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VANDERBILT UNIVERSITY

Nashville, Tennessee

Final Report on Research Contract NAS 8-2619

APPLICATIONS OF CALCULUS OF VARIATIONS
TO TRAJECTORY ANALYSIS

by M. G. Boyce and J. L. Linnstaedter

Other participants on parts of the project were

G. E. Tyler, Richard K. Williams,
Florian Hardy, Donald F. Bailey

SUMMARY

This report describes in the introduction the general nature of
the work done on Contract NAS 8-2619, and the numbered sections include
in shortened form the principal contributions that were made.

Section I extends the classical calculus of variations theory to
include control varisbles. ©Section II is a treatment of & special multi-
stage fuel minimization trajectory problem in which the lengths of the
time intervals of the several stages are known. Section IIT is a
simplified example of such a multistage problem. Section IV extends
the Denbow multistage theory to allow discontinuities in variables and
functions at stage boundaries, and in Section V further extensions are
made to include control variables and inequality and finite equation
constraints. Section VI gives an application of the theory of Section
V to a three stage re-entry problem, and Section VII is an application

to a six stage earth-moon problem, for which partial results are obtained.




INTRODUCTION

The principal field of study and research on this contract has been
the optimization of multistage rocket trajectories. A part of the work has
been on needed extensions of basic calculus of variations theory and a
part on applications of the theory. Some of the results obtained have
been published in the Progress Reports of the Aero-Astrodynamics Laboratory
under the following titles: '

"An Application of Calculus of Variations to the

Optimization of Multistage Trajectories," by M. G. Boyce,

Progress Report No. 3 on Studies in the Fields of Space
Flight and Guidance Theory, MIP-AERC=63-12, Feb. 6, 1963.

"Necessary Conditions for a Multistage Bolza-Mayer
Problem Involving Control Variables and Having Ineguality
and Finite Equation Constraints," by M. G. Boyce and
J. L, Linnstaedter, Progress Report No. 7 on Studies in
the Fields of Space Flight and Guidance Theory, NASA
™ X-53292, July 12, 1965.

The following reports were made to contractor conferences of the Aero-
Astrodynamics Laboratory:

"Transversality Conditions in the Optimization of
Multistage Trajectories," by M. G. Boyce, July 18, 1962.

"A Simple Multistage Problem Having Discontinuities in
its Lagrange Multipliers," by M. G. Boyce, Dec. 19, 1962.

- "Extensions of the Denbow Multistage Calculus of Variations
Problem to Include Control Variables and Inequality Constraints,"
by J. L. Linnstaedter, Oct. 22, 1964,

"The Multistage Weierstrass and Clebsch Conditions with
Some Applications to Trajectory Optimization," by M. G. Boyce,
Feb. L, 1965.

"Applications of Multistage Calculus of Variations Theory
to Two and Three Stage Rocket Trajectory Problems," by G. E.
Tyler, Aug. L4, 1965.
In addition to the foregoing reports, informal oral and written reports

were made from time to time to William E. Miner, former chief of the




Astrodynamics and Juidance Theory Division, and to Clyde D. Bsker, present
chief of the division.

Informal consultations of one to three days each, some in Nasghville
and some in Huntsville, were held during the time of the contract with one
or more of the following: William E. Miner, Robert Silber, Robert W, Hunt,
Grady Harmon, R. M. Chapman, Richard Hardy, W. A. Shaw, D. Lynn, C. C,.
Dearman, Ben Lisle, J. A. Lovingood, and Clyde Baker. Among the subjects
treated were transformations of the Lagrange multipliers, series expansion
methods for the solution of systems of differential equations, series
methods for in-flight corrections of trajectories, extensions of the
Denbow multistage theory, and applications of calculus of variations to
re-entry problems.

In this report the first section is a summary of necessary condi-
tions for one stage calculus of variations problems in the Mayer form
which involve control variables.

The second section concerns rocket trajectories with a specified
time interval for each stage except the last. The necessary conditions
of Section I can be applied to each stage in succession, the transver-
sality conditions at the end of a stage giving initial conditions for the
next stage.

In Section III a multistage extension of Zermelo's navigation
problem is given as an example to illustrate some features of multistage
problems.

In Section IV a summary of the general multistage theory of C. H.
Denbov is given, with modifications to allow discontinuities in functions
and variables at stage boundaries.

Section V extends the multistage theory to problems involving
control variables and having inequality and finite equation constraints.
The Mayer formulation is used, and the system of differential equation
constraints is taken in normal form since in trajectory problems the
equations of motion sre in such form. Proof of theorems are omitted in
this report but are given in the paper by Boyce and Linnstaedter in

Progress Report No. 7.




A three stage re-entry rocket optimization problem is treated in
Section VI as an example of the theory in Section V. To avoid computa-
tional complexity, simple intermediate point constraints are assumed and
a first order approximation to gravitational attraction is used.

Section VII is an application of the theory of Section V to an
earth-moon problem in which six stages are determined by intermediate
point conditions and by specified thrust magnitudes. Euler-Lagrange
equations are obtained and some vector relations deduced from them. The
Weierstrass condition yields a maximum principle. Transversality condi-

tions are given in matrix form.




SECTION I. NECESSARY CONDITIONS FCR ONE STAGE CALCULJS OF

VARTATIONS PROBLEMS INVOLVING CONTROL VARTABLES

Adaptations of classical calculus of variations theory to one stage
Bolza problems containing control variables have been made by Hestenes
and others (References 6, T, 8). The resulting principal necessary con-

ditions are stated in this section for the Mayer form of the problem.

NOTATION
t independent variable
X = (xl,---,x ) state variables, functions of t
y = (yl,--- ym) control variables, functions of t
b = (bl,---,br) parameters occurring in end conditions
T,,X, (Xll,--~,Xln) functions of b defining first end point
T X, = (le,---,Xan) functions of b defining second end point
g = (gl, ...,gn) functions of (t,x,y) defining derivative constraints
L = (Ll""’Ln) Lagrange multipliers, functions of 1t
H=L -+ g generalized Hamiltonian function
h(p) function to be minimized

Variables occurring as subscripts will denote partial derivatives,
and a superimposed dot will indicate differentiation with respect to t. A
set t,x,y,b will be called admissible if it belongs to a given open set R,
and a set §(t),z(t),h will be an admissible arc if its elements are all

admissible and if x(t) is continuous amnd %(t),y(t) are piece-wise con-
tinuous. The functions occurring in T, X, g, and h are assumed to have

continuous partial derivatives of at least the second order.

STATEMENT OF A PROBLEM

In a given class of admissible functions and parameters E(t),z(t),E




it is required to find a set which satisfies the differential equations

and end conditions
X = 5(13,_3_(_,;[) ’ tl é t § t,

t,=T.(8) , t (o)

= TE(E) s E(tl) = 2(_1(_9) » X (tz) = Eg -

2

and which minimizes the given function h(E) .

Let C be an admissible arc x(t), X(t>’ b which is a solution
of the problem. Also let C be assumed normal (Ref. 6, p. 15) and to
have ‘%(t) and Jy(t) continuous. Then C must satisfy the following

four conditions.

