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Controllability of Nonlinear Systems*

Summary

This report outlines the method of Hermann for the determination
of the controllability of linear and nonlinear control systems. Hermann's
method yields an algebraic criterion for the controllability of linear
systems with time varying coefficients which supercedes Kalman's integral
form, since it does not require knowledge of the fundamental solution of

the homogeneous systen.,

.This research was supported by the National Aeronautics and Space
Administration, Ames Research Center, under Contract NAS-2-2351.



1. Complete Controllability of Linear Systems

In this section we shall review some of the mathematical conse-
quences of the concept of complete controllability. We take the approach

of Hermésl by considering a linear system of the form

X = er(t)ur (=1 coem3 =1 coo m) 1.1

which, by virtue of a linear transformation to be described later,

encompasses all linear systems. Let the nxn matrix M(to°t1) be defined by

t

1
Ma()d(to,tl) =f Ho( r(t)Hpr(t)dt 1.2

t
o

then we have the following theorem due to Hermes which in turn is a specisl

case of the theorem due to Kalmaneo

Theorem l.1

A necessary and sufficient condition for the linear system
(1.1) to be completely controllable at t s is that there
exists at t; >t such that M(tl,to) is nonsingular,
Proof.
The following proof is essentially that given by Hermesl° The
sufficiency of the theorem follows from the fact that if x(tl) is any

point in E® (Enclidean n space) attainable from x(to) in time t,, then

if we select

u (t) = r(t) 3 1.3

133 A



with € € E®, we obtain

X (tl) - xq(to) = Ho(r(t) H, (t)dt

;Sr

o

o
o</3 o,tl>§ 1.b
Since the matrix M(to,tl) is nonsingular we can solve equation (l.4)
for the constant vector & and hence by equation (1.3) determine the
control that achieves the desired transfer of the state vector x. The
necessity of the theorem follows from the fact that if M(to,tl) is
singular, then the linear system (1.1l) is not completely controllable.

If M(to,tl) is singular, then there exists a nontrivial vector C(to,tl)

such that

1
C“(to,tl)f Ho(r(t) Hpr(t)dt =0 1.5
t

Multiplying each equation (1.5) by Cﬁg(to’tl) and summing yields

t
1
Ce (t ,t )C (¢ t)j H (), (t)dat
o' 17X o 2 r r
£ ., AT P

£ (o]

1 [ 2
=f C“(to,tl)Ho(r(t)] dt = 0
t
[o]

so that

e

c:p((to.tl)ﬁo(r(t) o] 1.6



The dependence of the vector C(to,tl) on to and tl is immaterial since the
identity given by equation (1.6) holds in t for any t) and ¢ (t1 # to).
Therefore, we can conclude that if the matrix M(to,tl) is singular, then

there exists a constant vector C such that

M+

0 1.7

If the matrix M(to,tl) is singular and the linear system (1.1) is completely
controllable, then we can assume that there exists a control u(t) which
transfers the state vector from x(to) to x(tl) = C, so that
Y
C. = %o (t) +j Ha(_r(t)ur(t)dt
t
o

Since the initial state x(to) is arbitrary, let it be chosen so that

C x(to) = gx x6<(to) = O, Therefore we have

2 > !

c = cC>< = Cx xd(to) +/ cD< Ha(r(t)ur(t)dt =0
t
(o]

which contradicts the fact that C is a nontrivial vector, and completes the

proof.

For more general linear systems we have the following theorem due

to Kalman2u

Theorem 1.2

The linear system

x'o<(t) = Ao</8 (t)x/s (t) + Bo< r(t)ur(t) 1.8



is completely controllable at to’ if and only if the nxn

matrix

t
1
f Py Cort® Xr(t)¢/8,c(to,t)BTr(t)dt
A .
o

is nonsingular for some tl> to.

Here Cb(t.’F) denotes a fundamental solution of the homogenous system
xo<(t) = Ao(ﬂ(t)xﬂ(t).

Proof.

If we transform the linear system (1.8) by
x, (8) = O (t,t )yg (£ 1.9
X %p "R
and note that
d)o(p(t,to) @ﬁx(to’t) =5<><2§

where CS is theKronecker delta, then we obtain

Yo (8) = @o\p(to.t)Bp L(Bu (1) 1.10

which is equivalent to the system (1.1). By virtue of the transformation
(1.9) being nonsingular, it follows that the linear system (1.8) is com-
pletely controllable, if and only if, the linear system (1.10) is completely
controllable. Hence applying the results of Theorem 1.l tothe linear system

1.10 completes the proof.



If the matrices A(t) and B(t) associated with the linear system (3.8)
are constant matrices, then the test for controllability reduces to one
requiring that the rank of the mxmn matrix, expressed in. matrix notation
as [B,AB,AZB,..,An"lsl, be n.

