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ABSTRACT

This document is the Interim Design Report for Contract NAS7-428,

entitled '_evelopment of Lightweight, Rigid Solar Panels". The con-

tract is between NASA Headquarters, Office of Advanced Research and

Technology, Office of Solar and Chemical Power Systems and Electro-

Optical Systems, Inc. This Interim Report is a summary of the work

accomplished during the first four months of a ten-month contract with

an effective starting date of i January 1966.

This document will be followed by a Final Report to be released

on i December 1966.

The final solar array studied in this program will use an alumi-

num alloyed electroformed substrate and a beryllium frame using tech-

nology which is being developed at present under separate contracts.

Solar array design is based on the use of a 4-mil silicon solar cell

with an air mass zero efficiency of 9.6 percent at 28°C; this effi-

ciency has been demonstrated in several cases.

A 10.4 kW array has been designed which will fit within an Atlas/

Centaur shroud and will provide power on a Jupiter flyby mission. Ar-

ray equilibrium temperature ranges from +145°C at 0.6 AU to -128°C at

5.2 AU. Voltage output at earth is 100V nominal. The specific weight

of the array, using aluminum alloy electroforming and beryllium frames,

is 27.4 ib/kW based on power output at earth and including all mechan-

isms. The 10.4 kW array is self-deploying, using a series of space-

craft commands to release pyrotechnic devices.

The same array,using a nickel substrate and aluminum frame, would

weigh 42.4 ib/kW using 3-mil cover glass on the solar cells. This

weight includes all necessary adhesives, paint, mechanisms, cabling,

and other items to make a complete solar array.

The basic objective of the program is to demonstrate the ability

to fabricate and use large photovoltaic solar arrays with specific

weight capability of 25 to 50 ib/kW. The primary design emphasis is

being placed on structures and mechanisms, as these areas are most

critical in producing large weight reductions. The array concepts

studied in this program incorporate a completely rigid structure, in

contrast to other arrays being studied which use semirigid or flexible

solar cell support structures. Feasibility of the 25 to 50 ib/kW
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array will be demonstrated by design analysis and a demonstration
solar panel, approximately 25 sq ft, which will be subjected to Atlas/
Centaur launch environmental tests. Muchof the design analysis is
summarizedin this report.

The demonstration panel will use an electroformed nickel substrate
supported by an aluminum frame. The substrate structure has a double
curvature and uses a hollow core or honeycombconfiguration. The elec-
troforming process offers an advantage in being able to form thin gage
material of integral metal structures into complex shapes. Silicon
solar ceils with thicknesses of 4 and 8 mils shall be used to demon-
strate compatibility with the structure.
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I. INTRODUCTION

Under Contract NAS7-428,EOSintends to demonstrate the feasibility

of producing lightweight, large-area photovoltaic arrays to be used as

power sources for the Jupiter flyby mission and other electric propulsion
deep-space probes. This demonstration will be accomplished in the latter

phase of the contract by the design, assembly, and test of a representa-
tive cellular panel with a weight-to-power ratio of 25 to 50 Ib/kW.

Based on the individual panel capability, an entire array could be
assembled (using similar panels as array sections) at the sameoverall

weight-to-power ratio to provide 5 to I0 kWof electrical power in earth-
space environments.

The panel design analysis tends to emphasize the use of a rigid

curved-shell structure madeof electroformed material in a unique hollow
core configuration, as shownin Fig. I-i. (This is in contrast to semi-

rigid and flexible structures proposed by other studies in the past.)

Very thin silicon photovoltaic cells, connected in series and parallel,

are mounted on the rigid panel. This forms a power-source section with

the required equivalent weight-to-power ratio of 25 to 50 Ib/kW. The

studies documentedin this report have been based on use of Atlas/Agena
or Atlas/Centaur combinations as ultimate launch vehicles for a complete
solar array.

i.i OrRanization of Program Effort

The program described herein is primarily development-oriented,

and is subdivided into discrete tasks, defined as follows:

i. Task I - Perform tradeoff analyses and produce a solid, work-

able design for a representative photovoltaic cellular panel.

(This interim report marks completion of this task.)
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2. Task II - Fabricate a demonstration panel model including

assembly of structure, attachments, photovoltaic (or solar)

cells, and filters (cover glass). (This task will be com-

pleted in the seventh month.)

3. Task III - Complete testing and evaluation of demonstration

panel. Tests include thermal/vacuum, acoustics, shock and

vibration, and performance demonstration. (These tests,

defined in this report, will be completed during the ninth

month. )

4. Task IV - Interpret data obtained from panel tests, and

extrapolate design criteria for applicability to multikilo-

watt arrays.

1.2 Demonstration Panel Design Highlights

Fabrication of the demonstration panel con_nences during the

fifth month of the contract; the completed panel will be available for

the Task III test effort during the seventh month. Special panel

design features are listed below.

i. Panel is constructed in a curved biconvex configuration with

an area of approximately 25 sq ft. The all-metal structure

employs electroformed nickel on a hollow core substrate with

an aluminum frame.

2. Very thin (4 to 8 mils) lightweight silicon solar cells are

used with a 3-mil cover glass.

3. Attachments are placed on the panel structure to simulate

the holding mechanisms employed during launch and deployment

of panel. These attachments will be used during the evalua-

tion tests to simulate actual flight conditions.