NECESSARY CONDITIONS

I. Pirst Necessary Condition. For every minimizing arc C there

exist unique multipliers ii(t), having continuous first derivatives,

such that the equations (EulermLagrange)

%y = HLi’ Li - -HXi’ Hyj =0, i =1y0mem, g = d,eeem,

hold along C . Also the end values of C satisfy the transversality

conditions

H.T - L, o - H.T + L_ - X + =0, k=1,ves,T,
17 =1 =X = puled 2’ ’
by by 2 T2 —Eb hbk

where subscripts 1 and 2 on H and L indicate evaluation for

t=t, and t =1 respectively.

20
As a consequence of the above Fuler-lLagrange equations it follows
that also along a minimizing arc C
di/dt = H o

and hence that, if H does not involve t explicitly, then H is
constant along C .

II. Weierstrass Condition. Along a minimizing arc C the

inequality
H(tj,}iﬁzﬁé) § H(t ;E:_X:I—‘_)

must hold for every admissible element (t,x,¥) .



ITI. Clebsch (Legendre) Condition. At each element (t:E)X7£)

of a2 minimizing arc C +the inequality

i
i B YY <0
L yiyj d =

i,)7L

must hold for every set (Yl,---,Ym) .

IV. Second Order Condition. The second variation of h along a

minimizing arc C 1is non-negative for every variation of C satisfying
the equations of variation.

(Cf. Ref. 6, p. 16.) No use of this condition is made in this paper.



SECTION II. THE OPTIMIZATION OF MULTISTAGE TRAJECTORIES WHOSE
STAGES HAVE SPECIFIED DJRATIONS

INTRODCCTION

The problem is to determine the fuel minimizing trajectory of a
rocket whose flight consists of several stages cmused by engine shut-
offs at specified times. Initial position and velocity are assumed
given and target conditions specified. In each stage the analytic
formulation is similar to that of Cox and Shaw (Ref. l), and we make
their basic assumptions that the earth can be considered spherical, the
inverse square gravity law holds, the only forces acting on the rocket
are thrust and gravity, the direction of thrust is the axial direction
of the rocket, rotation effects can be ignored, in each stage the magni-
tude of thrust and the fuel burning rate are constant, and the center of
mass of the rocket is fixed with respect to the rocket.

The general procedure is roughly as follows. Using the fixed
initial conditions for the first stage, determine as solutions of the
Euler-liagrange equations the family of minimizing trajectories satisfy-
ing those conditions. The given time t, for the end of the first stage
will fix on each minimizing trajectory ef a definite point. The totality
of these points will constitute a subspace Sl , which will be the locus
of initial points for the second stage. New values of mass, thrust, and
fuel burning rate determine new Euler-Lagrange equations. Minimizing
trajectories must satisfy these new equations in this stage and also must
satisfy transversality conditions for initial points in subspace S, .
Through each point of Sl these conditions determine a unique trajectory,
and on each of these trajectories the given time t2 for the end of the
second stage will fix a definite point. The totality of these points will
be subspace 82 , which in turn will be the locus of initial points for
the third stage, and transversality conditions will again determine a
family of minimizing trajectories, one issuing from each point of 82 .

This procedure is repeated until in the final stage the mission objectives




will impose criteria for selecting a pieced trajéctory satisfying the
given initial conditions and extending through the several stages.
Closed form solutions are not attainable in most cases. However, it
would seem possible to extend the single stage adaptive guidance mode

computational procedures through several successive stages.

FORMULATION OF THE PROBLEM

A plumbline coordinate system is used (Ref. 1, p. 108; Ref. 2,
Do ll), with the center of mass of the rocket designated by
X = (xl,x2,xs) and its velocity by u = (ul,uz,us). The time t 1is
taken as indepent variable, and u = dg/dt. The thrust vector
F = (O,F,O), having its magnitude F constant for each stage, is
assumed to be directed along the axis of the rocket. The orientation
of the rocket axis relative to the plumbline system is designated by
/= (%1;12;X3), where Xl,Xa,%B are the pitch, roll and yaw angles,
respectively.

If gg denotes the gravitational acceleration and [A] the
matrix for transformation of vectors from the missile to the plumbline
coordinate system, then Newton's second law gives as equations of motion
of the rocket

Ge=m ™ E[A)+Y , K=u. (1)

In terms of pitch, roll, and yaw, the matrix A has the following form
(Ref. 1, p. 108; Ref. 2, p. 26):

[ CPCR SPCR SR CP = cos %,
A= -SPCY - CPSRSY CPCY - SPSRSY CRSY SP = sin A,
SPSY - CPSRCY  -CPSY - SP3ECY CRCY etc.

Since roll effects are to be ignored, the roll X, will be
assumed identically zero. Hence CR =1, SR = 0, and the variable 12
may be dropped. Since fuel consumption is monotonically increasing with
time, minimization of time of flight is equivalent to minimizing fuel
consumption. It is more convenient to treat the problem from the mini-

mum time standpoint.
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In the terminology of the general theory of Section I we now have

state variables Uy Uy, Uy 5% 5%, X, control variables 11 and 'Xs s

and independent variable t .

h(b) , is simply the final time t

f

Hence t

f

The function to be minimized, the function

is one of the parameters

in b ; other parameters may occur in the initial and end conditions and

in stage boundary conditions.

The mass

m 1is assumed a known function of

t in each stage so is not included in the state variables.

Thus the problem is to find in a class of admissible sets of

functions uf(t), x(t), A(t) and parameters b a set that will satisfy

the differential equations (l) and the given end conditions and that will

minimize the final time

te

FIRST STAGE

Let the time interval for the first stage be to Stst,, and

the initial conditions, B(to) = Eb’ g(to) = 50 o On putting XZ = 0

in A and using ur-3§ for X

stant times

ul=

Up

1 =
3

Xl=

X2—

X3~

b

where W 1is the gravitational con-

the mass of the earth, we get equations (l) in the form
-Fm SPCY - pr °x,

Fm 'CPCY - pr °x,

Fm 'SY - pr °x,

(2)

In order to apply the necessary conditions of Section I, we now

define a generalized Hamiltonian

H =L, (<Fm *SPCY = ur %k, ) + L,(Fm *CPCY - pr™°x,)

-1 -3
+ I, (Fm™78Y - ur xg) * L, + Lo, +Lu, .

By condition I, Section I, the Eul

4=H,

&t

X,

1

i

its

» L

i

-H
u

i

er-Lagrange equations are

=0,i=1,2,3,j=1,3,
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These formulas give the six equations (2) plus the following eight:

L, = <L

1 4
L = <L
2 5
L = -L
3 )
o 737 -5
L, =wur "Ly - 3urx, (Lyx, + Lx, + Lx.) (3)
- 3T -5
L, = ur L2 3ur X2(L1X1 + L2x2 + Laxa)
=3 -5
Lg = wr- Ly - 3ur xa(lel +Lx, + Lsxs)

L,CBCY + L_SPCY = O
(%)
L SPSY - L_CPSY + L CY = O

1 2 3

Assuming CY # O and letting D® = LZ + L3 , E® = Li‘ + L2+ 12,

o 2
> >
we get from equations (%) that D>0,E>0

tan 'xl = -Ll/L SP = -Ll/D , CP

L /D,

D/E ,

o 2

(5)

]

tan ¥ = L,/D ,8 = L /E,CY

the choice of signs in SP,CP,SY,CY being a consequence of the Weierstrass

and Clebsch conditions, as will be shown in the next section. From (5) it

follows that the thrust vector in the plumbline system can be expressed as
F [A] = F(-8PCY,CPCY,SY) = F(Ll/E,L2/E,L3/E) .

