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I -  

EXTENSION O F  THE FOKKER-PLANCK 

E QUATION 

bY 

John C. Price 

A simple collision term valid to  order l/ln A is derived for 

small amplitude waves in a uniform plasma. This result extends 

the validity of Fokker-Planck type equations from the domain 

0 < w<< w O z k  <<k, to the domain Ozu << A u p ,  OLk ? k,. 
P' - 

I. INTRODUCTION 

It is of general interest to obtain the effects of collisions on the behavior of 

- waves in a plasma. Previous efforts have been directed along two main lines. 

Some authors"' use the linearized version of the Fokker-Planck equation3 to 

study the effects of collisions on waves. This is certainly correct for the study 
- 

of low frequency ( w - v c o l l i s i o n  ) long wavelength (A - A m e a n  free p a t h )  waves, but 

it is not clear how far outside this domain the equation may be trusted. For 

example it is obviously suspect at frequencies of the order  of the plasma frequency. 

1. D. A. Tidman, Phys. of Fluids 1, 1826, 1964. 
2. G. G. Comisar, Phys. of Fluidss ,  76, 1963. 
3. M. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. - 107, 1, 1957. 
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Other authors have used collision models4p5 to study the desired effects. 

These models a re  constructed to make the resulting analysis relatively tractable, 

but they are somewhat arbitrary, for they are not based on the reduction of a 

more exact frequency dependent collision term. 

In this paper we shall construct a reasonably accurate collision term for 

plasma waves. This collision term should prove useful in several respects: for 

direct analysis of the resulting equation for the full range of collisional effects; 

for perturbation solutions leading to a relatively simple dispersion relation for  

waves; and as a valid basis for the construction of model collision terms. 

7 Earlier attempts by Frieman,' Berk, and Silin8 have involved restrictions 

which will not apply here. Guernseys' result9 presumably includes the result to 

be derived here (except that Guernsey considers waves in an equilibrium plasma), 

but his analysis is difficult and his result so complicated that the present simpler 

(and less  accurate) derivation seems worthwhile. 

In section I1 the equations of the BBGKY hierarchy are simplified to form 

the basis of the analysis. In section 111 the collision term is calculated and the 

kinetic equation is obtained. In section IV we discuss the vdidity of the collision 

term for plasma waves. 

4. E. P. Gross and M. Krook, Phys. Rev. - 102, 593, 1956. 
5. R. L. Liboff, Phys. of Fluids, 5 ,  963, 1962. 
6. E.  Frieman, Journal of Math. Physics, 4,410, 1963. 
7. H. Berk, Phys. of Fluids, 17, 257, 1964, 
8. V. Silin, JETP,  11, 1277,1960. 
9. R. Guernsey, Physof Fluids, 5, 322, 1962. 
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a 11. TIIE SIMPLIFIED EQUATIONS 

Wc. lwgin with the usual equations of the BBGKYlO for the one particle dis- 

tribution I mid the pair correlation function g. With { rl , v l >  = X , ,  etc, we have 

4 

a 
a v  1 

. -  q2 
x f ( X l ,  t )  f ( X 2 ,  t )  + :[/a3 f ( X , ,  t )  v1 I r1 - = 3  I 

In equation 2 the terms involving three particle correlations have been 

neglected, as well as the terms involving g which are significant primarily when 

I r1 - r2 1 is small. The neglect of these latter terms forces the usual short 

range cutoff in the r2 integration in 1. 

10. D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory, (McGraw-Hill, 
New York, 1964), p. 44. 
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The neglect of the term in g of equation 1 leads to the familiar Vlasov . 
equation; it is this "small" term which we wish to calculate. To do this we must 

solve 2 t o  find g in terms of f ,  then insert the result in 1. This problem (in the 

linearized approximation, which we shall use here) has been solved by Guernsey, 

but the analysis and result are formidable. We shall obtain a crude (order l/lnA) 

result after making further approximations on equation 2 .  
- 

We first  estimate the magnitude of the various terms of 2,  then neglect the 

less important ones. Since we do not commit outselves to a value for the wave 

frequency the term d / d t  may be large o r  small-in general we must keep it. We 

estimate velocities and velocity gradients by the thermal velocity V t h .  

Because 

analysis shows that two particle correlations are cutoff (decrease rapidly) 

for 1 r l  - r2 1 greater than the Debye length A,. Thus we estimate 

distances for g by a length L where A, > L > ro, with ro the closest approach 

distance. Of course g also varies due to the variation of f .  Thus we must have 

f dv = 1, we take f = 1/V$ in a volume V:h. A more exact I 

L much less  than the scale length of f ,  which restr ic ts  our analysis to waves 

with a wavelength of the order of o r  greater than A,. 