This requirement was first used by Pontryagin

3

as an assumption in
the study of minimal time control systems, and by LaSallel* to describe

"proper" control systems.

When the matrices A and B are time dependent the test for controllability

as given by Theorem 1.2 is not a useful test since it depends on the

knowledge of the fundamental solution. However, there does exist an alge-
braic test for the controllability of the linear system (1.8) which does

not require knowledge of the fundamental solution. This method which is

due to I‘Ierma,nn5 applies immediately to nonlinear systems. 3Before we

elucidate this method, we shall review some of the elementary properties

of homogeneous and nonhomogeneous systems of partial differential equations

pertinent to Hermann's approach.

2, Systems of Nonhomogereous Linear Partial Differential Equations

Consider the system of partial differential equations

S X
70 Nog 1 (xyaeevaXys Fpoeeesyy)

=\+/a<i(x;y) (= 1leeen; i = 1oeeT) 2.1

where the \V s are analytic functions of x and y in some domain DCE" x E.



These equations (2.1) are equivalent to the system of pfaffian equations

dx_ = \Vdi(x;y)dyi \ 2.2

The conditions of integrability for the system of partial differential

equations (2.1) are

ACE dgVo(i V., - oV . CAPS W 2.3
X - . x i *
S ¥y y §37 oy Sxy ¥
If these equations are satisfied identically, the system (2.1) is termed
completely integrable, and the solution can be constructed in terms of a

power series about the point (x,Y); namely,

ox o X
=% & -3 1 | e -3 -
x = %+ ayi) (v, - 7,) + dyidyj) (7, =50, =F)) o
o o

where

oX
— A _ \V .o
{6yi)o" i(x’y)

and the higher derivatives are constructed accordingly. We shall denote

this solution by
x0<=ﬁo<(x;y-y) 2.4

These ‘equations may be regarded as defining a group of transformations of
the vector x € E" with the components of the (y-¥) vector regarded as r
parameters. This interpretation, as will be developed later, has a useful

application in the representation of completely controllable systems.



If the sjstem of equations (2.3) is not satisfied, then the partial
differential equations (2.1) are not completely integrable. In this case
the equations (2.3) would define certain relationships between the x's and
the y's, which have to be satisfied together with the system of partial
differential equations (2.1l). Such systems are called mixed systems, which
we shall not pursue any further since our primary interest is concerned with
completely integrable systems. Since the functions @ defined by (2.4) are
such that

io( = ﬁa( (x;0)
it follows that the Jacobian of the transformation is different from zero

in a neighborhood of X so that the equations may be solved for x to yield

§o<=. £ (xiy =) 2.5
We note that each component of f is an integral of the system (2.1) and
consequently any scalar function of f is also an integral., Since the sub-
stitution for x by @ in f yields the identity in X and y-Y, it follows

that the components of f are solutions of the system of r linear homogeneous

differential equations

of

6}'1 &X \Vo(i(x,y) = 0 2.6

This sytem is often referred to as the system associated with (2.1).

A standard result6 concerning these systems, which we shall state without

proof, is:



Theorem 2.1
Given a completely integrable system (2.1) and the associated
system (2.6), then if n independent solutions of the
associated system (2.6) are equated to arbitrary constants,
they define implicitly a solution of (2.1), and conversely
a solutioh of (2.1) determines n independent solutions'of

the associated system (2.6).

Another important concept regarding the integrals (2.5) is whether
the parameters are essential. The parameters Yo explicit in f(x;y) are
defined to be essential if it is not possible to detérmine (r-1) scalar

functions of y, denoted by A(y), such that

X,y

ﬁK (xl.....xn;yl,...,yr) FE((xl,...,xn;Al(y) cee Ar_l(y) ) 2.7

If the parameters yp are not essential, then the transformation (2.5)

can be represented with no loss of generality in terms of (r-1) parameters
by (2.7), and identical arguments apply to the new parameters for them to
be essential. One test6 for the determination of essential parameters is

the following.

Theorem 2.2

A necessary and sufficient condition that the r parameters
be essential is that the functions fo((x;y) do not satisfy

an equation of the form



10

/\p(y) -g—f: (x:y) =0 2.8

(p=1..01)

One consequence of this result for r < n is that the rank of the

Jacobian {é%%} be r.

