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CALCULATION OF RADTANT HEAT EXCHANGE
BY THE MONTE CARLO METHOD
by John R. Howell
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio
ABSTRACT
Because of the complex nature of radiative heat-transfer calculations
in many practical cases, especially where surfaces are involved, the use of
digital computing machines becomes mandatory. It follows that methods that
take advantage of the assets of these computers should be utilized. The
Monte Carlo method is discussed as a means of solving radiative-transfer
problems, and the literature dealing with its application is reviewed. An
example problem is presented and discussed with regard to a Monte Carlo
solution. Applications of the method to general problems in radiation are
pointed out, and the areas where advantages over more conventional techniques

exist are examined.
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CALCULATION OF RADIANT HEAT EXCHANGE
BY THE MONTE CARLO METHOD
by John R. Howell

Lewis Research Center
Cleveland, Ohio

SUMMARY

Because of the complex nature of radiative heat-transfer calculations
in many practical cases, especially where surfaces are involved, the use of
digital computing machines becomes mandatory. It follows that methods that
take advantage of the assets of these computers should be utilized. The
Monte Carlo method is discussed as a means of solving radiative-transfer
problems, and the literature dealing with its application is reviewed. An
example problem is presented and discussed with regard to a Monte Carlo solu-
tion. Applications of the method to general problems in radiation are pointed
out, and the areas where advantages over more conventional techniques exist are
examined.

INTRODUCTION

The transfer of energy by thermal radiation for all but extreme situations
is considered to have a solid theoretical foundation. The chief difficulty in
solving practical problems involving radiative transfer does not lie, therefore,
in formulating the problem. Rather, the resulting formulation, especially when
other modes of heat transfer must be considered, gives equations that are so
compl€X in many cases that complete solution by analytical techniques is im-

possible, and solution by standard numerical methods impractical.
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This difficulty arises because of the nonlinearity of the energy balance
equations. Here combined energy transfer is occurring by radiation, where
fourth-power temperatures are present, and by conduction and/or convection,
involving first-power temperatures. .Further, the radiative terms in these .
equations take the form of multiple integrals, while conduction terms contain
second derivatives. Further still, the radiative surface properties which
appear are often functions of wavelength, direction, and temperature. If
gases are involved, these variables plus pressure can strongly affect the
local gas-radiation properties. The complete energy balance on each element
of the system then takes the form of a nonlinear integro-differential equation.

Because of this, three approaches to radiant-interchange calculations have
been used. First, radiation is assumed negligible, thus admitting defeat.
Secondly, the problem is simplified to the point where solution is possible by
the means at hand. This is done by making as many assumptions, reasonable 1if
possible, as are necessary, and philosophically accepting the resulting loss .
of accuracy if not validity. ©Surfaces that are black, gray, diffuse, or spec-
ular and gases that are opaque, transparent, gray, or isothermal are assumptions
that fall into this category. Few problems in radiative transfer are solved
without explicitly or implicitly making one or more of these assumptions.
Finally, as a third choice, more advanced techniques can be developed in the
hope of accurately handling the mathematics of the more complex situations.

One step along this third path is the Monte Carlo technique. Monte Carlo
is in essence a method for statistical sampling of events. This sampling is
done by analysis of a model of the real physical problem being considered. The

method was developed to a high degree by those working on the first atomic bomb.




In solving problems in thermal radiation, the method has some very great
advantages over conventional methods. Of course, there are also a few dis-
advantages.

The Monte Carlo method, its application to thermal radiation problems,
and its advantages and disadvantages for these problems will now be discussed
at some length.

THE MONTE CARLO METHOD

Monte Carlo was developed as a way of treating problems in which the
happenings at a given location are known, at least in the form of statistical
distributions, but in which the equations that describe the interactions
between locations are extremely difficult to solve. One example is the local
neutron flux produced by the diffusion of neutrons in the core, reflector,
and shielding of a nuclear reactor. Because the neutrons arising from the
fission process undergo different sequences of absorption, fission, and
scattering, a solution for the neutron flux at all points in a heterogeneous
system can be difficult. However, the frequency of events occurring along
the path of an individual neutron are fairly well understood. This leads to
the idea of following sample neutrons, and determining the events along their
paths by picking events at random from the appropriately weighted set of
possibilities at each point. By letting each neutron sample represent a group
of real neutrons, and by following enough samples, the flux at each point can
be determined.