Equations (5) may be used to eliminate the control variables from
equations (2), thus giving, together with equations (3), a system of 12
differential equations of the first order in 12 dependent variables. This
system may be written as six equations of second order, which in vector
notation are

¥ = FE/mE - ux/r° , (6)

E = -uB/r® + 3u(x-E)E/r> ,

where E denotes the vector (Ll’Lz’Ls) .
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Although the result is not utilized in this paper, it is of inter-
est to note that three first integrals of the system (6) can be readily
obtained by the following device. Cross multiply the first of equations
(6) by E and the second by x and add the resulting equations to get

E/E+x(E=0. (7)
This now yields
Efx+x)E=M, (8)

where M is a constant vector, since the derivative with respect to t
of the left member of (8) is the left member of (7).

The equations (2) and (5), after elimination of the control vari-
ables, or, equivalently, system (6), will have a six-parameter family of
solutions satisfying the given initial conditions E(to) = Eo’ﬁ(to) = X
However, since the equations are homogeneous in the L's, if u(t),x(t),
L(t) is a solution, then so is u(t),x(t),cL(t) for any non-zero con-
stant ¢ . Thus, if initial values of the L's are taken as parameters,
only their ratios are significant in determining u(t),x(t) . Hence the
value of one I may be fixed, or some function of the L's may be as-
signed a value at t =1t , say Li(to) + Li(to) + L;(to) =1 . Thus
there is a five-parameter family of trajectories satisfying the Fuler-
Lagrange equations and having the given initial values. If bl,---,b5

denote the parameters, the equations of the family may be written

u = u(t,b,,b,,0,,b,,0.) ,

(9)
X = §(t:b1’b2’b3’b4’b5) .

Each of these curves is the path of least time from the initial
point to any other point on it, assuming that a minimum exists and that
only one of the curves joins the two points. (The geometrical term-
inology refers to the seven dimensional space t,u,x and not to three
dimensional physical space.) Putting t = tl gives a point on each
curve, and the totality of such points constitutes a subspace Sl . If
S is considered as a given locus of variable end-points for the first

i

stage, then, since t has constant value t, on 5, » each trajectory
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is a time minimizing trajectory from the initial point to Sl , and hence
must satisfy the transversality conditions at Sl . This property will be
utilized in the discussion of continuity properties of the Lagrange multi-

pliers.

THE WEIERSTRASS AND CLEBSCH CONDITIONS

We now show that, with the choice of signs adopted in (5), the
necessary conditions II and III of Section I are satisfied by solutions
of equations (2), (3), (4). For the Weierstrass test let circumflexes

denote arbitrary values of the control variables. Then
H(t 39_;2(_5X)E) - H(t ,U.,X,Q,L)

=1 v . Pagkal P P
Fm (»LlSPCY + L_CPCY + L SY + L,SPCY - L_CPCY - LSSY)

I

Fu~*(E + LlsPC? - ch?c? - Lss?) >0,
as is implied by the general inequality
(a2 + b2 + c2)V2 > (a sin A + b cos A) cos B+ c sin B ,

which holds for all real values of a, b, ¢, A, B .

For the Clebsch test, the matrix of the quadratic form involved is
L SPCY - L CPCY I CPSY + L SPSY
1 2 1 2

LlCPSY + LZSPSY LlSPCY - LECPCY - LSSY .

By virtue of equations (5) this becomes
-D2/E 0
0 -E ,

which implies that the quadratic form is negative definite.

There are in all four sets of values of SP, CP, SY, CY in terms
of the L's that will satisfy equations (4). Two of them reverse the in-
equality signs in conditions IT and ITI, but there is one other set besides
that given in (5) that satisfies conditions II and III. It can be got from
(5) by replacing D by -D . This amounts to changing X, to Xy + 7



1k

and Xs to W -%Ug > and it is found that this actually producdes the same

direction of thrust as before.

SECOND AND SUBSEQUENT STAGES

For the second stage the range of t 1is tl <t< t2 . The initial
point is required to be in Sl , the equations of which are obtained by -

putting t =+t, 1in (9):

1l

2% = x.(@, (10)
x = x(tl,bl,bz,bs,b4,b5)

the six functidns in the right members being denoted by Kl(g) to con-
form with the notation in Section I. The function Tl(b) is the con-
stant t, .

The differential equations of motion are of the same form as for
the first stage, although F and m have different values. To allow for
possible discontinuities in the L's , we denote their right hand limits
at t; by L(tl +) . There are five transversality conditions (Condition

I, Section I) which must be satisfied at t =t, :

L(t,*) - glbk =0, k =1,2,3,4,5. (11)
Since these equations are homogeneous in the L's , and so are the equa-
tions analogous to (2), (3), and (4), it follows that for the determina-
tion of g(t) and §(t) again only the ratios of the L's are signifi-
cant. Thus again there will be an eleven parsmeter family of minimizing
trajectories. When values are given to the b's to fix a point in Sl R
there will be six values E(tl) s g(tl) and five transversality conditions
to determine the eleven parameters. This in general will fix a unique
minimizing trajectory issuing from each point of Sl . Let the equations
of these trajectories be expressed by the same equations (9) as for the
first stage except that now the range for t 1is from tl to t2 .
Putting t = t2 will determine a definite point on each trajectory, and

the locus of these points will be a subspace 82 with equations
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u E(tngl,bz,bs,b4,b5)

X () .

]

x = x(t_,b,,b_,b b, ;b )

22737274’

Note that again the transversality and other conditions involving the end
point need not be used to determine the five parameter family of trajec-
tories but only the conditions at the initial point.

For subsequent stages the procedure is like that for the second
stage. The initial point for the third stage would be restricted to
subspace 82 and transversality conditions involving 52(2) and E(t2+)
would be used.

The computational procedure given by Cox and Shaw (Ref. 1, p.118)
could be used in the first stage. Modifications would be needed in the
other stages to approximate the partial derivatives of the Z(E) functions
and to solve the transversality equations.

In the final stage the mission objective must be fulfilled at the
end point. Since there is little hope for closed form solutions, the pro-
posed procedure is to estimate initial conditions and use them to extend a
solution by approximaste integration methods through the several stages. ITf
the objectives are not attained, make new estimates of the initial conditions
and new computations of a minimizing trajectory, continuing thus until =
trajectory is obtained that achieves the desired objectives with sufficient

accuracy.

CONTINUITY PROPERTIES OF THE LAGRANGE MULTTPLIERS

In each stage the trajectories which are without corners and which
satisfy the Euler-Lagrange equations will have Lagrange multipliers that
are continuous and differentiable (Ref. 3, pp.202-20L4; Ref. 6,p. 12).
However, on passing from one stage to the next, there are discontinuities
in the functions defining 4 . From equations (2) it follows that there
will be corners for the functions u , and hence discontinuities might be

expected in the L's . But the functions defining X and L are
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continuous in t, u, x and have continuous partial derivatives. Thus con-~

tinuous solutions for the IL's can be obtained by taking u continuous

across boundaries, provided the transversality conditions can be satisfied.
In obtaining the family of solutions of the Euler-Lagrange equations

in each stage the homogeneity of the equations in the L's was utilized

to decrease the number of parameters by one, say by assigning an initial

value to one of the L's . As remarked in the discussion of the first stage,

the five transversality conditions for parameters bl,-“,b5 5 namely,

E(tl") ¢ -)Slb (;b_) =0, k =1,2,3,4,5,
k
are satisfied on Sl . These conditions are the same as conditions (11)

in E(t +) which hold for Sy as locus of initial points in stage two.
Hence Ll(tl-),---,Ls(tl-) and Ll(tl+),---,L6(tl+) are proportional.
By assigning equal values to one pair from the two sets, all can be made
continuous at tl .