Inserting these estimates in 2, we find 
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We collect and cancel factors, and use the fact that 

-. 
I 

to find 

[!g ($)z +. (1*) I g(4 )  

Since L < h, we may drop the right hand te rms  in g compared to  those on the 

left. The resulting equation for g is sometimes called the weak coupling equation. 6 

A s  a result of these approximations we must supply both long and short range 

cutoffs to the r2 integration in equation 1. The resulting collision term will be - 
valid to order l / ln  A .  

c 

We now linearize f and g about a uniform stationary state: f = f (vl) + f ( rl, 

~ ~ , t ) ; g = g ~ ( ~ r ~ - r ~ ( , V ~ , ~ ~ ) + g ~  ~ r l , r 2 , v l , v 2 , t ~ .  Wetreatsuperscript  

one terms as small, and discard products of such terms. The neglect of time 

dependence for f and go implies that then actual time dependence should be 

slower than that of f and g'. Thus for very low frequency waves f must be 

6. E. Frieman, Journal of Math. Physics, 4, 410, 1963. 
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the equilibrium (Maxwellian) distribution. For waves below the collision fre- 

quency v c ,  the linearized theory is inappropriate and the nonlinear Fokker- 

Planck equation must be used. In keeping with the notation of the Vlasov equation 

we set E' = - nq j d X 2  VI  1/ 1 r l  - r2 I f  '(X2, t), and find the equations for f '  and 

g ' .  

c 

c 

x [ f ' ( X , ,  t )  f O ( Y 2 )  + f O ( V l )  f ' ( X 2 ,  t,] (7) 

III. THE COLLISION TERM FOR PLASMA WAVES 

A. SOLUTION FOR g' IN TERMS OF f '  

We consider wave solutions for f of the form f ( rl , v ', t) = f (k, v l ,  w )  e k ' r -  ii')t 

where w is in the upper half w plane, or else analytically continued" into the 

lower half plane. Equation 6 may be written 

( - i w + i k * v l )  f ' ( k ,  v ~ , u ) ) +  m E ' ( k ,  q u ) . ~  a f o  = 
1 

11. L. Landau, J. Phys. (U.S.S.R.)g, 25, 1946. 
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Appropriate Four,cr analysis of 7 yields 

(-iu + i (k - K )  - v 1  + i K  * v 2 )  g l ( k  - K ,  K ,  v l ,  v 2 ,  o) 

x f o ( v l )  f ' ( k ,  v 2 ,  LC) (9) )I 
We insert the result for g1  into 8 and find 

a a K - k  ) - [ s f l ( k ,  v l ,  W )  f o p 2 )  f ( K  - k ) 2  

B. EVALUATION OF THE K INTEGRAL 

12 In order to  evaluate the K integral in (10) we apply the Plemelj formula 

to the quantity [w  - k V ,  + K (yl - v, ) ]  - I ,  notinr that w is analytically 

continued from the upper half plane. 

- in6 w - k . v , + K .  

(11) 
[ 

- P 
- 

1 
w - k . v l  + K . ( v 1 - v 2 )  ~ - ~ - v ~ + K . ( v ~ - v ~ )  

For w << k 

sulting integral may be neglected compared to that over the delta function. 

V,, 2 A w p  the principal part is odd for large K, and the re- 

12. D. C. Montgomery and D. A. Tidman, Ibid, p. 56. 

7 



The order l/ln A er ror  is comparable to that caused by the arbitrary 

cutoff. 

The resulting collision term may be written 

where Q is given by 

Here we have neglected k in the factor ( K  - k )/(K - k)2 of equation 10. We 

could also displace the origin of the K integral over this factor by k ,  then drop 

k .  This leads to a symmetric collision term, but the difference from (12) is 

not significant to within the accuracy of the expression. 

To evaluate Q we observe that the only vector available in (13) is b ,  SO 

Q must have the form 

Q = A I  + Bbb 



where I is the unit tensor. We dot (13) and 14 twice with b to produce 

Ab2 + E3b4 $j$ ( K  - b)2 6(a - K  - b) 

Again the e r r o r  is order l/lnA compared to the term we keep. Using (15) 

(B = - A b 2 ) ,  and taking the trace of (13) and (14), we find 

The integral is elementary when expressed in cylindrical coordinates with axis 

parallel to b . We find for Q 

a 
- < k, 

2 1 - b b  
Q(a; b )  = 1 n A p  b3 ) for b 

b2 I - bb a 
for k, < < ko 

= o  for ko < E  
The generalization from single species to a multiple species plasma is 

straightforward. We use Greek subscripts to indicate particle species, and 
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combine 8, 12  and 17 to find the kinetic equation for species p. 

a i a  l a  
x nv q: 7 * l d v z  Q ( U ~  - k - v l ;  v 1  - v , )  (T G, - - m v  -) a v 2  

V 

IV. CONCLUSION 

It is probably not necessary - to emphasize the fact that the collision term of 

equation 18 is approximate. Clearly "order l / ln  A' '  is a better expression for 

the e r ro r  than is "l/lnA". On the other hand even the thorough solution of the 

problem by Guernsey suffers the defect of the short range (large K) divergence, 

so that the more complicated result is not formally better than that given here. 

The collision term of (18) has the virtue of simplicity. 

This collision term differs from the usual Fokker-Planck term3 in that the 

coulomb logarithm has frequency and wavenumber dependence. This de- 

pendence involves both the relative velocity of the particles I v 1  - v ,  I and the 

doppler shifted frequency 1 w - k . v I. We establish a rough criterion for  the 

significance of this dependence by requiring that most particles I v I < Vth be 

within the region where the logarithm is decreased for In A .  This yields 

~1 2 kd V,, 2 a,,. Due to the slow (logarithmic) variation we may state that 

the Fokker- Planck collision term is modified significantly at frequencies above 

the plasma frequency. 

3. M. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. - 107, 1, 1957. 
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