3., OSystems of Linear Homogeneous Partial Differential Equations

Consider the set of linear operators X on f describing a system of

partial differential equations

X (x) of (x) =0 (a=1l,..0,p5; 1 = 1,...,N; p<N) 3.1

"a al

From the definition of the operator X we have

- ) of
XaX.bf = Aai(x) axi Abj(x) S ] (x)
OA . . 32,
= 1y (0 52 0 SL (0 + 4, Gon () 577,
and hence it follows that
- aAbl aAai(X) O £(x)
(xaxb - xbxa)f = Aaj(x) axJ (x) - Ab (x) axj 5%,

3.2

The operator defined by

(x_ X )f = (XX - XX)f

is called the Poisson operator, or the commutator of the operators Xaf and’

be. Some other properties of the Poisson operator are:



(Xa,Xb)f = - (Xb,Xh)f

and the Jacobi identity
( (xa.xb),xc)f + ( (xb.xc).xa)f + ( (xc,xa),xb)f =0

Consider the system of homogereous linear partial differential
equations defined by (3.1) for which the rank of the matrix A is p for all
x € D; thét is, the equations (3.1l) are independent. It is immediately
evident, by virtue of the independence of the equations (3.1l), that if
p = N then the only solution possible is a trivial one, namely f = constant.
It is possible for a nontrivial solution to exist if p <<N. From equation

(3.2) it follows that any solution of equation (3.1) also satisfies
(Xabxb)f =0 (a’b = lgo.o’p) , 303
If there exist functions Bfabc such that
(Xa.Xb)f = Xabc ch (a,b,¢ = Lye0e,p) 3.4

then the Poisson operator does not yield any new partial differential
equations, so that the system (3.1l) is called a complete system of order p.
On the other hand, if there are some commutators that are not expressible

in the form (3.4), then these commutators equated to zero represent addi-
tional independent partial differential equations which must be satisfied,
and accordingly are adjoined to the system (3.1). This process is continued

until we obtain either a set N of independent equations, in which case only

11



a trivial solution is possible, or we obtain finally a set s(s< N) of
independent equations. In this case the system (3.1) is a complete system

of order s, which we shall denote by

Xaf = Aai(x) gi' (x) = 0 (a=l eee S i = l se e N; S<N) 305

1

Since the rank of the matrix A is s, we may express the system (3.5) in

Jacobian form

a(x) =0 (a=l,...,s;/3=s+l,...N) 3.6

Applying the Poisson operator to these equations we obtain

e 2 Ly 2V )
Xa é'xx axa b axx aScb @xﬂ

(a,b=l...s;/6,b’= 8+1 ..o N) 3.7

=0

In these equations, the derivatives -g—i— (a=1 ... s) do not appear, so
a

that the system (3.7) represents a new set of independent equations which

contradicts the assumption that the system (3.5) is a complete system of

order s. Therefore, in accordance with the completeness assumption we

must have

g ey My Ma 2%,
¥a e, TSk, T Tyn Sk, TSN,

Comparing these equations with (2.3), we observe that the system of

nonhomogeneous partial differential equations defined by

12



a@

ax
é—;ﬁ:\}/ﬁa(x) (a=1 ... s;ﬁ: 8+1 eos N) 3.8
a .

are completely integrable. In fact the system (3.6) is the system

associated with the system (3.8). From Theorem 2.1 we have immediately:

Corollary 3%.1

A complete system of s homogereous linear partial differential
equations of the first order in N(>s) variables admits

exactly (N -s) independent solutions.

L4, 1Integrability Conditions for a Single Pfaffian

The purpose of this section is to review a special result for a

single pfaffian, which has a useful application for those control systems

that give rise to a single pfaffian; or the form of the integrating factors

7

can be anticipated when dealing with a pfaffian system. This result

is contained in the following:

Theorem 4,1

A necessary and sufficient condition for the pfaffian

Ao<(x)dxo< =0 (X=1l...n) to be integrable is that

il »

XecurlX=0

holds for every three vector X whose components are Ao( R

A ,5 and Ax , and the curl is evaluated for the corres-

ponding coordinates xa< N x/s and xX .

13



Proof,

The pfaffian A (x)dxo(= O is integrable if and only if there exists

a nontrivial integrating factor /A(x) and a scalar function V(x) such that

AV(x) x

Sh A0 a0 b1

Forming the cross derivative of V and under the assumption of certain

continuity properties, we obtain

O dux) oA LX) 6u<x> oA
s r ey - By A RO =5 - A () + i) 5{-2—(— ()
Rearranging terms yields
DA SA
) () - -,é‘-(—x— Ay (0 =0 | =F G0 - —F (x)-l b2

Performing this process for the combinations A/g s A Y and Ab/, Ao{ yields

(x) (x)
__/ZS_X__ Ab/( ) - Q&-(.E_ A/B( ) —/'((X) [6C‘:Fx _ aAaKx J 4.3
g ¢ /2

and

A, (x) AL ()
DU 0 - ) Ax(x) =/,«<x> [a y - Oh ] bk

axx X axd axd 5"(),

Multiplying equation (4.2) by AZ( » equation (4.3) by A+ and equation

(4.4) by Aﬂ and summing yields

Ahy OhA, dh, A
e (32 5[5 S 3 32|

Since the integrating factor is nontrivial, it may be neglected. This

fnx

0 b,s

expression must hold for each distinct combination A,;(' A/S and A ¥ for

1k



the pfaffian to be integrable. If we define the three vector X with
components Ao( ’ AIB, and Ab” then the integrability condition (4.5)

may be expressed in the succinct form

X

X * curl X 0

which completes the proof.

