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ABSTRACT

The results of research performed at SRl for
NASA Ames Research Center on Contract NAS 2-2457
are summarized. The subject of this research is
the dependence of the performance of a control or
guidance system upon the information-handling char-
acteristics of such key components as sensors. The
disciplinesof information theory and control theory

are used to consider both the quantity and value of

information.
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SUMMARY

p

255 7P

The present final report summarizes the work accomplished from

November 1964 to September 1965. Its main theme is the dependence of
the performance of a control or guidance system upon the information-
handling characteristics of i1ts key constituents, notably the measure-

ment and control subsystems.

To determine this dependence, the disciplines of control theory and
information theory are reviewed and extended. The notions of quantityof
information and value of information are shown to be the principal measures
of information; however, entropy (the measure of quantity) is of very

limited assistance for the design of control and guidance systems.

The dependence of system performance on the information-handling
characteristics of its constituents 1s investigated for optimum controllers
and fixed controllers. The case of optimum controllers is resolved by the
newly developed theory of combined optimization, where the optimum control
decision is determined by the prior information and the measurements re-
ceived. The case of fixed controllers is resolved by consideration of
stochastic difference equations as well as known methods of classical
control theory. The sensitivity of performance with respect to the
relevant design parameters provided in both cases is particularly useful

for system design and evaluation.

Additional results relating to the optimum design of quantized con-

trol systems, information systems, and adaptive systems are given.




I INTRODUCTION

This report summarizes the results of a one-year study performed by

Stanford Research Institute for the NASA Ames Research Center under

Contract NAS 2-2457. The main problem pursued during the course of the

study, namely the combined optimization problem, was formulated in an in-

A ) * . .
terim technical report;1 and a solution, supported by examples, is con-

tained in a NASA Report.?

The present volume reports on the objectives of the study, summa-

rizes and relates the main findings, and justifies the approach taken.

A. OBJECTIVES OF THE STUDY

The main objective of the study is to

‘relate the performance of

control and guidance systems to the characteristics of the information

links between the various constituents, with the aim of providing exact

and approximate synthesis techniques for an efficient design.”

Specifically, answers to the following questions are desired:

Of which states and parameters should measurements be
made while the system is operating?

How good must these measurements be in order to permit
a stated and specified measure of system performance to
be achieved?

What are the trade-offs between alternative measurement
systems, i.e., different grades or types of sensors?

How can a priori knowledge about the system obviate the
need for acquiring information by means of measurements?

When is it possible and justifiable to achieve stated
system performance as a result of elaborate information
processing as opposed to accurate sensing?

*

References are listed at the end of the report.




e How does one derive optimum control decisions, given
a set of measurements which are ordinarily incomplete
and corrupted by noise?

From these objectives, it is clear that the concept of information
plays a central role and that quantitative descriptions of information
must be defined to answer the questions previously raised. Since con-
trol system theory and information theory are the two scientific disci-
plines most closely related to the central theme of the study, their
potential was to be critically reviewed and, if warranted, extended. One
important question in need of a precise answer was ‘“What is the usefulness
of such information-theoretic measures as entropy to aid in the synthe-

sis of control and guidance systems?”

B. JUSTIFICATION FOR THE STUDY

With the advent of complex systems, such as used for space naviga-
tion, exploration and communication, the dollar cost of the sensors and
the information links has become a significant part of the total system
cost. Synthesis techniques allowing the specified systems objective to
be accomplished with the least costly combination of sensors and commun-
ication links consequently havean obvious economic justification. Fur-
thermore, the forthcoming generation of relatively inexpensive and compaet
digital computers (integrated circuits) in many cases make it possible,
by elaborate data processing, to obviate the need for very accurate sens-
ing. Finally, in many advanced missions, the objective can be satisfied
only if the operation of the various subsystems is optimized; consequently,
a very high premium is placed upon the complete utilization of all infor-

mation to generate optimum decisions.

As regards the scientific justifications, it is noted that an ever
increasing fraction of the engineering, mathematical, military, and busi-
ness communities are concerned with the problem of generating decisions
(or delegating this function to computers) based on the informationavail-
able about the systems that these decisions affect. This preoccupation
has given rise to several scientific disciplines—such as control theory,
information theory, operations research, theory of games and others—that
may will soon become unified under the general heading of Information

Sciences.




in all of these disciplines, the information and decision processes
(as opposed, for example, to energy considerations) play a central role.
It is consequently of considerable scientific interest to understand what
quantitative descriptions of information can be defined, and how the in-
formation and decision processes are related among themselves as well as

to the objectives pursued by these systems.

Although the remainder of this report is concerned with “physical”
systems, such as found in control and guidance applications, it is empha-
sized that the general conclusions as well as the specific mathematical

developments are applicable directly to “non-physical” systems, such as

found in operations research, strategy, and econometrics.

C. TERMINOLOGY AND NOTATION

It 1s assumed that a dynamic process, also referred to as the plant

or signal-generating process,
k+1 = f(xkrukywktk) (I"l)

1s given. The state x, is a non-unique set of numbers that, together
with the known parameters, completely describes the condition of the dy-
namic process at the discrete time k. The decision or control vectoru,

allows the modification of state x in some desirable way. The dis-

k1
turbance or perturbation vector w, alters the state in an arbitrary and
usually unpredictable way. The time variable accounts for the known and

predictable effects and parameter changes.

In the remainder of this report, difference equations will usually

be preferred to differential equations for two reasons, namely

o The computation of the control laws (derived im later
sections) generally requires a digital computer.

® Any whiteness assumption made about such random effects
as w, will be much more meaningful and justifiable in
discrete time than in continuous time.

To proceed, a categorization of the main classes of problems pur-

sued in control theory during the recent past is given.



1. Tue Optimum ConTROL PROBLENM

The optimum control problem (Fig. I[-1), for which many practical

solutions are available, is defined as follows:

Given the present state x, and the process description (I-1) with
w = 0(i =k, ...,N).

u 4
? k PLANT k

FIG. I-1 THE OPTIMUM CONTROL PROBLEM

Find a sequence of controls u that minimizes a variational

gr s Uyoy
cost expression of the form

N
Jxyiuy,ouy) = 20 Uxug, i) (1-2)

subject to the constraints

x, €X . (I-3)

Note that only the state x, need be known to determine the whole

sequence u,,...,uy, since future states x, are completely predictable.

In other words
u, = u . (x,) 1 >k

2. THe OpTiMuM STocHASTIC CONTROL PROBLEM
@. STANDARD FORMULATION

The optimum stochastic control problem (Fig. 1-2), for which
solutions based on dynamic programming are available 3 is defined as

follows,




Yk Xk
? PLANT

FIG.1-2 THE OPTIMUM STOCHASTIC CONTROL PROBLEM

Given the present state x,, the process description (I-1) with

w # 0(i = k,...,N), and the probability density function of w, p(w )

3

Find the sequence of controls

u, = u;x)) (1-4)

that on the average minimizes a variational cost expression of the form
N
J(x5u,, ... ,uy) = E iéh I(x,,u,,i) (I-5)

Note that at every stage k, the actual state x, resulting from

the application of u,., and w,_, 1is assumed to be known exactly from

1
appropriate measurements.

b. NONSTANDARD FORMULATION

It 1s entirely possible, but not customary, to formulate an op-
timum stochastic control problem where no measurements x, are made and
where consequently the optimum control sequence [which minimizes (I-5)]

is made to depend on the initial state x4 only

u, = u(x,)

This may be viewed as an open-loop solution, whereas the stan-

dard formulation leads to a feedback solution. The justification for

5



making measurements is determined by comparison of the minimum costs J
Y

in both cases.

3. THE OpTiMuM ESTIMATION PROBLEM

The optimum estimation problem (Fig. I-3), to which a very general

solution has become available quite recently,®is formulated as follows:

Given a signal-generating process of the form (I-1), a measurement

process described by

z, = h(xh,vk,k) (1-6)

where v, is the measurement noise, and the probability density functions

plx,), p(w,) and p(v ), i = 0,...,N

Find the conditional probability density function of the state
p(x,/24,...,2,) . (I-7)

From (I-7), the conditional moments, such as the conditional mean denoted

by Qk/k, are derived easily.

A special case of the general optimum estimation problem is the well-

known Kalman-Bucy filter.

" A"
SIGNAL - GENERATING * MEASUREMENT 2y Pxy /204 12y)
PROCESS PROCESS

FIG. 1-3 THE OPTIMUM ESTIMATION PROBLEM




4. THE COMBINED OPTIMIZATION PROBLEM

The combined optimization problem (Fig. 1I-4), for which a solution
was found in the course of this contract, ? combines the optimum stochastic

control problem with the optimum estimation problem in the general case.

"k
y 4
? k PLANT k
Yk
z, MEASUREMENT
SYSTEM

FIG. 1-4 THE COMBINED OPTIMIZATION PROBLEM

It 1s defined as follows:

Given the state Eq. (I-1), the measurement Eq. (I-6), and the prob-
ability density functions plxy), plw), p(v,) (i = 0,...,N),

Find the sequence of controls u, that on the average minimizes a

variational cost expression of the form

"M =

JCzg, oo, zuy, - uy) = f {i l(xi,ui,i)} (I-8)

k

where the vector y encompasses all the random variables, i.e., x,, w, and
v,. The optimum control u, to be applied at the present time k depends

on all the past measurements

u, = uz,...,z,) . (I-9)



In Sec. TI, jt is shown that the general combination of plant and
sensing equipment can be modeled by the state Eq. (I-1) and the measure-
ment Eq. (I-6).

Much of this report will be devoted to the combined optimization
problem, which answers the question “What is the best performance obtain-
able with the noisy and generally incomplete measurements z " and hence
relates the system’s performance to the characteristics of the measurement

system under the assumption that the measurements z are utilized optimally.

The combined optimization problem is easily extended to the adaptive
case where the plant (I-1) is not accurately known before measurements 2
have been received. It thus provides a rigorous and much needed mathemat-
ical framework for adaptive systems and other recently evolved system con-

cepts, as will be discussed in detail 1n Sec. III.

A real shortcoming of the combined optimization problem solution
obtained, however, is the impossibility of computing {(with present-day
machines) an exact solution in the general case. Important special cases,
fortunately, are amenable to machine computation, and fairly evident approx-

imations can be used in the general case.

5. ADDITIONAL PROBLEM FORMULATIONS

At this time (1965), several important additional problems are being
formulated in the field of control theory, notably the theory of differ-
ential games and the theory of optimum classification. Both are strongly
related to the formulations discussed above in the sense that similar
mathematical approaches apply. These additional formulations will not be
treated further in any detail, despite their strong relation to the sub-

Ject matter of this report.

6. INFORMATION-THEORETIC CONCEPTS

In what follows, the information-theoretic concept of entropy (or

uncertainty) will sometimes be used.

Given a probability density function p(y), where y is ann-dimensional

vector in space and/or time, the entropy is defined as

H = -[ p(y) log p(y)dy . (I-10)

y




For a Gaussian distribution

1 K= iy )
ply) = . e 77 T (I-11)
(V27) Vdet P
with the mean 9 and the covariance matrix
A A r .
P = E{y -y)y -y)7} (I-12)
y
the entropy becomes
1
H = = log [(27e)" det P] . (I-13)

2

It is seen that entropy is related rather directly to the covariance
in this special case. This general connection holds also for non-Gaussian
densities, but it is clear that the statistical parameter H can only pro-

vide a coarse summary of the probability density function p(y).

D. SUMMARY OF RESULTS

The main results of the research performed in this study are

(1) A clear understanding was obtained about the required
mathematical description of information.

(a) The quality of the information-handling components
(i.e., sensors, communication links, and controller)
of a system control, is determined by the probability
density function of the state of the plant conditioned
upon all available knowledge.

(b) The quantity of information gained by improving the
quality of the information-handling components can
be measured by the average reduction in entropy of
the conditional probability density function as a
result of this improvement.

(c) The value of the information gained by improving
the quality of the information-handling components
is measured by the average improvement in perfor-
mance made possible by this additional information.



(3)

(4)

(5)

(d) Knowledge of the quantity of information i1s, in
general, of little benefit to the design of con-
trol systems; knowledge of the value of informa-
tion, on the other hand, is of fundamental importance.

In order to determine performance, the combined optimiza-
tion problem was formulated and solved for the general

case of a dynamic process ([-1} subjected to random per-
turbations w and observed through an imperfect, t.e.,

noisy and incomplete, measurement system (I-6). This for-
mulation provides a theoretical answer to the central proj-
ect objective, namely to relate the performance of control
and guidance systems to the characteristics of the informa-
tion links between the various constituents, under the
assumption that the information fed to the controller isutil-
1zed optimally. In actual practice, the exact solution in
the general case exceeds the computational capacities of
present-day computers; however, many special cases have a
computable solution and fairly evident approximations can

be used. In addition, the solutionis predicated on the as-
sumption that the complete distributions p(vl) characterizing
the measurement system and p(w,) characterizing the environ-
ment are known to the designer. The combined optimization
problem 1s further discussed in Sec. III and Ref. 2.

This general solution was applied to the important case of
a linear system perturbed by Gaussian random effects and a
concise mathematical expression was derived to relate system
performance to the quality and structure of the measurement
subsystem. This expression shows the trade-offs between
system performance and the quality (and hence cost) of the
various sensors and other information-handling components.

The main results of this special case are discussed
in Sec. IIl and detailed derivations are given in Ref. 2.

The general solution was particularized to the case of an
“open-loop” system, where the decisions made on the basis
of the noisy measurements do not affect the state of the
dynamic process under observation. This has led to a gen-
eral theory of optimum Information Systems, which is of
great practical importance whenever the cost of collecting
information is high compared to the cost of processing in-
formation. Section IV summarizes the results of this study,
a detailed account of which is found in Appendix A.

The relation between performance and the information-
handling characteristics of the key constituents was
derived for the general case of a fixed controller.

This differs from the combined optimization problem

in that the controller is not specifically designed

to make optimum use of the measurements and, as a con-
sequence, may be much simpler. This is the situation
usually encountered in standard feedback control systems

10




(6)

where one wishes to know the magnitude of the degrading
effects caused by noise upon a system structure selected
to satisfy the design objectives in the absence of noise.

The problem was treated from the following two points
of view:

(a) The conventional control engineering point
of view based on well-known servo theory,
notably the statistical methods of Newton,
Gould, and Kaiser, sensitivity of perfor-
mance to bias effects, and transient re-
sponse of linear systems.

{b) The modern point of view based on the cal-
culation of the probability density func-
tions of the state in terms of the probability
density functions of the random effects w
and v. The exact and general solution was
applied to the special case of a linear sys-
tem perturbed by non-Gaussian effects. An
example involving a linear plant and con-
troller and a noisy digital feedback path
was treated both by approximation of the
Fokker-Planck equation and by empirical
approaches verified by means of Monte Carlo
simulation.

It was found that the entropy of the
probability density of the state could not
be updated from time k + 1 to time k with-
out knowledge of the complete probability
density at time k.

The results of these studies are given
in Sec. VI-B and Appendix D for the conven-
tional point of view and in Sec. VI-C and
Appendices C and E for the modern point of view.
The example problem involving a digital feedback
path is treated in Sec. VI-D and Appendix F.

The first problem attacked in the course of the study in-
volved the optimum design of a quantizer located in the
feedback path of an otherwise linear system. It was shown
that for the important case of linear systems and quadratic
performance measures, the optimization of the quantizer
(the choice of the quantizer steps and switchpoints) could
be performed separately from the optimization of the con-
troller. This same result was shown to hold for the case
of an imperfect measurement system where optimization of
the quantizer, the controller, and the estimator can be
carried out separately under justified simplifying assump-
tions. To optimize the quantizer, a convenient iterative

11



scheme replacing the customary and inefficient simul-
taneous search over many variables by a sequential
search over one variable was developed. This useful
design procedure is outlined in Sec. V and discussed
in detail in Appendix B..

12




II INFORMATION MEASURES

In this section, the quantity of information (a measure of informa-
tion based upon information-theoretic concepts) and the value of informa-
tion (a measure of information based on control-theoretic concepts) are
defined and related to the quality of information handling components
such as sensors, communications links, and computers. The reader is also
referred to an excellent paper by Marschak® for a discussion of these

topics.
A. MATHEMATICAL MODELS OF CONTROL SYSTEMS

Before the relation between information and control systems can be
developed, it is necessary to discuss suitable models of control systems.

1. Burock Diacraw

Figure II-1 is a block diagram showing the major elements which ap-
pear in a typical closed-loop control system. An open-loop control system
has a similar block diagram except that the components connecting the
state of the plant xPto the controller are absent (i.e., the components

below the dotted line are missing).

DISTURBANCES

X
CONTROLLER L—{: :}—J ACTUATOR PLANT -

COMMUNICATION LINK

z
—Jl SENSORS

(o

FIG. II-1 CLOSED-LOOP CONTROL SYSTEM

13



The classical method of analysis of such systems 1s the use of the
Laplace transform theory with the various blocks represented by transfer

functions.®

In what follows, the modern state-space description of con-
trol systems 1s reviewed. It is desired to obtain a standard form by

which control systems can be described.

2. PrLaNT DEScrIPTION

The state x? of the plant summarizes the effect of all past inputs
to it as far as its future behavior is concerned. In other words, given
the present state and all future inputs (including any random disturbance),
the future behavior of the system can be determined. The state may be a
vector of real numbers (in the case of ordinary dynamic systems), a vector
of zeroes and ones (in the case of automata and ‘‘operational” systems) a
function (in the case of distributed parameter systems) or a combination

of these three.

Under the previously justified assumption of discrete time, the plant

behavior can be described by
x£+l = fp(x:,uh,wz,k) (II1-1)

where w} (over which the designer has no control) is the random input to
the plant and where u, (which must be selected by designer to achieve the
desired performance) is the control input to the plant. Equation (II-1)
is a relation telling how to determine the next state of the plant on the

basis of the present state and present inputs.

Example:

Consider a rocket constrained to travel along a line and oper-
ating in a vacuum. If the mass of the rocket is fixed, then the present
position and velocity summarize the effect of past inputs; hence, a
suitable state i1s a vector with these two quantities as components. Ap-
plication of Newton’'s laws generates the following state equation:

%0, = Ax® + Bu, + wf (11-2)

k k ’

14




where

1 At (Dt P/2

[position at time k

At =

3. SEN

The purpose of a sensor is to measure some property of the state of

the plant.
from the tru

tions are:

(1) A
am
ch
su

(2) A
wh
No
by

(3) An

{(4) An

Thus, a

| velocity at time k

contro!l thrust level for kth time interval

(Dt P2
disturbance thrusts (assumed to be white)

At

the time 1interval

SOR DESCRIPTION

Because of imperfections, the output of the sensor will differ

e value of the property being measured. Some major imperfec-

bias error, an additive, time-independent—but often

plitude-dependent—departure; for example, gain
anges of the sensor from nominal may be treated in
ch a manner.

nolse-induced error, which is commonly assumed to be
ite (i.e., uncorrelated from sample to sample).

ise not satisfying this assumption may be produced
use of proper filters operating upon white noise.

error caused by internal sensor dynamics.

error due to quantization and other nonlinearities.

typical sensor is a dynamic system with an 1input that is a

property X of the state of the plant and with an output z, which 1s the

measurement

generally by

of x. The sensor plant relation may be described quite

Xy 7 g(xf,k)
o1 = fPUgxg i k)
z, = h(x;,x, v, k) ,

15
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where 1: 1s the state of the sensor and vy and v, are measurement noiIses,

assumed to be white.

Bias effects appear iun this model as unknown values of initial con-
ditions of the state x°. Filtering of noise and internal dynamics are
handled by the internal sensor state x*. Quantization and other non-

linearities are reflected in the form of h.
Example:

Consider a position sensor with the following defects: a bias
error consisting of an unknown zero offset and an unknown perturbation of
the gain from a nominal value of 1, a delay 1n response consisting of a
simple lag of time constant T, and a quadratic nonlinearity to the output.

This sensor may then be described by (II-3)} to (I1I-5), where
X, = position
[~ 0

x = offset
Lgaln perturbation

“«

[~ _Aat N n
e T %y} *(1 - € Qr)(l tx Ny, - D

k k
ff(xi vt k) = 2
ko Ve Xao k
s,3
| %y 4
s s, 1 s 12
h(rk,vh,xk,k) = x, + a(xk' )
T = time constant of the lag
@ = known constant.

Note that components of vectors have been denoted by superscripts.

4. COMMUNICATION LINKS

The purpose of communication links is to transfer information from
one part of the system to another part, which may be separated by a con-
siderable distance. Without going into details, it can be stated that

communication links may also be represented by equations of the form

(II-3) through (II-5).

16




5. ACTUATORS

Actuators are devices for applying the control signals determined
by the controller to the plant. Again, these components may be described

by equations similar to those of e sensor.

6. Canonicat MoDEL

To show how to reduce the block diagram given in Fig. II-1 to a
canonical form, it is sufficient to consider sensors only, since communi-

cation links and actuators may be handled in an exactly analogous fashion.

A new state

P -
x 1
x = (II-6)
s
E 2
is defined, where the superscript s, identifies the ith sensor. The com-

bination of plant and sensors can now be described by two equations:

Tyep ° f(xk,uk,w‘,k) (I1-7)
2, = h(xk,vh,k) (II-8)
where
- P -
Y
(1)
v
v:(l) k
wp o= . Vy %
. (a)
(m) vk
R
[ (1) h
Zh
z, =
(n)
|z |




[ P (8, u, vl k)

5

f l[x:l,g(l)(x:,k),v:(l),k]

flx, uy,w, k)

A o) |

(h'l[lelg(l)(x:’k) v (1) k) W
h(x,,v,. k)

R ) ]

For simplicity it is assumed that E[wk,v:i)] = 0, although this 1s not

necessary.

By following this procedure, any control system may be represented
by the block diagram given in Fig. II-2. The plant is governed by
Eq. (II-7), known as the state equation, and the measurement system 1s
governed by Eq. (II-8), known as the measurement equation. Note that
the state of the plant in Fig. II-2 includes not only the dynamics of
the physical plant, but those of the sensors, communication links, and
actuators as well. Furthermore, any nonwhite measurement noise appears
as a white disturbance to the plant, which includes a suitable shaping
filter.

'} X Z
K PLANT K MEASUREMENT K
SYSTEM
%
CONTROL K ESTIMATION ]
LAW SYSTEM
CONTROLLER

FIG. 11-2 CANONICAL MODEL OF CONTROL SYSTEM OF FIG. II-]
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To formulate a problem in the format given by Fig. 11-2, it is
necessary to carry out two steps. First, each component of the system
must be modeled in the form given in Parts A-1 through A-5 above. Then
these models must be reduced as described above. Modeling is often no
easy task and must be based upon physical knowledge of the plant and the
designer’s experience as to what variables are important and what vari-
ables may be safely ignored. In many cases, testing is required to con-

firm the assumptions made.

