MONTE CARLO

FLIGHT PERFORMANCE RESERVE
PROGRAM

GD \mid C-BTD65-176

January 1966

GPO PRICE $\$$ \qquad
CFSTI PRICE(S) \$ \qquad
Microfiche (MF) \qquad

MONTE CARLO
FLIGHT PERFORMANCE RESERVE
PROGRAM

GD \mid C-BTD65-176
January 1966

FOREWORD

This report describes a computer program which was developed at the Convair Division of General Dynamics as a means of rapidly evaluating flight performance reserve (FPR) requirements for the Centaur vehicle. Major elements of the program are a linearized vehicle performance model and a Monte Carlo sampling method. Although the prime impetus for this development effort was FPR analysis, the program is generally applicable to performance evaluation of any system that may be represented by an explicit mathematical model.

Program development was conducted under the provisions of Contract NAS3-3232.

ACKNOWLEDGMENT

The considerable assistance of R. W. Estus in coordinating and editing the engineering and programming inputs to this report is gratefully acknowledged.

TABLE OF CONTENTS
Section Page
1 INTRODUCTION 1
2 BASIC EQUATIONS 3
3 COMPUTER PROGRAM 7
3.1 Input Variables 25
3.2 Output 28
3.3 Variables Used Within the Program 28
3.4 Sample Case 32
3.5 Input Card and Deck Format 41
Appendix PROGRAM LISTING 45

LIST OF ILLUSTRATIONS

Figure Title Page
1 Generalized Computer Flow Chart 19
2 Detailed Computer Flow Chart 20
3 Subroutine FQPLOT 24
4 Subroutine NORAD 24
5 Sample Input 25
6
Machine Output 37
7 FPR Frequency Function 38
8 FPR Probability Function 39
9 FPR Probability Function Segment 40
10
Input Deck Setup 43
LIST OF TABLES

Table

1
Title
Page
Parameter-Contribution Equations and Method-of-Computation Numbers8
Parameter-Controlled Input 32

SECTION 1

INTRODUCTION

A Monte Carlo method is essentially a sampling method for studying an artificial stochastic model of a physical or mathematical process. Systems of equations whose solutions are not readily obtainable by standard numerical techniques often may be handled by a stochastic process involving parameters that satisfy the equations. Often a judicious application of the physical model is made enabling one to circumvent the functional equations entirely.

The evaluation of Flight Performance Reserve (FPR), which is the fuel required to be held in reserve to provide for mission success under non-nominal flight operation, may be handled effectively by the above technique. The functional equations that describe the fuel reserve requirements are simply the multi-degree-of-freedom equations of motion for a powered vehicle. For more than a few parameters, the cost of such a direct approach quickly becomes prohibitive. Precision numerical solutions to such equations are generally limited to near-nominal conditions for all variables.

The physical model is, briefly, vehicle performance measured by burn-out weight at specified injection conditions, which is somewhat loosely related to a number of vehicle parameters.

Performance expressed as burn-out weight $\left(\mathrm{W}_{\mathrm{BO}}\right)$ is

$$
\begin{equation*}
W_{B O}=P\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \tag{1}
\end{equation*}
$$

where the form of the function P is arbitrary and the α 's are vehicle-related parameters that influence performance capability.

Historically, FPR has been computed by an RSS technique which assumes independence of variables. That is, given a set of parameters $p_{1}, p_{2}, \cdots, p_{n}$ and their associated independent changes in the vehicle's performance $\delta p_{1}, \delta p_{2}, \cdots, \delta p_{n}$, then
(3 $) \mathrm{FPR}=\sqrt{\delta \mathrm{p}_{1}{ }^{2}+\delta \mathrm{p}_{2}{ }^{2}+\cdots+\delta \mathrm{p}_{\mathrm{n}}{ }^{2}}$
which ignores any covariant contribution to the calculation. Of the parameters traditionally used to determine FPR (those which contribute significantly to performance changes), many are clearly dependent. This apparent contradiction, coupled with the desire for a flexible tool to quickly evaluate the contributions of parameter variations to FPR, provided the stimulus for the creation of the Monte Carlo FPR program.

SECTION 2

BASIC EQUATIONS

The basic equations for the FPR analysis are derived from a performance function P which is configuration- and mission-independent.

Let

$$
\begin{equation*}
P=P\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \tag{3}
\end{equation*}
$$

represent some vehicle's performance as a function of the n variables α_{i}. These are arbitrary, but in total should be comprehensive in depicting any significant performance changes. Equation 3, then, is an explicit representation of performance measured as injection weight into a specified orbit.

Therefore, the change in vehicle performance, $d P$, is

$$
\begin{equation*}
\mathrm{dP}=\frac{\partial \mathrm{P}}{\partial \alpha_{1}} \mathrm{~d} \alpha_{1}+\frac{\partial \mathrm{P}}{\partial \alpha_{2}} \mathrm{~d} \alpha_{2}+\cdots+\frac{\partial \mathrm{P}}{\partial \alpha_{\mathrm{n}}} \mathrm{~d} \alpha_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial \mathrm{P}}{\partial \alpha_{i}} \mathrm{~d} \alpha_{i} \tag{4}
\end{equation*}
$$

which holds whether or not the α_{i} 's are independent.
Generally, Equation 4 is not evaluated directly since there may exist relations of the form

$$
\begin{equation*}
\Phi\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)=0 \tag{5}
\end{equation*}
$$

correlating the variables considered.

Theoretically, it is possible to solve for the r $\alpha^{\prime} \mathrm{s}$ in terms of the other (n-r) $\alpha^{\prime} \mathrm{s}$ so that

$$
\begin{equation*}
\mathrm{dP}=\sum_{\mathrm{i}=1}^{\mathrm{n}-\mathrm{r}} \frac{\partial \mathrm{P}^{1}}{\partial \alpha_{i}} \mathrm{~d} \alpha_{\mathrm{i}} \tag{6}
\end{equation*}
$$

where the function P^{1} contains only independent variables. The difficulty associated with a concise formulation of the functions (Equation 5) is evident, necessitating a simplified approach.

The technique used to evaluate changes in vehicle performance, dP , corresponding to variations in the parameter values, $\mathrm{d} \alpha$, is to use Equation 4 with the selection procedure for the $\mathrm{d} \alpha_{i}$ modified to account for interdependence of the α 's. (Otherwise, Equation 6 could be used directly with the selection of $d \alpha_{i}$ completely random.) Also, the function P is approximated by a related function f.

The analysis, then, involves the computation of the quantities

$$
\begin{equation*}
\sum^{\ell} \Delta \mathrm{P}=\sum^{\ell} \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial \mathrm{f}}{\partial \alpha_{i}} \mathrm{~d} \alpha_{\mathrm{i}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum^{\ell} \Delta p^{2}=\sum_{i=1}^{\ell}\left\{\sum_{i}^{n} \frac{\partial f}{\partial \alpha_{i}} d \alpha_{i}\right\}^{2} \tag{8}
\end{equation*}
$$

where ℓ is the number of iterations required for a given confidence in the statistics. It can be shown that the parent distribution associated with the above method will be approximately normal regardless of the individual variable distributions. Therefore, the mean, m, and standard deviation, s, of the vehicle's performance subjected to the ranges of the α variations are given directly by

$$
\begin{equation*}
\mathrm{m}=\ell^{-1} \sum \Delta \mathrm{P} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{s}=\sqrt{\ell^{-1} \sum \Delta \mathrm{P}^{2}-\mathrm{m}^{2}} \tag{10}
\end{equation*}
$$

The associated standard errors are

$$
\begin{equation*}
\sigma^{2}(m)=s^{2} \ell^{-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}(s)=s^{2}(2 \ell)^{-1} \tag{12}
\end{equation*}
$$

where the parent variance is estimated from the sample variance.
When applicable, parameter variations are selected by a random process from preestablished distribution functions. Generally, these distributions will assume a Gaussian form (often for lack of a more descriptive function). Any distribution may, nevertheless, be specified for any of the n parameters considered.

Let $R(\lambda, \nu)$ be a random variate from some distribution with parameters λ, ν. For a Gaussian distribution, λ and ν are the mean and standard deviation respectively. Also, let σ_{i} be the standard deviation of the $i^{\text {th }}$ parameter's variation. Similarly, $\sigma_{\mathbf{i}_{j}}$ is the standard deviation of the $\mathrm{j}^{\text {th }}$ variable associated with the $\mathrm{i}^{\text {th }}$ parameter. Table 1 in Section 3 presents the methods presently used in determining the d α 's.

SECTION 3

THE COMPUTER PROGRAM

This program is used to compute the overall performance of a system where each subsystem's contribution can be selected on the basis of a random number technique.

The random numbers used in this subsystem contribution simulation are normally distributed with the assurance that $|R| \leq 3.0$.

The Flight Performance Reserve study for which this program was developed has 39 subsystems or parameters, each assigned a mean and standard deviation if applicable. There are 14 separate methods used to compute the contribution of the parameters to the final results. These contributions are referred to as $d \alpha_{i}$ ' s. The method of calculating each subsystem's $\mathrm{d} \alpha_{i}$ is assigned in the subroutine BLOCK DATA. Table 1 is a list of the $d \alpha_{i}$'s with their specific equations and method-of-computation numbers. The program presently has the capacity to study 200 parameters, each with 10 subgroups.

After the $d \alpha_{i}$'s are computed for each parameter, each $d \alpha_{i}$ is multiplied by its corresponding partial derivative. The scheme for selecting the partials is as follows: If $\mathrm{d} \alpha_{\mathrm{i}}$ is negative, the partial selected is the value of the first dependent variable; if $\mathrm{d} \alpha_{\mathrm{i}}$ is positive, the partial selected is the second dependent variable. With a minor program change, a capability can exist to linearly interpolate and extrapolate for each partial, using $\mathrm{d} \alpha_{i}$ as the argument.

Figure 1 is a generalized flow chart of the computer program, and Figure 2 is a more detailed one. The definition of words used in Figure 2 can be found in Section 3.1, Input variables, and Section 3.3, Variables Used Within the Program.

