
, 
• 

o 

J\tfATHEMA'TICS RESEARCH CENTER 

• , . ; 

" 

· · • 
< I A 

THE UNIVERSITY 
OF WISCONSIN 
111 a d j SOIl, U' is con Sill 

'\ (--

( , 
\ 

\ , 
, 
, 

\ 

\ , 
i 
i 

\ 

UNITED STATES A 



MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY 

THE UNIVERSITY OF WISCONSIN 

Contract No.: DA-ll-022-0RD-2059 

ON THE FEYNMAN INTEGRAL IN DYNAMICS 

A. M. Arthurs 

MRC Technical Summary Report H 618 
January 1966 

Madison, Wisconsin 



ABSTRACT 

The Lagrangian formulation of quantum dynamics in terms of 

the Feynman integral describes systems for which the Hamiltonian 

is classical in form and quantization is carried out in terms of 

commutators rather than anticommutators. The difficulty with this 

method is the actual ev~luation of the Feynman integral itself. 

We give an explicit evaluation for classical wave motion in one 

dimension. This requires an extension of the Feynman method 

which was introduced by Tobocman and studied in detail by Davies. 

We also discuss the work of Corson on the question of a unified 

formulation of dynamics. 



1. Introduction 

ON THE FEYNMAN INTEGRAL IN DYNAMICS 

A. M. Arthurs 

The Feynman integral approach to quantum mechanics [4] provides an alterna-

tive to the formulation based on the Schrodinger equation and the usual commuta-

tion rules. It does not however describe the Dirac field in which operators 

satisfy certain anti -commutation laws [5]. 

The difficulty with this method is the actual evaluation of the Feynman in-

tegral itself. Cases which have been explicitly evaluated are those corresponding 

to the free particle and to the harmonic oscillator [2]. A further example is pro-

vided by the Feynman integral formulation of classical wave motion in one dimension. 

To discuss this we first of all require an extension of the Feynman method which 

was introduced by Tobocman [5] and studied in detail by Davies [3]. 

2. Extension of Feynman method 

This extension is based on the Hamiltonian of the system rather than on the 

Lagrangian. In it the time development of the wave function is given by 

~( q", T) = J dq' K( q", T ; q' , 0) ~(q', 0) , ( 1) 

which connects the wave function ~(q", T) at time T with the wave funct.ion 

~(q' , 0) at an earlier time 0 • The kernel K( q", T ; q' , 0) is given by 

K( q" T· q' . 0) = N ~ exp is , ., ~ pq , 
pq 

( 2) 

where 
T 

S = I {p~~ - H ( p, q) }dt • 
pq 0 

( 3) 
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In ( 3), H is the classicg! Hamiltonian of the system while the su.bscripts P, q 

denote any history of the system specified by two arbitrary functions of time q( t) 

-=tnd p( t) subject to the restrictions 

q( 0) = q', q( T) - q" - . ( 4) 

Thus S is the classical action for a history p, q . pq In (2), ~ means a sum 
pq 

over all histories which satisfy the end conditions (4.) g,nd not only over the 

history which is the actual classical path between the end-points. The normaliza-

tion factor N is chosen so that 

K( q", 0 ; q' , 0) ,- 6( q' - q ") , ( 5) 

where 6 is the Dirac delta function. 

The equivalence of this approach to the usual one based on the Schrodinger 

equation 

( 6) 

is readily shown by means of setting up operators in a function space and de-

fining an appropriate inner product. This will now be discussed. 

3.. The operators p and 9 

We suppose that the elements of the function space are f( q), g( q), etc. 

Then, following Davies [3], we define an inner product (f, g) as follows: 

(f,g) = JJdq'dq"f(q") A(q", T iq', 0) g(q') , (7) 

where 
T 

A( q ", T j q' , 0) :;. N ~ exp i J -pdq , ( 8) 
pq 0 

and the q - p histories to be summed over are those specified by giving q( t), p(t) 

arbitrary values over the ra:1ge 0 ~ t ~ T subject to 
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q(o) =q', q(T) =q" • ( 9) 

By the method described in Section 5 we evaluate the ~ummation in (8) and find 

that 
A( q", T ; q' , 0) = 0 ( q' - q") , 

a result independent of T • Hence the inner product (f, g) becomes 

(f,g) = jjdq'dqll £(q") o(q' _q") g(q') 

= Idq' f( q') g(q') , 

which corresponds with the frequently used inner product of function space~ 

( 10) 

( 11) 