The design of the demonstration panel and the feasibility

study of the 5 to i0 kW arrays are predicted on the performance defi-

nition of I0 W/ft 2 (at i AU, AM0, and 55°C) for a 4-mil solar cell

with a l-mil integral cover glass. This defines the weight and power

capabilities of the solar cell stack used in the analysis and design.
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The effect of radiation degradation on the performance of

cell and integral cover glass are not considered when calculating the

solar array mission performance. The solar array is electrically

rated for day one operation.

The majority of the contract effort is directed toward

achieving extremely lightweight (specific weight of 0.i to 0.2 ib/ft 2)

structure and mechanisms design. Consequently, detailed trades were

not accomplished in panel electrical design. With the improvements

made in performance because of higher production quantities and inno-

vations in design (such as wrap-around contacts), the specific power

value of i0 W/ft 2 is potentially achievable with 4-mil cells.

1.3 Program Objectives

The singular objective of the Task I effort was to produce

a sound engineering design for a demonstration panel with a weight-to-

power ratio which verifies the feasibility of a 2_ to 50 ib/kW solar

array for deep-space applications. (This design is presented in this

report.)

The engineering design studies of the first task concentrated

on variations of electroformed biconvex structures and the interaction

of these structures with the solar cells. Trade studies included com-

parison of the rigid curved structure to flat panel configurations.

The studies clearly indicated the superiority of the electroformed

structure by virtue of its high stiffness-to-weight ratio (allowing l-

to 2-mil skin thicknesses in a one-piece metal structure).

Parameters which were varied in the studies for design of

the 25 to 50 ib/kW array include degree of curvature, edge constraints,

attachment points, skin thicknesses, hole size (for hollow core struc-

ture), input loads, and cell stack weight.

The major steps of Task II (demonstration panel fabrication

effort) are:

7027-IDR 1-4



I. Tooling design

2. Fabrication of the structure

3. Cell and filter procurement and submodule preparation

4. Panel assembly

The objectives of Task III are to define test requirements

and conduct necessary engineering tests to prove compliance of the

panel with the program design goals. Major steps for this task are:

i. Test equipment preparation

2. Definition, preparation, and conduction of performance tests

3. Formulation and conduction of thermal/vacuum, vibration,

acoustic, and other environmental tests

The objectives of Task IV are to summarize program results

and to submit recommendations for a follow-on development effort.

Major steps of Task IV are:

i. Interpretation of test results and correlation of data to

relate results to Task I analysis.

2. Provide recommendations for design, fabrication, and test

of a 5 to I0 kW array (or portion thereof). Documentation

includes a breakdown of tasks in a logical sequence of

design effort, component development, and tests necessary

to develop an array structure, schedule, cost milestone,

and a plan for ground support equipment and related test

requirements.

3. Preparation and submittal of a summary of characteristics

for a 5 to I0 kW array, including data gleaned from studies

of weight/mass/power tradeoffs, reliability, redundancy

requirements, reparability and maintenance, and electrical

design.
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An overview of the program is presented in the schedule of

Fig. 1-2, which shows major objectives, tasks, documentation require-

ments, and reviews, as well as projected completion dates.

1.4 Summary of Results

The engineering analysis of Task I has resulted in:

I. The design of the demonstration panel. The panel contains

an electroformed nickel hollow core substrate and an aluminum

frame.

2. The design of a 10.4 kW array using the concepts of the dem-

onstration panel to achieve a weight-to-power ratio of 42

ib/kW. Adoption of design modifications presented in the

report will decrease the array weight-to-power ratio to

27 ib/kW. The structure for this design is an electroformed

aluminum hollow core and a beryllium frame.

3. Testing of sample hollow core samples to verify the struc-

tural analysis.

4. Optimizing the technique for electroforming the hollow core

substrate.

The array design (shown in Fig. 1-3) contains a two-quadrant

panel arrangement with 8 subpanels per quadrant. The subpanels are

nested in a box arrangement which is secured by pyrotechnic "pin puller"

holding devices. For deployment, the spring-loaded hinges are released

by a special command sequence. Deployment is completed by engagement

of the frame latches shown.

1.5 Conclusions

The specific result of this contract effort is the fabrication,

assembly, and test of the lightweight biconvex hollow core structure and

thin solar cells. The subpanel will be measured to show that it meets

certain minimum weight values and through analysis will show an elec-

trical output for standard conditions. The assembled demonstration

panel is to be subjected to specified environmental tests; these will

confirm:
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i. The structure is capable of supporting the design loads

without failure.

2. The subpanel exhibits the frequency and stiffness require-

ments defined by the specification.

3. The structure and cells are compatible in thermal and dynamic

environments.

1.6 Activity Summary for Remainder of Program

The activities for the remainder of the contract period are

defined by Tasks II, III, and IV. Certain subtasks have already been

started. The lead time requirements for the manufacture of the thin

cells have dictated that they be ordered early in the program. Mate-

rial and tooling preparation for the electroforming of the 25-sq-ft

hollow core substrate has been initiated.
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2. PROGRAM DESIGN CRITERIA AND REQUIREMENTS

2.1 Introduction

This section defines the design criteria and requirements

of the solar array power subsystem. The information presented here

is used as the ground rules for the preliminary design of two solar

photovoltaic arrays which provide primary electrical power for elec-

trically propelled Jupiter flyby spacecrafts. The preliminary designs

are a portion of this contract to be ultimately used in design, assem-

bly, and test of the demonstration solar panel. The program purpose

is to indicate the feasibility of erecting large-area, 25-to-50-1b-

per-kW arrays.

