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FOREWORD

This report describes a Lockheed Missiles & Space Company study of PCM Telemetry
Data Compression. The work was performed for the National Aeronautics and Space
Administration under Contract No. NAS 5-9729 during the period between

15 September 1964 and 15 August 1965.

The authors wish to thank GSFC scientists Gerald J. Hogg and Thomas Lynch for
their significant contributions throughout the investigation, Dr. Jay W. Schwartz for
his valuable assistance on the evaluation of bit plane encoding; and the GSFC S-3 and
S-6 Satellite experimenters for their explanations of the data and the tolerance accu-
racy requirements. We also wish to thank LMSC programmers James L. Hunts,
Gerald W. O'Shaughnessy, and Charles P. Giallanza for their work in developing

the computer programs.
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SUMMARY

Data compression reduces the amount of bandwidth and/ or time necessary for trans-
mitting information between two points, This study, using S-6 (Explorer XVII) satellite
PCM data, evaluated various methods in which this reduction can be achieved and deter-

mined the most effective techniques.,

The following steps were taken:

1) Literature search

2) Compression model selection

3) Compression model and buffer simulation
4) Time and channel identification study

5) Proposal of optimum compression models
LITERATURE SEARCH

The initial step was a search of international literature on data compression, A list
of over 30 different methods was compiled; each was critically examined to determine

its probable merits,
COMPRESSION MODEL SELECTION

The second step was an elimination process to reduce the number of models found
during the literature search to a small group containing those showing the greatest
promise of high performance, Six data compression models were placed in this group
for subsequent testing, These included five polynomial sample selectors and one bit

plane encoding technique,
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COMPRESSION MODEL AND BUFFER SIMULATION

The next step, constituting the bulk of the work, was divided into two parts, (1) a com-

pression model simulation analysis, and (2) an adaptive buffer queuing control study.
Compression Model Simulation Analysis

Using an IBM 7094 digital computer, simulation analyses were made of the compression
models chosen in the second step, S-6 data waveforms used in this simulation were
selected to match particular data classes specified by GSFC, The results of these
tests showed that a particular type of first-order polynomial interpolator achieved the
highest performance in reducing the bandwidth of the S-6 telemetry data, This inter-
polator is capable of fitting straight lines to the sampled data waveform by adjusting

their end-points with four degrees of freedom,

Another part of the simulation analysis investigated the effects of precompression
filtering and adaptive techniques on compression efficiency, and on reconstructed data
fidelity, The results of this investigation indicated that both adaptive and nonadaptive
precompression filtering may effectively enhance data compressor performance., This

portion of the study, however, was too brief to be conclusive.
Adaptive Buffer Queuing Control Study

In this study, simulation tests were performed to determine the type of queuing control,
if any, that would be needed to curtail or eliminate data loss from buffer overflow in an
S-6 satellite telemetry data compressor. The most important result of this study was
that, because of the data stationarity, adaptive queuing control would not be required
for the S-6 data, as long as the buffer readout rate exceeded the average readin rate

by a factor of at least 1/0,98., However, to guard against the possibility of an ab-
normally low readout rate setting, a control system which monitored queue length was

found to be necessary,
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TIME AND CHANNEL IDENTIFICATION STUDY

Relative efficiencies of several methods of time and channel coding were investigated,
It was found that the transmission of a minor frame channel identification word with
each data sample was the most efficient coding technique for S-6 data among those
studied, With this method at least one data/ channel word in each minor frame must
be transmitted in order to maintain a time reference and to identify subcommutated

sensors,

PROPOSAL OF OPTIMUM COMPRESSION MODELS

The final step consisted of a tradeoff analysis of the six compression models tested,
The models which demonstrated the highest overall performance are proposed for com-

pressing S-6 and similar data,

The spread in compression model performance resulting from the tradeoff analysis was
surprisingly low, The first-order, four-degree-of-freedom interpolator mentioned
above is proposed for the groundbased data compression applications, and, because
this model is relatively complex, a simpler, though less effective, first-order inter-
polator is proposed for space applications. Queuing control, time and channel coding,

and reconstruction methods are proposed for both applications,

As the study progressed, it became apparent that the effectiveness of existing compres-
sion techniques on S-6 data was not as high as had been experienced previously at LMSC
on other data., A typical example of the overall bandwidth compression ratios obtained
on the S-6 data is 3.3:1, A number of methods for improving the compression are pro-
posed, including partial data processing before transmission (signal reduction), and
methods to take advantage of the periodicity which exists in many of the S-6 data wave-
forms, It is estimated that with the proper application of these techniques, bandwidth
compression ratios exceeding 10:1 can be achieved on S-6 data, Recommendations

for future study therefore include investigations of these data compression techniques,
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Section 1
INTRODUCTION

Data compression provides an answer to a major problem that currently faces the
field of information technology: the increasing volume of scientific and engineering

data being telemetered and processed,

Telemetry, an absolute necessity to the development of missiles and spacecraft, is a
wasteful user of the radio-frequency spectrum, There are vehicles operating now
that must use several r-f links to transmit all of the data they obtain, As space ex-
periments and vehicles get more complex, the dilemma becomes more serious and
more widespread: masses of data virtually saturate ground networks and tax their
ability for vital real-time data handling, preflight checkout time and costs increase,
demands on data-processing time and facilities exceed practical limits, data-storage

archives overflow,
1.1 PURPOSE

The purpose of this study was to investigate and select optimum techniques for com-
pressing satellite telemetry data and to devise methods for re-establishing the original
time base after compression. Also, the knowledge and art of data compression were
to be extended and new concepts and techniques developed. (Goddard Space Flight
Center (GSFC) S-6, Explorer XVII, satellite data were used in all experiments, )

1.2 SCOPE

This report has eight sections and six appendices, Section 1 introduces the problem,
the project, and the report. The various categories of data compression, such as

signal reduction, adaptive sampling, redundancy reduction and encoding are defined
in Section 2. Appendix I discusses the more than 30 compression techniques found
during the study; Section 3 selects and evaluates those that are most promising,

1-1
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Section 4 evaluates buffer queuing control and Section 5 describes methods of channel
identification and time base reconstruction. Section 6 presents the final analysis,
Conclusions and recommendations are given in Section 7, and concepts and techniques
developed late in the study are summarized in Section 8. As a general rule, figures

are placed at the ends of the sections, rather than within the text.

Appendix I describes and critizes the compression models found during the data-
compression literature search and existing in-house. Appendix II is a table of the
identification numbers assigned to the S-6 data sensors. The techniques used in the
report for encoding bit planes and calculating entropy are described in Appendix III.
Reconstruction and error magnitudes are also discussed. Appendix IV describes the
four computer programs developed to simulate a multisensor data compressor.
Appendix V lists more than 200 references found in the literature search. Appendix VI

presents a glossary to define several terms either unique to this study or not in general
usage.

1.3 PROJECT

The project consisted of six tasks: simulation, search, selection, control, identifica-

tion, and liaison,

1.3.1 TaskI - Compression Model Simulation Analysis

Task I involved a computer simulation and evaluation of various data compression
models applied to the S-6 data. A special computer program was developed to
demultiplex and sort selected data channels, Redundancy reduction and encoding
models were evaluated and compression ratios were obtained for candidate compres-
sion models for the various classes of data identified by GSFC.

1.3.2 Task II - Literature Search

Task II involved an extensive search of international literature to identify all

announced data compression models, The models were compared primarily on

1-2
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compression ratio and the most promising models were evaluated in the Task I com-
puter simulation work. In addition to the literature search, LMSC provided monthly
summaries of the LMSC Independent Development and Independent Research activities
conducted through the study. As a conclusion to the literature search and Task I, LMSC

was required to predict the probable future of data compression.
1.3.3 Task IIl - Selection of Optimum Models

Task III determined the optimum data compression model based on the following mini-

mum criteria:

e Compression ratio
o Influence of noise in the raw telemetry data

e Data resolution and accuracy considering
peaks and rms error

e Ease of data reconstruction
e Effectiveness with adaptive techniques

1.3.4 Task IV - Adaptive Buffer Queuing Control

This task involved the development and investigation of adaptive buffer queuing control
techniques for minimizing data loss due to buffer overflow while keeping data fidelity
degradation to a minimum. Three new computer programs were developed for this
work, one for demultiplexing, one for compression, and one for reconstruction.

1.3.5 Task V - Time and Channel Identification

This task developed ways for coding compressed data to make the reconstructed time

base equivalent to conventional PCM, found methods to identify channels, and deter-

mined the influence of time and channel coding on overall compression ratios.
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1.3.6 Task VI - Computer Programs

This task consisted of sending to GSFC FORTRAN statements of computer programs
developed during the study.

1.4 BACKGROUND

Over the last 20 years, Lockheed has developed numerous bandwidth reduction devices
for aircraft, missile, and satellite programs. In 1961, LMSC became actively engaged
in redundancy reduction as a means for alleviating the data explosion problem referred
to above. Since then, LMSC has written and published more than 50 reports and papers

on data compression and has developed seven operational compression systems.

Early computer simulations confirmed that required bandwidth and/ or transmission
time could be reduced substantially by using a zero order predictor. Later studies
explored the effectiveness of other predictor and interpolator compression models and
theoretical studies were made of buffer queue behavior and compression efficiency.
Nonstationarity of telemetry data, however, caused discrepancies between the theo-
retical and empirical results. The Wiener predictor and other polynomial predictors
were investigated under the LMSC Independent Research Program using stationary

artificial data. Due to internal funding limitations, these studies were not completed.

The interpolator was refined by studies conducted under the LMSC Independent Develop-
ment Program. Several interpolators were found which consistently provided higher
compression ratios than the early zero order predictor. Recent work has been devoted
to improving overall compression efficiency by means of adaptive aperture and adap-
tive filtering techniques. A rather extensive set of software programs have been

developed for compression and reconstruction of telemetry and video data.
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Section 2
CATEGORIES OF DATA COMPRESSION

This section categorizes, defines and gives examples of the basic techniques of data
compression, Categories are signal reduction, adaptive sampling, redundancy reduc-

tion, and encoding.
2.1 GENERAL

Data compression is a technique for reducing the amount of bandwidth necessary for
transmission of a given amount of information in a given amount of time, or, for re-

ducing the amount of time necessary for the transmission of a given amount of informa-

tion in a given bandwidth. This must be accomplished without sacrificing the information

requirements of the user. Four basic categories of data handling come under this
definition: signal reduction, adaptive sampling, redundancy reduction and encoding.
Figure 2-1 shows a schematic classification of data compression models by category.
It is shown later in this report that two or more categories can be combined for im-
proved data-compression efficiency. Figure 2-2 shows an adaptive telemetry system

example that combines all four.
2.2 SIGNAL REDUCTION

Signal reduction is a technique for reducing the bandwidth required for transmission
of data by means of an irreversible transformation, Although the term "entropy re-
duction" (References 24 and 192) has been used to identify this category of data
compression, this report prefers the term "signal reduction' to avoid a dual defini-
tion of entropy. If a signal reduction process does reduce entropy, it is considered
to be unintentional, Signal conditioning devices producing reductions in information
bandwidth are included in this category.

N
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Signal reduction represents the oldest and most widely used form of data compression,
Spectrum analyzers, rectifier-filters, phase comparators, etc., are typical examples
of the virtually unlimited number of different techniques which have been used or could
be devised. It is generally considered good design practice to use a signal reduction
process wherever practical since, in many applications, it will reduce vehicle power,
size and weight requirements. In most circumstances, inclusion of signal reduction
is complimentary to other forms of data compression. Since the information desired
from each sensor may be different, signal reduction devices are usually tailored to

each data source.

2.3 ADAPTIVE SAMPLING

Adaptive sampling is a technique for adjusting the sampling rate of a given sensor to
correspond to its information rate. In this manner, the total sample rate of all sensors
is adjusted to conform with the channel capacity (Reference 217) of the data link., As

in signal reduction, the definition of information for each source can be different, re-
quiring different criteria for measuring information rates. Since the overall objective
of adaptive sampling is to improve communication efficiency by minimizing the channel
capacity requirements, this report recognizes this class of data management as a
category of data compression. Adaptive sampling is a reversible process since it is
possible to reconstruct the original signal waveform within the error requirements

stipulated by the user (and the information rate analyzer).

Figure 2-1 divides adaptive sampling into two categories, telemetry format variation
by ground station control, and self-adaptive sampling. The former is straightforward;
an example of the latter is shown in Figure 2-3. Note that a separate analyzer is
needed for each sensor corresponding to the information required by each user. The
sampling frequency of each gate is assumed to be related to the short-duration frequency
components of the desired information, and the relative priority of the sensor. To
measure or determine the instantaneous frequency spectrum of a source, a finite

period of time is required. Considerable error due to aliasing can result if an abrupt
change in data activity occurs unless a delay is placed between the sensor and the
multiplexer gate to store the data until corrective action (such as changing sampling

frequency) can be taken.
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The system shown in Figure 2-3 is somewhat inflexible because the multiplexer out-
put sample rate is constant. Since all sampling must be synchronized to the speed of
the multiplexer, a nonvarying output rate restricts the sampling times and maximum
sampling rate of a sensor. This inflexibility could be overcome by (1) using variable
analog delays for each sensor in place of the constant delays shown in Figure 2-3,

(2) using a variable-speed multiplexer, or (3) using a combination of (1) and (2). In
the second technique, a queuing buffer must be placed between the multiplexer and the
transmitter so that the variable-rate data samples emerging from the multiplexer can
be transmitted at a constant rate.

2.4 REDUNDANCY REDUCTION

Redundancy reduction is a technique for eliminating data samples that can be implied
by examination of preceding or succeeding samples, or by comparison with arbitrary
reference patterns. The basic difference between adaptive sampling and redundancy
reduction is that in adaptive sampling, the sampling rate of the original data waveform
is varied, while in redundancy reduction the waveform is initially sampled at a con-
stant rate and nonessential samples eliminated later.

The concept of redundancy reduction is designed to overcome many of the problems
inherent in adaptive sampling. Since it is possible for redundancy reduction to achieve
results similar to adaptive sampling the former has at times been classified as a form
of adaptive sampling. As in the case of adaptive sampling, the significant sample rate
is assigned in accordance with the information rate of each sensor. In this sense re-

dundancy reduction is also adaptive. This category is also reversible.

Shannon (Reference 217) has defined redundancy as "that fraction of a message or
datum which is unnecessary and hence repetitive in the sense that if it were missing
the message would still be essentially complete, or at least could be completed".
Redundancy exists whenever the sampling frequency of a multiplexer exceeds the fre-
quency required to describe the input function in accordance with the user accuracy

requirements.
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The choice of reference patterns used to detect redundancy is virtually unlimited.
Polynomials, exponentials, and sine waves are good examples of reference patterns
by which real data can often be approximated. Arbitrary cyclic patterns such as the
periodic components of an electrocardiogram or a commercial television picture, for
instance, can be used as references to detect redundancy data from a given sensor,
The process of redundancy reduction can be achieved by means of "prediction' from

a priori knowledge of previous samples, or by a posteriori "interpolation' from future
samples.

2.4.1 Error Characteristics

For redundancy reduction to achieve reasonable compression efficiencies, it is often
necessary to introduce certain errors. These errors are caused from filtering and/or
thresholding within the redundancy reduction process and do result in slight reductions
in the source entropies. Why then, are not adaptive sampling and redundancy reduc-
tion processes classified as subsets to signal reduction? Unlike signal reduction,
adaptive sampling and redundancy reduction are designed such that the original source
waveforms can be reconstructed with a guaranteed fidelity. However, since errors are
introduced during these compression processes, this goal cannot be achieved absolutely.
It must b e recognized that it is impossible to design any instrumentation or data ac-
quisition system which does not have error. The design objectives of adaptive sampling
and redundancy reduction are identical to the design objectives of any instrumentation

system; i. e., to supply the data within the accuracy requirements of the user.

2.5 ENCODING

Encoding is a technique for transforming a given message into a corresponding sequence
of code words. As in the cases of adaptive sampling and redundancy reduction, an effec-
tive coding technique requires sequential message words to exhibit a high average cor-
relation. Consequently, to achieve the desired coding it is desirable to know the source
statistics. If statistics are stationary and are known a priori, a nonadaptive encoding
procedure can be specified. In many cases, however, the statistics are not well known

to the experimenter, and/or the statistics of the measurement source may be
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nonstationary. Under these conditions a nonadaptive encoding procedure can result
in a bandwidth expansion instead of a bandwidth reduction. To circumvent this prob-
lem, adaptive encoding techniques can be devised whereby the code assignments are
based upon the most recent statistic measured by the encoder itself. Encoding is

generally a reversible process.
2.5.1 Classification

It is possible to classify encoding as a redundancy reduction process. Similarly, re-
dundancy reduction can also be classified as an encoding process. In most cases the
differences between redundancy reduction and adaptive encoding are small. In fact it
is possible to select examples in which no differences exist between these two cate-
gories. The primary difference pertains to the form of redundancy which is to be
removed and other system considerations, such as time delay, response to major

changes in stationarity, and the message structure (format) of the transmitted infor-

mation.

In nonadaptive encoding the estimated amplitude probability distribution of the message

sequence or run length probabilities are often used as a basis for coding, i.e., short

code words are assigned to message words having the largest probability of occurrence

and long code words are assigned to message words which infrequently occur. Thus,

a measure of redundancy is assumed to be the frequency of occurrence of each set of

data values. On the other hand, the redundancy reduction category achieves compres-

sion based on the assumption that the data amplitude will remain the same, or nearly
the same, for long durations, or that the data sequence will continue to change at a
prescribed rate.

2.5.1.1 Data Stationarity. The operations involved in redundancy reduction are not
influenced by abrupt changes in data statistics. On the other hand, many forms of
adaptive encoding are organized so that rules for encoding change in accordance with
measured statistics. The measurement of a new set of statistics following a major
change in data characteristics requires considerable time and can result in low com-

pression efficiency during the measurement period. For this reason, certain forms
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iof adaptive encoding are restricted to quasi-stationary classes of data (Reference 24),

2.5.1,2 Transmission Formats., The production of code words of varying length for
varying input message words is characteristic of nonadaptive encoding. In the case
of adaptive encoding, output code words are also variable in length, but for certain
models the number of bits in the output code words may be less than the number of
bits in the input messages. Redundancy reduction, on the other hand, maintains a
constant length for each transmitted code word, the number of transmitted code words
always being less than or equal to the number of input message words. The constant
word length characteristic has been imposed to minimize the problems of time and

channel identification and word synchronization.
Because of the above differences, encoding and redundancy reduction have been

classified as separate data compression categories in this report. The possibility of

cascading redundancy reduction and encoding are discussed in later sections.
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Section 3
SELECTION AND EVALUATION OF COMPRESSION MODELS

Over 30 data compression techniques exist for evaluation by this report either as a
result of in-house projects or the literature search. This section selects, compares,
and evaluates the more promising ones in the context of nonadaptive and adaptive com-

pression. It also discusses nonadaptive and adaptive filtering.

A basic objective of this study was to investigate the correlation of data compression
models with classes of data specimens. Since previous data classification techniques
using information such as data spectral and statistical properties have had limited
success, this study took a more straightforward approach.

First of all, five data classes were postulated, each having data with a characteristic
waveshape:

e Class 1, Squarewaves and Step Transients

® (Class 2, Constant or Slowly Drifting Amplitudes

® (Class 3, Exponential Transients

e (Class 4, Sawtooth Waveforms

e (Class 5, Waveforms not Included in Classes 1 through 4

Examples are given in Figure 3-1.

Next, it was conjectured that in most instances, , all specimens of data falling into a
given class would be most efficiently compressed by only one compressor configura-
tion and the compressor performance would be predictable. Experiments were then
made to see if this were true. Since a telemetry system usually conveys many differ-
ent classes of multiplexed data from the same vehicle, it is desirable in the interest
of simplicity to use one compression model for all classes. Experiments were made

to find if this is possible.
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Data Class 1 — Squarewaves and step-like transients

T a T ———

Data Class 2 — Constant or slowly drifting amplitudes

Data Class 3 — Exponential transients

Data Class 4 — Sawtooth waveforms

N

Data Class 5 — Waveforms not included in Classes 14

Fig. 3-1 Data Classes

3-2

LOCKHEED MISSILES & SPACE COMPANY




3.1 MODEL SELECTION

To understand the reasoning behind the selection, it is first necessary to have a general
understanding of redundancy reduction methods and techniques. (A detailed discussion
of each technique is given in Appendix 1. )

3.1.1 Redundancy Reduction Techniques

Redundancy reduction techniques can be divided into polynomial and nonpolynomial
techniques. The polynomial techniques can be further divided into subclasses accord-
ing to the order of the polynomial used in approximating data, zero order and first
order, for instance. Also, both polynomial and nonpolynomial compression techniques

can be further divided into two categories, prediction and interpolation.

3.1.1.1 Prediction. Prediction of the magnitude of future data samples requires some
knowledge of the data history. The history used can be in terms of statistics or repe-
titious patterns in data acquired during previous flights or experiments. This history
can also be obtained from data samples recently generated by the particular sensor in
question, The manner in which these histories are used to predict a time function is
limited only by the practical considerations of hardware simplicity and prediction
efficiency. Such factors as noise, frequency response, errors and data significance
must be considered when selecting a prediction model. A prediction is a guess, and,
to be effective, requires that the characteristics of data remain relatively constant
from one time interval to the next. If data is varying in a random fashion as if per-
turbed by high frequency noise, redundancy-reduction efficiency of a predictor is
generally low for reasonable system accuracies. By examining the behavior of a
predictor applied to real data, one can see that a greater number of redundant samples
can be eliminated if both future and past data samples are used to eliminate redundant
samples. If the decision concerning the redundancy of a data sample can be deferred
until subsequent data values are known, there is a greater likelihood that the sample
in question can be classified as redundant,

3.1.1.2 Interpolation. The process of eliminating redundant data samples by after the
fact, a posteriori, polynominal curve fitting is termed interpolation. Like the predictor,

the interpolator can be applied to sinewaves and exponentials as well as polynomials.
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3.1.2 Choice of Compression Models

The first step in the selection process was to critically examine each compression
model found during the literature search. (Each is detailed in Appendix I and listed
in Table I-1.) The next step was to reduce these models to a manageable number,

consisting only of those which the examiners considered to be the most promising.

The rationale used in this selection process is presented in the following paragraphs.

For ease of comparison the compression models were grouped into the following
classes and subclasses (see Table I-1):

e Adaptive sampling
o Redundancy reduction

e Zero and first order polynomial
predictors and interpolators

e Higher order polynomial predictors
and interpolators

e All other predictors and interpolators
e Encoding

The first class considered was adaptive sampling. The associative data compressor,
(designated as Model No. 1 in Table I-1) and transient event recorder, Model 3, were
rejected because their applications were too limited. Adaptive (format) telemetry,
Model 2, was rejected because man is an essential part of its feedback link., Self-
adaptive telemetry, Model 4, was eliminated mainly because of the difficulties
anticipated in implementing satisfactory analog delays.

The second class considered was that containing zero and first order polynomial pre-
dictors and interpolators. The floating aperture, cumulative difference, zero order
predictor (ZOP), Model 7, was selected primarily because of its past performance

and ease of implementation and was selected over the other zero-order, polynomial

predictors, Models 5, 6, and 8, because of its superior compression efficiency and

error characteristics, Of the zero and first order polynomial interpolators con-

strained by peak error, the computed sample transmitted, zero order interpolator

(ZOI), Model 21, and the computed sample transmitted, four degree of freedom, first
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order interpolator (FOI4DG), Model 23, were selected because they are both optimum
compression models. The last redundant sample transmitted, zero order interpolator,
Model 22, was rejected because its performance was found to be inferior to that of the
ZOI selector. Because of their demonstrated insensitivity to low level sensor noise
and their high compression efficiency, the disjoined line segment first order inter-
polator (FOIDIS), Model 25, and the offset-out-of-tolerance (direction indicated) first
order interpolator (FOIOCOT), Model 27, were also chosen. The direction-indicated
version of the latter selector was chosen over the last-slope version, Model 26, be-
cause of its higher compression efficiency. The first order predictors, Models 9-14,
and the joined line segment, first order interpolator, Model 24, were rejected due to
their tendency to oscillate in the presence of low level sensor noise. The last data
sample transmitted, first order interpolator, Model 28, was rejected due to its in-
compatibility with adaptive aperture techniques. The least squares polynomial inter-
polator, Model 20, was not chosen because of its extreme complexity. The higher-
order polynomial predictors, such as the second-order predictor, Model 15, were not

used due to their susceptibility to low-level noise.

Compression models using more classical methods of prediction and interpolation, i.e.,
the Wiener predictor, Model 16, the adaptive nonlinear predictor, Model 17, and the
finite difference interpolator, Model 19, were rejected primarily because they are
relatively unable to deal with nonstationary input data, exhibit relatively low com-
pression ratios, are susceptible to low-level sensor noise, and may be difficult to
implement. The exponential predictor, Model 18, the exponential interpolator,

Model 29, and the adaptive reference pattern interpolator, Model 30, were all devel-
oped late in the study and could not be evaluated. They do, however, show promise

in compressing data from Class 3 and, perhaps, data from other classes as well.

From the encoding techniques, bit plane encoding, Model 35, was selected because it
had shown promise as being competitive to redundancy reduction in compression effi-
ciency, reconstructed data fidelity, and simplicity, Delta modulation, Model 31, was
rejected because of its relatively low anticipated compression efficiency. Difference
modulation, Model 32, was not chosen because it is susceptible to cumulative error.
Probabilistic encoding techniques, Models 33 and 34, were eliminated primarily be-
cause of their variable word length characteristic.
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This elimination process left the following six compression models:

® Model 7: Zero Order Predictor (floating
aperture), ZOP

e Model 21: Zero Order Interpolator
(computed sample transmitted), ZOI

e Model 23: First Order Interpolator (four
degree of freedom), FOI4DG

e Model 25: First Order Interpolator (dis-
joined-line segment), FOIDIS

e Model 27: First Order Interpolator
(offset-out-of-tolerance), FOIOOT

e Model 35: Bit Plane Encoding
3.2 DATA SELECTION

The first major step in the experimental procedure was to select portions of Goddard
S-6 Satellite data to be used in the single channel compression model evaluation, The
tape chosen by Goddard experimenters was Goddard Buffer Tape No. 59 because it
contained relatively few periods of word sync loss. Tape begin time is 10 days, 23
hours, 35 minutes, 17.913 seconds. The tape was decommutated and a standard
single channel T-3 format tape written from it so that existing Lockheed computer
programs could be used without modification. Each data word on the original tape
contained nine bits., The resulting amplitude range of 0-511 was left undisturbed for

all sensors.

A representative selection of sensors was made from the decommutated tape and por-
tions were plotted using the 4020 plotter. The resulting plots were inspected visually
and portions of three sensors selected as containing data representing four of the five
data classes. The sensors, their sampling rates, the time periods relative to the
beginning of the tape, and the data classes represented are shown in Table 3-1.

Plots are given in Figures 3-2, 3-3 and 3-4. More detailed information concerning
these sensors may be found in Appendix IL,
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Table 3-1

SENSOR NUMBERS AND DATA CLASSES

Sensor | Sampling Time Data Classes
Rate Period, sec. Represented
Samp/ sec. | Begin | End
9 60 104 136 1,
10 20 72 168 1, 2,3
11 60 104 136 1, 2,5

(]
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None of the plotted data was felt to be sufficiently representative of Class 4 to warrant
study. A small portion of Sensor 23, S-3 Goddard Buffer Tape No. 606 was found to
contain data belonging to Class 4, but was not of sufficient extent to be used. Conclu-
sions concerning the compression of Class 4 data will therefore be made on the basis

of judgment and previous experience, and not on the experimental results of this study.

3.3 NONADAPTIVE COMPRESSION

The data compression models listed at the end of Paragraph 3, 1. 2 may be used either
with or without the aid of adaptive aperture and adaptive filtering techniques. This
paragraph examines the performance of the chosen compression models without the
incorporation of these techniques. Single-channel experiments concerning their use

are discussed in Paragraph 3. 5.

