.4 PHASE 4. SECOND CRUISE PERIOD

The same part ranking and recommendations as in 1.5. I.1 are applicable here.

Estimate of Q reduction (phase duration 432 hours)

Q=),t= 3.39x 10-6x432= 1.465x 10-3

= 0. 00147

Q

Corr. Eng. Total Q

1.5.2 SUMMARY

0. 00147

0.033038
- 4.4%

Recommendation

Redundancy (see 1 below)

No change

The three modifications could boost the correction engine cumulative probability of mission
success estimate from 0. 966962 to a value of 0. 989732. This is a decrease in unreliability

of 69%.

The purpose of this analysis is to illustrate an approach to reliability improvement, and not

to imply that the recommended modifications are possible or feasible. Before such modifica-

tions can be incorporated further study will be required of such factors as weight, space,
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configuration, power consumption, effect on other subsystems, etc. The same approach

to reliability improvement will also be applicable to the retro engine.

PROPU LSION SYSTEM

1.6 RELIABILITY CALCULATIONS

The information used in these analyses was taken from the system schematics included in

Section 3.3.1 and 3.2, and tables 1-1, 1-2 and 1-3 herein. Where the reliability _1.0
the calculations have been excluded.

1.6.1 PHASE 1, LAUNCH, TIME = 0. 683

1.6.1.1 MIDCOURSE CORRECTION ENGINE SERIES ITEMS

Value

of KE Item Quan. _ x 106 Z k x i0 -6

900 1 2 23.0 46.0

900 2 1 59.0 59.0

900 15 1 set 23.0 23.0

900 16 1 set 30.0 30.0

90 2 2 5.9 11.8

90 7 1 5.9 5.9

9O 9 4 4.9 19.6

90 10 4 5.9 23.6

90 15 1 set 2.3 2.3

90 16 1 set 3.0 3.0

5 4 2 O. 037 O. 074

5 12 8 O. 34 2.72

226. 994

-), t ), t*P = e _ i-

-6
P = 1 - 227.0 x 10 x 0.683

-4
= 1 - 1.55x 10

= 1 - 0.000155

= 0.999845

*This approximation is used in all

applicable calculations below.

1.6.1.2 RETRO ENGINE SERIES ITEMS

Value

of K E Item Quan. k x 106 _ k x 10 -6

900 1 2 23.0 46.0

900 2 1 59.0 59.0

900 15 1 set 23.0 23.0

900 16 1 set 30.0 30.0

5 7 1 0.33 0.33

5 2 4 O. 33 1.32

5 9 4 O. 27 1. O8

5 15 1 set O. 13 O. 13

5 16 1 set O. 17 O. 17

5 4 3 ,. 037 O. 111

5 7 2 O. 33 O. 66

5 18 2 O. 33 O. 66

5 17 4 O. 37 1.48

163. 941

P = 1-),t

-6
= 1- 163.9x10

= 1 - 1.12x 10 -4

= 1 - 0.000112

= 1 - 0.999888

x O. 683
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1.6.2 PHASE2, FIRST CRUISEPERIOD, TIME = 47.3 HOURS