To avoid confusion between the plant in Fig. II-1, which is a physical
entity, and plant i1n Fig. II-2, which is a mathematical construction, the
adjective physical will be used when referring to the actual plant. Sim-

ilarly the term sensors will refer to Fig. II-1 and measurement system to

Fig. II-2.
Exanmple:

For the rocket ship described in Part A-2 and the position servo de-

scribed in Part A-3, the overall state is

position of rocket
velocity of rocket

x, = internal dynamics of sensor
offset of sensor

galn perturbation of sensor

7. CONTROLLER DESCRIPTION

Up to this point, the controller, which determines the inputs to be
applied to the plant on the basis of available information about the plant,
~has been ignored. The controller can be broken into two parts: The esti-

mation system is covered by

ee1 = HEL oz k) (11-9)

®»>

and the control law by

u, = hii,,z,,0) . (11-10)

. A . . . :
The quantity x,, which in this report will be referred to as the
estimator of x,, is not in general what is thought of as the estimate of

x,. In particular it may have a dimension quite different from x Any

5
controller, optimal or suboptimal, may be represented in the form given
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by (I1-9) and (II-10); Qk is nothing more than the internal state of the
controller in such a model. 1In Sec. III, in which the optimum Qh 1s

found, the term estimator will become more clear.

Note that (II-9) and (II-10), which govern the controller, are similar
to (II-7) and (II-8), which govern the remainder of the system. There is
one notable difference: the presence of z, in (II-10). This means that
the present input to the controller can affect the present output of the
controller. On the other hand, the present input of the plant cannot af-
fect the present output of the measurement system; if it could, algebraic

loops would be possible.

B. THE CONDITIONAL PROBABILITY DENSITY OF THE STATE
AND THE QUALITY OF INFORMATION HANDLING

The state of the plant summarizes the past history of inputs insofar
as they affect future behavior; hence, the control input to the plant can
be based upon this quantity. Unfortunately, in the usual situation, the
state of the plant is not available; therefore, a quantity that summarizes

all knowledge about past inputs as they affect the future behavior must be
sought.

In general, two sources of information about the state of the plant
exist: the past control inputs and the past and present measurements.
Thus, any prediction about the future behavior of the plant will be an
expectation conditioned upon the values of these quantities. This expec-
tation can be calculated from the state and measurement equations, the
probability densities of the noises and disturbances, and the conditional
‘probability density of the plant state given the past control inputs and
measurements. The latter quantity is the only one which is not known

a priori*; hence, it appears intuitive that the control can be computed

as a function of this quantity.

In Ref. 2 it 1s shown that the optimal control input can indeed be
calculated as a function of the conditional probability density of state
if the control problem is formulated in a suitable manner (see Sec. III).
The % appearing in (II-8) and (II-9) is the conditional probability

density: Estimation is calculation of the conditional probability density

* : s
If the system equations or probability densities contain unknown parameters, the state can be augmented
to include these parameters.
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of the state, and control is calculation of the control input as a

function of this conditional density.

Because it summarizes all past information and because 1t plays a
role similar to the state of the plant in deterministic optimal control
theory, the conditional probability density of the state will be referred
to as the information state P,. There is one important difference be-
tween the state of the system and the information state. In the usual
situation, the state of the plant is a finite dimensional vector, whereas
the information state 1s a function and thus an infinite dimensional
vector. In special cases the information state is finite dimensional;
for example, i1f the conditional density i1s Gaussian, then it is completely
specified by the conditional mean and the conditional variance of the

State.

The purpose of the sensors, communication links, and of the estimator
1s to gather information about the state of the plant, transmit this in-
formation to the controller, and process it into a form suitable for
making a decision by means of the control law. These components together
may be termed the information-hendling system. The quality of this system
i1s determined by the spread of the conditional probability of the state,
given the estimator Qk. Note that i1n the general case, 1f the information
transferral is to be perfect, then processing consists of calculating the
conditional probability of state of the plant, given past measurements and

1nputs, since
plx,/p,) = p[x*/p(xh/Zk,Uk_l)] = p(xk/Zk,U*_l) (11-11)

where U& is used to represent the set (uo,ul,...,uh) for an object u,.

Equation (II-11) shows that no information is lost in this processing.

A new element has been introduced into the model of a control system:
To compute the information state, it is necessary to know the ﬁrobability
densities of the measurement noises and the disturbance inputs as well as
the a priori probability density of the state of the plant. Knowledge of
the physical processes involved in the generation of disturbances and
noises may provide the form of these distributions and testing can be used
to find their statistics. In many cases, however, translation of the de-
signer’s knowledge into the form needed for analysis is no easy task; this

1s particularly true for the a priori density of the state.
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C. ENTROPY

Entropy, defined in the introduction, i1s the statistical quantity
used in classical information theory as a measure of uncertainty.’ The
information provided by a given message about some quantity of interest

is then defined as the amount of uncertainty removed by the message.

Since the information state ph is a probability density, 1ts entropy

N may be calculated from
MZ, U, k) = —J‘xk p(x,/Z,,U,_ ) log p(x,/Z,,U,_ )dx, . (I1-12)

In general, the value of U,_, is not known a priori but is a random vari-
able through its dependence upon the measurements. It is assumed that
the controller is chosen 1n such a way that U, is an optimum sequence
in a sense yet to be specified. Then, it is possible from the a priori

probability densities to calculate
(k) = E[X(Z,,U,_,.k)] . (11-13)

(k) is a measure of the expected uncertainty about the state of the

plant at time k.

Let ﬂOL be the entropy about the state of the plant 1f the measure-

ments are ignored, i.e.,
Ho(Upy k) = =, p(x, /U, ) Yog lp(x,/U, ) ]dx, (11-14)
Similarly, let
Hop (k) = E[“OL(UIz-l’k)]
when optimum open-loop control is applied. Then

N
4 = 3 [(Ho (k) = H(k)] (1I-15)
k=1

1s the amount of uncertainty about the state that is removed by the pres-
ence of the measurement system during the time up to N. Y is the amount

of information the measurement system provides about the state of the plant.
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N C . .
In a similar manner, the amount of information lost by use of juper-
feet communication channels and suboptimum information processing may be

calculated.

Let 3 be calculated for two different sets of sensors, one of which
has internal dynamics whereas the other does not. It is possible that
& for the former system is larger than J for the latter simply because of
information about the internal state of the sensors. Since the state of
the physical plant in Fig. II-1 rather than the mathematical plant in
Fig. I1-2is of primary interest, it is reasonable to replace p(x,/Z,,U,_,)
in the above equations by p(xf/Z,,U,_;). It should be emphasized, however.
that it is the former quantity that is needed for selecting the optimum

control.

D. VALUE OF INFORMATION

To this point, the purpose of the information-handling system was
taken to be to gain information about the state of the plant, and a measure
of the amount of information gained was defined. No mention of the value
of this information or the need for feedback control to gain more informa-
tion than is a priori available was made. To answer these questions,the

measures of the performance of control systems must be considered.

In classical control theory, performance measures were either of
transient performance, such as pole location; or steady-state performance,
such as error. Appendix C contains a discussion of the use of classical
control theory and of modern control theory to analyze the effects of

sensor imperfections on such classical control measures.

In what follows, variational performance measures will be considered.

It is assumed that the cost of operating the system is given by

Jo= z Hx(i),u(i), i) (II-16)

where one would like to minimize J'; however, because of the random effects

present, one must settle for minimizing J, the expected value of J'.*

x
J is often called a performance index and will be referred to in the sequel as the performance. It 1s

unfortunate that cost rather than its negative profit was chosen, since to optimize performance it is
necessary to minimize J.



While tn some cases it Is possible to specify the form of [ from physical

knowledge, in most cases selection of | 1s highly subjective.

Suppose that in order for the system to perform adequately, a level
of performance J, _ must be attained. Let J_. ~be the best performance
obtainable with complete information about the plant and let J, be the
best performance obtainable using only a priort information about the
plant (i.e., open-loop control). Then one of three possible cases may
occur:

(1 J < J

des min

A
-

(2) J (I1-17)

In
~
I
~

min

(3) Joia S JoL <Y
In Case (1), the system cannot perform adequately because the desired
performance is better than the plant is capable of giving. In Case (3),
the a priori information is sufficient and there is no need for sensing
devices to gather information about the plant. In Case (2), the custom-
arily encountered situation, it is necessary to make measurements on the

plant in order to attain the desired level of performance.

The quantity J, - J.;, 1s an upper bound on the performance 1mprove-
ment resulting from perfect information. If J, is the optimal performance
with a given set of sensors, then J,, = J, 1s the value associated with
the use of that set. Also, 1f M1 and M2 are two alternative measurement

systems for which
(11-18)

then, by comparison of the dollar cost of these systems, the least expen-

sive set can be chosen.

To calculate such quantities as J and J,, it is necessary to

JOL
find the controller that minimizes the expected value of J for various

min’

measurement systems. The solution of this problem is given by combined

optimization, considered in detail in Ref. 2 and in Sec. III. In effect,
the solution of the information handling problem has been reduced to the
solution of the optimum information utilization problem—that is, calcu-

lation of the best performance possible with a given system.
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In a similar manner, the cost of using suboptimal processing and
tmperfect communication links is measured by the resulting degradation
in performance. Thus, the value of more sophisticated processing and
better communication channels can be computed to determine whether such

an c¢ffort is worth the expense involved.

E. COST OF INFORMATION

There is no direct relationship between the amount of information
and the value of that information, except in special cases, such as Kelly's

gambler .58

This is because in the information-theoretic sense, information
15 gained when uncertainty 1is reduced; however, this information may be
completely irrelevant to the task to be performed. On the other hand,
there 1s sometimes a closer relation between the amount of information and

the dollar cost of collecting this information.

The relation between amount and dollar cost of information 1s most
evident in the case of communication channels. By Shannon’s theorem, the
maximum rate at which information can be sent over a channel 1s’ equal to
the capacity of the channel. The cost of building a channel in turn is a

monotonic and often a linear function of the capacity.

For example, the capacity C of a binary communication channel, 1is

(see Sec. VI and Appendix F)
C = 1+ plog,p* (1-p)log, (1 - p) (11-19)

where p 1s the probability of error. Since it costs money to reduce the
probability of error, the cost of the channel increases with the rate of

information transfer.

While there is no close relation between the dollar cost of a measure-
ment system as a whole and the amount of information it gathers, such a
relationship does hold in the case of individual sensors. For example, to
gain more information in a sensor with quantized output, it is necessary to
increase the number of quantum levels, which in turn increase the cost,

though not necessarily in proportion to entropy.

It i1s much harder to find a relationship between the cost of process-
ing information and the amount of information processed. Information pro-
cessing can be viewed as removing extraneous information from a signal to

leave only the desired information. It is not unreasonable to assume that
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the difficulty (and hence the cost of processing infermation) grows with

the amount of extraneous 1nformation.

For example, in the linear case discussed in Sec. III-C, the optimum
estimator is the conditional mean of the state. The measurements contain
unwanted information about the measurement noise that is removed or fil-
tered out by means of the estimation system, which in this case 1s the
Kalman filter. In Ref. 2, examples are presented that indicate that the
more extraneous information (i.e., measurement nolse) present, the more
difficult it is to remove the unwanted information in the sense that more

wanted information is lost by suboptimal processing.

While these intuitive relations between amount of information and
cost of information exist and are important from a conceptual point of
view, it does not appear that calculation of the expected entropies as
described in Sec. II-C will be of much practical value in the design of
control systems. The cost of information handling components is known
directly and it is the value of using these components that is of interest
This value is found by solving the combined optimization problem presented
in Sec. III and in Ref. 2.

F. ILLUSTRATION

When measurements are made upon a plant in order to obtain adequate

performance, several important questions arise, namely:
(1) What measurements should be made?

(2) How good do these measurements have to be?

(3) How can a priori and gathered information be used
to simplify the information processing?

(4) How does one derive optimum control decisions for
a given set of measurements?

The answer to the fourth question is provided by the combined optimi-
zation problem discussed in Sec. III and in Ref. 2. In this section, a
simple illustration of how the solution of the combined optimization problem
in conjunction with the concepts developed so far may be used to answer the

other three questions is given.

In the important linear case, the solution of the combined optimization

problem is well known (see Sec. III-D). In this case, the state and
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measurement equations are both linear, the random disturbances and noises
are Gaussian, and the performance criterion is quadratic. For simplifi-
cation, it will be assumed that the system is time invariant and only
steady-state performance will be considered. The optimum estimator for
this case (1.e., 2 in Fig. 1I-2) is the conditional mean of the state of
the plant given all available information. The cost per time increment,
defined by

N
‘§1 L(x,,u ,1)
A3 = lim - . (11-20)
N—® N
1s A
A3 = wr [PQ+ PV] (I1-21)

A
where tr [A] is the sum of the diagonal elements of the matrix A, Q 1is

the covariance matrix of the disturbance noise, V is the covariance matrix
of the error in the estimate, P and P® are matrices found in the solution
of the control problem and defined in Sec. III-D. This formula also holds
for a very general class of suboptimal estimation procedures as long as

optimal control is used.

Following the notation given in Sec. II-D, we note that

A
tr [PQ]

g

A b 4
er [PQ + PV, ] (11-22)

A

where V,, is the covariance in estimate of the state given no measurements.
Hence, the maximum gain in performance per unit time that can be obtained

. . *
with measurements is tr [P VOL]'

The covariance V completely characterizes the quality of a given mea-
surement and estimation system, since the difference in performance between
two alternative systems can be determined purely on the basis of the co-
variances V, and V, corresponding to each. Furthermore, if V, >V,

A . 1 . . . . »

(i.e., 1fV, -V is positive definite) then, since P > 0, Aé > ﬁﬂ .
¥, v, - ! ¥

Reduction of the error in estimate of any one of the state variables by a

given amount will result in an equal gain of information in terms of en-

tropy; however, the changes in performance may differ greatly depending

* . . . . .
upon P . Thus, quantity of information and value of information are not

necessarily closely related. Furthermore, improvement in the quality of
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the information-handling components provides more information but does not

necessarily improve performance correspondingly.

Those state variables of the plant that correspond to large elements
of P* should be known well for high performance. This, however, does not
imply that all these state variables must be measured; it may well be that
measurement of one state variable provides the necessary information about
another system. In fact, if the plant is observable® with the given mea-
surement system, then the measurements will contain some information about
the whole state. If this information is not sufficient for adequate con-
trol, two alternatives are available for gaining additional information:
adding additional sensors or improving the existing sensors. Hence, the
answers to Questions (1) and (2) raised at the beginning of this part are
determined by calculating P* and V. In a similar manner P determines which

state variables are most sengitive to disturbance inputs.

For example, in a position control system, the position sensor provides
information about rate, which in many cases will be adequate to achieve the
desired performance. If the available information is not sufficient, the
position sensor may be improved enabling better calculation of rate; or rate

may be measured directly.
In general, one of three actions can be taken for a state variable:

(1) Measure the state variable.

(2) Compute the state variable from measurements of other
state variables (if the resulting V permits).

(3) Ignore the state variable (if the P’ permits).

Suboptimal processing, in particular suboptimal estimation, will now

be considered. If, for a given measurement system, V., is the covariance

[
of the error in estimate with optimal estimation and V; the covariance with

suboptimal processing, then Ve > Vy, the degradation in performance is

given by
. '
er [PP(v, -Vl . (I1-23)
If V, 1s much smaller than is necessary for adequate performance,
either because of a priori knowledge or because of very good measurements,

then a fair degree of suboptimal processing may be tolerated and adequate

performance still attained.
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In general, there may be many alternative ways to obtain the same
performance for a given plant. By comparing the dollar cost of building
alternative systems, one can choose the most economical system for ob-
taining the desired performance. The combined optimization problem is
the problem of calculating performance for such systems. In Ref. 2,
several numerical examples are presented to illustrate the various al-
ternative ways for obtaining equivalent performance in the linear case.

Some of the trade-offs considered are

(1) Number of sensors versus accuracy of sensors.

(2) Quality of the measurement system versus ‘‘isolation”

from disturbances.

(3) Quality of the measurement system versus quality of
the estimation system.

(4) Quality of a priori information versus quality of the
estimation system.
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ITI COMBINED OPTIMIZATION PROBLEM

In the previous section, we saw that it is necessary to solve the
combined optimization problem in order to calculate the value of informa-
tion 1n a control system. In this section, the theory of the combined
optimization problem is presented briefly; the theory is presented in
detail 1n Ref. 12, which contains a list of references to other work on

the problem. One excellent reference on the subject is by Wonham!®

A. PROBLEM STATEMENT

For convenience, the combined optimization problem, which was pre-
seuted in bits and pieces in the previous chapter, is restated in its

entirety here. The problem is illustrated in Fig. II.2.

Given (1) A piant, described by

Xe4p = fh(xk,uk,wk) (IT1-1)
where
x, 1s the state vector
u, 1s the control or input vector
v, 1s the disturbance vector, assumed to be white.
(2) A measurement system, described by
z, = h‘(wh,vk) (III-2)
where

z, 1s the measurement vector

v, 1s the measurement noise vector, assumed to be white.
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(3) The probability distributions

(a) p(xy) (111-3a)
(b) plw,) i = 0,...,N (T11-3b)
(c) plv,) i = 0,...N (I11-3¢)

(4) The performance index

N
J = E{Zol(xi,u‘.,i)} (I11-4)
(5) The admissibility constraint

u, € (ITI-5)

t t

Find the admissible controller that minimizes J, where

(1) A controller is defined as any algorithm that at time
k generates u, as a function of the present and all
past measurements (z*,...,zo).

(2) An admissible controller is defined as any controller
which, when used in the closed-loop system shown in
Fig. II-2, yields admissible u_.

B. SIMPLIFIED DERIVATION OF SOLUTION

In this part, we present a simplified derivation of the solution of

the combined optimization problem.
1. StocHasTIiC CONTROL PROBLEN

Before the general problem is treated, we consider the solution of
the special case in which the measurement system is perfect (i.e.,
z, = x,). For this case, no estimation is necessary; it 1s referred to
as the stochastic control problem*. Bellman has derived a recursive

equation for solution of this problem3: 1f I(xk,k) is defined by

N
I(x, k) = min )E ‘;Z l(xi’ui’i)‘xh] (I11-6)
i =k

uk(xk)""'“N('N

*
Wonh am

10

and others have referred to the combj d imi ; . . .
t
control problem; we prefer Bellman’s more re.:::ctgse‘::;::;:QOzTObl.- defined in A as the stochastic
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then u‘(xk) is found by solution of

I(x,,k) = min (l(xh,uk,k) + E {I[f*(xk,uk,ui),k+ 1]}) E <N
Y Yk

I(xN,N) = min l(xN,uN,N) (111-7)
U N

where the w, under the E indicates that the expectation is to be taken
with respect to x,.

2. ContrOL EQuAaTION

From the discussion presented in Sec. II-B it seems intuitively ob-
vious that the control u, at time k can be chosen as a function of @‘.
the conditional probability density of the state given past inputs u,_,
and past and present measurements z,. In.Ref. 2, this dependence is not
assumed, but proved rigorously. In this section we assume that u, is a
function of pk and then solve the combined optimization problem by con-

verting it into a stochastic control problem.

In the next section we show that pk satisfies the recursion relation
Pov:1 = Fu(Bu,, 2., . (I11-8)

Equation (I1I-8) has the form of a state equation for a plant with state pb,

input u, and disturbance Zp4y-

Consider the performance indexin Eq. (III-4). Byuse of a well-known

identity on conditional expectationsn each term of the summation may be written

EUGu, i) = B E({1Gx,u,,0)/P,1})

E[L(P ,u,i)] ' (IT1I-9)

where

L(P ,u,,i) & E [l(x ,u,i)/P]

Ell(x,,u,,i)/2,U0 _,] (I11-10)

1

x

Hence we may rewrite (III-4 as)

N
J = E [goural.ul.,i)] (IT1-11)




Comparing Eqs. (III-8) and (III-11) with Eqs. (III-1) and (III-4) we
see that the former two equations define a stochastic control problem in

which p‘ 1s the state, is the disturbance and uy, is the control.

z

K+l k

This problem differs from the ordinary stochastic control problem in that
the state is not finite dimensional; however, in the derivation of Eq. (III-7)

no property of the dimension of x, is used. Hence we may write down at once

I'®.0 = min (L(p,.,u,,n + E {I‘[F.(F’,..u..z.+1), R+ 1]}) k<N

r+l

FEuM = min LPyu,0 (111-12)

where

N
IT(P, k) 2 nln‘ihnE[E‘ ura‘.,ul.,i)/fi] ,

which is identical with Eq. (I1-32) of Ref. 2. Because solution of
Eq. (I11-12) enables one to determine the optimum control law (i.e., to
determine u, as a function of P.), we will refer to it as the control

equattion.
3. EstimatioN EqQuaTION

In this section we present the form of the F given in Eq. (III-8);
in keeping with the notation of Sec. III-A this equation will be referred
to as the estimation equation. It may be used to update the probability
density in real time; alternatively, we may use Eq. (III-8) in conjunction
with Eq. (III-12) to determine the controls u

as a function of 2z, rather

k k
than pk. These two methods of specifying control are treated in detail

in Ref. 2.

An equation for updating the conditional probability of the state
of a plant with no control inputs is derived by application of Bayes
rule in Appendix A. This equation may be modified to handle control

inputs by simply replacing p(x,,,/%,) by p(x,,,/x,,u,). The result is

P(zh+l/xh+l)J P(xy1/xyou P (2,/2,,U, ) )dx,
L

Pt /2 4100,) =
j P(zk *l/xh +1)J’ p(x,, +1/xk,uk )P(xh/Zk,Uh_l)dxkdxk‘l
Th+l 5y
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plzy/xy)plxy)
plxog/Zy,U_y) = (111-13)
J p(zy/xg)p(xg)dx,
*o

Since B, 4 p(x,/Z,,U,_,), Eq. (III-13) indeed specifies the form of F
in Eq. (IIL-8).

4. CoMMENTS

Because the combined optimization problem is equivalent to an infinite
dimensional control problem, we can expect considerable difficulties in
calculating exact solutions in general. Suitable approximations are pro-
posed in Ref. 2; investigation of approximations 1s a major area of un-
finished research on even the classical optimal control problem, not to

mention the combined optimization problem.

In two special cases, however, the combined optimization problem 1s

not infinite dimensional: If Egqs. (III-1) and (III-2) are linear; if

Eqs. (III-3a), (ITII-3b), and (III-3c) are Gaussian; and if Eq. (III-4) 1is
quadratic; then Eqs. (III-12) and (III-13) reduce to a well-known matrix
equation. If x, can take only a finite number of values, then p, is just
the vector of probabilities that the plant is in one of its possible states
and Egqs. (III-12) and (III-13) become finite sets. The solution to the
linear case is summarized in Part C; Ref. 2 presents the detailed deriva-
tion of the results as well as a list of the many references in which the
solution is given. Part D discusses an example of a finite state system.
Solution of Eq. (III-13) requires knowledge of p(xk+1/xk,uk) and p(z,/x,).
The first of these probability densities can be obtained from the state
equation and p(w,); p(xh+1/xk,uk) is an alternative way of describing a
randomly disturbed plant. Similarly, p(z,/x,) can be obtained from knowl-
edge of the measurement equation and p(u,) and is an alternative way of

describing the measurement system.