Of course, such a large number of simple calculations must be performed
that a digital computer becomes a necessity. However, the fact that Monte

Carlo depends on a large number of simple repetitive calculations and decisions



means that it is ideally suited for the computer.
APPLICATION TO THERMAL RADIATION

Applying the Monte Carlo method to thermal radiative transfer problems
involves setting up a physical model which characterizes radiative processes.
In neutron diffusion, sample neutrons obeying known scattering, absorption,
and fission laws meet this need. In radiation, the corollary sample particle
is the photon. However, if the photon ltself is chosen as a particle to
sample, the problem arises that the wavelength of the photon depends on its
energy. It is more convenient to choose a common energy for all samples to
be followed. Using this technique, each sample then becomes a bundle of
photons with the same wavelength. Each sample can have a different number
of photons according to its wavelength. However, the total energy carried
by every bundle is the same.

With these bundles of energy as our samples, it becomes relatively
straightforward to simulate radiative processes.

For an example, examine the energy transfer between element dAl at
temperature T; and surface Ap, an infinite plane, at temperature T, = 0
(see Fig. 1). So that some previous statements about directional and spectral
properties will gain substance, let element dA; have emissivity

€l(7\;B) (l)

€1

and let area 2 have emissivity

€5 62(%,8) (2)
and assume only that the emissivity of both surfaces is independent of

circumferential angle @& (Fig. 1). This is the case for real surfaces prepared

by sandblasting, plating, or etching.



For such a surface, the total emitted energy per unit time is

_ 4
Qe’l = eT,loTl dA, (3)
where €p 1 is the total hemispherical emissivity given in this case by
2

o n/2
2n 5 A €liA,l sin B cos B dp dA
ep = SO .- (4)
oT
1

and i% 1 is the Planck spectral distribution of blackbody radiant intensity.
2
If it is assumed that Qe 17 the total energy emitted per unit time by
J
dA;, is composed of N of the energy bundles described above, then the energy

of each bundle, c¢, is simply

o = el (5)

To determine the energy transferred from element dAl to surface Ay, we now
follow N bundles of energy through their emission from dA,, and determine
the number Sp; absorbed at A,. If the energy reflected from A, back to dAy
is neglected, the energy transferred per unit time from dA, to As, will be
9.2 = ¢S (6)
The next question is how is each individual bundle path determined and
how is a wavelength assigned to each bundle? However this is done, the directions
and wavelengths of the N Dbundles must conform to the constraints given by the
emissivity of the surface and the laws governing radiative processes. For
example, if we assign wavelengths to N bundles, the spectral distribution of
emitted energy generated by the Monte Carlo process (comprised of the cNA dA
for discrete intervals d\A) must closely approximate the spectrum of the actual

emitted energy (plotted as neyis, dA versus A). To assure this, a number

[



of methods are available for choosing the energy-bundle properties (Refs. [1
and 2]). Leave the radiation problem momentarily for a physical interpretation
of two common methods of choosing sample properties.

Choosing individual events. - Of the two methods to be outlined for

randomly selecting events in a manner that obeys the physical constraints of
the problem, the first is probably the most intuitively satisfying. It con-
sists of choosing events directly froﬁ’the curve of known probability of an
event.

Consider the probability distribution of Fig. 2(a), given by the relation

2
p(g) = £ (7a)

in the interval 0 < & < 10 and p(t) = O elsewhere. Normalizing this

relation by the area under the curve of Fig. 2(a), gives

ey - p(e) 3t -
(£) (/O’lop(g)dé 1000 (70)

Such a normalized probability curve is called a probability density function.

To choose values of ¢ in such a manner that Eq. (7b) is satisfied by
the distribution of chosen values, proceed as fcllows:

Two numbers, Ry and Ry, are chosen at random from a large set of numbers
evenly distributed in the range (0-1). On the digital computer, such R values
are selected randomly by means of either a random number generating subroutine or
from stored sequences of random numbers. Choosing R values at random ensures
that each event in a history will be independent of preceding events.