Let \Vr (r=1 ..o (n-1) ) be a maximal set of vectors orthogonal

to A, that is

[T}

\Vro((X)Ao((X) o] L.6

Then by virtue of equation (4.l) we can associate with the pfaffian the

system of linear honogeneous equations

W e QY@ -
r fo) XX
Geometrically speaking, if the pfaffian is integrable, the vector A
determines a normal direction and the vectors \Vr determine tangent

directions at each point of the hypersurface V(x) = constant.

The integrability conditions for the pfaffian can now be couched

in terms of completeness of the system of partial differential equations

(4.7).

15



Theorem 4.2
If the pfaffian A0<(x)dxo(= O is integrable, then the
system of (n-1) partial differential equations

oV
Ve ® 5= ©

is a complete system of order (n-1).
Proof.
Applying the Poisson operator to the pt and the rt equations

yields

qj W/ <9W/ oV
pY axb/ ry axx axd

N4

Since V must satisfy this equation, then it must be some linear
combination of the partial differential equations (4.7), otherwise V
would not exist and hence by (4.1) the pfaffian would not be integrable.

Therefore, it follows that there exist functions @ such that

OV OV, x
Yoy ==, ¥ 7)‘::?5

Y
By virtue of equations (4.6) these conditions can be expressed as
V é_wr.zs_, a_\EEQS.
pY O xb, ry éBxb,
(p’r=leoo(n-l):d.x=l oee n)

¢£W£o<

(1L

A 0 4,9

(=4

Since equation (4.6) is an identity in x, then differentiating it with

respect to Xy and using this result to simplify (4.9), gives

16



(ﬂ{px,qﬂnx'-\H;x H§%>£§£i;= 0

or
oA oA
A_“ZXI_
Wp \Vro( ox,  ox, | 0
X ¥ A

Defining the skew-symmetric matrix w by

IA A
A
YO T b0

then the above result assumes the simple form

- b1

w =0
This result proved for p and r distinct, also holds when p=r by
virtue of the skew-symmetry of the matrix w. Therefore, since the (n-1)

independent vectors \VPX are orthogonal to the vector \Vro(wd,)’ by

(4.11), it follows that

\Vro( wo(x = fr AX h .12

where f is an (n-1) component vector of functions which have to be

determined. Multiplying equation (4.12) by Ab, and summing determines the

components of the vector f as

£ - \Vro(wO(XAb’
r AZ

where A2 denotes the scalar (or inner) product of the vector A. Sub-

stituting for f in equation (4.12) yields

w A
AT T -

17



Once again we apply an orthogonality argument to this result and deduce that

VT A
wo(b’-_-_—AZ AX=QXAd

where Q is an n component vector function which has to be determined.

However, since w is skew-symmetric, it is easy to verify that
Cy =T

and hence

y wo(TATA -w::AZ.A
A¥ 22 ¥ 2 R

For three distinct indices of, /B , and ¥ we have

wTAT WTAT
Aa(wﬂ5=_£:2—Ao( AX-_%F——Aa( A/g

PRV Ak U X i
A

S 1

w A w A
MA A -—M—IA A
Jo 12 y &

A w =
¥ XBT 2 T
Summing these three equations gives
A way+ Apw, , + A w,,=0
KLY B AT T <A
which, on recalling the definition of w (4.,9), is the integrability condition
for the pfaffian. Therefore, if the system of (n-1) linear partial differen-

tial equations (4.7) is a complete system, then the pfaffian (4.1) is

integrable and conversely, which completes the proof.

18



5. Controllability Criterion for Control Systems with
Linear Control Vectors

Consider the nonlinear control system with the control vector appearing

linearly, defined by
X = Ao((t;x) + Bo( r(t:x) u S.1

(0(= l... ny r = l... msn>

We shall assume that the rank of the matrix B is m, so that there will

exist a maximal set of (n-~m) vectors qu orthogonal to B, namely

t,x
Voo (65%) B, (£5%) 27 0 5.2

(X=1 eeenyr=1 ¢«oomj R=1 ...(n-m))

By virtue of the vectors q/R we can associate with the system (5.1)

the pfaffian system
\VRo((t;x)dxo(- RG (t5x) A'G (t;x)dt = O 5.3

With regard to the pfaffian system (5.3), Hermesl adopted the following

definition of controllability.