C. LINEAR CASE

In this part, a very important special case of the combined optimiza-
tion problem is considered,

1. Statement

The linear case of the combined optimization problem refers to the

situation in which the following assumptions hold:
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(1) The plant and measurement systems are linear, t.e.,

(a) x,,, = A,x, + Bou, + v, (I11r-14)
(b) z, = Cox, + v,
(2) The performance index is quadratic, t.e.,
l(xl,u‘,i) = xIQ‘.xi + ufRiui (ITI-15)
(3) The probability distributions are Gaussian, t.e.,
—71 A -1 _
(a) p(xy) = ¢, exp ((xy = xg) (Q_,) " (x4 - x4)] (III-16)
A
(b) p(w,) = ¢, exp (w;Q;'w,) (II1-17)
; 1
(c) plv,) = ¢, exp (v[R'lvh) (I11-18)

where ¢, c,, ¢, are constants of no consequence here and where:

A

-y = apriori covariance of X,

A

Q, = covariance of the disturbance at time k

A

R, = covariance of the measurement noise at time k
;o = a priori mean of x,

2. SoLuTION

In the linear case the controller takes the form given in Fig. III-1.
Note that all the matrices are given except G, and Kk, which are found by

solution of the control problem and estimation problem respectively.

For any controller with the form given in Fig. III-1, but not

necessarily with optimum Gh and Kh;

_ A N—-1
J o= xPoxg+ tr (PR + BB (111-19)
k=0
where
A A
08, = tr [P\Q + PV, +2PK (RK, - CV,)) (I11-20)
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FIG. IlI-1  LINEAR COMBINED CONTROL AND ESTIMATION SOLUTION
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- NI — T — : c
P, = O *CTRG, * (4 - BG)P, (A, ~ BG,) (111-21)

ko= 0,0,...,N =1
Py = O
Pooy = Gt AZPkﬂAk - P, (111-22)
Vi = Q + (=K, CL AV AT =K G )T (111-23)
k1 Nk 17k +17 7 TRk E+17k +1 P
oy o= 2y
Q = KyoRooKly v UK G QU KL Gyy) (111-24)
— [ - —_ T — L - — *
(I - K.C)OP, = (4 ~BG)UI =K, G )P ~K Gy P, +,B,G,)
T - -
+ GIR,G, k=01,...,N=1
Py = 0 (I11-25)

Note thatAB is the cost of operating during the interval (k, k+ 1].

The optimum G, and K, are given by

G, = (B P,y \By +R)T'BIP, .4, (111-26)

and
/\ el
KT = RJCV, (I11-27)

For optimum control, Egqs. (III-21) and (111-22) reduce to

- T — AT -1p7 - -
P, = Q +AIP, A - AP, B (BIP,, B, +R)T'BR A, k=0,1,...N-1
P, = Q (I11-28)
and
A Ao A A - A
Ve = P ~PGLGWPGL, R TGP, (111-29)
where
}A) A A Ao AT AR BT
prr T G Y ALPAL —Ak+lPIzCk+1(Ch+1Pka+1 + BTGP A
k = 0,]_,...,N -1
A A
P = 0Q, (IT1-30)

38




In essence, Eqs. (III-28) and (III-30) are the control equation and the
estimator equation respectively; therefore, for the linear case, the con-
trol equation and estimation equation are finite dimensional equations.
Furthermore, the two equations have the same form mathematically; this
result is Kalman's duality principle. When the optimum K, is used the

9

estimator is the Kalman-Bucy filter”, the time varying, multivariable

extension of the Wiener filter.

If optimum control is used [i.e.,Eq. (III-26) holds], then P; is
zero. On the other hand, if optimum estimation is used [i.e., Eq. (I11-27)

holds], then the last two terms of Eq. (III-20) cancel.
In either case,

-

88, = tr [P,,,Q +Pi, V] . (111-31)

All of the results presented here are derived in Ref. 2; however,
since they are scattered in that report, this section presents a compact
summary of the solution to the linear case. Most of the results for the
optimal processing are well known {see References in Ref. 2}); however, the
results for suboptimal processing appear to be original. A formula trans-
lator ASP (Automatic Synthesis Program) has been developed for NASA by
Kalman and Englar!? for programming equations such as those presented in

this section.

D. DUAL CONTROL

In Sec. II, it was shown that the purpose of feedback control was to
gain information about the state of the plant in the absence of sufficient
a priori information. In addition to the use of sensors to gather informa-
tion, and filters to process information, there is a third method of gain-
ing usable information about the state of the plant: control action.
Intuitively, the concept of using control action to gain information is
nothing more than using test signals as inputs in order to gain informa-
tion; hence, the control input can be used to gain information as well
as control the plant. Since the input that provides the most expected
information is not necessarily the one which is most likely to bring the
plant to a desired state, it is necessary to consider the compromise be-
tween the control and informational uses of the control input. In recogni-
tion of the dual purpose of control inputs, Feldbaum!® refers to the problem
as Dual Control.
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The most obvious application of dual control theory is to adaptive
control systems—indeed this was the original motivation behind Feldbaum's
work; however, control action can be used to help estimate the state of a
plant in a nonadaptive situation as the example of dual control in Ref. 2

shows.

In the linear case, the uncertainty about the state 1s completely
determined by the covariance matrix. Since this matrix is unaffected by
the controls applied, no dual control need be considered. Thus, to pre-
sent a simple example of dual control, it may be necessary to go to the
other special cases—discrete state systems—in which the optimal estimator
is finite dimensional. For the present purposes, i1t is sufficient to
paraphrase the example presented in Ref. 2. To make the example more
stimulating, it has peen given an admittedly contrived physical interpre-

tation.

The plant under consideration is a spacecraft with a Jovian fly-by
mission. The spacecraft attitude is maintained by the sun and a reference
star. Attitude lock of the spacecraft is accomplished by means of an
acquisition procedure; however, if it is already in lock when this proce-
dure is applied, the system will be thrown out of lock. The system can
perform a test to see if it is locked on; the test never indicates lock
when it does not exist but in a manner independent may fail from time to
time to indicate lock when it actually exists. It is assumed that, once
locked, the system remains in lock unless the acquisition procedure is

applied.

For this system, a valid information state is the probability that
the system is in lock. Suppose that probability is less than 0.5; then
the optimum input from a control viewpoint is to instigate reacquisition.
On the other hand, the optimum input from the information point of view
is to leave the system alone since, if the assumption that the system is

out of lock is wrong, the test will discover this fact sooner or later.

Now suppose that in transit there is very little costif the spacecraft
1s not attitude-stabilized, but that it is very important that it be stabi-
lized during the last time increment (i.e., the fly-by). If at the time of
the next to lastcontrol input (i.e., N-2) the information about the state
1s poor thenit is profitable to take thataction which provides themost in-

formation so that the last control input uy_, can be made with most probability
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of resulting in lock during fly-by [(N - 1) At to NAt). Thus, in this
case, the optimal input for the next to last time increment is that which

gains most information.

Now consider the same system and situation, except that the test is

performed to determine lack of lock. In this situation, the test will

never indicate lock when it does not exist; however, it may fail to indicate

lack of lock. For probability of lock less than 0.5, the optimum action
from a control point of view is to instigate reacquisition; furthermore,
in this case, this action also provides most information. It is clear
that this control is optimum in an overall sense since, 1f the decision

made 1s wrong, the test will sooner or later determine this fact.

Thus, two situations have been considered that are essentially the
same except for what amounts to a change in polarity of the measurement
system. In one case, the best controls from both the control and informa-
tion viewpoints are the same in the other case, they differ. As would be
expected, the averagé performance in the case where a dual control com-
promise must be made is less than the case where no such compromise 1is
necessary. Whenever possible, it pays to arrange the measurement system
so that the control most likely to take the system to the desired state

also provides most information.

E. EXTENSIONS OF THE THEORY

In this part, it is shown how several problems that at first do not
appear to be combined optimization problems can be formulated in a manner

such that they become combined optimization problems.

1. AUGMENTATION OF THE STATE

In Sec. III-A, it was shown that, by augmenting the state to include
the dynamics of the sensor and other components, the general control system
could be reduced to the canonical form given in Fig. II-2. This technique

can also be applied to reduce a number of problems to combined optimization

theory.
a. ADAPTIVE CONTROL

If there are unknown parameters of either the physical components
or the random disturbances and noise, these may be handled by converting

the parameters to state variables. From this point of view, an adaptive
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control problem is a nonlinear control problem. Il the unknown parameters
are randomly time varying, then it will be necessary to add state variables
to account for this fact., An alternative to specifying initial distributions
of the unknown parameters is to assume that nature is trying to pick the
parameters in the most deleterious manner, a problem which can be treated

by the theory of differential games.

b. CONTROLLABLE PARAMETERS

In many situations, it may be possible to change the mode of
operation of components; for example, a radar may be operated either in
a scan or a track mode., One method of making optimum decisions about the
mode of operation is to augment the state to include the mode of operation

and to augment the control input to allow changes in the mode of operation.

c. SUM-TYPE CONSTRAINTS

In the problem formulation, the only type constraints permitted

were instantaneous constraints; however, many constraints of importance

are of the form

N=1

Glu,i) < C . (111-32)

1M

0

i

For example, if the plant i1s a rocket, the summation could be the total
fuel used and C the fuel available.

Define a new state variable by

ooy = %, 1t Gy, k)
£, = 0 (I11-33)
then
N=-1
£ Glx,u,i) = z'y (I11-34)
i=0 LR
and (III-32) becomes
x4, < C . (I11-35)




This constraint is an instantaneous state variable constraint, which was
not included in the original formulation, However, since x; can be
measured directly, such a constraint may be handled in the same manner

as i1nstantaneous constraints upon u.

An alternative method of handling such constraints is the Lagrange

multiplier, but in many situations this method is not valid.

2. SuBOPTIMAL PERFORMANCE

In many cases, it is desirable to calculate the performance of a
control system (Fig. II-2) with a fixed but not necessarily optimal con-
troller. Section IV and Appendices D through F present a detailed dis-
cussion of fixed controller systems; in this paragraph, a method of cal-
culating the performance by use of combined optimization theory 1is

presented.

Assume that the controller is governed by Eqs. (II-9) and (II-10).
Consider the whole system of Fig. II-2 as a plant to be controlled with
state

Xy
%, =[£ ] (111-36)

From (II-7), (II-8), (II-9), and (II-10), this plant is governed by the

state equation

A [ [ '
oo = fxi0w)

f{xk,A[Qk,h(xh,vh,k),k];wk,k}

= . , (ITI-37)
P2, h(x,, v, k), k]
where

W
v, é[ ] (I11-38)

v

k

Let the measurement system for this plant be

z, 8 =z (111-39)
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and the performance measure be

n iz

J'o= B2 ({a AR LRk v, 0), 0], 0 4l
1 =0

N
J+E{ b3 u'Z} (I111-40)
1 =0 t

Equations (ITI-37), (III-39), and (III-40) together with the statistics
of v, and W, define a combined optimization problem. This problem is of
a very special kind, however: The control input u: has' no effect on the

next state. Therefore, from (III-40), it is obvious that the optimal u

is given by

k

!

u, 0 (I11-41)

and that the optimal performance

J;lN = J . (I11-42)
Hence, by solution of the combined optimization problem described by
(IT11-37), (I11-39), and (III-40), the performance of the original fixed
system is found, but since by (III-41) u, =0, no minimization 1s then

necessary to the solution of this problem.

In Ref. 2, this method plus considerable algebraic manipulation 1is
used to derive the results presented in Part C for nonoptimal controllers

in the linear case,
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IV OPTIMUM INFORMATION SYSTEMS

Optimum information systems are distinguished from combined optimi-
zation problems, as discussed in Sec. III, by the fact that the decisions
u, made on the basisof the observations z, do not affect the signal gen-
erating process. ilence, they constitute a special case of combined
optimization theory, and in addition to their very real practical impor-
tance, provide another and somewhat simpler vehicle for discussing and

substantiating the concepts of guantity of information and value of

information.

The work on optimum information systems was greatly stimulated by
J. Marschak’s paper®. In Appendix A, Marschak’s qualitative discussion
is complemented by quantitative expressions and his problem formulation
is considerably expanded by modeling the signal generating process and by

considering a much more general cost function.

A. PROBLEM FORMULATION

With reference to Fig. IV-1, the problem is defined as follows:

k k
SIGNAL- x z DECISION u
GENERATING k MEASUREMENT k SYSTEM |—te
PROCESS SYSTEM ?

FIG. IV-1 OPTIMUM INFORMATION SYSTEM
Given (1) The known signal generating process

oo = flxw k) (IV-1)
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(2) The measurement process

z, = h(x,, v,k (IV-2)

(3) The probability density functions p(xo/no measurement),
p(wi) and p(vi), it =0, ..., N, with w and v white.

Find The decisions u, that minimize, on the average, a cost function of

the form

Jlugy oo uwy) = ECS s w00} (1V-3)

where the expectation is taken with respect to the random variable x,.

It is shown in Appendix A that the solution to the stated problemis
relatively simple 1f the decision u, has no repercussion on future deci-
sions Uy (i.e., does not constrain such later decisions) and relatively
complex in the alternative, where the mathematics of combined optimization

theory apply.

For the purposes of this discussion, it suffices to consider the
simple (yet meaningful) case of unconstrained decisions. Under these cir-
cumstances, the minimization of the functional (JV-3) reduces to the sequence

of minimizations of the functions

J, (u,) E {l(x,,u,,k)}
e

Sz, u  R)p(x,/2,)dx, . (IV-4)
i

The optimum decision uy minimizes Jk(uh), that 1is

up = arg min J, (u,) . (IV-5)
a k ’

B. PROBLEM SOLUTION

It is readily seen from Eqs. (IV-4) and (IV-5) that the synthesis

of the optimum decision system involves two steps, namely:
(1) The computation of the conditional probability density

function p(x,/Z,) of the state x, given all available
information, both prior and collected.

46




(2) The selection of the optimum decision u} by minimization
of J, (u,).

The function p(x,/Z,) can always be computed in principle by recur-
sive application of Bayes’s theorem, as discussed in Sec. III and in
Appendix A. The determination of u;j follows from differentiation of

J‘(uk) or, in the more general case, from a search over u, .

C.  MARSCHAK’S ILLUSTRATIVE EXAMPLE

In [Ref. 5], the example of an investor playing the stockmarket
under simplifying assumptions is used throughout. This investor is
allowed to reinvest his capital at every decision time k by buying the
most promising stock, which he sells at a profit or a loss before the next
decision time, k + 1. The optimum decision u} maximizes the profit of
the investor during the decision interval [k,k + 1]. The example is con-
trived, because the intelligent investor will try to maximize his profit
over a decision interval [0,N], which may be the duration of his life.
Under those circumstances, the amount available for investment at k + 1

depends on the previous decisions.

In the example, the signal generating process is a mathematical model
of the stockmarket, the imperfections of which are accounted for by w,;
the measurement process is the Wall Street Journal and the noisy informa-

tion received from the stockbroker.

Even the simple problem formulation of unconstrained decisions is
meaningful in the engineering sciences. As an obvious application, the
problem of determining the best estimate of a state or a parameter (which
1s equivalent from the point of view of the mathematics) is cited. The

quality of the estimate u, of the actual state x, 1s measured by

J, = E {l(x, - up)} (IV-6)
"k

where the function J, is often of the weighted rms variety

~
"

E {(x, - u)7Qx, - u)} (IV-7)
“h

D
"

weighting matrix
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The most likly estimate Qk/k always minimizes Eq. (1V-7) regardless

of the weighting matrix Q.

D. MEASURES OF INFORMATION

The conclusions obtained in Sec. Il with regard to appropriate mea-
sures of information are illustrated and substantiated particularly well
by the optimum information system formulation under discussion. These

two measures are quantity of information and value of information.

From Eq. (IV-4), it follows that the conditional probability density
function p(x,/Z,) is necessary and sufficient to compute the cost of J,.
This function determines the quantity of information because it provides
a complete summary of prior knowledge and collected data. A further im-
portant feature of p(xh/Z‘) is that it can be updated by means of a re-

cursive relation of the form
p(x, 1 /2,,) = ¥lp(x,/2)), z,,,, K+ 11 (IV-8)

which, in general, is not true for the successive moments such as mean

and variance, the important exception being the linear Gaussian case.

The entropy H, can neither be updated by a recursive relation of the

form

Hk+l = Lp[”k' zk*l’ k + 1] v (IV~9)

nor does it suffice to compute the cost J, of Eq. (IV-4).

The elements of the covariance matrix P‘/h of the function p(x*/Z*)
are useful in assessing the spread of the multivariate distribution and
thus provide a measure of the quality of the information available; how-
ever, in the general case, these elements do not suffice to determine

the cost Jk.

The value of the information received and available a priori is

measured by the cost J,, which is the main quantity of concern to the

designer for the following two reasons:

(1) By expressing J, in terms of parameters defining the mea-
surement system (e.g., the accuracy of a sensor), and the
amount of prior knowledge (e.g., the accuracy of the model),
the critical sensor and model parameters can be pinpointed
and cost trade-offs between alternate sensors can be found.
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By expressing J, in terms of the parameters of a no
decision system, the degradation of performance ent:
nonoptimal decision making can be assessed and the v
optimal decision making established.
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V  OPTIMUM QUANTIZATION

The quantizer is an informtion handling element of frequent occur-
rence in control systems. It has the property that although its input, =,
can take on any real value, its output, g¢(x), must always be selected from
some finite set. A quantizer is completely characterized by the set of
output levels, denoted as €or €1y -n €y, and the relation that determines

which output level is to be used for each value of the input.

Customarily, this relation is determined by dividing the real line,

- ® < x <® jinto (N + 1) intervals such that each output level corresponds

to one interval. These intervals are specified by the N switchpoints,,
d, d,, ..., d,, where d, is the value of x for which q(x) changes from
c,-;1 to ¢,;. In general, the output levels are monotonically increasing

with i, the index. The quantizer characteristic then appears as in Fig. V-1.

The work described in Appendix B provides a procedure for optimally
designing a quantizer with a fixed number of levels, N + 1. The design
procedure specifies the (2N + 1) parameters of the quantizer, namely the
(N + 1) output levels and the N switchpoints. The criterion on which the
design is based is the expected value of some function of the error between
input and output of the quantizer. This criterion is a measure of how ac-
curately the quantizer output, which must be chosen from a finite set, can
approximate the input, which can have any real value. A fidelity criterion
of this type maximizes the information transfer through the quantizer in

the sense that it minimizes the average error introduced.

If p(x) is the probability density function of the input, x, and if
d, and dy,, are set equal to —® and to +® respectively, then the criterion

can be written compactly as

g - % fddi+lg(x,ci)p(x)dx , (V-1)

1=

i
where g(x,ci) is the error measure when the input is x and the output is

¢.. A typical error measure is squared error, in which case

glx,c;) = (x- ci)2 . (V-2)
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FIG. V-1 QUANTIZER CHARACTERISTICS

The design procedure consists of finding the (2N + 1) values c,
Cpy oo Cy and dl, e, dN that minimize J. This can be accomplished
by differentiating J with respect to each of these (2N + 1) parameters
and setting the derivatives equal to zero. However, the design equations
that result cannot be solved explicitly except in a very few cases.
Nevertheless, one important result is obtained directly; under certain

assumptions, which are met in almost all cases of practical interest, it

can be shown that the switchpoints fall halfway between the output levels,
that 1s

d = é (c._, *+ c.) . (V-3)

This reduces the number of free parameters from (2N + 1) to (N + 1).

One way of solving the (N + 1) remaining design equations is to
search simultaneously over the (N + 1) parameters until a set that sat1s-

fies the equations is found. However, this is not practical for largeN.
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In Appendix B, a procedure of much greater practical value is pre-
sented. The outstanding feature of this procedure is that it carries out
the computations in such a way that a one-dimensional [rather than
(N + 1)-dimensional] search suffices. As a result, 1t 1s possible to
treat the case of large N. The procedure converges rapidly and it is
ideally suited for implementation on a digital computer. It is described
in detail in Sec. B of Appendix B. The procedure can easily be extended
to handle many related problems. The case where the output of the quantizer

is bounded is treated in the Appendix.

The procedure as described thus far is useful for static optimization
because it depends only on the instantaneous values of the input and output
of the quantizer. This point of view is appropriate when the quantizer is
considered to be a part of an open-loop system, such as a measuring device.
However, when the quantizer is introduced into the feedback loop of a
dynamic system, the optimization problem becomes much more complex. 1In
Sec. C of Appendix B some of the problems that arise are described. Early

15,16

attempts to treat this case resulted in techniques that are not computa-

tionally feasible for large N.

In Sec. D of Appendix B it is shown that for the case of linear plant
equations, linear observations equations, Gaussian noise, and a quadratic
performance criterion, the optimum quantizer design can be separated from
the optimum design of the remainder of the system. A proof is presented
for the case in which the quantizer is at the output of the controller, as
in Fig. V-2. The extension to the case where the quantizer is located

elsewhere in the feedback loop can easily be made.

The result that is obtained is that the overall optimum system design
can be found by first designing the optimum feedback control system as if
the quantizer were replaced by a unity gain and then using the previously
discussed procedure to find the optimum quantizer characteristic. The
fidelity criterion on which this latter optimization is based is the
square of the error. Even when this procedure of separately designing the
systems 1s not exactly optimum, a good approximation to the optimum system
1s often found. The simplification that results from the separation of
the two designs is quite significant and the optimum or near-optimum
synthesis of many practical systems containing quantizers thus becomes

straightforward.
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VI SYSTEMS WITH FIXED CONTROLLER

It is customary to design a control system for adequate transient
and steady-state performance by neglecting, in the initial design phase,
the random effects w and v. The resulting fixed controller relating the
plant input u to the measurement system output z may or may not be altered

thereafter to reduce the degrading effects upon performance of w and v.

The present section is concerned with the calculation of performance
in the presence of such random perturbations and on the assumption that a
fixed controller has already been laid down. The general nonlinear non-
Gaussian case 1s considered and special cases, particularly those derived

from well known methods of classical control theory, are treated.
A. GENERAL PROBLEM FORMULATION

For the closed-loop system shown in Fig. VI-1, the problem is formu-

;

FIXED Yk - %
PLANT
CONTROLLER

lated as follows:

;

Iy MEASUREMENT
SYSTEM

FIG. VI-1 SYSTEM WITH FIXED CONTROLLER

Given the plant, measurement and controller equations

¥pe1 = flxw,u,k) (VI-1)
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z, = h(x,,v,,k) (VIi-2)

u, - glz,, k) (VI-3)
and the probability density function p(xy), plw ), p(v ), w and v white
i =0,...,N, find the expected cost

N

J - E{Z l(xk,uh,k)}

=0

for the interval (0,N), the expectation being with respect to the random

variables x, and u,.
The solution involves the two following steps:

Computation of the density functions p(x,) and p(u,)—This
computation can always be carried out, in principle, on a
digital computer, but requires impractically large high-
speed memories for even moderate dimensions of the state
when the customary programming techniques are used.

It 1s shown 1n Appendix C that p(xh) is given by a stochastic dif-

ference equation of the form

plx, ) = Ylp(x,), k] (VI-4)

and that p(u,) can be computed in a straightforward manner once p(x,) is

known.

Computation of the cost J—The computation of J proceeds
without any formal difficulty, since the densities p(xk)

and p(uk) are now known. Thus, the partial cost J, incurred
during the interval [k,k + 1] is simply

Jo = ST Uxu e (e (e ) duy (VI-5)
kY

The total cost J is the sum of all these partial costs

N
J = z Jk (VI'6)
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As stressed in previous section, p(x,) is necessary to determine the
value of information, which is measured by J. An alternative method of

calculating J by use of combined optimization theory is presented in

Sec. III-D.