3.3.1 Predictors and Interpolators

3.3.1.1 Experiment: Comparison of Predictor and Interpolator Efficiencies. In

order to gain a rough idea of relative compression efficiencies, a number of compres-
sion simulations were made on the entire chosen portions of Sensors 9, 10 and 11,
using the first five selectors listed above with several different peak error constraints
(tolerances), The compression ra‘ciosl obtained and the rms errors between original

and reconstructed data are summarized in Table 3-2,

Results. A comparison of the zero order selector results summarized in Table 3-2
indicate that for a given peak error constraint, the zero order interpolator produced
significantly higher compression ratios than did the zero order predictor and that for

a given peak error constraint, the use of the zero order predictor resulted in an rms
error that was significantly less than the zero order interpolator. Although rms error
is presumably a measure of reconstructed data quality, it appears that the reconstructed
data resulting from the use of both the zero order predictor and interpolator are visually
equivalent, in spite of the differences in rms errors.

The compression ratios, as calculated, are equal to the ratio of input data points to
compressed output line segments, Conversion to bandwidth compression ratios will
be discussed in Section 5.
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Table 3-2
COMPRESSION CHARACTERISTICS, SENSORS 9, 10 AND 11

Table 2

COMPRESSION CHARACTERISTICS, SENSORS 9, 10 and 11

COMPRESSION RATIO/RMS ERROR

SENSOR | TOLERANCE

ZOP ZOI FOIDIS FOIOOT FOMDG

1 - 2.13/.410 | 4.95/.613 - -
2 2.61/.612 | 5.09/.884 | 8.84/.921 | 5.69/.948 | 9.75/.932

° 3 - 6.79/1.21 {11.31/1.31 - -
4 5.66/1.41 | 8.65/1.67 |13.54/1.67 | 9.05/1.69 | 15.42/1.64

1 - - - - -
2 3.42/.524 | 6.42/.898 (10.76/.917 | 7.29/.994 | 11.99/.953

10 ] ~ - ~ ~ ~
4 7.16/1.15 | 9.75/1.52 | 15.30/1.69 | 9.71/1.89 | 16.31/1.64

1 - - - - -
2 2.73/.546 | 6.00/.929 |11.50/.950 | 7.60/1.01 | 13.54/.992

H 3 - 7.08/1.10 | 14.21/1.19 - -
4 6.32/1.14 | 7.90/1.38 | 15,14/1.43 {10.26/1.68 | 17.45/1.37

NOTE: RMS error expressed in terms of data units

A rough comparison of the first order selector results summarized in Table 3-2 indi-
cates that for a given peak error constraint, the four degree of freedom interpolator
produced significantly higher compression ratios than did other interpolators., Also,

for a given peak error constraint, there appears to be no consistent advantage in

terms of rms error to be gained by using any one of the various interpolators.

It should be noted at this point that comparisons on a compression ratio basis between

zero order and first order selectors are of little significance. A truly meaningful

comparison between selectors must be made in terms of bit or bandwidth compression
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ratios. Since the determination of these bandwidth compression ratios requires a
discussion of coding and addressing, calculation of bit compression ratios will be
deferred until Section 5.

3.3.1.2 Experiment: Comparison of Interpolator Efficiencies On Data Classes. The

next step in the experimental procedure was to gain some idea as to the relative com-
pression efficiency of zero order and first order interpolators on the various defined
classes of data. With this objective in mind, several computer compression simula-
tions were made on the available classes of data, using the zero order and first order
interpolators, with equivalent peak error constraints of three units. Plots of repre-
sentative original and reconstructed data are shown in Figures 3-5 through 3-12. The
original data is shown displaced upward and the reconstructed data displaced downward.
In each instance, short term compression ratios2 were calculated as a function of time
as a means of selector comparison. Plots of the log of short term compression ratios
versus time for examples of four data classes are shown in Figures 3-13 through 3-16.
Due to a plotting program idiosyncrasy, for those time intervals during which there
were no compressed output points, the associated log short term compression ratio

is plotted as zero rather than the correct infinite value, A summary of overall com-
pression ratios obtained using ZOI and FOIDIS on the various data classes is given in
Table 3-3.

Results, For several classes of data, more than one data specimen was evaluated,
In these cases, the maximum and minimum compression ratios obtained for a given
tolerance differed by as much as several hundred percent. An example of this varia-
tion is seen in the case of compression of two examples of Class 1 data by FOIDIS in
Table 3-3. The first example yielded a compression ratio of 10. 04 while the second
example yielded a compression ratio of 4. 42.

2 Short term compression ratio is calculated at regular intervals and is equal to the
ratio of the count of input points for the preceding interval of time to the count of
compressed output line segments for the preceding interval of time,
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Table 3-3
COMPRESSION RATIOS VS DATA CLASSES

CLASS EXAMPLE SENSOR TIME SEGMENT, Z0l1 FOIDIS
SEC
1 a 9 104-116.5 10.04
b 10 87-120 5.079 4.42
2 a 11 104-120.5 4.90 5.62
3 a 9 116.5-133 5.70
b 10 79-87 5.64 5.50
c 10 120-142 5.56 4.43
5 a 11 130.5-136 2.78 6.44

Note: Tolerance is two data units in all cases

This spread can perhaps be explained by considering the proposed data classification
technique in some detail. The classification of a given data specimen must be made on
the basis of the tolerance to be used in compression aswell as the waveform's general
shape. For very small tolerances, almost any data specimen appears noisy and must
be included in Class 5. Similarly, for very large tolerances, almost any data speci-
men looks well behaved and can be included in Classes 1 or 2. The most significant
feature of the S-6 data used in this portion of the study was the wild points due to bit
drop out. It was not possible to choose a tolerance large enough to disregard these
wild points without throwing away desired data information. Moreover, upper bounds
on permissible tolerances had been fixed by conferences with the experimenters. For
this reason, compression ratios were affected strongly by the presence or absence of

these wild points, as well as the actual sensor waveform between wild points.
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It should be mentioned that, of those sensors which were plotted, very few parameters,
other than housekeeping parameters, appeared to fall entirely into any one data class
other than Class 5. Although many sensors appeared to progress regularly through a
consistent series of data classes, very few parameters remained characteristic of

only one data class, other than Class 5, for an appreciable amount of time.

3.3.2 Bit Plane Encoding

Having applied several predictors and interpolators to the chosen specimens of data, l

the next step was to compare the results with bit plane encoding.

Bit plane encoding, while a data compression technique, is in a different category than
the five predictors and interpolators of Paragraph 3.3. These predictors and inter-
polators are essentially devices which perform operations on raw data while bit plane
encoding can be applied to compressed data as well as raw data. (In this study, bit
plane coding was applied only to raw data which was in either straight binary or cyclic
Gray coded form.) It is reasonable to expect that coding techniques such as bit plane
encoding, when effectively applied to compressed data resulting from an initial appli-
cation of redundancy reducing techniques such as ZOI or FOIDIS, would allow the con-

version factor between bit and word compression ratios to approach one.

One bit plane encoding technique has been described by Schwartz in Reference 214 and
another technique described by EMR in Reference 59. The former was adopted, in
part, for this experiment. The experimental results given by Schwartz, however,
were relative to a bit plane encoding technique which retained only statistical data in-
formation and did not allow data reconstruction. It is difficult at best to make a
meaningful comparison between a bit plane encoding technique not allowing reconstruc-
tion and the previously described predictors and interpolators, all of which allow re-
construction. For this reason, Schwartz's technique was expanded to allow data
reconstruction within an arbitrary peak error. The actual bit plane encoding algorithm
used is described in Appendix III.
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3.3.2.1 Experiment: Bit Plane Encoding. Those portions of Sensors 9 and 11 data

between 104 and 136 seconds were coded both in straight binary and cyclic Gray coded
form. For each form, entropy calculations were made using both a zero order and a
first order Markov source model, These entropy figures were then used to calculate
corresponding theoretical upper bounds on the obtainable compression ratios, con-
sistent with the given data source models. See Paragraph IIL. 2, Bit plane encoding
was then applied to both the straight binary and Gray coded data, A summary of bit
plane encoding compression results, entropy calculations, and previously obtained re-
sults is given in Table 3-4.

Most compression models yield word compression ratios not translatable into bit com-
pression ratios unless predicated upon a specific system and coding configuration. A
nominal conversion factor has been determined for ZOI and FOIDIS, however, equating
bit compression ratio with 9/ 13 word compression ratio in the case of the floating
aperture zero order interpolator (zOJ), and equating bit compression ratio with 9/ 22
word compression ratio in the case of the disjoined line segment first order interpolator
(FOIDIS)>.

Results. For the data specimens used in this experiment, both the binary and Gray
coded versions of bit plane encoding were more effective than either ZOI or FOIDIS
when a tolerance of 0.5 was used, and the Gray coded version exceeded both redundancy
reduction selectors for a tolerance of 1. 5. Although the behavior of bit plane encoding
compression ratios with larger tolerances should be investigated, the results of this
experiment indicate that the compression efficiency of bit plane encoding exceeds that
of ZOI and FOIDIS for the tolerances chosen. It is possible that the total number of
bits in the compressed output of ZOI could be reduced as much as 40 percent by em-
ploying finer quantization (see References 91 and 109), but it is also possible that the
performance of bit plane encoding could be increased by employing more efficient

coding techniques.

3 Conversion factor for ZOI assumes nine bits/data magnitude and four bits /channel
and frame ID. Conversion factor for FOIDIS assumes eighteen bits/data magnitude,
and four bits/channel and frame ID. Additional sync bits, etc., have been disregarded
in each case. This is roughly compatible with the Goddard S-6 multiplexing format.
More complete explanations for these conversion factors are presented in Paragraph 6.1.
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For the data specimens used in this experiment, the rms error between the original
and the reconstructed data was somewhat less than one-half the tolerance used in com-
pression, using ZOI and FOIDIS. Although the rms error due to bit plane coding was
not determined empirically, a good theoretical approximation is: tol = 0.5, rms

error = 0.5; tol =1.5, rms error = 1.12. This approximation is discussed in Para-
graph ITI. 3. These theoretical projections indicate that rms error incurred in bit
conclusions regarding the relative fidelity of reconstructed data obtained from com-
pression by a polynomial interpolator and by equivalent bit plane encoding must await

further experimentation, however.

3.4 NONADAPTIVE FILTERING

In general, there are at least two possible benefits to be realized by compressing

data which has been digitally filtered: higher compression ratios and greater recon-
structed data fidelity. Reconstructed data resulting from compression of filtered data
may be more representative of desired data information than reconstructed data result-
ing from compression of unfiltered data. This fact is supported by results in Reference
244 describing the compression of artificial data with and without additive low-level
noise. It was assumed that the original S-6 analog data was sampled at a rate suffi-
ciently high to reduce aliasing of both information and noise to a negligible level. It
was also assumed that this sampling rate was higher than the Nyquist rate dictated by
the information bandwidth and that digital filtering or smoothing could be used to
attenuate any high frequency noise which was present while passing desired information
unattenuated for compression. Two nonadaptive digital filtering techniques were ap-

plied to selected portions of the S-6 data:

o Simple Averaging
e Exponential

3.4.1 Simple Averaging Filter

Simple averaging filtering consists of replacing each unfiltered data sample by an
ordinary average of the given sample and a number of its unfiltered neighbors. If

a_1F
vTiv
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Xn' and Qn are the unfiltered and filtered nth data points, respectively, and if 2N + 1)

samples are to be included in the average, then

N
!
T ENFD Z Xnti
i=-N
This digital filtering operation is a low pass filtering operation, the degree of low pass

filtering increasing with an increasing number of points included in the average.

3.4.2 Exponential Filter

Exponential filtering consists of replacing each unfiltered data sample with a weighted
average of the present data sample and all previous data samples so that the weighting
of previous samples decreases geometrically into the past. This may be done in a
recursive manner as follows. If X and Qn are the unfiltered and filtered nth data
points, respectively, and if a and b are two constants chosen by the user so that
a+b =1, then

A A

=ax +bx
nan n-1

This exponential filter behaves like a sampled R-C filter with equivalent time constant
T =_-1/1nb, Reference 155 shows it to be essentially a low pass filter, the degree of

low pass filtering increasing with increasing b.
3.4.3 Experiment Organization

The chosen portions of Sensors 9, 10 and 11 were initially filtered with the simple
averaging filter using three then five data points. The same portions of data were
then filtered with the exponential filter using equivalent time constants of one, two,
three and five data sample periods. In each case, filtered data tapes were written for
future processing. Filtered data was plotted by the SC4020 plotter for each filtering
technique. These plots were inspected visually and a subjective selection was made
of those degrees of filtering which appeared to best filter out unwanted noise while

passing desired data information. For the data used in this study, it was decided
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that the simple averaging filter incorporating three data samples in the average and

the exponential filter with a time constant of one sample period were optimum.

An important part of the filtering experiments was the filtering of wild points caused
by transmission noise. (These points were caused by noise in the r-f link and were
not present in the vehicle,) In many instances, these points were as much as one-half
of full scale removed from immediately adjacent sample points, The effect of filtering
a wild point by either digital filtering technique was to produce a transient waveform of
reduced amplitude compared to the original wild point, and lasting over many sample
periods. In the case of the averaging filter, the transient is flat-topped and lasts

over as many sample periods as samples included in the average. In the case of the
exponential filter, the transient is a decaying exponential with a time constant equal

to the time constant of the particular filter used. Examples of filtered wild points

and resulting transients are shown in Figure 3-17.

3.4.3.1 Experiment: Effects of Precompression Filtering. The portions of Sensors
9, 10 and 11 which had been filtered with the two optimum filters were compressed

with several apertures by ZOI and FOIDIS to determine the effect of precompression

filtering on their compression efficiencies. In each instance, the resulting reconstructed

data was statistically compared with the unfiltered original data and rms errors and
error distributions were calculated. This experiment is summarized in Table 3-5

and Figures 3-18 through 3-20. Examples of compressed and reconstructed data are
shown in Figure 3-21, where original, uncompressed data is shown displaced upwards,

while the filtered, compressed and reconstructed data is shown displaced downwards.

Results. In almost every instance, the effect of both precompression filtering techni-
ques was to significantly raise the compression ratios obtained by using either ZOI or
FOIDIS on unfiltered data. In the case of Sensor 10, however, the compression of

exponentially filtered data resulted in lower compression ratios than the compression

of unfiltered data.
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Table 3-5
COMPRESSION RATIO AND RMS ERROR SUMMARY, FILTERED DATA

sunson | UNFILTERED | EXEONENTIMLLY|  FTBRED |serecTon|IOLE™
DATA
N RMS N RMS N RMS
ERROR ERROR ERROR

5,09 . 884 5.54 9.238 6.61 | 14.923 Z0OIX 2
9 8.65 | 1.672 9.19 9.399 10.50 | 15.004 ZOl1 4
8.84 . 922 9.86 9.260 11.62 14.920 FOIDIS 2
13.54 1.665 15,13 9.450 17.25 15. 024 FOIDIS 4
6.42 . 898 6.25 13.636 7.59 22,678 Z01 2
10 9.75 1.517 8.69 13.716 10.05 22,766 Z0l1 4
10.76 L917 10.15 13.646 12,32 22,676 FOIDIS 2
15,30 1.695 13.72 13.715 15.60 22,1731 FOIDIS 4
6.00 .929 7.77 6.973 10.12 12.926 Z0l1 2
11 7.90 1,382 10.15 7.107 12.41 12,993 Z0l1 4
11.50 .950 14.63 6.999 17.62 12.924 FOIDIS 2
15,19 | 1.434 18.10 7.144 21.28 | 13.004 FOIDIS 4

NOTE: N = (No. data samples in/No. line segments out)

Rms error is in terms of data units

The cause of lower compression ratios when exponential precompression filtering was
used on data from Sensor 10 could be the relatively high density of wild points contained
in data from this sensor. Because of the high density of wild points in the original data,
a significant fraction of the filtered data consisted of transients resulting directly from
the filtering operation. The transients resulting from use of the simple averaging filter
were flat-topped and easily compressed by both the zero and first order interpolator.

In the case of the exponential filter, however, the transients were exponential in shape,
and were not easily compressible by either the zero or first order interpolators.
Therefore, the explanation for lowering of compression ratios when using exponential
filtering is that exponential transients are relatively difficult to compress as compared

with flat-topped transients resulting from averaging filtering.
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It appears as if a significant improvement in the compression ratios obtained from
compression of filtered data could be realized if some method were employed for re-
jecting wild points prior to filtering, especially in the case of the exponential filter.
Prefiltering techniques, similar to those of adaptive sampling and redundancy reduction,

might be used to reject these wild points.

In each case, the rms error between the original data and reconstructed data having
used precompression filtering was a significant fraction of full-scale data.(See Table
3-5.) In addition, this rms error appears to be quite insensitive to the tolerance used
in compression operation. This implies that the overwhelming portion of rms error
was due to the filtering operation and not the compression operation. Moreover, it
appears from inspection of the filtered data that the majority of rms error incurred
during filtering was in the vicinity of wild points and the resulting transients and not

in other sections of the data. This contention is supported by the following facts:

e In the case of reconstruction of compressed raw data,
all sensors have roughly equivalent rms errors for a

given tolerance.

e In the case of reconstruction of compressed data using
precompression filtering, the rms error for Sensor 10
is significantly larger than for Sensors 9 and 11 for a

given tolerance.

e Sensor 10 contains significantly more wild points than

either Sensors 9 or 11.

e Visual inspection of the reconstructed waveforms makes
it clear that errors of the magnitude of the rms errors in
Table 3-5 are incurred only in the vicinity of wild points.

Based on these four points it appears that rms error is more a measure of wild point
severity than a measure of reconstructed data fidelity and information loss due to
compression in the case of precompression filtering and compression of Goddard S-6
data.
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3.5 ADAPTIVE COMPRESSION (SINGLE CHANNEL)

In fixed-parameter compression, system parameters are based on probabilistic, a
priori knowledge of the data to be processed. Fixed-parameter compression systems,
however, often give unsatisfactory results because a priori knowledge of data is
limited, probabilistic considerations often fail to make allowances for interesting data
trends that are statistically unlikely, and most data specimens have wide variations

in data activity.

An adaptive system which adjusts itself as some function of data activity and system
status may give more uniformly satisfactory results in spite of data nonstationarities
by producing uniform-quality reconstructed data that is more independent of changing

data activity, and by alleviating buffer overflow due to surges in data activity.

The two single channel adaptive compressor configurations which were used in this
study are the adaptive aperture compressor and the fixed aperture compressor having

adaptive precompression filtering.
3.5.1 Adaptive Aperture Compressor

The adaptive aperture data compressor adjusts the tolerance used during compression
by a function of measured system parameters. Three such system parameters or con-
trol variables were used: short term compression ratio, present line segment run
length, and exponentially filtered present line segment run length. Short term com-
pression ratio is a quantity which is calculated at the end of successive, equal time
intervals, and is equal to the ratio of the number of samples processed to the number
of significant samples occurring during that time interval. Present line segment run
length is a quantity which is equal to the number of samples processed since the last
significant sample. Exponentially weighted line segment run length is a quantity which
is equal to a weighted sum of the present line segment run length and all previous run
lengths, with weighting decreasing geometrically into the past. The system configura-
tion that was simulated for this study is shown in Figure 3-22 and the functional form
of the control logic or tolerance control function used with each control variable is

shown in Figure 3-23.
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3.5.1.1 Experiment: Simulation. For each control variable, simulations were made

using both the zero and first order interpolators on portions of Sensors 9, 10 and 11.
A summary of the experiments and results which were obtained is given in Table 3-6,
with the convention used in Table 3-6 being the same as in Figure 3-23. Plots con-

taining original data and reconstructed data from the simulations are in Figure 3-24.

Results, For a given data specimen, selector, and compression ratio, the rms error
between original and reconstructed data was somewhat higher with adaptive aperture
compression than with nonadaptive compression. Visually, the reconstructed data re-
sulting from both fixed and adaptive aperture compression appear to be of equal
fidelity. A heuristic argument for the apparent paradox of different rms errors but
equal fidelity can be made as follows, In the case of adaptive aperture compression,
relatively large errors are allowed during periods of high data activity and these large
errors do tend to contribute to a relatively large overall rms error. In the case of
fixed aperture compression, relatively small errors are maintained at all times re-
sulting in relatively small rms error. During periods of high data activity, however,
relatively large errors can be visually tolerated with no subjective degradation in
fidelity. For this reason, it is possible to obtain different rms errors consistent with
apparently equal fidelity. It might also be possible that the human eye is simply unable
to detect any subjective difference in picture fidelity when rms errors differ by a maxi-

mum of only fifty percent.

In most instances, for a given data specimen, selector, and buffer readout rate, the
use of adaptive aperture compression techniques resulted in a lower maximum single
channel buffer queue length than the use of fixed aperture compression techniques.

It was not possible to use tolerance control functions which permitted sufficient varia-
tions in aperture to reject wild points in Sensor 9, 10 and 11 data, because they were
as much as one-half of full scale removed from adjacent data points. A tolerance con-
trol function that would have permitted these points to remain within tolerance would
have overly degraded reconstructed data fidelity and information content. It appears
that overall system effectiveness, measured in terms of compression ratios and re-
constructed data fidelity, would have been greatly increased if precompression wild

point rejection had been included in the simulated compression system.
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ADAPTIVE APERTURE COMPRESSION SUMMARY

Table 3-6

SENSOR | SELECTOR | CONTROL | A | B C D | p |[BUFFER
VARIABLE READOUT COMPR RMS MAX
RATE RATIO ERROR QUEUE
9 Z01 STCR 6 1 3 10 |1.07 8.6 6.53 2.08 44
PRL 6 1[.05 .166| .818 8.6 8.54 2.30 22
PRL (f) 6 1{.05 .166| .869 8.6 8.03 2.17 23
FIXED, - - - - 1.03 8.6 6.79 1.21 -
TOL = 3
9 FOIDIS STCR 6 1 3 10 . 755 6.8 11,70 2.02 24
PRL 6 1(.05 .166] .900 6.8 9.80 1.60 13
PRL (f) 6 11.05 .166 | .961 6.8 9.17 1.54 14
FIXED, - - - - .806 6.8 10.93 1.26 28
TOL =3
10 Z0I STCR 6 1| 3 10 [1.65 1.54 7.90 1.77 26
PRL 6 1{.15 .5 |1.49 1.54 8.73 1.98 25
PRL (f) 6 1(.15 .5 1.77 1.54 7.34 1.52 28
FIXED, - - - — 11.58 1.54 8.47 1.12 86
TOL =3
10 FOIDIS STCR 6 1{ 3 20 | .859 1.54 15.67 1,77 25
PRL 6 11,15 1 [1.05 1.54 12,36 1.54 25
PRL (f) 6 1].15 1 {1.04 1,54 12.75 1.45 24
FIXED, - - - - 1.01 1.54 12,84 1.11 28
TOL =3
11 ZOl STCR 6 1 3 20 . 945 8.45 7.51 1.63 76
PRL 6 11.05 .333| .970 8.45 7.32 1.88 69
PRL (f) 6 11.05 .333(1.08 8.45 6.55 1.66 76
FIXED, - -1- - 5.50 1.54 7.08 1.10 131
TOL = 3
11 FOIDIS STCR 6 1] 3 10 . 862 4.47 15. 54 1.55 23
PRL 6 11.05 .166|1.03 4,47 12,92 1.59 30
PRL (f) 6 11.05 .166)1.04 4.47 12,84 1.53 27
FIXED, - -1 - - . 945 4,47 14.21 1.19 29
TOL =3
Control Variables:
STCR = Short term compression ratio
PRL = Present (line segment) run length
PRL (f) = Exponentially filtered PRL
p = (average input rate/output rate )b uffer
RMS error is in terms of data units
A,B,C,D, E, F, and G are used according to convention of Fig. 3-23
3-22
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In general, average compression ratios were not significantly changed by the use of

a&laptive aperture instead of fixed aperture compression.
3.5.2 Adaptive Precompression Filtering

Compression with adaptive precompression filtering involves adaptively filtering data
prior to compression by varying the filter bandwidth according to some function of
measured system parameters. (The system parameter used for this study was the

present line segment run length, )

The precompression filtering technique employed was a variation of the simple aver-
aging filter. This technique consisted of averaging a block of N data samples and
producing one filtered output sample for the entire block. The number of data samples,
N, included in a given block of samples to be averaged was variable and was adaptively
controllied by the filter control function in order to vary the degree of filtering, The
system configuration that was simulated is shown in Figure 3-25. The control logic,
or filter control function, is shown in Figure 3-26.

3.5.2.1 Experiment: Simulation, Compression simulations were made using only the
zero order interpolator because of time limitations. Although the adaptive precompres-

sion filtering experiments were conducted using only a single selector, a single tolerance,

and a single type of filter control function, the results obtained were sufficiently prom-

ising to warrant further study. A summary of the resuits obtained is given in Table 3-7.

Plots containing original data and reconstructed data are in Figure 3-27. In these
plots, missing data points were linearly interpolated producing reconstructed data
similar in appearance to that resulting from first order compression.

Results. The use of adaptive precompression filtering improved compression ratios
by a factor of two or three relative to compression of raw data. The use of adaptive
precompression filtering also greatly increased the rms error between original and
reconstructed data. As in the case of nonadaptive precompression filtering, it is felt
that this increased rms error was attributable to the high density of wild points in the
data and the resulting transients after filtering, and not degradation of data information
because of filtering,
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In most instances, the reconstructed data appeared to be more representative of
actual data trends and less susceptible to noise than the reconstructed data resulting
from compression of raw data. This is especially noticeable in the vicinity of 121 and
129 seconds in the case of Sensor 9 (Figure 3-27) where the data is quite noisy. The
actual data information trend is easily discernable, however. Fixed-aperture com-
pression techniques (with and without fixed precompression filtering) and adaptive
aperture compression techniques were relatively ineffective in compressing these
portions of data and yielded both poor compression ratios and poor reconstructed data.
(See Figures 3-7, 3-11, 3-21, and 3-24.) However, compression of this data with
adaptive precompression filtering was quite effective, yielding both high compression
ratios and reconstructed data which is believed to better represent actual data in-

formation trends.

Compression with adaptive precompression filtering, although quite effective in com-
pressing noisy data, appears to be quite susceptible to wild points. Both compression
ratios and reconstructed data quality were adversely affected by these wild points.
(See, for example, Figure 3-27, pages 3-83 and 3-85.) It appears as if overall
system effectiveness would have been improved if prefiltering wild point rejection had

been included in the simulated system.
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AVERAGE COMPRESSION RATIO

20
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o

. FOIDIS (ave. filter, N = 3)
[ FOIDIS (exp filter, 7 = 1)
FOIDIS (no filter)
B -
Z0l
| ZOl (no filter) (ave. filter, N = 3)
i — ZOI (exp filter, 7 = 1)
»
! l
1 2 3 4
TOLERANCE

Fig. 3-18 Precompression Filtering (Sensor 9)
3-68

LOCKHEED MISSILES & SPACE COMPANY
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Fig. 3-19 Precompression Filtering (Sensor 10)
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AVERAGE COMPRESSION RATIO

\

20
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FOIDIS (ave. filter, N = 3)
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\

FOIDIS (no filter)
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| ZOl (ave. filter, N = 3)

— ZOI (exp filter, 7 = 1)

— ZO\ (no filter)

TOLERANCE

Fig. 3-20 Precompression Filtering (Sensor 11)
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SINGLE CHANNEL
@ b BUFFER "

COMPRESSED
DATA OUT QUEUE

}——————¢—0 Short Term Compression Ratio

DATA
TOLERANGE | compressor [T O Present Run Length

— -0 Exp. Filtered Present Run Length

CONTROL VARIABLES

Nt / STPRL ) conTROL | |
STCR{ .Y TOLERANCE| LOGIC
PRL
CONTROL

et
TOLERANCE LOGIC

CONTROL
TOLERANCE LOGIC

Fig. 3-22 Single Channel Data Compressor With Adaptive Aperture
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Fig. 3-23 Adaptive Aperture Control Function
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RAW
DATA —=-
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DIGITAL
LOW-PASS FILTER
(VARIABLE CUTOFF)

fo= F(N)

FILTERED
DATA SINGLE CHANNEL
" BUFFER ———
QUEUE
| FIXED APERTURE
DATA COMPRESSOR —o 'L’Eilf\fg;ﬁ RUN

CUTOFF FREQUENCY

CONTROL

N] CONTROL

LOGIC
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Section 4
QUEUING CONTROL EVALUATION

Buffer queuing control prevents data-sample loss due to buffer overflow. This buffer,
placed at the outputs of redundancy reduction data compressors to temporar ily store
aperiodic data, overflows when its capacity is exceeded. Queuing control, however,
transforms this overflow into controlled data-degradation, thus minimizing its effect

on overall data quality.