Definition 1

The system (5.1) is completely controllable for all (t,x)€ D

if the associated pfaffian system (5.3) is not integrable

for all (t,x)€D.
The . usefulness of this definition of controllability is diminished by the
fact that there are some inherent difficulties in determining whether or

not the pfaffian system (5.3) is integrable. Only in special cases such



as when (5.3) defines a single pfaffiain or the form of the integrating
factors can be anticipated are the results of Theorem 4.1 applicable.

To demonstrate that the pfaffian system (5.3) is integrable,.we have
to determine the existence of (n-m) integrating factors /LlR(t:x) and a

scalar function V(t;x) such that

Loy X D V(tsx)
HMp(eso W (g% 2 S

and 5.4

tyx Sv(t:x)
/L(R(t,x)WRp(t,x) A}g(t,x) = - 5%
Conversely, the demonstration of the nonexistence of either the integrating
factors/L(R or the scalar function V, determines the nonintegrability of

pfaffian system (5.3). The linear partial differential equations associated

with the pfaffian system (5.3), that V has to satisfy, are by virtue of

(5.2)

QV(t;x) + QV (t3x) A (t5x) =0

ot Ix
= (5.5)

oV . .x) =
(X=1..0n3 =121 ,.om)
Because of the equivalence between the integrability conditions for a
pfaffian system and the completeness of the associated partial differential

equations, Definition 1 can be rephrased as follows. The control system

(5.1) is completely controllable for all (t,x)€ D, if the only possible



—ﬁff'.

solution. to the system of linear partial differential equations (5.5) is

a trivial one. This is essentially the approach adopted by Hermann5 in

his development of the algebraic controllability criterion for linear
systems with time varying coefficients. The utility of the method is
immediately obvious, since firstly, it circumvents the construction of

the orthogonal vectors WJR(t,x); and secondly, demonstrating the non-
existence of V is a straightforward ritual of applying the Poisson operator
to the system (5.5) until (n+ 1) independent equations have been resurrected.
The rephrased version of Definition 1 can be expressed in the following

palatable form which appeals to the physical intuition of controllability.

Definition 2

If for a given control system we can determine a scalar

function V(t g x) such that V(t g x) = constant is an integral

of the control system independent of the choice of the

controls, then the control system is not controllable., Con-

versely, if no such V(t;x) exists, apart from a trivial

solution, then the system is controllable.

It is easy to verify that this definition immediately generates the
system of partial differential equations (5.5). It should be noted that
this definition of controllability for nonlinear control systems does not
guarantee the existence of a control which steers. any initial state to
any final desired state in finite time. What it does guarantee is that

the dimension of the reachable set at any given time is equal to the

21



dimension of the state space., To clarify this point consider the following

example.

Example 5.1

Let the nonlinear control system be defined by

xl = x3

. 2

x2 = X3 5~6
x3 = u

Then the system of partial differential equations (5.5) associated with

the control system (5.6) is

a2V oV 2 OV
3t+x36 -9-x3 dx2'°
oV
<5x3 =0

Applying the Poisson operator successively to these equations yields

oV oV

axj. + 2)(3 axa =0
and

AV

ox, = ©

thus denying the existence of a nontrivial V. Therefore, in accordance
with Definition 2 the system (5.6) would be termed controllable, but it is
obvious that there does not exist a control which transfers the state from

the origin to any other state possessing negative values of Xse However,

22



the dimension of the reachable set at any time for the control system (5.6)

is 3.

Example S.2

Consider the control system

5.7

then the partial differential equations (5.5) are

oV vV i
-§E+xl axl +x2%{;=0
AV =AM

X + X, —

2 dxl 1 axa
Applying the Poisson operator to these equations does not yield any new
equations, so the system is complete of order 2. Therefore, a nontrivial

V exists, and is determined to be

- 2 2, =2t
v(t,x) = (xl - %, ) e

Therefore, all solutions of the control system (5.7) are confined to the

surface

(x 2 -X Z)e-Zt

1 > = constant

irrespective of the choice of the controls, and hence the system (5.7)

is not controllable.