We now define operators corresponding to the variables q, p. First, we 

define the operator Q corre sponding to q by 

(f,Qg) = Ifdq'dqll f(qll) B(q",T jq',O) g(q') , (12) 

where 
T 

B( q ", T i q' , 0) = N L: q (t) exp i J pdq., 
pq pq 0 

( 13) 

where a time t has been associated with Q such that 0 < t < T, q (t) de­
pq 

notes the value of q( t) for a particular q - p history, and once again the summa-

tion has to carried out over all q - p histories subject to the restrictions ( 9). The 

evaluation of (13) is carried out by the method described in Section 5 and we find that 

B( q", T ; q' ,0 ) = q' 6( q I - q ") • 

Hence equation (12) becomes 

(f, Qg) ~ If dq' dq" £( q") q' 6( q' - q") g( q' ) 

= j dq' f ( q') q' 9 ( q') , 

( 14) 

( 15) 

which is identical to the usual representation of the operator corresponding to 

q • 
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In a similar way, the operator corresponding to p is defined by 

(f,Fg) -=jjdq'dq"f(q") C(q",T;q',O) g(q') , (16) 

where 
T 

C( q", T ; q' , 0) = N ~ p (t) exp i I pdq , 
pq pq ° 

where p (t) denotes the value of p( t) for a particular q - p history. pq 

It can readily be shown that 

C(q",T;q',O) =-io'(q"-q') , 

( 17) 

( 18) 

where 6' is the first derivative of the Dirac delta function. Hence equation 

(16) becomes 

( f, Pg) = j j dq' dq" f ( q ") (-i) 0' ( q" - q') g( q' ) 

. J' d = J dq" f( q") dq' {i dq' o( q" - q') } g( q') 

= j'dq" f (q") j'dq' o( q" - q') (-i ~~, ) 

/
' - d = dq' f(q')(-i-) g(q') . dq' , ( 19) 

where (19) has been obtained by integration by parts. Equation (19) shows the 

usual quantum mechanical correspondence of the variable p with the operator 

-i d/dq • 

4. Equivalence of the Feynman and Schrodinger approaches 

Since we have now defined the operators Q, P corresponding to the variables 

q, p, we can define similarly operators corresponding to q2 and p 
2 

and indeed 

to a function F( q, p) . Thus, we write 

(f,F(Q,P)g) = Ij'dq'dq" f(qll) I(q", T jq' ,0) g(q') , (20) 

where 

r 
I( q", T ; q' ,0 ) = N6 F( qpq ( t), p ( t» exp i J pdq. ( 21) 

pq pq 0 
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In the same way we can define the operator 

T 
exp {-i J F( Q, P, t) dt} 

o 
by 

T 
(f, exp {-i f F( Q, P, t) dt}g) = f J dq' dq" f (q") J( q", T ; q' , 0 ) g( q') , (22) 

o 

where 
T 

J(q", T ;q', 0) = N 2: exp i I (pdq - F(q,p,t)dt) · { 23) 
pq 0 

We now choose F( q, p, t) to be equal to H( q, p, t), the Hamiltonian of a 

system. But now, for this particular choice of F( q, p, t), the kernel J of 

equation ( 23) is identical to the kernel K of equations (1), (2) and (3) which 

determ ined a function 4J( q", T) from a function 4J( q' ,0 ) • So if we write 

g( q) = 4J( q, 0 ), we have 
T 

(f, exp {-i J H( Q, P, t) dt} ~(q, 0» ::-: J dq" f (q") 4J( q", T) 
o 

= (f, ~(q, T » , 

and therefore we have 
T (, 

~( q, T) = exp {-i J Hdt} ~(q, 0) , 

o 

which is just the integral form of the Schrodinger equation 

H~ = i~ at • 

( 24) 

( 25) 

The equivalence of the Feynman approach with the Schrodinger approach is there-

fore established. 

5. Classical wave motion -
We take the classical wave equation in one space dimension 
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and write it in the two-component form 

where 

and 

with 

. a,l. 
M4; = i ~ at , 

u = 2.!P. v - 2.!£ aq' - at ' 

M =-CTP , 

P 
. a = -1-aq • 

( 26) 

( 27) 

( 28) 

( 29) 

(30) 

Equation (27) is of Schrodinger type and the equivalence established in Section 

4 enables us therefore to reformulate (27) as 

with 

and 

\fJ(q", T) = Idq' K(q",T ;q' ,0) ~(q' ,0) , 

K( q" ,T ; q' , 0) = N ~ exp i S pq , 
pq 

T 
S = J {pdq - M dt} • 

pq 0 

(31) 

( 32) 

( 33) 

Following Davies [3] we use a Riemann definition of integral and write ( 33) 

as 
n 

~pq = ~ {Pr( qr -qr-l) + CT Pr( tr - t r- l )} , 
r=l 

( 34) 

where a partition to = 0 , tl' t z' ... , tn = T has been made of the interval and 
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where q = q(t) and p = p(T), with t 1< T <t, and 
r r r r r- - r r 

Then 

exp i S = pq 

II 

n 

q = ql' • 
n 

n exp i {p r( qr - qr-1) + CT Pr( tr - t r- 1) ) 
r=l 

( 35) 

:: n exp {i p (q - q I)} {I cos p (t - t 1) + i CT sin p (t - t I)}' r r r- r r r- r r r-
r=l 

( 36) 

where ·1 is the unit 2 X 2 matrix. 