One design, for an array on a spacecraft launched by the

Atlas/Centaur, provides i0 kW at a sun-probe distance of one astro-

nomical unit. The second array, for a spacecraft launched by the

Atlas/Agena, is designed to provide 5 kW at a sun-probe distance of

one astronomical unit.

Data for this specificationwere obtained from the following

references:

I. Electro-Optical Systems, Inc., "Design Requirements and Con-

straints for SPEP Spacecraft Solar Array"; Interim Report

4816-IR-I, Jun 1965, Air Force Contract No. AF 33(615)-1530

2. "Fabrication Feasibility Study of a 20 Watts per Pound

Solar Array"; Bimonthly Report No. 3, Aug 1965, JPL Contract

951132 (Subcontract under NASA)

3. A. Smith, meeting at EOS to define technical aspects of NASA

Contract NAS7-428, Jan 1966
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2.2 Definitions

Nomenclature used in this report is shown with an illustrated

solar array in Fig. 2-1. Specific definitions of terms are given below.

Solar Array Electrical Power

The solar array electrical power is unregulated direct cur-

rent (at specified voltages) supplied by solar cells. The solar array

power is rated at i00 percent load at standard conditions (q.v.).

Electrical Load

The electrical load is the maximum power output capability

at a specified average cell temperature and solar intensity in a space

environment. It is the operating spacecraft power requirements mea-

sured upstream from the power conditioning system.

Nominal System Voltage

This is the voltage supplied under i00 percent electrical

load at specified conditions of cell temperature and solar intensity.

It is measured upstream from the power conditioning system.

Voltage Range

This is the upper and lower nominal system voltage limits the

solar array produces as a function of the mission environmental changes

and their effect on solar cell temperature and solar intensity.

Source Impedance

The source impedance is the electrical resistance measured

and rated at the solar array output terminals under standard conditions.

It is a percentage value which depends on solar intensity, temperature

of the solar cells, and amount of electrical load.

Solar Array

A solar array is defined as a complete multicellular assembly

for one spacecraft composed of all structural and mechanical mechanisms

(actuators, latches, dampers, etc.) and electrical parts and equipment,

including the devices for attaching the array to the spacecraft.
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Electrical lines to the array spacecraft interface are included, but

spacecraft cabling between the electrical power conditioning and the

interface units are not.

Solar Panel

The largest element of the solar array which can be independ-

ently attached to the spacecraft.

Subpane!

The largest structural element that can be independently

attached or removed from a solar panel.

Solar Cell Module

A module is the minimum group of solar cells which will

independently produce the electrical subsystem voltage at the output

terminals of the cell group. Modules will assume various physical out-

lines as required by the configuration of the structural support and

the power system current and voltage requirements. Electrical power

output of a module will vary with the number of solar cells used in

the module.

Solar Cell Submodule

A group of solar cells interconnected in parallel by a con-

tinuous strip or bus bar. A number of submodules connected in series

form the solar cell module.

Solar Cell

The smallest current-producing element of the submodule.

Electrical Bus

Metallic conductors which provide electrical continuity

between solar cell modules and between each solar panel assembly and

the spacecraft.

Bus Crossovers

Flexible or hinge electrical buses which provide electrical

continuity across solar panel, subpanel or solar array hinge points.
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Standard Condition

The standard conditions for rating solar photovoltaic and

solar array characteristics are:

Solar Intensity (So) = 130 watts/ft 2

Temperature (To) = 328°K

2.3 Mission Assumptions

Spacecraft

Mariner Series Spacecraft (no midcourse maneuver).

Mission

Solar-electric propulsion spacecraft for Jupiter flyby.

Assume a "toward-the-sun-kick" type trajectory which reaches 0.6

astronomical units. (See Fig. 2-2.)

Duration

Eight hundred days typical mission duration for material

evaluation.

Launch Vehicles

Atlas/Agena for 5 kW array.

Atlas/Centaur for i0 kW array.

Launch Period

Not specified. Solar Proton Equivalent Year also not defined

since radiation degradation was not included in study.

Solar Alignment

Array is fixed with respect to the spacecraft whose attitude

control system is capable of a pointing accuracy of ± I degree.

2.4 Spacecraft Envelope Requirement s

The physical constraints placed on the packaging of the solar

array are functions of configurations for the spacecraft, antennas,

instrumentation or experiment booms and the vehicle shroud. These con-

figurations are established through mission analysis which is beyond

7027-IDR 2-5
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the scope of this study. The envelopes presented here are ground

rule configuration limitations extracted from the referenced docu-

ments and previous spacecraft missions.

Figures 2-3 and 2-4 define the gross envelope geometry for
typical shrouds used with Atlas/Centaur and Atlas/Agena launch vehi-

cles. The envelope restrictions for the stowed solar array are

defined from the dynamic envelope shownin the figures, but the pack-

aging study assumedthe facility for insertion of a cylindrical sec-
tion in the shroud to increase its overall length.

The points of attachment between the solar array and the

spacecraft are not defined for this study. The spacecraft is assumed

to be a cylinder of the diameter indicated in the figures; attachment

can be assumedanywherealong the spacecraft length.