There is an option to generate plots of the distributions compiled by each case considered: the frequency function, the cumulative function, and an enlargement of the cumulative function between the 95 th and 100th percentiles. Figure 3 is the flow chart for the plotting package.

Figure 4 is the flow chart of the random-number generator.
The program, then, consists of four parts:
START (FORTRAN IV)
BLOCK (FORTRAN IV)
FQPLOT (FORTRAN IV)
RANDOM (MAP)
Although this program was developed with a particular study in mind, if one or more of the 14 methods of treating parameters would suit a potential users simulation, all that need be done to adapt the program for another simulation is recompile BLOCK DATA by assigning each parameter to the desired method of calculation. Further, the random numbers can easily be made to assume any distribution desired.

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers

$\mathrm{d} \alpha$	PARAMETER	EQUATION	$\begin{aligned} & \text { METHOD } \\ & \text { NO. } \end{aligned}$
		ONENT WEIGHT DATA (DRY)	
d_{1}	Booster	$\mathrm{d} \alpha_{1}=\mathrm{R}\left(0, \sigma_{1}\right)$	1
$\mathrm{d} \alpha_{2}$	Sustainer and Interstage Adapter	$\begin{aligned} & \mathrm{d} \alpha_{2_{1}}=\mathrm{R}\left(0, \sigma_{2_{1}}\right) \\ & \mathrm{d} \alpha_{2_{2}}=\mathrm{R}\left(0, \sigma_{2_{2}}\right) \\ & \mathrm{d} \alpha_{2}=\mathrm{R}\left(0, \sigma_{2_{1}}\right)+\mathrm{R}\left(0, \sigma_{2_{2}}\right) \end{aligned}$	2
$\mathrm{d} \alpha_{3}$	Centaur	$\mathrm{d} \alpha_{3}=\mathrm{R}\left(0, \sigma_{3}\right)$	1
$\mathrm{d} \alpha_{4}$	Nose Fairing	$\mathrm{d} \alpha_{4}=R\left(0, \sigma_{4}\right)$	1
$\mathrm{d} \alpha_{5}$	Insulation Panels	$\mathrm{d} \alpha_{5}=\mathrm{R}\left(0, \sigma_{5}\right)$ TER FLIGHT EXPENDABLES	1
$\mathrm{d} \alpha_{6}$	Fuel Weight Fuel Density	$\begin{aligned} & \text { SUBSUM }=\sum_{i=1}^{2} R\left(0, \sigma_{6_{1}}\right) \\ & \mathrm{d} \alpha_{6_{1}}=\operatorname{SUBSUM} \cdot \mathrm{NFTV} \end{aligned}$	1

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

$\mathrm{d} \boldsymbol{\alpha}$	PARAME TERS	EQUATIONS	$\begin{aligned} & \text { METHOD } \\ & \text { NO. } \end{aligned}$
$\mathrm{d}_{9}{ }^{\text {d }}{ }_{10}$	Surface Level Variation	$\mathrm{d} \alpha_{8_{3}}=\mathrm{R}\left(0, \sigma_{8_{3}}\right)$	
	Tank Pressure	$\mathrm{d} \alpha_{8_{4}}=\mathrm{R}\left(0, \sigma_{8_{4}}\right)$	
	Tank Volume	$\mathrm{d} \alpha_{8_{5}}=\mathrm{R}\left(0, \sigma_{8_{5}}\right)$	
	Tanking Level	$\begin{aligned} \mathrm{d} \alpha_{8_{6}} & =\left[\sum_{\mathrm{i}=2}^{5} \mathrm{~d} \alpha_{\mathrm{i}}+\mathrm{R}\left(0, \sigma_{8_{6}}\right)\right] * \mathrm{AOD} \\ & +\mathrm{d} \alpha_{8_{1}} \end{aligned}$	
	Ground Expended	$\mathrm{d} \alpha_{8_{7}}=\sum_{\mathrm{i}=1}^{4} \mathrm{R}\left(0, \sigma_{8_{7_{i}}}\right)$	
	Thrust Decay	$\mathrm{d} \alpha_{8_{8}}=\mathrm{R}\left(0, \sigma_{8_{8}}\right)$ Then,	
		$\mathrm{d} \alpha_{8}=\mathrm{d} \alpha_{8_{6}}+\mathrm{d}{\alpha_{8}}_{7}+\mathrm{d} \alpha_{8_{8}}$	
	Oxidizer Density	$\mathrm{d} \alpha_{9}=$ SUM 81	3
	CENTAUR FLIGHT EXPENDABLES		
	Fuel Weight		2
	Sensor Sensitivity	$\mathrm{d} \alpha_{10_{1}}=\mathrm{R}\left(0, \sigma_{10}\right)$	
	Sensor Location	$\mathrm{d} \alpha_{10_{2}}=\mathrm{R}\left(0, \sigma_{10_{2}}\right)$	
	Surface Variations	$\mathrm{d} \alpha_{10}=\mathrm{R}\left(0, \sigma_{10}\right)$	
	Density	$\begin{aligned} & \mathrm{DEND}=\mathrm{R}\left(0, \sigma_{10}\right) \cdot \mathrm{NLH} 2 \mathrm{D} \\ & \mathrm{~d}{\alpha_{10}}_{4}=\mathrm{DEND} \cdot \mathrm{NLH} 2 \mathrm{~V} \end{aligned}$	

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

[^0]Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

$\mathrm{d} \alpha$	PARAMETERS	EQUATIONS	$\begin{aligned} & \text { METHOD } \\ & \text { NO. } \end{aligned}$
$\mathrm{d} \alpha_{13}$	Trapped Oxidizer	$\mathrm{d} \alpha_{12_{2}}=\mathrm{R}\left(0, \sigma_{12}\right)$	2
	Lube Oil	$\mathrm{d} \alpha_{12}=\mathrm{R}\left(0, \sigma_{12}\right)$	
	Helium	$\mathrm{d} \alpha_{12}=\mathrm{R}\left(0, \sigma_{12}\right)$	
		Then, $\mathrm{d} \alpha_{12}=\sum_{\mathrm{i}=1}^{4} \mathrm{~d} \alpha_{12_{\mathrm{i}}}$	
	Sustainer Jettisoned Residuals		
	Trapped Fuel	$\mathrm{d} \alpha_{13}=\mathrm{R}\left(0, \sigma_{13}\right)$	
	Trapped Oxidizer	$\mathrm{d} \alpha_{13_{2}}=R\left(0, \sigma_{13}\right)$	
	Lube Oil	$\mathrm{d} \alpha_{13}=\mathrm{R}\left(0, \sigma_{13_{3}}\right)$	
	Helium	$\mathrm{d} \alpha_{13_{4}}=\mathrm{R}\left(0, \sigma_{13_{4}}\right)$	
	Nitrogen	$\mathrm{d} \alpha_{13_{5}}=\mathrm{R}\left(0, \sigma_{13_{5}}\right)$	
	GO_{2} in Tank (Flight)	$\mathrm{d} \alpha_{13_{6}}=\mathrm{R}\left(0, \sigma_{13_{6}}\right)$	
	GO_{2} in Tank (Ground)	$\mathrm{d} \alpha_{13}=\mathrm{R} \cdot\left(\mathrm{MGO}_{7} \mathrm{TG}^{\dagger}\right)$	
	PU Bias	$\mathrm{d} \alpha_{13}{ }_{8}=\mathrm{R}\left(\mathrm{SPUB}^{\ddagger}, \sigma_{13_{8}}\right)$	
		Then,	
		$\mathrm{d} \alpha_{13}=\sum_{i=1}^{8} \mathrm{~d} \alpha_{13_{i}}$	
${ }^{+}$Mean GO_{2} in Tank - Ground			

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

$\mathrm{d} \alpha$	PARAMETERS	EQUATIONS	$\begin{array}{\|c} \text { METHOD } \\ \text { NO. } \end{array}$
$\mathrm{d} \alpha_{14}$	Centaur Jettisoned Residuals		6
	Trapped LO_{2}	$\mathrm{d} \alpha_{14}{ }_{1}=\mathrm{R}\left(0, \sigma_{14}{ }_{1}\right)$	
	Trapped LH_{2}	$\mathrm{d} \alpha_{14}=\mathrm{R}\left(0, \sigma_{14}\right)$	
	GO_{2} in Tank	$\mathrm{d} \alpha_{14}=\mathrm{R}\left(0, \sigma_{14}{ }_{3}\right)$	
	GH_{2} in Tank	$\mathrm{d} \alpha_{14}=\mathrm{R}\left(0, \sigma_{14}\right)$	
	$\mathrm{H}_{2} \mathrm{O} 2$ Weight	$\mathrm{d} \alpha_{14_{5}}=\mathrm{R}\left(0, \sigma_{14_{5}}\right)$	
	Helium	$\mathrm{d} \alpha_{14_{6}}=\mathrm{R}\left(0, \sigma_{14}\right)$	
	Ice and Frost	$\mathrm{d} \alpha_{14_{7}}=\mathrm{R}\left(0, \sigma_{14_{7}}\right)$	
	PU	Without end effect (MPURES $=1$)	
		$\begin{aligned} & \mathrm{d} \alpha_{14}=\mathrm{R}\left(0, \sigma_{14_{8}}\right) \\ & \mathrm{d} \alpha_{14_{8}}<-\mathrm{MU} 14(8) ? \end{aligned}$	
		$\text { Yes } \left\lvert\, \begin{aligned} & \text { RES }=1 \\ & \mathrm{~d} \alpha_{14_{8}}=-\operatorname{PUSET} *\left(\mathrm{~d} \alpha_{14}+\operatorname{MU} 14(8)\right) \end{aligned}\right.$	
		No $\mid \operatorname{RES}=0$	
		With end effect (MPURES $=2$)	
		$\mathrm{d} \alpha_{14}=\mathrm{R}\left(0, \sigma_{14_{8}}\right)$	
		$\mathrm{R} 2=\mathrm{R}(0, \mathrm{R} 2) *$ HBPDIS	
		$\mathrm{HBP}=\mathrm{HBP}+\mathrm{R} 2-\mathrm{TLH} 2+\mathrm{d} \alpha_{14_{2}}$	
		$\mathrm{R} 3=\mathrm{R}(0, \mathrm{R} 3) *$ LBPDIS	

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

d α	PARAMETERS	METHOD EQUATIONS NO.