The p-summation in (32) is now obtained by integrating over the variables 

PI' P2' • • • 'Pn' and we have 

00 00 n 00 

I dPl··· I dp exp i S = n J dp exp {i p (q - q I)} 
-00 -00 n pq r=l -00 r r r r-

X {I cos p (t ., t 1) + i CT sin p (t - t 1) } 
r r r- : r r-

n 
= n 

1 {n( 1+ (f ) 6( q - q 1 + t - t 1) r= r r- r r-

+ 1T( I - CT ) 6( q - q 1- t + t I)}' r r- r r-

( 37) 

where we have used the result 

Q() 

J dp exp i pq = 21T 6( q) • ( 38) 
-00 

The summation over histories is now completed by integrating (37) over 
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00 00 n 

~ exp is:: f dql··· J dqn-l IT {n( 1 + 0") 6( qr - qr-l +tr -tr- l ) 
pq pq -00 -00 r=l 

+ n( 1 - 0") 6( q - q 1 - t + t 1») • r r- r r-

Performing the integration over ql we get 

00 

J dql {n( 1 + 0" ) 6( ql - q + tl - to) + n( 1 - 0" ) 6( ql - qo - tl + to) ) 
-00 • 0 

since 

(1+0-)(1-0") =0 , 

and 

00 

I dql 6( ql + a) 6( b - ql) = 6(a + b) · 
-00 

( 39) 

( 41) 

( 42) 

The integrals over q2' q3' • • • ,qn-l can be evaluated in the same way and we 

obtain 

~ exp i S = nn( 1 + o~) n 6( q" - q' .. T) 
pq pq 

n n 
+ n (I - 0") 6( q" - q' - T) • ( 43) 

U,;ing the relations 

n n-l 
(I~:O")::. 2 (1:l:0") , ( 44) 

and introducing the normalization factor N = ( 2n) -n, we have 
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I 1 
K( q" , T; q' , 0) = '2 ( I + (J" ) 6 ( q " - q' + T) + '2 ( I - (J" ) 6 ( q" - q - T) • ( 45) 

This completes the determination of the Feynman integral for classical waves. 

With given initial conditions, equation (31) has a solution which agrees of course 

with the standard D' Alembert solution. 

6. Unified formulation of dynamics 

We now consider the work of Corson [I] on the question of finding a single 

postulate that would cover both classical and quantum dynamics. This postulate 

therefore must lead to the 8chrodinger equation in the quantum case and to 

Lagrange's equations (or equivalents) in the classical case. 

The classical case is given by 

68 = 0 , ( 46) 

where 8 is the action defined in equation (3). Equation (46) means that 8 is 

stationary with respect to a small variation in the path between the end-pOints 

(q' ,0) and (q", T) • Now Hamilton's principle (46) is really just the simplest 

form of a stationary condition involving S • It could be replaced by 

6F( S) = 0 ( 47) 

with F some reasonable function of S • Corson's chOice of F is essentially 

F ( S) = exp is, ( 48) 

which is suggested by the form of the Feynman integral K in equation (Z) • 

Corson [1] then postulates 

6 ~ exp i S = 0 
pq pq 

( 49) 
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, 

as the fundamental equation of dynamics. There are two cases, namely, (i) the 

definite path case, and (ii) the indefinite path case. 

(i) Definite path. If there is only ~ path p, q, then equation (49) re-

duces to 

6 exp i S = 0 , 

or 

6 S = 0 , ( 50) 

and equation (50) leads, of course, to Lagrange's equations. This then covers 

the classical case. 

(ii) Indefinite path. If there are many paths, L exp iSis a function 
pq pq 

of the end-points only, and sirce the end-points remain fixed under the 6-varia-

tion, it follows that 

6 2: exp i S = 0 
pq pq 

( 51) 

tri vially. This condition therefore does not appear to lead to anything. The 

classical case 6 S = 0 leads to Lagrange's equations, but the many path case 

does not tell us what function of the end-points L~ exp i S actually is. This 
pq pq 

requires an additional postulate - one involving the notion of state. 

Thus the conclusion would seem to be that Corson's single postulate is not 

enough. To formulate quantum dynamics from classical action expressions one 

must postulate the time evol.ution of the wave function as Feynman did. 
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