The transversality condition involving the final time as parameter

in each stage is not homogeneous in the L's because of the term hb .
k

This condition would make the set of L's unique and not necessarily con-
tinuous across the boundary; however, it is not essential to use this con-
dition for the determination of the trajectory equations. Hence it is
possible to obtain Lagrange multipliers that are continuous through the
several stages and to use their ratios at the initial point t = to as
parameters bl,"',b5 for a five parameter family extending through all

the stages.
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SECTION III, A MULTISTAGE NATIGATION PROBLEM

A simple form of Zermelo's navigation problem (Ref. h), extended
to multiple stages, serves to illustrate some features of trajectory pro-
blems. Zermelo stated his problem for air flight in a plane, but we
follow Cicala's formulation (Ref. 5, p.19) and consider a motor boat on
a plane water surface. A rectangular coordinate system is associated with
the plane surface, and the boat is considered a point (x,y) . The water
current is assumed to have known velocity components u and v as
functions of x and y and the time t . Let the velocity vector of
the boat relative to the water make an angle 6 with the positive
x-axis and assume that the magnitude of the velocity vector is a known
constant in each stage. The path of the boat is determined by the control
varisble 6 , and the problem is to find 6 as a function of t so as to
minimize the time tf for the boat to go from the origin to a specified
point (xf,yf) that is assumed remote enough to require three stages. In
order to get a problem that will have an easily obtained closed form solu-
tion, we take the water velocity components to be constants and choose the
coordinate system so that u=0, v=a .,

The problem then is to find functions x(t), y(t), 6(t) such that

)

X=vcos 6 ,y=a+vsin 0 ; (1)

il

H = < < s = < t:
v=v, for 0 <t < tl, V=, for tl <t tz’ Vo= vy for t2 <t

1

x(0) = y(3) =0 ; x(t.) =x, , y(tf) = Y3

and such that tf is a minimum.

FIRST STAGE
As in Section I, define the generalized Hamiltonian

4+ Y
- 1 3 -+ i .
H L,v, cos 6 Lz(a v, sin 8)

From this H the Buler-lLagrange equations are found to be
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x = v, cos 0, y=a+ v, sin 6 ,

Ly=0, I,=0, i sin @+ L, cos 6=0. (2)

Hence Ll and L2 are constants, say Ll = Lll, L2 = L21 » It then
follows that 6 1is constant, and integration of the first two of the

above equations gives

X = (vl cos 8)t , y = (a + v, sin o)t , (3)

on using initial conditions x =y =0 when t =0 . Thus paths of mini-
mum time are straight lines.

If our problem were a one-stage problem with end point (Xl,yl) and

time 1ty to be a minimum, we would have for the determination of 6, ty
Lll and L21 the following equations

x, = (vl cos Q)tl ;) Y, = (a + v, sin G)tl R (%)

L, sin 6+ L cos 6=0, (5)
plus the transversality condition

L, ,V, cos 6 + Lzl(a + v, sin ) =1 . (6)

Equation (6) is found from the transversality equation in Section I by

putting
k=1,b =t,T =0, T, =t,% =0,%X, =0X_=x,X =y,h=t.
Equations (4) determine 6 and t, , while (5) and (6) give unique
multipliers

Lll = cos 9/(vl + a sin 6), L21 = gin 9/(v1 + a sin 6) . (7)

Now if we consider (xl,yl) variable and inquire as to the locus of
such points each of which is reached in a minimum time equal to t, , we
get from (4), with 6 variable, that the locus of (xlyyl) is the circle

with center (O,atl) and radius vt .
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SECONL STAGE

The locus of initial points for the second stage is the circle

mentioned in the preceding sentence. We write it as

x, = (v, cos a)tl, y. = (a +v

N sin oc‘)tl R (8)

1 1
with the parameter & replacing the 6 of equations (h), since we shall
continue to use 6 as the control variable. The differential equations
of constraint for this stage are the same as for the first stage except

that v2 replaces v, -
The Buler-Lagrange equations are as before, with v, replacing

v and henc L and L re constant, s L= T L =1
h ence 1 o 2 ) S8y 1 1z’ 2 oo

It follows that 6 1is constant.
If the end point for the second stage is considered fixed at

(x2,y2) , then transversality conditions for parameters & and t2 are

L. vt sin ¥ -L vt cos =0,
12 11 22171

(9)

L v cos 6+L (a+v sin 8)=1.
12 2 22 2

The first of these equations, together with the last of the Euler-lLagrange
equations, implies that 6 = & . Then, from the pair of equations (9),

it follows that

- ) T aa C o as
L, = cos 6/(v2 + a sin 9), L, = sin 9/(v2 + a sin 6) . (10)

Thus L and L are not equal to L and L , indicating discon-
12 22 11 21

tinuities in the multipliers at stage boundaries. However, the control
variable 6 is continuous, being in fact the same constant in the two

stages.
On integrating the BEuler-Lagrange equations for x and y and us-

ing (8) as initial conditions, one finds that

X (v2 cos 6)t + (vl -V )t cos 6,

2° 1

[}

y = (a+ v, sin o)t + (vl - v2)t1 sin 6 .
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For each constant 6 , the path is a straight line.

Now consider the locus of end points (xz,yz) that will each be
reached in minimum time tg . Fixing t = t2 in (11) and considering
6 variable shows the locus to be the circle with center (O,ata) and

. + - .
radius v, t, v2(t2 tl)

THIRD STAGE
With the circle of the preceding sentence as locus of initial
points, the end point is required to be (xf,yf) and time tf is to
be a minimum. In the same way as before the path is shown to be =z
straight line with the control variable constant and equal to its value

in the preceding stages. The new equations for x and y are

x (v3 cos 0)t + [ (vl - v2)tl + (v2 - vs)t2 [ cos 6,

(12)
y = (a + v_ sin 0)t + [(vl - v2)tl + (va - Vé)tz] sin 6 .

By putting the given values XpsVe in equations (12), one can solve for
the minimum time + =t and for the constant control angle 6 . Then
equations (11) with t = ta’ X =x,,y =y, and equations (8) determine

the corner points (xl,yl) and (Xz’yz) .