A variety of system configurations can be used to control queue length. Most are
basically similar, operating by monitoring a variable associated with queue length
and using this information to control some parameter that affects buffer input rate.
By controlling this parameter, the queuing control is able to reduce buffer input rate
when the queue length starts to become excessive. This reduction follows a mathe-
matical relationship existing between the monitored variable and the controlled

parameter.

A variable closely associated with queue length is the retained sample input rate to
the buffer. This sample retention rate can be controlled in several ways. The more

common are by

e Varying the size of the aperture (called
adaptive aperture)

e Varying the input sample rate before sample
selector operation

o« Passing the data through a low-pass digital
filter prior to selector operation and varying
the filter bandwidth

e Eliminating all data from low-priority sensors

e Using combinations of the above
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Except for the work of Simpson (References 219 and 220), very little work had been
done on investigating the relative effectiveness of different system configurations and
feedback parameters prior to this study. This study helps fill that gap. Using
Goddard Space Flight Center experimental data, this study examines queue behavior
in a data compressor output buffer and investigates feedback systems and parameters
for this data.

Multiplexed PCM telemetry data received from the Explorer XVII (S-6) satellite on

10 April 1963 was chosen for this study. An IBM 7094 digital computer program was
used to compress the data and simulate the output buffer and its feedback queuing con-
trol. Post-compression reconstruction of data from selected sensors was made to

evaluate queuing control effectiveness on the basis of reconstructed data fidelity.
4.1 SIMULATED COMPRESSION SYSTEM

Because the computer-simulated compression system was to be used as a research
tool, design emphasis was placed on operating flexibility rather than maximum effi-
ciency. As a result, the programmed system provides a choice of four sample

selectors, six queuing control system configurations and can operate on multiplexed

telemetry data having up to 150 sensors.

The computer simulation program did not provide for removal of multiplexer frames
having excessive synchronization error. Hence, the simulated data compressor had
to operate on a data tape containing frequent noisy periods of varying length and sepa-
ration, During these periods, an excessive number of wild sample points appeared on
all channels, This operating condition could prevail to some degree in the ground-
based application of data compression since it may not be possible to remove, before
compression, all frames having excessive sync error. However, in a spaceborne
application, a data compressor would never have to contend with wild points caused
by excessive transmission noise., It was therefore profitable to examine the opera-
tion of the simulated data compressor under both conditions, those in which excessive
losses prevail, and those in which the data are free of error from noise. Fortunately
a period of noise-free data sufficiently long to obtain a good statistical sample was
available in the S-6 data.
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4.2 DATA SELECTION

The nominal overall sample rate of the S-6 data was 900 samples per second, and,
since one minor frame consisted of 45 channels, the minor frame rate was 20 frames
per second. Three of the channels (17, 31 and 33) were submultiplexed with 16 posi-
tions each. Therefore 16 minor frames comprised one main frame. Each data word
consisted of 9 bits. Most of the sensors were cross-strapped onto more than one
channel; the data amplitude range of 0 to 511 counts was left undisturbed. Assigned
sensor identification numbers, and their corresponding channel numbers, are given

in Appendix IL,

4.3 EXPERIMENTS, ORGANIZATION

Experiments were made to determine whether a queuing control system would be
needed with the S-6 data, and if so, under what conditions and of what configuration

and parameters. To do this, the following generalized test procedure was adopted:

e A nominal tolerance value was assigned to
each data sensor, after consultation with
GSFC experimenters.

. A sample selector was chosen from the group
of four which were programmed and a re-
presentative specimen of S-6 telemetry data
selected.

e Using the assigned tolerance values, an initial
run was made without buffer simulation. This
run determined the combined average compression
ratio and, as a result, the average buffer readin
rate.

° A number of buffer simulation runs were made
without queuing control, using different ratios
of average buffer readin rate to readout rate
(designated ), and an infinite-capacity buffer.
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. Runs were then made with queuing control to
establish the most desirable control system and
its parameters. Criteria used were queue behavior
and the quality of the reconstructed data judged on
the basis of rms error and subjective evaluation of

waveforms from selected sensors.
4,4 EXPERIMENTS, PROCEDURE

Tolerance values were assigned to the 57 sensors that provided the S-6 data. See
Table 4-1. These are hereafter referred to as standard values of tolerance. Nineteen
data compressor simulation runs were then made. These runs were divided into four
test groups according to the portion of data selected for processing from the 240-seconc

total. These groups are

. Exploratory Runs on Data Having Wild Points

. Exploratory Run on 200-Second Center Portion

e Queuing Control Runs on Data Having Wild Points
. Runs on Data Having No Wild Points

4,4.1 Test Group 1: Exploratory Runs on Data Having Wild Points

Using an arbitrarily selected 50,400-sample section of data (the 92 to 148 second por-
tion), six computer runs were made to determine which sample selector should be
used on subsequent runs and to study the queue behavior with different values of # .
See Table 4-2 1. Only the interpolators were tested in these runs because past ex-
perience has shown that the interpolators generally obtain a higher compression ratio

than do the predictors. Also, available computer time was limited. The first order

1 In order that the reader may conveniently use this information as a cross-reference
while examining the computer output plots, Tables 4-2, 4-3, 4-4 and 45 are con-
solidated into a single table and placed on a fold-out page immediately following the
illustrations in this section.
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Table 4-1
ASSIGNED TOLERANCE VALUES FOR BUFFER QUEUING CONTROL STUDY

LOCKHEED MISSILES & SPACE COMPANY

TOLERANCE, TOLERANCE,
SENSOR COUNTS REMARKS SENSOR COUNTS REMARKS
1 .01 Digital 31 16
2 4 32 4
3 16 33 4
4 4 34 8
5 4 35 128
6 4 36 128
7 4 a7 .01 Digital
8 .01 Digital 38 8
9 4 39 8
10 4 40 32
11 4 41 32
12 4 42 32
13 4 43 32
14 4 44 16
15 32 45 16
16 32 46 32
17 4 47 32
18 4 48 8
19 4 49 8
20 4 50 4
21 8 51 4
22 4 52 4
23 4 53 4
24 32 54 8
25 32 55 4
56 4
26 4 57 511 Spare
27 4
28 16
29 16
30 16
4=5




Table 4-2

COMPRESSOR RUN SUMMARY, TEST GROUP 1
(92 to 148 seconds)

QUEUING
RUN CONTROL
NUMBER SELECTOR P M SYSTEM REMARKS
S6-01 Z01 - - NONE NO BUFFER SIMULATION
S6-02 FOIDIS - - NONE NO BUFFER SIMULATION
S6-03 zZ01 0.95 261 NONE
S6-04 FOIDIS 0.95 273 NONE
S6-05 FOIDIS 0.90 288 NONE
S6-06 FOIDIS 1.10 236 NONE
Explanation of Symbols
p: Ratio of average buffer sample readin rate to readout rate
M: Buffer readout rate, in samples per sec

ZOTI: Zero order interpolator, floating aperture

FOIDIS: First order interpolator, disjoinedline segment

interpolator, disjoined, selector was chosen for all runs subsequent to this test group
because during these initial tests it exhibited a maximum queue higher thanthat obtained

with the zero order interpolator and a worst case situation was desired.

Sample compression ratios given in this section for the first order interpolator, dis-
joined, selector are defined differently in this section than in the others. In this sec-
tion it is defined in terms of two data samples per line segment, elsewhere in the report
in terms of one sample per line segment. Thus, to compare the compression ratios
given in this section with those in other sections, the values in this section must be
doubled. In the final analysis, the important value is the bit, or bandwidth compression
ratio, computed after address and time bits are included with the sample amplitude

bits. It is this value on which selector comparisons are based later in the report.
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4.2.2 Test Group 2: Exploratory Run on 200-Second Center Portion

The second test group consisted of one run, summarized in Table 4-3, that covered
all but the first and last 20 seconds of the 240-second data file. This 180, 000 sample

run, made without queuing control, was done primarily to delineate from relatively

Table 4-3
COMPRESSOR RUN SUMMARY, TEST GROUP 2
(20 to 220 seconds)

QUEUING
RUN CONTROL
NUMBER | SELECTOR ? M SYSTEM REMARKS
S6-07 FOIDIS 0.91 288 NONE NONE
Explanation of Symbols
p: Ratio of average buffer sample readin rate to readout rate
M: Buffer readout rate, in samples per sec

FOIDIS: First order interpolator, disjoined line segment

quiet periods the periods of high data activity (caused mainly be excessive wild points)
during which the queue tended to build up.

4.4.3 Test Group 3: Queuing Control Runs on Data Having Wild Points

The third test group, shown in Table 4-4 and consisting of five runs, concentrated on
the most active 31, 500-sample section of the data file. The compression-ratio-moni-
toring continuous queuing control system was used on the first two runs, S6-08 and
S6-09. These runs differed only in the number of line segments used to compute the
monitored average run length. The control curve, see Figure IV~ 2, was established
by designating a point and a slope for each sensor. The point coordinates were (1) the
standard tolerance value for that sensor, and (2) the value of average run length,
recalculated after each data sample and averaged over the entire run. The slope was
arbitrarily selected as -3 for most sensors; the minimum tolerance value was set to

0.01 counts. The runs used an infinite-capacity buffer.
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Table 4-4

COMPRESSOR RUN SUMMARY, TEST GROUP 3
(180 to 215 seconds)

QUEUING
RUN CONTROL
NUMBER SELECTOR p. M SYSTEM REMARKS
S6-08 FOIDIS 0.97 288 CRC By =-3, Jg = 3 for all
sensors
S6-09 FOIDIS 1.01 288 CRC B1 =-3, Jg =11 for all
sensors
S6-10 FOIDIS 0.98 288 QLC Parameters chosen to
correspond as closely as
possible with S6-08
S6-11 FOIDIS * 288 See QLC used to simulate
Remarks sample loss caused by
buffer overflow, without
queuing control
S6-12 FOIDIS 0.89 288 QLC Control began at

queue = 20; full-scale
tolerance at

queue = 100, for all
sensors

*The true value of p was not determined for run S6-11.

Explanation of Symbols:

[°R
M:

FOIDIS:
CRC:

Ratio of average buffer sample readin rate to readout rate

Buffer readout rate in samples per sec

First order interpolator, disjoined line segment

Compression ratio monitoring, continuous (linear) control

Queue length monitoring, continuous (linear) control

Slope of queuing control curve

The number of most recent line segments, including current run,

over which average run length is computed
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The third run, S6-10, used the queue-length-monitoring continuous queuing control
system and an infinite-capacity buffer. The control parameters for this run were
chosen to correspond as closely as possible with Run S6-08. This was done by main-
taining the standard tolerance values for all sensors when the queue was below 40
samples and determining the slope of the linear control curve above 40 samples by
establishing a special point on the curve. See Figure IV-3 . The coordinates of this
point were (1) the maximum tolerance reached by each sensor in Run S6-08 and (2)
the maximum queue reached in S6-08. Therefore, if the queue in S6-10 exceeded that

obtained in S6-08, the maximum tolerances must also be exceeded for all sensors.

The fourth run, S6-11, was made to determine the effect on the data waveforms if a
buffer of reasonable capacity were allowed to overflow without any control during the
periods of excessive noise that caused the queue buildups. A buffer capacity of

100 was used.

The last run of the group, S6-12, was made to determine how large the tolerances had
to become in order to maintain the queue at a value below 100 under conditions of ex-
cessive noise. The control parameters were chosen so that the tolerance reached
full scale when the queue reached 100. Below a queue of 20, the standard tolerance
values were used for all sensors. A buffer capacity larger than 100 was used on

this run.
4.4.4 Test Group 4: Runs on Data Having No Wild Points

Test Group 4 concentrated on a 29, 700-sample section of data having no wild points.
This group, summarized in Table 4-5, was run to examine the queue behavior of data
unaffected by transmission errors. This examination is necessary for obtaining a
complete picture of spaceborne data compressor operation, for example, or of a

ground based compressor operating on data from which wild points have been removed.

The first five of the seven runs in this group were made to determine the queue
behavior with several different values of ». No queuing control was used. The last

two runs, S6-18 and S6-19, were made to compare the performance of the compression

(&N
|
o
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Table 4_5

COMPRESSOR RUN SUMMARY, TEST GROUP 4
(62 to 95 seconds)

QUEUING
RUN _ CONTROL
NUMBER | SELECTOR P M SYSTEM REMARKS
S6-13 FOIDIS - - NONE No buffer simulation
S6-14 FOIDIS 0.91 244 NONE
S6-15 FOIDIS 0.95 233 NONE
S6-16 FOIDIS 0.98 226 NONE
S6-17 FOIDIS 1.50 148 NONE
S6-18 FOIDIS 1.50 148 CRC Bl =-3, JR =7 for all
sensors
S6-19 FOIDIS 1.04 148 QLC Control began at
queue = 20;tolerance
doubled at queue = 75,
for all sensors
Explanation of symbols:
o Ratio of average buffer sample readin rate to readout rate
M: Buffer readout rate in samples per sec

FOIDIS: First order interpolator, disjoined line segment

CRC: Compression ratio monitoring, continuous (linear) control
QLC: Queue length monitoring, continuous (linear) control

By Slope of queuing control curve

JR: The number of most recent line segments, including current

run, over which average run length is computed
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ratio monitoring queuing control system with the queue length monitoring system under
the special operating condition that arises when the buffer readout sample rate is set
so low that » exceeds unity and causes a continuous queue buildup in the absence of
queuing control. An infinite-capacity buffer was used. The control lines for S6-18
were established in the same manner as for S6-08 and S6-09 but a different value of J R
was used. The control lines for S6-19 were set so that the tolerance began to increase
from the standard value for each sensor when the same queue reached 20, attained a
value of twice the standard at a queue of 75, and thereafter continued to increase

linearly with increasing queue.

4.5 RESULTS AND CONCLUSIONS

To keep the volume of the report within reasonable limits, data waveforms are given
for only two of the seven minor-frame sensors for which reconstructed waveforms
were obtained. Tables of rms error and compression ratio are given for all seven.
The two sensors to be studied in relative detail are Sensor 9 (mass spectrometer #1
log amplifier output) and 11 (Redhead gauge #1).

4.5.1 Test Group 1: Exploratory Runs on Data Having Wild Points

4.5.1.1 Experiment 1: Comparison of Queue Behavior for Different Sample Selectors

(Runs S6-03 and S6-04). This experiment compared the behavior of the buffer queue

- associated with two different sample selectors operating on the same section of S-6

data. The 92-148 second data period was chosen. Selectors tested were the zero-
order interpolator and the first order interpolator, disjoined. An infinite-capacity
buffer was used having a p of 0. 95.

Results. Time histories of queue length in the output buffer are shown in Figure 4-1
for the 92 to 116 second portion of the two 56-second runs. Figure 4-1 shows an
approximate maximum queue of 885 samples for the zero order interpolator, 1500
samples for the first order interpolator, disjoined. Because each sample represents
a different number of bits for each selector, these maximum values of queue length

must be converted to bits before they can be compared. For the case of the zero
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order interpolator, assume that six bits are required per sample for address and
time information. Thus each sample in the buffer represents15 bits. With the first
order interpolator, disjoined, the six address and time bits are required only for each
line segment; hence, three address bits are required on a per sample basis and each
sample in the buffer represents only 12 bits. The maximum queue for the zero order
interpolator is therefore 885 x 15 = 13,300 bits, and the maximum queue for the first
order interpolator, disjoined, is 1500 x 12 =18,000 bits. Because it was considered
desirable to study queuing behavior and control under worst-case conditions, the first
order interpolator, disjoined, was used on all subsequent runs. (The break in the
queue length curves near 103 seconds is due to an irregularityat this point in the TAD
tape. The cause of this irregularity was subsequently removed from the S-6 DECOM

program.)

In an effort to save graph space, a point was plotted on all queue length time histories
at time intervals corresponding to nine input samples to the data compressor, or 0.01
seconds,

4.5.1.2 Experiment 2: Queue Behavior as a Function of P (Runs S6-04, S6-05 and

S6-06). This experiment studied queue behavior with the first order interpolator,

disjoined, as the ratio of average buffer sample readin rate to readout rate, b, was
varied. Values for » of 0.90, 0.95, and 1. 10 over the period of 92-148 seconds were
used by setting the buffer readout rates at values shown in Table 4-2,

Results. Time histories of queue length are shown in Figure 4-2 during the 92 to 116
second portion of the 56-second runs. A time history of the buffer input sample rate
is also shown. Only the queue length curves for # = 0,90 and 1. 10 are shown in this
figure; the queue length time history for » = 0. 95 is shown for the first order inter-
polator, disjoined, in Figure 4-1.  Note that the maximum queue lengths reached in
an infinite-capacity buffer were approximately 1260 for # =0.90, 1500 for » = 0. 95,
and 2160 for # = 1. 10. Because P exceeds unity in the last run, the total number of
samples entering the buffer exceeded the total number of removal attempts, and the
buffer could not be empty at the end of the run.- In Run S6-06, the buffer does not

empty after t =125 seconds, and at the end of the run the queue length is approximately
1320. '
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Periods of excessive noise are indicated by the relatively high average buffer

input rates shown between 95 and 114 seconds on the input rate time history of
Figure 4-2 . The time history of the buffer input sample rate was obtained by calcu-
lating the average input sample rate over a time interval corresponding to 45 data
compressor input samples, or 0.05 seconds, at the end of each interval and plotting
these values on the graph at the ends of the appropriate time intervals and joining
them with straight lines. All buffer input rate time histories shown in this report

were obtained in this manner.
4.5.2 Test Group 2: Exploratory Run on 200-Second Center Portion

4.5.2.1 Experiment 3: Queue and Buffer Input Statistics (Run S6-07). This experi-
ment obtained statistics of buffer input and queue length over a large statistical

sample to give maximum strength to the test results. An infinite-capacity buffer was

used in this experiment.

Results. A histogram of the buffer input arrival rate over the 200-second period is
shown in Figure 4- 3 . This histogram was constructed by dividing the available
range of input sample rates into increments of 20 samples per second and counting

the points on the input sample rate time history plot that fell in each increment.

(All buffer input arrival rate histograms shown in the report were constructed in this
manner.) A histogram of the time intervals between buffer input arrivals is shown in
Figure 4- 4. The width of the time interval increment is equal to one data compressor
input sample period, 0.001111 second. The queue length histogram is shown in

Figure 4-5 . This histogram was constructed by dividing the range of queue length
into increments of 10 samples, and counting the number of points on the queue l/ength

time history plot which fell into each increment.

Note that the buffer input arrival rate histogram has a rough Poisson shape and the
histogram of time intervals between buffer input arrivals has a rough exponential
shape. If the input statistics were purely Poisson, the queue length histogram would
be exponential (Reference 175). Figure 4- 5 shows that the histogram is relatively

flat out to the maximum queue of approximately 1800. This characteristic is

TN
|
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probably due to the periods of excessive noise which occur sporadically during

the course of the run and which cause a number of very high queue buildups, similar
to the one shown in Figures 4- 1 and 4-2 . The exponential portion of this histogram,
if one does in fact exist, is probably in its first line which covers the increment from

0 to 9 samples.

4.5.3 Test Group 3: Queuing Control Runs on Data Having Many Wild Points

The 85-second 180 to 215 second portion of the 200-second run was used for this test
group. It was picked because it contained the highest value of queue reached through-

out the entire 200-second run. See Figure 4-5 .

4.5.3.1 Experiment 4: Comparison of Long-Term and Short-Term Run Length

Averages (Runs S6-08 and S6-09). An important parameter in the compression ratio

monitoring queuing control system is JR which is defined as the number of most
recent line segments, including the current segment, over which the monitored
average run length is computed for each sensor. In this experiment, a relatively
short-term average run length (JR = 3 for all sensors) was compared with a relatively
long term average run length (J R™ 11 for all sensors). All other control parameters
were the same for each computer run. The experiment tested the performance of the
control system using both values of JR in terms of maximum queue length attained in
an infinite_capacity buffer, and reconstructed data fidelity, It also determined the
efficiency with which the maximum queue is reduced under noisy conditions when
relatively strong feedback, which materially reduces the fidelity of the data, is used.

In this case, Bl =0 for sensors 1, 8, 37 and 57 and -3 for all others.

Results. Queue length and input rate time histories are shown in Figure 4-6 for a
portion of the run without queuing control. The buffer readout rate of 288 samples

per second corresponds to » = 0. 91 over the period of 20 - 220 seconds. As shown

in the input rate time history, the periods of excessive noise are between 181
and 192 seconds and between 206 and 210 seconds.
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Queue length and input rate time histories are shown on the same data section in
Figures 4-7 and 4-8 . In both cases the buffer readout rate is 288 samples per
second and the queuing control is by compression ratio monitoring. In Figure 4-7
JR =3; in Figure 4-8 JR = 11. It can be seen from Figures 4- 6 , 4.7 and 4-8
that the information of compression ratio monitoring queuing control reduces the
maximum queue from approximately 1800 without queuing control to 685 for JR =3
and to 825 for JR = 11.

Time histories of the original and reconstructed Sensor 9 data and the reconstructed
data error taken from a portion of Run S6-08 (JR = 3) are shown in Figure 4-9a.
Figure 4-9b. shows the corresponding time history of the tolerance. Sensor 9 data
and tolerance time histories are shown for a portion of Run S6-09 @g =11 in
Figures 4-10aand 410b, respectively. For comparison, Figure 4-11 shows the same
portion of the Sensor 9 reconstructed waveform from Run S6-07 for a standard
tolerance of 4 counts and no queuing control. Error histograms are shown for S6-08,
S6-09, and the case without queuing control in Figures 4-12, 4-13 and 4-14, re-

spectively.

Time histories of the original and reconstructed Sensor 11 data and the reconstructed

data error taken from a portion of Run S6-08 are shown in Figure 4-15a. Figure 4-15b

shows the corresponding time history of the tolerance. Sensor 11 data and tolerance
time histories are shown for a portion of Run S6-09 in Figures 4-16a and 4-16b, re-
spectively. For comparison, Figure 4-17 shows the same portion of the Sensor 11
reconstructed waveform from Run S6-07 for a standard tolerance of 4 counts and no
queuing control. Error histograms are shown for S6-08, S6-09, and the case without
queuing control in Figures 4-18, 4-19 and 4-20, respectively.

The rms errors and average compression ratios obtained for Sensors 9 and 11, as
well as for five other minor frame sensors, are shown in Table 4-6. A comparison
of rms errors obtained for the seven minor frame sensors in Runs S6-08 (JR =3)

and S6-09 (JR = 11) can easily be made from the bar graph in Figure 4-21,

V18
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Table 4-6
COMBINED RESULTS BY INDIVIDUAL SENSOR-TEST GROUPS 2 AND 3

ERROR N
QUEUING MAXIMUM RMS MEAS MEAS
CONTROL | ¢ TOLERANCE | ERROR, | INTERVAL INTERVAL
SENSOR | RUN SYSTEM R COUNTS COUNTS SEC N** SEC
2 S6-07 NONE - 4.0 1.25 200-212 1.76 20-220
S6-08 CRC 3 7.4 1.54 205-210 1.65] 180-215
S6-09 CRC 11 7.7 1.46 205-210 1.64] 180-215
S6-10 QLC - 7.6 1.66 205-210 1,70 180-215
S6-11 Ovil. sim. | — - 99.61 205-210 * 180-215
S6-12 QILC - 185.5 37.18 205-210 1.91| 180-215
3 $6-07 NONE - 16.0 6.40 180-215 3.44 20-220
S6-08 CRC 3 27.4 7.44 185-210 3.33| 180-215
$6-09 CRC 11 25,8 7.07 185-210 3.33[ 180-215
S6-10 QLC - 28.1 8.36 185-210 3.46 180-215
$6-11 Ovfl. sim. | — - 52,82 185-210 * 180-215
S6-12 QLC - 193.2 23.20 185-210 3.92| 180-215
6 S6-07 NONE - 4.0 1.98 180-215 4.31 20-220
S6-08 CRC 3 15.6 2.78 194-210 3.51| 180-215
86-09 CRC 11 16.2 3.03 194-210 3,52 180-215
S6-10 QLC - 16.3 3.57 194-210 3.76| 180-215
$6-11 Ovfl, sim. | — - 39.74 194-210 * 180-215
S86-12 QLC - 179.3 19.44 194-210 4.46 | 180-215
7 §6-07 NONE - 4.0 1.39 180-215 2.29 20-220
S6-08 CRC 3 9.3 2,11 194-210 2.03] 180-215
S6-09 CRC 11 9.7 1.71 194-210 2.03] 180-215
S6-10 QLC - 9.7 1.76 194-210 2,07] 180-215
S$6-11 Ovfl, sim. | — - 59,23 194-210 * 180-215
S6-12 QLC - 185.5 19.78 194-210 2.31| 180-215
9 $6-07 NONE - 4.0 1.78 180-215 6.72 20-220
S86-08 CRC 3 39.1 7.65 194-210 7.07| 180-215
S6-09 CRC 11 33.7 5.61 194-210 6.71| 180-215
S6-10 QLC - 41.4 4,82 194-210 6.98| 180-215
86-11 Ovfl. sim, | — - 56.08 194-210 * 180-215
S6-12 QLC - 179.3 18.83 194-210 6.16| 180-215
10 $6-07 NONE - 4,0 1.56 180-215 6.81 20-220
S6-08 CRC 3 29.8 6.64 180-215 5.98 | 180-215
S6-09 CRC 11 26.9 4.77 180-215 5,60 | 180-215
S6-10 QLC - 31.4 6.55 180-215 6.31| 180-215
86-11 Ovfl, sim, | — - 36.76 180-215 * 180-215
86-12 QLC - 166.8 17.15 180-215 6.93 | 180-215
11 §6-07 NONE - 4,0 2,06 180-215 3.51 20-220
S6-08 CRC 3 20.3 5.21 194-210 3.58 | 180-215
$6-09 CRC 11 16.9 3.88 194-210 3.29 | 180-215
S6-10 QLC - 21,3 4,25 194-210 3.18 | 180-215
86-11 Ovfl. sim, | — - 43,19 194-210 * 180-215
S6-12 QLC - 179.3 18.92 194-210 3.34| 180-215

*The true values of N were not determined for run S6-11
**N = Maximum average compression ratio
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These results indicate that while the smaller value of J R yields a lower maximum
queue (685 for JR = 3, against 825 for JR = 11), almost without exception the recon-
structed data fidelity is worse with the smaller JR' This decrease in fidelity is
manifested in the higher rms error for all but one of the sensors, obtained from
Run S6-08, compared with Run S6-09. This can also be seen by comparing corre-
sponding data time histories for JR =3 and JR = 11. Thus, under noisy conditions
and all other control parameters equal, the lower value of J R yielded more severe

queuing control which resulted in a smaller maximum queue. The cost was a generally

lower reconstructed data fidelity.

It should be noted that even when relatively strong feedback is used, the control
system using compression ratio monitoring did not reduce the queue in either run to
what would be considered a reasonable value, e.g., under 200. Hence, it can be
tentatively concluded that such a buffer control system cannot cope with the S-6 data

under conditions of severe transmission noise.

4,5.3.2 Experiment 5: Comparison of Queue Length and Average Run Length as

Monitored Parameters (Runs S6-08, S6-10). This experiment compared the performance

of the queue length monitoring control system with that of the compression ratio moni-
toring system under severe noise conditions. The control parameters were
chosen for the run using queue length monitoring (S6-10) in the manner discussed in

the previous section so that a direct comparison could be made between the two

monitoring methods.