B. CLASSICAL SYSTEM PERFORMANCE MEASURES

In Appendix D, the relation between the information handling character-
istics and performance of control systems is considered for classical per-

formance measures such as pole location (for transient response) and steady

state error.
1. SysTEM DESCRIPTION

For this formulation, it is assumed that the plant, measurement system
and controller are linear, and that the system operates in continuous time.
Because of the linearity assumption, all components can be represented by

appropriate transfer functions.
2. SENSOR IMPERFECTIONS

Some of the sensor imperfections that can be treated with this model

are
(1) Constant biases
(2) Sensor gain changes
(3) Sensor dynamics
(4) Additive measurement noise
(5) Sampling (by use of z-transforms)

(6) Quantization (by replacement with an equivalent noise source).

3. RBREesuLTs

One ohjective of this study is to show that the classical methods of
analysis based on Laplace transform theory can be applied to investigate
the effect of the sensor defects listed above. Since these methods are
well known, it was only necessary to illustrate how they can be appliedin
the case of a simple position servo. From this example, it is seen that
classical control theory may be directly applied to an important class of
problems involving imperfect sensors; the root locus approach, straight-
forward sensitivity considerations, and the use of power spectral density

are of particular value.
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In the second part of Appendix D, a method for designing systems to
optimize classical criteria with a state space approach is presented. In
addition a recently developed state space method for determining the
sensitivity of pole locations to parameter changes is given. As in the

first part, the ideas are illustrated with a simple position servo.

C. PROBABILISTIC FEEDBACK

Efforts to exploit the results of information theory in order to
analyze information requirements of guidance and control systems have not
been successful. A major stumbling block arises because the analytic
property—the joint entropy of two independent events is the sum of the
individual entropies, which is so useful in information theory-—-does not
help much when considering control systems. In the latter we are much
more often led to compute the entropy of the sum of two random variables,

and it is not in general calculable from the individual entropies.

Useful results can be obtained if one considers certain marginal
probability distributions. Specifically, let the system (plant and con-
troller) have a state vector x of n elements obeying the continuous-time
equations:

x = Fx + Gw + Hy 0 <t <> (VI-7)

with matrices F, G, and H possibly time varying. Let w(t) be a white
random vector with ensemble mean zero and covariance matrix Q,

E(w) = 0, Elw(t)oT(t,)] = Q8(t; = t,)

Let pf(y]x) be the conditional probability density of the feedback term

y, write the conditional mean m as
mo= m(x) = [dyyp,(ylx) (VI-8)

and the ensemble conditional covariance as

E{ly(t)) = m My(ty) - mp)7|x(2)),2(2))} = S(x)8(t, - t,)

5(t; — t,) fdyly - ml{y ~ m]’bf(ylx)

(VI-9)
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so that y is probabilistically dependent on x and is white in time. Take
y and v to be statistically independent, write p(x,t) for the ensemble
probability density of the system state at any time t, and take p(x,0)

to be given.

Then the evolution of the state x(t) is a Markov process and the
instantaneous state probability density p(x,t) will obey the Fokker-

Planck partial differential equation

9 n F.) | O n 'a2
3’3 - - I — @)t I I ——(B,p) (VI-10)
t k=1 %%y k=l =1 O%OX;
where
@ = Fx + Ha(x) (VI-11)
(8,,) = GQGT + HS(x)HT (VI-12)

From this equation, by judicious use of integration by parts, one can ob-
tain families of ordinary differential equations that will describe the
time evolution of many quantities defined by integrals of functions of «x
over the p(x,t) density. Complete families of equations can be found,
for example, for the instantaneous ensemble moments of the state in any
linear problem and also in a number of interesting problems involving
nonlinear probabilistic feedback (e.g., where the feedback “noise” is de-

pendent on the state).

This problem formulation and the resulting Fokker-Planck equation
also apply to the case in which the feedback term y is discretized, so we
can treat the system with a quantizer and digital communication channel
in the feedback path. It turns out that some approximations are needed
in order to obtain a complete set of ordinary differential equations for
the state mean and covariance matrix; the first approximations that were
tried introduced a bias in the steady-state results. However, even these
should give good answers when the number of quantization levels is fairly
large (say, more than eight). These results thus permit the designer to
analyze the response of his control system design in terms of time his-
tories of its ensemble means, variances, etc.; the effects of both system
dynamics and information-handling-element characteristics (inaccuracies,
averaging, communication channel errors, etc.) on system response can be

examined in detail.
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D. APPROXIMATE DESIGN OF A FIXED CONTROLLER SYSTEM
WITH DIGITAL FEEDBACK PATH

1. InTRODUCTION

To illustrate the power of straightforward engineering arguments and

sound approximations, the example problem shown in Fig. VI-2 is considered.

r (s u | .
<{ S(S+l)
lv
DEﬁSgER. ENCODER UNIFORM ._J
HOLD COMMUNICATION (BINARY) QUANTIZER
CHANNEL

FIG. VI-2 SYSTEM WITH NOISY DIGITAL FEEDBACK

The quantizer has N equally spaced levels, which are converted into
an n-bit message in the encoder. This message is sent over a frequency
shift keying (FSK) communication channel, where each bit is changed with

a probability p in accordance with

1
p = _,e—a.St (VI-13)
v 2
where

o

constant characterizing the quality of the channel

8t = time interval for transmitting one bit.

The digital message received with a transmission delay Ot is converted
into an analog signal in the decoder and compared to the command input r

to generate a correcting signal u.

The design parameters p,, N, n, 8t and At are related by (VI-13) and

the additional two equations
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N = 27 (VI-14)
At = nbt (VI-15)

with the result that (VI-13) can be rewritten as

1
=1 VI-16
. "3 ( )

For convenience, the bit error probability p and the message time
At are retained as the free design parameters and the problem consists of

minimizing the steady-state rms output E{(r - x)?%} by selecting optimum

values of p  and At.

To 1llustrate the situation, the following two extreme cases are

considered:

(1) At is small compared to the system time constant and
the error (r = x) is affected by nonzero mean noise,
the major effect of which is the introduction of a
bias; the magnitudeof this bias depends on the trans-
mitted code word, i.e., on the output x. The ampli-
tude of the transients resulting from an erroneous
message are negligible because At, the time during
which the resulting erroneous control prevails, 1is
much smaller than the system's dominant time-constant.
This situation will be referred to as the steady-state
mode of operation.

(2) At is large compared to the system’s dominant time con-
stant; transmission errors are now relatively infrequent,
but set up a non-negligible transient since they cause
an erroneous control signal, which subsists for a rel-
atively long time-interval. In addition to this in-
frequent transient error, there is a deadband error
resulting from the fact that no correcting signal is
generated as long as the output remains in the dead-
band of the quantizer. This situation will be referred
to as the transient mode of operation.

2. SEPARATION BETWEEN STEADY-STATE AND TRANSIENT MODES

The average frequency with which an erroneous message is received is

o

fo = ==

t
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whereas the break-frequency of the linearized system of Fig. VI-2 1s

1
fo = 27
The steady-state mode prevails for
foa? 1y
and the transient mode for
fa<fb '
with a separation given by
p,n 1
_ = = . (VI-17)
At 27

With Eqs. (VI-14) and (VI-15), this separation is expressed in terms of

the single free design parameter p as
log 2p  + 27map, = 0 . (VI-18)

3. PERFORMANCE IN THE STEADY-STATE MODE

The performance is measured by the average square of the output off-
set resulting from the bias effects of the noisy communication channel,

the average being taken over time and the space of the input commands r.

It is proved in Appendix F that the number j of quantization level

offsets caused by this bias is approximately related to r as shown in
Fig. VI-3.

For r uniformly distributed in the range

A
-~
IA

(VI-19)

ICRES
o I

the resulting cost J;is

(VI-20)

J, = E{(r - 2N}
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FOR A BINARY CODE

PERFORMANCE IN THE TRANSIENT MODE

In this mode, it is assumed that the following two errors occur:

The deadband error, which is assumed to be uniformly
distributed within the deadband determined by the
quantizer step spacing X/N. The resulting cost J; is

J, = E{(r - x)?} = W (VI-21)

The transient error, which is caused by an erroneous
control applied during the interval At when an erro-
neous message is received. Denoting by o the magni-
tude of the channel error at the decoder output and

by 3(t,At), the unit impulse response of the linear-
ized system of Fig. VI-2 operating with the channel

delay At the integral squared error is

ISE = p2(8t)2 [ 8%e,Ot)dt . (VI-22)

The frequency of occurrence of this error is determined
by p, and the magnitude of its effect is measured by a
function C of the number of quantization increments X/N
and the particular code chosen.
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The cost associated with this second error 1s
averaged over time with the result that

@
Jp = (B0 C [T gNe,00de (VI-23)

It 1s shown in Appendix F that 8(t,At) is fairly insensitive to Ot
for Ot sufficiently small (At < 0.3 sec) and that C is a constant for N
sufficiently large (N > 8) with the result that (VI-23) can be evaluated

very easily.

The costs J; and J; are added to provide the total operating cost J,
for the transient mode.

5. DEs1GN CHART

With expressions for the costs J, and J,, it is now easy to establish
a design chart suggesting optimum values of the free design parameters p,
and At. This is done in Fig. VI-4 for a communication channel character-

ized by ¢ = 63.4 and a quantizer range X = 1.5.

It is seen that the best design parameter selection is approximately

At = 0.5
p, = 1073
n = 35
N = 32

Larger values of At are ruled out, since they lead to poor transient re-

sponse and cause instability for At > 0.8.

The separation between steady-state and transient modes is atp = 10" %
consequently, the best parameter selection corresponds to the transient

mode. The costs J; and J, are of the same order of magnitude.

It is clear from Fig. VI-4 that the costs can become extremely high

for poor choices of design parameter.
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6. EXPERIMENTAL VERIFICATION

In order to check the validity of the numerous simplifying assump-
tions made, a Monte Carlo simulation program was written. The numerical
checkpoints provided by this simulation are shown in squares on Fig. VI-4.

It 1s seen that the assumptions made are well justified.

7. INFORMATION-THEORETIC IMPLICATIONS

The channel capacity of a symmetric binary channel is expressed as

C, = In2+pilnp+ (1 -p)lin (1l ~-p)

where (| 1s capacity in nepits per bit and p is the bit error probability.

The capacity 1n nepits per second 1s obviously

c = CR

where R 1s the rate In bits per second.

For the FSK system with incoherent detection the bit error probability
1s given by

where % 1s a power parameter (signal power divided by one-sided noise spec-

tral densitv) and ot 1s the bit time. Then

In 2p = - adt = -

IR

and

a
ro- 2 4 - - - —
C [tn 2+ p lnp + (1 p) In (1 p)] “1n 2p

Thus € % is a function of p alone and some values are given in Table VI-1.

It 1s noted that there 1s a fairly broad maximum running from about

p = 0.065 to p = 0.165 with the absolute maximum at p = 0.110.
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Note that the location of the maximum
1s i1ndependent of @ and occurs at probabil-

ities above the boundary between “transient”

and “steady-state’ system behaviour. Since
other considerations indicate that the sys-
tem should be operated at lower values of p,
the communication channel will not be oper-
ated close to its maximum capacity. Note
also from Fig. VI-4 that knowledge of the
channel capacity alone gives no clue con-
cerning the performance of the system.
j

j
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VARIATION OF C/a WITH p

Table VI-i

p C/a
0.005 0.144
0.045 0.212
0.065 0.222
0.090 0.228
0.110 0.229
0.130 0.228
0.165 0.221
0.200 0.210
0.300 0.161




VII SUMMARY AND CONCLUSIONS

The chief objective of the study was to relate the performance of
control and guidance systems to the information-handling characteristics
of their kev constituents. To accomplish this objective, the following
questions were studied:

(1) What is information in this context and what are quantita-
tive descriptions of information?

{2) Given a control system with fixed controller, how does
one relate performance to the system parameters?

(3) Given a control system with fixed plant and measurement
subsystem, how does one design a controller that optimally
utilizes the information available a priori and collected
in actual operation?

From the answer to these questions, the desired relation between
performance and the information-handling characteristics of the subsystems
(measurement as well as controller subsystems) follows directly in princi-
ple, although the actual calculations may exceed the capabilities of
present day computers in many practically important situations. These
relations may become very complex, as evidenced, for instance, by the con-

cept of dual control; one must recognize that a complex problem usually

leads to a complex answer.

A.  MEASURES OF INFORMATION

In order to calculate the performance of a control system affected
by random forces, notably plant perturbations w and measurement noise v,

‘ the following two mathematical notions are required in the general case:

(1)

The condition of the system must be expressed un terms of
its state, which summarizes the complete past history of
the system. Description by Laplace or z-transforms is
possible for linear stationary systems with Gaussian noise

and fixed controller, but out of the question for all other
cases.
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(2) The effects of the random forces must bhe expressed in terms
of probabitity density functions. fn special cases, these
probability density functions may be repluced by a finite
number of moments, which constitute a sufficient statistic.

With these descriptions, it is then possible to compute system per-
formance for the case of a fixed controller and the case of an optimum
controller. The quantity required to compute performance is the prob-
ability density of the state, conditioned on @ priori information only
in case of the fixed controller and conditioned on all available infor-
mation in the case of optimum controller. This probability density
function is determined, among other effects by the random effects wandv.
It constitutes a description of the uncertainty about the state in terms
of the statistics of w and v, and hence can be used to determine the
quantity of information available about the state. Although the prob-
ability density is not the quantity of chief concern, it is required for
the calculation of the system performance J which is the quantity of chiel
concern. The scalar J determines the value of the information provided
not only by the measurement system, but also available a priori; 1t
furthermore measures the efficiency with which this information 1s pro-
cessed in the controller. Once J has been calculated, the sensitivity of
J with respect to measurement, processing, and control subsystem parameters
can be established, either analytically as for the linear Gaussian case,

or by machine computation for the general case.

The performance J also establishes the need for feedback in terms of
the performance requirements, the random perturbations w, and the initial
uncertainty about the state. Specifically, 1t tells under what circum-
stances closed-loop control is necessary to meet the performance

requirements.

One important conclusion which results from these considerations 1is
that the classical information theory is of no direct help to the designer
of guidance and control systems, except under very special circumstances,
such as Kelly’s gambler>®. On the other hand, control theory is of con-
siderable assistance to the designer of information systems as evidenced by

Sec. IV on the design of optimum information systems.

B. SYSTEMS WITH FIXED CONTROLLER

The design of most control systems—notably simple systems with a

small number of states, such as position control servos—usually consists
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of selecting a fixed controller structure (e.g., position and rate feed-
back) to provide acceptable transient and steady-state performance in the
absence of random perturbations. After a basic design has been obtained,
the effects of random forces and measurement system deficiencies are there-
after determined and controller adjustments and filters are used to account

for these effects.

For fixed controller design, it is always possible and frequently
straightforward to relate performance to the measurement system character-
istics, the controller parameters and the environmental perturbations w.

The following four approaches were taken:

(1) Measurement system deficiencies were characterized by bias
errors, additive noise, internal dynamics and nonlinearities
such as quantization. For linear systems, Caussian noise and
quadratic performance measure, the relation between perform-
ance and these deficiencies can be derived by well-known
results of classical control theory. The effects of quanti-
zation and other nonlinearities can be assessed approximately.
This work, which 1s of direct practical usefulness to the
control engineer, is described in detail in Appendix D.

(2) In the general case of nonlinear systems, non-Gaussian
random effects, and non-quadratic performance measure, a
closed form relation between performance and the relevant
system parameters cannot be obtained. But it 1s always
possible in principle, and this does not seem to be a
generally known fact, to obtain this relation by machine
computation. This computation involves two steps:

(a) Determination of the probability density function
of the state p(xk).

(b) Calculation of performance J on the basis of p(xk).

In practice, these computations become laborious, even for
systems with a moderately high number of states, when the cus-
tomary programming procedures are used.

The computational approach for this general case is spelled
out in detail in Appendix C.

(3) For the less general case of a linear plant and controller
and a nonlinear measurement system with non-Gaussian noise,
the Fokker-Planck equation, a partial differential equation
whose solution is the probability density function of state
with time, was derived and approximated by a set of differ-
ential equations giving mean and variance with time. The in-
adequacy of entropy as well as the difficulty of actually
computing it recursively was pointed out in this study, of
which a detailed account is given in Appendix E.
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(4) To illustrate the potential of approximate design techniques,
the case of a linear system with a noisy digital communica-

tion channel in the feedback path was considered. Performance
was calculated under very simple approximations and the results
were checked by means of a Monte Carlo simulation. The ac-

curacy of these results are quite adequate for many simple
systems. A by-product of this study, discussed in detail in
Appendix F, 1is the proof by example that there exists no strong
relation between system performance and channel capacity.

C. SYSTEMS WITH CONTROLLERS MAXIMIZING THE UTILIZATION
OF INFORMATION

In order to relate performance to the information-handling character-
istics assuming that optimum utilization of information is made, the com-
bined optimization problem was formulated and a solution was derived with
dynamic programming. It was shown that the control sequence leading to
optimum performance is determined by the conditional probability density
function p(x,/Z,), where Z, incompasses all a priori and collected infor-
mation. This i1s, further, an illustration of the fact that the quantity of

pertinent information is a property of the probability density of state.

The combined optimization problem has a feature which 1s uncommon to
the more conventional control problems, but very common to human decision
processes, namely dual contrel: as long as information is insufficient,
the actions which provide most information are taken instead of actions
which are directly aimed at achieving the control objectives. This pro-

cedure permits better satisfaction of the ultimate objective at a later

time.

In the general case, the dual control problem does not have a prac-
tically computable exact solution. However, important special cases which

can be resolved with present day machines were identified, notably:

1. THe LINEAR GAussIAN Cast WITH QUADRATIC PERFORMANCE

In this case, the control u, does not affect the conditional co-

k
variance of the state; because control action cannot be used to gain

information, the dual control aspect hence does not enter.

For the linear case, concise mathematical expressions were developed
to relate performance to the characteristics of the measurement system
and the amount of prior information. Specifically, the effect upon per-

formance of the lack of information is determined by the conditional
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covariance of the state. The value of more information, i.e., the possible
increase in system performance, depends on the change in this conditional
covariance as well as on other terms related to the objective function and
the plant. With the help of these mathematical expressions, the designer
can easily determine which state-variables must be determined accurately
(either by direct measurement or by computation from other measured state
variables) and which can be neglected. Also, the degrading effect of sub-
optimal processing, including neglect of prior information about the initial

state, can be assessed.

2. Optiwmum INFORMATION SYSTENS

In this special case, decisions made on the basis of observations do
not affect the dynamic process generating these observations, i.e., the
loop 1s not directly closed (it may be closed indirectly because of con-
straints). This case has practical importance in a variety of situations
ranging from the interpretation of test data to optimum strategies for
playing the stock-market, the latter being Marschak's example problem,

which prompted the study of information systems.

Much related work is available in the literature in the field of

decision theory. This study, however, adds several novel elements, i.e.,

® inclusion of the dynamics model governing the signal generating
process to utilize past observations

® consideration of dynamic, as opposed to the customary static,
performance measures

® discussion of the relations between performance and information.
These optimum information systems provide a particularly good
1llustration of the required mathematical description of in-
formation—the conditional probability density function
p(x,/Z,)—and of the value of information.

A major effort was devoted to combined optimization theory, which is
believed to be as important as the theory of optimum control and the
theory of optimum estimation, not only in terms of its immediate practical
applications, but also in terms of its extensions to important systems
concepts not specifically considered in this study. Thus, combined opti-

mization theory provides the required mathematical framework for “adaptive”
and “learning’” systems where either the plant parameters or the statistics
of the perturbations or both are not accurately known initially. Similarly,

it leads to the optimum design of systems where the measurement subsystems
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as well as the plant can be controlled. Additional important extensions
relating to the theory of optimum classification and the theory of differ-

ential games were pointed out.

3. THE OpTiMuM DESIGN oF SYSTEMS CONTAINING QDUANTIZERS

Prior to the effort in combined optimization theory, a study involving
systems containing quantizers was carried out. Although this study did not
shed much light upon the relations between performance and information, it
generated a very useful approach to practically design such systems for
optimum and near-optimum performance. The main elements of this approach
are:

(1) Under certain commonly made restrictive assumptions, optimum

system performance results if the controller, estimator
and quantizer subsystems are optimized separately.

(2) The optimization of the quantizer (that is, the selection
of the optimum step sizes and switchpoints for a given
quantizer input probability density function) is performed
easily by means of an efficient computational scheme
developed in the course of the study.

D. PRACTICAL IMPLICATIONS OF COMBINED OPTIMIZATION THEORY

Assuming that the computational requirements can be overcome by means
of rational approximations and efficient processing of the data, combined
optimization is directly applicable to the design, evaluation and real-
time control of dynamic systems affected by measurement noise and described

by imperfect models.

Design—By providing the designer with relations between performance
and the characteristics of the various subsystems, best choices in terms of

performance improvement vs. dollar cost of these subsystems can be made.

Evaluation—The optimum solution provided by combined optimization
theory sets a standard of comparison and thus indicates how well a given

system performs and where significant improvements can be obtained.

Real-Time Control—With the results of combined optimization theory,
real-time systems for which optimum control in the presence of noise mea-

surement and imperfect models is important, can be synthesized.
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k.. PRACTICAL DIFFICULTIES OF COMBINED OPTIMIZATION THEORY

As 1s the case with most control system optimization procedures the
computational requirements quickly exceed the capabilities of present-day
machines for both computation time and high-speed memory unless special

conditions hold.

It should be pointed out that these difficulties stem from the nature
of the control problem rather than the method of solution. For feedback
control, it is necessary to derive the control law as a function of the
state 1f 1t 1s known or the conditional probability of the state 1f the
state 1s not known. In either case, for high-dimensional systems, one 1is
faced with the necessity of computing and storing a function of a large
number of variables. Only in special cases where open loop control 1is
suitable can such procedures as the gradient method greatly reduce com-

putational requirements.

These computability problems have become so frequent—for an entirely
different example, see Appendix C on the recursive calculation of prob-
ability density functions—that attention must be devoted to approximations
and computational shortcuts. In the case of combined optimization, there
exist several logical approaches to both problems, such as linearization
and state increment dynamic programming, but they are by no means the only
approaches and certainly not always the best, depending on the special

features of specific problems.
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APPENDIX A

OPTIMUM INFORMATION SYSTEMS

The purpose of the present appendix is to discuss and expand J.
Marschak's paper "Remarks on the Economics of Information," Cowles
Foundation discussion paper #70, one of the few references where meaning-

ful mathematical definitions of information are given.

In what follows, Marschak's problem formulation is expanded to in-
clude a priori knowledge about the signal generating process- and to pro-
vide the required recursive relations for the optimum processing of the
information received at the output of a noisy communication channel or
measurement system, These recursive relations are derived from Bayes's

L%
rule,” and constitute a generalization of the Kalman-Bucy estimator.

The problem formulation is much simpler than the combined optimiza-
tion problema in the sense that the decisions made at the output ter-
minals of the measurement system 22 223 affect the signal generating
process, This formulation has great practical importance for the selec-
tion and design of complex measurement systems such as required for space
exploration. The formulation has the further merit of leading to com-
putable solutions in a large number of applications without the need for

approximations,

In addition to these practical considerations, the problem formula-
tion provides an excellent basis for discussing the potential and the
shortcomings of information theory, and for deriving other and much

more meaningful measures of information than entropy.