The two random numbers are then used to select a point (P(¢),t) on Fig. 2(b)

by setting
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P(E) = Rg; & = Ryt oy - Epin) = 1ORp

This point is then compared to the value of P(t) at & computed from Eq. (7b).
If the randomly selected value lies above the computed value of P(t), then
the randomly selected value of £ is rejected and two new random numbers are
selected. Otherwise, the value £ that has been found is used. Referring again
to Fig. Z(b), it is seen that such a procedure assures that the correct fraction
of & values selected for use will lie in each increment d¢ after enough
selections are made.

The difficulty with such an event choosing procedure is that in some cases
a large portion of the values of £ may be rejected. A more efficient method of
chcosing & 1is therefore desirable. The method to be outlined is more efficient
for many of the distributions which occur in radiative-transfer Monte Carlo
calculations.

This method i1s, in short, to integrate the probability density function

€
R = u/\ P(g')ae’ (8)

-00

P(t) using the relation

where R can only take on values in the range (0-1) because of the properties
of P(t). Eqg. (8) is known as the cumulative distribution function. The
function R 1is then taken to be a random number, and values of £ are obtained
by choosing R at random and solving Eq. (8) for the corresponding value of §.
To show that the probability density of ¢ chosen in this way corresponds to
the required P(t), we can again examine the probability density function of

Fig.2(b).



Inserting the example P(t) of Eq. (7b) into Eq. (8) gives
3

_ Dyapt _ _ES
R = i P(e')de To00 (9)

Equation (9) is shown plotted in Fig. 3. Divide the range of £ into a
number of equal increments AE. Suppose M values of R are now chosen in
the range O0-1, and these M values are picked at equal intervals along R.
There will be M values of £ which correspond to these M values of R.

The fraction of the M wvalues of ¢ which occurs per given increment At 1is

(i) -2 o

But AR/At is of course an approximation to (dR/dE) if a large enough value

then

is chosen for M ahd small increments AE are examined. But dR/dg can be
seen from Eq. (7) to be simply P(&) and it has been shown, therefore, that by
choosing values of € 1in this manner the required probability distribution is
indeed satisfied.

A similar procedure for use when the probability distribution is & non-
separable function of more than one variable (for example, a reflectivity,
which for real surfaces may have the angles of reflection (B, @) depending
on one another) is demonstrated in Ref. [1].

Selection of events for the example problem. - To return tc the problem

at hand, the wavelength of emission for the emitted bundle must be chosen.

It is assumed here that the surface properties are product functions of

the two variables angle and wavelength, that is

e(n,B) = e(N)e(p)




This assumption is valid for many actual surfaces, since the wavelength vari-
ation of emissivity, for example, rarely depends on angle of emission. It
follows, therefore, that dependence on either variable may be found by integrating

out the other variable. Then the normalized probability of emission occurring in

the interval d4dA is

2
"/ angm/qu(%,ﬁ)i% sin B cos B dB dA

PN = [ P(ap)ap = ; (11)
eToTl
</ O
Substituting into Bq. (7) gives
7 2
Zjd/ﬁv/\ e (N ,B)lx, sin B cos B dp AA'
(12)

€ l

If the number of bundles N is very large, and this equation were solved for A
each time an R; were chosen, computing time could become too large for practical
calculations. To circumvent this problem equations like Eq. (12) can be numerically
integrated once over the range of A, and a curve can be fitted to the result.
A polynomial curve is often adequate, as is the case in this problem, giving

A=A+ BRy + CRi + o (13)
This equation rather than Eq. (12) is used in the problem-solving program.

Following a similar procedure for the cone angle of emission B gives the

relation B pe ﬁﬁb o
2n\/A k/” el(k:ﬁl)ix sin B' cos B' dA dp’
R, = P(p',\)an ap' = OO ;
B €moT
0 0] T
(14)

which can again be curve-fit to give

B=A"+B'Ry + C'RE + oaee (15)



10

For a gray, diffuse surface, Eq. (12) reduces to

A
n i-)\v aa’
O = Fo_')\ (16)

R%,gray = 1

oT
1

vhere Fq - is the well known fraction of blackbody emission in the wavelength

interval (O - A). Equation (14) for this case reduces to
f1

R 2 sin B' cos B' dp' = sin® By (17)

B,gray

or,

sin By = /Rp (18)

The point to be made here is that computational difficulty in obtaining A
from either Eq. (13) or (16) is not greatly different, nor is it much different
for obtaining B from either Eq. (15) or (18). The difference is mainly in the
auxiliary numerical integrations of Egs. (12) and (14), which are performed once to
get the curve fits for the nongray-nondiffuse solution. As far as the problem-
solving program is concerned, the more difficult case may just as well be solved.
Thus increasing problem complexity leads to only gradual increases in the com-
plexity of the Monte Carlo program and similar gradual increases in computer time.

