\
MTP-AERO-63-76 ﬁ
November 6, 1963

SPACE
/:IIN FLIGHT

CENTER

GEORGE (.07
N 66 23668

1 T T ) HUNTSVILLE, ALABAMA
E N~ Sy 20=

R)
(NASA CR OR TMX OR AD NUMBE

EQUATIONS FOR TWO-DIMENSIONAL ANALYSIS OF TOUCHDOWN DYNAMICS
OF SPACECRAFT WITH HINGED LEGS INCLUDING ELASTIC,
DAMPING, AND CRUSHING EFFECTS

By

Robert E. Lavender

GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC)

Microfiche (MF) ‘ SO

1653 July 65

g/j/fé?

MSFC - Form 523 (Rev. November 1960)



GEORGE C, MARSHALL SPACE FLIGHT. CENTER

MTP-AER0-63-76

EQUATIONS FOR TWO-DIMENSIONAL ANALYSIS OF TOUCHDOWN DYNAMICS
OF SPACECRAFT WITH HINGED LEGS INCLUDING ELASTIC,
DAMPING, AND CRUSHING EFFECTS

By

Robert E. Lavender

ABSTRACT Q 3 6 6 ?

An analytical approach is presented for determining the touchdown
dynamics motion of spacecraft landing on the lunar surface. Spacecraft
with hinged legs including elastic, damping, and crushing effects are
considered. Before results of touchdown dynamics investigations can be
intelligently correlated, comparison of approaches to the problem must

be made. This report describes one such approach.
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Clep’ CsZOp

Cs10n’ Cs20n

Fir Fea

Fs1, Fs2

Fnl’ Fn2

£l "t2

DEFINITION OF SYMBOLS

(First and Second Legs, Respectively)

Definition
distance from the foot to the leg-vehicle attachment
point, measured normal to the vehicle's longitudinal
axis
distance from the foot to the main member-vehicle
attachment point, measured parallel to the vehicle's

longitudinal axis

distance from the foot to the support member - vehicle
attachment point, measured parallel to the vehicle's
longitudinal axis

spring constant along the main member

crushing force along the main member
spring constant along the support member
crushing force designed to limit the compressive

force along the support member

crushing force designed to limit the tension force
along the support member

force along the main member, positive in compression

force along the support member, positive in compression

force normal to the surface, positive along the
positive Y-axis

force tangential to the surface,positive along the
positive X-axis

gravitational acceleration of the moon {or other body
of interest)

vehicle's radius of gyration with respect to the
center of gravity
[ ]

iii




Symbol

Lla LB

LS’ L7

Ll', LB'

Lml’ Lm2

sl’ “s2

ml° RmZ
sl’ “s2

éls é2

DEFINITION OF SYMBOLS (Cont'd)

Definition

distance from the center of gravity to the foot,
measured normal to the longitudinal axis

original distance (before deflection) from the feet
to the center of gravity, measured along the longi-

tudinal axis

distance from the center of gravity to the leg

attachment point, measured
axis

normal to the longitudinal

distance from the center of gravity to the rocket

stabilization motor

length of main member

length of support mémber

vehicle's mass

damping constant along the
damping constant along the

sliding velocity along the
the pdsitive X-axis

stabilization rocket motor

stabilization rocket motor

initial vertical velocity,

main member

support member

surface, positive along
thrust

burning time

positive downward

initial horizontal velocity, positive value gives a
component along the positive X direction

weight of vehicle at lunar

weight of vehicle on earth

iv

surface, mg




Symbol

Oy, Qo

81’ 6.2
1lto
5 ., O

ml

o] o)

sl?
S £f

Sm10°
8lep’
o)

sl0n’

6mlpp’

6slpp’

lepn’