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

$\mathrm{d} \alpha$	PARAMETER	EQUATIONS	$\begin{gathered} \text { METHOD } \\ \text { NO. } \end{gathered}$
$\mathrm{d} \alpha_{22}$	Sustainer Thrust	$\mathrm{d} \alpha_{22}=\mathrm{TS}+\mathrm{R}\left(0, \sigma_{22}\right)$	9
$\mathrm{d} \alpha_{23}$	Sustainer ISP	$\mathrm{d} \alpha_{23}=\mathrm{IS}+\mathrm{R}\left(0, \sigma_{23}\right)$	10
$\mathrm{d} \alpha_{24}$	Vernier Mixture Ratio	$\mathrm{d} \alpha_{24}=\mathrm{R}\left(0, \sigma_{24}\right)$	1
$\mathrm{d} \alpha_{25}$	Vernier Thrust	$\mathrm{d} \alpha_{25}=\mathrm{TV}+\mathrm{R}\left(0, \sigma_{25}\right)$	11
$\mathrm{d} \alpha_{26}$	Vernier ISP	$\mathrm{d} \alpha_{26}=\operatorname{IV}+\mathrm{R}\left(0, \sigma_{26}\right)$	12
		CENTAUR PROPULSION	
$\mathrm{d} \alpha_{27}$	Thrust	$\begin{aligned} & \text { LOXRES }=\text { MU14 (1) }+\mathrm{d} \alpha_{14}+\operatorname{MU} 14(3) \\ & \quad+\mathrm{d} \alpha_{14} \end{aligned}$	13
		LOXVNT $=$ MU16 (1) $+\mathrm{d} \alpha_{16}$	
		RES $=0$?	
		$\text { No } \mid \text { LOXRES }=\text { LOXRES }+\mathrm{d} \alpha_{14}$	
		$\begin{aligned} & \text { LOXAVL }=\text { MU11 }(1)+\mathrm{d} \alpha_{11}-\text { LOXRES } \\ & \quad \text { - LOXVNT } \end{aligned}$	
		$\begin{align*} & \text { LH2RES }=\operatorname{MU} 14(2)+\mathrm{d} \alpha_{14_{2}}+\operatorname{MU} 14 \tag{4}\\ & \quad+\mathrm{d} \alpha_{14} \end{align*}$	
		$\mathrm{LH} 2 \mathrm{VNT}=\mathrm{MU} 15(1)+\mathrm{d} \alpha_{15}$	
		$\operatorname{RES}=1$?	
		$\text { No } \mid \text { LH2RES }=\text { LH2RES }+\mathrm{d} \alpha_{14}$	
		$\begin{aligned} & \text { LH2AVL }=\text { MU } 10(1)+\mathrm{d} \alpha_{10}-\text { LH2RES } \\ & \quad-\mathrm{LH} 2 \mathrm{VNT} \end{aligned}$	

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

Table 1. Parameter-Contribution Equations and Method-of-Computation Numbers (Contd)

$\mathrm{d} \alpha$	PARAMETER	EQUATIONS	METHOD NO.
	Allowed Tolerance	$d \alpha_{36}=R\left(0, \sigma_{36}\right)$ Then, $\mathrm{d} \alpha_{36}=\sum_{\mathrm{i}=1}^{4} \mathrm{~d} \alpha_{36_{i}}$	
$\mathrm{d} \alpha_{37}$	Pitch Program Voltage-Time Integral Gryo Torquing Rate-VoltageTime Average Inverter Voltage Inverter Frequency	$\begin{aligned} & \mathrm{d} \alpha_{37_{1}}=\mathrm{R}\left(0, \sigma_{37_{1}}\right) \\ & \mathrm{d} \alpha_{37_{2}}=\mathrm{R}\left(0, \sigma_{37_{2}}\right) \\ & \mathrm{d} \alpha_{37_{3}}=\mathrm{R}\left(0, \sigma_{37_{3}}\right) \\ & \mathrm{d} \alpha_{37_{4}}=\mathrm{R}\left(0, \sigma_{37_{4}}\right) \end{aligned}$ Then, $\mathrm{d} \alpha_{37}=\sum_{\mathrm{i}=1}^{4} \mathrm{~d} \alpha_{37_{i}}$	2
$\mathrm{d} \alpha_{38}$	Drag Force	$\mathrm{d} \alpha_{38}=\mathrm{R}\left(0, \sigma_{38}\right)$	1
$\mathrm{d} \alpha_{39}$	Wind Profile	$\mathrm{d} \alpha_{39}=\mathrm{R}(0,1)$	5

Figure 1. Generalized Computer Flow Chart

maln program start

FOR LL_1

$\underset{\underline{F O R} L L=2}{ }$

Figure 2. Detailed Flow Chart (Sheet 2 of 4)

FOR LL $=3$

FOR LL $=4$

FOR LL $=5$

FOR LL $=6$

FOR LL 9

FOR LL $=10$

FOR LL 11

FOR LI. 12

GD \mid C-BTD65-176

2. Detailed Flow Chart (Sheet 3 of 4)

Figure 2. Detailed Flow Chart (Sheet 4 of 4)

Figure 4. Subroutine NORAD
3.1 INPUT VARIABLES. The input variables, Figure 5, are defined in the following paragraph. (The names of the variables are compatable with the nomenclature used in Report GD/C-BTD65-143 where possible.)

Figure 5. Sample Input
The names of the input variables are defined as they appear in Figure 5.

TITLE - One hundred and twenty columns of alphanumeric information. The first 60 columns are used as a title on the plot of the frequency function. The last 60 are used as a title on the plot of the cumulative function.

NPARA - (Integer). The number of parameters.
NITER - (Integer). The number of iterations in the Monte-Carlo simulation (NITER $<32,468$).

PLOT - (Integer). If set nonzero, plots will be generated.
PRIMER - A 12 -digit octal number. The first value used by the randomnumber generator. The first digit must be either a $0,1,2$, or 3 . The last must be a 5 . On the data card it must be preceded by a dollar sign (\$).
(The remaining input items in Record Block No. 1 are all floating point numbers.)
P - Partial derivatives (4 - NPARA values). These are entered as a block of numbers with four values per parameter. The index for the first independent variable for a particular parameter is

$$
N=[(\text { Parameter No. }-1) \bullet 4]+1
$$

MU1 through MU39 - The mean of each parameter. Each parameter can be composed of 2 to 10 subgroups. If one wished to assign a mean of 50 to the eighth subgroup of parameter 10 , the input would be $\operatorname{MU10(8)}=50$,.

NFTV - Nominal booster fuel-tank volume.
NOTV - Nominal booster-oxidizer-tank volume.
PUSET - Nominal propellant-utilization mixture-ratio setting.
NLO2V - Nominal LO_{2} volume.
NLO2D - Nominal LO_{2} density.
NLH2V - Nominal LH_{2} volume.

NLH2D - Nominal LH 2 density.
NBFD - Nominal booster fuel density.
NBOD - Nominal booster oxidizer density.

P39 - Partial derivative for the 39th parameter. Three independent variables, then the three dependent variables.

Record Block 2

SG1 through SG39 - The standard deviations for each parameter. Each parameter can have up to 10 subgroups.
$\underline{\text { SG61I }}=$ Standard deviation for $\mathrm{d}_{6}{ }_{1_{\mathbf{i}}}$.
SG67I - Standard deviation for $\mathrm{d}_{6}{ }_{7_{\mathbf{i}}}$.
SG81I - Standard deviation for $\mathrm{d} \alpha_{8_{1}}$.
SG87I - Standard deviation for $\mathrm{d}_{87_{\mathbf{i}}}$.
SUBIAS - Amount of PU bias below LH_{2} probe.
VLVLAG - Average time required for the PU system mixture control valve to travel from its position to minimum or maximum stops.

MAXSET - Maximum PU system mixture-ratio valve setting.
MINSET - Minimum PU system mixture-ratio valve setting.
HBP - Hydrogen below the probe.
HBPDIS - Dispersion associated with HBP.
LBP $-\mathrm{LO}_{2}$ below the probe.
LBPDIS - Dispersion associated with LBP.
MPURES - (Integer). Method of computing PU residuals. $=1$ without end effect; $=2$ with end effect.
3.2 OUTPUT. Normal output consists of the mean and standard deviations for each case.

For debugging purposes, if NITER is set equal to 100 , the NPARA values of the $\mathrm{d} \alpha_{i}$'s are printed for each iteration, and the sum of

$$
\sum_{i=1}^{\text {NPARA }} \mathrm{d} \alpha_{i} \frac{\partial \mathrm{f}}{\partial \alpha_{i}}
$$

for each iteration is also printed.
If the option to generate plots is exercised the distributions compiled by each case considered will be plotted.
3.3 VARIABLES USED WITHIN THE PROGRAM. A brief explanation is given here of each name used in each routine and its type of dimensioning if appropriate (e.g., a doubly subscripted array would be represented as $\operatorname{ABC}(N, N)$).

Input variables are not included in this section (see Section 3.1).
Main Program Start
AFD - Average fuel density (Atlas).
ANS - The random number supplied to START from subroutine RANDOM.
AOD - Average oxidizer density (Atlas).
CPUB - MU14(8).
CMS - -(CPUB-SUBIAS).
DAL61 -SUBSUM * NFTV.
DAL81 - SUM81* NOTV.
DELP - $\sum_{i=1}^{\text {NITER }}\left(\sum_{k=1}^{\text {NPARA }} \frac{\partial f}{\partial \alpha_{k}} d \alpha_{k}\right)_{i}$

DELPSQ - DELP ${ }^{2}$.
DEND - Fuel density dispersion (Centaur).
DENDO $-\mathrm{LO}_{2}$ density dispersion (Centaur).
DIE1 - Dispersion and ISP for Engine No. 1.
DIE2 - Dispersion and ISP for Engine No. 2.

DIFF(I) - d α_{i}, NPARA values, NITER sets.
DPFREQ(N) - Frequency of occurance of values of SUM over NITER
iterations. This array is for plotting.