For emission of an individual energy bundle from surface dA,, then, a wave-
length A can be chosen from Eq. (13), and a cone angle of emission Py can be
chosen from Eq. (15). There remains only specification of the circumferential
angle ©67. Because of the assumption made earlier that emission did not depend
on 67, it #s easily shown by the formalism outlined, and is also fairly obvious
from intuition, that 91 can be determined by

61 = 2nRy (19)
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A

Because the position of plane A, with respect to dA, is known it is a
simple matter to determine whether"a given energy bundle will strike Ap after
! leaving dA; in direction (By, 67). (It will hit Ay if cos 67 > O, as shown

in Fig. 1.) If it misses, another bundle must be emitted from dAy. If the

bundle strikes A5, it must be determined whether it is absorbed or reflected.
b To do this, geometry is used to find the angle of incidence Bo of the bundle
i onto A,.

cos By = sin Bycos 69 (20)
: Knowing the absorptivity of A, from Kirchoff's Law
as(N,B) = ex(N,B) (21)

and having determined the wavelength A of the incident bundle from Eq. (13)

and the incident angle B, from Eg. (15), the probability of absorption of the

bundle at A, can be determined. The probability of absorption is simply the

absorptivity of Ap evaluated at By, and A Dbecause the directional spectral
absorptivity az(\,B) is the fraction of energy incident on A, (in a given
wavelength interval) from a given solid angle that is absorbed by the surface.
The absorptivity is therefore the probability-density function for the
absorption of incident energy. It is now easy to determine whether a given incident
energy bundle is absorbed by using the first of the two event-choosing methods
Just outlinedjthat is, by comparing the surface absorptivity Ao(A,B), which
corresponds to P(&) (the probability of absorption), with a random number R,.
If

. Re < a2(A,B) (22)

the bundle of energy is absorbed, and a counter S2 is increased by one. Other-

wise, the bundle is assumed to be reflected, and is henceforth neglected. This
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neglect is reasonable if the absorptivity of A, is large, or if the direc-
tional reflectivity is such that few bundles are reflected back in their
original direction. If not, angles of reflection must be chosen from known
directional reflectivities, and the bundle followed further along its path
until absorption or loss from the system. For the purposes of this example,
little is to be gained by following the bundle after reflechion from surface
A, because the derivation of the necessary relations is similar to that
already presented. The bundles are therefore neglected.

A new bundle is now chosen and its history followed. This procedure is
continued until all N bundles have been emitted from dA;. The energy
absorbed at A2 is then calculated from Eq. (6).

This completes derivation of the equations needed for solution of the
example problem. In putting together a flow chart (Fig. 4), some shortcuts can
be used. For example, the angle 6 can be computed first. If the bundle is
not going to strike A, on the basis of the calculated 6, there is no point
in computing AN and B for that bundle. Alternately, because 6 values
are isotropically distributed, it can be noted that exactly half the bundles

must strike Az. Therefore the calculated 6 +values can be constrained to

X
2
the calculated heat transfer will be

the range "- < 8 < n/2. If N bundles are emitted in this range, then

cS2

Q. o= 5 (23)

The solution of this problem by Monte Carlo is now complete. An
astute observer will note that this example could be solved without much

difficulty by standard methods. A more astute cobserver might note further




|

13

that extension to only slightly more difficult problems would cause serious
consequences for the standard treatments (for example, consider introducing a
third surface with directional properties into the problem and accounting for
all interactions). "On the other hand, the author has found few radiation
problems that will not yield to a Monte Carlo. approach.

Some problems that have been solved by Monte Carlo are now discussed.

ADVANTAGES AND APPLICATIONS OF MONTE CARLO

Several means are available in the literature for solving radiative transport
problems. These methods have been called "standard" or "conventional' methods
herein, and include the techniques developed by Poljak [3], Hottel [4, 5],
Oppenheim [6], and Gebhart [7] as well as formulation in terms of integral
equations. Each of these has advantages for certain types of problems, and
all will outshine the Monte Carlo approach in speed and accuracy over some limited
range of radiation calculations that is outlined roughly by the complexity of
the problem.