®

8]

m2

s2

2f£

m20

%520p
%520
6m2pp

s2pp

6san

DEFINITION OF SYMBOLS (Cont'd)
Definition
center of gravity coordinate along the lunar sﬁfface
center of gravity coordinate normal to the lunar surface

angle between the vertical and the line from the
center of gravity to the foot :

the stroke parallel to the vehicle's longitudinal axis

initial value of 3,

deflection along the main member, positive deflection
loads the member in compression

deflection along the support member, positive deflection
loads the member in compression

the stroke parallel to the vehicle's longitudinal axis
when the normal force becomes zero

elastic deflection along main member when crushing stops

positive elastic deflection along the support member
when crushing stops, member in compression

negative elastic deflection (elongation) along the

~support member when crushing stops, member in tension

the "previous positive'" or largest deflection in the
main member which has previously been obtained in com-
pression

the "previous positive" or largest deflection in the
support member which has previously been obtained in
compression

- the "previous negative' or largest negative deflection

(elongation) in the support member which has previously
been obtained in tension

slope of the lunar surface from the horizontal,
positive counterclockwise




Symbol

His H2

o1, Ho2
tan poj, tan uop

¢

DEFINITION OF SYMBOLS (Cont'd)
Definition

angle between the total force and the component of
total force normal to surface, positive for positive
tangential force

limiting value of u, or angle of friction

coefficient of friction

vehicle's attitude angle, positive counterclockwise
and zero when the longitudinal axis is vertical.

vi
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SUMMARY

Two-dimensional equations are presented for use in touchdown
dynamics analysis of spacecraft with hinged legs including elastic,
damping, and crushing effects. Purpose of the report is to document
the equations.

SECTION I, INTRODUCTION

In the overall study of the design and performance of the Saturn V
lunar logistics vehicle, analysis of touchdown dynamics of the landing
stage is an important part. Such analysis influences the landing stage
design as well as placing limits on the permissible vertical and hori-
zontal velocities, vehicle attitude, and pitch rate at touchdown for
a given design.

A touchdown dynamics program had previously been developed [1] and
was used in the MSFC study of touchdown motion for the Lunar Logistics
System [2]. These equations, however, did not account for elastic effects
but assumed that the crushable material in the legs began to absorb
energy upon impact without any prior elastic deflection. While it was
recognized that the vehicle would have some elastic deflection, there
was not sufficient appreciation for the magnitude of this deflection.
After the MSFC Lunar Logistic System study was completed, the Space
Technology Laboratories received a contract for a "Comparative Design
Study of Modular Stage Concepts for Lunar Supply Operations' (contract
NAS8-11022). The STL designs show that the elastlc spring constant for
each leg is so low that considerable elastic stroke is experienced before
the legs start crushing. For a vertical landing on a level surface, the
energy stored in elastic deflection is about 30 percent of the initial




kinetic energy [3]. Thus, the vehicle would bounce off the surface with
a velocity of about half the initial touchdown velocity, If the vehicles
considered for lunar landing actually do have this large a percentage of
energy stored in elastic deflection, then it is to be expected that the
.effect of this would significantly alter the touchdown dynamics motion.

The purpose of this report is to document the equations which have
been developed for a new touchdown dynamics program for spacecraft with
hinged legs including elastic, damping, and crushing effects in both
the main and support leg members. The new program should prove to be a
valuable extension to the touchdown dynamics analysis capability avail-
able for future analysis requirements. The author is indebted to
Mr. John D. Capps, Computation Laboratory, who programmed the equations
for the GE 225 digital computer. '

SECTION II, MATHEMATICAL MODEL

The equations were developed corresponding to the two-dimensional
model shown in Figure 1. This model is adequate for analysis of either
three- or four-legged vehicles. Motion takes place in a plane such that
two legs contact the surface simultaneously for the four-legged vehicle.
For the three-legged vehicle, either the double leg or single leg can
initially touchdown. Both the main (upper) and support (lower) member
for each leg is assumed to undergo some elastic deflection with damping
before the force is sufficient to begin crushing the inelastic crushable
material, The main member crushes under compression only, but the sup-
port member is designed so that crushable material limits the load in
both tension and compression. The force along the support member required
to crush in tension may be different from that required to crush in com-
pression,