A. Problem Formulation

With reference to Fig. A-1, the problem is formulated as follows:

%k
References are listed at the end of each Appendix.
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FIG. A-1 OPTIMUM INFORMATION SYSTEM

Given:

X, = state at discrete time k of the signal generating process

zk = measurement vector at time k

dk = decision at k

Wy = random perturbation affecting the signal generating
process

vk = random noise affecting the measurement system.

The known signal generating process

x = f(x, , k)

k+1 kK’ Yk (1)
The intial probability density function (p.d.f.)
p(xo/no measurement)
The known equations governing the measurement system
zk = h(xk, vk, K) (2)

The p.d.f. of wk, supposed white

P(w,)
The p.d.f. of Vi supposed white

p(vk)
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6. A cost function J of the actual state x and the decisions

d to be minimized on the average.

Find:

A processor which minimizes J given all the a priori information

and the measurements zk up to and including k.

In the simplest case, which is also the one treated by Marschak,
a cost Jk is incurred at every decision time k,and the decision dk has

no repercussion on future decisions., Thus

= d k 3
J (6 E { (x4, 0] 3
k
where the symbol E denotes the expectation over the random variable X0
X
that is k
= d ‘
3, (d) I, a9, p(x, /Z)dx, (4)
"
where
L T
Zk = [zo,...,zk ]

*
The optimum decision dk is clearly that admissible value of d_ which

minimi
inimizes Jk(dk),

*
dk = arg mlnﬁ(dk)

From this simple optimum decision process, the following two important

conclusions are derived concerning the tasks which the processor must

accomplish:

1. It must obtain the p.d.f. p(xk/Zk), i.e. the probability
of xk conditioned on all available information, both

a priori and measured.

%k
2, It must compute Jk and find dk'



B. Calculation of p(xk/Zk)

As pointed out in Refs. 2 and 3, the best approach to compute this

conditioned p.d.f. is Bayes's theorem, which is first recalled.

Given two dependent random variables A agd B, Bayes's theorem

states that

pP(B/A) p(A) (5)

p(A’B) = o (B)

Or, returning to the stated problem

x /Z = ' s o0y
p(x, /Z.) p(xk/zk, Zy 1 )
p(zk/xk,zk_l,...,zo) p(xk/zk_l,...,zo)
p(zk/zk_l,...,zo)
i p(zk/xk) p(xk/Zk_l) (6)
P(z) /2y )

The three p.d.f.'s on the right side of (6) are now considered

separately:

1. The term p(zk/xk) depends solely on the quality of the
measurement system and can always be calculated in terms

of p(vk) by using the measurement equation (2).

From the chain rule

(z, /%) = /
p(z, /x { p(zk/xk, vk) p(vk) dv
k

k

where z assumes the value specified by (2) with

probability one for given X and vk.




2. The term p(xk/Zk_l) which depends on the signal
generating process only is further broken down

by the chain rule as follows:

P(x 'z =
k Zx_1) I PCx, /%, ) p(xk_l/zk_l) dx D
k-1

The term p(xk/xk_l) can always be computed in
terms of p(wk_l) from equation (1). The term
p(xk—l/zk—l) results from the computation at k-1,

3. The term p(zk/Zk_l) only plays the role of a
normalizing factor to ensure that p(xk/zk)
integrates out to one, It is computed easily

by integrating the two numerator terms

p(z, /2, ) = ’l: Pz, /%) P(x,/Z _
k

8
1) d X (8)

C. The Cost Function J

Generally speaking, it will be assumed that the cost function will

depend on the state x and the decision d as indicated by the variational

expression

N
Jo) = E{f £(x,d, K]} (9)
N XN k=0 k k

where

N
x
o

Xn 0

and where the decision interval [O,N] may be finite or infinite.



Three distinct cases are now considered, viz:

1. Any decision dk made at k has no repercussion on later
decisions dk+i' This is the problem treated previously.

2. All observations are made before the decision process
commences. If present decisions have a repercussion

on future decisions, the resulting problem is a sto-
chastic optimum control problem; if not, it is a

special case of 1,

3. Both observations and decisions are made at each time
k, and present decisions constrain future decisions.

This is a combined optimization problem,
Case 1

Since present decisions do not constrain future decisions, minimi-
zation of the functional J(DN)——see Eq. (9)--reduces to a minimization,

at each time k, over the function

= d k 10
J(d) i {L(x,, d, B (10)
k
which is the case previously treated.
Case 2
A repercussion of dk upon future decisions dk+i is mathematically

accounted for a difference equation of the form

' = 'od, K (11)
X Cp(xkf K )
k+1
where the state x£+l governing the decision process must be admissible
1 - 1
Xpey &%

Let zZ, be the last observation aud let [O,N] be the interval over which

the decisions are made, i.e,,




(12)

subject to

' = ! d
xi = 0x, d, K an

This is the formulation of the stochastic optimum control problem,

given by Bellman with X

*
known statistics p(xk/ZO).

playing the role of a random perturbation with
This conditional probability density func-

tion is precomputed recursively from

X = :
p( K Zo) f p(xk Xk—l) p(xk_l/Zo) d X1 13)
X
k-1
starting at p(xl/ZO) and using (1) to evaluate p(xk/xk_l).

A solution to the stochastic optimization problem is provided by

dynamic programming, the appropriate search algorithm being

I(xp, K = min E { tx, d, K+
k *k
1o (x, d, K, kl} (14)

where I(xi, k) is the minimum cost in the interval [k,N] for the initial

decision process state xi.

Case 3

When the decision process is governed by (11) and observations

continue to be made, the minimum cost to be paid in the interval [k,N]

Xg is not white; however, this is irrelevant since it appears only in
the cost function and not in state equation, The purpose of a white~
ness assumption is to insure that the state is a Markov process, but
in this case the state is deterministic and hence trivially Markov,
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is clearly dependent on the state xﬁ as well as p(xk/Zk), the latter
being referred to as the information state in Ref. 2. The resulting
recursive search equation is identical to that of the combined optimi-

zation problem,

An alternative way to recognize this problem as a combined optimi-
zation problem consists of defining the composite state xg = [xk, x&]
and of drawing the closed-loop block diagram of Fig., A-2, which is

identical to that of the combined optimization problem,

d X =f(x, w,_ ,k) X
k 'k K
PROCESSOR kel ) K
X o1 5 P X 10y 1K)
W
Zy MEASUREMENT
SYSTEM
TA-5237-51

FIG. A-2 BLOCK DIAGRAM FOR CONSTRAINED DECISION PROCESS

X = composite state of signal generating and
decision process.
z; = composite measurement of X, and xk.

D. Measures of Information

In all three cases, the minimization of the cost J requires know-
ledge of the conditional p.d.f. of state p(x/Z), and the optimum decisions

*
d depend implicitly on this same p.d.f.




The function p(x/Z) is consequently sufficient and necessary to
summarize all the relevant information available. In special cases,
such as linear Eqs. (1) and (2) and Gaussian p.d.f.'s p(xo), p(wk),
p(vkL the function p(xk/Zk) is Gaussian too and can be adequately and
completely described by two sets of numbers, the mean ik/k and the
covariance Pk/k'

Thus, p(x/Z) will be said to determine the quantity of information
available, in the sense that it summarizes all available knowledge, both

prior and collected.

The spread of the multivariate function p(xk/Zk) can be approxi-

mately assessed by the convariance matrix or second moment,

A - x - % T (15)
Pk = J; g = X nd O~ Xy ) POG/ZY) doxy
X

or by the entropy, which is a single number

H = - i p(xk/Zk) log p(xk/Zk) d x, (26)
k

The rate at which the quantity of information increases with time

is determined by co ing t succ ive p.d.f.’'s h
ine y mparing two essive p such as p(xk+1/Zk+1)

and p(xk/Zk). This rate depends in a complex fashion on p(xk/Zk) and on

the random effects w_ and v as can be illustrated by the linear

k k1’
Gaussian case (the Kalman-Bucy estimator) where the covariance Pk/k is
an exact measure of spread, In this case, the variances Pk+1/k+1 and

pk/k can be shown to be related by the two recursive equations.

T T -1
- - P + p
Peri/ier = Bk~ B BOW By B AR D HP ) AD
T T
P _ &P (18)
ik = P ® TTQT




where ¢, ', and H are the matrices corresponding to Eqs. (1) and (2) and

where Q and R are the covariances of w and v,

Although the function p(xk/Zk) determines the quantity of infor-
mation available, and is necessary to determine the cost J and the
optimum decision d*, it does not provide any clue concerning the sensi-
tivity of J with respect to the quality of the data z, {as measured for
example by p(vk)] or the amcunt of prior knowledge and thus does not help
the designer in specifying the parameters of a measurement system or the

accuracy of his model.

To determine this sensitivity, it is necessary to compute J in terms
of the parameter defining the quality of the measurement system and the
accuracy of the model. It is consequently the cost J which measures the
value of a particular measurement system or a particular model. The
dependence of J on each individual parameter gives a direct indication
as to the desirability of changing this parameter and the dollar-cost

entailed by such a change.
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APPENDIX B

OPTIMUM QUANTIZATION

A. INTRODUCTION

In Sec. B of Ref. 6 a procedure is presented for optimally designing
a quantizer with a fixed number of output levels. Both the values of the
output levels and the range of the input to which each level corresponds
are determined. The criterion for the design is that some measure of the
average difference between the quantizer input and the quantizer output
is minimized.

In this procedure the quantizer is viewed as a system element which
introduces errors because the output can take on only finite numbers of
values while the input can vary over a continuous range. The purpose

of the design procedure is to minimize these errors.

This viewpoint is very appropriate for considering the information
requirements of certain classes of systems. For example, if the system
under consideration is an open-loop measurement device, the errors which
the quantizer introduces are in a broad sense, related to the information
lost in passing through the device. By designing the quantizer so as to
minimize these errors, the information transfer through the device is

maximized.

When the quantizer is introduced as an element of a closed-loop
dynamic system, a number of additional questions arise. Many such ques-
tions were stimulated in connection with the example worked out in
Sec. C of Ref. 6. The purpose of this present appendix is to answer
these questions and to show clearly how optimum quantization applies

in closed-loop systems.

One fact which was not pointed out in Sec. C of Ref. 6 is that the
quantizer designed there actually performs three functions; namely,

estimation, control and quantization,

In this present appendix, it is shown that under certain condi-

tions the optimum combined system is found by optimizing the three
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functions separately. This result is analogous to the separation of
optimal control and optimal estimation found by Kalman,l Gunckel,2 et al.
for the linear, Gaussian, squared error case. The importance of this
result is that in systems which have the appropriate properties, the
optimum design procedure can be used directly without affecting the
optimality of the total system. Even in cases where this result is not
obtained, the procedure of separately designing the units generally

yields a good approximation to the optimal system.

The remainder of the appendix consists of four sections., The first
section presents a review of the design procedure. The second section
formulates the problem of optimum quantization in a closed-loop dynamic
system and discusses the difficulties that arise. The third section
contains a proof of the separability of estimation, control, and quanti-
zation, for certain systems. Finally, the fourth section summarizes

the work and draws some conclusions about its applicability.
B. A COMPUTATIONAL PROCEDURE FOR OPTIMUM QUANTIZER DESIGN

The formulation of the problem is based on the quantized charac-
teristic shown in Fig. B~1. The quantizer input, x, is allowed to take
on a continuous range of values, The probability density function of x,
p(x), is assumed to be known. The quantizer output, q(x), is allowed to
take on only a finite number of values, N + 1. The parameters which can
be adjusted for optimum design are the (N + 1) discrete values of the
quantizer output, c,, ¢;, ..., €., and the N points at which the output

changes f t
ge romc, _, toc,, denoted as dl’ d2, ceey dN.

The optimum quantizer design problem for the static case was for-
mulated in Ref. 6 as a generalization of Tou's work.® Since the publi-
cation of Ref. 6, a Ph.D, thesis at Stanford® has appeared in which a
similar problem is formulated and similar design equations are obtained.
In Ref. 5, these latter equations are also derived, and a computational

procedure analogous to the one described in this section is given.

The most general performance criterion that can be considered in a

static situation is the expected value of some function of x and the




q{x)

N
Cn-1
-2
,4’, &~ x
. ¢,
¢,
i
%
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FIG. B-1 QUANTIZER CHARACTERISTIC
corresponding quantizer output. This function can be written as
d1
J = _[ g(x,cy)) p(x) d x
-0
{i‘l 441
+ /) I glx, c;) p(x) d x
i=1 d,
i
o
+J‘ g(x, cN) p(x) d x
d ¢9)
N

In most cases the objective is to find a quantizer design that
minimizes the expected value of a function of the error between the in-
put and the corresponding output. In these cases the performance
criterion becomes



N-1 diy ®
+ ZJ I g(x - °1) p(x) d x+ J g(x - °N) p (x) d x(z)
i=1 di dN

If d0 is defined to be -» and dN to be +x, then Eq. (2) can be re-

+1
written
N di+1
J = E: J glx - c)) p(x) d x (3)
1=0 di
It is generally assumed [Refs, 4 and 5] that
g() =0
g(e) 20, all ¢
g(e) = g(-¢)
1

Two examples of this type of performance criterion are the expected

value of absolute error, in which

g (x—ci) = ‘x - (:i \ (5)

and the expected value of squared error, where

2
g (x—ci) = (x-ci) (6)

The computational procedure developed in Memorandum 2 can be ex-
tended to the performance criterion in Eq. (1); however, for purposes

of this discussion, it will be assumed that the criterion has the form
of Eq. (3).




The design equations can be derived directly by taking partial deri-
vatives of J in Eq. (3). Using the normal rules for differentiating with

respect to limits of integration,

3J

< = 0 =g (di - ci_l) P (di) - g(di - ci) p(di)
1

i-=1,2, .. .N (7)

Differentiating under the integral sign,

di+1 og(x ~ c)
o 0= - j A (x) d x
dc, - Bci p
d.
i
(8)
i=0,1,2,...,N
Eq. (7) can be rewritten as
g @y -ecy ) =g W@ -c) (9)

If in addition to Eq. (4) it is assumed, (and this is a most
realistic assumption) that g is a monotonically increasing function of

its argument, then Eq. (9) has as its unique solution
|<11i -4 1| = la, - ¢ (10)

Since c,

# c., d_ is determined as
i-1 i i

3.1+ o) (11

that is, di is exactly half-way between c 1 and C, .



Equation (8) can be rewritten as

1 . (12)

where g' is the derivative of g with respect to its argument.

If di is determined by Eq. (11), then the (2N 4+ 1) free design
parameters have been reduced to (N + 1), namely, the values of the ¢

If di and d, in Eq. (12) are replaced by the appropriate forms of

i+1
Eq. (11), then the conditions that must be satisfied become

3 (cgy + c))
I g'(x - co) p(x) d x =0 (13a)
3y ey,
J g (x-c) p(x) dx=0 (13b)
3(eyy *ey)
1=1,2,...,8-1
I g (x - ¢ p(x) d x =0 (13¢)
i (e + c)

It can be observed that Eq. (13a) depends only on <, and cl. Con-

sequently, if a guess is made of CO’ then c1 can be determined. Pro-

ceeding to the first of Eq, (13b) it is seen that it depends only on

€92 ©y» and ¢,, Consequently, c¢_ can be determined from c. and c.,. In

2 2 0 1

general, the ith Eq. (13b) yields c.+1
i

The (N-1)th of these equations determines

in terms of the previously calcu-

lated values of ci and c.

i-1°
°N* If Eq. (13c) is zero when the computed values of N1 and cy are
substituted into it, then the values CO’ cl, ceey CN are the optimal

set, If not, then a different value of CO must be tried and the proce-

dure repeated., The value of the integral in Eq. (13c) indicates what

new value to try for co.
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For the absolute error criterion in Eg. (5),

TN < (14)
g 1 , c x < di+

The design equations become

C

0 i (c, + ¢ )
I p(x) d x = J 0 1 p(x) d x
o o
c, 3 (cy +cy4y)
j‘ p(x) d x = J. p(x) d x
é (ci"l + ci) ci
c 0
J N p(x) d x = j p(x) d x
c
(c + c N
For the squared error criterion, Eq. (6),
g' = 2(x - ci)
(16)

and the design equations are

3 (c0 + cl) 3 (c0 + cl)
o j p(x) d x = [ x p(x) d x
3c. +c. ) 4(c, + c,.,)
c r i e j i H#17  ) d x
bleyg ) +ep ey y * ey
1=1,2,...(N-1)
°N I p(x) d x = J x p(x) d x a7
ey * oy ey ) * oy




In many problems the quantizer output is restricted to have maximum

and minimum values, such as
a<q(x) <b (18)

In this case, the values Y cl, ceey cN as determined by the computa-

tional procedure may not satisfy Eq. (18), It is then necessary to
modify the computational procedure to account for this constraint. In
Ref. 6, it is shown that the optimal procedure in this case is to set
c,. = a and °y = b, and then to select cl, c

0
satisfy

PYARERY cN_1 so that they

3(c, + c . .)
[ ™ e x-eppwax=o

$c; ; + e 19)
i=1,2,...(N-1)

Since c0 is known, c1 can be guessed and the computational procedure
previously described can be applied, Note that in this case, the quan-
tizer parameters that are determined, depend on the probability density

function p(x) only over the interval a < x S b,

The results of applying the computational procedure to some examples
are shown in Tables I, II, and III., In the first two examples, the con-
straint -1 S q(x) 1 is imposed, The total number of output levels is
(N + 1) = 7 for both cases, The probability density functions are

_ - 2
p(x) = k'e le and p(x) = k'’ e 1/2x

respectively, The cost function is
expected absolute error, g(x - ci) = |(x - ci)l in both cases. The total
expected absolute error is computed in each case. These values are com-
pared with the value for uniform quantization., In the third example, the
output is not constrained, the total number of output levels is

N+1D = 7, the probability density is Gaussian with zero mean and unity
variance, and the performance criterion is expected squared error, Again,
the total error is computed and compared. Total error for the best uni-

form quantization, which can also be found by a similar computational

5 .
procedure,” is also computed for comparison purposes,




Table I

N+1=7,C :—1,06:1
g(x ‘Ci) = I X -c.

p(x) = .SIe-le, -1<x <1

Optimum Quantization Uniform Quantization
-1.00 -1.00
o0
< -0.59 -0.67
<, -0.27 -0,33
cq 0.00 0.00
4 0.27 0.33
0.59 0.67
‘s
1.00 1.00
‘6
Total Cost 0.0820 0.0856
Table II
N+1=7, ¢ =<1, ¢.=1
o 6
-C = -
glx -c,) Iféxzcil
p(x) = ,585e , =1 £ x = 1
Optimum Quantization Uniform Quantization
c0 -1.00 ~1.00
c1 -0.62 -0.67
c2 -0.30 -0.33
Cq 0.00 0.00
c4 0.30 0.33
c5 0.62 0.67
06 1.00 1.00
Total Cost 0.0810 0.0842




Table III

N ‘—‘-7 = - =
+ 1 , c1 ® ;6 ©
g (x - ci) = (x-c,)
1 -3x 2
p(x) = e— e
Jam
Optimum Quantization Uniform Quantization

-2. -1.
c0 03 95
c1 -1.19 -1.30

-0.56 -0.6
c2 S 5}

0.00 0.00
03 0
c4 0.56 0.65

. 1.30

c5 1.19

2.03 1.95
6

Total Cost 0.0440 0.0469

C. OPTIMUM QUANTIZATION IN DYNAMIC SYSTEMS

In Ref. 6 the computational procedure was extended to dynamic
systems. It was found that the functions of observation, control, and
quantization all are inter-related. The purpose of this section is to
clarify how each of these functions is to be carried out and to dis-
cuss other complications which arise when quantizers are introduced in-

to dynamic systems.

A problem which illustrates most of the difficulties that arise
is the case of a feedback control system where the control is quan-
tized, This situation is shown in Fig. B-2 where the control u to be

quantized is a scalar. The plant is described by a system of nonlinear

time-varying difference equations.

x&k+1) =gl x® ,u k), w &),k

(20)




" q(u) x
CONTROLLER QUANTIZER PLANT
Z MEASUREMENT
OBSERVER SYSTEM

1

v
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FIG. R2 GENERAL DYNAMIC SYSTEM WITH QUANTIZED CONTROL

where
X (k) = n-dimensional state vector for system at time k
u (k) = scalar control at time k
w (k) = vector of random forcing functions on the system

at time k

k = index of present time

The measurement system makes noise-corrupted observations of some

or all of the states of the system according to the relation

z (k) =h [xk), v ), k] (21)
where
z = m~-dimensional vector of noisy measurements
E = m-dimensional vector functional where m is
generally less than n
v (k) = vector of noisy signals that corrupt the

measurements

The function of the block labelled "observer' is to process these
measurements and extract as much information about the plant as possible,
The function of the block labelled "controller" is to compute the "best"
value of the input signal to the plant on the basis of the information

that the observer provides. Best control is defined in general as
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that which minimizes the expected value of some variational performance

criterion,
J=E{Z L [x (), u@, ¥, 3] | (22)

where { is a scalar functional,

The quantizer located between the output of the controller and the
input to the plant makes control more difficult; instead of the plant
being controlled by a signal selected from the continuum, the input is
always taken from a finite set, The purpose of optimum quantization is
to define this set so that the best performance that can be achieved

under this restriction is actually obtained.

This problem is clearly more difficult than the static problem
solved in Sec. B, The quantizer parameters must be selected to optimize
not just some function of the instantaneous input and output of the
quantizer, but instead a function of present and future values of the
state of the plant, the controller output, the random forcing functions,
and the measurement noise, Tou® shows that in some cases this problem
can be solved by dynamic programming, but his procedure requires an
(N + 1)-dimensional search for the (N + 1) values of ci at each stage,
In Ref, 6 and related work, the (N + 1)-dimensional search is reduced
to a one-dimensional search, and the class of problems that can be
treated is extended, Nevertheless, the procedure is not always compu-
tationally practical, In the remainder of this appendix, more promising
procedures based on combining the work outlined in Sec., B with the pro-

cedures for finding optimal control and optimal estimation will be

pursued instead,

In order to carry out computations similar to those in Sec. B, it
is necessary to have the probability density function of the input to
the quantizer. If the structure of the quantizer, the plant, the

measurement system, the observer, and the controller are all known,




and if the probability density functions for x (0), v(k), and w(k)

are given, then this calculation is possible, at least in principle,
However, a dilemma immediately arises: the quantizer is not fixed,

yef its parameters must be known in order to carry out any calculations,
This difficulty is circumvented by the following procedure: the proba-
bility density function of the quantizer input is computed assuming
that the quantizer is replaced by a unity gain., The optimum quantizer
is then designed. Using this new quantizer structure, the probability
density function is re-computed. If it has changed significantly from
the previous function, then a second quantizer design based on the new
probability density function is computed. The procedure is repeated
until the probability density function does not change significantly

from one iteration to the next, Tou®

has found that in general the
probability density function based on approximating the quantizer by
a unity gain is sufficent; in the cases where iterations are required,

their number is small,

It is clear, however, that if this probability distribution is to
be determined, then the controller and estimator must be fixed. If
not, then the design problem becomes one of finding the optimum com-
bined estimator-controller-quantizer combination, This problem is an
extremely complicated one, which is even more difficulit than the optimum
combined estimator-controller problem treated by Meier in Vol, 1,
Section III. Fortunately, as with Meier's work, there are a number
of cases of practical importance in which a computationally feasible
solution can be obtained. In addition, these simplifications leed to
a useful procedure for treating the case of a fixed controller and

fixed estimator as well, These problems are discussed in the next

section,

D. COMBINED ESTIMATION, CONTROL, AND QUANTIZATION

The central result of this section is the following: if certain
conditions are met, then the optimum combined observer-controller-

quantizer design is obtained by first finding an optimum combined
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controller-estimator and then synthesizing the optimum quantizer

according to the procedure of Sec. B.