CONCLUSIONS
This problem illustrates the extension of a trajectory across stage
boundaries where the differential equations of constraint are discontinuous.
The effect of the homogeneity in the Lagrange multipliers is similar to that
in the more general problem.
The unique Lagrange multipliers that satisfy the Euler-Lagrange
equations and the transversality conditions of I, Section I, are discon-

tinuous at stage boundaries. However, the ratio La/Ll = tan 6 1is the

same for each stage. The equations containing L's are homogeneous in
the L's , except that the transversality condition computed for the final
time as parameter in each stage is not homogeneous. But this transversality

condition is not needed to determine the family of minimizing trajectories
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which satisfy initial conditions in each stage. That is, in order to ob=-
tain a pieced trajectory extending through the several stages, only the
ratio of the L's 1s needed, and, since the ratio is preserved, the L's

may be chosen continuous.
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SECTION Iy, ON MULTISTAGE PROBLEMS HAVING DISCONTINUITIES AT
STAGE BOUNDARTES

Discontinuities will be allowed in the functions appearing in
the differential equation constraints and in the dependent variable
coordinates defining admissible paths. Let t be the independent
variable. For fixed p, define a set of variables(to, tl, ceey tp)
to be a partition set if and only if to <%0, < tp. Let I

1
denote the interval to <t < tp and Ia the subinterval t,gSt< t,

-1
fora=1, ...,p-landt, , <t< t, for a = p. Let z(t) denote
the set of functions (zl(t), cee, zN(t)), where each za(t), a=1,
+es, N, is continuous on I except possibly at partition points

: . I - +
tys oo Ep'l. At these points right and left limits za(tlz, za(tl),
ces za(tp_l) are assumed to exist and we let za(tb) = za(tb), b=1,
L) p -l.

The problem will be to find in a class of admissible arcs

z(t), (tgreeesty), t,St<t,

satisfying differential equations
(1) ¢; (t,2,2) =0, tinI, B=1,...,M<N,
and end and intermediate point conditions
‘ - +
(2) fY(to,...,tp,z(to),z(tl),z(tl),...,z(tp)) =0,

r=1, «.., K< (N+l)(P+l),

(3) 26(80) = 2o(]) = dg = O
one that will minimize

£ (b 5eenst, 2(8)), 2(8]), z(tI), coes 2lt))s

p
1
Let R a be an open connected set in the 2N+1 dimmensionsal

(t,z,2) space whose projection on the t-axis contains Ia' The

. a
functions ¢B are required to have continuous third partial deriva-

1 ) 1
tives in R and each matrix "¢a. is assumed of rank M in R .
a Bza a

wy



1
Let 8 denote an open connected set in the 2Np+p+l dimmensional space

- +
of points (to,...,tp,z(to),z(tl),z(tl),...,z(tp)) in which the functions
fp’ p=0,1, ..., K have continuous third partial derivatives and the

matrix

is of rank K+1.

An admissible set is a set (t,z,Z) in R for some a=1,...,p.

An admissible subare C is a set of functions z(t), tonlI a? with each

(t,z,2) an admissible set and such that z(t) is continuous and z(t)
is piecewise continuous on I « An admissible arc E' is a parti-
tion set (t ,...,t ) together with a set of admissible subarcs C;,
8=1, ..., B, such that the set (t_,...,t ,z(t ),z(t ), z(t ),...,z t ))
is in S .

Multiplier Rule. An admissible arc E' that satisfies equations

(1), (2), (3) is said to satisfy the multiplier rule if there exist con-

stants ep not all zero and a function

F(t’z)é})\) = KB¢;(t’Z)é)’ t in Ia,

with multipliers Xﬁ(t) continuous except possibly at corners or dis-

continuities of E', where left and right limits exist, such that the fol-

lowing eguations hold:

T
(5) F, ij; F dt+cy, t inT,
"o Yta-1 o

e f + [i . ]fo =
) pto ana

[F]t 0,




[, T2 o,

eﬁ%@@f”ﬁJQV %%
eppra(tp) - [Féa]t = Q.
P

Every minimizing arc must satisfy the multiplier rule.

An extremal is defined to be an admissible arc and set of multipliers

7ty (6 5eeest )y M(2), t St St

satisfying equations (1) and (5) and such that the functions
éa(t), XB(t) have continuous first derivatives except possibly at par-
tition points, where finite left and right limits exist. An extremal is

non-singular in case the determinant

F, . ¢5i “ a,n

l L J N
ZaZ“ a;% ’ ’

IQ B, 5=1, ..., M

¢ . 0 2 ) )

BZm I

is different from zero along it. An admissible arc with a set of multi-
pliers satisfying the multiplier rule is called normal if e, = 1. With

this value of e the set of multipliers is unique.
o

Weierstrass Condition. An admissible grc E' with a set of multi-

pliers xB(t) is said to satisfy the Weierstrass condition if

(t,2,2,),2) = F(t:Z:Z,)\) - F(t,z,2,\)

o !
- (Za - Z(x)Fé ('t,Z,i,)\) >0
(04

holds at every element (t,z,i,x) of E' for all admissible sets

(t,z,2) satisfying the equations @2 = O. Every normal minimizing arc

g

must satisfy the Weierstrass condition.

Clebsch Condition. An admissible arc E' with a set of multipliers

xB(t) is said to satisfy the Clebsch condition if

Féoénﬂt,z,i,x) o >0

A
N



holds at every element (t,z,%2,)) of E' for all sets (ﬁl,...,nN)

satisfying the equations

¢Zéa (t,2,2) n, = O.

Every normal minimizing arc must satisfy the Clebsch condition.




SECTION ¥. ON MULTISTAGE PROBLEMS INVOLVING CONTROL VARIABLES
AND HAVING INEQUALITY AND FINITE EQUATION CONSTRAINTS

By the introduction of new variables and by notational
transformations the theory of Section I/can be utilized to es-
tablish necessary conditions for the more general formulation of
this section. As before, let t be the independent variable and
define a set of variables (to, ooy tp) contained in the range of
t to be a partition set if and only if to < tl <...< tp. Tet I
denote the interval to <t< tp, and let Ia denote the sub-interval

ta-l <t< ta for a=1, ..., p -1 and ta <t< ta for a = p.

-1
Let x(t) denote the set of functions (xl t) , ..., X (t)).
For each i, i =1, ..., n, assume xi(t) to be continuous on I

except possibly at partition points t,, b =1, ..., p -1, where

b’
finite left and right limits exist; denote these limits by xi(tg)
and Xi(t;)’ respectively. The amount of discontinuity of each
member of x(t) at each partition point will be assumed known, and
we write
+ -
xg () - x; (8) - ag =0,
; _ +
with each d,, & known constant. Also let xi(tb) = xi(tb). Thus
b if and only if dib = 0.
Let y(t) denote the set (yl(t), cee, ym(t)), where yj(t) is

plecewise continuous on I, j =1, ..., m, finite discontinuities being

xi(t) is continuous at t

allowed between, as well as at, partition points. In the formulation
of the problem the yj(t) will occur only as undifferentisted variables
and will not occur in the function to be minimized nor in the end and
intermediate point constraints. Such variables are called control

variables, while the xi(t) are called state variables.

The problem is to find in a class of admissible arecs

x(t), y(t), CIPRR tp), t, St <t

which satisfy differentisl equations

. a
k= Li(t,x,y,), tin I, a

f
'_J
e
-
e
.
'_l
i

1, «.., n,




finite equations

MZ(t)X’Y)=O) g=1, ..., q,
inequalities
a
Nh(t,x,y) >0, h=1, ..., r, g +r<m,

and end and intermediate point conditions
- +
Jk(to, cees tp, x(to), x(tl), x(l), cee, x(tp)) = 0,

k=1, ..., s< (n+1) (p+1),
+ -
x,; () - x; (t) -d; =0, b=1,...,p-1,
one that will minimize

J (t

Sl wees B, x(to), x(ti), x(t;:), ceey x(tp)).