The. initial center of gravity coordinate normal to the lunar surface
is

Y, = (Lo - 81to) cos (po - B) + Ly, sin (@, - 9), 1)

where 8y, is the initial value assumed for the stroke of the first leg.
This value is usually zero. This means the wvehicle has just touched
down on the surface. For some cases, it may be desirable to begin the
solution with the first leg off the surface. 1In such cases, the value
of d1to 1s a negative number.




The initial velocity components of the center of gravity normal and
parallel to the surface are

io = -V, cos § - V sin © . (2)

B
]

o= Vh cos § - Vy sin ©. 3

The stroke parallel to the vehicle's longitudinal axis for the first
leg is

61=L2-'.Y sec ((p-e)"l‘Ll tan (cp-e). (4)

If &, < 0, the first leg is off the surface and all forces relating to
the leg are zero. 1If &; = 0, the leg is on the surface and the rate of
stroking is obtained by

51 = - A+ 4 tan (-9, _ (5)

where

A = sec®(p - 0) <Y cos (@ - 0) + [Y sin (¢ - 8) - Ll} c’p}. (6)

Before the stroking rate can be obtained from Equation (5), the rate at
which the dimension, a, is varying must be obtained. This is found to
depend, among other things, upon the rate that the foot is sliding. The
position of the first foot along the X-axis may be expressed by

S, = X - X, N

where X is the coordinate of the center of gravity and X; is
X1 =1Ly cos (p - 8) - (Lp - 31) sin (p - 0). (8)

The sliding rate is thus

S1 = X+ Lo sin (p - 6) - a cos (p - 0) + (Lz - 81) cos (¢ - 6)

- 8, sin (p - 0). A (9)




Now,‘since
Y= (Ly - 3;) cos (¢ - 6) + Ly sin (p - 6), (10)
then

él =X+ Yp - a4 cos (p - 6) =81 sin (p - 8). (11)
Substitution of Equation (5) into Equation (11) and solving for a yields
a=A sin (p -~ ) cos (p - 9) + (X + Yo - él) cos (p - 9). (11)

At any given time, everything is known to obtain a except the rate
of sliding of the foot. The proper sliding rate is obtained by iteration.
It is first assumed that the slidipg rate, 8,, is zero. Equations (l1)
and (5) are then solved for a and 5;. The deflection rates in the main
and support member are then obtained:

8m1 = (bd, - aé)/Lml ' (12)
Byp = (cd, - aé)le (13)
where

b = bo - 61 (14)
c = CO - 81 . ’ (15)
L, = (a%+ b2)y2 (16)
ml -~ @

: - 2 2y %

L, = (@ + c®”~. Q17)

At any given time, the deflection of the main and support members are
known from :

8ml N Lmlo - Lml (18)
Bg1 = leo - Lgy- (19)




The force in the main member is then obtained from one of the following

equations:

Fcl =

cl

cl le ml

cl

i
I

cl

= Snipp T Cmio

C.5. +R

ml ml ml §m1

ml0

= Cp18mt RpiBm1

5]

e

) + R 5y

6ml

nl

ml

ml

ml

v

-

6mlpp -

6mlpp +

A
o

6mlpp +

ml0

6m10 =

(20)

(21)

(22)

>0

(23)

A
o

(24)




The force in the support member is obtained from one of the follow-

ing equations:

sl

F

sl

sl

sl

Fa =

Cslasl + RSISSI
Clep
Co1(Bgp - 0

C81851 + Rslasl

+
slpp 8s10p

(25)
01 2 0
8sl - 6lep <0
6slpp B 6s10p <0
(26)
631 20
1 = %s10p = °
6sl - 6slpp >0
) + R318s1 27)
651 z0
6sl - 6slpp =0
6sl B 8sipp + 8s10p >0
(28)
6s1 z0
- =
Bs1 5slpp + 6lep =0
(29)
681 <0
6sl - 6len >0
>0