The chief usefulness of Monte Carlo to the thermal radiation analyst lies
in this fact: Monte Carlo program complexity increases roughly in proportion
to problem complexity for radiative interchange problems. This is an important
advantage because conventional methods increase roughly with the square of
complexity of the problem, due to the matrix form into which they fall. How-
ever, because Monte Carlo is somewhat more difficult to apply to the simplest
problems, it is most effective in problems where complex geometries and variable
properties must be considered. In complex geometries, Monte Carlo has the
advantage that simple relations will specify the path of a given energy bundle,

whereas most other methods involve explicit or implicit integrations over
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surface areas. Such integrations become difficult when a variety of skewed

or curved surfaces are present. One application of Monte Carlo to such a
problem was in Reference [8], where the directional reflectivity and absorp-
tivity of conical cavities with diffuse internal reflections were calculated.
Here a straightforward Monte Carlo technique gave an easily programmed solu-
tion to a problem of not inconsiderable difficulty for conventional approaches.

Monte Carlo was first applied in thermal radiation to problems involving
gases. This had been suggested in Ref. [9], and the idea was applied in a
series of papers (Refs. [10 to 12]) which treat radiation through gases in
various geometries. One paper by Howell and Perlmutter Ref.[12] gives solu-
tions for the temperature distribution and heat transfer through a nongray gas
with temperature dependent properties, contained between infinite parallel black
plates. The cases of plates with much different temperatures, and of plates with
the same temperature and with a parabolic distribution of energy sources in the
gas are solved.

Fleck [13] about the same time presented a lengthy discussion of combined
conduction and radiation in absorbing-emitting media using a Monte Carlo approach,
including transient effects.

Howell, Strite, and Renkel [14, 15] used Monte Carlo in the more practical
problem of predicting the combined radiative and convective energy transfer in
the rocket nozzle of a gaseous-core nuclear propulsion system. They allow
(in Ref. [Jfﬂ)the absorption coefficient of the propellant to vary with any two
variables (from wavelength, static pressure, and static temperature) evaluated
locally, and account for axial and (in Ref. [16]) radial temperature gradients.
In addition, the ability of a layer of optically thick gas injected along the

nozzle wall to attenuate the extreme predicted radiative fluxes was demonstrated

in Ref. [16].
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Such & system, involving combined heat-transfer modes in a flowing

system with variable properties and an arbitrary axisymmetric bounding
surface would at best be a laborious test of the more conventional approaches
to radiative transfer. Yet the Monte Carlo program used was able %o predict
temperature profiles in the propellant, converged to within 0.1 percent at
all points, along with axial heat-flux distributions at the nozzle wall. All
this was done in less than 10 minutes of machine time.

DISADVANTAGES OF MbNTE CARLO TECHNIQUE

Monte Carlo calculations give results which fluctuate around the real
answer because the method is a repetitive experiment on a mathematical model
used in place of the actual physical situation. The uncertainty can usually
be found by applying the standard statistical tests, and can be reduced in the
same manner as experimental error; that is, by averaging over more tests
(bundle histories).

No rigorous test exists to guarantee the convergence of Monte Carlo
results to valid solutions. This has not as yet proven to be a difficulty in
thermal radiation problems. It would often be immediately obvious that con-
vergence to invalid solutions was occurring because of the limiting solutions
and physical constraints which are known for most radiation problems.

An example of the scatter of results and convergence criteria for a
radiation problem is shown in Fig. 5, taken from Ref. [12]. This figure
shows typical scatter in Monte Carlo calculations of the temperature dis-
tribution in a real gas between diffuse black infinite parallel plates at

different temperatures. The absorption coefficient k of the gas is a

function of wavelength and local gas temperature. Because the limiting
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diffusion and transparent solutions are known in this case and bracket the

Monte Carlo results, the likelihood that convergence to an invalid solution

is occurring is small. Also, the solutions follow what is known to be
Physically necessary; for example, the gas temperature increases monotonically .
from the colder to the hotter wall, and the gradient of emissive power in the

gas varies in the expected manner with the property variations.