1.6.2.1 MID-COURSE CORRECTION ENGINE SERIES ITEMS

Value

of K E Item Quan. k x 10 -6 _ k x 10 -6

5 1 2

5 2 3

5 7 1

5 9 4

5 10 4

5 15 1 set

5 16 1 set

1.0 4 1

1 15 1 set

1 16 1 set

0.1 8 2

0.1 4 1

0.1 7 1

O. 1 12 8

O. 13

0.33

0.33

0.27

0.33

O. 13

0 13

0 0073

0 026

0 033

0 0224

0 00073

O. 0063

O. 0067

0.26

0.99

0.33

1.08

1.32

0.13

0.13

0.0073

0.026

0.033

0.0448

0.00073

0.0063

0.0563

4.41173

P = 1-kt

-6
= 1 -4.41 x 10

-4
= 1 -2.09x 10

= 1 - 0.000209

= 0.999791

1.6.2.2 RETRO ENGINE SERIES ITEMS

Va_e

of K E Item Quan. kx 10 -6

5 1 2 0.13

5 2 5 0.33

0.1 9 4 0. 0054

5 15 1 set 0.13

5 16 1 set 0.17

0.1 4 1 0. 00073

0.1 5 1 0. OO7

0.1 17 4 0. 0074

0.1 7 2 0. 0066

0.1 15 1 set 0.0026

0.1 16 1 set 0. 0033

0.1 4 2 0. 00073

0.1 18 2 0. 0066

-6
Xxl0

0.26

I.65

O.0216

O.13

O.17

O.00073

O.077

0.0296

0.0123

O.0026

O.0033

O.00146

O.0132

P=I -kt

-6
P = 1-2.37x10

-4
= 1- 1.123x 10

= 0. 999888

2. 37269

x 47.3

x 47.3

x 1 - 0.000123
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1.6.3

1.6.3.1

1.6.3.1.1

PHASE3, FIRST TRAJECTORY CORRECTION,TIME = 0. 067HOURS

MID-COURSECORRECTIONENGINE I P = 0-999190 J

FIRE SQUIB VALVES OPEN

2
P = 2 (0. 999) - (0. 999)

= 0. 999999

for 2 sets P = 0. 999998

1.6.3.1.2 OPERATION SERIES ITEMS

Value

of K E Item Quart. k x 10-6

50 1 2 1.3

50 2 3 3.3

50 4 2 0.37

50 9 4 2.7

50 10 4 3.3

50 15 1 set 1.3

50 16 1 set 1.7

50 12 8 3.4

50 14 4 3000.

k x 10-6

2.6

9.9

0.74

10.8

13.2

1.3

1.7

27.2

12000.

12067.44

p

P =

1 -Xt

-6
1- 12067x 10

-4
1 - 8.08 x 10

.999192

1.6.3.2 RETRO ENGINE SERIES ITEMS

Value

of K E Item Quan. k x 10-6

50 1 2 1.3

50 2 5 3.3

50 4 3 0.37

50 5 1 26.0

50 17 4 3.7

50 7 2 3.3

50 9 4 2.7

50 15 1 set 1.3

50 16 1 set 1.7

X x i0-6

2.6

16.5

1.11

26.0

14.8

6.6

10.8

1.3

1.7

p

P =

1 - kt

-6
1 -81.41x 10

-6
1 -5.4x10

0.9999946

81.41

x 0.067

= 1 - 0.000808

x 0.067

= 1- 0.0000054
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1.6.5

1.6.5.1 MID-COURSE CORRECTION ENGINE IP

1.6.5.1.1 OPERATION SERIES ITEMS

1.6.5.1.2

1.6.5.2

VB238FD101

PHASE 4, SECOND CRUISE PERIOD, TIME 432, HOURS

MID-COURSE CORRECTION ENGINE SERIES ITEMS

P= 1-kt

-6 -3
= 1-4.41x10 x432. = 1-1.88x10 = 1 -0.00188

= 0. 998120

RETRO ENGINE SERIES ITEMS

P = 1-kt

= 1-2.37x10 -6x432. = 1- 1.03 x10 -3= 1 -0.00103

= 0. 998970

PHASE 5, SECOND TRAJECTORY CORRECTION, TIME = 0. 014 HOURS

= 0.999830]

P = 1-kt

-6
= 1- 12067.0x10

= 0. 999831

-4
x0.014= 1 - 1.69x 10 = 1 - 0.000169

FIRE SQUIB VALVES CLOSED

2
P = 2 (0.999) - (0.999)

P = 0.999999

RETRO ENGINE SERIES ITEMS

P= 1->,t

-6
= 1 -81.41x10

= 0. 999999

-6
x 0.014= 1- 1.13x 10 = 1 - O. 00000113

PHASE 6, THIRD CRUISE PERIOD, TIME = 3790 HOURS

CORRECTION ENGINE SERIES ITEMS

-k t
P = e _ 1 ->,t

= 1-4.41x 10 -6x3790= 1 -1.67x 10 -2

= O. 9833

= 1 - 0. 0167
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1.6.7.