DTE1 - Thrust dispersion for Engine No. 1.
DTE2 - Thrust dispersion for Engine No. 2.
DUMSD (M,N) - A dummy array equivalenced to input standard deviation array for generating STDEV array.

FM - Final value computed for the mean after NITER iterations (output).
FNIT - Floating point value for NITER.
IB - Booster ISP.
INDEX - Integer value for SUM used as an index to compile DPFREQ.
IS - Sustainer ISP.
ISPNOM - Thrust/flow rate.

IV - Vernier ISP.
I - Index in iteration loop.
J - Index of NPARA loop.
\underline{K} - Index used for small loops within the program.
\underline{L} - Index for standard deviations.

LH2AVL - Liquid hydrogen available.

LH2VNT - Liquid hydrogen vented.
LH2RES - Liquid hydrogen residual.
LL - Value set in BLOCK DATA to determine which of the 14 methods a particular function uses.

LOXRES - LOX residuals.

LOXVNT - LOX vented.

MR - Mixture ratio.
\underline{N} - Index controlling the number of subfunctions for each of the NPARA functions.

NLOOP - Number of subfunctions in each function. NLOOP $=\operatorname{NGP}(J)$.

PEE - Table look-up value for partial derivatives. PEE = f (DIFF).
RES - Set nonzero if d $\alpha_{14_{8}}<\mu_{14}{ }_{8}{ }^{\circ}$
$\underline{\operatorname{STDEV}(N)}$ - A packed array of the input standard deviations.
SIGMA - Final standard deviation (output).
$\underline{\text { SUM }}-\sum_{k=1}^{\text {NPARA }} \frac{\partial f}{\partial \alpha_{k}} d \alpha_{k}$.
SUBSUM $-\sum_{i=1}^{2}{ }^{2} \alpha_{6}{ }_{1_{i}}$.

SUM81 - $\sum_{i=1}^{2} d \alpha_{8_{1}}$.

SVDIF - Array of d α for Function No. 14.

R2 - The random number associated with HBPDIS.

R3 - The random number associated with LBPDIS.
R4 - The random number associated with LH_{2} probe uncovery.
THNOM - Nominal thrust.
TB - Booster thrust.
TS - Sustainer thrust.
TV - Vernier thrust.
W1DOT - Flow rate for Engine No. 1.
W2DOT - Flow rate for Engine No. 2.
MRBAR - Mixture ratio associated with LO_{2} probe uncovery.
MRDBAR - Mixture ratio associated with LH_{2} probe uncovery.

Subroutine BLOCK DATA

NGP - NPARA values giving the number of subfunctions within each function.
NCALC - The method of computing each function.
TICEN - A table of nine values used in computing THNOM and ISPNOM.
TABLE - Five hundred normally-distributed random numbers.

Subroutine FQPLOT

CUM95X - X array for plot of cumulative function from 0.95 to 1.0.
CUM95Y - Y array for plot of cumulative function from 0.95 to 1.0 .
DPSUM $-\sum_{i=1}^{600}$ DPFREQ $_{i}$.

FX - X value for frequency and cumulative plots.

DPFREQ - Y array for frequency plot.
SUMPLT - Y value for cumulative plot.
$\underline{Y B}$ - Minimum value of Y for grid.
YT - Maximum value of Y for grid.
XL - Minimum value of X for grid.

XR - Maximum value of X for grid.
3.4 SAMPLE CASE. An evaluation of the Flight Performance Reserve for the Atlas/ Centaur vehicle is presented as the sample case. The case selected has a PU accuracy of ± 25 pounds of LH_{2} and a PU bias of 9 pounds of LH_{2}.

The input for each parameter and the program name of each input quantity, where applicable, are shown in Table 2.

The output is presented in Figures 6 through 9, which include plotted data. Figure 6 is the actual machine output. The input variables are listed on the output exactly as they appear on the input cards. The computed values that appear on the machine output are the mean and standard deviations of the vehicle's performance.

Table 2. Parameter-Controlled Input

	PROGRAM NAME (SG = Standard Deviation MU = Mean)	INPUT PARANTITY
Booster	SG1	10.0
Sustainer and Interstage	SG2(1)	16.6666
Adapter	SG2(1)	16.3333
Centaur	SG3	20.0
Nose Fairing	SG4	25.0
Insulation Panels	SG5	16.0
Fuel Weight (Booster)		
Fuel Density	SG61I(1)	0.15
	SG61I(2)	0.104

Table 2. Parameter-Controlled Input (Contd)

PARAMETER	PROGRAM NAME (SG = Standard Deviation $\mathrm{MU}=\mathrm{Mean})$	$\begin{gathered} \text { INPUT } \\ \text { QUANTITY } \end{gathered}$
Probe Location	SG6(2)	0.4
Surface Level Variation	SG6(3)	0.6
Tank Pressure	SG6 (4)	0.08666
Tank Volume	SG6(5)	0.76666
Tanking Level	SG6(6)	0.66666
Ground Expended	SG67I(1)	16.6666
	$\begin{aligned} & \text { SG67I(2) } \\ & \text { SG671(3) } \end{aligned}$	$\begin{array}{r} 28.6666 \\ 6.6666 \end{array}$
Sustainer Thrust Decay	SG6(8)	
Fuel Density	SG7	0.017
Oxidizer Weight (Booster)		
Oxidizer Density	SG81I(1)	0.05
	SG81I(2)	0.13666
Sensor Location	SG8(2)	0.5333
Surface Level Variation	SG8(3)	0.58333
Tank Pressure	SG8(4)	0.4
Tank Volume	SG8(5)	2.0833
Tanking Level	SG8(6)	1.4666
Ground Expended	SG87I(1)	66.6666
	SG87I(2)	50.0
	SG87I(3)	65.3333
	SG87I(4)	10.0
Thrust Decay	SG8(8)	3.0
Oxidizer Density	SG9	0.14
Fuel Weight (Centaur)		
Sensor Sensitivity	SG10(1)	1.0
	MU10	5056.0
Sensor Location	SG10(2)	1.0

Table 2. Parameter-Controlled Input (Contd)

PARAMETER	PROGRAM NAME (SG = Standard Deviation MU = Mean)	$\begin{gathered} \text { INPUT } \\ \text { QUANTITY } \end{gathered}$
Surface Variation	SG10(3)	1.0
Density	SG10(4)	0.01
Tank Volume	SG10(5)	4.2167
Tank Ullage	SG10(6)	1.095
Oxidizer Weight (Centaur)		
Sensor Sensitivity	$\begin{aligned} & \text { SG11(1) } \\ & \text { MU11 } \end{aligned}$	$\begin{array}{r} 11.0 \\ 25035.0 \end{array}$
Sensor Location	SG11(2)	11.0
Surface Variations	SG11(3)	5.0
Density	SG11(4)	0.003333
Tank Volume	SG11(5)	1.25333
Tank Ullage	SG11(6)	0.81666
Booster Jettisoned Residuals		
Trapped Fuel	SG12(1)	17.0
Trapped Oxidizer	SG12(2)	23.0
Lube Oil	SG12(3)	6.0
Helium	SG12(4)	4.0
Sustainer Jettisoned Residuals		
Trapped Fuel	SG13(1)	20.0
Trapped Oxidizer	SG13(2)	52.0
Lube Oil	SG13(3)	2.0
Helium	SG13(4)	2.0
Nitrogen	SG13(5)	1.0
GO_{2} in Tank (Flight)	SG13(6)	2.0
GO_{2} in Tank (Ground)	SG13(7)	44.0
PU Bias	SG13(8)	41.6666

Table 2. Parameter-Controlled Input (Contd)

PARAMETER	PROGRAM NAME (SG = Standard Deviation MU = Mean	$\begin{gathered} \text { INPUT } \\ \text { QUANTITY } \end{gathered}$
Centaur Jettisoned Residuals		
Trapped LO_{2}	SG14(1)	1.0
Trapped LH_{2}	SG14(2)	1.0
GO_{2} in Tank	SG14(3)	12.0
GH_{2} in Tank	SG14(4)	5.0
$\mathrm{H}_{2} \mathrm{O}_{2}$ Weight	SG14(5)	5.0
Helium	SG14(6)	0.0
Ice and Frost	SG14(7)	4.0
PU	SG14(8)	8.3333
	MU 14(8)	9.0
Centaur Venting		
Ground and Inflight LH_{2}	SG15	4.8
Ground and Inflight LO_{2}	SG16	9.0
Booster Propulsion		
Booster Mixture Ratio	SG18	0.008
Booster Thrust	SG19	1000.0
Booster ISP	SG20	0.8
Sustainer Thrust	SG22	285.0
Sustainer ISP	SG23	0.9
Centaur Propulsion		
Thrust	SG27	70.6666
	MU27	15011.86
Specific Impulse (ISP)	SG28	1.6666
	MU28	423.26777
Atmosphere	SG35	1.0
Launch Azimuth		
Null Voltage	SG36(1)	0.07

Table 2. Parameter-Controlled Input (Contd)

PARAMETER	PROGRAM NAME (SG = Standard Deviation $\mathrm{MU}=\mathrm{Mean}$	$\begin{gathered} \text { INPUT } \\ \text { QUANTITY } \end{gathered}$
Roll-Gyro Torquing Rate	SG36(2)	0.42
Time Uncertainties	SG36(3)	0.04
Allowed Tolerance	SG36(4)	0.51
Pitch Program		
Voltage-Time Integral	SG37(1)	0.33
Gyro-Torquing-Rate		
Inverter Voltage	SG37(3)	1.17
Inverter Frequency	SG37(4)	0.75
Drag Force	SG38	1.7
Wind Profile	SG39	1.0
NOTE: The remaining input variables have been defined in Section 3.1. Their names remain constant in both internal and external references to the program.		