Results. Queue length and input rate time histories are shown for Run 56-10 in
Figure 4-22, The buffer readout rate was again set to 288 samples per second for
this run. It is seen from Figure 422 that the maximum queue is approximately 730,
which is slightly higher than in S6-08 where the maximum queue was 685. Therefore,
the maximum values of tolerance for all sensors were higher for Run S6-10 than in

Run S6-08. The maximum tolerances, shown for seven of the sensors in Table 4-6 ,

bears this out.
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Time histories of the original and reconstructed data and of the reconstructed data |
error for Run S6-10 are shown for Sensor 9 in Figure 4-23a. Figure 4-23b shows the |
corresponding time history of the tolerance and Figure 4-24 the error histogram. o
Data time histories for Sensor 11 are shown in %Figure 4_25a, Figure 4-25b shows the ‘
corresponding tolerance time history and Figure 4-26 the error histogram. Rms

errors and individual-sensor average compression ratios are shown for seven sensors

in Table 4-6 . l

Comparing Figure 4-23a with Figure 4-9a for Sensor 9 and Figure 4-25a with Figure 4- 15a‘
for Sensor 11, it can be seen that during the periods when the buffer is nearly empty ‘
the data fidelity is better with the queue length monitoring system. However, the '
errors are higher in S6-10 than in S6-08 when the queue is near its maximum value.

In the case of the compression ratio monitoring system, the tolerance varies so |
rapidly with time, even with relatively high values of JR’ that the data fidelity appears i
to be fairly constant. Because the tolerance varies with the queue, in the case of the |
queue length monitoring system, it is easy to discern slow variations in data fidelity.

From the standpoint of rms error, Table 4-6 and Figure 4-21 show a slight edge in l

favor of the queue length monitoring system, even though the maximum tolerance was |
higher on S6-10 for all sensors. |

4,5.3.3 Experiment 6: Performance of Queue Length Monitoring Control System With
Heavy Feedback (Run S6-12). Experiment 6 determined the extent of the degradation

in reconstructed data fidelity when the feedback parameters of the queue length moni-

toring control system were set to limit the maximum queue to a value less than 100
under high noise conditions. As pointed out in the previous section, the control

line slopes, Bz, were chosen so that the tolerances for all sensors reached full scale
at a queue of 100.

Results. Queue length and input rate time histories are shown for this compressor
run in Figure 427 . The buffer readout rate was again set to 288 samples per second.
Figure 427 shows that the queue was maintained below 100; its maximum value was
approximately 49. The maximum values of tolerance, shown in Table 4-6, reached

the vicinity of 200 counts in order to hold the queue to that value. The input rate
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time history, shown in Figure 4-27, indicates a leveling-off of the peaks of buffer
input activity during high noise periods.

Time histories of the original and reconstructed data and of the reconstructed data
orror for Run S6-12 are shown for Sensor 9 in Figure 4-28a and the corresponding time
history of the tolerance in Figure 4.28h, Data time histories for Sensor 11 are shown in
Figure 4-29a; the corresponding tolerance time history is shown in Figure 4-29b. Rms
errors and individual-sensor average compression ratios are given for seven sensors
in Table 4-6.

The queue length time history, Figure 4-27 , demonstrates that except for the ex-
tremely noisy periods of 181 to 192 seconds, 206 to 210 seconds and two other
intervals of less than one-second duration, the queue remained below 20. During

these quiet periods, the reconstructed data fidelity was maximum because the tolerance
was at its minimum value. For the most part, excessive data degradation occurred
during the periods of excessive noise, as shown by the data time histories for

Sensors 9 and 11 in Figures 4-28a and 4-29a.The degradation of the reconstructed

data which occurred during these periods only added to the degradation caused by

noise already present in the original data. In many cases, the data received during
these periods are probably of little use to the data analyst anyway because of the large

number of wild points.

4.5.3.4 Experiment 7: Simulation of Buffer Overflow Without Queuing Control

(Run S6-11). The results of Experiment 6 suggest that a good way to cope with the
problem of transmission noise in a ground station data compressor may be to ignore

it and let a buffer of reasonable capacity overflow without queuing control. If the

buffer readout rate were set high enough that the buffer did not overflow during the
quiet (no noise) periods, then the only time the reconstructed data would be degraded
beyond the prescribed amount would be during the periods of excessive noise. This
experiment simulated these conditions so that the reconstructed data would be observed.

Buffer overflow was simulated by using the queue length monitoring, continuous

queuing control system. A buffer capacity of 100 samples was simulated and the
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tolerance was set to its standard value below a queue of 101. The slope of the control
line, which began at a queue of 100 for all sensors, was set to 511 for each sensor so
that when the queue reached 101, the tolerance exceeded full scale. Thus the maximum
queue was maintained at approximately 100. (One hundred was not maintained because
the first_order interpolator, disjoined, selector sent two samples to the buffer at each
out_of-tolerance instance.) All samples lost due to buffer overflow were reconstructed

on straight lines joining the transmitted samples.

Results. The queue length time history is shown for this run in Figure 430, The
buffer readout rate was again set to 288 samples per second. Time histories of the
original and reconstructed data and of the reconstructed data error for Run S6-11 are

shown for Sensor 9 in Figure 4-31 and data time histories for Sensor 11 in Figure 4-32.

An examination of data time histories in Figures 4-31 and 4-32 shows that only during
the periods of sync loss were the data degraded beyond the standard amount. During
the short intervals between 206 and 210 seconds when sync was momentarily restored,
the queue dropped below 100 allowing those portions of the waveform to be reconstructec
at the standard accuracy. This was of course not true in the case of Experiment 6

(Run S6-12).

4.5.4 Test Group 4: Study of Data Having No Wild Points

As pointed out in Paragraph 4. 4.4, it was necessary to investigate the queue behavior
of data unaffected by transmission errors in order to perform a complete study of the
S_6 data. An examination of the results of Run S6-07 revealed a section of data be-

tween 62 and 95 seconds, a relatively large statistical sample (29,700 data samples),

which was virtually free of noisy data.

4.5.4.1 Experiment 8: Comparison of Average Compression Ratios Without wild

Points to Total Average Compression Ratios (Runs S6-07, S6-13, This experiment

determined the degree by which the presence of wild points caused by transmission
noise degraded the compression ratios obtained by the first order interpolator,
disjoined, selector,
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Results. Average compression ratios by individual sensor are shown for Runs 56-07

and S6-13 in Table 4-7 and in Figure 4-33. The period between 20 and 200 seconds
included a number of randomly spaced variable-length intervals of high noise.

Run S6-07 covered this section and Run S6-13 covered a 33-second section of noise
free data. The standard values of tolerance shown in Table 4-1 were used on both
runs. The average compression ratio of the data without wild points increased on all
but six sensors, and the combined average compression ratio increased from 3. 44 to
4. 06.

4.5.4.2 Experiment 9: Queue Behavior as a Function of p (Runs S6-14, S6-15,

S6-16, S6-17). This experiment observed the queue behavior as the ratio of average

buffer sample readin rate to readout rate, p, was varied on noise free data.
Values for P of 0.91, 0.95, 0.98 and 1. 50 over the period of 62 to 95 seconds were
used by setting the buffer readout rates to the values shown in Table 45. An

infinite-capacity buffer was used in all runs.

Results. Time histories of queue length and buffer input rate are shown in Figure 4-34 |
for ? = 0.98 (S6-16)and for » = 1. 50 (S6-17). Note that when the buffer readout rate |
exceeds the average readin rate, p<l, the queue length is nominal. The maximum i
queue varies from 28 for # = 0. 91 to 56 for P =0.98. This shows that even for a » !
as high as 0.98, a buffer of reasonable capacity, 100-200 samples, can, without any
form of queuing control, easily handle noise free S-6 data compressed by the
first-order interpolator, disjoined, selector. However, if the readout rate from the
buffer is set so low that P exceeds unity, the queue will of course continue to build up
indefinitely. An example of this is Run S6-17, during which the queue built up to ap- ‘
proximately 2430 at the end of the 33-second run. From this it appears that some
form of queuing control should be used to insure against buffer overflow in the event

the transmission rate is too low.

The queue length histogram for p = 0.98 is shown in Figure 435, a histogram of
buffer input arrival rates in Figure 4-36, and a histogram of the time intervals be-
tween buffer input arrivals in Figure 4-37. Comparing Figure 4-36 with Figure 4-3 ,
it is clear that the number of instances of high input rate is greatly reduced in the
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Table 4-7

COMPARISON OF AVERAGE COMPRESSION RATIOS
WITH & WITHOUT LOSSES, FOIDIS COMPRESSION MODEL

AVE AVE AVE | AVE
COMP | COMP COMP | COMP
RATIO | RATIO RATIO| RATIO
CHANNEL | WITH [WITHOUT CHANNEL|WITH | WITHOUT
AND SYNC SYNC AND SYNC | SYNC
POSITION LOSS | LOSS POSITION | LOSS | LOSS
SENSOR NUMBERS | (S6-07)| (86-13) SENSOR | NUMBERS]| (S6-07){ (S6-13)
1 1 5.51 6.80 29 31,pp 2 | 6.38 41.00
2 2,7,12,18,23,| 1.76 1.87 30 31,pp 3 {16.20 41.00
28,34,39,44 31 31,pp 4 |11.86 41,00
32 31,pp 5 | 12.95 41,00
3 16,40 3.44 4,33 33 31,pp 6 | 6.81 41,00
4 3,19,35 12.07 396.00 34 31,pp 7 | 6.49 42,00
5 4,20,36 10.20 36.00 35 31,pp 8 | 48.20 42,00
6 5,21,37 4.31 5.06 36 31,pp 9 | 36.00 42,00
7 6,22,38 2.29 2,22 37 31,ppl0 | 1.01 1.02
8 8,32 2.92 3.50 38 31,ppll | 6.12 41.00
9 9,25,41 6.72 17.85 39 31,ppl2 | 5.00 41,00
10 24 6.81 15.35 40 31,ppl13 | 11.13 41.00
11 10, 26,42 3.51 3.82 41 31,ppl4 | 13.21 41,00
12 11,27,43 3.77 4.05 42 33,ppl5 | 10.12 41,00
13 13,29,45 6.28 10.82 43 33,pp 0 | 16.20 41,00
14 30 5.65 3.86 44 33,pp 1 | 6.81 41,00
15 14 16.72 660,00 45 33,pp 2 | 9.22 41,00
16 15 23.93 660.00 46 33,pp 3 | 14.29 41,00
17 17,pp 15, 6* 1.00 1.01 417 33,pp 4| 9.96 41,00
18 17,pp 0,7 1.00 1.00 48 33,pp 5 | 10.70 41,00
19 17,pp 1,8 1.00 1.00 49 33,pp 6 | 8.69 41,00
20 17,pp 2,9 1.31 1.63 50 33,pp 7| 7.23 42,00
21 17,pp 3,10 1.59 1.93 51 33,pp 8 | 16.07 42.00
22 17,pp 4,11 6.02 82.00 52 33,pp 9 | 10.08 42,00
23 17,pp 5,12 1.00 1.01 53 33,ppl0 | 13.16 42,00
24 17,pp 13 8.26 41,00 54 33,ppll | 6.78 41,00
25 17,pp 14 13.21 41.00 55 33,ppl2 | 5.67 41.00
26 31,pp 15 7.23 41.00 56 33,ppl3 | 6.24 41.00
27 31,pp 0 6.94 41,00 57 33,ppl4 [251.00 41,00
28 31,pp 1 6.15 41,00
Combined (all
sensors) 3.44 4,06

*Sensors 17 through 23 were erroneously thought to to be cross-strapped as shown.
Since only one minor frame channel in 45 was involved, the resulting abnormally-low
compression ratios obtained for these sensors did not materially affect the overall
outcome of the experiment. '
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noise free data. In addition, the queue Iength histogram, Figure 4-35, resembles
an exponential decay which is characteristic of Poisson input statistics. (It will be

recalled that the queue length histogram for the 200-second run shown in Figure 4-5
did not.)

4.5.4.3 Experiment 10: Comparison of Queue Length and Compression Ratio Moni-
toring Under Conditions of Low Buffer Readout Rate (Runs S6-18, S6-19). This experi-
ment, involving a buffer readout rate set so low that, without queuing control, p would

exceed unity, compared the performance of a queuing control system which monitors

average run length with one which monitors the queue length. Run S6-18 used the
compression ratio monitoring, continuous queuing control system; Run S6-19 used the
queue length monitoring, continuous queuing control system. All control parameters
for Run S6-18 were essentially the same as in Runs 56-08 and S6-09 except JR equalled

7 in Run S6-18.

Results. Time histories of queue length and buffer input rate for Run S6-15, com-
pression ratio monitoring, are shown in Figure 4-38. A comparison of Figure 4-38
with Figure 4-34 indicates that the compression ratio monitoring system in its cur-
rent form was completely ineffective in coping with an excessively-low readout rate
situation. The queue buildup with this form of queuing control, Figure 4-38, was
essentially the same as the buildup without control, Figure 434 . Queue length and
buffer input rate time histories for Run S6-19 (queue length monitoring) are presented
in Figure 4-39. This figure shows that the queue built up during the first four or five
seconds of the run, but leveled off to an average value of about 150. The maximum

value of queue during the entire run was approximately 186.

If the queue length is monitored and used to control aperture width, the average
queue length will reach an equilibrium value. Although this value was 150 in this
experiment, it will in general depend on the starting points and slopes of the feedback
curves and on the buffer readout rate. On the other hand, if compression ratio is
monitored and used to control aperture width, no queue length equilibrium point will

ever be reached and eventual buffer overflow is sure to result.
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Figure 4-40a shows time histories of the original and reconstructed Sensor 9 data and
of the reconstructed data error taken from a portion of Run S6-18 (compression ratio
monitoring); Figure 4-40h, the corresponding time history of the tolerance; Figures
4_4la and 4-41b, Sensor 9 data and tolerance time histories for a portion of Run $6-19
(queue length monitoring), respectively; Figure 442, the same portion of the Sensor 9
reconstructed waveform for the standard tolerance of 4 counts without queuing control
from Run S6-07; and Figures 443, 444, and 445 , error histograms for S6-18,

S6-19, and the case without queuing control, respectively.

Time histories of the original and reconstructed Sensor 11 data and of the reconstructed
data error taken from a portion of Run S6-18 are shown in Figure 4-46a. Figure 4-46b
shows the corresponding time history of the tolerance. Sensor 11 data and tolerance
time histories are shown for a portion of Run S6-19 in Figures 4-47a and 4-47b, For
comparison, the same portion of the Sensor 11 reconstructed waveform is shown in
Figure 4-48 for the standard tolerance of 4 counts without queuing control from

Run S6-07. Error histograms are shown for S6-18, S6-19 and the case without queuing
control in Figures 449, 450 and 4-51, respectively. Rms errors and individual-
sensor average compression ratios are given for seven sensors in Table 4-8.

Figure 452 gives a comparison of the rms errors obtained for these sensors in

Runs S6-07 (no queuing control), S6-18 (compression ratio monitoring control system),

and S6-19 (queue length monitoring control system).

Figures 4-40a through 4-45 for Sensor 9 and Figures 4-46a through 4-51 for Sensor 11
show that the fidelity of the reconstructed data which results with the queue length
monitoring system is worse than the data fidelity with the compression ratio monitor-
ing system. In fact, a comparison of Figures 4-46a and 4-48 shows no appreciable
fidelity degradation of the Sensor 11 waveform of the compression ratio monitoring
system over the waveform of no queuing control. (Some degradation in the Sensor 9
waveform is noticeable when Figures 4-40a and 4-42 are compared.) An examination
of the rms errors for the seven sensors shown in Table 4-8 and in Figure 4-52 also
indicates an appreciable degradation of the reconstructed data for most of the sensors

with the queue length monitoring queuing control system under conditions of excessive-

ly low buffer readout rate.
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Table 4-8

COMBINED RESULTS BY INDIVIDUAL SENSOR - TEST GROUP 4

QUEUING MAX TOL, RMS ERROR N

SENSOR RUN {CONTRCL COUNTS ERROR, MEAS. _ MEAS

SYSTEM COUNTS | INTERVAL,| N* | INTERVAL,

SEC SEC

2 S6-07| NONE 4.0 1.31 85-90 1.76 20-220
S6-13 NONE 4.0 - - 1.87 62.95
S6-18| CRC 7.9 1.30 85-90 1.86 62.95
S6-19 QLC 16.1 5.57 85-90 2.54 62-95

3 S6-07 NONE 16.0 6.66 62-95 3.44 20-220
S6-13 NONE 16.0 - - 4.33 62-95
S6-18 CRC 28.1 7.28 67-92 4.33 62-95
S6-19 QLC 63.7 25.14 67-92 6.14 62-95

6 S6-07 NONE 4.0 2.25 62-95 4.31 20-220
S6-13 NONE 4.0 - - 5.06 62-95
S6-18 CRC 16.6 2.04 74-90 5.09 62-95
S6-19 QLC 15.9 8.60 74-90 12.94 62-95

7 S6-07 NONE 4.0 1.57 62.95 2.29 20-220
S6-13| NONE 4.0 - - 2.22 62-95
S6-18 CRC 8.8 1.84 74.90 2.24 62-95
S6-19 QLC 15.9 6.37 74.90 3.14 62-95

9 S6-07| NONE 4.0 1.82 62-95 6.72 20-220
S6-13| NONE 4,0 - - 17.85 62-95
S6-18 CRC 54.6 3.24 74-90 17.23 62-95
S6-19 QLC 16.0 5.93 74.90 36.02 62-95

10 S6-07 NONE 4.0 1.73 62-95 6.81 20-220
S6-13 NONE 4.0 - - 15.35 62-95
S6-18 CRC 40.5 5.26 62-95 12.94 62-95
S6-19 QLC 16.0 4.60 62-95 20.00 62-95

11 S6-07| NONE 4.0 2.26 62-95 3.51 20-220
: S6-13 NONE 4.0 - - 3.82 62-95
S6-18 CRC 13.4 2.40 74-90 3.84 62-95
S6-19 QLC 16.0 7.95 74-90 6.06 62-95

*N = Maximum average compression ratio
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4,5.5 Conclusions

4.5.5.1 Use Queuing Control With Queue Length Monitoring on S-6 Data. The re-

sults of these experiments indicate that, as long as the S-6 satellite telemetry data

are free of wild points and other causes of prolonged digital error, and the trans-
mission sample rate is sufficiently high, the data activity is so constant that the need
for any form of queuing control does not exist. However, in order to insure against

the possibility that the buffer readout rate will be set lower than the average readin
rate to the buffer, it is desirable to use queuing control with queue length monitoring
only. Because this control would only be used as a backup in the event p exceeds

unity and the queue did not exceed 56 even for a # of 0. 98, the aperture should not

begin to increase until the queue reaches about 60. The relative slopes of the control
lines for each sensor will of course depend partly on sensor priority, but on the
average the slopes will be determined by the buffer capacity and the maximum antici-
pated value of p without queuing control. The control line slopes used in Experiment 10,
which doubled the aperture on all sensors when the queue increased from 20 to 75, re-
sulted in an average queue of about 150 when the buffer readout rate was reduced to

148 samples per second. Thus, enlarging the apertures by a factor of about two and
one-half reduced the average buffer readin rate by one-third. A buffer with a capacity
of at least 186 would have been required with the parameter values chosen in Run S6-19.
However, an increase in the slopes of the control curves would cause the apertures to
be increased by the above factor at a lower value of queue if control still began at 20
samples and require a smaller buffer to cope with the chosen reduction in buffer

readout rate.

4.5.5.2 Rerun S6-19. It may be profitable to rerun S6-19 a number of times with
different values of readout rate and control curve slopes in order to obtain a family of
curves relating average and maximum queue lengths and readout rates, and to deter-

mine the effect of control curve slope on reconstructed data fidelity.

4.5.5.3 Compression Ratio Monitoring Systems Not Required. Because of the con-

stancy of the S-6 data activity without noise, there is no need to consider compression

ratio monitoring systems, even in conjunction with queue length monitoring, for the
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purpose of controlling the queue. If for some other reason, however, compression
ratio monitoring in its present form is found desirable, then a combination system

should be considered for data such as the S-86.

4.5.5.4 Allow Ground Station Data Compressor Buffer Overflow During High Noise.
It was found that one good way to cope with the problem of noise in a ground

station data compressor is merely to allow the buffer to overflow during periods of
excessive sync loss. The data samples lost during these periods will usually be of
little value to the data analyst anyway. Another way to cope with noise would be

to employ some method of wild point rejection on the pre-compressed telemetry data.

4.5.5.5 Queue Length Monitoring Systems Are Self-Adjusting. It can be concluded
that queue length monitoring systems are self-adjusting; i.e., if the readout rate is
set too low, the aperture will be automatically adjusted to match this rate. The com-

pression ratio monitoring system, in its present form, clearly is not self-adjusting.

It is believed, however, that this system could be made self-adjusting by, for example,
using the integral of the error signal to control the aperture, rather than the error
signal itself. The merits of this and other self-adjusting systems, compared with the
queue length monitoring system, should be determined by further investigation.

4.5.5.6 Buffer Underflow Must Accompany Normal System Operation. In order for
normal conditions, those yielding maximum data fidelity, to prevail with the queuing
control system configuration recommended above, the queue would be so small that
control would not be in effect. However, in order for this to occur, ; must be less
than one. This means buffer underflow will be present, and on some attempts to
remove a sample from the buffer for transmissi«.)n, the buffer will be empty and no
sample will be read out. The resulting voids in transmission can of course be filled
with some predetermined code word, or with redundant data samples from selected

sensors to avoid the problems of bit synchronization if all zeros or ones were trans-

mitted.
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TIME INTERVAL (SEC)

Fig. 4-4 Histogram of Time Intervals Between Buffer Input Arrivals, Run S6-07
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Fig. 4-6 (Cont'd) Queue Length and Buffer Input Arrival

Rate vs Time, Run S6-07
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11

10

2
*$6-07: No queuing control

SENSOR:

oL oz

trol; J
trol; J

pression ratio monitoring, continuous queuing con

S6-08: Compression ratio monitoring, continuous queuing con

$6-09: Com

Figure 4-21 Comparative Rms Errors, Test Groups 2 and 3

$6-10: Queue length monitoring, continuous queuing control
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and Error vs Time, Run S6-12

199,
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(Cont'd) Sensor 9 Original Data, Reconstructed Data,

and Error vs Time, Run S6-11

Fig. 4-31
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TIME (SEC)
Fig. 4-40b Sensor 9 Tolerance vs Time, Run S6-18
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TIME (SEC)

Fig. 4-41b Sensor 9 Tolerance vs Time, Run S6-19
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Fig. 4_46a Sensor 11 Original Data, Reconstructed Data, and Error vs Time, Run S6-18
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Fig. 4-48 Sensor 11 Original Data, Reconstructed Data,

and Error vs Time, Run S6-07
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Fig. 4-49 Sensor 11 Histogram, Run S6-18
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Table 4-9
COMPRESSOR RUN SUMMARY

Time Queuing
Test Segment, Control
Group Sec Run No. Selector P M System Remarks
$6-01 Z01 - - NONE No buffer simulation
56-02 FOIDIS - - NONE No buffer simulation
1 92-148 $6-03 Z01 0.95 261 NONE
56-04 FOIDiS 0.95 273 NONE
S6-05 FOIDIS 0.90 288 NONE
$6-06 FOIDIS 1.10 236 NONE
2 20-220 56-07 FOIDIS 0.91 288 NONE
S6-08 FOIDIS 0.97 288 CRC 8y = -3, Jg = 3 for
all sensors
S6-09 FOIDIS 1.01 288 CRC 8 =-3, JR = 11 for
all sensors
$6-10 FOIDIS 0.98 288 QLC Parameters chosen to
correspond as closely
as possible with S6-08
3 180-215 $6-11 FOIDIS * 288 See QLC used to simulate
Remarks | sample loss caused by
buffer overflow, with-
out queuing control
$6-12 FOIDIS 0.89 288 QLC Control began at
queue = 20; full-
scale tolerance at
queue = 100, for all
sensors
S6-13 FOIDIS - - NONE No buffer simulation
S6-14 FOIDIS | 0.91 | 244 NONE
$6-15 FOIDIS 0.95 233 NONE
56-16 FOIDIS 0.98 226 NONE
$6-17 FOIDIS 1.50 148 NONE
4 62-95 56-18 FOIDIS 1.50 148 CRC Bl = -3, JR = 7 for
all sensors
86-19 FOIDIS 1.04 148 QLC Control began at
queue = 20;toler-
ance doubled at
queue = 75, for all
Sensors

*The true value of p was not determined for Run $6-11.

Explanation of Symbols:

?
M

Zo1
FOIDIS

QLC

IR

Ratio of average buffer sample readin rate to readout rate
Buffer readout rate in samples per sec

Zero-order interpolator

First order interpolator, disjoined

Compression ratio monitoring, continuous (linear) control
Queue length monitoring, continuous (linear) control
Slope of queuning control curve

The number of most recent line segments, including current run, over which average
run length is computed

Table 4-9 Compressor Run Summary
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Section 5
CHANNEL AND TIME CODING

This section describes methods of channel identification and time base reconstruction
for adaptive sampling, redundancy reduction and encoding. Channcl identification is
used to show which channel each non-redundant sample represents; time coding to re-
establish the event time sequence. The coding selected to provide this must be con-

sidered in computing the overall bandwidth compression ratio.

An accurate, absolute time base is important when correlating data from a number of
satellites, or even multiplexed data from the same satellite. Since the time resolution
of a measurement is entirely dependent upon the sampling frequency of the multiplexer,
redundancy reduction and encoding are able to achieve the same time resolution pro-
vided suitable time coding is included. In certain instances of adaptive sampling,
time coding must be performed on an absolute or incremental time basis since the
adaptive multiplexer may not have a basic frame rate. The following paragraphs
discuss each category of time and channel coding independently since each has a

unique solution.

When examining time-base reconstruction requirements it is important to note
whether data is required in real time (delayed only by propagation effects), near real
time (delayed for a few seconds by buffers, etc.), or hours to days after the actual
event. In general, only those data required for closed loop command control have
real-time requirements. Since real-time closed loop operation of a satellite is
rarely used, most data can be transmitted using near real-time.

5.1 CHANNEL IDENTIFICATION

The method of coding to be used depends upon the model. With adaptive sampling and
redundancy reduction, a channel identification code is required wi th each transmitted
symbol. On the other hand, encoding models that produce an output symbol for each

5.1
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input sample do not require special coding since, as in the case of conventional PCM,
the order of symbols following a frame sync word identifies the channel number.
However, synchronization will be difficult in those encoding models which employ
variable word lengths, Word separation will also be difficult in these models unless
end_of_-word or comma codes are included. In the case of bit plane encoding, a single
channel address is required to represent an entire block of encoded data from a given

source, which results in less bandwidth required for channel identification.

5.2 RELATIVE TIME CODING
5.2.,1 Adaptive Sampling

The two major forms of adaptive sampling discussed in Paragraph 2. 3.2 are telemetry
format variation by command-control from the ground station, and self-adaptive samp-
ling. The first involves a constant speed multiplexer whose format is varied on com-
mand. Because the current format is known at all times at the ground station, relative
timing is maintained as in the case of a conventional multiplexed telemetry system.,

The second category, self-adaptive sampling, however, is more involved.

Paragraph 2.3.2 described a number of different ways in which self-adaptive sampling
could be implemented. Summarized, these are:
e (Constant-speed multiplexer
a. Constant delay of each sensor waveform at multiplexer input.
b. Variable delay of each sensor waveform at multiplexer input.
e Variable speed multiplexer
Either a or b, as above,
If the multiplexer output rate and all delays at the multiplexer input are constant
(therefore known a priori), the timing problem reduces to that of a conventional time-
multiplexed telemetry system and relative timing between samples of the same sensor

and among sensors can be determined at the receiver simply by monitoring the

overall multiplexer sample rate,

5-2
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However, if variable analog delays are employed at the input to the multiplexer, the
timing problem becomes quite difficult. Data waveforms at the outputs of the variable
delay networks are now distorted in the time dimension, and each resulting sample
has a different delay associated with it. This delay would probably have to be trans-

mitted along with each sample in order to reconstruct relative time.

If a variable-speed multiplexer is used, the original time reference is again destroyed,
unless special steps are taken. One way to preserve this reference may be to trans-
mit along with each sample the instantaneous speed of the multiplexer when the sample

was taken. Another way may be to measure the buffer waiting time of each sample.