6slpn - %10n



Fa1 = Cionm ' (30
B, <0 '
6sl - 5len =0
6sl - 6slpn <0
For = C1®g1 = Bs1pn * Bs100) * Re1fa1 ; (1)
8, <0
6sl - 6slpn 20
5 . - B + 5 <0

sl slpn s10n

FSl =0 , (32)

"851 <0

6sl - 6slpn + 6len =

There are eight equations for Fg; corresponding to eight sets of
conditions on the deflection. These equations can best be discussed
with the aid of Figure 2. As the first leg contacts the surface, the
leg will begin to shorten due to compression, or elongate due to temsion.
Assume, for example, that the leg begins to compress. Equation (25) will
be used until &gl 6510p after which Equation (26) will be used. 1If
Fs1 > Cs10p while using Equation (25), Fg1 is set equal to Cs10p- The
leg contlnues to crush until ®g] < dslpp, at which time crushlng stops
and the elastic deflection (which is equal to 6s10p as 631 goes to zero)
begins to reduce. Equation (27) is now used until dg1 = 6slpp - Bs10p-
If Fg] becomes less than zero using Equation (27), the force is set to
zero. The force remains zero as the leg elongates until the neutral
deflection (dg) = 0) is reached. Continued elongation will place the
leg in tension and Equation (29) is used. Equations (29) through (32),
when the leg is elongated (dg]1 < 0), are used in the same way as Equa-
tions (25) through (28) when the leg is shortened. The additional
restriction on Equation (25) that 3g1pp < Ss10p is nceded to keep
Equation (25) from being used whenever dg)pp < 26510p and dg] becomes
less than 5s10p again.




Once the forces Fc1 and Fg) are obtained (having assumed él = 0),
the normal and tangential forces acting on the foot are obtained:

Fnl = FCl cos (N + 6 - @) + FSl cos‘(gl + 0 - ) (33)
Fy=F, sin (m+0-¢) +F sin (E1+ 6 - @) (34)
where

n, = tan"1(a/b) | (35)

£, = an'l(é/c). (36)
Then,

tan i = Ftl/Fnl' (37)

1

If |tan pll < tan po;, then the assumption that S; = O is correct and
the foot is at rest. However, if |tan pll > tan pg;, the foot cannot
be at rest but must be moving at some rate along the surface. The pro-
per sign for Sl is opposite the sign obtained for tan p; since the
tangential force acts to oppose the sliding motion. A value for S, is
then chosen (the magnitude of which is made proportional to |tan pll -
tan uoi) and new values for & and &, obtained. The process is repeated
and another tan p; obtained. The proper §; is obtained by iteration
such that Itan le = tan yoi.

Once the proper forces have been obtained for the first leg, the
forces in the second leg are obtained in a similar manner. Most of the
time, only one leg or the other is in contact simultaneously. Usually,
the first leg will leave the surface before the second leg comes in con-
tact, and the vehicle will be in free flight. When the normal force
from Equation (33) becomes negative, the forces are set to zero and the
leg is off the surface. The value of 5, at the moment the leg leaves
the surface is designated as ®1ff. As long as subsequent values of &
remain less than djff, the leg is off the surface and the forces on the
leg remain set to zero.