P
In order to state precisely the properties of the functions in-

volved in the problem, let Ra be an open connected set in the m+ n + 1
dimensional (t,x,y) space whose projection on the t-axis contains the
interval Ia’ and let S be an open connected set in the 2np + p + 1

dimmensional space of points

(bgs --es by x(t)s x(87), x(t;:), cos x(t )

The functions L?, MZ, N; are assumed continuous with continuous
partial derivatives through those of third order in Ra’ and JO, J

k
are to have such continuity properties in S. For each a, the matrix

e °
&5
a a
M N, D!
3 hyj l‘
is assumed of rank g +r in Ra’ where Di is an r by r diagonal
matrix with Ni, ceoy Ni as diagonal elements. The matrix
J J J J J -\ dJ +y J
! ct, ety ety cxi(to) cxi(tb) cxi(tb) cxi(tp)\ , =0, ..., s,

is assumed of rank s + 1 in S.




An admissible set is a set (t,x,y) in R, for some a=1, ..., p.

An admissible sub-arc C_ is & set of functions x(t), y(t), t+ on I,

with each (t,x,y) admissible, and such that x(t) is continuous and

x(t), y(t) are piecewise continuous on I_- An admissible arc is a

partition set (to, ooy tp) together with a set of admissible sub-arcs
C,a=1, ..., p, such that the set (t., ..., t_, x(t ), x(ti),x(t;),...,x(tp))
is in S.

On introducing a generalized Hamiltonian function H as defined
below and utilizing the normal form of the differential equation
constraints, one can now apply the theory of Section I+ to obtain the

following multiplier rule.

The Multiplier Rule

An admissible sre E for which

- +
Jk(to, ceey tp, x(to), x(tl), x(t)), «oes x(tp)) =0,
+ -
x; (t) - x(6) = agy o,

is said to satisfy the multiplier rule if there exists a function

h ' h’
with multipliers xi(t), ug(t), vh(t) continuous except possibly at

a
H(t)x)Y)K)“;v) = xiLi - ugMZ + v Na

partition points or corners of E, where finite left and right limits

exist, such that for each t in Ia’ 8 =1, «o., P,
t
(1) x.=-.[ H dt +c,H =0,% =17, M =0, &> 0,
i a-1 X4 i yj i’ g h

and such that the transversality matrix

H(t,) H(t) - Hg) -B(t) - (t) SRR WY A ()

(2)

J J J J
ct cty et cxi(to)

chi(t;)+chi(t;) chi(tp)

is of rank s + 1. The multipliers vh are zero when Nh > 0. Every

minimizing arc E must satisfy the multiplier rule.




Between corners of a minimizing arc E the equations

%, = Hl.’ A = Ho Hy, =0, wH =0 (not summed)
i i J h
hold and hence also
dH
at ~ Ht'

Transversality Conditions for Normal Arcs

Under the usual normality assumptions, the transversality matrix
can be put into a form having one fewer rows. This leads to the
following statement of transversality conditions.

For a normal minimizing arc the transversality matrix

H(to)+JOto H(t;)-H(t;)+Jotb -H(tp)+JOtp —xi(to)+Joxi(to)

J J J J
Kt Kt Kt kxi(to)

+ -
_xi(tb)+li(tb)+Joxi(t;)+Joxi(t;) Xi(tp)+Joxi(tp)

T (8) e, (47) T, (¢,)

is of rank s.

Since the matrix is of order s + 1 by (n+l) (p+l), the requirement
that the rank be s imposes (n+l) (p+l) - s conditions. This is one
more condition than was imposed by (2), which was sufficient to determine
the multipliers up to an arbitrary proportionality factor.

Weierstrass Condition

For a normal minimizing arc E +the inequality

)\iLi (t)X:.Y) 2 )\iLi (t}X)Y)

must hold at each element (t,x,y,x,u,v) of E for all admissible sets

(t,x,Y) satisfying Mé(t,x,Y) = 0 and Nh(t,x,Y) > 0.

Clebsch Condition

For a normal minimizing arc E the inequality

H T <0
yjye J




must hold at each element (t,x,y,\,u,v) of E for all sets m, , ..., T

satisfying ng.(t,x,y)ztj =0 and Nhy_ (t,x,y)nj = 0, where in the last

J J
equation h ranges only over the subset of 1, ..., r for which

Nh(t,x,y) = 0.

For a normal minimizing arc the multipliers v, are all non-

h
negative.




SECTION +4I. A THREE STAGE RE-ENTRY OPTIMIZATION PROBLEM

In this section the theory of Section II is applied to a three
stage re~entry problem. Since it is primarily an illustrative ex-
ample, certain simplifying assumptions are made. In particular, the
vehicle is assumed to be a particle of variable mass, with thrust meg-
nitude proportional to mass flow rate and thrust direction subject
to instantaneous change. Moreover, external forces are required to
be functions of position only, while the earth is assumed spherically
symmetrical and nonrotating with respect to the coordinate system
of the vehicle. TFinally, motion is restricted to two dimensions,
gravitational acceleration is approximated by first order terms, and
air resistance is neglected.

The foregoing conditions allow the motion of the vehicle to be

described by the following equations:

-a®x + cBlm“l cos 6, t, St <,
4= -a%x, t) St <ty
-a®x + cB m_l cos @ t. <t<+t,,
3 ’ 2- =73
-g +2a2y+cBm’lsin9 t <t<t
o 1 ? Yo - 1’
u= - 2 <
v g, + 28y, 6 <t <ty
2 -1 .
- + <
g, + 2a%y dBam sin 0, t2 <t< t5’
*=u, t <t<t,,
J=v, tgSt< b,
By St <ty
m = o, t St <ty
B, t,<t<t




where to is initial time, t, is final time, and tl, t are

3 2

intermediaste staging times. The symbols a, go represent gravitation

constants, and B., B, denote constant mass flow rates. This des-

3
cription implies a burning arc, a coast arc, and finally a burning
arc, with B3 not necessarily different from Bl'
The following end and intermediate point conditions will

be imposed.

I - t =0,

Jp = u (to) - u, =0,
JBEV(tO)=O,

J), 2 x (to) =0,

Is =y (t) -y, =0,
J6§x(tl)-xl=0,
Jo2y (8,) -y, =0,
J8Ex(t5)-x5=0,
J9Ey(t5)-y3=0,
JlOEm(tB)-m3=O,

and
m (t)) - m (tI) =d,

with uo? Yoo Xl’ ye, x3, yB, m3, dl’ Bl’ and B5 known constants.

The function to be minimized is taken to be the sum of the times
of the powered stages, that is,

= - + - .
Jo tl to t5 t2

If Bl = B5’ this i1s equivalent to requiring that the fuel used be
minimized, or J_ I m (to)° The conditions J, and J7 insure the
existence of three stages.