This discussion indicates that unless a constant speed multiplexer is used along with
constant delays at the multiplexer input, the problem of relative time coding with
self-adaptive sampling may be exceedingly difficult, and could very likely require
implementation which exceeds the current state of the art.

5. 2.2 Redundancy Reduction

The following discussion pertains to relative time coding required for redundancy

reduction to reinstate the order of data samples in a time resolution equivalent to

PCM telemetry.

Although one of the easiest methods for reinstating the order of reconstructed data
samples is to include an absolute vehicle time identification with each significant

sample transmitted, this method is not considered because of the resulting inefficient

use of bandwidth.

It is possible to avoid transmitting time by taking advantage of the channel address
which must accompany each significant data sample. The possible solutions are in-
fluenced to a certain degree by the organizational configuration of the multiplexer
(number and variety of sampling rates). Four time resolution coding techniques were
evaluated for the S-3 (Explorer XII), S-6 (Explorer XVII), and S49 (OGO) satellite

telemetry multiplexer formats.
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5.2.2.1 Techniques. The techniques and the bit requirements associated with each
are as follows:

a) Minor frame1 identification (ID) in addition to one subframe
IDzat the beginning of each minor frame. Bit requirements

per transmitted word:

e Data magnitude, represented by logz (no. of quanta
between zero and full scale)

e Minor frame ID, represented by 1og2 (no. of minor

frame channels)
e Subframe ID code indication, represented by 1 bit
In addition, a subframe ID word of equivalent length once each minor frame.

b) Absolute address with forced readout of redundant sample
during an empty minor frame. (This technique will not
establish exact time for cross-strapped sensors.) Bit

requirements per transmitted word:

e Data magnitude, represented by log2 (no. of quanta

between zero and full scale)

e Absolute address, represented by log2 (total no, of

sensors)

e Indication of first word of a minor frame, represented
by 1 bit

c) Minor frame ID with forced readout of redundant sample
during an empty minor frame. Bit requirements per

transmitted word:

e Data magnitude, represented by log2 (no, of quanta

between zero and full scale)

1 A minor frame is a group of consecutive telemetry words beginning with the frame

sync pattern and ending with the last word before the next frame sync pattern,

The subframe ID is the number of the minor frame relative to the subcommutation
cycle,
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e Minor frame ID, represented by log2 (no. of minor

frame channels)

o Indication of first word of a minor frame, represented
by 1 bit

d) Dual minor frame/ subframe ID. Bit requirements per

transmitted word:

e Data magnitude, represented by log2 (no. of quanta
between zero and full scale)

e Minor frame ID, represented by log2 (no. of minor

frame channels)
e Subframe ID, represented by log2 (main frame3 length)

It is assumed in the evaluations which follow that empty main frames
will be sufficiently rare that forced readouts which would be required
to signify these frames need not be taken into account,

5.2.2.2 Evaluation. The subframe ID code indicator bit in (a) distinguishes between

a data word and the subframe ID code. The subframe ID code requires the same number
of bits as a data word so that the frame synchronization code will always be evenly
spaced in time, Since in techniques (a), (b) and (c) a forced readout of either the sub-
frame ID or a redundant sample will occur during an empty minor frame, the resulting
bandwidth compression becomes asymtotic to a finite value with increasing sample com-

pression ratios,

Figures 5-1, 5-2 and 5-3 show computed relationships between sample and bandwidth
compression ratios for the four encoding techniques described in Paragraph 5. 2.2, 1,
Figure 5-1 shows the relation between sample compression ratio and bandwidth com-
pression ratio for the S-3 multiplexing format. It is seen that below sample compression
ratios of 20, technique (c) results in the greatest bandwidth compression ratio. Tech-
nique (d) is more efficient for the higher ratios. The S-3 satellite has a 16-channel

A main frame is the smallest number of consecutive minor frames which constitutes
a complete cycle of all the subcom channels.
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minor frame and a single 16-channel subframe. In order to obtain a comparison
among the four time resolution coding techniques for the multiplexing format of the
S-3 satellite telemetry system, it was necessary to assume a data magnitude digital
word length., (The S-3 telemetry system was actually pulse-frequency-modulated. )
This word length was chosen to be eight bits.

Figure 5-2 shows the same conversion to bandwidth compression ratio for the S-6
satellite multiplexing format. Techniques (b) and (c) are equal in efficiency over the
entire range of sample compression ratios shown, and are thus represented by one
line in Figure 5-2. The S-6 minor frame has 45 channels and the three subframes
have 16 channels each. The bandwidth conversion efficiency can be improved at the
lower compression ratios by dividing the minor frame into a number of shorter higher-
rate frames of equal length, thus requiring fewer bits for channel identification. This
reorganization does not influence the total number of data channels being sampled or
the sampling frequency of each input channel. The primed letters in Figure 5-2
denote the shorter minor frame, Note that (c)' is the most efficient for sample com-
pression ratios below 15. In this case three short frames of 15 channels each were

used, as shown in Figure 5-3.

Figure 5-4 shows the relationship between sample compression ratio and bandwidth
compression ratio for the S-49 satellite multiplexing format. Technique (c) is con-
sistently more efficient over the compression ratios shown., These examples show
that the bandwidth compression is approximately equal to one-half of the sample com-

pression ratio.

5.2,3 Encoding

Encoding models that produce an output symbol for each input sample do not have a
relative time code requirement since this class of encoders provide time resolutions

to within the accuracy of the PCM telemetry,

In the case of bit plane encoding, time codes are used to represent the number of sample

periods (run length) between changes in binary state within a given "B" plane, See
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Appendix 1. It is seen that after the first sample in a block has been specified, the
remaining contents in that block are represented by incremental time codes, If the
encoding procedure fails to result in a fewer number of binary digits, the original
sequence of binary digits in a plane is to be transmitted instead.

5.3 ABSOLUTE TIME CODING

5.3.1 Adaptive Sampling

Of the two major concepts of adaptive sampling discussed in Paragraphs 2.3.2 and

5. 2.1, telemetry format variation by command control may be regarded, as far as
absolute time coding is concerned, as a conventional time-multiplexed telemetry
system., A self-adaptive system which uses a constant-speed multiplexer and constant
delays at the multiplexer input would also determine absolute time in the same manner
as a conventional system. The remaining self-adaptive system configurations discussed
pose very difficult absolute as well as relative time coding problems, the solutions of
which must be deferred to later studies.

5.3.2 Redundancy Reduction

In general, to relate the time of events within a vehicle to an absolute time base, the
vehicle clock time must be merged with the multiplexer format, and the overall system
time delays, including propagation delay, should be known. If an accurate clock, such
as WWV, is monitored at the ground tracking station at least once during a minor frame
and if the short term stability of the multiplexer is reasonably good, it is possible to
correct for the time errors caused by vehicle clock instability to within the resolution
of the sampled data.

When the data compression is employed, there is an additional system delay in the
spaceborne equipment, caused by the operation of the buffer. This delay, of course,

is variable because the queue length is variable, For near real time data presentation,
however, all delays should remain relatively constant if time base errors are to be

avoided. To compensate for the variable delay within the data compressor, a
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complementary buffer delay at the ground station is required during data reconstruc-
tion so that the sum of the two buffer delays will always equal a constant, T. For
this condition to be met,

(e + (€ pp=K (5-1)
where

(cv)t is the fullness (queue length)
of the vehicle buffer at time t

is the fullness of the ground
buffer at time t+T

O

and K is a constant. For the overall time delay, T, to be minimum, K must be equal
to C, the maximum capacity of the vehicle buffer. Under these conditions
C

T= =2
Ry
where Rt is the transmission word rate, If the minimum delay requirement is to be
T be maintained at the value indicated by Equation
5-1. To accomplish this, a periodic code word should be transmitted from the vehicle
specifying the fullness of its buffer at time t. For initialization of the ground recon-

struction buffer, (cg) must have a fullness of C - (Cv) ¢ at time t+T. The maximum

satisfied, it is necessary that (cg)

capacity of the reconstruction buffer is also equal to C words under these conditions.

If the status of the buffer fullness is not transmitted, it is necessary for the ground
reconstruction buffer to have a capacity of 2C words to guarantee that buffer overflow
or buffer underflow at the ground station does not occur. To insure that underflow does
not occur the reconstruction buffer is filled to a capacity of C words at initialization,
Under these conditions the combined time delay of both buffers will be a constant betwee
T and 2T seconds, depending on the fullness of the vehicle buffer at the time of initiali-
zing the reconstruction buffer, The actual buffer time delay could be determined, in
due time, if the compressor were designed to indicate an empty buffer condition,
However, there exists the danger that, if the transmission rate was selected to be less
than the mean input rate to the buffer, the probability of an empty buffer would be ex-
tremely small.
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5.3.3 Encoding

Since variablelength words require the use of a queuing buffer, absolute time coding
requirements for statistical encoding systems which produce variable-length output
code words for each input sample are identical to those of the redundancy reduction
category of data compression. With bit plane encoding, it is necessary to include an
absolute time code only once with each block of data, assuming a vehicle clock is
available, If absolute time is not available, the problem of time coding is identical

to redundancy reduction since a queuing buffer is again required.
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Section 6
FINAL ANALYSIS

This section combines and analyzes the results presented in the previous sections of
the report so that selections can be made of data compression methods and techniques
that will most effectively reduce the bandwidth requirements of the S-6 satellite data
without undue loss of data fidelity,

6.1 BANDWIDTH COMPRESSION RATIOS

First, the values of sample compression ratio presented in Sections 3 axid 4 are con-
verted to bandwidth compression ratios, using time resolution and address coding
technique (c)' discussed in Section 5. This technique requires transmitting along with
each data sample amplitude word, a word denoting the minor frame channel number.

It was assumed that the minor frame could be divided into three short frames of 15
channels each, requiring four channel identification bits with each amplitude word, For
the zero-order predictor (ZOP) and the zero-order interpolator (ZOI), each line seg-
ment can therefore be represented by nine data amplitude bits and four identification
bits, a total of 13 bits per transmitted word. For the first-order disjoined interpolator
(FOIDIS) and the first-order four-degree-of-freedom interpolator (FOI4DG), each line
segment is assumed to be represented by two data amplitude words (18 bits), thus re-

quiring a total of 22 bits in each transmitted word, For the first-order offset out of

_tolerance interpolator (FOIOOT), one offset indication bit is required along with the

nine data amplitude bits for each line segment, Thus a total of 14 bits is required for
this selector, Because of the relatively low compression ratios involved, no account is

taken of forced readout requirements for empty short frames.

Using the above coding technique and word lengths, sample compression ratios pre-
sented in Table 3-2 are converted to bandwidth compression ratios for Sensors 9, 10
and 11, The results are shown in Table 6-1 for tolerances of two and four data units,

The averages of the bandwidth compression ratios for the two tolerances are shown in
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Figure 6-1, along with the average values of the three sensors. Figure 6-1 shows a
superiority of the FOI4DG selector for all three sensors. The ZOI selector outperforms
the FOIDIS and FOIOOT selectors for Sensors 9 and 10, but on the average is slightly
inferior to these two selectors. For all three sensors, the ZOP selector is highly in-

ferior to the other four.

The compression efficiency of bit plane encoding compared to those of the redundancy
reduction selectors is shown in Figures 6-2 and 6-3. Note that with both Sensors 9 and
11, bit plane encoding surpasses the ZOI and FOIDIS selectors for tolerances of 0.5
and 1.5 data units. Further experimentation is necessary to determine the relative
behaviors of the techniques for tolerances greater than 1.5. The positions and slopes
of the curves for bit plane encoding suggest a possible reversal in relative performance
at higher tolerances, but it should also be noted that more efficient coding techniques
than the one selected in this study could increase the performance of bit plane encoding

as a compression technique.

In order to compare the bandwidth compression ratios obtained during the single-sensor
experiments (Section 3) with corresponding results of the multisensor experiments
(Section 4), appropriate values of sample compression ratio presented in Table 4-7
were converted to bandwidth compression ratio. These values are shown in Table

6—21. The comparison can readily be made by observing (Figure 6-4) that the single-
sensor measurements agree quite well with those of Run S6-07 for Sensors 9 and 10,
but are much lower than the corresponding measurements from Run S6-13. This may
be because the portions of the S-6 data used on Run S6-07 and the single-sensor run,
though not identical intervals, contained about the same proportion of wild points
caused by sync loss, while the data used on Run S6-13 were free of sync loss. On the
other hand, the single-sensor run on Sensor 11 yielded a much higher bandwidth com-
pression ratio than did Run S6-07 or S6-13. The reason for this is that the single-sensor
run covered a portion of the Sensor 11 data that consisted mostly of calibration, re-
sulting in a waveform which was primarily steady-state. This is in high contrast to

the cyclic nature of the waveform generated by the measured phenomenon coupled with

the effect of the spin of the vehicle.

1For the case involving the combined compression ratio for all 57 sensors, the assigned -

tolerance for each sensor is given in Table 4-1. The tolerance was 4 data units on
809 of the data,
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Table 6-2

BANDWIDTH COMPRESSION RATIOS FROM
MULTI-SENSOR EXPERIMENTS (SECTION 4)

S-6
Data
Interval, Sample Bandwidth
Sensor Sec Run Comp. Ratio* Comp. Ratio
20-220 S6-07 13.44 5.50
9
62-95 S6-13 35.70 14.60
20-220 S6-07 13.62 5.57
10
62-95 S6-13 30.70 12.55
20-220 S6-07 7.02 2.87
11
62-95 S6-13 7.64 3.13
Combined 20-220 S6-07 6.88 2.82
(57 sensors) 62-95 S6-13 8.12 3.32

Selector: FOIDIS

Tolerance: 4 data units

*The sample compression ratios shown in this table are twice the corresponding
values presented in Table 4-7 (cf. paragraph 4.4.1, p. 4-6).
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6.2 COMPRESSION MODELS AND DATA CLASSES

One of the purposes of this investigation was to determine which compression models
are most effective on each of the five data classes discussed in Section 3, This sub-

section discusses the outcome of this work and some of the reasons why it is advanta-
geous to cbnsider single-model operation for all data on a given vehicle, rather than

a multiple system with specific models tailored to each data class,
6.2,1 Model Applicability to Data Classes: Experimental Results

Bandwidth compression ratios obtained for the ZOI and FOIDIS selectors on each of
four data classes (Class 4 was excluded) are shown in Table 6-3. The values were
computed from the sample compression ratios in Table 3-3. Note that the compression
effectiveness of the zero-order interpolator exceeds that of the first-order interpolator
for Data Classes 1, 2 and 3, but that the situation is reversed for the Class 5 data
specimen used in the test, Undoubtedly the first-order interpolator also would be more

effective with Class 4 data, since these data consist of sawtooth waveforms.

Because of the step-wise constant and/ or slowly-varying nature of the Class 1 and 2
data, it is not surprising that the zero-order interpolator may outperform the first-
order interpolator for these two classes. It is interesting, however, that the ZOI
selector also outperforms the FOIDIS selector on two examples of Class 3 (exponential
transient) data, An intuitive comparison of the two selectors on such a waveform is
difficult, but it is noted in observing Figures 3-3, p. 3-32 (Class 3, Example b: 79-87
sec. ) and 3-3, pp. 3-35 and 3-36 (Class 3, Example c: 120 - 142 sec, ) that a large
proportion of these waveforms are tails of exponentials, which are essentially constant,
Although the statistical sample used in these experiments is too small to draw any firm
conclusions, it appears likely that the relative performance of the zero and first-order

interpolators may depend on the particular exponential waveform in question,

By similar reasoning, since the waveforms contained in Class 5 consist of all those
types which do not fall in Classes 1 through 4, it may be difficult to find a single com-
pression model which performs best with Class 5 data.
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Table

6-3

BANDWIDTH COMPRESSION RATIOS VERSUS
DATA CLASSES

Bandwidth Comp.

Data Time Ratio
Class Example Sensor Segment, Sec Z01 FOIDIS
a 9 104-116.5 - 4.11
. b 10 87-120 3.52 1.81
2 a 11 104-120.5 3.39 2.30
a 9 116.5-133 - 2,33
3 b 10 79-87 3.90 2.25
c 10 120-142 3.85 1.81
5 a 11 130.5-136 1.92 2.63
Variance of bandwidth compression ratios 0.524 0.0833*

Note: Tolerance is 2 data units in all cases.

*Class 1, Example a and Class 3, Example a are not included in this figure.
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6.2.2 Advantages of Single-Model Operation

When the problem of data waveform redundancy reduction is first considered, it is
logical to surmise that additional system efficiency can be achieved by tailoring com-
pression models to data classes. The difficulty with this approach, however, is that
the telemetry data from one vehicle, and, indeed, data in a single multiplexer frame,
usually contain waveforms from all five data classes., Paragraph 3.3.1.2 states that
very few parameters (other than housekeeping parameters, which make up no more
than 3/45 of all the S-6 data samples), appear to fall entirely in any one data class
other than Class 5. Thus, to take advantage of any correlation that may exist between
compression model and data class, it may be necessary not only to use more than one
compression model to accommodate different sensors, but also to change models on

single sensors during the course of the experiment.

Now, it is true that if the differences in bandwidth compression ratios between selectors
for the various classes were sufficiently great, the increased equipment complexity
required to implement such a multiple-model system might be warranted. However,
the data obtained thus far (Table 6-3) indicate that such is not the case.

In light of the above, it should be considered an attribute for a compression model to
exhibit a non-varying performance from one data class to the next, in addition to a high
bandwidth compression ratio. This attribute is therefore included in the selector

tradeoff analysis of Paragraph 6.4.

6.3 ADAPTIVE APERTURE AND FILTERING TECHNIQUES

There are two possible reasons for employing adaptive aperture and filtering techniques

in a data compression system:

e To control the queue length in an attempt to

curtail or eliminate buffer overflow

e To improve the fidelity of the reconstructed

data and increase the compression ratio
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Section 4 describes the investigation of adaptive aperture techniques for the purpose of
buffer overflow curtailment, and Section 3 discusses the study of the effect of adaptive
aperture and filtering techniques on data fidelity and compression ratio. This para-

graph summarizes the findings of both these investigations.
6.3.1 Curtailment of Buffer Overflow

Paragraph 4.5. 5 points out that, in the absence of wild data sample points, the arrival
statistics of the S-6 satellite compressed data samples entering the buffer were found
in the case of multisensor operation to be extremely stationary. This high degree of
stability was shown by the extremely low maximum queue length of 56 samples during

' a simulated run consisting of 29,700 compressor input data samples, even when the

ratio of average buffer input sample rate to output rate, (T , was set as high as 0, 98.

Because of this stationarity it was concluded that a queuing control system would not

be needed if it were useful to curtail only that buffer overflow caused by non-stationarit
of the buffer input data sample rate. However, queuing control is also useful to prevent
buffer overflow when the buffer sample readout rate is so low that E, without the con-
trol, would exceed unity. It is shown in Section 4 that queuing control using queue
length as the monitored parameter (rather than average compressed data run length)
can most effectively cope with this situation. Thus, it is concluded that queue length
monitoring should be used to curtail buffer overflow on a spaceborne data compressor
(where noise is not a problem) when the telemetry data is similar to that of the S-6
satellite,

In a ground-based application (again considering S-6 satellite telemetry data) where
wild points due to noise may exist, Section 4 concludes that queue length monitoring
should be used to curtail buffer overflow during those data intervals when excessive
wild points were not present, To cope with wild points that may exist, two approaches
may be taken. Either (1) a buffer of reasonable capacity (100 to 200 samples) can be
élllowed to overflow during periods of excessive wild points (assuming the data during
these intervals are of little use to the analyst anyway), or (2) methods can be devised

to reject most wild points before the data enter the compressor. These methods can
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be based on similar decision criteria that are currently used by data compression

sample selectors.

It should be pointed out that in Section 4 the use of adaptive aperture techniques is con-
sidered solely with the intent of controlling the queue to curtail buffer overflow, and
the above conclusions are based on this intent. They will of course be combined with

the conclusions derived in Paragraph 6. 3.2 regarding fidelity and compression ratio.

6.3.2 Improvement of Reconstructed Data Fidelity and Compression Efficiency

Section 3 reports the investigation of two general methods for the possible improvement
of reconstructed data fidelity and compression efficiency. These are (1) precompression
filtering and (2) adaptive aperture techniques. Precompression filtering can be either
adaptive or nonadaptive; i.e., the effective bandwidth of the filter can be made to vary

as a function of some parameter concerned with the compressed data (adaptive), or it

can be fixed (nonadaptive).

6.3.2.1 Precompression Filtering. The following results were obtained from the

nonadaptive filtering experiment discussed in Paragraph 3.4, regarding compression

efficiency and reconstructed data fidelity:

Compression efficiency: In most instances average compression
ratios were raised significantly for both the ZOI and FOIDIS selectors

when precompression filtering was used.

Reconstructed data fidelity: Rms errors in the reconstructed data,
as compared to the original data, were much higher when pre-
compression filtering was used. It is evident, however, that the
increase was caused primarily by the presence of wild points in
the data. It is conjectured that when large numbers of wild points
are present in the data and filtering is involved, rms error may
not be a valid gauge of data fidelity. A subjective inspection of

the reconstructed data waveforms was inconclusive; but the
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filtered, compressed, and reconstructed data appeared to be
somewhat smoother than the unfiltered, compressed, and re-
constructed data, for the same values of tolerance. (See
Figures 3-7, p. 3-48, 3-21, p. 3-70 and 3-21, p. 3-72 for
70I, and Figures 3-11, p. 3-54, 3-21, p. 3-71and 3-21,
p. 3-73 for FOIDIS).
Results from the adaptive filtering experiment discussed in Paragraph 3. 5.2 can be

summarized as follows:

Compression efficiency: For the three sensors examined, average
compression ratios were raised by a fairly high margin, using the
7.0I selector, over the ratios obtained with no precompression

filtering.

Reconstructed data fidelity: As in the case of nonadaptive filtering,
rms errors in the reconstructed data were much higher with adaptive
precompression filtering. Again, however, this large increase was
probably caused primarily by the presence of wild points in the ori-
ginal data. A subjective inspection of the reconstructed waveforms
indicated that, in the absence of wild points, the filtered, compressed
and reconstructed data appeared to be more representative of actual
data trends and less susceptable to noise than the unfiltered, com-

pressed and reconstructed data, for the same tolerance values.

It is not possible to compare nonadaptive with adaptive precompression filtering from
the above results because of the different system configurations and techniques used
in the two tests. (For example, samples were deleted prior to compressor input in
the adaptive filtering experiment; they were not deleted in the case of nonadaptive
filtering.) It can be concluded, however, that both adaptive and nonadaptive precom-
pression filtering hold promise as means of both increasing compression efficiency
and enhancing reconstructed data fidelity. A great deal of additional work is needed
before their relative and absolute worth as accessories to sample selection techniques

can be finally determined.

6-10

LOCKHEED MISSILES & SPACE COMPANY




6.3.2.2 _Adaptive Aperture Techniques. The adaptive aperture experiment discussed

in Paragraph 3. 5.1 monitored the following parameters:
e Short term compression ratio
e Present (line segment) run length
e Exponentially filtered present run length

Note that all three parameters were associated with current waveform activity, and
not directly with queue length. The results of this experiment may be summarized as

follows:

Compression efficiency: For the three sensors and two selectors
examined, the average compression ratio was not significantly

changed from the fixed-aperture cases.

Reconstructed data fidelity: Rms errors were slightly higher with
the adaptive aperture techniques, than when fixed apertures were
used. However, a subjective inspection of the reconstructed wave-
forms showed approximately equal fidelity between the fixed and
adaptive aperture cases. Note, however, that while a subjective,
visual inspection of two reconstructed data waveforms might reveal
no difference in fidelity (because, for example, greater errors are
associated with the more active portions of the data), the degrada-
tion of the specific information required from the waveform by the
data analyst will, in the last analysis, determine relative data
fidelity.

The general conclusion from the tests performed in this study is that adaptive aperture
techniques which monitored parameters associated with current waveform activity did

not appear to have an appreciable effect on either compression efficiency or overall
data fidelity.

If the results of Sections 3 and 4 are combined, it is seen that an adaptive aperture
control system which monitors queue length would be desirable for S-6 data in both

~~ - -9
0o~i1
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spaceborne and groundbased applications of data compression. The sole purpose of
this control system would be the curtailment of buffer overflow. In addition, it may be
desirable to include some form of precompression filtering (either adaptive or non-
adaptive) in the S-6 data compression system to improve compression efficiency and
reconstructed data fidelity. Further investigation is needed in this area before definite

conclusions can be drawn.
6.4 COMPRESSION MODEL TRADE-OFF ANALYSIS

The following criteria were used in the trade-off analysis to select the most desirable

data compression model among the six models examined:

° Bandwidth compression ratio

e  Reconstructed data fidelity

e Sensitivity to data class

e Sensitivity to sensor noise

e Effectiveness with adaptive queuing control

e Complexity

e Sensitivity to noise in the compressed data transmission link
e Ease of reconstruction

Performance factors ranging between zero and one were derived for the six models
according to each of the above criteria, using methods described in the following para-
graphs, The maximum performance factor used was 0. 95 to account for the possibility
of higher performance by a new, currently unknown, model, For those criteria which
could be evaluated from the experimental data, formulas were derived to determine

the performance factors, A consideration was made of the relative importance of

each criterion for the spaceborne, as well as the groundbased, application of data
compression, and the performance factors were weighted accordingly. Finally, the
weighted factors were added to obtain one figure of merit for each compression model

in the spaceborne application, and another for the groundbased application,
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6.4.1 Bandwidth Compression Ratio

The bandwidth compression ratio performance factor was determined for a given
model, i, by finding the ratio of compression performance achieved by that model to
the maximum performance of any of the models tested. The measure of performance
in this instance is the sum of the four values of bandwidth compression ratio achieved
for Sensors 9 and 11, with tolerances of 2 and 4 data units, Thus, the formula used

to obtain the performance factor for bandwidth compression ratio is

fp(ﬁB)f 0.95ze:ns.9,1_ [(ﬁB)qu(ﬁhB)K:‘L]i
1 s;s.g,n [(NB) K=2 (NB) K=4] max

bandwidth compression ratio performance factor for Model i

(6.1)

where fp <NB)i

Ng

K

the denominator is the maximum sum obtained for the models tested

i

bandwidth compression ratio

Il

tolerance in data units

The values of ﬁB were obtained from Figures 6-2 and 6-3. In the case of bit plane
encoding, the straight-line curves in these figures were extended to include tolerances
of 2 and 4 data units, (See Paragraph 6,1, p. 6-3, and Paragraph 6,4.9, p. 6-17 for

comments regarding the validity of this extrapolation, )
6. 4.2 Reconstructed Data Fidelity

This performance factor was evaluated for Compression Model i by finding the ratio
of reconstructed data error for the model which achieved the minimum error of those
tested, to reconstruction error for the ith model, The measure of error used in this
case is the sum of four measured values of rms error (normalized to the tolerance),
for Sensors 9 and 11, with tolerances of 2 and 4 data units, Thus, the formula used
to obtain the performance factor for reconstructed data fidelity is
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. <F) ) 0.95 sezns 011 :(EIVK>K=2 + (ERA{>K=: min 6.2
P\ /i S .
5;8.9,11 L(E%5K=2 ' (E%>K=4T

fidelity performance factor for Model i

where <F>
p\ /i

Er

K

I

rms error, in data units

tolerance, in data units

the numerator is the minimum sum obtained for the models tested

The values of ER were obtained from Table 3-2. In the case of bit plane encoding the

calculated values of ER presented in Paragraph 3.3.2.1 were normalized to tolerances
of 0.5 and 1.5 data units, rather than 2 and 4 as shown in Equation 6.2.

It should be emphasized that it is extremely difficult to find a suitable criterion of re-
constructed data fidelity., A subjective inspection of the data waveform is not considere:
to be a valid method of fidelity determination in many cases where experimental data
are involved, because an error which may be important to the data analyst might not be
apparent to the eye. It is likely that a good case could be made simply for maximum
allowable error as the criterion of reconstructed data fidelity., In this particular in-
stance, because all the compressioh models tested operated with maximum error con-
straints, rms error is probably a more valid criterion than it would be if this restrictia
were not imposed, In the last analysis it is the experimenter who must decide whether

or not a given compression model and tolerance produces acceptable reconstructed data.