25



6. Hermann's Criterion

Ye shall review the algebraic controllability criterion developed by
Hermann5 for linear systems with time varying coefficients. Let the

control system be defined by

io( = Adﬁ(t)xlg+ Bo(r(t)ur 6.1

(=1 .con3r=1 ... m)

The system of partial differential equations (5.5) associated with the

control system (6.1) is

oV oV

-g-€+-5;c;-<Ao(}8(t)x)8 =0 6.2
v

-gx—o(Bo(r(t) =0 6.3

Applying the Polsson operator to this system yields

Qv 4 _
:D_x;\ (Adx(t)BKr(t) - T Bo(r(t)) =0
If we define the operator

- 4
£H=A0(X(t) - 50(2{ T

then the additional equations generated by the Poisson operator can be

expressed by

or

5, §Byr = © 6.4

ok



Applying the Poisson operator to the systems (6.3) and (6.4) does not
generate any n;w partial differential equations, since the coefficients
r;( Y B ¥p 8re functions of time only. Therefore, using the systems (6.2)
with system (6.4) yields

oV
axd

‘:(ﬁ,;b’Bb’r=o 6.5
Hence, we have in general on applying the Poisson operator between system

(6.2) and each new system of partial differential equations generated

%Ep (o v oo v s s MyBgp =0 6.6

If from the sets of equations (6.3), (6.4), (6.5) and (6.6) we can
select n independent equations, then
%_ AV _,

oooo.oden

V. dv
%y *2
oV
and consequently 5t 0 by (6.2), and hence a nontrivial V(t;x) would

not exist. The condition that assures this result, when expressed in
matrix notation, is rank [B,rﬁB, o o ey r‘n-l B] is n for all t. This

is the criterion developed by Hermann and has a greater utility than
Kalman's integral criterion, since it does not depend on the knowledge of
the fundamental solution of the homogeneous system. 1t is readily apparent
that Hermann's criterion generalizes the result for constant coefficient

linear systems, because in this case rq= A.
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Equivalence Between Kalman's and

7

Hermann's Criterion

For simplicity, and with no loss of generality, we shall treat the

system (1.1)

x,=H

= B (8u(8)

since this form encompasses all linear systems.

(0(: 1 see N3 r=1 cee m)

7.1

For this system Hermann's

criterion for controllability demands that the rank of the nxnm matrix

d
[Ho(r(t), T Ho<r(t), e o o o

n-1
, 2 H (t)]

dtn-l A r

be n for all t; whereas Kalman's criterion requires that the determinant

of the nxn matrix

t

1
j- Hdr&)Hﬁr&%ﬁ

t
o

be nonsingular for some tl To

>t .

o
these criteria we shall first assume
satisfied, but Kalman®’s criterion is
the system (7.1). Therefore, if the

2
dHo(r(t) d HE(r(t)

(), dt ’ 2

I
Ar dat

is less than n, then there exists an

demonstrate the equivalence between
that Hermann's criterion is not
satisfied for the controllability of

rank of the matrix

& (b)
r

—_—Xr
at?~t

n vector @ such that

2
a" , (t) d°H , ()
Ar Xr
gK (t) chr(t), it . dt2 s o o o o
n-1
H t
d ;r( ) 6
dtn—-l =
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Expressing this result in component form yields
2 (t) Ho(r(t) =0

B (t) L H (8) =0

[ ] * [ ] [ ] [ ] (-] [ ] 7.2
@t (v)
Xr -
¢o((t) —-———-—dtn_l =0

By straightforward differentiation, equations (7.2) imply

¢d(t) Ho(r(t) =0

4 ¢o<(t)
—a@ o fxe =0
7.3
@t g (1)
(24

Since no row of the matrix H(t) can be zero, otherwise the corresponding
state component would not be controllable, then it follows that the

Wronskian of the vector @(t) must vanish. Therefore, it follows that the
components of the vector @ satisfy at most an (n-1) order linear differ-
ential equation. TFrom the theory of ordinary differential equation58 any
solution of an (n-1) order linear differential equation can be expressed

as a linear combination of (n-1) independent functions f(t) with constant

T



coefficients C. Therefore, each component of @ can be expressed in the

form

B (2) = £1(00C) (+ £5(0DC, 0 o v v o ey + £ 3 (8DC( 130

so that

¢0< (t)Hdr(t) = fl(t) [CIO(HO(r(t)] + fz(t)[CZO(Hd r(t)}q— .« o o +

f(n-l)(t) [C(n-l)O(HG(r(t)} =0

m@x (t) dfl(t) [ df,
THo(r(t) = =5 _Clder(t)] + 5T (t) [Cdedr(t):!+ o« o o +
as (t)
(n-1) F
dt _C(n-l)o(Ho(r(t)] =0

. L] L * * L L4 L] * * *

n-2 n-2
a g (t) a4 fl(t) [

da"%s_(t)
2[0

[7a$
= C. H (t)] y —_— H (t)] + e o o +
dtn—Z dtn—Z { lX K> dtn-2 2K K r
-2
a~er (t)
(n-1)
a2 [C(n-l)o(HcKr(t)] =0 7k