1.6.7.1 MID-COURSECORRECTIONENGINE

1.6.7.1.1 FIRE SQUIBVALVES OPEN

1.6.8.2

1.6.9.2

VB238FD101

RETRO ENGINE SERIES ITEMS

P = 1-kt

= 1-2.37x10 -6x3790 1 0.898x 10 -2= - = i -0.00898

P = 0.99102

PHASE 7, THIRD TRAJECTORY CORRECTION, TIME = 0. 014

IP = 0.9998271

P = 0. 999998 degraded because only 1 backup in system;for 2 sets

P = 0.999996

OPERATION P = 0. 999831

RETRO ENGINE SERIES ITEMS

P = 0. 999999

PHASE 8, FOURTH CRUISE PERIOD, TIME = 24.0 HOURS

MID-COURSE CORRECTION ENGINE SERIES ITEMS

P= 1-kt

= 1-4.41x10 -6x24.0=1- 1.06x10 -4= 1 -0.000106

= 0. 999894

RETRO ENGINE SERIES ITEMS

P = 1-kt

= 1-2.37x10 -6x24.0 =1 -0.570x10 -4= 1 -0.000057

= 0. 999943

PHASE 9, FOURTH TRAJECTORY CORRECTION, TIME = 0. 014 HOURS

MID-COURSE CORRECTION ENGINE OPERATION

P = 0.999831

RETRO E NGINE

P = 0.999999
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1.6.10 PHASE10, FIFTH CRUISEPERIOD, TIME = 24.0 HOURS

1.6.10.1 MID-COURSE CORRECTION ENGINE

1.6.10.2 RETRO ENGINE

P = 0.999894

P = 0.999943

1.6.11 PHASE 11, ORBIT INJECTION

1.6.11.1 MID-COURSE CORRECTION ENGINE, TIME = 0. 104 HOURS

Series items K E = 100 instead of K E = 50 therefore k are double

-6 -6
k = 2 x 12067 x 10 = 24134 x 10

P = 1 - kt

= 1 - 24134 x 10 -6 10 -3x 0.104 = 1 - 2.510 x = 1 - 0.00251

= 0.99749

1.6.11.2 RETROENGINE, TIME=O.101HOURSIP=O.999672 I

1.6.11.2.1 FIRE SQUIB VALVES OPEN

1set P = 0.999999

3 sets P = 0.999997

1.6.11.2.2 OPERATION SERIES ITEMS

Value

of K E Item Quart k x 10 .6 _ k x 10 .6

100 1 2 2.6 5.20

100 2 5 6.6 33.00

100 4 3 0.73 2.19

100 5 1 51.0 51.00

100 17 4 7.4 29.60

100 18 18 6.6 13.20

100 7 7 6.6 13.20

100 9 4 5.4 21.60

100 14 1 3000.0 3000.00

100 15 3 sets 2.6 7.80

100 16 3 sets 3.3 9.90

p=

-6
3187.0 x 10

-6
1 - Xt= 1 - 3187x 10 x0.101

-4
1 -3.22 x 10 = 1-0.000322

0.999678

Total 3186.69
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1.6.11.2.3 FIRE SQUIBVALVES CLOSEDP = 0. 999997

1.6.12 PHASE 12, FIRST ORBITING PERIOD, TIME = 48 HOURS

1.6.12.1 MID-COURSE CORRECTION ENGINE

-6 -4
P = 1- Xt = 1 -4.41x10 x48= 1- 2.12x10 = 1-0.000212

P = 0.999788

1.6.12.2 RETROENGINE

A catastrophic failure would occur if N O became combined with A-50_ this would occur
2 4

if 2 check valves or one of 2 tanks opened on one side at the same time that 2 check valves

or one of 2 tanks opened on the other side.