6. 4.3 Sensitivity to Data Class

The advantages of operating on all data classes with a single compression model were
discussed in Paragraph 6,2,2, The method used in this study to determine relative
sensitivity to data class was to calculate the variance of compression ratio obtained on
the several classes of data by each compression model tested, The formula used to

determine the performance factor for sensitivity to data class is
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0.95 ¢ min
fp(D>i= o~ min (6.3)

i
where fp(D)i data class sensitivity performance factor for Model i

o2

variance of bandwidth compression ratios among data classes

the numerator is the minimum variance obtained for the models tested

Since only two models (ZOI and FOIDIS) were tested on separate classes of data, per-
formance factors for the remaining models had to be estimated, The values of 02 for
the two models were obtained from Table 6-3, p. 6-6.

6. 4,4 Sensitivity to Sensor Noise

In obtaining a formula for this performance factor, it was conjectured that the rate at
which the compression ratio of a model decreases with decreasing tolerance is a valid
indication of the sensitivity of that model to low-level sensor noise, This is based on
the assumption that the effect of sensor noise on compression efficiency will generally

increase as the tolerance decreases.

The formula used to determine the performance factor for sensitivity to sensor noise

TR I (P Y
E 1) () ],

is

(6.4)

Sens. 9,11
where fp(s)i = sensor noise sensitivity performance factor for Model i
ﬁB = bandwidth compression ratio
K = tolerance, in data units

the numerator is the minimum sum obtained for the models tested

The values of ﬁB were obtained in the manner described in Paragraph 6.4.1.
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6. 4.5 Effectiveness With Adaptive Queuing Control

As in the previous case, the performance factor selected for model effectiveness with
adaptive queuing control is based on the rate of change of compression ratio with
tolerance. It is logical to assume that if a given increase in tolerance produces a
greater increase in compression ratio (i, e., a greater decrease in buffer input rate)
for Model A than for Model B, then Model A should be more effective in operating with
adaptive queuing control, Hence, the formula used to obtain the performance factor

for effective ness with adaptive queuing control is

fp(A)i - o szer;s.9,11[<?\IB>KZ4 ) <N-B>K=2]i (6. 5)

SCEE e

where fp A)i = adaptive queuing control effectiveness performance factor for Model i

NB = bandwidth compression ratio
K = tolerance, in data units

the denominator is the maximum sum obtained for the models tested

The values of ﬁB were obtained in the manner described in Paragraph 6.4.1.

6. 4.6 Complexity

Because an investigation of the relative complexity of the compression models was not
included in this study, previous experience gained from other LMSC studies was drawn
upon to estimate the performance factors for this criterion, As before, the maximum

factor used was 0, 95.
6. 4.7 Sensitivity to Noise in the Compressed Data Transmission Link
As in the previous case, no work was done during the study on the relative sensitivity

to noise in the transmission link; hence, all the performance factors for this criterion

were estimated,
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6. 4.8 Ease of Reconstruction

Estimates of the performance factors for this criterion were derived primarily from
the experience gained from other LMSC studies and from programming the reconstruc-

tion processes for various sample selectors.

6.4.9 Relative Compression Model Performance

The performance factors which were derived for the six compression models are shown
on Table 6-4, Shown also are the weighting factors assigned to each performance cri-
terion both for the spaceborne and for the groundbased application, The overall
weighted performance factors, determined for each compression model by summing the
products of the performance and weighting factors, are shown to the right of the table,
These are also shown graphically in Figure 6-5,

The primary difference between the weighting factors assigned to the spaceborne and
the groundbased applications is that complexity is considered a highly important factor
in the design of a spaceborne compression system, while in the groundbased application

it is not,

In observing Table 6-4, note that, while many of the performance factors for the five
redundancy reduction models were derived from measurements, all the factors for bit
plane encoding were either estimated or calculated, Three of these estimations were
made by extrapolating the curves of measured bandwidth compression ratio for bit plane
encoding, shown in Figures 6-2 and 6-3, The criteria involved in this extrapolation;
namely (1) bandwidth compression ratio, (2) sensitivity to sensor noise, and (3) effec-
tiveness with adaptive queuing control, account for 0,38 of the spaceborne weighting,
and 0,46 of the weighting in the groundbased application, Additional experimental data
would allow more credence to be placed on these performance factors.

In estimating the bit plane encoding performance factor for sensitivity to data class, it
was argued that although bit plane encoding is primarily a zero-order technique, higher-

order bit planes of the Gray code would be less disturbed by low-level data waveform

6-17

LOCKHEED MISSILES & SPACE COMPANY



SN[BA POINSEBIW S93BOIPUI YSIIS9ISE ON

aN[BA POTBWIISH 44
an[eA PaeINOTB) 4

26970 | 989°0 | ex008°0 | #4089 "0 | 4x009°0 | 458570 | 4a086°0 w0080 |azzero |ugrevo | o
P rirerd ekt W MTI ﬁ H ey _llH brey _|1H —aor ]
'8SL°0 | $9L°0 | %%008°0 ._l*os mn_.u.alooﬂ.m G6L°0 | 9970 |+x008°0 | 890 | 898" o 100I0d
wﬁlﬂomoﬂ.ﬂ yoﬂc._l*onw mlr**oﬁ 0 _loﬁ 0 $vL°0 _Jvmwlﬂul_nyﬂ_lomﬂc " T siar0da |
wmﬂo_ 169°0 ﬂsﬂv _ *%0G8 W_r*mmmy _lwt ol_u Mwlo_lmﬁ ol_. £69°0 _ 06L° ou_l 10Z
m&|.0|_||$m ymﬂvmim 0 | +08670 | 086" ﬁﬂmﬂ_ﬂymol_uﬂmnoul 6% 0 _ __doz ]
B _ 10108, 9OUBULIONISJ _ —
— e 7
g1 o | gplzsgl o lggglzselese lzgelperIN_ ™
8 | § | 8° | 8% o |Epg|®82 |98 |ET5|°ck | ‘
& &9 g g 'coZ ! "gz | "8Z g & = & "
S F | E ) TE|OE | i fE| & T g &E)
3 8 3 < m.m 2 m UOTI9ILID
_ 5 _ _ _ _ _ _ e _ _ooc«Enotwm
PN N — L ] l i L i _ —
woummwmﬂm i _ _ 500 ! 50°0 “ 20°0 " akl “ 810 _ $£°0 ._.Wawa%qzopo ! .ﬂso/y
pogudtom [ Mol_l 3lo|_' Cezo | T g00, 500 0T'0 | ¥1°0, 080 outogeoedg UHIBIeM
w3040 _ | | _ | | _ | |

SYO.LDVI ADNVINHOIHId THAOW NOISSHYdINOD
¥-9 91qeL ‘

6-18

LOCKHEED MISSILES & SPACE COMPANY




variations. Hence, its performance factor was estimated to be much higher than

those of the zero-order redundancy reduction selectors,

In estimating the performance factors for sensitivity to link noise, the premise was
taken that the higher the compression ratio attained by a model, the higher should be
its sensitivity to transmission link noise, since a given transmitted sample would in
this case represent a greater average number of missing samples in its correspond-
ing line segment, In the case of bit plane encoding, however, it was estimated that a
single bit error could, if the error occurred in a Class A bit plane, cause errors in
all the remaining samples existing in the data group involved (see Appendix III), With
the range of compression ratios found in this study, the number of samples in a data
group would probably greatly exceed the number found in an average line segment pro-
duced by any of the redundancy reduction models tested. Hence, the performance

factor was reduced in the case of bit plane encoding,

Figure 6-5 indicates that, in the groundbased application, the FOI4DG selector has the
highest weighted performance factor, and in the spaceborne application the FOIDIS and
FOIOOT selectors essentially share the maximum position (they differ by 0, 001). Note,
however, the relatively small spread in all the performance factors, especially in the
spaceborne application, Two statements should be made about this small variation in

overall performance,

(1) It is likely that one reason for the low performance spread stems from the fact that
only those compression models which were considered to be among the best were ori—
ginally chosen to be investigated in detail, It is logical that if the initial selection was
made correctly the inclusion of many of the rejected models would cause a much greater

spread in the bar graphs of Figure 6-5,

(2) Note that the maximum spread represents a difference of £11,4% Time and budget
severely limited the amount of telemetry data used and the number of computer runs
performed during the study; hence experimental error could account for a large fraction
of this percentage, This consideration, coupled with the number of values shown on
Table 6-4 which were estimated rather than measured or calculated, suggests that the
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confidence factor may be comparable to the spread, Hence, the relative performances
shown in Figure 6-5 must be taken as preliminary; a great deal more study and experi-
mentation must be done before this qualification can be removed. On the other hand,

this tradeoff analysis and the results it has produced does represent an attempt to com-

pare objectively the relative performance of the several compression models,

6.5 COMPRESSION RATIO ANALYSIS

The compression ratios achieved on the S-6 telemetry data were low compared to those
achieved on other missile and satellite data, This outcome was not envisioned at the
beginning of the study since satellite data had been found in the past to be generally more
compressible than missile data, Figure 6-6 presents a summary of the bandwidth com-
pression ratios obtained for Agena, Polaris, Saturn, Jupiter, TIROS Video and S-6
telemetry data. Conversion from sample compression ratios contained in References
137, 139, 154, 187, 219 and 244 to bandwidth compression ratio were made using the

S-6 conversion factors presented earlier.
6.5, 1 Signal Reduction

Table 4-7 shows the sample compression ratios obtained for each measurement in
Runs S6-07 and S6-13. Submultiplexed Sensors 17 through 57 are of little concern in
this analysis since the combined contribution of these sensors to the overall system
compression ratio is 3/45 the contribution of the remaining minor frame channels,
Sensor number 2 has the greatest influence on overall compression ratio since it is
cross-strapped to nine minor frame channels, Unfortunately Sensor 2 gave the lowest
compression ratio of all minor frame sensors and accounted largely for the low system
compression ratio, For example, if Sensor 2 had been eliminated the sample compres-
sion ratio would have increased from 4, 06 to 6,0 for S6-13, assuming a minor frame
length of 36 channels, Sensor 7 also contributed highly to the low compression ratio,
If both Sensors 2 and 7 were eliminated, the sample compression ratio would increase
to 7. 1. Consequently, Sensors 2 and 7 caused a 42 percent reduction in compression
ratio. These results indicate that further application of signal reduction prior to re-

dundancy reduction would contribute significantly to improved system efficiency,
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6.5.2 Wild Point Rejection

Throughout this report the impact of wild points on data compression was emphasized.
It is reasonable to assume that the majority of wild points are caused from bit errors
originating in the transmission link between the spacecraft and ground receiving station
and loss of frame synchronization within the ground station. Therefore, the problem

of wild points pertains only to ground application of data compression,

The influence of wild points on the performance of data compression is considered an
important finding. It is apparent that ground data compression systems must include
the provisions for rejecting wild points if reasonable compression ratios are to be
achieved, Time and funds did not permit the means for rejecting wild points to be in-
corporated within the computer programs, but it is recommended that such processes
be included in future studies.

6. 5.3 Sensor Noise

Discussions with experimenters at the Goddard Space Flight Center disclosed that
several of the sensors resulting in low compression ratios contained unwanted noise
components, In fact, special filtering was used during data processing to reject these
noise components prior to final computer analysis. Although the source was not
isolated for each measurement, it was observed to be similar to the noise found on the

Agena and Polaris vehicles,

Precompression filtering, as discussed in Section 3, was able to improve the compres-
sion efficiency as well as improve the apparent fidelity of the data during periods of
little noise. Reference 244 has shown that precompression filtering not only improved
compression ratios, but reduced the rms errors relative to the desired data components,
The use of precompression filtering is believed to be an important and complementary
process to redundancy reduction for the purpose of minimizing sensor and/ or signal
conditioner noise and for means of adaptive queuing control, The experiments conducted
in Section 3 also emphasized the importance of wild point rejection prior to precompres-

sion filtering,
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6.5.4 Asynchronization

During the course of the study it became apparent that many of the sensor waveforms
were not being compressed satisfactorily, regardless of the compression model used.
It was observed that many of the sensor waveforms for which low compression ratios
were obtained were periodic in nature, and therefore highly redundant. If a method
were used which could take advantage of this periodicity, it is believed that the overall

compression efficiency would be measurably increased.

During discussions with the GSFC experimenters on the S-6 satellite, it was learned
that the periodicity of many of the sensor wavefoi‘ms was caused simply by the asyn-
chronous rotation of the satellite vehicle relative to the frame rate of the telemetry
multiplexer. A way to take advantage of the periodicity in these cases would be to
synchronize the frame rate of the multiplexer to the spin rate of the vehicle, so that
the spin period is an exact multiple of the minor frame period. Then each applicable
sensor could be decommutated in such a manner that data samples on corresponding
portions of the waveform cycle (roll position) would be compared by the selector.
Because many natural phenomena are characteristically slowly-varying compared to
the spin rate, even when the variation is caused by the lateral motion of the satellite
itself, the shape and amplitude of the waveform cycles resulting from their measure-
ment are not expected to change rapidly. It will be noted that six of the 12 minor
frame analog sensors of the S-6 satellite data, viz., Sensors 4, 5, 6, 7, 11 and 12,

normally exhibit a periodicity caused by satellite spin alone.

Should it be impossible to slave the frame rate of the multiplexer to the spin rate of
the vehicle, it may be possible to achieve high compression ratios by treating each
portion of the cyclic pattern as a submultiplexed channel. The asynchronous problem
can be overcome by selecting subchannels in accordance with aspect angle of the
vehicle relative to the frame position of the multiplexer. Either solution would not in-
crease the number of multiplexer channels, but the number of reference channels in

the data compressor would increase.
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In many instances even the compression ratios obtained from digital sensors can be

significantly improved. In the case of Sensor 8 of the S-6 data (aspect), for example,
the technique of synchronizing the multiplexer to the vehicle rotation would result in a
high compression efficiency, if appropriate decommutation and sample selection were

employed.
6.5.5 Estimates of Future Compression Ratios

If the techniques of signal reduction, wild point rejection, precompression filtering
and measurement synchronization were employed it is estimated that bandwidth com-
pression ratios exceeding ten to one can be achieved for the 5-6 class of telemetry
data. Additional experiments utilizing these techniques are necessary to confirm this
prediction. The application of advanced signal reduction processes will involve close

coordination with the responsible experimenters and other GSFC personnel.
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Section 7

CONCLUSIONS AND RECOMMENDATIONS

This section uses the results of the study to propose data compression models for use
with teiemetry data similar to that received from the S-6, Explorer XVII, satellite.

It also discusses the conceptual designs of generalized future spaceborne and ground

data compression systems, conjectures on the future state of the art of data compression,
and presents recommendations for continued data compression study and analysis with

special emphasis on problems associated with NASA satellite telemetry systems.
7.1 PROPOSED DATA COMPRESSION MODELS

Because of basic differences which exist between requirements for a spaceborne and a
groundbased data compression system, a separate compression model will be propdsed
for each application. Note that these proposals are based on the results of this study,
and are subject to possible future alterations as new experimental and theoretical data

are compiled.
7.1.1 Spaceborne Application

The proposed spaceborne data compression model is shown in Figure 7-1. It is made

up of the following major components:
7.1.1.1 Selector. Because Figure 6-5 shows a slight edge in performance of the
FOIDIS over the other selectors, the FOIDIS is tentatively proposed for data similar

to that of the S-6 in the spaceborne application.

7.1.1.2 Queuing Control System. The queuing control system proposed for use in

the spaceborne compression model is a queue length monitoring system. The system
should be capable of controlling sensors in groups and/or individually, so that a sensor

priority system can be utilized by varying the "'stiffness' of control among sensors.

-3

LOCKHEED MISSILES & SPACE COMPANY



The proposed buffer capacity lies between 100 and 200 sample amplitude words plus
the associated bits required for channel identification. As pointed out in Paragraph
6.3.1, the sole use for the queuing control system would be to prevent buffer overflow
in case a misjudgment is made in the projected overall compression ratio, resulting
in a setting of buffer sample readout rate so low that the average buffer readin rate

would exceed the output rate if there were no control.
Note that no precompression filtering (either adaptive or nonadaptive) is proposed at
this time, because insufficient experimental data were obtained from this study to

allow any conclusions to be drawn in this area.

7.1.1.3 Time and Channel Coding System. The proposed time and channel coding

system provides a minor frame channel identification word along with each transmitted
sample. In order to identify subcommutated sensors and to maintain time relationships
this system must force a readout of a redundant sample word for each minor frame in
which all samples are redundant. In this study it was estimated that by dividing the
minor frame into three smaller frames of fifteen channels each, a saving in bandwidth

compression ratio could be achieved with the S-6 data.

7.1.1.4 Data Reconstruction. Reconstruction of data samples compressed with the

disjoined first-order interpolator (FOIDIS) can be accomplished first by dividing the
difference in the transmitted data amplitude values at the ends of a given line segment
by the number of sample intervals the segment contains, and then by successively in-
crementing (or decrementing) the initial value of the segment by the amount of the

quotient, to obtain the intermediate amplitude values.
7.1.2 Groundbased Application

The proposed groundbased data compression model is shown in Figure 7-2, It con-

sists of the following major components:
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7.1.2.1 Selector. For the groundbased application, Figure 6-5 indicates that the
FOI4DG selector holds a small edge in performance over the other selectors; hence,

it is tentatively proposed for data similar to that of the S-6.

7.1.2.2 Queuing Control System. The queuing control system proposed for the

groundbased application is the same as the one chosen for the spaceborne compressor;
namely, a queue length monitoring system with the capability of controlling sensors in
groups and/or individually. Because space, weight and power restrictions are usually
not severe in the groundbased application the capacity of the buffer could be made greater
than 200 words. However, with the proposed compressor model and the postulated
telemetry data, no technical reason can be seen for making it larger than 200 words.

As in the spaceborne case, the queuing control system would be included to prevent
buffer overflow in case the buffer sample readout rate is set so low that the average

buffer readin rate would exceed the output rate if there were no control.

In case data intervals containing frequent wild points are allowed to enter the data
compressor, causing the buffer to overflow during these intervals, the data lost are
considered to be of little value to data analyst. At the ends of these intervals the
buffer will cease to be in an overflow condition, and the '"good" data will not be lost.

7.1.2.3 Time and Channel Coding System. The proposed method of time and channel

coding for this application is identical to that proposed for the spaceborne system, and
discussed in Paragraph 7.1.1.3.

7.1.2.4 Data Reconstruction. Reconstruction of data samples compressed with the

four-degree-of-freedom first-order interpolator (FOI4DG) is accomplished in precisely
the same manner as in the case of the disjoined first-order interpolator. This method
is described in Paragraph 7.1.1.4.

7.2 GROUND DATA COMPRESSION SYSTEM CONCEPT

Figure 7-3 shows a conceptual design of a data compression system for transmitting

compressed data over conventional voice channels in real time. Note that the system
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incorporates signal reduction and encoding as well as redundancy reduction. In order
to increase the bandwidth compression ratios found for the S-6 data during this study
to an effective value (i.e., above 10) it is necessary to include these additional tech-
niques (see Paragraph 6.5). The data compressor is shown as a special purpose,
rather than a general purpose computer, because it must perform a limited number of

repetitious functions rapidly.

A general purpose computer is included in the system to perform some of the more
complicated signal reduction operations. The exact delegation of task assignments
between the special purpose compressor and the general purpose computer requires

additional study. The task assignments shown in Figure 7-3 are expected to be typical.

Channel identification of each sensor is assumed to be performed by the PCM decommu-
tation station. In applications where a decom station does not exist, the decommutation
function could be performed by the data compressor with little increase in equipment
complexity. Greater buffer queuing control is expected for ground applications due to
the greater bandwidth limitations of ground communication links (F is more apt to be

greater than one).
7.3 FUTURE STATE OF THE ART

The possibility of including signal reduction, adaptive sampling, redundancy reduction
and encoding techniques together in one system gives rise to some interesting adaptive

telemetry system concepts. One such concept is shown in Figure 7-4,

Note that the data compression system is shown in Figure 7-4 as a special purpose
computer. Although the organization of a data compressor is quite similar to the
organization of a general purpose (GP) computer, as mentioned in Paragraph 7.2, a
distinction is made in operational philosophy between the data compressor and GP
computer, in that a data compressor is organized to perform a limited number of
repetitious functions rapidly, whereas the GP computer is organized to perform many
different types of operations at the sacrifice of speed or complexity. A data compressc

thus appears to more closely fall into the category of a special purpose computer.
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Because of the inherent flexibility of an adaptive telemetry system it would be rela-

tively simple to include such features as:

e Command link reprogramming of sensor selection and
sampling rates (multiplexer format)

e Command link reprogramming of signal reduction
techniques

& Command link reprogramming of redundancy reduction
selectors

e Command link reprogramming of transmission rate

e Combination of aboveto change mission objective

e Burst readout of compressed data for multi-satellite-

to-satellite relay

It is contemplated that, in some cases, it will be advantageous to utilize special

"black box" signal reduction devices. However, it is believed that a large percentage
of the signal reduction operations can be performed by the data compressor. Advantage
can be taken of the memory to achieve indirect addressing of the analog and digital
gates, thus providing the means for modifying the multiplexing sequence. A hybrid
analog-digital arithmetic unit is included so that the redundancy reduction and
analog-to-digital conversion operations can be combined. If may be desirable to per-
form both analog and digital signal reduction operations. A single random access
memory can be used for all operations including queuing and tape buffering.

Speaking in general on the future state of the art of data compression, it is anticipated
that its future evolution will be primarily centered around signal reduction techniques.
Due to the sophistication of present redundancy reduction techniques, it is believed

that their further refinement will be slow. It is possible that new hardware develop-
ments will be able to overcome some of the mechanization problems of adaptive
sampling discussed earlier. The concept of adaptive sampling may some day be ex-
tended to permit automatic assignment of all sampling rates based on measured channel
activity. (No sampling rate assignments would be made by man.) Bit plane encoding
was found during the study to be a very promising data compression technique. It is

possible that in the future bit plane encoding will be used on data already compressed
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with some method of redundancy reduction, resulting in higher overall compression

efficiencies.
7.4 RECOMMENDATIONS FOR FUTURE WORK

The results of this study indicate a number of topics which warrant new or additional

investigation.
7.4.1 Compression Model Analysis

It is recommended that additional data from Goddard satellites, such as data from the
S-49 OGO satellite, be processed and analyzed along the guidelines established in the
initial study. This processing should include the application of both adaptive and non-
adaptive compression techniques on a single channel as well as on a multichannel
basis. In addition, the effectiveness of both precompression and postcompression
filtering techniques should be determined, especially when employing some form of

pre-filtering wild point rejection.
7.4.2 New Compression Model Evaluation

Several compression models were not investigated in sufficient detail during the
initial study, either because of the limited availability of funds, or because of the
model having been developed late in the course of the study. It is recommended that
the more promising of these models be evaluated by means of computer simulation
using available Goddard satellite data. Several of the compression models which

deserve study are:

e Exponential predictor

e Exponential interpolator

e Selection based on an adaptive reference pattern

e Selection based on data spectral properties

e Selection based on rms error

e Bit plane encoding (both raw and compressed data)

e Signal reduction techniques
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e Synchronous demultiplexing, to cope with periodic
waveform variations

e Precompression and postcompression filtering and/or
wild point rejection in conjunction with above

techniques
7.4.3 Channel Noise Simulation

Because of the fact that one given compressed data word contains information about
many original data words, compressed data is more "fragile" than conventional PCM
data. As a result of this "fragility", compressed data is more subject to catastrophic
error due to channel noise than is conventional PCM data. It is recommended that a
noisy binary transmission channel with an associated data reconstruction device be
simulated, so that the effect of channel noise can be determined on the results obtained

by using various compression models.
7.4.4 Mathematical Theory of Data Compression

In general, the art or practice of data compression has outstripped the development

of the analogous theory of data compression. It is recommended that an effort be
made to extend this theory of data compression, both to lend credence to the empirical
results already obtained and to provide insight into data compression so as to facilitate
new ideas and further development. This investigation might include the results of
modern Wiener-Kalman prediction theory, and an attempt to develop an adequate

mathematical model for nonstationary telemetry data.

7.4.5 Theoretical Buffer Queuing Control Analysis

Up to this time, buffer queuing control investigation as applied to data compression
systems has been largely of an empirical nature, predicated on specific specimens of
data and the judgment of the experimenter. In order to generalize the art of buffer
queuing control into a science, and in order to seek optimum solutions to the problem
of preventing buffer overflow it is recommended that a theoretical analysis of buffer
queuing control be made.
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7.4.6 Theoretical Transmission Error Analysis

In the case of conventional PCM transmission, the theory of errors due to channel

noise has been well developed. It is recommended that this same theory be extended
to the case of compressed data transmission. This theory would facilitate the selec-
tion of optimum compressed data transmission formats and encoding as well as other

system design parameters.

7.4.7 Ground Data Compression System Analysis

It is recommended that an investigation be made of the modifications necessary to
existing NASA ground stations, data processing facilities and ground-to-ground trans-
mission links due to the addition of data compression. A large part of this investigatio
will center on the computer processing of compressed data, since it is desirable to

be able to process compressed telemetry data with computers in either remote or
central ground stations. It is necessary, therefore, that the investigation include a
study of the feasibility of using NASA computer facilities to process compressed data.
This feasibility study should involve a determination of comparative computer effi-
ciencies and the impact of processing compressed data on existing data processing

facilities, in both real time and non-real time applications.
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Section 8
NEW TECHNOLOGY

This section describes three new redundancy reduction concepts and techniques devel-
oped late in the study: adaptive reference patiern prediction and interpolation, sample
selection based on shorti-term frequency components, and sample selection based on
peak rms error. An exponential interpolator selector was also developed late in the
study, but since the exponential pattern is included in the adaptive reference pattern

selector, it is not discussed separately in this section.
8.1 ADAPTIVE REFERENCE PATTERN SELECTOR

A significant fraction of Goddard S-6 satellite data cannot be easily approximated by a
series of either zero or first order polynomials. For this reason, predictors and
interpolators using either zero or first order polynomial reference patterns, cannot
effectively compress this fraction of the data. In an attempt to overcome this diffi-
culty, a selector has been conceived that is capable of operating in either of two modes.
In the initial muode, the sclector is a zero order polynomial predictor (or interpolator).
When an out-of-tolerance condition occurs, instead of beginning a new line segment in
normal fashion, the selector changes to the second mode, chooses a stored reference
pattern in a predetermined manner, and operates as a predictor (or interpolator) using
this new pattern. These stored reference patterns might be high order polynomial or
transcendental functions. When an out-of-tolerance condition occurs in this second
mode, a data word is transmitted containing information about both modes. The
selector then resets to the zero order mode and processing of a new line segment is

initiated.
A tentative flow chart has been generated for this selector and preliminary FORTRAN

coding has begun. It appears that this selector will be relatively difficult to implement

with either a general purpose computer or special purpose hardware.
8-1
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8.2 SHORT-TERM FREQUENCY COMPONENT SELECTOR

With this selector, a Fourier analysis is performed on a fixed number of data samples
received from each sensor. This short-term frequency analysis is then used to decide
whether or not the present data sample from that sensor is to be retained. The analy-
ses are updated as new data samples are received. If a significant fraction of total
short term data energy is present at relatively high frequencies the present sample is
likely to be retained by the decision rule and, conversely, if a significant fraction of
total short term data energy is present at relatively low frequencies, the present
sample is likely to be deleted. The actual decision rule is somewhat arbitrary and
should be chosen to correspond with the requirements of the user. This sample dele-
tion technique tends to maintain the short term sampling rate of a given sensor in
proportion with the short term information bandwidth of that sensor. The selector
provides no peak error guarantee. Preliminary FORTRAN coding has begun on this

selector.