As the second leg contacts the surface for the first time (55 = 0),
forces in this leg will begin to develop. The stroke parallel to the
vehicle's longitudinal axis for the second leg is

%> = Lo - Y sec (p -~ 8) - Lz tan (¢ - 0), (38)
and the stroking rate is

82 =-C - 4 tan (p - 0), _ (39)
where
C = sec®(p - 0) Y cos (p - 8) + [Y sin (p - 8) + L3}#} . (40)

Before the stroking rate can be determined from Equation (39), the
rate at which the dimension, d, is varying must be obtained. This
depends upon the rate that the second foot is sliding. The position
of the second foot along the X-axis may be expressed by

32 = X + X3, (41)
where

(Lo - 85) sin (p - 6) + Lx cos (p - 6). (42)

>
U
]

Therefore,

S52= K+ (Lp - 52)¢ cos (p - 6) - bz sin (¢ - 0) - Lz sin (¢ - )
+ d cos (p - 0. (43)

Since

Y = (Lo - 83) cos (p - 8) - Lz sin (p - 6), (44)
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then,
S, =X+ Yy - 5, sin (¢ - 6) + d cos (p - 6). (45)

Substitution of Equation (39) into Equation (45) and solving for d
yields:

d = - C sin (p - 8) cos (p - 0) - X + Yo - éz) cos (p - 0). . (46)

As before, it is first assumed that the sliding rate, Sg, is zero
and d and &5 is obtained. The deflection rates in the main member and
support member are then obtained:

O = (eds - dd)/Lmz (CYD)
832 = (fos - dd)/L52 (48)
where

e = bO - 62 (49)

f = Co - 62 (50)
L. = (a2 + eZ)% (51)
m2

- 2 2\

L, = (4% + £5)% . - (52)

The deflection in the members is obtained from

%2 = Tm2o = Tm2 (33)
5 =L - L .. (54)

s2 s20 s2
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- The force in the main member is then obtained from one of the following

equations:

Fc2 = Cm26m2+ Rm25ﬂ12

m20

FcZ = Cm2(6m2

6m2pp

c2

F = C 25n1+

c2 2

+ 8020

(55)
&, 20
%n2 = ®m20 < °
8m2pp ) 6m20 <0
(56)
6m2 g 0 .
%2 = Om20 2 ©
- 0
®n2 = Om2pp
) + Rmzésg (57)
8, 20
8m2 - 6m2pp =0
®n2 = Bm2pp T Pm20 7 °
(58)
8,20
<61:12 - 8m2[.wp + z5m20 =0
(59)
5 .< 0

m2
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The force in the support member of the second leg is obtained from one
of the following equations:

FsZ B Cs2632 + RSZéSZ ' (60)
832 z 9
6sZ - 6s20p <0
6spr - 6sZOp <0
FSZ N Cs20p (61)
632 z0
E)52 - 6s20p =0
6s2 - 8spr >0
FsZ = Cs2(632 B 6spr + 6520p) + R82882 (62)
832 z0
632 - 852pp £0
682 B 6spr + 8s20p >0
Fa2 = O | (63
6s2 z0
6sZ - 6spr + 8sZOp =0
Fs2 B Cs2852 + 352$s2 (64)
632 <0
682 - 6sZOn >0

6san " “s20n
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Fs2 = Cs20n ' (63)
652 <0
E352 - 85201:1 =0
852 - 8san <0
FsZ - C32(632 - 8s2pn + 8320n) + RSZéSZ (66)
632 <0
652 h 6san 20
852 - 8s2pn + 6s20n <0
Fs2 =0 (67)
6s2 <0
6s2 -‘8s2pn + 8sZOn =z 0.

Once the forces F.2 and Fgp are obtained (having assumed ég = 0),
the normal and tangential forces acting on the foot are obtained:

Fn2 = Fc2 cos(na+ ¢ - 8) + FsZ cos (Ex+ @ - 6) (68)

F., = -F_, sin (Ma+ ¢ - 8) - F,sin (¢2+ ¢ - 8)  (69)
where

To = tan~t(d/e) (70)

(o = tan"l(/D). | | (711)
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Then,

tan pp, = /Fn2' (72)

Feo

If'|tan p2,§ tan ppo, then the assumption that §, = 0 is correct
and the foot is at rest. If [tan pgl > tan pgo, the foot cannot be at
rest but is sliding. A value for 32 is then chosen with the sign oppo-
site to that obtained for tan p, and new values for d and 5, obtained
from Equations (46) and (39). The proper Sy is obtained by iteration
such that |tan pgl = tan ugs.