1.6.12.2.1 CHECK VALVE PROBABILITY TIME = 48 HOURS

-6
KE3 = 5 X = 0.37x 10

-6 -4
P = 1-Xt=l -0.37x10 x48= 1-0.18x 10 = 1 -0.000018

P = 0.999982

Probability of 2 check valves failing together _ 0

1.6.12.2.2 TANK PROBABILITY TIME 48 HOURS

= (0.27x10 -6) 2 tanks

Probability of 2 tanks failing together_ 0

1.6.13 PHASE 13, FIRST ORBIT ADJUST TIME 0.021 HOURS

1.6.13.1 MID-COURSE CORRECTION ENGINE IP = 0.999742]

1.6.13.1.1 SERIES ITEMS

-6 -4
P = 1- Xt = 1= 12067x 10 x0.021= 1-2.54x10

P = 1 - 0.000254 = 0.999746

1.6.13.1.2 FIRE SQUIB VALVES CLOSED

P = 0.999996 see 7.1.1

1.6.14 PHASE 14, SECOND ORBITING PERIOD, TIME = 2110 HOURS

1.6.14.1 MID-COURSE CORRECTION ENGINE SERIES ITEMS
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P=I= _t= 1-4.41x10 -6x2110 = 1- 9.31x10 -3

= 1 - . 00931 = . 99069

1.6.14.2.1 CHECK VALVE PROBABILITY TIME 2110 HOURS

P= 1-kt= 1 -.37x 10 -6x2110 = 1 -7.81x 10 -4= 1 -.000781

P = . 999219

Probability of either check valve working = 2(. 99922) - (. 99922) 2

P = .9999994

This probability is high enough to be ignored

1.6.14.2.2 TANK PROBABILITY P _1

1.6.15 PHASE 15, SECOND ORBIT ADJUST, TIME =. 021

1.6.15.1 MID-COURSE CORRECTION ENGINE [P = .999730[

1.6.15.1.1 FIRE SQUIB VALVES OPEN

P = . 999997 degraded from 7.1.1 because only 1 back up in system;for 2 sets

P =. 999994

1.6.15.1.2 SERIES ITEMSP= .999742 (See 13.1.1)

1.6.15.1.3 FIRE SQUIB VALVES CLOSED

P =. 999994 (See 15.1.1)

2.0 SYSTEM PERFORMANCE CALCULATIONS

Propulsion requirements for the Voyager spacecraft are predicated upon a requirement of

1860 meters/second (6100 fps) for orbit insertion, 75 meters/second (246 fps) for mid-

course maneuvers and a desired capability of 100 meters/second for orbit adjust maneuvers.

A 3500 pound weight allocation has been made for the complete loaded propulsion system.

Since total maneuvering requirements may not be compatible with the weight limitation, a

first approximation is made by assuming that the first two maneuvering requirements will

be met and by solving for total system loaded weight as various amounts of hydrazine are

carried into orbit. The following values are assumed constant in all cases.

Initial Weight of Over-all Flight Spacecraft 7800 lb

Flight Spacecraft (less propulsion} 2000 lb

Specific Impulse Monopropellant System (IsM) 230 sec

Specific Impulse Retropropulsion System (Isi_) 307 sec
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For a small maneuver where the propellant usage is small compared to the vehicle weight,

the propellant requirement can be estimated conservatively by equating momentum change

to total impulse. Thus, for the midcourse correction of 75 meters/second (246 fps), the

hydrazine requirement (WH) is

W H ISM = /_VM where M is the mass of the Over-all Flight Spacecraft

WH x 230 = 246x7800/32.2

W H = 259 lbs.