The conditions which must be satisfied in order to obtain this

result are the following:

(1) The plant must be linear with zero-mean random forcing terms

x (k +1) = x(k) +du(k) + ' w (K (23)

where
$ = n x n transition matrix
d = n-dimensional distribution vector
' =n x m distribution matrix for random
forcing functions
E[w(kk)] =0

(2) The performance criterion must be a quadratic function of

the present control and the next state.

J=E [x(kt1) A x(k+1) + b u? (K] 249

This criterion is a special case of the general variational criterion
in Eq. (22). Tou® has shown that the optimum design obtained for this

case is very close to the result for the summed quadratic criterion,

J=E [}: [ET(j+1) Ax(j+1) + b u? (&) ]] (24a)
J=k

Furthermore, it is possible to extend the results of this section to the

variational case, although the proof is somewhat involved.

(3) The optimum combined controller-observer is implemented by
having the observer generate % (k), the optimum estimate of the state
vector, and then having the controller compute an optimum control signal
treating this estimate as if it were in fact the true state, This is a

well known result for the linear, Gaussian, squared error case; it can
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be justified in a number of situations where these conditions do not

hold exactly.

The proof that quantization can be separated from observation and
control will be done by directly comparing the results of the separate

optimization and the combined optimization,

1, Separate Optimization

In the case where the two optimizations are done separately,
the optimal control is first camputed under the assumption that the
quantizer is a unity gain element. If the output of the observer is

written as g(k), then J can be re-written as
J = E[ (3 %(x) + du(k) + T w(k) 1T a [62(k) + du(k) + Tw(k)] + buz(k)_l
- L[Qg(k) + du(k) 1T A (320 + du(®] + bu? (k) + Q, (x| (25)

where Ql(k) = E[g?(k) FT A tg(k)], a number which is independent of

i(k) and u(k). The other terms involving w(k) vanish because E[w(k)] = 0,

Expanding the terms in Eq. (25)

AT T A A
T=X(0) & A% XK +u (R at a3 (k) + ET(k) 3" A d u)

tul at Aduto +buPm + QM 26)

T
Because u(k) and g $ A E(k) are both scalars, it follows that

J =5 T AR +u@ (24" A8 2 W]

+ (b + _qT Ad) w? (0 + Q, (i) @

The minimization of J is accomplished by differentiating with respect
to u and setting the result equal to O,
dJ T
$5=0=20 A33W +2(b+d AD u®
u - - -7 (28)
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The resulting optimal control, denoted by u(k), is

(k) = —(g? Ad + b)-1 (gT Aé)g(k) (29)

which is the well-known solution for the case without quantization,

Now, consider the problem of designing a quantizer which minimizes
the expected value of the square of the error between u(k) and q[u(k)].
The probability density of u(k) is computed on the basis of the known
controller and observer configurations and the known probability density
functions for 5(0), and X(k)’ and !(k). As in Ref. 3 the probability
density function for u can be written as an average distribution over
all possible sequences x(o), w(k), and v(k), k =0, 1, 2, ..., K. The

optimum quantization problem can be written as

J' = Min {g(k) [[G(k) - q[ﬁ(k)]z_]}

c., ¢

0 c (30)

1’ Sy

or, in terms of the state variables x(k),

J' = Min { E [;dT Ad + b) 1 (a7 A®) k) +q ]2 }

, ..., C x(k)
1 N - (31)
where the probability density of g(k) is computed in the same way as

P [0(k)]. This problem, in the form of Eq. (30), can be solved by the

computational procedures of Sec. B.

2, Combined Optimization

The formulation of the combined problem can now be given, As-
sumption (3) is used again to express the performance criterion as Eq.
(25). The purpose of the quantizer design is to select levels so that

the expected value of J in Eq. (25) is minimized. The problem becomes




3" = Min e 1o koo «dad A o k00 + ga)
0 -

+ bq2 + Q, (k) ] } (32)

where the quantizer output q is substituted for u(k),

The equivalence of the two problems can be shown by demon-

strating that the same set of values, Cps Cy7 +ccs Sy minimizes both of

Egs. (31) and (32). Expanding Eq. (32) and noting that q is a scalar,

J" = Min t e 5 00" a8 200 + 2a (@ A8) &)
(k) - - - -
o' €10 - °y
2
+ (b + dAQ)G” + Q (k) } } (33)
' T . 2 T
- Min { E | 2a @ A8) &) +a” (@hd+b)s 0, (0}
@)
0’ “10 O
where

Q) = @) + B | 200 sThszeo) |
£(k)

which does not depend on q.

Expanding Eq, (31) and noting that (g? Ad + b) is a scalar,

J' = Min { E |
x(k) L

)

(a"ad + b)"2 (aAsxCx)f

0’ 11" N

+ 2(dAd + B) T gTAQ_i_(k) + qzj }

1

- “ 2
- Min {2 [2a@ha+n” @'ae) 200 +q” |+ Q0 }

c , C_, ..CN (34)
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where
Q (k) = E [ (g_TAd + b)_2 (QTACDﬁ(k))z J
(k) © -

which again does not depend on q.

Now, if (g? Ad + b) = 0, the optimal control fails to exist.
Furthermore, (QT Ad) > 0 if A is positive definite, as is generally
assumed. Also, b is always greater than or equal to 0. Therefore,
Eq. (34) can be multiplied by (g? Ad + b) without affecting the mini-

mization,

J'"= Min {AE [2q (gTAé) x(k) + q? (gTA_q +b) ]+ Q,k) }
Cy1Cyse--Cy x(k)
(35)

where

T
Q4(k) = (d'Ad + b) Q3(k)

Comparing Eqs. (33) and (35), we see that the expressions are
identical except for the terms Qz(k) and Q4(k). However, since neither
of these terms depends on q, the optimization is not affected

in either case. Therefore, the solution for c ¢ is the same

0’ l, ‘.., N
for both Eqs. (33) and (35). This in turn implies that the solution to

Cc

the two problems as expressed in Eqs. (31) and (32) is again the same,
Therefore, the computational procedure can be applied to Eq. (30) to

find the solution to the combined problem expressed in Eq. (32).

The consequence of this result in terms of computational re-
quirements is that the optimum combined observer-controller-quantizer
can be designed by first finding the best observer-controller design and
then following it with an optimum quantizer designed by use of the com-
putational procedure of Sec. B. The savings over the computational re-

quirements for obtaining an optimal combined system directly are enormous.

As an illustration of the computational procedure, consider the

two-dimensional example worked in Reference 6. The system equations are
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x) (t +1) 1 2.995 x (t) 7 .10°8

x, (t +1) 0 .96 x, (t) 2.1 . 108
(36)

where t has been normalized so that the unit time increment is 3 seconds
[x (t + 1) is hence the state three seconds later than t]. The per-

formance criterion is

J=[xl(t+1) x2(t+1)] 1 0 x, (6 +1)
0o 1 x, (t +1) (37)
therefore,
_
-8
8 =| 1 2.995 d =|7.10
-6
0 0.96 2.1 . 10
A = 0 b=0
0 1 (38)

In Section C of Ref. 6 the combined problem was solved directly. The

computations were extremely involved and laborious. The equation finally
reduced to

J" = Min E [ 1.065 [0.0314 il(k)
co,cl,...,cN x(k)
6 (39)
+ iz(k)] + 2.10°10 q }
Substituting directly into Eq. (35),
r _ l— -8 A -6 ~
J' = Min E 2q [7.10 7 x_ (k) + 2.23 10 % (k)]
c c c x(k) L 1 2
0. 1,..‘ N
+aa 2072 f | rq w0 }
(40)
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Expanding Eq. (39),
J" =  Min A -8 -6 -
E 2q (710 xl(k) + 2,23°10 x2(k)

+ 4.41-10 2 2 ] + (1) } (41)
where Qs(k) again does not depend on q. It is seen that Eqs. (40) and
(41) differ only by the terms Qs(k) and Q4(k) which have no effect on the
minimization, Therefore, the two problems have the same solution, and
hence the combined problem can be solved by applying the computational
procedure of Sec. B directly to Eq. (40), rather than using the laborious

procedure of Section C of Ref. 6,
E. CONCLUSIONS

In Sec. B a computational procedure was developed for finding the
optimum design of a quantizer in a static operating mode., The procedure
reduces the problem of finding the (2N 4+ 1) quantizer parameters to that
of computing one single parameter. An iterative procedure that converges

rapidly was developed for this one-dimensional search,

In Secs. C and D the case of a quantizer operating in a dynamic
system was considered., The main result obtained is that in many cases,
an overall optimal system can be designed by first synthesizing the
observer-controller combination and then, using the procedure of Sec, B,
determining the quantizer design. Even when this procedure does not
yield an exact optimal, it is conjectured that the resulting design is
quite close.to optimal. The savings in computational requirements by
doing the designs separately rather than simultaneously is considerable.
Although attention was restricted to the case where the quantizer follows
the controller, it is clear that the results can be extended to systems

where quantizers appear elsewhere in the system,

The computational procedure of Sec. B can thus be applied to both

static (open-loop) and dynamic (closed-loop) systems, The performance




criterion can be extended to include functions other than some measure
of expected error. For example, the problem of designing a quantizer

for which the variance of the output signal is closest to the variance
of the input signal has been successfully formulated, Thus, the pro-

cedure as it stands is applicable to a large class of systems, and, by
suitable modifications, it can be extended to include a great many

other cases.
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APPENDIX C

PRACTICAL COMPUTATION OF PROBABILITY DENSITIES IN DYNAMIC SYSTEMS

A. INTRODUCTION

In order to assess the/degrading effects of random perturbations
and measurement noise on the performance of a closed-loop system, it is
usually necessary to compute the probability density function (p.d.f.)
of the state x and sometimes the control u. Under transient conditions,
these p.d.f.'s can be/aerived analytically, as is well known. 1In the
general nonlinear non-Gaussian case recursive procedures, which are often
much more efficient than Monte Carlo simulations, can be obtained by

straightforward application of probability theory and numerical analysis.

It is the purpose of the present memorandum to show how these re-
cursive equations are practically derived and how performance is computed
from the p.d.f.'s thus obtained. No pretense is made to go into the de-
tails of the vast body of knowledge available in the field of stochastic

differential and difference equations.
B. PROBLEM FORMULATION

A control system consisting of a plant, a set of sensors referred
to as the measurement system, and a fixed controller is given (Fig. C-1).
The plunt is perturbed by white (uncorrelated in time) disturbances w
of known p.d.f. ard the sensors ave affected by white noise v of known
p.d.1i. For matheratical convenience it is assumed that this system

operates in discrete time, time being identified by the index k.

It is desired to calculate the performance J, which is a given
tunction of x and u. Because of the perturbations v and w, the variables
A and u entering into J are random. It is customary under those circum-
stances to calculate the expected value of the random variable J, E{J},

the expectation being over x and u.
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FIG. C-1 CONTROL SYSTEM WITH FIXED CONTROLLER

xk = n dimensional state at time k
= control

uk ntro

zk = measurement system output

Ve T measurement system noise

wk = disturbance

C. SYSTEM EQUATIONS

The plant, possibly expended to include sensor and actuator dynamics
as well as shaping filters to convert ficticious white noise into actual

colored noise, is described by

x = £ (x u w k)
k+1 ' ' '
k k k (1)
The measurement system, whose internal dynamics have been removed as
indicated above, is described by
z, = h (xk, Vi k) (2)

Alternatively, the measurement system may be given by the conditional
p.d.f.




P (z K) (3)

k!xk'

The controller, which is fixed and not designed to utilize the received
information best as is the case in combined optimization theory, is

described by the algebraic equation
uo o= g (zk, k) €Y

where the time k accounts for possible time variations in the controller,

as well as given and known command inputs,.

By combining Eqs. (1), (2), and (4), the following difference

equation is obtained

X+l f { X, B [ h (xk, vk, k), k ], Wi k }

F<xk, wk, vk, k)

Even though the variables U and z, have been eliminated, the state Eq.

(5) suffices to compute any transient motion resulting from an initial

(5)

ne»

state x
o
D. SYSTEM PERFORMANCE

Performance measures may be divided into static and dynamic measures.

A static measure is defined at some time k as

J("k' hk> = F { LG vy k)}
xk, uk (6)
= [ax [au p o p @ £ o v, ©

*x Y%

A dynamic performance measure is defined over an interval [O,N], where

N may be infinity, as



N
J(Xo, vy XN; uo, ve ey UN> = E{zll(xk’ uk’ k)}

k=0

N
Y[ [ [au p e @)oo u, o] R
Lo % u

It is clear from Eqs. (6) and (7) that the calculation of performance

requires knowledge of the p.d.f.'s p(xk) and p(uk).
E. NUMERICAL COMPUTATION OF p(xk) AND p(uk)

In the general case, it is not possible to obtain closed form solu-
tions for p(xk) and p(uk), but numerical computation by digital computer

is always possible, though laborious for high-dimensional x, i.e., n > 2.

The first step consists of quantizing the variables x, v, w, and u.
These quantized variables will be denoted by ;, ;, ;, and u. With each
quantized variable, there is associated a discrete probability distribu-
tion p(;), p(;), p(w), and p(u), respectively. For sufficiently small
quantization increments, these discrete distributions approach the con-

tinuous p.d.f.'s p(x), p(v), p(w), and p(u).

1. Computation of p(;k)

From the chain rule

p (Xk+1) = Zp X4l ' X ) p (x ) @)
X
k
where the symbol E signifies summation over the quantized xk space.
X
k

The distribution p(x ) is similarly obtained from

k+1

Gin ) =

5 V., w v W, x 9)
é) <ik+l xk’ vk’ wk,> P (vk) p (wk) Y (xk)
W

xylﬁvﬂ
xﬁlf\/ﬂ

From the state Eq. (5), it is seen that x is no longer a random vari-

kt+1

able after x K’ wk have been fixed, but assumes a well-defined value

kY
with probability one.




The computational procedure hence consists of selecting in

v w_ with their associated

k’ k{_ k
probabilities, of computing the resulting xk+1

bility p(;k) p(;k) p(;k) and of accumulating these probabilities in the

sequence all possible combinations x
which occurs with proba-

cell set aside for each of the x The distributions p(;k) and p(;k)

kt+1°
are easily derived from the p.d.f's p(vk) and p(wk), whereas the dis-

tribution p(;k) is known from the previous iteration.

2, Computation of p(Ek)

By combining Egqs. (2) and (4), it follows that

A
u = g [ h (x, v, K), K ] = 6 (x, v, K (10)

Again, from the chain rule

— _ Y \T - . — — —-
pluy) o L P ( e | % "k> PP (vy) (11)
Yk

, and ;k’ the resulting ;L is determined from Eq. (10)

with probability one.

vhere., for given x

F. NUMERICAL COMPUTATION OF J

This calculation is carried out by straightforward application of
Eq. (6) or (7) for the quantized variables x and u. For example

~,

J (xk’ “k)

-

-

]

P (x) p (u) z(::k, o k) 12)

]

I~~~
wF 1071

G. STEADY~STATE SOLUTION

It frequently suffices to know the performance J after the system
has settled down to a steady-state; that is, for k » «» and in the absence
of time-variations in Egs. (1), (2), and (4), and in p(w) and p(v). To
compute this performance, it is necessary to know the steady~state p.d.f.
p(xk) for k - ». This density function can often be computed directly

as opposed to solving the recursive Eq. (9) over a sufficient number of

increments.




The numerical procedure goes as follows:

- —i
Let Py be a vector whose component Py is the probability of the quantized

state ;k being in the n-dimensional cube i at time k, Clearly, under

steady-state conditions, the vectors ;k and Ek+1 are identical.

to B by means of a matrix S from

But it is possible to relate ;k+1 K

the state Eq. (5). In effect

Bl (R n) + Vel 15, 1 9o G 0 0)

pk+1 = Pr (xk+1 in ¥> = Pr (;kil in 1 xk in j} Pr xk in J (13)
J

The number Pr (;k+1 in i I ;k in j) can be computed in a straight-

forward fashion from knowledge of the state equation and the distribu-
tions p(;) and p(;). This then determines the elements of S with the

result that, in the steady state, Bk is given by
P, = S P (14)

The vector Ek which satisfies Eq. (11) is an eigenvector of S. In order
for ;k to be a valid solution the following two conditions must ob-

viously be met

-1
pk > 0 for all i (15)

-1
EP = 1 (16)
i

H. EXAMPLE

To illustrate this procedure, the following two-state example is

considered.

k
1 with probability Ei. Let the transitions be represented by the flow

Let the state x, be in position O with probability Bi and in state

diagram of Fig. C-2.

The elements of S are equal to the transition probabilities of Fig.

C-2, e.g.
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FIG.C-2 FLOW DIAGRAM OF EXAMPLE
(The numbers shown are the transition probabilities.)

0.4 0.9 17

The desired eigenvector _pk has components [1/5, 4/5] as can be easily

verified by substitution into Eq. (17).



APPENDIX D

CLASSICAL PERFORMANCE MEASURES

A. USE OF CLASSICAL CONTROL THEORY

If the plants and all other components of a system are linear and
constant then the state space descriptions given in Volume I may
be replaced by a transfer function description by taking the Laplace
transform of the differential equations. For such systems the classical
methods of control theory such as block diagram manipulation, root locus,
and sensitivity analysis can be fruitfully applied to the investigation
of the effects of a non-ideal sensing system. Since such methods are
well known and only their application in this context is novel, they will
be illustrated by a simple example. A position servo was chosen for two
reasons: Classical control theory is largely concerned with position
control servos and the star-tracker example suggested by Ames is essen-

tially a position servo.

1. Position Servo

In this discussion the simple position servo shown in Fig. D-1
will be considered. For the present K2, K3 are assumed to be zero and
H(s) unity; later when the effect of using a rate sensor is considered

these quantitites will take non-zero values.

2. Steady State Accuracy vs,., Bias Errors

Inspection of the block diagram shows that the effect of a bias

in the position sensor is a steady state error equal to the bias.

3. Location of Eigenvalues vs, Sensor Gain Changes

The effect on eigenvalue positions of changes from the nominal

gain of the sensor may be investigated by root locus techniques' as shown

in Fig. D-2.

A second means of analyzing the effect of gain changes is sensi-

tivity analysis®»® as the following calculations indicate. The
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characteristic equation of the system given in Fig. D-1 with K2 = K3 =0
and H(s) =1 is

«

2
s + as ¢+ Kl

(s +a)(s + B) (1)

If
then:
o - o+ A0
B~ B + AB
and
Aa(s + B) + AB(s + @) + AAB = AK (3)
Since the coefficients s must be the same on both sides of (3)
b = - 4B (4)
and

—A2cv+(B-a)Aa=Al( (5)

If (B - o) is not zero the second order terms may be neglected to give

& bo K o= 5l
o= pog o gl @t RE @
For example if o = % (1 + Y3i) Yk (i.e. 0.5 damping ratio)
B
'm|=

S

7



In the singular case ¢ = B (i.e. unity damping) (6) indicates that
Ay is »; therefore the second order term in (5) cannot be ignored. Re-

turning to (5) we get:

= =V X (8)

Given the value of expected gain changes, the poles changes
can be calculated approximately using formulas such as (6); however, as
the example shows, in singular cases misleading results may be obtained

because second order terms have been neglected.

4. Sensor Dynamics

For the purpose of this discussion the sensor dynamics are
taken to be a simple lag as shown in Fig. D-3; more complicated dynamics

may be treated in the same manner.

<>

Ts

FIG. D-3 REPRESENTATION OF SENSOR DYNAMICS
BY FIRST-ORDER LAG

The effect of sensor dynamics may be conveniently investigated

by use of root locus as is illustrated in Fig. D-4.

The effect of changing T may also be investigated by the use

of a root locus in which T varies and Kl is fixed rather than K, 6 varying

1
and T fixed as in Fig. D-4. To do this the characteristic equation must
be manipulated into suitable form. In our example the characteristic

equation is

K
1

s(s + a)( T s +1) (9)
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FIG.D-4 EFFECT OF SENSOR DYNAMICS

which is the form used for Fig. D-4. By manipulation we get

K

Ts# = - —> —
s(s + a)
s(s+a)+K1

_T5=

s(s + a)

2 10

1 T s (s + a) (10)

Kl + s(s + a)

The corresponding locus is shown in Fig. D-5.

An alternate method of analyzing the situation is sensitivity
analysis: The transfer function FS(s) of the sensor given in Fig. D-2
is

1

6 = F5+1

(11)

For a perfect sensor T is zero; in a good sensor T is small compared to

the systems dominant time-constant. Sensitivity analysis is applied to

D-5
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FIG. D-5 EFFECT OF VARYING SENSOR DYNAMICS

this problem by inserting Gs(s) into the block diagram and calculating
the sensitivity of the dominant poles to differences of T from its nominal

value of zero.

6. Mean-Squared (M.S.) Error Due to Noise

The M.S. error added to the output due to noise may be calcu-
lated by finding the transfer function from noise to output, determining
the power spectral density at the output using this transfer function
and the power spectral density of the input, and finally integrating the
expression for the noise in terms of the power spectral density by

Cauchy's formula,® For example, assume that e , in Fig. D-1 is white

1)
noise with power spectral density

Iy = N (12)

The transfer function T(s) from el, to c is




K K
T(s) = —p——0 = 1 (13)

s 4+ as + Kl (s + a)(s + B)

as can be seen by reference to Fig. D-6.

K, <
s{s+a)

FIG.D-6 M.S. ERROR DUE TO NOISE

Reference to this figure and Fig. D-2 show that noise in the position
servo enters the system in essentially the same manner as the reference

input r. Using Eq. (13) we find the power spectral density Qc(w) of the
output to be

I 2 Klz N
P (w) = [TQUw|® & () =
c N @240y (840
2 (14)
N K, -1/ -1/¢ . 1/B 1/B
= 2 2 a—w+'a+Jw+B—Jw+B"'J‘”
2@ -B) J
The mean square error c2 in the output is
—_ Je
2 1 2
] [ ITCw | ﬁc(w) dw
_Jcn
2 2
K K
= —;———2 [1/6 - 1/@] = 1
a -B aB(a+B)
) N Kl (15)
2a




7. Use of Rate Sensor vs. Lead

Rate information, either measured by means of a sensor or calcu-
lated by means of a lead network, may be used to improve the transient

response of the system. As can be seen from Fig. D-2, the position of

the poles of the servo are constrained by "a'; however, the parameter

"a" may be effectively increased by the use of rate information as may
be seen from Fig. D-7 and Fig. D-8. Saturation effects always limit the

values of a + K3.

D — r——
s+a s#aﬂ(s

FIG. D-7 USE OF RATE FEEDBACK TO
INCREASE a

Both methods of generating rate information have advantages
and disadvantages: Use of a lead network is simple to implement whereas
rate measurements are less affected by parameter variations and dis-
turbance inputs (see Section D for an example). Either method for
improving the transient response will increase steady state error due
to noise input: the lead network by amplifying position sensor noise

and rate feedback by introducing its own measurement noise.