2.5 Solar Array Structural and Environmental Design Criteria

2.5.1 Ground Handling

The solar array structural performance shall not be

degraded due to assembly or disassembly of solar cells, submodules,

or modules.

The solar array structural and electrical performance

shall not be degraded due to transporting a suitably packaged array

from the manufacturing area to the spacecraft launch area. The ground

handling transportation test specification shall be equivalent to the

applicable portions of MIL-STD-810A, dated 23 June 1964, and shall be

applied to the outside of the container in its transportable condition.

The ground handling requirement for solar arrays

shall place no restrictions on the array design. Method of transporta-

tion shall assure that arrays experience load conditions less than

those defined herein.

2.5.2 Launch Configuration

The solar array in the stowed configuration shall be

capable of withstanding without structural, electrical, or mechanical

7027-IDR 2-7
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degradation, the following structural load environment. The solar

array shall not be required to withstand the dynamic load environment

superimposed upon the static load environment.

2.5.2.1 Vibration Environment

2.5.2.1.1 Sinusoidal Sweep at 1.0 Min/Octave.

The sinusoidal vibration input shall be swept three times from 2 to 200

Hz, first normal to the plane of the stowed array, and then parallel

to the plane in a lateral direction. The two vibration inputs shall

not be applied simultaneously.

Frequency

2 <-f <i0

i0 _ f < 20

20 <- f < 50

50 <- f < 200

Forward Attachment Point

i. 5g (rms)

8.5g (rms)

5.0g (rms)

5.0g (rms)

2.5.2.1.2

Aft Attachment Point

1.5g (rms)

1.5g (rms)

1.5g (rms)

2.0g (rms)

Random Gaussian Vibration. Random

2

gaussian vibration shall consist of three minutes vibration at 0.2g

per Hz band-limited between 200 and 2000 Hz.

2.5.2.2 Static Environment

The static loads shall consist of a steady-

state acceleration of 18g directed along the spacecraft longitudinal

axis and a ig steady-state acceleration directed normal to the space-

craft longitudinal axis.

2.5.2.3 Dynamic Characteristics

The first mode resonant frequency of the

stowed array shall be less than i0 Hz or greater than 25 Hz.

2.5.2.4 Acoustic Environment

The stowed arrays shall withstand without

degradation the flight acoustic environments specified in Fig. 2-5

during the launch phase.
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2.5.2.5 Thermal Environment

The array shall withstand the transients due

to thermal dynamic heating during boost and shroud ejections without

structural or electrical degradation.

2.5.3 Deployed Configuration

The solar array shall be capable of full deployment

without interference between the array elements and between the array

and the spacecraft. The solar array shall be so designed that no

structural or electrical degradation will occur due to or during the

following conditions:

i. The thermal gradients that will develop between the sun and

shade sides of the array due to solar illumination between

400 mW/cm 2 and 5 mW/cm 2 intensity.
-5

2. A steady-state acceleration of 3 x i0 g directed at 45

degrees to the plane of the array. This loading simulates

that imposed by the cruise engines.

3. Repeated discrete applications to the entire array of a

square-wave pulse with durations not less than 13.0 sec or

more than 5 min and maximum amplitude of 2 x 10 -5 radians/

2
sec pitch angle accelerations.

2.5.4 Cruise Array Dynamic Characteristics

The first mode resonant frequency of the entire

deployed array shall be greater than 0.04 Hz and less than i0 Hz.

2.6 Material Selection Criteria

2.6.1 Simulated Environments

The structural, electrical, thermal control, and

lubricant materials used in the solar arrays must withstand exposure

to the following simulated environments without a loss in any critical

design property. These requirements are to be used for material selec-

tion purposes only and not for design.
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I. Storage at 95 percent relative humidity at 30°C for 50 hours.

2. Onehundred and fifty thermal cycles between -20°C to 60°C

at a rate of change that permits temperature stabilization
without excessive thermal shock.

3. Ten thermal cycles between -200°C and 90°C at 10-7 torr with

a one-hour cycle and a temperature stabilization dwell at

the extreme temperatures.
4. The materials must also resist the flight environment without

releasing any condensing gases which would decrease the solar

cell efficiency or cause electrical shorts, or cause any

degradation to spacecraft systems operation.

2.6.2 Structural Materials Criteria

The structural components of the various configurations

and arrays should have a reliability of 0.999+ with a confidence level

of above 90 percent. To meet this requirement, the material selection

and design configuration must consider not only the load conditions of

launch and space maneuvers, but the loads induced by thermal excursions.

The use of state-of-the-art materials and processes

shall be a requirement, but their use shall not restrict the design if

near state-of-the-art performance can be demonstrated.

2.6.3 Adhesive Criteria

2.6.3. i Structural

The structural adhesive must be resistant to

all of the mechanical, vibrational, and thermal loads induced on the

array. A prime requirement of any selected adhesive system is the

feasibility of processing and the compatibility of processing proced-

ures with the elements being bonded.

2.6.3.2 Solar Cell Adhesives

This program has a solar cell stack defined

as a 4-mil silicon solar cell with an integral l-mil cover glass.

This definition limits the solar cell adhesive study only to that which
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bonds the cell to the substrate; there is no need of an adhesive to

attach the cover glass to the cell.

The major adhesive criterion is the selec-

tion of a material that has the following properties: high thermal

conductivity, low outgassing in the vacuum environment, a modulus of

elasticity compatible with the thermal motion of the cells and struc-

ture, and repairability during fabrication phase.