GD \mid C－BTD65－176

```
TITLE=1\angleOH FPK FREQUENCY FUNCTIUN * LUOUU ITERATIONS * 9-30-6S
```



```
NPAKA=34,
NITER=LCCOO,
PLUI = 0.
P(1)=
-3C.C
-69.0, 30.0., -9.0, %
    -54.0, 得,
    48.0,
    -847.l.
    -.55.
    -1264.0.
    -4035,
    -313.0, 470.0, 
```



```
-239.0. <70.0. .l099, -100
```



```
p(69)= -.023, -3006.0, 3600.0, - 077.0043, -.004, -11<1.3739,
\mu(8) = -2.4, -8.5.0, 2.4, -18.8711, -18.095,
```



```
P(1vb)= -424.0, 424.0, -.0099, -.0114,
P(131)= -3.54, 3.54, -3.0, -25.9483, -25.4252,
P(13%) 3.0, -3.0, 7.37U9. 6.3237,
    -2.0. 2.0, -4.4804, 3.6507,
    -5.c, S.v, 年 %.vi.2546, -5.6079,
P34= -3.U, U.w, 3.0, -.5767, -11.4989.0978.3436,
MUlu=5u50.,
Mull= 25u3%.
MU14181=9.0.,
MU27=15011.06,
PUSET=5.U,
    VFTV=15UL., VUTV=25LG., NLH\angleO=4.22, NLH2V= 1254.17, NLO20= 58.7%,
        NLU\angleV = 309.1, NBFD=50.. NBOD=68.78.
    MUZA = 432.26777%
MPUKES =1,
SGI= 10., SG3=20., SG4=で., SG5=16.,
            SGL =10.666,16.333%.
    SG6=0.U,.4,.0,.088666,.76606,.66606,.0,2.0,
SG7=.017, SGH= 0.0,.5333,.583333,.4,2.0833,1.4606,0.0,3.0,
SGY=.14, SGIU = 1., 1.,1.,.G1, 4.2167, 1.095
SG11= 11., 11., 5.,.UU3333, 1.25333', .H1660, SG12= i7., 23..6.,4..,
SGis=2u.. 52.., 2.. 2., 1.. 2., 44.0,41.06600.N.0,
SG14= 1., 1., i2., 5., 5.. 0., 4.. 6.33333,
SGlj=4.8, Sulo=9.0.
```



```
SGL7=70.00066, SGC8=1.00666, SG33=1.C,
SG30 = .07. .42,.04,.51, S637 = .33,.03, 1.17, .75,
56011= .15,.1u4,
5681I =.05,.13660,
SG67I =10.6006,28.0606,0.6660.
SG87I = 06.6666,5u.0.05.3333.10.0,
SG3d = 1.7. SG34=1.*
```

Figure 6．Machine Output

Figure 7. FPR Frequency Function

Figure 8. FPR Probability Function

Figure 9. FPR Probability Function Segment
3.5 INPUT CARD AND DECK FORMAT. This program uses a systems routine "input" that greatly simplifies the handling of the input data. There is no rigid format for the data. No specific order is required in entering variables within each block. Card columns 1 to 72 are used, and more than one variable can appear on a single data card.

Because of the amount of data used by this program, it is separated into two blocks or records (these records are defined in the explanation of the input variables, Section 3.1).
3.5.1 Data Card Setup Rules. It is not necessary that variable names on the data cards appear in the same order as those in the calling sequence. The routine will search the list for the name and its core location.

Individual data items are separated by commas.

An equal sign or a comma separates the name of a variable and its first data item.
A comma separates the end of a data set and the next variable name.

A data input record is terminated by an asterisk (*).
It is not necessary to input a data set for each name in the calling sequence.
Elements of an array may be skipped by writing consecutive commas (i.e., no data between the commas) or by singly subscripting the array name. Double subscripting is illegal. Thus, if it is desired to input data into a three-element vector V , one could write

$$
V=2.79,1.32
$$

No data would be entered into $\mathrm{V}(2)$. What was originally there remains there. Alternatively, it could be written

$$
V(1)=2.79, V(3)=1.32
$$

3.5.2 Additional Feature. The card image is normally written on the system output unit prior to being processed by the routine. If an N is punched in column 73,
the card will not be listed. If column 73 contains a C, the card is treated as a comment only; i.e., it is not scanned for data. If the card contains CE in columns 73 74 , the card will be treated as a comment card and a page will be ejected.

3.5.3 Multiple Cases. When running multiple cases, only those variables that

 change need be entered. All others remain unchanged.3.5.4 Restrictions. The following errors will be detected by the subroutine, and a diagnostic message and the card in error will be printed on the system output unit:
a. Name on data card exceeds six characters.
b. Name on data card does not appear in the calling sequence.
c. Punctuation errors.
d. Octal field errors.
e. Decimal or octal data out of range.
3.5.5 Input Deck Setup. This program has a main deck START and three subroutines FQPLOT, BLOCK and RANDOM (see Figure 10). If the input value for PLOT is nonzero, a \$SETUP card must be placed in front of the deck to ensure the mounting of a tape for generating S-C 4020 data. Its form is

Column 1: \$SETUP
Column 8: LB4
Column 16: DISK, PLOT, SAVE
Also, a save-tape tag must accompany the run request (three for each case).

						Location	
$\begin{aligned} & \text { PROGRAMME } \\ & \text { Hayward } \end{aligned}$			$\begin{gathered} \mathrm{RUN} \\ \mathrm{XXX} \end{gathered}$	$\begin{aligned} & \text { UNIT } \\ & \text { LB4 } \end{aligned}$	$\begin{array}{\|c\|c} \hline \mathrm{EXT} \\ \hline 2191 & 7 \\ \hline \end{array}$	$7 \text { 7-29-65 }$	
SPECIAL Instructions						secret	conf.
						BCD	BIN
			\| WAP ${ }^{\text {W }}$			200, 55	8 800
	Pros.	J08				$\begin{array}{c\|c} \hline \text { IP COPIES } \\ \hline & 1 \\ \hline \end{array}$	frames
$\chi^{\text {c Copr.fLO }}$			$\square{ }^{\text {THERMOFAX }}$		\square micromate		

The data card (placed between the last card of the program and the first input card) can be either 7-8 in column 1 or \$DATA in column 1.
3.5.6 Multiple Case Capability. As many cases as desired can be run on one pass through the computer. From the second case on, only the data that have changed from the previous run need be included in the input (see Figure 5).

Since there are two calls to the

Figure 10. Input Deck Setup input routine, each case must have two asterisks. Even if there is no change in one of the sections, a card with an asterisk must be included.
3.5.7 Time and Line Estimate. The time required is proportional to the number of iterations. To be safe, allow five minutes for 10,000 iterations. If two or more cases are stacked together on one run, allow five minutes for the first case and four minutes for each additional case.

For normal output, allow $300+50 *$ (number of cases) for the line estimate. If IRITE $\neq 0$, raise this estimate by 10,000 .

APPENDIX

PROGRAM LISTING

 COMMON /AD/NGP, NCALC.P39.TICEN.TABLE
 DIMENSION NGP (300), NCALC (300), P39(6). TICFN(9).TABLE (500)
 COMMON OELP, DELPSQ,FM,SIGMA,FNIT, NITER
 COMMON NM, MR, THNOM, ISPNOM,FUTKVL,LXTKVL, PUSET,DPFREQ(6OO)
 COMMON STDEV (300), MEAN (300), P(600), DIFF (300), SVDIF (10).TITLE (20)
 DIMENSION DUMSD(10.200)
 EQUIVALENCE (DUMSD(1).SG1(1))
 COMMON MU1 (10), MU2 (10), MU3 (10), MU4 (10), MU5 (10), MU6(10), MU7(10).
 1MUB(10), MUO(10), MU1O(10), MU11 (10), MU12(10), MU13(10), MU14(10).
 2MU15(10), MU16(10), MU17(10), MU18(10), MU10(10), MU20(10), MU21(10).
 3MU22 (10), MU23 (10), MU24 (10).MU25(10), M1J26(10), MU27 (10), MU28 (10).
 4MU29 (10), MU30 (10), MU31 (10), MU32 (10), MU33(10), MU34 (10), MU35 (10).
 5MU36(10), MU37(10), MU28(10).MU39(10)
 COMMON GG1(10).SG?(10).SG3(10).GG4(10). GGの(10).SGG(10).SG7(10).
 1SG8(10), SGQ(10).SG10(10).SG11(10).SG12(10), SG13(10).SG14(10).
 2SG1F(10).SG1G(10).SG17(10),SG18(10),SG10(10).SG20(10),SG21(10),
 3SG2?(10),SG23(10). SG24(10).SG25(10).SG26(10).SG27(10).
 4SG28(10),SG29(10),SG30(10),SG31(10),SG32(10),SG33(10),SG34(10).
 SSG35(10), SG36(10), SG37(10).SG38(10).SG39(10).SG61!(10).SG671(10).
 5SG871(10).SG811(10)
 REAL MAXSET, MINSET,LSPOIS,LBP,MR, MRBAR, MRDBAR.
 * IR,IS,IV.LOXRFS,LOXAVL,LHZAVL,LH2RES,ISPNOM,MU1,MU2,MU3.
 1MU4, MU5, MU6, MU7, MU9, MU9, MU1O, MU11, MU12, MU13,MU14,MU15,MU16,MU17,
 2MU18.MU19, MU20.MU21, MU22, MU23,MU24, MU25, MU26, MU27, MU28, MU29, MU30,
 3MU31, MU32, MU33, MU35, MU36, MU37, MU38, MU39.
 4 NOTV, LXTKVL, LOXCO, LOXVNT, LHZVNT, LHZVOL, NLHZV, LH2DEN, NLH2D,LOZVOL.
 5NLO2V.NBOD. NFUDEN. NBFD.NFTV.LOZDEN
 INTEGER RES,PLOT,EXTRAP
 EXTRAD=?
 IRITE=0
 PLOT=0
 D061=1.200
 7 P(1)=n•ก
 nosJ=1.10
 - Dumsne
 6 CONTINUF
 2 O WRITF(6.21)
? 1 FORMAT(IHI)
CALL INPUT(5HTITLE,TITLE,5HNPARA,NPARA,5HNITER,NITER
1. 6HPRIMER, PRIMER, IHP, P. 3HMU1, MU1, 3HMU2, MU2, 3HMU3, MU3, 3HMU4, MU4,
23HMU5.MU5, 3HMU6, MU5. 3HMU7, MU7. ЗHMUB, MU8, 3HMU9. MU9.4HMUIO.MU1O.
34HMU11.MU11.4HMU12.MU12.4HMU13.MU13.4HMU14.MU14.4HMU15.MU15.
44HMU16,MU16.4HPLOT.PLOT,4HMU17,MU17,4HMU18, MU18,4HMU19, MU19.
54MMUZO, MU20. 6HEXTRAP.EXTRAP,4HMU21, MUZ1,4HMU22.MU22.4HMU23.MU23.
64HMU24.MU24.4HMU25.MU25.4HMU26.MU26.4HMU27.MU27.4HMU28.MU2B.
74HMU29, MU29.4HMU70.MU30.4HMU31.MU31.4HMU32.MU32.4HMU33.MU33.
84HMU34, MU34.4HMU3ヵ, MU75,4HMU36.MU36.4HMU37. MU37.4HMU38, MU38.
94HMU39, MU39.4HNFTV,NFTV, $4 H N O T V, N O T V, ~ क H P U S E T . P U S E T, ~$
*SHNLHZV, NLH2V. 5HNLH2D, NLH2D. 5HNLOZV,NLOZV. 5HNLO2D,NLOZD.
*4HNBFN, NAFN, WHITITF,IRITF, 3HP39.P30.4HNBOD, NBOD)
PALL INPUT
1 (3HSG1,SG1,3HSG2.SG2.3HSG4,SG4,3HSG5,SG5.3HSG6.SG6, 3HSG7.SG7.
$13 H S G 8,5 G 8,3 H S G 9, S G 9,4 H S G 1 O, S G 10,4 H S G 11, S G 11,4 H S G 12, S G 12$.
24HSG13.SG13.4HSG14,SG14,4HSG15.SG15.4HSGIG.SG16.4HSGI7.SG17.