8.3 PEAK RMS ERROR SELECTOR

In this version, data samples from a given sensor are deleted until some function of

the rms error between original and reconstructed data exceeds the sensor threshold

prescribed. When this occurs, the data sample is transmitted to reduce the rms error,

or a function thereof, to an acceptable level below threshold. This selector therefore
tends to maintain overall rms error between original and reconstructed data in the

vicinity of some value chosen by the user. It provides no peak error guarantee.
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Appendix I
CRITIQUE OF KNOWN MODELS

This Appendix describes the data compression models found during the literature
search, obtained from the Lockheed Missiles & Space Company Independent Develop-
ment prég'ram on data compression, and conceived during the study. Each discussion
has two parts, (1) a description of the model and (2) a critique in terms of its compres-
sion efficiency, data fidelity, etc., A compression model listing is given in Table I-1,

I.1 SIGNAL REDUCTION

Signal reduction techniques are generally used in conjunction with other categories of
data compression. Signal reduction techniques are usually selected on an individual
channel basis since signal conversion requirements among signal sources usually vary.
Due to the unusually large number of signal reduction techniques used for missile and
spacecraft onboard processing, a summary of these techniques is not included, The
large number of references found during the literature search represents only a small
portion of the number of techniques which have been developed or used. References 2,
4, 7, 10, 14, 20, 24, 32, 34, 44, 49, 56, 57, 59, 62, 72, 86, 87, 91, 100, 105, 108,
127, 134, 155, 159, 167, 168, 192, 197, 209, 222, 230, 231, 232, 253 of Appendix V
give detailed information.

I.2 ADAPTIVE SAMPLING

I.2,1 Model No. 11: Associative Data Compressor (Reference 50)

Description. The associative data compressor, which was designed for specific high-
speed applications, identifies and reports the magnitude of data channels that are above
a fixed or variable voltage threshold, This complex system, able to scan and compress

1The model numbers are those listed in Table I-1,
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Table I-1

COMPRESSION MODEL LISTING

Lockheed University 1
Model Discussed FORTRAN of Alabama
No. on Page: Description Munemonic Mnemonic Other Names
ADAPTIVE SAMPLING
1 I-1 Associative Data Compressor
2 -3 Adaptive ( Format) Telemetry
3 1-3 Transient Event Recorder
4 I-4 Self-Adaptive Telemetry
REDUNDANCY REDUCTION
Predictors
Zero-Order Polynomial
5 -5 Simple Difference
Cumulative Difference
6 -5 Fixed Limit
7 1-5 Floating Aperture ZOP ZFN Simple Difference (Rad. Inc.}
8 -7 Offget Limit
First-Order Polynomial
9 1-8 Pred. based on two most recent out-of-
tolerance samples
10 I-9 Pred. based on last predicted sample and
out-of-tolerance sample FOP
11 -9 Same as Model 10, but transmit last predicted
sample FFA
12 1-10 Pred. based on last redundant sample and
out-of-tolerance sample FFN
13 I-10 Same as Model 12, but transmit last redundant
sample FFP
14 I-11 Pred. based on adaptive slope
15 I-13 Second-Order Polynomial SOoP
16 1-14 Wiener
17 1-14 Adaptive Nonlinear
18 1-15 Exponential
Interpolators
19 1-15 Finite Differences
20 1-17 Least-Squares Polynomial
Zero-Order Polynomial
21 I-17 Computed Sample Transmitted Z0IL ZVA
22 1-19 Last Redundant Sample Tr: d ZVP
First-Order Polynomial
Computed Sample Transmitted
23 I-19 Four Degrees of Freedom FOI4DG
24 I-21 Joined Line Segment FOLJON FVA
25 I-21 Disjoined Line Segment FOIDIS
Offset Qut-of-Tolerance
26 1-22 Last Slope FOIOLS
27 1-22 Out-of-Tolerance Direction FOI100T
28 1-23 Last Data Sample Transmitted FVP Fan (Rad. Inc.) Linear Approx. (MIT)
29 1-23 Exponential EI
30 1-23 Adaptive Reference Pattern
ENCODING
Nonadaptive
31 1-24 Delta Modulation
32 I-25 Difference Modulation
33 1-25 Probabilistic
Adaptive
34 I-26 Adaptive Probabilistic
35 1-26 Bit Plane
IRet. 219
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multi-channel data at a much higher rate than conventional digital systems, simulta-
neously tests each channel for significant samples once each frame period, and then
sequentially scans only those sources that are above threshold. An associative logic
is used to rapidly locate the addresses of the above threshold sensors, avoiding the

need to sequentially scan every sensor,

Critique. This system is limited by the above-threshold reporting characteristic, If
high speed were not a requirement, it is possible that other techniques described in
this Appendix would be less complicated.

1.2.2 Model No, 2: Adaptive (Format) Telemetry (References 80, 226)

Description, This compression model was designed primarily for deep space probe

applications, It uses a programmable vehicle-borne multiplexer to modify the sampling

format and sampling frequency of the telemetry system upon request from the earth-
to-spacecraft command link., This is a cooperative system requiring decision and
command control action from an earth-based station,

Critique, This model was designed primarily for applications where command link
communications can be continuously maintained, Usually only one acquisition with
earth-orbiting satellites can be made per orbit with the limited number of ground
stations currently available, As the number of satellites increase, the allowable ac-
quisition time is expected to be reduced further because several satellites may be
within range simultaneously and will therefore have to be serviced on a time shared
basis, Onboard data storage and data management is therefore becoming increasingly
important, This cooperative ground-link system is not the total answer because many
scientific measurements cannot tolerate the aliasing errors resulting from the time
delay,

I.2,3 Model No, 3: Transient Event Recorder (Reference 138)

Description, This model, which was designed for a specific application, is a unique

ultra.high speed sampling technique for recording the response characteristics of a
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transient, Single bursfs of sequential samples are triggered by the start of transient
events, Also, the sampling gates have memory to permit a delayed, reduced-rate
readout of the data, This model could be regarded as a signal conditioner for a tran-
sient class of data.

Critique. Because this model was designed for a specific application, it does not re-

present a generalized solution to data compression.
I.2.,4 Model No, 4: Self-Adaptive Telemetry (References 91, 163, 244)

Description., This model requires that each data source has its own analyzer for sam-
pling frequency regulation, In the model described in Reference 163, a differentiator
is used for each input channel to establish the respective sampling frequencies., The
conflict of samples occurring simultaneously between channels is avoided by establish-
ing a priority list prior to the flight, These priorities can be changed in a prearranged
manner if a malfunction is detected in a given subsystem,

Critique. The priority solution proposed in Reference 163 may not be acceptable for
some applications, The conflict of simultaneous sample arrival can be minimized if
the delay elements have a variable delay characteristic for buffering, Providing vari-
able analog delay units presents an interesting technical problem., As an alternate
solution, the sample rate to the analog to digital converter could be made variable to
conform with the sample demands of the adaptive multiplexer, The conflict of simul-
taneous data samples could then be resolved by including a queuing buffer following the
analog to digital converter, This configuration rapidly approaches the organization of
a redundancy reduction system with the one exception that many different analyzers are
required., For this reason, self-adaptive telemetry as a general process is less attrac-
tive than other methods of compression. The following paragraphs show that channel

selection based upon priority can be employed in conjunction with redundancy reduction,
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I.3 REDUNDANCY REDUCTION

I.3.1 Predictors

L.3.1.1 Zero Order Polynomial. This model classifies a data sample as being redun-

dant if the sample is within a specified tolerance from a stored reference sample,
Thus, a prediction is made concerning the magnitude of one or more future samples
based upon some past history. Since it is possible to mechanize this model many dif-
ferent ways, the following subsections describe all zero order predictor models found
during the literature search,

L.3.1.1.1 Model No. 5: Simple Difference. (References 91, 104, 161, 184, 186, 187,
188, 241, 242, 243)

Description, This model performs a test to determine if the difference between consec-
utive samples of a given channel are within a predetermined threshold, i.e., the reference
sample (predictor) is always the last sample. The threshold value is selected for each
channel depending upon accuracy requirements specified by the experimenter, This

model was used at LMSC in a hardware application that called for output data only

when the derivative (simple difference) of the time function exceeded a predetermined
limit,

Critique. This model can produce excessive errors for slowly varying data when the
rate of change of the function is less than the selected threshold or tolerance value.
Although the model is useful for certain applications, it does not represent an acceptable
solution when absolute measurements are desired,

I.3.1.1.2 Cumulative Difference, Model No. 6: Fixed Limit (References 147, 176,
177); and Model No. 7: Floating Aperture, ZOP, (References 67, 91, 102, 120, 13,
139, 141, 147, 175, 176, 177)

Description. The errors associated with the simple difference model are avoided here
by using the last transmitted sample (the last out-of-limit sample) as the reference
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parameter. The ratio between the tolerance, K, (half-aperture) and the digital resolu-
tion of the analog to digital converter, Q, (quantization error) can appreciably effect
the efficiency of this model, Reference 91 shows analytically that reducing the quanti-
zation error for a given K from Q=K to Q=K/ 8 will result in a 40-percent increase in
bandwidth compression ratio, even though more bits per transmitted word are required.
This has been verified experimentally by JPL (Reference 109) where improvements in
compression ratio in excess of 100-percent were achieved with Mariner II telemetry
data. The term "fixed limit'" has often been used for zero order predictors having a
K/ Q ratio of 1. The term 'floating aperture' has been adopted for the condition that

K >Q, and its functional operation is presented in Figure I-1. If Yo was the last trans-
mitted data sample, a prediction is made that subsequent data samples, Y1s Yoo eeVn3
will be within K units of Yo As shown in Figure I-1, these samples are within the
tolerance corridor denoted by yt+K and yt-K, and can be discarded as being redundant,
Each sample falling on or outside of the corridor must be transmitted as a non-redundan
or significant sample and is used as the new reference for subsequent predictions. The
term ''zero-order polynomial prediction" implies that the redundant portion of a time
function will be approximated by a horizontal straight line, It should be noted that the
zero order approximation does not necessarily apply when interpolating between a
significant sample and its previous neighbor sample,

ACTUAL DATA SAMPLE
X TRANSMITTER DATA SAMPLE

Fig, 1.1 Cumulative Difference, Zero Order Predictor, Floating Aperture
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Critique. The floating aperture model has proven to be highly effective for quasi-static
data, and has attained operational status in several hardware designs. It is one of the
simplest redundancy reduction models to mechanize and has achieved surprisingly high
compression ratios for Agena (Reference 136) and Polaris (Reference 160) data. The
technique has been found to be moderately sensitive to low level noise, however, and
its compression efficiency falls off rapidly with increasing noise and data activity, The
stair-step appearance of reconstructed data from this model has been objected to by
some data analysts (Reference 160) where small tolerances have not been used. The
compression efficiency of the fixed limit model has shown to be consistently lower than
that of the floating-aperture model.

L. 3.1.1.3 Model No. 8: Offset Limit, (References 139, 176, 177)

Description. This model is similar to the cumulative difference, floating aperture
model except the tolerance limits are offset from the reference sample, i.e., the
limits are not symmetrical about the reference sample, The direction of offset is
based upen the sign of the error occurring during the last out-of-tolerance sample (the
new reference sample). This model is equivalent in complexity to the cumulative dif-
ference floating aperture model (Model 7).,

Critique. When the offset is made in the same direction as the out-of-tolerance sample,
a decrease in compression efficiency on real data occurs (References 139 and 177),
When the offset is made in the direction opposite from the out-of-tolerance sample some
improvement in compression ratio on artificial data is noted for the smaller values of
apertures. Whether or not an improvement in compression ratio would be achieved on
real data using a reversed offset has never been determined. Its fidelity characteristics
have not been determined.

I.3.1.2 First Order Polynomial. The first order polynomial predictor takes advantage
of the slope or first derivative of the time function to remove the more dynamic first

order redundancy components. Like the zero order polynomial predictor, this model
has many methods of mechanization. The differences in the various first-order selec-
tors lie chiefly in (1) the data samples on which the prediction is based, (2) the parti-
cular samples transmitted, and (3) the method of reconstruction.

T_7
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In the following paragraphs, the assumption is made that at time t a new data sample
has just occurred, and a prediction is to be made on the value of the next sample, which
is to occur at time t+1. In each first-order model, the predicted sample value, y!' tr1°
is determined by adding an increment, Ayt, to a quantity, y" ¢ which represents the
current sample, according to the expression

AT e
The quantity y" ¢ may be either the actual sample value or the value which was predicted
for time t. An out-of-tolerance condition occurs whenever the absolute difference be-
tween the actual and predicted sample exceeds the tolerance, The variable, r, will
represent the number of sample periods between the two most recent out-of-tolerance

samples.

1.3.1.2.1 Model No. 9: Prediction Based on Two Most Recent Out-of-Tolerance Sample
Out-of-Tolerance Sample Transmitted. (Reference 91)

Description, If Vi, and y, are the last two transmitted out-of-tolerance samples, then

y. -y
%t Y t-r
Ayt.— —
= A
therefore y't+1 Yt+ A

. ' _ .
Jii Yipp 18 redundant(| V'e1 - Y +1| < K), then the sample Yieo 18 computed from the fol-
lowing equation:

1] =y!
V' =V YAV

=¥ +2Ay ¢
The process is continued for subsequent samples. The data are reconstructed exactly
as they were compressed: predictions are made at the receiver which are identical to

those made at the data compressor, and all nontransmitted data samples are replaced
by predicted values.

Critique, This model has been observed to provide better compression ratios than the
zero order predictors on some active data specimens, However, the results that have

been obtained from analyzing Agena data (relative to data classes) have been inconsisten

These investigations also showed that, on the average, the floating aperture zero order
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predictor, Model 7, provided higher compression ratios. An analysis of these results
has shown that this model, as well as other first order predictors, was extremely sensi-
tive to low level noise components which were present on most Agena data. Mechaniza-
tion of this model is considerably more complicated than the zero order predictor due

to the requirement for a full divide in computing Ayt.

L3.1.2,2 Model No, 10: Prediction Based on Last Predicted Sample and Present Out-
of-Tolerance Sample; Out-of-Tolerance Sample Transmitted, FOP, (References 139,
176, 177)

Description, If Vi, and y, are the last two transmitted out-of-tolerance samples, then
for the condition that 7> 1,
AYE =¥ ¥y

where y! 1 is the predicted value for the preceding sample, Therefore

t-
Y'ge1 =Y+ A%y
RS
When =1, the prediction is based both on actual samples. Therefore, in this case,
Yier1 =2y g

The data are reconstructed exactly as the data were compressed: a straight line is con-
nected between a transmitted sample and the predicted preceding sample. Subsequent
redundant samples are generated by continuing the straight line prediction.

Critiqgue. The performance characteristics of this model are similar to those of
Model 9. Some differences have been noticed on selected data specimens, but these
differences are not consistent. The complexity of the model is equivalent to that of
Model 9.

I.3.1.2.3 Model No, 11: Prediction Based on Last Predicted Sample and Present Out-
of-Tolerance Sample; Last Predicted Sample Transmitted. (Reference 219)

I-9
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Description. The prediction process for this model is identical to that of Model 10;

the difference bet ween the two lies in the data samples which are transmitted and in

the method of reconstruction. With Model 11 the last predicted sample is transmitted
(except when two sequential out-of-tolerance samples occur, in which case the actual
sample is transmitted), instead of the present out-of-tolerance sample. Reconstruction

is achieved by connecting a straight line between transmitted samples.

Critique. This model is identical in performance to Model 10, since the lines used to
connect transmitted samples during reconstruction are precisely the same lines on
which the predicted samples lie. Since little difference in complexity can be seen be-
tween the two models, they are judged equal.

I.3.1.2.4 Model No, 12: Prediction Based on Last Redundant Sample and Present
Out-of-Tolerance Sample; Out-of-Tolerance Sample Transmitted. (Reference 219)

Description. Let Yi_r and i be the last two transmitted samples, then
Ay =¥y - Vi1

It should be noted that Y1 is the actual sample, and not the predicted value.

Therefore +Ayt

) =
yt+1 yt
=2y - Y

The data is reconstructed by connecting a straight line between Yi_, and Ve

Critique, Since different rules are used for reconstruction than for the removal of
redundancy, the peak errors after reconstruction are no longer bounded by the tolerance
value. Nevertheless, the University of Alabama analysis (Reference 219) has shown
this model to provide slightly greater compression ratios for a given rms error than
Models 10 and 11.

I.3.1.2,5 Model No., 13: Prediction Based on Last Redundant Sample and Present

Out-of-Tolerance Sample; Last Redundant Sample Transmitted, (References 69, 177,
219)
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Description, If A is an out-of-tolerance sample, then Vi1 is transmitted, and

AY =Yy - Vi1
therefore Y1 =% +Ayt
=2y - Y1

If Yirr is the next out-of-tolerance sample, then the data is reconstructed by connecting
a straight line between Vi 1 and Yirr 1

Critique. This model was classified by the University of Alabama (Reference 219) as
being the most efficient first order predictor. In fact this model was the only first
order predictor to produce higher compression ratios than the simpler zero order
predictor with floating aperture, Model 7. Reference 177 found, however, that this
model performed only slightly better than Model 10, using noise-generated synthetic
telemetry data, and not as well as three zero-order predictors, Models 6, 7 and 8.
Furthermore, the maximum allowable error is twice that of Model 10, for the same
aperture. The overall value of this model is therefore highly questionable.

1.3.1.2.6 Model No. 14: Prediction Based on Adaptive Slope; Out-of-Tolerance Sample
Transmitted, (References 139, 176)

Description., In this model modifications to the slope component are incorporated to

minimize the sensitivity to low-level noise perturbations., The process may be described

as follows:
¥ lel <K,
t =vy?!
y t+1 y t + Ay)\ (I‘l)
where
¢ = error or deviation between actual value and predicted value at time
t, ie.,
R TR A
K = one half the value of the floating aperture, which is centered around

the predicted sample value

(L]
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y't+1 = predicted sample value at time t+1
y! ¢ = sample value which was predicted for time t
Ayx = predicted increment in y, which was computed A\ sample periods
before t
A = number of sample periods between t and time of prior transmission
A21

When | € l A K, a new increment, AY s is computed as follows:

_ K sgn e e- K sgn ¢
Ayo - Ay)\ * A - C (I-2)
and
t =
Vg1 =Yg ¥4
where
A = transmitted sample value at time t
Ayo = new increment, computed at time t
C = 2ifaA>1
lifa=1
sgne = 1ife>0
-1 if e<O

One sample period later Ay0 becomesAy)\ .

As shown by Eq. I-1, provided the actual sample value remains within tolerance, the
prediction continues along the same slope line, and the process behaves exactly as
Model 10. However, when the tolerance is exceeded, this slope is changed for the
next prediction in the direction of the deviation in accordance with the last two terms
of Eq. I-2, The amount of the change will vary inversely with the number of sample
periods that have occurred since the previous transmission, with the effect of this
inverse relationship decreasing as the magnitude of the deviation increases, Whenever
two successive transmissions occur, C in Eq., I-2 becomes unity, and the next sample
is again predicted in the same manner as Model 10,
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The data are reconstructed exactly as they were compressed: predictions are made
at the receiver which are identical to those made at the data compressor, and all non-
transmitted data samples are replaced by predicted values.

Critique. Evaluation of this model at LMSC, using Agena telemetry data, showed a
slight improvement over Model 10, However, this model did not produce average

compression ratios as great as the floating aperture zero order predictor (Model 7).

1.3.1.3 Model No. 15: Second Order Polynomial, SOP., (References 139, 177)

Description. If in the nth order polynomial equation the value of n is set equal to 2,
the prediction equation becomes

2

Y1 T AV Ay
where y' 1 - the predicted value at time t+1 and

Ay, =¥ -Yiq

A%y =Ay, _a
g T -8Ya
1 = -

therefore Y1 3yt 3yt- 17 Y% 2

The second order predictor thus makes a prediction based upon a constant rate of
change of the slope and assumes that the change in slope between samples will remain
constant, There are numerous ways to mechanize this basic model, as in the case

of the zero and first order predictors.

Critique, This model has not received the attention that the zero and first order
predictors have, This lack of attention can be attributed to the lack of success with

the first order predictors. Limited experiments with second and third order predictors
by LMSC's Independent Development Program have shown that the higher order predic-
tors are even more sensitive to noise perturbations than first order predictors. (This
work was not recorded.) Attempts to devise methods to overcome the noise sensitivity
of the higher order predictors led to the interpolator concepts described later in this
Appendix,
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I.3.1.4 Model No, 16: Wiener. (References 53, 113, 154, 245)

Description. The Wiener predictor makes use of the known data autocorrelation func-
tion to assign weights to a given number of previous samples., The weighted average
of this number of previous samples is then used as a prediction of the next data value,
When the data value differs from the predicted value by more than the prescribed
amount, the data value is transmitted, The data is reconstructed using an identical
weighted average to replace the missing data values with predicted values. The peak

error is not absolutely limited and only a probability of peak error is known,

Critique. The early work that was performed on the Wiener predictor in Reference
154 did not show promising results relative to the newer interpolator models, The
technique has a major difficulty with nonstationary data (typical missile flight tele-

metry data) and for this reason, further investigation was discontinued,

L. 3.1.5 Model No, 17: Adaptive Nonlinear, (Reference 9)

Description, The basic operations performed, to predict the data, begin with the
examination of a specimen of data, This examination and an error criterion results
in the selection of an operator to use in predicting data. This operator is as non-
linear as necessary to fit the data., The current data samples are checked against
the predictions using a programmed error criterion, The operator is changed as

necessary according to changing data.

Critique, Information relating to the performance of this model was not available

from the literature search., Preliminary comparisons of compression efficiency be-
tween this model and the interpolators on TIROS video data have indicated that inter-
polators provide higher compression efficiencies, The relative fidelity of reconstructed

pictures between these techniques has not been established,
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1.3.1.6 Model No, 18: Exponential,

Description, This model is postulated to handle a special class of data exhibiting ex-
ponential curves, The model uses exponential functions to extend the limits to the
next data value, The prediction functions, in the case of the exponential predictor,
are (a+bk), a(l_b"k), or a(1+b'k), where a and b are constants and k is an integral

sampling index.

Critique., Flow diagram solutions to this model were devised during the study, How-
ever, time and funds did not permit sofftware implementation of this model during the
contract, Its relative performance is unknown at the writing of this report.

1.3.2 INTERPOLATORS

L 3.2,1 Model No, 19: Finite Differences, (References 184, 185, 186, 187, 188, 241,
242, 243)

Description, In this model, the first through the nth order difference of consecutive
data samples from a source are calculated, If an ith order polynomial function is
present in the data, the i+1 order difference will become zero at the i+1 sample of the
polynomial and will remain zero until the polynomial trend changes, The model is
adaptive in the sense that it can detect and represent any polynomial from a zero to

n-1 order,

Let
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and

Then, for the example,

t oy ay Ay A% Ay
0 0 — - — -
1 4 4 — - —
2 6 2 -2 — —
3 6 0 -2 0 —
4 4 -2 -2 0 0
5 0 -4 -2 0 0
6 -6 -6 -2 0 0
7 -13 -7 ~1 1 1
8 =20 -7 0 1 0

a second order polynomial is present from t = 0 through t = 6, and the presence of
the polynomial is detected by the A3y difference at t = 3, i.e., A3y = (. Samples

Yo » ¥, and Yy are transmitted. At time t =17, the second order polynomial

terminated (A3y = 0). Attime t =8, the presence of a third order polynomial was
detected by the A4y difference term. The same procedure is used for data recon-

struction using samples Yoo V10 Yoo and Yo -

Critique. This model has difficulty producing high compression ratios since it is
unlikely that a time function will exhibit exact polynomial behavior. Small noise per-
turbations, including quantization noise, affect this model and the higher order predic-
tors in similar manners. Reference 187 describes computer simulation results of this

model as applied to Jupiter and Saturn booster telemetry data. These results also
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show that during reconstruction, both interpolation and prediction techniques are re-
quired. This model has extreme difficulty in controlling the peak errors, particularly
during periods that predictor reconstruction is used. Attempts to overcome these

problems led to the set of interpolators currently in use at LMSC.

;1.3.2.2 Model No. 20: Least Squares Polynomial. (Reference 137)

Description. This model, designed to confine peak errors and to minimize the variance
of the error between the data and the approximation, uses the well known least squares
polynomial fit technique to represent data samples (up through a seventh order poly-
nomial). The algorithm was modified to include an additional test that would limit the
peak errors between the polynomial interpolations and each data sample in the redun-
dant set to a predetermined error value. This model has been used for several years

to compress Agena subsystem data for both computer and manual analysis.

Critique. This model provides optimum sample compression efficiency with the

- . - s
FAVINAVA, ) uls VLLOD VL RLIIWT o

® Polynomial approximation
® Minimum variance of error

® Peak error limitation

This model is the most complex of all models described in this Appendix and requires
up to fifty computer words storage for each data channel. This complexity is expected
to limit its application to special measurements requiring both peak and minimum

variance error guarantees,

1.3.2.3 Zero Order Polynomial

I.3.2.3.1 Model No. 21: Computed Sample Transmitted, ZOl. (References 51, 62,
91, 146, 148, 151, 153, 154, 158, 160, 219, 244)

Description. The functional operation of this version of the zero order interpolator is

depicted in Figure I-2, This zero order interpolator is similar to the zero order
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¢ ACTUAL DATA SAMPLES
O COMPUTED TRANSMITTED SAMPLES

Fig. 1-2 Zero Order Polynomial Interpolator,
Computed Sample Transmitted

predictor in the sense that points lying on a horizontal line are used to represent the
largest set of consecutive data samples within a prescribed peak-error tolerance. The
primary difference between the predictor and the interpolator is the reference sample
selected to represent the redundant set. It is seen in Figure I-2 that the reference
sample for the interpolator is determined at the end of the redundant set instead of
with the first sample as in the case of the predictor, In this case, the reference
sample y't used for the interpolator is computed as the average between the most posi-

tive sample, Yy and most negative sample yl in the redundant set,

Critique. This zero order interpolator is optimum in terms of sample compression
efficiency, assuming a zero order polynomial approximation and a peak-error guarantee
as mentioned in Paragraph I. 3.2.2. (The least square polynomial interpolator describe«
in that paragraph is the optimum redundancy reduction selector for a guaranteed minimu
variance error criterion.) A graphical indication of the improved compression efficienc
of this zero order interpolator over the zero order predictor can be seen by comparing
Figures I-1 and I-2,
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I.3.2.3.2 Model No. 22: Last Redundant Sample Transmitted. (Reference 219)

Description. This model operates in a manner similar to that of the selector de-
scribed in Paragraph L. 3.2.3.1. However, instead of transmitting the computed
average of the most positive and most negative samples in the redundant set, it trans-

mits the last redundant sample.

Critique, Because the last sample in the redundant set is transmitted instead of the
computed average, the peak allowable error will be twice that of the computed-average
method for the same compression efficiency., Thus the efficiency of this model will
always be less than that of the previous model for the same maximum allowable error.
The complexity of this model, however, would be slightly less than that of the previous

model, because the average of two stored sample values would not have to be computed.

L 3.2.4 First Order Polynomial, As the name implies, the first order interpolator

redundancy reduction compression technique approximates the data with a first order

nalvnamial Aurve  The internnlator differs from the nredictor bv allowing all samnles

in a redundant set to influence the polynomial approximating the redundant samples,

1.3.2.4.1 Model No. 23: Four Degree of Freedom, FOI4DG. (References 91, 146,
153, 154, 160, 227, 244)

Description, This model matches the longest (first order) straight line to a set of re-
dundant samples so that the most positive and most negative errors are within the
prescribed tolerance and are equal in magnitude, Both ends of the straight line are
unconstrained to allow an optimum fit to be made., The values of each end of the
straight line are transmitted to permit reconstruction by interpolating between trans-
mitted samples, The performance of this model is shown in Figure I-3a, Both the
starting and end points of each line are computed values so that the length of each line
is maximum for the assumed peak-error guarantee, It is seen that the end point of
one line segment can be connected with a straight line to the beginning of the follow-

ing line segment,

Tq
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+ ACTUAL DATA SAMPLES
A,0 TRANSMITTED DATA SAMPLES

(a) Four Degrees of Freedom

+ ACTUAL DATA SAMPLE
O TRANSMITTED DATA SAMPLE

(b) Joined Line Segment

ACTUAL DATA SAMPLE
INITIAL DATA SAMPLE
FINAL COMPUTED SAMPLE

(c) Disjoined Line Segment

Fig. I-3 First Order Interpolator Redundancy Reduction
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Critique. This first order polynomial interpolator is designed to provide a maximum
sample compression efficiency for the condition that the errors from approximation
must be confined to a peak value. If peak errors are discarded in preference to other
errors, then other models can be designed to produce higher compression ratios, Since
this model is quite complex, prior to this study it was not expected to achieve recogni-
tion as a general solution to vehicle or ground compression applications. It is, however,
less complicated and requires less memory than the least squares polynomial model
(Model 20).