2.6.3.3 Thermal Control Coatings

These coatings must be resistant to the

ultraviolet and particulate radiation of the flight environment such

that no significant decrease will occur in the design values of emit-

tance.

2.6.3.4 Bearings and Lubricants

The bearings and lubricants for use on the

various array configurations must function a minimum of i0 times in

an earth environment (ig) without failure or part replacement. The

bearing materials must resist the thermal excursions and particulate

radiation of the flight environment without a change in the critical

dimensions or the release of any condensing gases.

2.7 Electrical Power Criteria

Design criteria are presented for solar cells, solar cell

modules, cell connections, buses and termination, and installations.

Discrete values are given wherever possible, but in some cases the

exact values will be the result of a trade study. Voltage and power

requirements for this study are defined as follows:

i. Atlas/Centaur solar array shall be capable of delivering

i0 kW at lOOV.

2. Atlas/Agena solar array shall be capable of delivering

5 kW at IOOV.

*Requirements are at i astronomical unit (AU), 130.11W per ft 2 55°C
J

and maximum power point.
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2.7.1 Solar Cell Modules

The solar cell modules will be designed and evaluated

in accordance with the criteria and assumptions outlined in the follow-

ing subsections.

2.7.1.1 Power Output Determination

Power output of the array in thevicinity of

earth will be determined by the following equation and assumed design

constants:

where

P = (¢)(A)(_p) [i - (Tc - 55°C)(K)]

P = power output in watts

= defined electrical power at maximum power point per unit

area of solar cell as i0 watts/ft 2 for AMO, 1AU and 55°C

A = gross area of panel in square feet

= ratio of active cell area to gross panel area
P

Tc = cell temperature in degrees centigrade

K = temperature efficiency coefficient = 0.4 percent/°C

2.7.1.2 Cell Efficiency

Power output calculations will be based on

a hypothetical N-P cell having an efficiency of I0.i percent air/mass

zero.

2.7.1.3 Electrical Insulation

The electrical insulation between the solar

cells and the metallic substrate or the ground plane will provide a

minimum breakdown strength in air at standard temperatures and pres-

sure conditions greater than three times the open circuit voltage of

the panel. Leakage resistance under the same test conditions will be
2

greater than 109 ohms per cm on cell area.

7027-IDR 2-15



2.7.1.4 Packing Factor

The spacing between adjacent solar cells

connected in parallel shall not exceed 0.01 inch. Spacing between

series-connected modules will not exceed 0.03 inch with front-connected

2
cells or 0.01 inch with back-connected cells. The number of 2 cm

solar cells per square foot of gross area shall not be less than 217

front-connected cells or 221 back-connected cells.

2.7.1.5 Interconnections

The cells will be interconnected both in

parallel and in series by metallic conductors. The conductors shall

be designed to minimize both thermal and flex stresses on the cell.

The resistance of the interconnection plus solder shall not exceed

2 percent of the total series resistance of the cell. The joint shall

have a strength equal to or greater than the strength of the bond

between the silicon and the ohmic contacts. The joining materials

shall exhibit stable physical and electrical characteristics in both

space and terrestrial environments.

2.7.1.6 Solar Cell Characteristics

Power output as a function of temperature

will be evaluated using the definition noted in Subsection 2.7.1.1.

2.7.1.7 Cover Glasses and Filters

Stack design will be initially based on the

use of i- to 2-mil integral cover glass. Alternate material to be

considered will include 2- to 3-mil microsheet.

2.7.2 Conductors

Spacecraft raw electrical power for the solar array

is provided by one or more two-wire, ungrounded conductors from each

solar cell module.

The configuration of electrical conductors shall be

determined with regard to the following considerations:
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I. Minimum possible weight

2. Minimum resistivity

3. Minimum magnetic field

4. Mechanical strength to endure launch environment

5. Allowable voltage drops (to be determined by trade studies)

6. Exterior finish to be resistant to natural and induced

environments

7. Process adaptability

8. Redundancy

9. Thermal expansion coefficient considerations

2.7.3 Conductor Insulation

Selection of conductor insulating materials shall be

made with regard to the following considerations:

i. Broad spectrum radiation resistance

2. Heat resistance (to be compatible with manufacturing and

assembly processes)

3 Mechanical strength

4 Notch sensitivity

5 Flexibility

6 Dielectric characteristics

7 Ease of forming or fabricating

8 Cost

9 Flight thermal considerations

2.7.4 Electrical Terminals

Terminals shall be used to facilitate maintenance

(including repair and replacement) of electrical components. The

following requirements shall be observed:

i. Voltage drop across any terminal shall not exceed 25 mV at

rated load.

2. The terminal shall withstand 50 cycles of manual mating and

unmating without replacement of parts.

3. The terminal shall be accessible for ease of wiring and for

factory or field checkout.
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4. It shall be rigidly attached to primary or secondary struc-

ture.

5. It shall have minimum possible weight consistent with other

design specifications.

6. Exterior finish of the terminal shall be resistant to both

natural and induced environments.

2.7.5 Installation

The installation of wires, terminals, electrical con-

nectors, and buses shall conform to the following requirements:

i. Buses and other wiring shall be installed to minimize mag-

netic fields.

2. Installation shall withstand rigors of normal handling and

transportation as well as launch and operational maneuvers.

3. Installation shall be designed to facilitate service and

repair activities.