Since the functions f(t) are assumed to be (n-1) independent solutions of
an (n~1) order linear differential equation, then it follows that the
Wronskian is different from zero, and hence equations (7.4) can only be

satisfied if the components of the (n-1) vector

28



i

[cldndr(t)J R [ 20( (A (t)], .« o [ (n-1)x o(r(t)J

are zero. Therefore, if the rank of

2 n-1

d°H () d H_ (t)
I' (t), (t), __.°_<_¥__,..."___ﬁ£__
L 0(1' dt o( dta dtn-l

is less than n, then there exists a constant vector C such that

cp(na‘r(t) =0, 7.5

The existence of such a vector, by virtue of (1.7), contradicts the

assumption that the determinant of the nxn matrix

t

f Hdr(t) H'Br(ﬂ dt

t
o

is nonsingular. If on the otherhand we assume that Hermann's criterion
is satisfied whereas Kalman's criterion is not, then from the results of

Section 1 it follows that there exists a constant vector C such that

ot

() =0

Co( HO\r
If in (7.2) we let ¢0( (t) = 0( , then we contradict the assumption that
aH, (t) ¢t
H, (t)

(t). y o o o e ¢ T %
r dt dtn-l Xr

has rank n; this completes the equivalence between the two criteria. This

equivalence was first demonstrated by Hermesl.
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As noted previously, Hermann's criterion is also equivalent to the
nonintegrability of the pfaffian system associated with the control system.
We shall demonstrate the nonintegrability of the pfaffian system associated
with the control system (7.1l), because in this case the form of the inte-
grating factors can be anticipated and the results of Theorem 4.1 directly
applied. We assume that no row of the matrix H(t) is zero, otherwise the
lack of controllability is immediately obvious. In view of this fact the
components of any vector orthogonal to the matrix H(t) can be expressed
as functions of time alone. If there is a specific dependence of the
orthogonal vector on the state vector x, then at most this can only occur
as a multiplicative factor, the knowledge of which is inconsequential to
the application of Theorem 4,1. Denoting by qj(t) the vector orthogonal

to H(t), then the pfaffian associated with the control system (7.1) is

\Va"(t)dxo( =0 7.6

Applying Theorem 4,1 we find that a necessary and sufficient condition that

the pfaffian (7.6} be integrable is that

a% log \Vl(t) = -dd—t log \Vz(t)=. e e .= Ed; log \Vn(t)

Integrating this result yields

Y. @) _ V) _ _ Vo)
Cl C2 Cn
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where the C's are constants and can be regarded as the components of a
nontrivial constant vector C. Since the vector \J/(t) is proportional to
a constant vector C, then this implies that the pfaffian (7.6) is integrable

if and only if there exists a constant vector C such that

et

co< Ho(r(t)

The previous arguments concerning this statement now apply, thus illustrating

the dual approach to controllability criterion via the integrability con-

ditions for the pfaffian system.

8. Continous Groups of Transformations

In the application of continuous groups of transformations to the
determination of controllability, we are mainly concerned with the possibility
of representing any control action on the dynamical system in terms of
continuous groups of transformations containing a finite number of essential
parameters. To illustrate this procedure consider example 5.2 where the

system equations are

Xl = xl + x2u
. 8.1
X, = X, + Xju

If we represent the control as u(t) = d dit) , then the system (8.1) can

be expressed in pfaffian form corresponding to (2.2), by
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dx, = xldt + xady
8.2
x2dt + xldy

n
n

The system of nonhomogensous partial differential equations (2.1)

corresponding to the pfaffian system (8.2) is

ox 3%
St - A Sy 2

"
o

0% O %5
ot "2 Sy

furthermore, these equations are completely integrable. Therefore,
the solution of the system (8.1) may be expressed in terms of a two

varameter transformation by

ot [xl(0,0)coshy + x2(0.0) sinhy]

xl(t,y)
803

x,(t,y) = e° [xl(0.0)sinhy + %,(0,0) coshy]

The significance of the solution (8.3) is that it gives an algebraic
representation for all the possible control actions on the dynamic system
(8:.1). This follows from the fact that the real time solutions of the

system (8.1) are generated by the one parameter subgroup obtained by

substituting y(t) for y,
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x,(8) = % (8,3(1)) = o [x(0,0)c0mny(t) + x,(0,0)s1nn y(t)]

xz(ﬁ) = xa(t.y(t)) et [xl(0,0)sinhy(t) + xa(0,0)coshy(t)]