For the large retropropulsion maneuver the familiar equation

INITIAL WEIGHT (WI)

5V = Vef f In
FINAL WEIGHT (%0)

will be used. However, there are a number of items to be evaluated in this equation and

certain estimates must be made. First is the effective specific impulse during the retro-

propulsion maneuver. Since both propulsion systems are operating during this time, the

effective specific impulse must be a weighted average based on the relative flow of the two

propellants. The flow rate of the main retropropulsion subsystem is fixed at 2200/307 =

7.15 lb/s ec. However since burn time (BT) is unknown, the average flow rate of the mono-

propellant system is unknown. An estimation for the burn time of 300 seconds permits a
first approximation of

4 x 25 25
WM- 230 +_-^0_u- "52 lb /sec

where 25 pounds of hydrazine is the propellant required for TVC .

w = w + W_ = .52+ 7.15=7.67 lb/sec"'T M 1_

Is M (eft) = . 52 x 230/7.67 + 7.15 x 307/7.67

= 301.5 seconds

Veff= Isxg=301.5x32.2=9700fps

The initial and burnout weights may be broken down as follows

wI--i.03wp+wBus+w_p+wM +w,_,

%o--"03%, -_wBuS+w_p+wM +wH
where

Wp = Propellant used by main retro engine
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1.03 Wp = Propellant Loaded (3% Outage)

W
BUS

WRp

w
W

H

= 2000 lbs.

= Weight of Retropropulsion inert components

= Weight of monopropellant inert components

= initial hydrazine loaded

W, H = hydrazine carried into orbit

By substituting in the general equation and using various values of W_ a curve of Total

Propulsion Subsystem Weight versus Hydrazine carried into orbit (W_t) was derived

(Figure 2-1). It is immediately obvious that with a 3500 pound system limit, no appreciable

quantity of hydrazine can be carried into orbit. To complete an orbit adjust maneuver of

100 meters/second requires slightly more than 100 pounds of hydrazine. This would bring

the total propulsion weight to nearly 3700 pounds. Because of this excess weight the pro-

pulsion system has been sized without allowing for orbit adjust propellants.

From the previous computations burn time for the retropropulsion system was also de-

rived and is indicated in Figure 2-1.

A three percent allowance on total hydrazine is about 13 pounds (as indicated by the fore-

going calculations) which would be carried into orbit. Burntime for this value is

approximately 316 seconds.

Recalculation of retropropulsion propellant requirements based on the above burn time

and a detailed weight breakdown (See following section) gives the following propellant

figures.

TABLE 2-1. PROPULSION SUBSYSTEM WEIGHTS

Retropropellant Tanked

Retropropellant Used

Monopropellant Tanked

Monopropellant Used

2328 lbs.

2260 _s

4441bs.

431 _s.

Subsystem We ights are then

Retropropulsion Dry Weight
Pressurant

Propellant

Midcourse Correction Propulsion Dry Weight
Pre ssur ant

455

8

2328

2791

227

6
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Propellant

Total Propulsion Weight

444

677

3468 lbs.

3.0 COMPONENT WEIGHT AND VOLUME ESTIMATES

3.1 TANKS

Propellant and pressurant tanks are designed to the 2.2 safety factor requirement or to a

minimum gage of . 035, whichever governs. All tanks are fabricated from 6A1-4V Titanium

and are spherically shaped. Propellant volumes and tank characteristics are shown in Table

3-1. A 3 percent ullage volume is provided in the propellant tanks.

3.2 COMPLETE PROPULSION SUBSYSTEM

Estimated weight breakdowns for the Monopropellant and Retropropulsion Subsystems are
shown in Table 3-2.
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TABLE 3-2. PROPULSIONSUBSYSTEM

ESTIMATED WEIGHT BREAKDOWN

Mideourse Propulsion Subsystem

Thrust Chamber w/quad valves (4)

Jet Vanes and Actuators (4)

Propellant Tanks w/bladders (4)

Throttle Valves (4)

Pressurant Tanks (2)

Valves and Piping

Support Structure

47.2

8

34

6

82

30.8

19

277 Ibs.

Retropropulsion Subsystem

Thrust Chamber (1)

Propellant Tanks (4)

Pressurant Tanks (2)

Valves and Piping

Support Structure

156

88

104

31

76

455 lbs.