2.7.6 Electroexplosive Devices

The design, installation and test of wires which con-

trol the initiation of electroexplosive devices shall meet requirements

of AFETRP 80-2, "General Range Safety Plan," Volume i, Paragraphs 3 and

4 of Appendix A.

2.7.7 Electrical Connectors

2.7.7.1 Total Connector

Electrical connectors shall conform to the

following requirements:

I. All electrical connectors shall have removable crimp-type

contacts which shall be removed from the back of the

connector.

2. They shall have cable strain-relief provisions.

3. They shall have positive moisture seals at the wire entry

and at the mating interface.
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2.7.7.2 Socket Connector Halves

Each connector half which contains the socket

contacts shall have the following characteristics:

I. The exposed insert insulator shall be made of hard plastic

material.

2. Socket contact entry shall be protected by the hard plastic

insulator.

2.7.7.3 Pin Connector Halves

Each connector half which contains the pin

contacts shall have a rubber insulator at the mating interface.

2.7.7.4 Finish Requirements

The exterior finish of each electrical con-

nector shall withstand the following conditions:

i. All common terrestrial environmental conditions listed in

NAS 1599, Connectors, General Purpose, Electrical, Environ-

ment Resisting.

2. Exposure to zero mass/air density for i year without sub-

limation.

3. Fuels used as propellants in launch vehicles.

2.8 Mechanism Restraints

2.8.1 Prelaunch and Launch Environments

The solar array, including release and deployment

mechanisms, must fit within the solar array envelope specified for the

applicable configuration.

In the stowed configuration, the solar array must be

protected from any damage which could be caused by shock and vibration

during launch, and must be supported in such a way that shock and

vibration loads are transferred to spacecraft structure.

Release and deployment mechanisms must withstand the

launch environment without damage, and upon command and in proper

sequence, must release solar array restraints and extend and lock the

array into its deployed position.
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2.8.2 Space Environments

In the deployed configuration, under steady-state

conditions, the solar array must have sufficient rigidity so that by

controlling the attitude of the spacecraft, the array can be oriented

and maintained in a plane normal to the direction of the sun within

± I0 degrees. (This tolerance shall include deflections from static

spacecraft load inputs and thermal gradients, but shall not include

deflections due to dynamic load inputs.)

Release, deployment, and locking mechanisms must

withstand and be capable of functioning mechanically in the space

environment after launch and 4 hours of space flight. They shall

function structurally for the duration of the mission.

Release, deployment, and locking of the solar array

shall not cause release of loose parts or gases which could damage or

impair the function of the solar array or other spacecraft subsystems.

2.8.3 Checkout

Release, deployment, and locking mechanisms shall be

designed so that, with suitable test equipment, their operating func-

tion can be checked in a ig environment. Mechanisms shall be capable
-5

of operating a minimum of i0 times in a ig field in a vacuum of i0

torr without failure or part replacement.

2.9 Reliability

2.9.1 Structural Reliability

The structural reliability has a probability of 0.999

of successfully functioning under all loading conditions. This will

be achieved by defining the design load criteria as noted below.

The stresses resulting from the design loads shall

be compared to the allowable stresses of the materials with the follow-

ing conditions to be satisfied:

YS
MS -

DL

or

MS =

i> 0

AS

i. 25 (DL)
i>0

7027-IDR 2-20



where

MS = margin of safety

YS = yield stress (Fty)

AS = allowable stress (Ftu, Fco , and Fcc )

DL = design limit stress (f)

The allowable stresses are defined as: the ultimate stress (Ftu), the

critical buckling stress (Fco), and the crippling stress (Fcc). Yield

and ultimate stress values shall be the minimum guaranteed values for

the appropriate material.

2.9.2 Mechanical Reliability

The probability that the mechanisms successfully

deploy I00 percent of the array one time is 0.999 or greater.

2.9.3 Electrical Reliability

The electrical reliability is established at 0.98 for

a power loss of 5.0 percent. The reliability for the electrical buses

and connections is 0.998.

2.10 Interfaces

Interface coordination is required to establish compatibility

between the spacecraft and the array in the following areas.

2.10.1 Structural Interfaces

The following are requirements governing spacecraft/

array structural interfacing:

i. The solar array design shall be compatible with the solar

array to spacecraft attachment points.

2. The solar array structural materials shall be compatible with

the spacecraft materials, spacecraft instrumentation, and the

mission requirements.

3. The spacecraft/array thermal interaction shall be considered

on a system basis so as to provide the most efficient combi-

nation capable of performing the mission.
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4. The solar array design shall not be unilaterally restricted

by the spacecraft thermal control requirement.

5. The deployed array shall experience no shadowing from the

earth, moon, other planetary bodies or spacecraft subsystems

prior to Jupiter rendezvous.

6. The solar array structural design shall be such that dynamic

coupling of the solar array with the spacecraft guidance and

control equipment is minimized by meeting the frequency

restrictions.

7. The solar array shall be designed so that displacement of

the vehicle mass center due to solar pressure, thermal gra-

dients, and array temperatures are minimized consistent with

other array requirements.

2.10.2 Spacecraft Interfaces

Design of the array and spacecraft shall take into

consideration the following interface problems:

i. Clearance with the exhaust from attitude control jets and

electric thrusters.

2. Satisfactory antenna view angles for communication with

earth.