Both low frequency noise and bias in a rate sensor may be
effectively eliminated by use of integral control from the position

sensor. If the gain K_ in Fig. D-1 is zero then position bias and rate

2
bias enter the system in a similar manner [see Fig. D-9(a)]; however, if
K2 is not zero then the integrator associated with it will take on a
value such as to cancel the bias of the rate sensor [see Fig, D-9(b)].

In effect the position sensor is measuring the bias of the rate sensor,
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8. Sampling and Quantization

If the system contains a sampler it may be analyzed by the use
of z-transform theory to calculate the response at sample instants and
thus determine approximately the degradation in performance due to the
sampler. If more accurate calculations are required the modified z-

5
transform®’®

can be used to calculate the response between sampling in-
stants. Because the signal which is sent through a sampler must be
limited to less than half the sampling frequency, the use of a sampler
also implies a low pass input;7 therefore the effect of a sampler is
similar to that of lagging sensor dynamics, and the transient response

will be adversely affected if the sampling rate is too slow,

Quantization is a much harder problem to treat using classical
theory because the quantizer is a non-linear element. The effect of a
quantizer is to add a time varying noise source® and non-linear bias to
the system as Fig. D-10 indicates, The maximum bias error is 1/2 the

quantization width for uniform quantizers,

4
OUTPUT
OF QUANTIZER
ANANDNN [————
INPUT
‘,f”ﬁ TO QUANTIZER NN NN
ERROR
— —

FIG. D-10 EFFECT OF QUANTIZER




B. STATE SPACE TECHNIQUES

1. Design and Analysis Procedure

By the use of the following two theorems, state space tech-
niques may be used to synthesize controllers to meet classical system
criteria. For the use of this method the state space representation of

the information handling components is used.

THEOREM 1 (Kalman): Given a nth order system described by

x = Fx + g u (16)

where the pair (F,g) is controllable.9 Then a gain matrix k may be
chosen so that (F - g kT) has specified eigenvalues i.e., if u = kT X

then the system becomes

x = (F-gkh)x (17)

and has arbitrary poles.

THEOREM 2 (Luenberger):*° Given measurements

z = h'x (18)

T
of the system described by Eq. (17) and if the pair (F,h') is observable,l®
then an observer of order n-1 may be built to produce x arbitrarily

rapidly i.e., the system
x = Fx + é u + qz

~ = Lo +
z Hl X H2 z (19)

may be chosen so that z approaches x with arbitrary speed. This latter

property implies that F has arbitrary dynamics.

Based on these two theorems we can analyze the effect of infor-

mation handling components as follows:

(a) A combined state is used for the plant and

sensors

T
(b) k" is chosen so that F - kTg has the proper

eigenvalues



(c) The observer is chosen so that F has eigen-
values sufficiently removed from the dominant

eigenvalues.

(d) The observer and kT are combined to produce a

controller by setting

u = k z (20)

The eigenvalues of the overall system will be
those determined by the use of theorem 1 plus

those determined by the use of theorem 2.

(e) The mean square error due to sensor noise is
calculated using the power spectral densities

of the noise as described in Sec. B-6.

The effect of the sensors may be determined by performing these
calculations with and without the sensor defects present. Since the
systems are designed so as to keep the poles constant, the effects of the

sensor are measured by the increase in mean-square steady state error.

To illustrate this procedure, consider the following example:
Suppose that the plant is the one given in Fig. D-1, that only
a position sensor is used, and that its only defect is measurement noise.

For this system we have (for a = 1)

YL = x?
io = - x <+u
z=xl
T 0 1 ]
F - =
g k [kl - (ky*1) (21)

The characteristic equation for this system is

T -
det [F ~gk -s1I] = s(s+k, +1) +k

2 1

= 0 = (s +a)(s +B) (22)
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If we specity the eigenvalues to be

-3 t6 ] (23)
then
k, = @B = 9 +36 = 45
and
5 (24)
k2 =
If the observer is given a pole at -15 it may be described by
£ = -15x + + (25)
X X <y X u
2z, = X
z, = c; x; te, X (26)
where Cys and c, are unknown parameters to be determined. Since
21 - Xy is zero we only need to determine 22 - X, From (21), (25) and
(26)
7y Tty
~ 27
= + -15 + c ¢ +
¢y X, loc2 x L2L3 xl c, u
and
:‘,.' S _r.“+ + s =1 28
z, x, = (1 + Ll) %, locz X c203x1 (Lz ) u (28)
If we choose c, = 1, c, = 14 and ¢, = -210
A . - > - 29
z, = %, 15 (2, = x,) (29)
and the error in estimating x, will die out as e 19t

T
When k° and the observer are combined the following results

are obtained;
From taking the Laplace transform of (25)

-2
u 10 xl

——— 30
s ¢ 15 (30

P2
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From (26)

%2 = lax + x = éiiiig x, * ;—é—Ig u (31)
From (24)
-u = 45 21 +5 22
= 45 x +705 4 o+ _ (32)

or when solved for u

- (s ® 20) u = (115 s *+ 675) xl

* L)
R S LR (33)

The closed loop transfer function is

115 s + 5.9

T(s) (s + 20)(s + 1)s + 115 s + 675

115 (s + 5.,9)

)
s2 + 21 s° +135 8 + 675
115 (s + 5.9) (34)

2
(s + 6 s + 45)(s + 20)
If the sensor noise is taken to be white with power spectral density

? =
N 1 (35)

then following the procedure given in Sec. B-6 the mean-square error
-2
e 1is

|| = 9.7 (36)

If instead of the lead network just designed the rate x_ is

measured , then with kl and kz as before the mean square error is

2, N, 45

le”] = @ +3 < = 7.5+ .83N (37)

where the rate sensor noise is white with power spectral density




By comparing (37) and (36), the trade-off between a lead network and a

rate sensor may be made.

2. Sensitivity in State Space

If the complete system including the controller is written in
state space notation then the sensitivity to parameter changes may be

11

evaluated in an elegant, but not very well known, manner, Suppose the

overall state equation is
y = Ay (39)
then the poles of the system are the eigenvalues A of A. Let Y,1 be

T
the eigenvector corresponding to ki and Vi be the eigenvector of A

corresponding to Xi i.e.

i i
T
ATV = A
1 vy
or
T T
v, A = Ai v, (40)

Consider a change dA of the matrix A; the corresponding changes dxi and

dY, in A, and Y, satisfy
i i i

+ A, dy, + dA
d A Y1 Ain = 1 Yi d N Y

1 (41)

where only first order terms are included. Multiplying (41) by Vz we get

T T T T
\' dA + = + dA
i Y1 Vi A d Yi Aivi in d ivi Y1 (42)
or, because of (40)
T
\ A T
1 dA Y1 = d 4 Vi Yi
or
v T dA Y
A i
d i = T 43)
(Vi Yi)

If the norm ||dA|| of dA is defined by
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T aa
“dA“ =  max z:ir——z' (44)
y vy

then

v

T 4 T, .4
la, | s 1 V)T oY)

(45)
lviT " l|aall

note that the factor multiplying ||dA|| is just the reciprocal of the

cosine of the angle between Vi and Yi.

As an example of the application of this procedure we will

consider the situation analyzed in Sec. B-1 and assume that the sensor
gain may change from its nominal value of 1. To take this effect into

account, we modify (21) so that

z = k x, (46)

A suitable state for the whole system is

x] *
x
For this system the state equation is
il = x,
iz = - 115 k S P 5 x
X = =45k x - 20 x
(48)
Hence
0 1 o
A = -115k -1 -5
(49)
-325k 0 -20
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Since the nominal value of k is 1

- -
0 0 0
dA = -115 0 0 Ak (50)
-325 0 0
b nd
If Kl = -3 - 6j then
-~ B
i 1) -2 - 6}
=] -3 = 1
Y, 3 -~ 6] v, © (51)
17 + 6]
-17 - 6] - —_—
i L e
and
T
vy, = -1.1 - 8.8]
vlr dAY = (-30+30) &k (52)
therefore

-30 - 30

C. CONCLUSIONS

1, Transient vs. Steady-State

In general, the effects of imperfect information handling com-
ponents such as sensors degrade either the transient response (for ex-
ample sensor dynamics) or the steady-state response (for example sensor
noise). Since by use of compensation and gain changes these two effects
may be traded-off, the effect of imperfect components is to decrease

steady-state performance for fixed transient performance and vice versa.
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2. Use of Classical Performance Measures

'...the majority of pole-zero configurations encountered in
the design of feedback control systems resolve to two or three poles and
one or two finite zeroes...The possibility of such simplification means
that the significant characteristics of the transient response can be
rapidly estimated from the pole-zero configurations without recourse to
the exact inverse transformation.' The above quotation from Truxall?®
indicates that in a typical linear, constant, single-input, single-output
control problem, the state of the system may be taken to be of order no

higher than about 3. For such systems classical performance measures and

analysis techniques are adequate.

3. Need for More Sophisticated Methods

(a) Nonlinearities and time variation. In general
it is difficult to analyze nonlinear and time
varying systems by means of classical control
theory because this theory is largely based on

Laplace transform theory.

(b) Multi-variable system. In systems with many
inputs and outputs the number of state variables
necessary for adequate description may be large.
In such cases the trial and error processes of

classical control theory are generally inadequate.

(c) For the preceding reasons as well as for its own
sake, it would be desirable to have a general
framework in which to analyze the effect of
information handling components. Because such
components may be described in state space notation
such a framework is provided by otpimal control,
estimation and identification theory. This method
of viewing the problem is presented in the main

body of the report.
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D. SENSITIVITY OF RATE FEEDBACK VS. SENSITIVITY OF LEAD NETWORK

For the use of rate feedback as illustrated in Fig. D-10 the

characteristic equation of the overall system given in Fig. D-4 is

>

2+ (avk) s + K s+ (a+B) s + 2B = 0 (54)

1

If a -~ a+ Aa then o -~ o + Ax and g @ g + A3. When these changes are
substituted into (54), higher order terms dropped, and coefficients of
powers of s equated the following set of linear equations for Aa and

A3 result
Ao + AB = Aa

BAox + B = o (55)

with the solution

48

Aa = Q_'—-_—S- Aa
(56)

For the situation shown in Fig. 8, the characteristic equation is

2
s3 + (a*c) s + (ac + Kl) s + Klb =
(s+) (s+B)(s+y) = O 57)
where Kl is chosen so that o and B are the same as above and where
iYI >> IQI = |B|. Using the same process as above to find the linear

equations for the perturbations Ay, AB and Ay due to the perturbation
La we get

ba + AB + AY

Aa

Ax (B+y) + AB (atY) + AY (a+B) = Aac

(58)
AY BY + ABa vy +AYy B = o
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with the solution

Aoy = %(BA&«&&AB)
¢ da - BQL - g) b
a8 = v
Q/(].-B')
-«
Aa:acjs G te (59)

Comparing (59) with (56) we see that for the same change in a, the
change in o differs in the two cases by the factor (c-o)/(y-rv). Because
both ¢ and y are both real and ¢ > y (see Fig. D-8) this factor always has
magnitude greater than 1; therefore the rate feedback configuration is

less sensitive to changes in the plant parameter "a" than the lead net-

work configuration.
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APPENDIX E

INFORMATION-THEORETIC APPROACH

A. GENERALITIES

The collection of mathematical results known as Information Theory
has been extremely fruitful in providing basic insight into communication
processes. In the main, these results apply most directly to communica-
tion channels operating in a steady-state mode, in particular with con-
stant probability distributions over the space of inputs. The most
important conclusions apply to one-way channels in which arbitrarily
large time delays are acceptable. The theory is based on the concept of
entropy (i.e., the logarithmic function of the probability) as a measure
of uncertainty. The great utility of this idea is that if two events
are statistically independent the entropy of their joint occurrence is
the sum of their individual entropies, in keeping with one's intuitive

idea of the way in which uncertainties should behave.

When we turn to consideration of control systems, however, we find
that many of these conditions simply do not apply. For example, the
steady-state operation of a control system is often of trivial importance
compared to its transient behavior, which will determine such a critical
performance characteristic as response time. Under transient conditions
the probability distribution of the input to a communication channel in
the control path will certainly not be constant. Further, many control
systems are quite sensitive to the value of a time delay in the signal
path. Finally, many control systems at one point or another exhibit the
operation of adding arithmetically two random variables to produce a
third. It turns out that the entropy of the sum variable is not even
calculable in general from the individual entropies of the two variables

%
being added; one needs the complete probability distributions of the

This is easy to see. One need merely take one of the summands to be
bimodal. For normally distributed variables the entropy of the sum is
determined by the individual entropies, but this is a rather special
case.

E-1




summand variables. In control system analysis, therefore, one often
does not enjoy the analytical property that makes eniropy such a very

useful idea in the analysis of communication links.

Such considerations as these have rather deep implications when
one comes to investigate the appropriate routes to he taken in the
analysis of information requirements in guidaince and contirol problems.
A specific conclusion is that one probably must study, at the start,
anyway, the complete probability distribution of a system quantity

rather than one or a few of its real-valued properties.
B. PROBABILISTIC CONTROL PROBLEM

With this idea in mind, then, we set up a model system that is
general enough to contain a variety of interesting control problems in-
volving information handling elements and yet that possesses some useful
analytical properties. Let us consider, specifically, a system wich a
state-vector X of n real elements with its evolution over the time
period 0 = t < = described by the differential equations

fefd-

= X+ an+ H;

dt (1)

where F, G, H are matrices of (possibly) time-varying real elements,

Take ® to be a real vector of random elements, disturbances or additive

noise, with the ensemble moments

<w(t)>

1
o

2)

li

-— -T
> S(t, - t.)
<w(t1)m (t2) Q(tl) ( 1 9
so that W(t) is zero-mean and white with instantaneous covariance malrix
Q. Take § to be a feedback vector of m elements with dependence on the

state X described by a conditional probability density pf(§|§) so that




T1oYau - . < . <« < + du
pf(ulv)du Prob. (ul yl u] + dul, 'um ym Um m

g¢iven that state is v)

and
j‘df dy pf(yl;) = 1

and define the ensemble conditional moments

—  — — def - — ——
m=mG) = f.fdy ¥ G]%)

S = ESjk(X)] = fnfdy {y - m}{y - m} pf(y|x

We suppose that the y vectors selected from the feedback distribution

at different times are statistically independent, i.e.,
<{yt)) - m ¥y -m }x X -
vt - m 3y - m}xe ), %(t,)> = o

with similar expressions for all higher moments. Also, that ¥ is sta-
tistically independent of W, Thus, the feedback ¥ is probabilistically
dependent on the state X, is ''white' in time, and has instantaneous
average T and covariance matrix S. Equation (1) is linear except for
possible nonlinear dependence of the feedback ¥ on the state X; speci-

fically, we do not assume that W(X) and S(X) are linear in the elements

of X,

The quantity we shall consider to be of basic interest here is the

probability density p(X,t) of the system state in X space at any instant
of time;, i.e., we define

p(;,t)d; = Prob(vls x

1 (t) <v, +dv_, . . . vnéxn(t)

1 1

< v o+ dvn with t given




and

J“rd; p(x,t) 1

The density p(X,t)} is a real function of n + 1 real variables. In what

tollows we shall make the following assumptions about this function:

(a) Smoothness--The second partial derivatives of p with
respect to the elements of X and its first partial

derivatives with respect to t are all continuous.

p(X,t) and its first

(b) Boundary Behavior--When ]xi|~ @,

partial derivatives with respect to the elements of
X all vanish more rapidly than any finite power of xJ,

tfor all i, j, and finite t,

The system of Eq. (1) can usually be set up so that these assumptions
are physically plausible; no attempt has been made here at their mathe~
matical justification. Finally, we assume for the present that the
initial state probability density p(xX,0) is known., This completes our

problem formulation,

The definition of a state vector and our "whiteness' specifications
for O and ¥ insure that the time evolution of the system state, X(t),
will be a Markov process. Then, as we show in Section C of this Appendix,
the state probability density p(X,t) must obey a particular linear partial

differential equation, the Fokker-Planck equation:

2 n 3 n n a2
) 1 \
. / j
ot =1 axk k zkl::—l j—':l axkaxj
where we have defined the n-vector
o-— — — de — —
o - o(x) et Fx + Hm
and the matrix
- - def T T
. =
[8,;7 - [B ;67 5" 6qe™ + HsH




This equation is fundamental to all that follows hcere. It shows directly
that the cvolution of p(X,t) can be described completely in terms of m
and §, the first and second moments of the fcedback term §, and that we
no longer need be concerned with the complete feedback conditional

density pf(ili). This 1s an important simplification.

1. Entropy Variation

In theory, everything of present interest could be determined
by integrating the Fokker-Planck equation; this, however, is a formidable
task. A more useful approach is to write various quantities of interest
in terms of integrals of the p(X,t) density and look for an ordinary
differential equation that will describe the quantity. For example,

we can write the entropy of the state at any time as
o) def . — —_ -
# (t)y = - j..\,rdx p(x,t)IOge(p(x,t))

Since this quantity can be interpreted as a measure of the uncertainty as
to system location in X space it is of considerable interest. Differen-

tiating with respect to time, we get

:7.‘/ - j-‘u‘rdX{l + 1ogep(x,t)} -agi)(,t)

Substitute for the partial derivative with respect to time the right-

hand side of Eq. (4), the Fokker-Planck equation, and this is

’H, k‘-’l [.fax{1 + 10g Pl 5 X (o p)

La o
1L 1+1°€Pré—-5—x—(8 .p)

J

[\

where the 1ntegrals now contain only partial derivatives with respect to
the variables of integration. Apply integration by parts to the inte-
grals in the first sum and invoke the boundary-behavior assumption (b)

on p(x,t), so that




n
. —— -— 3 -
‘%1(, _ kzl f..fdx p(x,t) -5-;—; a (x) (5)

§
L

2
fax{1 -
k=1 j=1 ff x1 e 1ogep}axkax, (Bkjp)

i
[ ST

<

We have found no way to simplify the second sum that gives useful re-
sults, and so this is as far as we can go without particularizing our
system model. This is unfortunate, since the second sum contains the
effects of noise, disturbances, and probabilistic feedback and is there-
fore the more interesting term. We can get an inte;esting special re-
sult, however, by taking the disturbances to be zero and the feedback

to be linear and deterministic so that we have

5:0 Q:O

};(;)=Mx S:O

with M a matrix not dependent on X, and thus

a(x) = [F+m]x [p] =0

The only probabilistic effects then are those introduced by the initial
probability density p(%,0), so the system evolves deterministically from
an ensemble of initial states. Equation (5) for the entropy becomes, in

this case,

rd

?%_: trace [F + HM] (6)

which is a simple and intriguing result. Corsider an example in which

the system is described by
. . 2 2
z + 2vyz + (w + Yy )z =0 t 20

and take for the state space the z and z elements; the system can be

written




so that, by Eq. (6)

5% (t) = ‘?440) - 2yt

If v > O the system is damped, and we find that the entropy decreases;
if y < O the system diverges and the entropy increases. The case y = 0
corresponds to a physical system in which energy is conserved and
Liouville's theorem in statistical mechanics implies that the entropy of
such a system is constant; we find the same result here by a very dif-
ferent route. The present development thus has yielded some results
that are physically plausible, a circumstance providing some assurance
that the initial assumptions and mathematical manipulations of our argu-

ment retain validity.
2, Moments

Other real quantities related to the p(X,t) density function
that will be of considerable interest to the control system designer are
the mean and variance of the state. First, define one element of the

mean state vector by

def [dx x £ =1,2
hz = f“de xzp(x,t) ,2...,n

and differentiation with respect to time gives

s

=[x x 9P
h I"de X, =

o ldx x O 1 9o
kéj U ox, WP T2 kéi %Elf"fdx xzaxkaxj(skjp)



Integration by parts and use of the boundary behavior assumption (b)

gives for an integral of the first sum

J-fax x, -ai—k (P = -6, [.[d oy

while the same process shows that all the integrals of the second sum

are zero. Recall the definition

@ = Fx + Hm

and assemble the elements of the mean vector so the set of differential

equations for the elements of h can be written
h =Fh + H f“rd; m(x)p(x,t) (7)

These may be easy or difficult to evaluate, depending on the form of

m(x).

Consider now the variance., Define an element of the covariance

matrix of the state by
S RTINS
and differentiate with respect to time to get
iij = I"Id; [xi - hi} {xj - hj} %%
the terms containing ﬁi, and ﬁj disappearing since
f"fd; {xi - hi] ﬁjp = ﬁj I“Id; {xi - hi}p =0

As before, we substitute for %% the right-hand side of the Fokker-Planck
equation, apply integration by parts to the integrals appearing in the
sums, and invoke the boundary behavior assumption (b). The resulting

differential equations, if the definitions of & and




T T
[aij] - GQG + HSH

are recalled, can be assembled and written as

[iij] = i = Fy + xFT + GQGT
+[J-Jax (% - Bl Tpu" + [ [LJox alx - 5)7p]

+ H[Infdx S p]HT ®

which shows how the system dynamic effects, F and Hm, and the random
effects, Q and S, combined to determine the evolution of the Yy covariance

matrix,.

The same process can be used to obtain differential equations
for the third and higher moments. But, instead of writing these out, it
will be well to examine the usefulness of the relations already derived.
First, note that if the elements of m(X) can be represented by first-
degree polynomials in the elements of X and S(X) by second-degree poly-
nomials then Eqs. (7) and (8) for the mean and variance are complete in
the sense that the integrals involving @ and S can be written directly
as algebraic forms in the elements of h and Y since p(X,0) is assumed
known the initial conditions R(0) and x(O) are known and the set of
equations for h and Y can be integrated directly. This class of problems

includes the completely linear case~--i.e,, WM(X) = MX with M a matrix

independent of X, S not dependent on X--as well as a number of interesting

nonlinear examples.
C. DERIVATION OF THE FOKKER-PLANCK EQUATION

The derivation given here of the Fokker-Planck partial differential
equation follows the standard methods of proof (see, for example, Wang

and Uhlenbeck, "On the Theory of Browian Motion" in Selected Papers on

Noise and Stochastic Processes, N. Wax edit., Dover-Publications, New

York, 1954). While the problem considered is somewhat more general than

those analyzed earlier, this proof is presented primarily for completeness,
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We suppose that the system state is described by the n-vector X,

evolution of which is governed by the equations of motion

X = Fx + Gb + Hy 0 <t<ow (9)

with matrices F, G, and H possibly time varying. Let ®(t) be a white

random vector with ensemble mean zero and covariance matrix Q,

- - -T
(W) = o, <W(t1)a) (t2)> = Q8 (t, - t,)

Let pf(?‘i) be the conditional probability density of the feedback term

y; write the conditional mean m as
m = m(x) = f“jdy Y Pg (ylx)
and the ensemble conditional covariance as

(Feep- w3 {y(e) = w07 X)), X (1)) = 8 6 (2] - t))
=S (x) & (t. -1t)

=6 (t) - t,) [LJayly - a}{y - rTl}Tpf(frli)
so that ¥ is probabilistically dependent on X and is white in time.
Take 7 and © to be statistically independent, write p(x,t) for the
ensemble probability density of the system state at any time t, and take

p(X,0) to be given.