The Multiplier Rule of Section "7 allows the following Hamiltonian

to be written:




A (-a®x + cBlm-lcos 0) + Ao (-go + 2a%y + cBlm-lsin 6)
gt v g (B, 1, St <ty
H = A (-a%x) + ry (-g + 2a®y) + Ay ut NV, by <t <y,
A ta®x + cBBm-lcos B) + Ao (-go + 2a%y + cBBm-lsin )
T Azu Y g (-Bg), t, <t <ty
The Euler equations for this Hamiltonian are:
Aot Az =0,
Ay T ay, =0,
Ry - @ = 0,

i)_‘_ + 28.2X2 = O}

e - -2 . -
xs B m (xl cos 6 + 3, sin 8) = O,

-1 . ) _
cBlm (xi sin 6 - \, cos g) = 0,

for t in Lto, tl);

XE + Xh - 0,
o 2 _
XE - a )\l - O 2

Xh + 23212 =0,
for t in [t , t,); and
IS 15 =0

- ale =0,

f. - cB ne (3. cos 6 + 1. sin 6) = O
5 ) 1 2 ’

-1 ) _
cB5m (xl sin 6 - 1, cos p) = 0,

for t in [tg’ t5],




N
N

Simple techniques for integration allow these equations to be

expressed in integrated form as follows:

A, = A sin a(t + Cl),

A, = A, sinh al2(t + c,)

XB = —aA1 cos a(t + Cl) ,

A, = ~aA_ 2 cosh a2 (t +C.),

2 2
for to <t < tl;
A = A1 sin a(t + Cl),
t LN
A, = A;2 sinh af2(t + 02),

15 = —aAl cos a(t + Ci),
1 1
A, = -aAéJé cosh a2 (t + 02),

for t <t <ty

11

M = A sin a(t + ),

and

A, = A sinh a2(t + A ),

Ay = -ah, cos alt + Cl),

N, = -aAE'JE cosh aJE(t + Cé ),

for t2 <t< t5' It is clear in expressing *1’ Xg’ 15, Xu as functions
of time with two constants of integration, that the last two Euler
equations in stage 1 and stage 3 have been ignored. These equations
together with the Welerstrass condition will be used to expressed the
control angle as a function of the multipliers Kl and 12, From the

last Fuler equation of stage 1 and stage 3 we have (for Kl % 0, cos 6 % 0)

tan 6 = x%//xl

and hence

sin 6 = + Ay Xl t
and

cos 8 = + x%/ﬂfif':fzg .




From the Weierstrass condition of section TT,
-1
+ . _ _ .
cBlm (xl cos B A, sin 2 A, cos o KE sin Q@) >0
for to <t <t. Here 6 is the control angle that actually optimizes,
and O ranges over all possible control angles for which the original
equations of motion are satisfied. This expression being non-negative

is equivalent to maximizing the following function (with respect to Q):

W=7 cos@=-), sinQ
W -2 . .
Thus “= = 0 and 2°W < 0 which gives
g \
) o

- sin O + c Q=
Xl sin xg cos 0

and -\, COs O - XE sin @ < 0.

1
thus tan O = xel/xl and

+ 2 + 2 + + 2 + 2 >
G A AT ) A, (£, /Jxl A2) 20
which implies that cos Q = xl//J xi + xg and similarly that

sin a = 12//Ji? + xg . Hence the control angle 6 is expressed as
follows:

tan 6 = h?//kl’ N £ 0, cos 68 # 0,

cos 6 = £\, [NAZ + 2%
1/VM 7 Ao,
sin 0 = "e/m

for stage 1. The same expressions for control angle 6 hold for stage 3.

The fifth Euler equation on stage 1 and stage 3 becomes

_ ¢ “2[72 , .2

X5 = cBlm \xl + xe, to <t < tl’
=2 T2 ]

Bt T e, g, <t <t

The transversality matrix which is given at the end of this section

has eleven rows and twenty-four columns and is of rank ten. From
this matrix fourteen end and intermediate conditions are found.
These conditions imply that all multipliers, except possibly

XB at tl and Ku at t

57 are continuous across staging times.




3

Alsc the following condition holds at tl:

=1
B
c lm
+ +
where ), = L. (%
A similar condition that holds at +t

cB m_l

3

()\lcose + xesine) + )\5 (B,) + (x; - )\;) u+l=0

P

1

o is:

(xlcose + xzsine) - 15(B3) + (XZ - xi) v-1=0,

The other four conditions implied by the transversality condition are:

(t )=

X5 o

xl(tB)

xg(t5

- H(tB) +1 =20

An optimal trajectory for this problem requires the finding of

fifteen constants of integration from the equations of motion, a like

number from the Euler equations, and the four times to, tl, t2, and

t,. Fourteen transversality conditions, ten end and intermediate

3

conditions, and ten requirements on state variables at staging points

provide the necessary number of conditions for the determination of

these constants.

It is possible to start at the last stage to determine the

integration constants for the Euler equations in terms of multiplier

values. The constants for the third stage are:

n

!

"

A2 =

"

1t

1

Because of the

The values for A

from the third

difference

A5/
_XMB/aJ—;
C, =C

continuity of Xl and )\

is the final value of )

5)’

3 at t2’

only hold for the third stage. To proceed

stage back into the second stage we need the value of the




\:\l

)‘h(t;) - )‘h(t;>° This can be found from the transversality condition

gbove which holds at t?. Supposing this equation solved, the deter-

mination of constants Aé, Cé for the second stage can proceed, and

these values also hold for the first stage for )\2 and )\uo An

analogous procedure is applied to )‘l and )\ for the first stage.

3
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SECTION VII. NECESSARY CCNDITIONS FOR A SIX STAZE EARTH-MOON
TRAJECTORY OPTIMIZATION PROBLEM

INTRODUGCTION

The problem is to determine a fuel minimizing trajectory for a
earth-moon rocket for which six definite stages are defined by specified
thrust magnitudes and by intermediate and end point constraints. The
procedure will be to apply the Denbow multistage calculus »f variations
theory as modified by R. W. Hunt {funpublished paper presented to contractor
conference Oct. 9, 1963, on "A Generaiized Bolza-Mayer Problem with Dis-
continuous Solutions and Variable Intermediate Points") and by Boyce and
Linnstaedter (Progress Report No. 7). The problem studied here is simi=-
lar to one treated by Dr. Jan Andrus (in an unpublished paper also
presented to the Oct. 9, 1965 conference, entitled "A Variational
Formulation of Earth to Moon Trajectories"}, but our approach is somewhat
different.

In this section the Euler-Lagrange equations are obtained from the
multiplier rule of Section ¥V, simplified vector forms of the equations
are developed, the Welerstrass condition is used to deduce a maximum

principle, and the transversality matrix is given.

ASSUMPTIONS

1. The first part of the rocket flight, from blast off through the
atmosphere, is not included in this study. Initial values of position,
velocity, and mass are supposed given at sufficient altitude to make
atmospheric resistance negligible.

2. The only forces acting on the rocket are the motor thrust and
the gravitational forces of the earth, moon, and sun.

3. The fuel burning rate and the thrust magnitude are assumed to
be known constants in each stage.

4., The direction of thrust is along the axial direction of the
rocket and the center of mass of the rocket is fixed with respect to the
rocket.

5. Roll effects on the rocket are ignored.




FORMULATION OF THE PROBLEM

The independent variable is the time +t , and the state variables
are the position coordinates x,y,z 1in an ephemeris coordinate system,
the velocity components u,v,w, and the mass m . The control variables
are the pitch angle XP and the yaw angle XY determining the direction

of thrust. The burning rate m is constant in each stage and is denoted

L1

by Ba,a =1,+++,6. Thrust magnitude Fa is also constant in each stage.