3. View angles for cameras or sensors on the spacecraft.

4. Electrical, magnetic, and radiofrequency interference limits.

5. Space envelope interface, for both storage and deployment

between the arrays, spacecraft, booster, and shroud.

6. The spacecraft attitude control system shall maintain the

solar array plane normal to the sun line within i i degree.
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3. DEMONSTRATION PANEL AND SAMPLE PANEL DESCRIPTION

This section delineates the hardware items to be fabricated and

assembled during this contract and includes drawings, descriptions,

and a discussion of each unit's purpose. Hardware items are sample

panels and a demonstration panel.

3.1 Hardware Item Descriptions

3.1.1 Demonstration Panel

The demonstration panel is a 5-foot-square structural

model of the subpanel used in the i0 kW array. Three demonstration

panels with frame modifications and no change to the hollow core sub-

strate make up the subpanel. It differs also in that only 5 percent

of the substrate area is covered with live cells; the remainder con-

tains aluminum chips for mass mockup.

The purposes of the demonstration panel are:

I. Verify, through tests, the engineering analysis and the

qualification of t_e design.

2. Demonstrate the photovoltaic structure assembly procedures.

3. Demonstrate the structural fabrication procedures.

Demonstration of electroforming techniques will be

accomplished first on full-size test specimens similar to the demon-

stration panel substrate. The difference between the test specimen

substrates and that of the demonstration panel is that the specimen

substrates will be electroformed on a mandrel made from a co_mercially

available aluminum perforated sheet. This mandrel will not have the

hole spacing, hole diameter, thickness, and surface finish required

of the demonstration panel.
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3.1.2 Sample Panels

The sample panel size ranges from 5 in. square to 5 ft

square. The sample panel consists of a section of hollow core substrate

on which cells and other material may be assembled. The large sample

panel also serves the purpose described previously. To date, 40 of

the smaller sample panels have been fabricated and three of the large

panels are planned.

The purposes of the sample panel are:

i. Demonstrate electroforming technique (see Section 8).

2. Serve as the model for tensile strength tests (see Sections 8

and 9).

3. Serve as the model for thermal tests (see Section 9).

4. Serve as the model for substrate buckling tests (see Section 9.3).

5. Demonstrate fabrication and assembly techniques.

3.2 Demonstration Panel Details

Figure 3-1 shows the final assembly for the demonstration

solar panel to be fabricated and assembled in this program. Figure

3-2 depicts the hollow core biconvex substrate. Drawings of detailed

structures are contained in Appendix G of this report.

The substrate is an electroformed-nickel hollow core struc-

ture having a biconvex shape. The hollow core geometry is as follows:

I. Panel thickness--0.10 in.

2. Panel radius of curvature (both directions)--163 in.

3. Skin thickness (for facing and cylinder)--0.002 in.

4. Wall diameter, cylinders (also defined as holes)--l.O in.

5. Spacing between centers of triangular-pattern holes--l.05 in.

6. Open area of hollow core surface--92 percent.

The substrate's rear surface (opposite to cell surface) is

coated with 2 to 3 mils of Laminar X-500, a commercially available

thermal control paint. The substrate is joined to the frame by Y-

shaped aluminum alloy clips. The clip is bonded to the substrate

with a viscoelastic adhesive similar to FM-1000 and is riveted to the
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frame. The front surface of the substrate is covered with a l-mil

sheet of H-film that is attached by a I- to 2-mil adhesive similar to

RTV-60. The H-film adhesive covers only 18 percent of the total sub-

strate surface area because it is applied only to the hollow core

surface.

The frame is composed of a pair of stacked box sections.

The frame material is 6061-T5 aluminum with a gage thickness of 0.010

in. Each of the two box sections is fabricated from curved U sections

(one inverted with respect to the other). The flanges are bonded to-

gether with the viscoelastic adhesives.

The four corners of the frame contain formed 0.020 gage

sheet-metal corner brackets that join the four peripheral box beams.

Four 0.062 gage hinge brackets are inserted into the bracket at each

corner. These simulate the hinges between subpanels and will be the

means for mounting the demonstration panel to the various test fix-

Cures.

Figure 3-3 shows the photovoltaic assembly of the demon-

stration panel. The panel will contain three different cell stacks

with two live electrical sections. The 2 x 2-cm cell stacks are:

(I) a 4-mil cell and a 3-mil cover glass,(2) 8-mil cell and 3-mil

cover glass, and (3) a mass mockup (thin anodized aluminum wafer) of

a 4-mil cell with a l-mil integral cover glass. The two electrical

sections will contain six cell submodules in a series string of 35

submodules. The mass mockups will cover the remainder of the sub-

strate area. The spacing between submodules will account for the

front contact cells, but the mass mockups will be spaced assuming

simulation of a wrap-around contact.

The cells and mockups are bonded to the H-film with RTV-60

and the cover glass is bonded to the live cell with RTV-602. The cell

interconnection is accomplished with silver bus bars.

The demonstration solar panel assembly will be used to con-

firm the techniques necessary to obtain a large, lightweight solar
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array capable of supplying electrical power at a weight-to-power
ratio of less than 50 ib/kW. The panel will undergo environmental

testing as defined in Section 9 to confirm the integrity of the cells
and their attachment mechanisms, the structural integrity when subject

to a specified environment and the structural design analysis by meas-
urement of such characteristics as resonant frequencies, stiffness,

etc. The solar-photovoltaic performance will be measured to determine

degradation of electrical power output related to environmental testing.