34HSG18．SG18．4HSG19．SG19．4HSG20．SG20．4HSG21．SG21．4HSG22．SG22． 44HSG23．SG23．4HSG24．SG24．4HSG25．SG25．4HSG26．SG26．4HSG27．SG27． 54HSG28．SG28．4HSG29．SG29．4HSG30．SG30．4HSG31．SG31．4HSG32．SG32． 64HSG33．SG33．4HSG34．SG34，4HSG35．SG35．4HSG36．SG36．4HSG37．SG37． 74HSG38．SG38．4HSG39．SG39．3HSG3．SG3．5HSG6II．SG6II．5HSG67I．SG67I． 8SHSG871．CGR71．5HCG8II．SG811．
＊AHGLH2，GLH2，GHSUBIAS，SUBIAS，GHMPURES，MPURES．GHVLVLAG，VLVLAG， ＊GHMAXSET，MAXSET，GHMINSET，MINSET，GHHPPDIS．HPPDIS，6HLBPDIS．LEPDIS．
* 3HLEP. LBP. 4 HTLO2, TLO2, 4HGLO2, GLO2, 3HHBP, HBP,
*4HTLH?.TLH2)
$L=1$
IF（PLOT•EQ．O）GOTO24

23 DPFREG（1）＝0．0
34 กOTOI＝1．NPARA
$J=N G P$（1）
IF（J．FO．OIGOTO．30
กロ？ムK＝1．J
ятחЕV（L）＝numen（K．I）
29 L＝L＋1
30 CONTINUF
RFS＝0
DFLP＝n．
DFLPSQ＝0．0
DO20OOOI＝1，NITER
$L=1$
DALS1＝0：
ПAL91＝0．
SUMA1＝n。 n
SUACUM＝O．
DO1900 JJ＝1．NPARA
DiFF（J）＝0•n
LL＝NCALC（J）
GOTO（100．200．300．400．500．600．700．800．900．1000．1100．1200．1300．1400）
1•LL
100 CALL NORAD（PRIMER，ANS）

DIFF（J）＝ANS＊STOEV（L）
110 GOTO18999
PON NLOOP＝NMP（J）
IF（NLOOP．EQ．OIGOTO19000
DO225N＝1．NLOOD
1F（N．EQ．7．AND．J．EG．6IGOTO2O8
1F（N．EQ．1•AND．J．EQ．6）GOTO212
IF（N．EO．1．AND．J．EQ．8IGOTOZ17
IF（N．EO．7．AND．J．EO．8）GOTO230
IF（N．EQ．4．AND．J．EQ．1O）GOTO240
IF（N．EQ．4．AND．J．EQ．11）GOTO250
205 CALL NORAD（PRIMER．ANS）
IF（SQRT（ANS＊＊2）．GT．3．0）GOTO205
DIFF（J）＝OIFF（J）＋ANS＊STDEV（L）
207 IF（N．EQ．6．AND．J．EQ．6）GOTO26O
IF（N•EG．6．AND•J•EQ•B）GOTOP65
COTOP？O


```
216 CALL NORAD(PRIMER.ANS)
    IF(SQRT(ANS**2).GT.3.0)GOTO216
215 SUASUM=GURSUM+ANS*SGG1I(K)
    CALB1=SURSUM*NFTV
    AFD=NAFN+SUASUM
    rOTOアクロ
3OR NO?1OK=1.3
?\capQ CALL NORAD(PRIMER, ANS)
    IF(SQRT(ANS**2).GT.3.O)GOTO2OO
210 DIFF(J)=DIFF(J)+ANS*SG671(K)
    GOT\cap2?O
ファn กก?ワエK=1.4
232 CALL NORAD(PRIMFR,ANS)
    IF(SORT(ANS**2).GT.3.0)GOTO232
235 DIFF(J)=DIFF(J)+ANS*SG87I(K)
    GOTOP?O
P17 00219K=1.?
218 CALL NORAO(PRIMER,ANS)
    IF(SQRT(ANS**?).GT.7.O)GOTOR1R
219 SUMA1=SUME1+ANS*SGA1I(K)
    ПALAI=SUMB!*NOTV
    AON=NOOn+SUMA1
    GOT\cap??n
P4\cap CALL NORAO(PRIMFD,ANS)
    IF(SORT(ANS**2).GT.3.0)GOTO240
    DEND=ANS*STDEV(L)*NLH2D
    DIFF(J)=DIFF(J)+DFND*NLH2V
241 CALL NORAD(PRIMFR,ANG)
    IF(SQRT(ANS**2).GT.3.0)GOTO241
    DIFF(J)=DIFF(J)+ANS*STDEV(L+1)*(NLH2D+DEND)
242 CALL NORAO(PRIMER.ANS)
    IF(GQRT (ANG**?).GT.3.O)GOTO24?
    \capIFF(J)=nIFF(J)-(\DeltaNG*CTMEV(L+?)-1.865)*(NLH2N+DEND)
24 L L + %
    GOTOIOnOn
250 CALL NORAD(PRIMFR,ANS)
    IF(SORT(ANS**2).GT.3.0)GOTO250
    DENDO=ANS*STDEV(L)*NLO2D
    DIFF(J)=DIFF(J) + DENDO*NLO2V
251 CALL NORAD(PRIMER.ANS)
    IF(SORT(ANS**2).GT.3.0)GOTO251
    DIFF(J)=DIFF(J)+(ANS*STDEV(L+1))*(NLO2D+DENDO)
?@? CALL NORAD(DRIMER,ANS)
    IF(SORT(ANG**P).GT.?.O)GOTOZa?
    DIFF(J)=DIFF(J)-(ANS*STDEV(L+2)-1.77)*(NLOZD+DENDO)
    GOTOP4?
O60 \capIFF(J)=nIFF(J)*AFN+חALG1
    ヶのTロアつの
265 DIFF(J)=DIFF(J)*AON+DALB1
220 L=L+1
225 CONTINUF
    GOTOIQOOn
3n\cap IF(J.FQ.9)GOTO=1O
    NIFF(J)= SURSUM
    GOTO18OOO
```

```
31\cap ПIFF(J)=SUM81
    GOTO1R000
4NO MIFF(J)=n•者
    GOTO1R999
500 CALL NORAD(PRIMER,ANS)
    1F(SORT(ANS**2).GT.3.0IGOTO500
    DIFF(J)=ANS
    GOTO18990
60n NLOOP=NGD(J)
    OO625N=1,NLOOD
AOT CALL NORAI(PRIMER,ANS)
    IF(SORT(ANS**2).GT.3.OIGOTOKO3
    SVDIF(N)=ANS*STDFV(L)
GAE IF(N.NF.R)GOTOB?O
    IF(MPURFS.EQ.2IGOTO630
    IF(SVOIF(N).GE.-MUI4(8)IGOTO620
    RES=1
    SVDIF(N) =-PUSET*(SVDIF(N)+MU14(8))-MU14(8)
620 OIFF(J)=\IFF(J)+SVDIF(N)
A>A L=L+1
69E CONTINUF
    GOTOIGOnO
a\n GNTN17n!
631 CALL NORAD(PRIMFR.R2)
    IF(ARS(Rつ).GT.7.O)GOTO631
    Rつ=R?*HBDOIC
    HRP=HMO+R2-TLH2+SVOIF(2)
635 CALL NORAD(PRIMER,R3)
    IF(ABS(RQ).GT.3.0)GOTO635
    R3=R3#LBPDIS
    LGP=LBP+R3-TLO2+SVDIF(1)
    CPUP=MU14(R)
    CMS=-(CDIIR-SUMIAS)
    IF(SVDIF(N).LT.CMS)GOTO6BO
    MRBAR=((MR*(W1DOT+W2DOT)*VLVLAG*(PUSET-MAXSET))/(2.0*LBP*(MR+1•0))
    1M+MAXSET
    SVDIF(N)=SV\capIF(N)+CPUB-SUBIAS
    IF(SVNIF(N).GT-0.0IGOTO637
    SVDIF(N)=HBP-(LBP/MRBAR)
    IF(SVDIF(N).GE.O.O)GO TO 636
    SVOIF(N)=-SVDIF(N)*MRRAR
636 DIFF(J)=DIFF(J)+SVOIF(N)
    GOTOI8000
637 SVDIF(N)=SVDIF(N)-CPUR+HBP-(LBP/MRBAR)
    IF(SVDIF(N).GE.O.O)GO TO 636
    SVDIF(N)=-SVDIF(N)*MRRAR
    GOTOE36
GRO CALL NORAN(PRIMER.R4)
    IF(ABS(R4).GT.3.0)GOT0680
    R4=R4 #PUSET*STDEV(L)
    MRDBAR=(((WIDOT+W2OOT)*VLVLAG*(PUSET-MINSFT))/((MR+1.O)*2•O*HBP))+
    IMINSFT
        SVDIF(N)=R4-(CPUB-SUBIAS) #PUSET
        IF(SVDIF(N).GT.O.O)GOTO681
        SVDIF(N) =LBP-MRDAAR*HRP
```