Staging intervals are denoted by

: = ! + =
Iyt St< t, for a 1,2,3,4,5 and t, St< t, for a

Gravitational forces are functions of position coordinates only and have

components represented by X {x,7,2}, Ya(x,y,z), Za(x,y,z).

Let underlined symbols denote vectors as follows:

X = (X:YJZ)) u = (u,V,W}y A= (7\15)\2},7\3>5 g = (.)\4:7\59)\6)5
A = (-sin XP cos XYy cos XP cos XY’ sin XY), X, = (XayYa,Za),
and let
X X X
ax ay az
M = Y v 4
a ax ay az
Z Z Z
ax ay az

where subscripts x,y,z indicate partial derivatives.

The equations of motion of the rocket then are

X =u,
(1) a=F mtA+X ,
m = =Ba .

6.

The end and intermediate conditions, in the notation of the paper by

Boyce and Linnstaedter, are assumed to be

J =m = m(t6) , the function to be minimized,
[} [




Lo

Iy = 0, k =1,+--,18, where
Jl = to’ Je = X(to) R Js = y(to) R J4 = Z(to) "%

() Jg = u(to) -u, Jg = v(to) -v,, I = w(to) -, Jg = m(to) -m,
J9 =ty - dy = -}E(tz) ) X(tz) “ oy Jgy = E(tz) *_u(t2) = S
Iy = E(tz) ) u(t2) = Cys Jyg =ty =ty =y
VRS ACKSARF 3(?6))’ L= dyeesy5e

The ¢; are functions defining the mission orbit about the moon. The

following constraints are also assumed:

(3) m(t:) - m(ti) -c, =0, m(t:) - m(t:) -c, =0,B, =F =p_=F =0.

and the numbers B_, F, for a = 1,2,4,6 are known positive constants.

MULTIPLIER RULE AND EULER-ZAGRANCE EQUATIONS

Lagrange multipliers xl,-o-,x7 will be introduced through a general-

ized Hamiltonian H defined as follows:
\ -1
H(t’E:E)m)l’E’xp’%‘g) =Fn =y A+pe X Htpeu-AB

for t in Ia . We apply the corollary to the multiplier rule in Section
IV to obtain the following Euler-Tagrange equations:

A= g
G=-aM,
C e
() A, =F m=)-A
0=F_ n"t)-3A/3%

For stages in which F_=0 (or B, = 0) the optimizing arc is

singular in the sense defined in Section 7V in that the determinant
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(5) )
e Ay

is zero.
If Fa and cos Xv are not zero, the next to the last of equations
(4) implied that

A, cos XP A, 51n'XP =0,
and hence that

6)  andy = ay /oy s sy = o /BT  con oy < 3/ VKT E

The sign of the radical would be ambiguous but is later shown to be positive.
From the last of equations (4), assuming cos XP # 0 , it follows that

2

2
)\l

+ A, sin XY ~ A, cos XY =0 .

Therefore

(7) -tan %Y = Xs/m 2 Sin XY = )\8 / )\ 5 COoSs X_‘_? = \/Ti—:_—}\—g / )\ J

where ) = in + xz + xg , the magnitude of 3} .

X3
From these results it follows that
A, = -\ sin XP cos ’)(Y (7\”.)‘1;)\3)
(8) A, = A cos %P cos %Y oy R
%p *
Xs = % sin XY

A

Thus 11’ A are rectangular coordinates of a point having distance 3

22 A3
and angles 7%, measured from the A, exis and XY from the } ), plene as
shown in the figure.

By use of equations (8), one can now write the equations of motion

(1) and the Euler-L.agrange equations in the following form, which is free




L

of the control variables XPg Xy -

X=3u
s T =1 (-3 =
e R S
ho= B

(9) 0
i=u
o= =AM

s T -2
xi.,~fam A

Also, along an extrsmal, the Hamiltonian can te written
E=F mma+a-X +p-u-rp,
(1¢) =5 « X +tp e u+ dly mj/at,
since F, mt oy - A B, = mi_ o+ M .
3 ‘

“The system (9) can be written as a system of six second order differ-

ential equations in the six dependent variables x,y,z,xl,xz,kg :

i
i

- w1 7 - el o +
Fa 7wy = Bt/ T A s
(11)

“l Ma

>
it

By taking the vector cross product of ) with the first of equations (z1)

and of x with the second we get
A X

EXxe=aM Xz

I8
Il
>
><

&N

If the rocket is near enough the earth that other gravitational foyces

can be neglected,; then the gravitational force vector X can be written

where g is a constant. It follows that

with similar expressions for the othner elements in the matrix Mac Hence
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AM = ga(r"s(x +y+z2)x -0,

and equations (13) become

AXE=-gr?aXx
(13)

PXx=g, 02Xz

On adding equations (14), we get
(1) A XE+AXx=0,
which holds slong an extremal.
THE WEIERSTRASS CONDITION AND MAXIMM PRINCIPLE

From the Weierstrass condition of Section ¥V, it follows that, in

case F_ # 0 , the inequality
A sin XP cos XY + ), cos %P cos XY A, sin XY 2 A, sin X, cos X, +
+ .
12 cos XP cos XY Xs sin XY
must hold for all admissible XP,XY . This implies the Maximum Princirie

that an optimum trajectory must have control variables XPy XY maximiz=-

ing the function
(15) L = -\, sin XP cos YY + %, cos Xé cos XY + 3, sin XY .

The first partial derivatives of L must therefore be zeros

il

-\, cos XP cos XY - 1, sin XP cos XY =0

A, sin XP sin XY ~ A, cos XP sin X& + 3, cos XY =0

>-£-'
=<
!

These are the same as the last two of the Buler equations (4) with the
factor F_ m~t removed. Substitution of the solutioms (6}, (7) of (k&)
into (15) gives

_ 2 2 2 _
(16) L =g Jil AL T AL T sk

where s 1s a sign factor %1 arising from the ambiguity of the
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radicals in (6) and (7). However, it is clear that s must be +1,
since if s = =1 some choice of XPj XY would give L a greater value
than =).

Thus

(a7) L=y

on an optimum trajectory.

TRANSVERSATITY CONDITIONS

The transversality matrix in the form given for normal arcs in
Section V will have 19 rows and 56 columns and must be of rank 18. Formal
calculation of the matrix will show that certain columns have zero elements
in all but the first row. It will then follow that the element in that row
must also be zero. Since such an element is of the type f(z+) -~ f(c-} ,
its vanishing implies the continuity of the function at the point. Thus
some of the transversality conditions simplify to the requirements that

the following functions be continuous at the points specified:

H at t,,t,,t;

)\i at tl)ts’t4,t5 fOI‘ i = 1’00056;

Ay 86ttt Lt Lt
Also x7(t6) =1.

Elementary row and column transformations now make it possible to
express the remaining transversality conditions as the requirement that

the following matrices be of ranks 3 and 5, respectively:

1 - + - + - + - + - + - +
HMe " M Rop R Ao T A, A A Ay A, hee ™ Rao
i
X 7 C 0] 0]
2 Vs 2
Yo Vs Yo *s Vs Zs
0 0 0 u2 VZ w2
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the above matrices subscripts 2 have been used to

indicate evaluation at t, . In the second matrix all of the ’4”5 are

evaluated at ts .

and subscript 6 on the

A's

+ -
The symbol G denotes H(ts) - H(ts) - H(te) .

indicates such evaluation.