Because the system state at any time is sufficient to determine
later states given the inputs over the intervening time interval, and
because the "inputs" ® and § here are white in time, the evolution of
the state X(t) is a Markov process. Therefore we can define the transi-

tion probability function




u,t|v u = Pr < ) <u, +du,. .,
q(u.t!v,tl)du = Pxob(u1 xl(t) u1 u1

u < x (1) <u_+ du_given that x(t_) = v)
n n n n 1

[-Jaxatx,tlv,t)) =1 (10)
and we have the basic relation
p(x,t) = rurdC p(v,t)) q(§,t|v,t1)

from which we get

LpG,t +m - px0) =2 [LIa0 p(v,0)aCx,t + 7|v,0) - L p(x,0)

T T T !
Now take f(X) to be arbitrarily chosen real function that is analytic
in X and integrable over the state space; also require that f(X) and all

its partial derivatives vanish as X — o, Multiply the above equation by

f(X), integrate over the state space, and let T become small so that

lim  [.fax gz ROLEXT) - pGt) [-Jax £Go %2

T =0 T
= 11m {j raxf.fav £GPV, )alx,t + 7|V, 1)
(11)
- j"jdi f(;)p(;,t)}
Expand f(X) in Taylor Series, with zZ =X - V,
£(x) = £(v + {x - v}) = £(v + 2) (12)

a f(v)

—‘ af(v)
= f(v) + Zi K 8 E;-El Zy® J BV av




and the right-hand side of the above equation becomes

lim
T—0

% {f"de £(Wp(v,t) [.fax q(x,t + 7|v,t)

éﬁi&l fﬂfd; zk q(i,t + TI;,t)

n
+ wldv (-,t)
ij j I VR vy

n

2 -
r“ dv p(;,t) é—zizl dx z, z q(x,t + *|v t)
Z* X f kaBvJ I

+ - fufdx £(x) p(x t) }
Because of the normalization of q(X t1|V t) the first and last integrals
here subtract to zero.

Define
o (v) = lim I“fdz z Az + v, t+ v t)

T =0

Sl L

1 = - - -
By (V)—Tlim0 = fufdz 2,2, a(z + v, t + T|Vv,t)

and the right-hand expression is

n -
- = -, of(v)

"rdv p(v,t)a (v) ——

;Z; I . k avk

B f(v) +

+ = Rzﬁ Zﬁf Idv p(v,t) B J v FYoarT kavj

Integrate the integrals in the first sum by parts and recall the boundary
assumptions on f(X) to get, for example,

[ Idv f(G) (o, P)

af(v)
k

F"Idv p(v, t)a (v) =——=

Similarly, the typical integral of the second summation can be written
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. - 2
Bzf(v)

) _ - - D
jnjdv P(v,t)BkJ(V) g;;g;; - f"fdv v Avkavj (bkjp)

The same type of operation can be applied to all the other terms in the

Eq. (12), and so Eq. (11) becomes when all terms are collected on the

left-hand side,
. h 3
I"Id; £(x) {%% + 21 3% (akp)
K= k

2
S)
—_— + ... =0
axkaxj (Bkjp) j

'
Nl
=
T2
[ ]

=1

The function f(X) is arbitrary except for some mild smoothness and

boundary conditions, and so we find that p(i t), must satisfy
n
— 2
ap \

== - - (Q p) + = B, .p) + ... 13)
ot ij ij ax, bx kj (

The only remaining steps are to calculate the a's and B's, and to show

that we need only the first- and second-order terms in Eq. (12). Let

X(t) be the "fundamental matrix" of Eq. (9) satisfying

X=-FX, X(0) =

and if X(t) = V we have

t+T
x(t + 1) = X(t + DX (L) + X(t + 1) jtdtIX"l(tl)G(tl)é(tl)

t+ T
+X(t + ) | dt X (t JH(t, )y(t )

The step in state space from time t to t + 7 was designated

z2 = x(t + 1) - v; further, for 7 small the differential equation for X

shows that we can write
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X(t + 1) T X(t) + TFX(t)

wWith these substitutions the equation for X(t + T) becomes
t+7

O -1
z = TFv + (1 + TF]X(t) j dtlx
t

(tl)G(tl)w(tl)

t+ o7

. -1 -
+ [1 + TF]X(t) { dt X (tl)H(tl)Y(tl)

In computing the o's, we take V given as the state at time t and calcu-
late the average Z over all transitions. This is the same as averaging
Z over the ensemble of © and ¥ with the condition that V is given; there-
fore, since (®) = O,

_ t+7

<z|x = v> T Fv + [I + TF]X(t) [ dtlx— (tl)H(tl)r?n1

and we have

(V) = lim % <2l% = v> = Fv + HR(Y)
T-0

Similarly, for the B's we compute the conditional ensemble average

i - tH Ttk T T T
<zz  |x = v> = X(t) Idt dt_X " (t )G(t ) <w (tDw (t)>
t 1 2 1 1 1 2

-GT(tz)XT(t)

t+ 7 t+ 1

_1 - - _ _
+X(t) Itdtl Jtdtzx (tl)H(tl) <y(t1)y T(t2)|v>uT(t2)x T(tz)xT(t)

+ terms of order T

which as a result of the whiteness assumptions for ® and § becomes




t + 7
- T _ - T -T T
<ag |v> = X(t) Itdtlx (tl)G(tl)Q(tl)G (tl)X (tl)X (t)

t + 7

+ X(t) I dt x 1t
¢ 1

T -T T
(t))H(E )S(PIH (t,)X (t )X (t)

+ terms of order T2

Thus we get the matrix [Bkj]

T~ -
<zz |x = v>

A=

[akJJ :Tlimo

- GQG! + HS(V)H'

Finally, all terms in Eq. (12) of order higher than second will involve
moments of Z of order higher than two. In the limit as the time step 7
goes to zero the effect of these higher moments in the partial differen-
tial equation for p(X,t) will be negligible, and so we need only terms

to second-order. This completes the argument.
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APPENDIX F

APPROXIMATE DESIGN OF A FIXED CONTROLLER

SYSTEM WITH DIGITAL FEEDBACK

The example problem treated in the course of the study is formulated

in Sec. IV-D of Vol. I,and the main results are given in the form of a

design chart.

these results.

The purpose of the present Appendix is to substantiate

A. PROBLEM FORMULATION AND NOMENCLATURE

It is desired to find the optimum design parameters of the digital

position control servo shown in Fig. F-1.

Nomenclature

The following nomenclature is used throughout the appendix.

[-55,5]
N

L

&t

r(t)

quantizer range and input command range

number of quantization levels

nunber of bits per message

bit time

sampling period and message time

quantization increment size

bit error probability

output probability

impulse response of the continuous and linear system

state of the system; the state has 3 components

x, = output position
x, = output velocity
x3 = decoder output

control signal

command input

constant value of command input
noise affecting the channel
operating cost

Laplace transform operator
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B. SYSTEM DESCRIPTION

As shown in Fig. F-1 the plant is characterized by the transfer

function

u(s) = s(s+ 1)

Due to the hold action ahead of the plant, we find
x(t) + x(t) = u (2)

where u is a constant in the interval AT. Transforming we find

x(0) s(s+1) + 2 (0)s +u

X(s8) =
52(s+1)
_x(0) . 101 11 1 (3)
=% *"‘0’[3 m}* “[?"s*?ﬁ}
or
() = x@ + %0 [1-e T+ vt - a-eH] (2)
and
. . -t _t
x(t) = x(0) e + o1 - e 7. )
If now we consider the state vector x(t) we find
-t -t
x(t) = ?(t) = [1 1-e x (0) + u t - (-e )] (6)
x(t) 0 et~ 1-~e " i
Turning now to the sample-time AT we find
1 v AT ~ V .
x (AT) =[0 U] x (0) + u«»[ v } %0
where, for convenience, we have set
U = e-AT .
v ~AT (8)

1}
.-
'
(4
=2



Ignoring all the feedback complications except the delay we can write

1 Vv AT-V
[ o UJ'f (n) + u(n) [ v ] a 9)

u(n) = R(n) - xl(n-l) b

x (n+1)

where these equations are valid only at the sampling instants when t = nAT.

Substituting (9b) in (9a),

1 Vv . T-V -
x (n+1) ={ } x (n) + R(n) A v J + [V-eT g} x (n-1) (10)

Rewriting (10) as separate equations, calling the final x(n - 1),
y(n ~ 1), to indicate the effect of the communications channel, x(n) can

be eliminated to give

x(n+3) = (1+0) x (n+2) - Ux(n+l) + (V-AT) y(n+l) + (UAR-V) y(n) + (AT-V)

R(n+1) + (V-UAT) R(n) (1)

where use has been made of the equality

UV + V2 - y(usV) = V (12)

A block diagram of (11) is shown in Fig. F-2 where

A1 =1+ U a
A, = -U b
2
(13)
A3 = V=-AT c
A4 = UAT - V d
1, Saturation, Quantizing, Coding, and Error

As shown in Fig. F-2, the present output, x(n), is hard limited
to an arbitrary level which is actually set to +1.5 to correspond to an

expected range of inputs from -1 to +1.

Since the communication channel is binary it can handle only

discrete messages. Since no error correction or detection coding was
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considered, the number of quantizing levels is a power of 2, actually

2L where L is the number of bits per message, Certainly one level should
be zero and therefore it is impossible for the remaining levels to be
symmetrically located about zero. Hence there are ZL—l positive levels,

-1
a zero level, and 2L -1 negative levels, As an example for 1=3, when

~o < X < -,9375, the level is -1,125
-.9375 < x < -.5625 - .75
-.5625 < x < -,.1875 - .375
-.1875 < x < ,1875 0

L1875 < x < .5625 + .375
.9625 < x < .9375 .75
.9375 < x < 1.2125 1,125
1,2125 < x < = 1,500

The possible effects of this asymmetry obviously decrease With increasing

L.

The levels have been coded with the most negative represented
by L zeroes increasing in regular binary to the most positive represented
by L ones, The channel is considered symmetrical with a bit error proba-
bility of a 1 becoming a 0 or a O becoming a 1 equal to p. Errors are
assumed to occur independently in each bit so that for L bits, the proba-
bility of a single error is p(l—p)L—1 of two errors pz(l-p)L-z, etc,

Note that the effect of a bit error depends on the transmitted level and
on the significance of the particular bit, The size of errors in level

L-1

due a single bit error vary from 1,5/2 to 1,5,

The operation of decoding consists here merely of converting

the received binary word into the equivalent quantized level,
2, The Channel

It is assumed that the digital channel is of the frequency

shift keying variety (F.S.K.) for which the bit error probability is

-abt

p=1/2 e (14)




C. SAMPLING EFFECTS

1, General

A program was prepared to simulate the system of Fig. F-1 without
quantization, saturation, or feedback noise to determine the integral
squared error of the response following a feedback signal offset., The

appropriate difference equation is

xf +3) = Alx(n+2) + (A2 + A3) x@+1l) + A4x(n) (15)
where
B = 1 +U
A1 a
= 1 + - A b 16
A2 + A3 vV - AT (16)
= - c
A4 UAT \'s

and x(n) is the output at time n,

The integral square error was approximated by the sum of x(n)

squared at the sampling instants over a ten-second simulated time inter-

val;
ISE = ) x% (o) AT
L an
n
The continuous case (equivalent to AT = 0) was included for
comparison,

A program was also prepared to determine the best second order
polynomial fit to the integral square error for the position and velocity

displacement cases.
2, Results

The results of these simulations are presented in the following
figures:
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Figure F-3: 1/AT Feedback Displacement
OQutput vs, Time

a, Continuous (Amplitude 1)

b. AT = 0.1 (Amplitude = 10)
c. AT = 0.2 (Amplitude
d. AT

5)
2.5)

1]
1}

0.4 (Amplitude
Figure F-4: Unit Feedback Displacement
Log ISE vs. log AT

a, Simulation

b, AT2 + (ISE for continuous case)

Based on computer runs not plotted here, the system goes

unstable for AT larger than some value between 0.7 and 0.8 seconds,

The key result is Figure F-4 which shows that the integral
square error is well approximated by MATz, M = constant, for 0 < AT = 0.2,

D, CODING CONSIDERATIONS FOR SAMPLED DATA CONTROL SYSTEMS
WITH A BINARY FEEDBACK COMMUNICATION CHANNEL

1., General

In the usual binary communication channel the available alphabet
is finite and is equal to or less than ZK where K is the number of bits
*
per message, There are two general types of redundant codes: syste-

matic and non-systematic,

We will restrict our considerations to symmetric channels where
the probabilities of receiving a one when a zero was sent and of re-
ceiving a zero when a one was sent are equal. We will also assume that
the bit errors occur independently and that the receiver makes a

decision on each bit,

*

There are, of course, codes where the number of bits varies from word
to word, The present section is restricted to uniform sampling and a
fixed number of bits per word.
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FIG. F-3 OUTPUT FOLLOWING A FEEDBACK DISPLACEMENT
(@) Continuous System Amplitude 1
(b) Sampled at AT = 0.1 Amplitude 10
(c) Sampled at AT = 0.2 Amplitude 5
(d) Sampled at AT = 0.4 Amplitude 2.5
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FIG. F-4 Log ISE vs. Log AT
(a) Simulation

(b) AT2 ISE for Continuous Case




2, Systematic Codes

K
In a systematic code the size of the alphabet is 2 where
K <L is the number of information bits and where the K - L redundant

bits are determined by parity check equations,

The power of such codes is measured by the minimum distance
between any two code words of the alphabet. The redundancy may be used
either for error correction or error detection or both, Protection is
thus provided against some numbers of errors per word but never against

all possible errors,
a. Error Correction

The use of redundancy to provide error correction is much
less attractive than is popularly believed. Under the usual constraints
of fixed power and data rate, the addition of redundancy must reduce the
time per bit and increase the bit error probability accordingly. Only
when the bit error probability is very low without the extra bits re-
quired for error correction does the error correction capability increase
more rapidly than the number of errors per message which increases both
because of less time per bit and because of more bits per word, Since
we are primarily interested in relatively poor channels, error correction

will not be further considered,
b. Error Detection

The use of available redundancy to detect the occurrence
of errors is generally an effective technique but raises the obvious
question in the feedback control context of what action is to be taken

when errors are detected, The possibilitites include:

i setting the feedback to zero

ii setting the feedback equal to
the command

iii using the previous value (which
must then have been saved)

iv using a function of the previous
or several previous values,
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Without any implication that such procedures would not be useful, they

have not been explored further in the present project.

3. Non-Systematic Codes

In non-systematic codes information bits as such cannot be
identified, Rather the code words, however structured, are assigned to
the various messages at the user's convenience., Examples include the
Gray codes where the code words assigned to adjacent levels differ by
one bit and the "Snake-in-the-Box" codes’ which are extended Gray codes
in that, up to some difference in levels, the words assigned differ in
the same number of bits as the difference in levels to which they are
assigned. These are primarily error detection codes and possess no
specifically desirable properties for the present purpose. Since their
use requires a decision rule as outlined in II-B above, they are not

further considered here,

4, Other Techniques

For any reasonable channel error probability, reception of a
word with no errors is more probable than with single errors which in
turn is more probable than with double errors, etc, If the system is
to be operated as a regulator so that the commanded output level is
fixed, any code can be rearranged to make the effect of single bit
errors less serious by assigning to those levels near the commanded
level code words which differ in only a single bit from the word assigned
to the commanded level, This technique is obviously applicable only when
the commanded level is fixed and the output does in fact stay near that

level,.

Probably the most powerful technique for controlling error
effects in a feedback system is to devote extra time and/or power to the

more significant bits of the message, Additional terminal complexity is,

%K
Singleton, R. C., "Generalized Snake in the Box Codes," to be published
in the IEEE Transactions on Electronic Computers,




*
of course, required. Such systems have been discussed in the literature

and may actually have been implemented but will not be further con-

sidered here,

-

5. Conclusions

Primarily for simplicity, the present work has considered only
the use of non-redundant binary codes in which the all zeroes word has
been assigned to the most negative level, the word having zero in its
most significant bit and ones elsewhere to the zero level, and the all

ones word to the most positive level,
E. DEADBAND COST

If the system is operating in the transient mode, a cost J;, re-
ferred to as the deadband cost, is incurred. Even in the absence of
communication channel errors, the output x does not exactly equal the
command input r in general because of the quantization deadband. 1In
general, this error is not constant, i,e,, there is limit cycle motion
x(t) contained roughly within this deadband. In order to evaluate ap-
proximately the degrading effects of these errors, it is assumed that

the output probability p(x) is uniform within the deadband H, Con-

sequently,

[N

2
J! = I x2 p(x) dx = %5 (18)

F. TRANSIENT COST

If the system is operating in the transient mode, an erroneous

signal w is occasionally received at the decoder output. This signal,

*

Bedrosian, Edward, "Weighted PCM," IRE Trans., Vol IT-4, #l, March 1958,
pp. 45-49, and Bellman, R, and Kalaba, R., 'On Weighted PCM and Mean-
Square Deviation,” IRE Trans., Vol, IT-4, #l, March 1958, pp. 58-59.



which 1is applied during the interval AT, sets up a transient the de-
grading effect of which is measured by the integral squared error (ISE)

discussed in Section C, namely
2
ISE = w I 32 (t, AT) dt (19)

where J (t, AT) is the response of the linearized closed-loop system to
a unit perturbation w applied during AT. It is seen from Fig. F-4 that

the response J (t, AT) is well approximated by
J (t, AT)Y = AT 49 (t, 0) (20)

where J (t, 0) is defined as the unit impulse response of the continuous

system containing no communication channel delay AT,

With the response d (t, AT), there is associated the integral

squared error M (AT)

M(AT) = J. ,qz(t,AT) dt

It is seen from Fig, F-4 that
~ 2
M(AT) = (AT) M(0)

where M(0) is the ISE of the continuous system perturbed by a unit im-

pulse,

This useful, but certainly not necessary simplification, is re-

tained in the remainder of this appendix,

1, The Transient Cost J;’

If the bit error probability is sufficiently small, the tran-
sient generated by a first perturbation w will have subsided on the

average, by the time a second perturbation w occurs, This is a valid




assumption in the transient mode of operation, The resulting per unit

time cost Jél is then defined by

2
75 4 i M (AT) W p(w) dw = M(AT) [ w p(w)dw (21)
w

2
2. Calculation of rw w p(w)dw

Once a particular code has been selected, the expression
2
rw w p(w)dw can be calculated in a fairly straightforward fashion in

terms of the bit error probability p, as will be illustrated below for

a two-bit binary code.

Message Message Received Message Received Message Received

Sent with Prob, 1l-p with Prob, p(l-p) with Prob, p2
0O 0l and 10 11
00 and 11 10
10 10 11 and 00
11 11 10 and 01

If p is sufficiently small, messages with a single bit error
are received with probability p(l-p) = p and messages with double bit

errors can be neglected,

The perturbations w resulting from single bit errors are

shown in terms of the message sent.

Message Message Received Perturbation

Sent with Prob, p w
o0 01 and 10 H, 2H
00 and 11 -H, 2H
10 11 and 00 H; -2H
10 and 01 -H; -2H

If all messages sent are equally likely (which is a convenient,

but not necessary assumption,) then
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~

2
f wopwydw = H2p(1+4+1+4+1+4+1+4) = 20H p (22)
w

This procedure is easily generalized as follows. Let the

transmitted message be

L-1
- ¥ a2l
x = H(s; +) 2,2) (23)
J=0

with aj equal to zero or one,

Then, for each message sent, perturbations of magnitude

J
HZ
transmitted messages are all equally likely, then

(j =0, ..., L-1) occur with equal probability. If in addition the

L-1
2
[ wp(wydw = pii’ Z 223 (24
w =0
0 L-1
~ 2
L aD) L (25)
J=0

The function C(L) is tabulated below for S=2 in terms of L.

| e

c()

20
21
21.3
21.4
21.4
21.4

g 6O b W N

It is seen that for L = 5, the function C(L) is constant,




For p sufficiently small, the transient cost Jé’is thus

approximately

Jg = M(AT) p C(L)

(26)
G, MONTE CARLO RESULTS
1. General

The system was simulated on the computer by the following

equation:

x(1] = Alx[1-1] + AZX[I—Z] + A3Y[1—2] + A4[I-3] + AR @n

where X[I] is the output, R is the command (step function) and Y[I] is
the feedback signal after quantization and a probability trial to de-
termine a signal dependent error value corresponding to a specified

probability of error, The constants are

Al =1+ U (28a)
Ay, =-U (28b)
Ay =V - DT (28¢)
A, = U-DT-V (28d)
A = VDT (28e)
where U =1-v=elT (28£)

and DT is the sampling time.

Initial conditions were set to suppress any initial transient;

i.e,, the system was assumed at rest for I < O with X[I] = R,



The system operated for approximately 10 seconds (simulated time)

and the integral square error accumulated as

1sE = ¢ (x[1] - BZ br (29)
1

The values in the following are the integral square error per second

ISE
J = Cost = —————— (30)

max

The probability distribution of the quantized output was also

accumulated and the mean calculated at the end of the run,

2, Transient Mode

Results for R = O and operation in the transient mode are

given in Table I, Note that the simulation cost does not include dead-

band cost., The cost is added to the simulation results as

J, = — (31)

where N is the number of quantization levels,

3. Steady State Mode

Results for R = 0,868 and operation in the steady-state mode
are presented in Table II, The command was chosen to simulate the costs
associated with a uniform probability density for R. In general, after
10 seconds, the output was still cycling and the amplitude of the last
full half-cycle is included in Table II both in absolute units and as

a percentage of the quantization level,




TABLE 1

Transient

Mode - R = 0

Number Bit Sampling| Mean | Simulated | Deadband | Total
of Error Time Cost Cost Cost

Bits Probability
2 0,00004 0.3 0,00 0.0469 0.0469 0.0469
3 0.00095 0.3 0.00 0.0117 0.0117 0.0117
4 0.00430 0.3 0.00 0.0061 0.0028 0.0089
5 0.01115 0.3 0.01 0.0085 0,0007 0.0092
3 0.0001;‘ 0.4 0.00 0.0000 0,0117 0.0117
4 0.00095 0.4 0,00 0.0000 0.0028 0,0028
5 0.00315 0.4 0,00 0.0048 0.0007 0.0055

TABLE II
Steady State Mode - R = 0,868
Number Bit Sampling | Mean Cost Final 1/2-Cycle Amplitude
of Error Time
Bits Probability Absolute % of Interval

2 0.01 0.1252 0,871} 0.2760 0,287 38

3 0.01 0.1878 0.885 | 0,0448 0.145 39

4 0.01 0.2504 0.877 | 0,0214 0.116 62

5 0.01 0,3130 0.791 | 0,0199§ 0.240 256

2 0.02 0.1016 0.878 | 0,3285 0.159 21

3 0,02 0.1524 0.897 | 0.0565 0.101 27

4 0,02 0.1524 0.911 ) 0,0681 0.078 42

5 0.02 0.2540 0.820 | 0.0615 0.698 744

2 0.05 0.0725 0.896 | 0,5500 0.163 22

3 0,05 0.1088 0.931 |0.1332 0.079 21

4 0.05 0.145 0.951 {0.1438 { 0.265 141

5 0.05 0.1813 0.941 {0.1961 0.117 125

2 0.10 0.0509 {0,977 |1,0100 0.105 14

3 0.10 0.0764 0,055 10,5950 0.345 92

4 0.10 0.1018 1.034 |0,368 0.045 24

5 0.10 0.1273 1,110 }0,.644 0.146 156
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