IFISVDIF（N）－GE•O•O）GO TO 636
CVDIF $(N)=-S V D I F(N) / M R O B A R$
GOTOGTB
GR1 SVПIF（N）＝SVIIF（N）＋LRP－MRDRAR＊HRP
IF（SVDIF（N）•GE•O•O）GO TO 6.36
SVDIF（N）＝－SVDIF（N）／MRDRAR
GOTO636
7ñ TR＝n・の
705 CALL NORAD（PRIMER，ANS）
IF（SORT（ANS＊＊2）．GT．3．0）GOTO705
DIFF（J）＝TR＋ANS＊STRFV（L）
GOTO18900
Bnの 1R＝O•
Bns CALL NORAD（PRIMER，ANS）
IF（SORT（ANS＊＊？）．GT．Z．O）GOTORAS
DIFF（J）＝1日＋ANS＊STOEV（L）
GOTO18900
OnO Tく＝
905 CALL NORAD（PRIMFR．ANS）
IF（SQRT（ANS＊＊2）．GT•3．0）GOT0905
DIFF（J）＝TS＋ANS＊STDFV（L）
GOTO18909
1nのn Is＝n・の
1 On＝CALL NORAC（PRIMER．ANS）
IF（SQRT（ANS＊＊2）．GT．3．0）GOTO1005
DIFF $(J)=1 S+A N G * S T \cap F V(L)$
GOTO18090
11nn TV＝n。n
1105 CALL NORAD（PRIMER，ANS）
IF（SORT（ANS＊＊2）．GT．3．0）GOTO1105
DIFF（J）＝TV＋ANS＊STDFV（L）
GOTO1R900
1 Onn lV＝n．n
1205 CALL NORAD（PRIMER，ANS）
IF（SQRT（ANS＊＊2）．GT．3．0）GOTO1205
DIFF（J）＝IV＋ANS＊STDFV（L）
GOTO18909
13n解 IF MPURFQ。FQ．？）GOTO1370
1301 LOXRES＝MU14（1）＋SVDIF（1）＋MU14（3）＋SVDIF（3）
LOXVNT＝MU1G（1）＋DIFF（16）
IF（RFS．FO．OIGOTO1，10
LOXRFS＝LOXRFS＋GVDIF（B）
1310 LOXAVL＝MU11（1）＋DIFF（11）－LOXRES－LOXVNT
LH2RES＝MUI4（2）＋SVDIF（2）＋MUI4（4）＋SVIIF（4）
LH2VNT＝MU15（1）＋DIFF（15）
IFPRESOEQ．IIGOTO1315
LH2RES＝LH2PES＋CVOIF（8）
1315 LH2AVL＝MU1O（1）＋DIFF（10）－LH2RES－LH2VNT
MQ＝LOXAVL／LH2AVL
C
CALL TABL（MR．THNOM，TICEN（1），TICEN（4），1，1，1．3．IFBAD）
GOTO（1318．1317）．IFRAN
1317 THNOM＝0．0
1318 CALL TABL（MR，ISPNOM．TICEN（1），TICEN（7），1，1，1，3，IFBAD）
GOTO（1320．1319）．IFBAD

```
1319 1 SPNOM=n.0
1320 CALL NORAO(PRIMFR,ANS)
    IF(CQRT(ANS**?).GT.3.0)GOTO1.3?O
    OTE1 = ANG*CTREV (L)
13>5 CALL NORAO(PRIMFR, ANS)
    IF(CORT(ANC**)).GT.3.N)GOTOI2?5
    \capTF?=ANC*CT\capFV(L)
1220 CALL NORAO(DRIMFR,ANS)
    IF(SQRT(ANS**2).GT.3.0)GOTO1330
    \capIF1=ANS*SG29(1)
1335 CALL NORAD(PRIMER.ANS)
    IF(SQRT(ANS**2).GT.3.0)GOTO1335
    DIF2=ANS*SG2R(1)
    W1DOT = (THNOM+DTE1)/(1SPNOM+DIE1)
    W>DOT = (THNOM+DTE2)/(1SPNOM+DIE2)
    IF(MDURFC.FQ.2IGOTO631
1370 DIFF(J)=חTF1+OTE2+?•O*(THNOM-MU27(1))
    GOTO1QQOO
```



```
    GOTO19909
19000 L=L+1
19\capOn CONTINUF
    DIFF(13)=DIFF(13)+23.0
    IF(NITFR.NE.100)GOTO19001
    WRITF(6. PON24)(\capIFF(N),N=1,NPARA)
10\capn! SuM=0.0
    O\cap 19\cap5nK=1,NPARA
    IF(K.FQ.39)GOTO19070
    IF(K.NF.1\capIGOTO19\cap1O
    \capIFF(K)=ח\FF(K)+חIFF(K+1)
1O\cap!\cap M=A*(K-1)+1
    IF(D(M).FQ.O.O)ROTO19050
    IF(П1FF(K).GT.O.O)COTO1OO1G
    PFF=P(M+?)
    GOTO1OOマ?
10\cap15 PFF=P(M+2)
    GOTO19033
19030 CALL TABL(DIFF(39),PEE,P39(1),P39(4),1,1,1,3.IFBAD)
    GOTO(19033.19031). IFBAD
1O\cap?1 DFF=0.n
10\cap27 SUM=SUM+\capIFF(K)*DFF
1004? IF(K.NF.1OIGOTO19050
    K=K+1
10NGO CONTINUF
    IF(NITFR.NF.10n)ENTO19075
    WRITF(6. ?)\cap?4)दリM
19075 DFLP=NELP+SUM
    DFLPSQ=DFLPSQ+CUM**2
    IF(PLOT.FQ.O)GOTO?NOOO
    1NDEX=SUM+300.0
    IF(INOFX.LE.O)GOTOPNONO
    IF(INNFX.GT.GOOIGOTOZOOOO
    ODFRFQ(INNFX)=NPFRFQ(INNFX)+1\bulletn
zOnOn CONT INUF
    FNIT=NITFR
```

```
    FM=NELD/FNIT
    SIGMA=SORT((DELPSQ/FNIT)-FM**2)
    WRITE(6,20020)NPARA,NITER
20020 FORMATIIHO,22x, 23HNUMEER OF PARAMETERS = .14.22X,23HNUMBER OF ITER
    |ATIONS = I6)
20024 FORMAT(8(4X.1PEI2.0))
    WRITE(6,20026)FM,SIGMA
20026 FORMAT (1HO.20x,14HMEAN OF FPR =.1PE12.5.30x.21HSTANDARD DEVIATION
    1 = 1PE1?.F!
        IF(PLOT.EO.O)GOTO2OO28
        CALL FOPLOT
วn\capOR GOTOつO
    ENO
```


\#ldfte Rlock Fulist.ref

BLOCK NATA
COMMON /BD/NGP,NCALC.P39.TICEN.TABLE
DIMFNSION NGP(300), NCALC(300), P39(6), TICEN(9), TABLE(500)
DATA (NCALC(I). $1=1.39$)
1
 P14,4,4,4,4,4,4, 5, ?, ?, 1, 5/

 $21.1 /$
DATA (TICEN(I). $1=1.9) / 4 \cdot 4.5 \cdot 0.5 \cdot 6.14735 \cdot 0.15010 \cdot 0.15320 \cdot 0.436 \cdot 3$. 1432.27.4ア7.?/

DATA(TABLE(I), $1=1.60$)
*/-3.090229.-2.7477777. -2.5758266. -2.4572651.-2.3656207.-2.2903708.
$*-2.2262151,-2.1700940,-2.1200716,-2.0748537 .-2.0335239,-1.9953936$.

* $-1.9599627 .-1.9268407 .-1.8956994,-1.8662989,-1.8384273,-1.8119147$.
*-1.7866170.-1.7624146.-1.7391994.-1.7168899.-1.6953981.-1.6746651.
* - 1. 6546292.-1.6353339.-1.6164394.-1.6081967.-1.5804675.-1.5632271.
- $-1.5464361,-1.530 \cap 669,-1.5141078,-1.4985160 .-1.4832834,-1.4683869$.
* $-1.4538088,-1.4395321,-1.4255449,-1.4118333,-1,3983796,-1.3851714$.
* -1 • 3722072, -1. 3594636.-1.3469419,-1.3346227.-1.3225085.-1.3105801.
*-1. 2988388, -1. 2872739.-1.2758758, -1. 2646415.-1.2535680.-1.2426446.
*-1.2318667.-1.2212294.-1.2107284.-1.2003592.-1.1901178.-1.1799999/
DATA(TABLE (1), I =61.120)
*/-1.170002.-1.16ก1197.-1.1503498.-1.1406886.-1.1311328.-1.1216791.
*-1.1123243.-1.1030653.-1.0939992.-1.08482.31.-1.0758388.-1.0669403.
* $-1.0581242,-1.0493850 .-1.0407331,-1 \cdot 0321567,-1.0236534,-1.0152221$,
$*-1.0068668,-0.9985784,-0.9903568,-0.9822053,-0.9741153,-0.9660900$.
* $-0.9581269 .-0.9502211,-0.9423789 .-0.9345899 .-0.9268609 .-0.9191840$.