The results in Fig. 5 are compared in Ref. [12] to a number of approximate
solutions involving various simplifying assumptions for the gas absorption
coefficient, and agreement within the limits of the assumptions is good. The
results presented in Fig. 5 required an iterative procedure because of the
dependence of the gas absorption coefficient on temperature. Convergence to

within 2 percent required three iterations, each involving 10,000 bundle

histories.

.

Sample size. - Other difficulties can and do arise in sampling techniques,
most of which have to do with obtaining an optimum sample size. For example,

in the gas radiation problem of Fig. 5, the free path of an energy bundle

between absorptions becomes gquite short in optically thick gases. Any energy

pundle undergoes a large number of absorptions and emissions in the gas before

traversing the distance between parallel plates. This means that the computer

time needed to obtain a sample of bundles transferred between the plates become

,prohibitively large. Conversely, for nearly transparent gases, relatively few

absorptions occur in any given element of gas, and an insignificant energy

ith
sample is available to calculate the temperature of the gas element wit

. ti-
accuracy. This accounts for the relatively greater scatter for the 0.5 centi- |

meter plate-spacing results of Fig. 5.
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Both these problems are common enough in transport processes that are
mathematically related to radiative transport that special methods of
"weighting" the free paths of bundles have been developed (e.g., see Ref. [2])
to obtain adequate samples, thereby saving computer time and gaining accuracy,
albeit at the expense of added complexity.

In the gas-radiation problems available so far in the literature, it has
been found that problems which cannot be accurately handled by either the trans-
transparent or diffusion approximations fall into the range of mean free paths
that allow efficient Monte Carlo programming without reverting to weighting
techniques.

CLOSING REMARKS

Monte Carlo is discussed in the preceding section as a method suitable
for use in the solution of complex problems in radiative transfer. A sample
problem is outlined to demonstrate its application, and some of the advantages
and disadvantages of the technique are discussed along with pertinent literature
references.

From all this, certain conclusions emerge. First, Monte Carlo appears to
have a definite advantage over other radiative-transfer calculation techniques
when the difficulty of the problem being treated lies above some undefined level.
Just where this level is cannot be established, probably being a function of the
experience, competence, and prejudice of the individual working the problem.
However, problems above this nebulous benchmark in complexity can be treated with
grester flexibility, simplicity, and speed. Monte Carlo does lack a kind of gen-
erality common to other approaches in that each problem may require an individual

technique, and a dash of ingenuity often helps. This places a greater burden on



18

the programmer's backlog of experience and intuition where standard methods
may allow programming through "cookbook" application of their formalism.

Second, for thermal-radiation problems, the parameters and mathematical
relations involved lie in ranges which allow straight-forward Monte Carlo
programming without the need of the more exotic schemes occasionally necessary
in other Monte Carlo transport studies.

Third, with all its advantages, the method suffers from certain problems.
The worst of these are the statistical nature of the results, and the lack of
guaranteed convergence. It should be noted that the latter fault is common to
all methods when complex problems are treated.

Finally, it must be commented that the person using Monte Carlo techniques
often develops a physical grasp of the problems encountered, because the model
being analyzed is simple, and the mathematics describing it are therefore on
an unsophisticated basis easily related to the physical model This is in con-
trast to the rather poor physical interpretations and predictions which we can
make when working with, say, a matrix of nonlinear second-order integro-

differential equations.

LIST OF SYMBOLS

A surface area
c energy per sample bundle
Fb—% fraction of total blackbody emissive power that lies in the wavelength

range O - A
Planck spectral distribution of blackbody radiant intensity
(energy)/(unit projected surface area)(unit solid angle)(unit wavelength

interval)(unit time)

&)  probability distribution

B »
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P(e) probability density function, Eg. (8b)

Q energy per unit time

R number chosen at random from set of numbers evenly distributed in range
(0 - 1)

S number of energy bundles absorbed at a surface per unit time

T absolute temperature

(o3 absorptivity of a surface

B cone angle of emission (Fig. 1)

or cone angle of incidence

€ emissivity of a surface

€ total hemispherical emissivity, Eq. (4)

K absorption coefficient

A wavelength

3 variable

o Stefan-Boltzmann radiation constant

] circumferential angle of emission (Fig. 1)
Subscripts

e emitted

T total

1,2 refers to surface dA; or AB’ respectively
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