Since the solution (8.3) represents all the possible control actions on
the dynamic system, then on eliminating the paremeter y from (8.3), it
can be concluded that all solutions of the system (8.1) are constrained

Since all solutions of the system (8.1) are constrained to this surface
independent of the choice of the control u(t), then the system is not
controllable,

A different kind of representation was encountered previously in

connection with the controllability of linear systems, where the solution

of
X (8) = B _(£) u (&)
was represented by
t
; 3
X (8) = x (%) +f Ha(r(t)HIBr(t)dt z 8.4
t
o

for a particular form of the control vector. This representation was
particularly fruitful in proving the sufficiency of Theorem l.l where the

representation (8.4) was considered as a transformation between the vectors

33



x(tl) - x(to) and §. On the otherhand the representation (Sﬂh) can be
interpreted as a transformation between x(tl) and x(to), with tl and the
n components of £ regarded as (n+ 1) parameters. The condition that the
linear system be controllable corresponds to the n parameters éi& being
essential. If the n parameters E;‘ are not essential, then it follows
from Theorem 1.1 that the linear system is not controllable; however, the
procedure of eliminating the parameters, as illustrated in the previous
example, to generate the constraining hypersurfaces, does not apply in this
case, This is because the one parameter subgroup of transformations
obtained by substitutinglgé(tl) for Eg, does not yield all the possible
control actions on the linear dynamical system. The combination of these
two ideas leads to the following sequential method for the determination
of the controllability of control systems. For simplicity of exposition

we shall treat the linear system

;co< = E_ (t) u (X=1 oo n) 8.5

where u is a single component control. Hermann's controllability criterion

for this system requires that rank

dH__ (t) n=1
28 d
HOQ(t)9 dt [ » . L) . o9 d+n-l Ha((t)

be n for all t. The sequential method proceeds as follows, and simply
mimics the procedure adopted for example 5.2. We try to determine the

existence of a scalar function of time ;k(t) such that if the control
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u(t) is given the representation

a() = Ace) L

then the nonhomogenecus partial differential equations associated with the

linear system (8.5) are completely integrable. For this representation

of the control, the nonhomogeneous partial differential equations are
%, 3%,

=i =0 35 =y (&) AL 8.6

The equations (8.6) are completely integrable if and only if

aH _, (t)
%k<t>+ﬂd<t>i’%l=o 8.7

It is to be observed that if there exists a ;\(t) such that (8.7) is
satisfied, then Hermann's controllability criterion is not satisfied.
In fact, for this situation we can give an algebraic representation for all

the possible control actions on the linear system in terms of two parameters
by

X (£o¥) = X (0+0) + H_ (t) A D)y 8.8
Eliminating the parameter y from these expressions yields (n-l) con-

straining hypersurfaces, so that the dimension of the reachable set at

any time would be one.

If there does not exist a A(t) such that the integrability conditions

(8.7) are satisfied, then we attempt to determine if all the possible
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control actions on the linear system can be represented in terms of
three parameters. To do this we define a transformation from x to x
by
1 1
xo<=x°<+Ho<(t)u 8.9
where the new control ul is given by

dul

dt

The transformed system becomes

1
d%x - dHoﬁ(t) 2 8.1
at - at o=

which is of the same form as the system (8.5) and hence we repeat the

same process. Lf there does exist a /\(t) such that the representation

o) = Ly SRE

yields a completely integrable set of nonhomogeneous partial differential
associated with the system (8.10), then the vector x* can be represented

in terms of a two parameter group of transformations by

dg , (t)
X (t,y) = xp(l(o'o) - Tﬁ“” X ()y

Therefore, the vector X can be expressed in terms of a three parameter group

of transformations by virtue of (8.9) as

ae_ (t)
X (t,ul,y) = X ¢ (0:0:0) + Ho((t)ul - -—-Zé-g—— /\(t)y
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Obviously, to demonstrate the controllability of the system (8.5) we

simply continue this process until we have resurrected n parameters not

including the parameter t. The condition for these n parameters to be
essential then yields Hermann's criterion. This method has a distinct
advantage when the control system is not controllable, since it determines

the dimension of that portion of the control system that ie contrsollable,

9. Controllable Systems

In this section we shall catalogue those control systems that are
known to be controllable.
1) The linear system with constant coefficients

4 x + a dxn-l + + a ax +ax=u
n 1 4t n-1 dt n" =

is controllable.
2) The linear system with time varying coefficients

n-1

d"x ax ax
;:- + al(t) BT + o o o .+an_l(t)a—t' + an(t)x = u

is controllable.

3) The quasi-linear system

alx dx dn_lx
-5t Al tix; 3t $ v o o o o3 oo | = U
dt dt

is controllable. Using Hermann's method the proof of each of these

statements is trivial.
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