TOTAL PROPULSION SUBSYSTEM DRY WEIGHT 682 lbs.

/
/
/

/
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C IiV>;234FD105

O

J,

__o_......_ o _ _-._, To_ Dart of diagram: insert division line in all four transfer

function.

$

........ ..: Ve!ocimeter disable signal feeds a flip-flop. _'_'

Pa_e 5 of i':- a bottom of diagram: Change No. 1-4 start indication to engine "ill

v_ : '. start indication.

I
C ! -VS 225FD 7 S 2

:w

Pa::::_ 2 of 98 _ur_r" _s-!: n_ .... ;_'+_ line ...... _"-- =......._Lom z_gnc capsule

blosk o: zlrs- ,evai block diagram. .,.:

. '-..... _ ..... __ -_-_1E£i£_, Change 2B (Ref. Table IV ofRa_a : !_9 of 2o. _cor.,_ _ ...... _h, Line 4:

appa_,c_x_ us 2C _,_er. Table 4-i) _'

:o Tasla 4-" of A-_:ancix _

Change "Table IV of appendix I"

Uo is a --:i-'s_'r -- __ .:_r.._),_ct:.s.

C ..... s-- is an aluminum alloy honeycomb

5 .... :_e 27/2f: : ig: Add t_tla to __b__ 6-i S_ructura! Component Details

.

S

.

":_¢,-__'93 cf "'" foot note: insert -;_ Reference............ :.o.... , Table 4-2 of

V_235FLl$3 .

[m] l''i [K] I $
Ps_:e 124 of !46, first equation: Change to q + g = 0

P_:¢_e i2! cf !46, Section 2-i_ fourth "caragraph_ Line 2: Change "X-Y plane"

l?:s_a 125 of 146.. first equation:

i_J:s:' = r-c1;, =-% .}_""-_

"_-_ 25 of i46, Line 2:

O'._ = % structural dampins

160

Change

Change 2_ = % structural damping to

ii. ?:__e 125 of !46_ Line 2__7_'.

Quadrature Displacement.

Change XQ = Quadrature Displacement to Xys =

±

•I

!
cIrVB235FDI03

I,
I

t

i "_ 17 of 20, paraqra_h 3__Line 2: Change 38.5 inches to 50.0 inches.



7(:......

9

vC-.ii_,iE"

_OOX 3 (Continued)

CIIV_;235FDIO 5
y

_.'_ _-._,_-__._ 3 of 6.: cara_rs._oh, 3. 2.!_ Line 2:

9 Pa_e 3 of 6 .......... _ ....-. _. 'D.... r_.,_, 3.2. !, Line 3:

Delete V.

Change 2.3 to 1.4. _::;i¸

Change one-half atmosphere to one-

.%
P,-2 S c:- 12. ca__-a_:-aoh 3.3. Line 3: Chenga VB238FDI08 to VB234FD!08.

_:_.7:-i£_<:....7-_c__{_i__7i: La.:te=y charger efficiency on last column should read

-,--.-, _. .... ::_&J..-. OL _99

,)
.........."i_nendix A '_ to Appendix I.

. .... - _ _ _ . ......... ._,__o_. Expo--.ent ox e reoui=es additional closing

I : A_ -"
_'__-_-5} . 102: _,_c_ssa of Figure l-i should be labelled. "Array current,

....... _...s from curve parameter identification.

, i____e 6 ,of 22, "oa[-a_raff_. 3,!.5.4 z sixth sentence: Delete sixth sentence and

z_..sti;_ae 'Ui{ortnal!y closed valves are opened by a plunger that shears the

•: s:._ _-:.a and caps to allow a flow path".

.

4.

,