$*-0.8668965,-0.8596179,-0.8523882 \cdot-0.8451987,-0.8380569,-0.8309547$.
* $-0.8238952,-0.8168769 .-0.8098959 .-0.8029585 .-0.7960566 .-0.7891928$,
* $-0.7823674,-0.7755758,-0.7688219,-0.7621027,-0.7554156 .-0.7487647$.
*-0.7421463.-0.7355583.-0.7290041.-0.7224812.-0.7159873.-0.7095236/
DATA(TABLE(1).I=1 $1 \cdot 180$)
*/-. $7030915,-0.6966868 \cdot-0.6903093 \cdot-0.6839620 .-0.6776420 .-0.6713478$.
* $-0.6650790,-0.6588 .391,-0.6526240 .-0.6464330 .-0.6402654,-0.63412464$
$*-0.6280055,-0.6219124 .-0.6158399,-0.6097922,-0.6037646,-0.5977609$.
*-0.5917767. $-0.5858155 .-0.5798731 .-0.5739532 .-0.5680512 .-0.5621710$.
* $-0.5563084,-0.5504664,-0.5446419 .-0.5388366,-0.5330490 .-0.5272791$,
* $-0.5215273,-0.5157915,-0.5100742 .-0.5043721,-0.4986875 .-0.4930183$.

* $-0.4537629 .-0.448$ P122. $-0.4426767 .-0.4371540 .-0.4316443 .-0.4261486$.
* $-0.4206649,-0.4151942 .-0.4097361,-0.4042893,-0.3988555,-0.3934331$.
* - 0. $3880215,-0.3826226,-0.3772341,-0.3718560,-0.3664898,-0.3611335 /$

DATA(TARLE (1). I=181.240)
*/-. 3557871.-0.3504519,-0.3451260.-0.3398095, -0.3345035.-0.3292064.

* $-0.3239181,-0.3186398,-0.3133699,-0.3081081,-0.3028559,-0.2976116$.
* $-0.2923750,-0.2871470 .-0.2819268,-0.2767139,-0.2715086,-0.2663111$.

* $-0.2301185,-0.2249736,-0.2198346,-0.2147019,-0.2095746,-0.2044525$,
* $-0.1993361,-0.1942250,-0.1891187 .0 .1840171,-0.1789209,-0.1738291$.

$*-0.1383044,-0.1332447,-0.1281883,-0.1231354,-0.1180856,-0.1130387$.
*-0.1079945. - 0.1029535. - 0.0979149. - 0.0928787, -0.0878448. -0.0828134.
$*-0.0777840 .-0.0727564,-0.0677307,-0.0627069,-0.0576845,-0.0526636 /$ DATA(TABLE (1). $1=241 \cdot 300)$
, $/=0476440,-0.0426256,-0 \cdot 0376083,-0 \cdot 0325920.00 \cdot 0275764,-0 \cdot 0225616$,
*-0.0175473, - 0.0125334, -0.0075199.-.0025066.0025066..0075199.
* . 0125334..0175473..0225616. .0275764..0325920..0376083.
* 0.0426256. 0.0476440. 0.0526636. 0.0576845.0.0627069.0.0677307.
* 0.0727564. 0.0777840.0.0828134.0.0878448.0.0928787.0.0979149.
* 0.1029535 .0 .1079945 .0 .1130387 .0 .1180856 .0 .1231354 .0 .1281883.
* 0.1332447. 0.1383044. 0.1433676. 0.1484344, 0.1535053.0.1585800.
* $0.1636585,0.1687416,0.1738291 .0 .1789209 .0 .1840171 .0 .1891187$,
* 0.1942250. 0.1993.361. 0.2044525. 0.2095746. 0.2147019.0.2198346.
* $0.2249736 .0 .2301185 \cdot 0.2352692 \cdot 0.2404262 \cdot 0.2455899 \cdot 0.2507599 /$

DATA (TABLE (1), $1=301 \cdot 360$)
*/0.2559363. 0.2611203.0.2663111.0.2715086.0.2767139.0.2819268.

* 0.2871470 . 0.2923750 . 0.2976116 , 0.3028559 . 0.3081081. 0.3133699.
* $0.3186398,0.3239181 .0 .3292064,0.3345035,0.3398095,0.3451260$.
-0.3504519. 0.3557871. 0.3611335, 0.3664898, 0.3718560. 0.3772341.
* 0.3826226, 0.3880215. 0.3934331. 0.3988555.0.4042893.0.4097361.
* 0.4151942. 0.4206649. 0.4261486. 0.4316443.0.4371540.0.4426767.

H 0.4482122. 0.4537629. 0.4593264, 0.4649047.0.4704976, 0.4761043.
, 0.4817275. 0.4873648. 0.4930183. 0.4986875. 0.5043721.0.5100742.
\# $0.5157915 .0 .5215273,0.5272791 .0 .5330490$. 0.5388366 .0 .5446419.

* 0.5504664.0.5563n84.0.5621710.0.5680512.0.5739532.0.5798731/

DATA(TABLF(I).I=361.420)

* / 0. 5858155. 0.5917767. 0.5977609. 0.6037646. 0.6097922.0.6158399.
* 0.6219124 .0 .6280055 .0 .6341246 .
. 0.6588391 .0 .6650790 .0 .6713478 .
* $0.6966868,0.7030915,0.7095236$.
* 0.7355583. 0.7421463. 0.7487647.
- 0.7755758 . 0.7823674 , 0.7891928.
-

0.8168769 .0 .8238952 .0 .8309547 .

* 0.8596179 .0 .8668965 .0 .8742183.
* 0.9039929. 0.9115629 .0 .9191840 .
* 0.9502211 . 0.9581269 .0 .9660900 。

DATA(TARLE(1), $=4=1$ (480)

* / 0.9985784. 1.0068668. 1.0152221.
* 1.0493880. 1.0581242. 1.0669403.
* 1.1030653. 1.112.3243. 1.1216791.
* 1.1601197.1.1700019. 1.1799999.
* 1.2212294. 1.2318667. 1.2426446.
* 1.2872739. 1.2988388. 1.3105801, 1.3225085. 1.3346227. 1.3469419.
* 1.3594636. 1.3722072. 1.3851714. 1.3983796. 1.4118333. 1.4255449.
* 1.4395321. 1.4538088. 1.4683869, 1.4832834, 1.4985160. 1.5141038.
* 1.5300669. 1.5464361. 1.5632271. 1.5804675. 1.5981967. 1.6164394.
* 1.6352339. 1.6546282. 1.6746651. 1.6953981. 1.7168899.1.7391994/

DATA (TARLE (1).I=481.500)
*/1.7624146. 1.7866170. 1.8119147. 1.8384273. 1.8662989. 1.8956994.

* 1.9268407. 1.9599627. 1.9953936. 2.0335239. 2.0748537. 2.1200716. * 2.1700940. 2.2262151. 2.2903708. 2.3656207. 2.4572651. 2.5758266.
*2.74778
END

```
$IPFTC FOPLOT FULIST,RFF
    SUSROUTINE FQOLOT
    COMMON /AD/NGP,NCALC,P39.TICEN,TAPLE
    DIMFNSION NGP(300),NCALC(300),P39(6).TICEN(9).TABLE(500)
    COMMON NFLD, RFLDSO.FM.SIGMA.FNIT ,NITFR
    COMMON NM, AVMR,THNOM.I SPNOM,FUTKVL,LXTKVL,PUSET,DPFREQ(GOO)
    COMMON STDEV(300),MEAN(300).P(600),DIFF(300),SVDIF(10),TITLE(20)
    DIMFNSION CUMOFX(3\capO). CUM95Y(300)
    CALL CAMRAV(35)
    Ya=n•自
    VT=n.n
    DO50I=1.600
    4\cap IF(NPFRFO(I)|LT•YT)GOTOSO
    YT=nDFRFO(1)
    5n CONTINIJF
    YT= YT+YT**1
    XL=ータのn.
    XR=3O\cap.
    CALL nXNYV(1,XL,XR,DX,N,I,NX,15.O.IFRR)
    CALL nXOYV(Z.YR.YT.OY,M.J.NY:15.0.IFRR)
    CALL GRIDIV(1,XL,XR,YB,YT,DX,DY,N,M,-I,-J,NX,NY)
    n\cap75K=1.500
    IF(DPFRFQ(K).FQ.D.O)GOTO75
    FX=K-3nn
    CALL POINTV(FX, NPFREO(K),-O)
    75 CONTINUF
    CALL PRINTV(-33.33HFLIGHT PERFORMANCE RFSERVE ** LBS.380.20)
    CALL DRINTV(60.TITLE(1).277.0)
    C.ALL APRNTV(n,-14,-9,OHFREQUFNTY, ).568)
    Yロ=n.^
    YT=1•n
    CALL nXnYV(Z.Yの.YT.DY.M.J.NY.1S.O.IERR)
    CALL GRIDIV(1,XL,XR,YR,YT,DX,DY,N,M,-1,-J,NX,NY)
    KK=n
    DPSIJM=0:n
    nO1\capOK=1.60n
    DOSUM=חDSUM+DPFREQ(K)
    IF(NPSUM.FQ.O\bulletO)GOTO10O
    FX=K-900
    SUMPLT=DPSUM/FNIT
    IF(SUMPLT.LT..95)GOTORG
    IFISUMPLT.GE.1.0)GOTOB6
70 KK=KK+1
    ClMOAS (KK)=FX
    CUM95Y(KK)=SUMPLT
    86 CALL POINTV(FX,SUMPLT.O)
100 CONTINUE
    CALL PRINTV(-33.33HFLIGHT PERFORMANCE RESERVE ** LBS.380.20)
    CALL PRINTV(60,TITLE(11),272,0)
    CALL APRNTVIO,-14,-11,11HPQOBABILITY,0.4R?)
    CALL nXDYV(1., CUM95X(11,CUM95X(KK),DX,N,I,NX,15,0,1ERR)
    CALL nXOYV(2..95.1.0.DY.M.J.NY.15.0.1FRRI
    CALL GRIOIV(1,CUMO5X(1),CUM95X(KK)..95.1.0.DX.DY,N,M.-I,-J.NX.NY)
    CALL APLOTV(KK, CUMOFX , CUMOGY ,1,1.1.4`.IERR)
    CALL PRINTV(-33.33HFLIGHT PERFORMANCE RESERVE ** LBS.380.20)
```

CALL PRINTV(60.TITLE(11).272.0)
CALL APRNTV(O.-14.-11.11HPROBABILITY.0.582)
RETURN
END

[^0]: \dagger Mean Fuel Ullage Volume