After the forces have been determined, the accelerations are
obtained from the equations of motion. From Newton's second law,

my = Fnl + Fn2 -Wecos 8 - (Ty + Tp) cos (p - 6) (73)

mX =F, *+F,-Wsin o+ (Ty + Tp) sin (¢ - 0) (74)
20 - r _ '

mk=EH = (Ftl + th)Y + F X3 F X1+ TiL) - ToLb (75)

where T; and T, are downward directed stabilization rockets.

The stabilization rockets are represented by

T, = K; Ky #0, t <ty (76)
T, = Kio Kio # 0, tooso < < tgosg Tty (77D
Ty =0 Ky =0, Kig = 0 (78)
T. = K5 Ko # 0, t < o (79)
Ts = K=o K=o # 0, tsoz0 < £ < tsasp T top (80)

Tg = 0 K2 = 0, KEO = 0, (81)
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This representation provides sufficient flexibility to account for a
number of rocket stabilization schemes. For example, one scheme might
be a single rocket motor which ignites upon initial contact and directed
downward through the vehicle's center of gravity. For this case,

Ky #0, t #0

R K10=K2=K.20=t =L'1=L§5=0.

2b

If the rocket does not ignite upon contact of the first leg but does
upon contact with the second leg, then

Kio # 0, t,, # 0.

1b

If rocket motors are attached along the side of a three-legged vehicle,
then,

L'l = LS’ L'3 = L7 = I/2L5, Kgo = 2Klo.

The accelerations obtained from the equations of motion are inte-
grated numerically for new values of velocity and position.

Y=Yo+_/-?dt | (52)
)'(=5(0+fiidt (83)
c'p=c‘po+f¢dt | ‘ e
Y=Yo+fizdc (85)

X = fi(dt (86)
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o dt (87)

d dt (89)

a=a0+fédt (88)

Ll = LS + a (90)

Ls = L, + d. (91)

' The entire process is repeated starting with Equation (4) for a new
time step., While the first leg is in contact, very small computing
intervals are used in order to retain accuracy and also to keep the
iteration procedure on $, under control. After the first leg leaves
the surface and the vehicle is in free flight, larger computing inter-
vals can be used. When the second leg impacts, the smaller computing
interval is again necessary. After the second leg leaves the surface
and the vehicle is again in free flight (8; < d1ff and 35 < d2¢f), the
larger computing interval is again used.

For the downhill landing (positive V, and negative 6), the vehicle
impacts on the first (uphill) leg, goes into free flight with a rota-
tional motion toward tumbling (¢ < 0), impacts on the second leg, and
then again goes into free flight, As the second leg leaves the surface
(32 < d2ff), the rotational rate, {, may be positive. If so, the run
is stopped since the vehicle will not tumble, but merely continue to
bounce on first one leg and then the other as it continues to move down-
hill with less and less amplitude of the bouncing motion. If § is nega-
tive, the motion is continued until the second leg impacts again and ¢
becomes positive (for a stable landing), or until the vehicle's center
of gravity passes over the downhill foot (xz < 0) for a tumble. The
angle, Qo, is given by

Op = tan™t <%T—%Jg——-> + (92)
2 2ff
52 < B

2f£
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-1 L=
Os = tan ‘ <¥2 . >-+ P (93)

Two equations are necessary since the vehicle can go unstable in either
free flight or while the second leg is in contact.