1.3.2.4.2 Model No, 24: Joined Line Segment, FOIJON. (References 91, 139, 146,
153, 154, 159, 160, 179, 219, 227, 244)

Description. This model is identical to the optimum, four degree of freedom interpolator
except that the initial point of the line segment is anchored to the computed end point of
the previous line. Thus, only the end point of each line segment is transmitted. The
transmitted end point is computed so that the positive and negative peak errors are

armal in maonitnda and avra within tha nracerihad tnlaranca Raornnnactmintian ic annnm

- ~r -

plished by connecting all transmitted samples with a straight line. Figure I-3b illus-
trates the performance of the model.

Critique. Analysis of the joined line segment interpolator, (Reference 146), has shown
that this model tends to oscillate and that the majority of other interpolators provide
higher compression efficiencies. In fact, Reference 139 has shown that the zero order
predictor provided greater compression ratios when subjected to Agena Telemetry data.
The experiments conducted by Simpson, Reference 219, on Saturn data did not confirm
this result. His results showed this model to be generally more efficient than the

other models tested. It will be shown later in the report that an adaptive aperture tends
to overcome the oscillation problem. This model is slightly more complicated to

mechanize than a comparable first order predictor.

>I. 3.2.4.3 Model No. 25: Disjoined Line Segment, FOIDIS. (References 91, 139, 146
153, 154, 159, 160, 179, 227, 244)

bl
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Description. This method gives a substantial improvement in sample-compression
ratio by anchoring the starting point of the line segment to the actual out-of-tolerance
data sample thus minimizing the tendency to oscillate. In fact, the improvement in
sample-compression ratio will, under most conditions, more than compensate for the
decrease in bandwidth-compression ratio caused by the requirement to code both ends
of the line segment. The name '"'disjoined" line segment has been adopted for this con-
figuration of the first-order interpolator. The operation of the disjoined line segment
is presented in Figure I-3c.

Critique. The disjoined line segment has consistently produced high sample compres-
sion ratios, This model suffers when converting to bandwidth compression ratio be-
cause of the increased coding required to represent both ends of the line segment

interpolator.

1.3.2.4.4 Offset Out-of-Tolerance, Model No, 26: Last Slope, FOIOLS; and
Model No. 27: Out-of-Tolerance Direction, FOIOOT. (References 139, 146, 153, 154,
159, 160, 179, 227, 244)

Description. The joined line segment model discussed in Paragraph I.3.2.4,2 has a
definite tendency to oscillate resulting in low compression efficiency. This model
offsets the initial point of the line segment to nearly eliminate this problem. The mag-
nitude of offset is generally equal to the tolerance value, Two methods for determining
the direction of offset have been used. These are:

e Offset based upon the sign of the last line segment slope

e Offset in the direction of the out-of-tolerance sample, This
technique requires an additional bit to be transmitted denoting

the direction of offset.
Critique. The offset out-of-tolerance model will generally provide higher bandwidth
compression ratios than the other two degree of freedom interpolators (Reference 154).

The offset in the direction of the out-of-tolerance sample has produced a larger band-
width compression ratio than offsetting in a direction based upon the sign of the slope
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of the last line segment even though one additional bit is required. The complexity of
this model is equivalent to the other two degree of freedom interpolators.

1.3.2.4.5 Model No. 28: Last Data Sample Transmitted. (References 69, 70, 219)

Description. This model is also similar to the joined line segment interpolator except
the last in-tolerance data sample is transmitted instead of a computed sample. This
model was designed based on the assumption that it is better to terminate the end point
of a line segment on an actual data sample rather than a computed value.

Critique. The evaluations conducted by the University of Alabama showed the joined
line segment interpolator to achieve greater compression ratios for given rms error
values than this model. Reference 158 also shows that the peak errors produced by
this method cannot be controlled when adaptive aperture is used.

1. 3.2.5 Model No. 29: Exponential, EI

Description, This model compresses a special class of data exhibiting exponential
behavior. This model uses a zero order polynomial combined with an exponential
term and is mechanized in a similar manner to the first order interpolator except the
interpolated values follow anexponential curve instead of a straight line. The general
functions which would be followed are (ai’bk) or a(l'fbk) where a and b are constants
and k is an integral sampling index.

Critique. This model was conceived so late in the study that its performance was not
determined. It is reasonable to assume that the exponential interpolator will out-
perform the exponential predictor since noise perturbations can influence the exponen-
tial predictor in a manner similar to the polynomial predictor. It is anticipated that
the exponential interpolator will be difficult to mechanize due to the additional exponen-
tial operations required.

1.3.2.6 Model No., 30: Adaptive Reference Pattern.,
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Description. This model extends the exponential interpolator to include high order

polynomials and transcendental functions., The model is adaptive in the sense that it
can select the reference pattern that is likely to fit the data the closest.

Critique. Like the exponential interpolator, this model was developed late in the study
and could not be evaluated, However, it would appear that this model would be even
more difficult to mechanize than the exponential interpolator since it would include re-

ference patterns other than exponential,

I.4 ENCODING

Encoding can be used by itself as a data compression technique or it can be combined
with the others. An encoding algorithm can be applied as a fixed rule based upon pre-
vious information, or it can be applied adaptively based upon measured statistics.

I. 4.1 Nonadaptive

I.4.1.1 Model No, 31: Delta Modulation. (References 28, 59, 98)

Description. This model integrates combinations of positive and negative pulses in a
time-varying manner so that at any given time the sum of pulses closely approximates
the magnitude of the signal, The positive and negative pulses represent a stream of
zeros and ones which can be used to synthesize the signal, A transmitted pulse is a
one if the synthesized integral is more negative than the input signal and the pulse is a
zero if the integral is more positive than the input signal, The contribution of a zero

or a one is chosen to represent the analog resolution of the data,

Critique, If aliasing errors are to be minimized, the sampling frequency of this model

must be sufficiently high to allow a transient signal to be followed. This sampling fre-
quency in turn determines the transmission bit rate since a one or a zero must be trans-
mitted for each sample. This limitation places an upper bound on the compression ratio
which can be achieved,
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L.4.1.2 Model No, 32: Difference Modulation, (References 59, 154)

Description, This model takes advantage of the high probability that the difference
between two adjacent samples representing a channel will be small compared to full
scale, Thus a shorter incremental code can be used to define the time history of a

data channel, These differences can be summed to allow reconstruction,

Critique, Unless means are provided to rereference the data (re-establish the base
line) a bit error in any difference code word will be reflected in the subsequent summa-
tion. Comparative evaluations of difference modulation techniques (Reference 59)

have not produced encouraging results relative to other forms of data compression,
However, combining difference modulation with first order interpolator models have

resulted in higher overall bandwidth compression ratios (Reference 154),

L. 4,1.3 Model No, 33: Probabilistic. (References 33, 65, 190, 217, 237)

DESCIripLion, Ll Li€ AINPIuUe Probauilily UGLDLLY IULGLAUL UL LG WA VGIUL L1 pL saus o

by a data source has a non-rectangular shape, and if it is known a priori, it is possible
to code the digital words representing the data samples so that short words are
assigned to data values that will most frequently occur, and longer words are assigned

to values which rarely occur, In this manner a reduction in bandwidth can be achieved,

Critique, This method has been found to be moderately effective if the statistics of a
source follow the assumed distribution, If the amplitude probability density function
between sources are different, a stored conversion table for each source is required

if reasonable efficiencies are to be achieved, Analysis of satellite telemetry data has
shown that most measurements are highly correlated (Reference 139), As such, the
probability of a long coded word followed by a long coded word is high, Thus, bunching
of the input rate to the required queuing buffer can occur and cause a greater likelihood
of buffer overflow and underflow. The variable message length characteristics of

probabilistic encoding presents problems in maintaining word synchronization,
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1. 4.2 Adaptive

I.4.2.1 Model No., 34: Adaptive Probabilistic,

Description, This model is similar to the nonadaptive model discussed earlier, except
that the encoder has the ability to measure new statistics as time passes. Consequently,
if the data is nonstationary, new code assignments can be made based upon the most
recent statistics. Information relative to all code assignments made by the encoder
must be transmitted along with the coded messages to enable interpretation and recon-

struction of data to be made at the receiving terminal,
Critique. Little is known about the relative merits of this model. Since adaptive prob-
abilistic encoding was not considered as a data compression technique at the beginning

of this study, the literature search did not disclose any references on this model.

I.4.2.2 Model No, 35: Bit Plane, (References 59, 213, 225)

Description, Bit plane encoding is a technique for increasing the relative entropy of
transmitted data bits. A bit plane may be defined as follows: given N-bit data words,
the nth bit plane consists of all those data bits corresponding to the coefficients of
2n_1 (1<n<N). In its most general form, bit plane encoding requires that each of
these N bit planes be coded as N independent, parallel binary data sources. Assuming
a high interbit dependency within a given plane, recoding each bit plane with a more

efficient code will result in a bandwidth (bit) reduction, or, increase in relative entropy.

Critique. Bit plane encoding has shown promise as being competitive to redundancy
reduction data compression models for certain classes of data (Reference 214). On the
other hand, Reference 58 has presented this solution as being less efficient than other
data compression models when applied to television video data. Storage requirements
and possible variable word length requirements of bit plane encoding are characteristics
which must be considered in a detailed trade-off analysis.
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Appendix I

S-6 SENSOR ASSIGNMENTS

The identification numbers which were assigned to the S-6 data sensors are shown in

Table II-1, Also shown are corresponding channel numbers and sensor sample rates.
Table II-1
S-6 SENSOR DESIGNA TIONS
NOMINAL
SENSOR CHANNEL AND SAMPLE
IDENT NO. POSITION NO. . SENSOR NAME RATE, SPS

1 Position and status 20

2 2,7,12,18,23 Electron temp #1 output 180

28, 34,39, 44

3 16,40 Electron temp #2 output 40

4 3,19,35 Bayard alpert gauge #1 DC 60

5 4,20, 36 Bayard alpert gauge #1 AC 60

6 5,21, 37 Bayard alpert gauge #2 DC 60

7 6, 22, 38 Bayard alpert gauge #2 AC 60

8 8,32 Aspect 40

9 9, 25,41 Mass spect #1 log amp output 60

10 24 Mass spect #1 elect biased output 20

11 10,26,42 Redhead gauge #1 60

12 11,27,43 Redhead gauge #2 60

13 13,29,45 Mass spect #2 log amp output 60

14 30 Mass spect #2 elect biased output 20

15 14 Zero-volt reference 20

16 15 Five-volt reference 20
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Table II-1 (Cont'd)

NOMINAL
SENSOR CHANNEL AND SAMPLE
IDENT NO., POSITION NO. SENSOR NAME RATE, SPS

17 17,pp 15,6%* Ionization current/voltage 2.5
18 17,pp 0,7 High-voltage monitor 2.5
19 17,pp 1,8 Repeller monitor 2.5
20 17,pp 2,9 Amplifier B+ monitor 2.5
21 17,pp 3,10 Mass marker 2.5
1 22 17,pp 4,11 Log amp temp 2.5
23 17,pp 5,12 Electrometer temp 2,5

24 17,pp 13 Zero-volt reference 1.25

25 17, pp 14 Five-volt reference 1.25

26 31,pp 15 BA emission current #1 1,25

217 31,pp O BA emission current #2 1.25

28 3l,pp 1 BA gauge temp #1 1.25

29 3l,pp 2 BA gauge temp #2 1.25

30 31,pp 3 BA electrometer temp #1 1.25

31 3l,pp 4 BA electrometer temp #2 1.25

32 31,pp 5 BA voltage bias #1 1.25

33 3l,pp 6 BA voltage bias #2 1.25

34 3L,pp 7 Sphere pressure 1.25

35 31,pp 8 Nutation damper squib monitor 1.25

36 31,pp 9 Experiment squib monitor 1.25

37 31,pp 10 Turn-on counter 1.25

38 31,pp 11 T/M voltage (+20. 15v) 1.25

39 31,pp 12 9. 3v battery monitor 1.25

40 31,pp 13 Five-volt reference 1.25

41 31,pp 14 Zero-volt reference 1.25

*Sensors 17 through 23 were erroneously thought to be cross-strapped as shown. Since
only one minor frame channel in 45 was involved, the resulting abnormally-low com-
pression ratios obtained for these sensors did not materially affect the overall out-
come of the experiment.
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Table II-1 (Cont'd)

NOMINAL

SENSOR CHANNEL AND SAMPLE
IDENT NO. POSITION NO. SENSOR NAME RATE, SPS

42 33,pp 15 Zero-volt reference 1.25

43 33,pp O Five-volt reference 1.25

44 33,pp 1 BA card temp #1 1,25

45 33,pp 2 BA card temp #2 1.25

46 33,pp 3 BA ion trap filament monitor #1 1.25

47 33,pp 4 BA ion trap filament monitor #2 1.25

48 33,pp 5 6. 2 v battery monitor 1.25

49 33,pp 6 - 27.9 v battery monitor 1.25

50 33,pp 7 Thermistor #1 (lower MS boss) 1.25

51 33,pp 8 Thermistor #2 (skin, lower 45°) 1.25

52 33,pp 9 Thermistor #3 (ambient, top of RH) 1.25

53 33,pp 10 Thermistor #4 (skin, equator) 1.25

54 33,pp 11 +13.95 v monitor 1.25

55 33,pp 12 Thermistor #6 (upper MS boss) 1.25

56 33,pp 13 Thermistor #5 (skin, upper 45°) 1.25

57 33,pp 14 Spare 1.25
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Appendix II1
BIT PLANE ENCODING AND DATA ENTROPY CALCULATION

This appendix describes the techniques used for encoding bit planes and calculating

entropy, discusses reconstruction and gives error magnitudes.
II.1 BIT PLANE ENCODING

In each case, the data to be coded was divided into groups containing 128 words. Both
binary and Gray coded data words were considered and, since the data range was

0 -511, each data word consisted of 9 bits. (A straightforward, bit-by-bit trans-
mission of such a data group requires 128 x 9 =1152 bits.)

To code the 9 bit planes in each data group, each bit plane was assigned a Class A, B,
or C designation, following the convention of Schwartzl. The Class C designations

were made on an a priori basis so that resulting tolerances would coincide with the

[ tolerances used with the polynomial interpolators. A coding algorithm was postulated,
retaining Class B plane information by simple run length encoding, and Class A plane
information by encoding of plane location and contents. This coding algorithm was not
an optimum algorithm and certain improbable ambiguities might have occurred. It
was a close enough approximation, however, to provide a meaningful comparison be-

tween bit plane coding and existing LMSC algorithms.

III. 1.1 Coding Transmission Schedule

e Transmit special word (Class A Plane information follows)

e Transmit Class A Plane information (3 bits/ location 1 bit/ contents)

1Schwartz, J., Data Processing in Scientific Space Probes, NASA Grant NSG-138-61,
Sept 1963

TIT_1
11174

|
|
The coding transmission schedule was roughly as follows (all words contain 7 bits):
|
|
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o Transmit special word (Class B Plane information follows)

e Transmit special word (3 bits/ location of Class B Plane,
1/ bit initial value)

. Transmit changes in Class B Plane (7 bits/ change)

o Transmit special words and changes in Class B Plane as
necessary to transmit all Class B Planes

o« Transmit special word (bit-by-bit transmission of Class B
Plane information follows, count of changes >21)

o Transmit special word (3 bits/ location of Class B Plane,
1 bit/ initial value)

¢ Transmit Class B Plane bit-by-bit (19 7-bit words)

o« Repeat last three steps as necessary to transmit all Class B

Planes requiring bit-by-bit transmission
III. 1.2 Coding Scheme

III.1.2.1 Format. The coding format is shown in the following illustration.

f— 9 BITS ——]

T

128 DATA
WORDS WORDS

/N
CLASS A CLASS B CLASS C
PLANES . PLANES PLANES

Fig. IlI-1 Coding Format
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OI.1.2.2 Code Words and Groups. The code words and code word groups are listed

and described in the following table.

Table II-1
CODE WORDS AND CODE WORD GROUPS

CASE WORDS AND GROUPS DEFINITION
(a) 0 0 0 0 0 0 0 Class A Plane information follows
(b) 1 1 1 1 1 1 1 Class B Plane information follows
(also separates Class B plane
information)
(c) 0 0 0 0 0 0 0
0 0 0 0 0 0 o0 Bit-by-bit transmission follows

@ ey; e € S S ©2p %2
2 €34 3b
e.e. 1 te th 'thAPl
eia l.b ic ocate e 1 ane

c; describes the contents of the
A Plane

(e) a, 0 0 0 a2  ®ib %ic 3 describes contents of first bit in
the B Plane located by €. heic

® bis1 bisa bis3 bij4 biis bise Pij7 Thestcil bits describe tl;ﬁ location of
the j change in the i~ bit plane.

(Class B)
g) i1 C The contents of the ith bit plane
L when transmitted bit-by-bit
Cig - . . . . (Class B)
€128 0 0 0 0
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I11.1.2.3 Bit-by-Bit Transmission. Bit-by-bit transmission is initiated when the

count of changes for a given Class B Plane equals or exceeds 21. This is shown by

Run Length Coding Bit-by-Bit Transmission Count of Changes
(No. of Bits) (No. of Bit s)
19+ 1) x7 2+ 19)x7 19
(20 + 1) x 7 (2+19)x 17 20
21+ 1) x7 2+ 19)x7 21

No. of ;:E@ 2 specia‘.m

Special word No. of words to send 128 bits

III.1.2.4 Typical Code Group Sequence. A typical sequence of code groups might

be as follows: (The letters refer to the convention used in Table II-1.)

a d b e f b e f f f --- f b e f £ f --_-f
b e f f f - -~  f c e g a d b e f f b e f f
---f ¢ e g ¢ e g etc.

This sequence may be interpreted as follows:

3 Class A Planes
First block of
128 data words
5 Class B Planes, one of which has been transmitted

bit-by-bit

4 Class A Planes
Second block of
128 data words
4 Class B Planes, two of which have been transmitted

bit-by-bit

Note: In each case it was assumed a priori there was 1 Class C Plane.

I1I-4
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I11.2 ENTROPY CALCULATIONS

Entropy is a measure of average information per data source symbol. In the case of
a binary data source alphabet, the units of entropy are bits/ binit (binit = binary digit).
To calculate entropy it is first necessary to postulate a probabilistic data source
model. After data statistics associated with this model are measured, data entropy
is calculated. It should be noted that this data entropy is meaningful only in the con-
text of the chosen data source model. Data entropy may be used to calculate an
upper bound on attainable bit compression ratios. Again, this upper bound is mean-
ingful only in the context of the data source model.

[1.2.1 Data Source Model

In this study, a Markov data source model was postulated for each data bit plane.
This approach is a reasonable approximation to reality and is mathematically trac-
table. In the case of a zero order and first order Markov source model, the follow-

ing expressions for the entropy of the kth bit plane were usedz:
Zero Order First Order

1 1

o . . 1 . . -
H_ = —?; P, (i) log, (Pk(x)) Hy = ; J; Py (i,]) log, (Pk(tp))

where Pk(i) is the probability of an i (i=0, 1) in the kth bit plane and Pk(i, j) and Pk(ilj)
are similar joint and conditional probabilities referring to the kt bit plane.

These bit plane entropies were then averaged over the Class A and Class B bit
planes as follows (assuming N Class A and B planes):

Zero Order First Order

o _ o 1 _ 1

Hyvg = 1N ZHk Hovg =1 NEHk
keAl, B Planes keA, B Planes

2
Abramson, Information Theory and Coding, McGraw-Hill, 1963
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Using these average entropies, the upper bounds on obtainable compression ratios,

consistent with the zero and first order Markov source models, were calculated as

follows:
o _ o ] . '
N oax = (1/ Havg) (no. of bit planes/ no. of A, B Planes)
1 1, .
Nmax = (1/ Havg) (no. of bit planes/no. of A, B Planes)

These upper bounds ignore any existing inter-plane information.

I1I.3 RECONSTRUCTION CONSIDERATIONS AND ERROR CALCULATIONS

III. 3.1 Reconstruction

Errors in bit plane encoded data words due to nontransmission of Class C planes vary
in magnitude, but always have the same sign. For example, if the least significant bit
of each data word were removed, which would correspond to one Class C plane, the
error would either be +1 or 0, depending on the original value of the bit. Assuming
each value would be equally likely, a positive average error of 1/2 data unit would re-
sult. In a like manner, two Class C planes result in a positive average error of 1-1/2
data units. In reconstructing bit plane encoded data, one can take advantage of a priori
knowledge of this non-zero average error by adding this known average error to every

bit plane encoded data word that is received. This achieves three objectives:

e The peak error (tolerance) is reduced by a factor
of 2 over bit plane encoding without addition of the

average error to reconstructed data
e The overall average error approaches zero

e The absolute rms error for a given number

of Class C planes is reduced.

I1.3.2 Errors

The rms errors due to nontransmission of Class C planes can be calculated as follows,

The possible error magnitudes are -1/2 and 1/2 in the case of one Class C plane and

I11-6
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-3/2, -1/2, 1/2 and 3/2 in the case of two Class C planes. It is assumed that these
error magnitudes have the same probability of occurring in both cases. This is equi-
valent to assuming that there is no organization in the Class C planes being considered,
and that in these planes zeros and ones are equally possible. )
1/2
e For one Class C plane, the rms error is [1/ 2 (-1/2)2 +1/2 1/ 2)2] =0. 5.
e For two Class C planes, the rms error is 4
r 2 o2 i a1 o2 271/2
[1/4 (-3/2)" +1/4 (-1/2)" +1/4 (1/2)" + 1/4 3/2) ] =1.12

For both one and two Class C planes the average error is zero.

ITY 7
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Appendix IV

SIMULATED MULTISENSOR
DATA COMPRESSOR

Four programs were used; three to simulate the multisensor data compressor system
used in the buifer queuing control study described in Appendix 1. 4, and one to unpack
and decommutate the original GSFC data tape to put the S-6 data into a form compatible
with the data compression study programs. The programs, shown in Figure IV-1,

are as follows:

e Unpacking and decommutation (DECOM)

Compression, buffer simulation, and
queuing control (COMPRESS)

® Data reconstruction (RECON)
e Deviation limit plot (K-PLOT).

IVv.1 DECOM

The DECOM program accepts the original GSFC digital data tape and assigns a
specific sensor number and time value to each data sample. Its output consists of
two tapes: (1) a TAD tape whose data samples are in the same multiplexed time
sequence as the original tape, but are accompanied by sensor identification and time
words, and (2) a T-3 tape in which all the data samples from a given sensor are
sorted and grouped on one portion of the tape. A time word accompanies each data

sample word.
IV.2 COMPRESS

The COMPRESS program is the heart of the simulated data compression system.

This program accepts the telemetry data in the TAD format and employing the sample
selector assigned for the run, compresses the data from each sensor individually,

It also simulates buffer readin and readoutl, as well as queuing control.

1The buffer readout rate and buffer capacity are assigned as input control variables.

Iv-1
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ODDARD
TAPE

DECOM

Unpacking and
Decommutation

— o

COMPRESSOR ———— ==
AND QUEUING
CONTROL PARAMETERS

COMPRESS

Compression,
Buffer Simulation,
and Queuing Control

——— = SYSTEM PERFORMANCE .

DATA

—— BUFFER INPUT

AND QUEUE BEHAVIOR
(4020 PLOTS)

RECON

Data
Reconstruction

= ORIGINAL AND

RECONSTRUCTED
DATA (4020 PLOTS)

= ORIGINAL AND
RECONSTRUCTED
DATA LISTINGS

(OPTIONAL)

P P

K-PLOT

Tolerance
Plotting

—— TOLERANCE
(4020 PLOTS)

o TOLERANCE LISTINGS
(OPTIONAL)

Fig. IV-1 Generalized Simulation Program Block Diagram
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In addition to system performance output data and SC 4020 plots showing buffer input
and queue behavior, the COMPRESS program writes a C-TAPE containing the trans-
mitted (compressed) data sample values, and a K-TAPE containing time records of

the tolerances as they are varied by the queuing control system.
IVv.3 RECON

The RECON program reconstructs the data from selected sensors using the C-TAPE
and plots the reconstructed waveform on an SC 4020 plot. It also plots the original
waveform from the T-3 tape and compares the reconstructed waveform to the ori-

ginal.
IV.4 K-PLOT

The K-PLOT program takes values of tolerance from the K-TAPE for selected
sensors and plots a time record of tolerance for each sensor. Four sample selectors
were programmed to operate with the simulated data compression systemz, a zero
order predictor (ZOP), a first order predictor (FOP), a zero order interpolator (ZOI),
and a first order interpolator, disjoined (FOIDIS). These selectors were programmed

as subroutines; any one of the four subroutines can be used on any given computer run.
IV.5 QUEUING CONTROL SUBROUTINES

The six queuing control subroutines all employ aperture width as the controlled para-
meter. The six subroutines are:

° Compression ratio monitoring, continuous control

° Compression ratio monitoring, step control

° Queue length monitoring, continuous control

. Queue length monitoring, step control

° Combination monitoring, continuous control

. Combination monitoring, step control

2 The reader is referred to Appendix I for detailed explanations of the sample selectors.
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The first two control systems monitor the average run length of a given fixed number
of most recent line segments for each data sensor> and control the width of the
aperture associated with that sensor. The difference between the two systems lies
in the shapes of the control curves, which are shown in Figure IV-2. As shown in
the figure, one system employs continuous, straight-line control, and the other step

control. An individual control curve is assigned to each sensor.

The second pair of control systems monitor queue length, and control the width of the
aperture associated with each sensor, according to a control curve individually
assigned to the sensor. Typical control curves are shown in Figure IV-3. As in the
first pair of control systems, one system employs continuous, straight-line control,

and the other uses step control.

The third pair of control systems uses a combination of average run length and queue
length to control the aperture of each individual sensor. The control curves are
similar to those shown in Figures IV-2 and IV-3, except that in this case a variation

of either the average run length or queue length can alter the tolerance value. As

with the previous pairs of systems, one is continuously controlled on a straight-line

basis, and the other is step-controlled.

Any one of these subroutines may be used with the simulated data compression

system, or no queuing control may be employed, as desired.
IV.6 COMPRESSOR SIMULATION OUTPUT

To aid in the analysis of system performance, the following output data are available
from each compressor simulation run:
e Combined compression ratio (total number of samples
processed divided by the total number of samples sent
to the buffer -- all sensors) averaged over a computer

run on one data specimen
3 This number, designated J Ri for sensor i, is assigned as an input control variable.

V-4
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CONTINUOUS CONTROL

TOLERANCE

ﬁ

.

AVERAGE RUN LENGTH

Fig. IV-2 Typical Control Curves for Compression Ratio Monitoring Queuing Control
System
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CONTINUOUS CONTROL

TOLERANCE

STEP CONTROL

QUEUE LENGTH

Fig. IV-3 Typical Control Curves for Queue Length Monitoring Queuing Control System
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Combined removal factor (total number of samples
removed divided by the number of samples processed --
all sensors) averaged over a computer run on one data

specimen
Total number of samples removed (all sensors)
Total number of samples processed (all sensors)

Compression ratio averaged over a computer run on

one data specimen, for each sensor

Removal factor averaged over a computer run on one

data specimen, for each sensor
Total number of samples removed, for each sensor
Total number of samples processed, for each sensor

Total number of data samples lost by buffer overflow
(this will always be zero when the buffer capacity is
set to w)

Queue length versus time (4020 plot)

Buffer input arrival rate versus time (4020 plot)
Samples lost by overflow versus time (4020 plot)
Queue length histogram (4020 plot)

Buffer input arrival rate histogram (4020 plot)

Histogram of time intervals between buffer input
arrivals (4020 plot)

Reconstructed data versus time (4020 plot)
Original data versus time (4020 plot)
Error versus time (4020 plot)

Error histogram (4020 plot)

RMS error
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e Tolerance versus time (4020 plot)

e« Tolerance histogram (4020 plot)
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