For an uphill landing (negative Vi and negative 6), the vehicle _
impacts on the first (uphill) leg and subsequently either tumbles uphill
or begins rotating toward the second (downhill) leg. The run is stopped
if the center of gravity passes over the uphill foot (@; < 0). The
angle, o7, is given by

a, = tan—* <.__Ll__.> -9 (94)
L, -5 :
2 1£f£
9, < Slff
L .
~ = b N (UL I D
Q7 = tan <;2 ~ 6;) 0) (95)

Determination of when to print was rather tedious. The print-out
operation is a time consuming process so that the printing is held to
just enough print-out at special times to obtain a clear picture of the
motion. As the vehicle impacts on the first leg, it is desirable to
know when the main and support members start crushing and when they
stop crushing. It is desirable to know when the foot starts or stops
sliding, when the vehicle's rotational motion changes direction, when
the vehicle goes into free flight, the maximum distance from the sur-
face the vehicle attains in free flight, when the second leg impacts,
and so forth. After some consideration of this problem, the program
has been coded to print whenever the events occur that are listed
in Table I. The data that is printed is listed in Table II, and the
input data needed to begin a rum are listed in Table III,

In some cases, it is desirable to continue the solution beyond
the time when the stability tests would normally stop the run. This
is true, for example, when maximum crushing strokes are the data
desired or when the total travel distance downhill. from the instant
of impact is desired. TFor such cases, the stability tests for stop-
ping the run is bypassed and the run is stopped manually,




18

SECTION III. CONCLUSIONS

1. While the equations described in this report will more accur-
ately represent the touchdown dynamics motion during lunar landing than
those used previously, more exact duplication of the landing strut loads
and deflections in three dimensions may be required for refined results.

2. These equations should be adequate, however, for general
investigations of the touchdown dynamics problem. Since the STL prxo-
gram assumes the crushing force is constant normal to the lunar sur-
face rather than along the strut member and also does not account for
the changes in the leg spread as the leg deflects, these equations will
yield somewhat different results than would be obtained with the STL
program.
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TABLE I
PRINT-OUT EVENTS

A print-out is made whenever any of the following events occur:

él or ég changes from # 0 to 0 or from O to # O

F, or Fn2 changes from # 0 to O or from 0 to # O

6m1, 5m2’ Ssl,or 632 changes sign

Y, X, or ¢ changes sign

Q3 or (s becomes negative

o
1%

5} or & z 9 for the first time
ml0 .

m2 m20

s1 = 5s10p or 652 2 6s20p for the first time

o
A

61 = 6310n or 652 = 6s20n for the first time

cl > leO or Fc2 > Cm20 from Equations (20) or (55)

cl <0 or Fc1 > leO from Equation (22)

‘F , <0 or Fc2 > Cm20 from Equation (57)

or F , > C from Equations (25) or (60)

s2 s20p
FSl > Cslop from Equation (27)
F, >C from Equation (62)

s2 s20p
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in/sec

TABLE I (Cont'd)

Fsl { CSlOn or Fsz < CSzon from Equations (29) or (64)
Fsl >0 or Fsl < Cslon from Equation (31)
F82 >0 or FS2 < Cs20n from Equation (66)
TABLE II
PRINT-OUT DATA
X ¥ % X
in/sec® in/sec? rad/sec? in/sec
% X Y Y
deg/sec in in deg
82 Fnl Fn2 Fe1
in 1b 1b 1b
aq (075 a d
deg deg in in
Bml Bs1 2 - Bs2
in in in in
Fe1 Fg1 Fe2 Fgo
1b 1b 1b 1b




tan poy

tan pos

Cm1
Cm2
Cs1
Cs2

CGnl0
Cm20
Clep
Cs20p
Cs10n
Cs20n

in/sec

TABLE TIIIL
INITIAL DATA

m/sec
m/sec
deg

deg
deg/sec

in

1b

1b/in
1b/in
1b/in
1b/in

1b
1b
1b
1b
1b
1b

lb-sec/in
lb-sec/in
lb-sec/in

.
1b-sec/in

Sm10
Sm20
8s10p
Bs20p
%s10n

8sZOn
8lto

in
in
in
in
in
in
in

in
in
in
in
in
in

in

1b
1b
1b
1b
sec
sec
in
in
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