3.3 Sample Panel and Specimen Details

The tensile property test specimens are described in Section

9; their purpose is defined in Section 8. Briefly, these are typical

flat-strip tensile specimens that are tested to ASTME-8. The data

defines the material properties of the electrodeposited nickel.

The properties of the nickel can be varied by the electro-

plating process techniques. For this structural concept, high values

of modulus of elasticity are preferred; through these specimens, the

electroplating procedure can be controlled so as to achieve this

requirement.

The description and purpose of the buckling test samples

are discussed in detail in Section 9. The importance of these samples

to the hollow core substrate design and analysis is in the ability

from test results to show the mode of failure and obtain empirical

buckling coefficients. This data can then be converted into design

curves for buckling coefficients as a function of hollow core geometry.

The thermal test samples are also used for verification of

photovoltaic assembly techniques. Tests will be conducted on samples

in a thermal/vacuum environment to verify thermal analysis. Figure

3-4 illustrates the thermal samples to be assembled. There are three

5 x 5-in. substrates (two are hollow core samples and the other is

aluminum sheet stock) that will be covered with solar cells; one with

4-mil cells plus 3-mil microsheet cover glass, and the other two with

8-mil cells and 3-mil microsheet cover glass. The tests and expected

results from these samples are detailed in Section 9.
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The large size, 5-foot-square sample panels will be used for
verification of the photovoltaic assembly techniques. The H-film di-

electric will first be applied to these panels to work out techniques
and procedures before this task is accomplished on the demonstration

panel. The same will be true for the thermal control paint.
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4. JUPITER FLYBY SOLAR ARRAY SYSTEM

This section presents conceptual drawings and descriptions of

the 5 kW and i0 kW solar arrays for a Jupiter flyby mission.

The 5 kW array tradeoffs have not been completed at this time;

a full discussion will be incorporated in the final report. The

I0 kW array is capable of experiencing the environment of an Atlas/

Centaur launch, stowed within a shroud similar to the OAO nose fairing.

The design discussed in this section is for a unit capable of produc-

ing 10.4 kW electrical power at earth's distance from the sun.

The projected weight of the array is equivalent to 27.4 ib/kW,

including mechanisms for deployment. This weight is based on the use

of aluminum electroformed structures, beryllium frames, l-mil integral

cover glass and silicon solar cells 0.004 in. thick with capability

of I0 W/ft 2. All of these items are under development and should be

available for incorporation into a demonstration panel in early 1967.

The first demonstration panel to be assembled in this program will use

a nickel electroformed structure, aluminum frames, 3-mil cover glass,

and currently available 4-mil solar cells. Use of the first demonstra-

tion panel, of a 10.4 kW array, could result in an overall array weight

of 42.4 ib/kW, including mechanisms. The following items represent

some of the more significant structural design modifications which will

be examined to decrease array weight:

i. Hollow core electroformed from aluminum.

2. Panel frame structure fabricated from beryllium.

3. Incorporation of thermal control surfaces into the metallic

substrate by anodizing.

4. Incorporation of the major electrical cables into the frame

design so that this material serves the dual purpose of con-

ducting current and adding to the structural strength.

5. Use of better production techniques to decrease adhesive

weight.
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Another modification relates to decreasing the solar cell stack weight

by developing 4-mil cells with l-mil cover glass capable of producing
I0 W/ft 2 at standard conditions.

4.1 Atlas/Centaur I0 kW Array

The configuration of the i0 kW array is shown in Fig. 4-1.

The array contains 241,920 2-cm-squared solar cells, with a cell sur-

face of 1040 sq ft. The gross surface area, including the subpanel

frames but not including spacing between subpanels, is 1239 sq ft.

The area of the substrate, not including frames is ii00 sq ft. Using

the specific power value of I0 W/ft 2 the Atlas/Centaur array will gen-

erate 10.4 kW of raw power at standard conditions and I00 percent

electrical load.

4.1.1 Structure

The design concept of the Atlas/Centaur solar panel

assembly was governed mainly by the power requirement of i0 kW. This

requirement demands an array of greater than i000 sq ft.

The additional requirements governing the array design

and layout are:

i Environmental conditions

2 Spacecraft limitations

3 Spacecraft support arrangements

4 Electrical arrangement

5 Stowed position

6 Deployment and deployed condition

The most critical environmental condition occurs dur-

ing the boost phase of the flight, when vibrations and steady-state

acceleration subject the solar panel package to high loading conditions.

These conditions require supporting arrangement such that the inertia

loads can be transferred into the spacecraft.

After solar panel deployment and during the transit

phase of flight the mechanical loading conditions associated with the
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small steering and attitude corrections are insignificant and do not

influence the design. A condition which can be significant is the

thermal stress and distortion caused by either steady-state thermal

gradients or material that includes composite metals with different

coefficients of thermal expansion. The relative differential expan-

sions between subpanels of different temperatures due to the influence

of the spacecraft can be accommodated by allowing axial travel in all

but one of the subpanel hinges. The intrapanel loading due to dis-

similar metal in the structure design can be handled primarily by a

choice of material with similar coefficients of thermal expansion,

compliance in the method of attachment, and adequate structural

strength to survive the worst-case loading condition. This design

employs a compliant attachment between the substrate and frame.

A further factor affecting structural design is the

resonant frequency limit of 0.4 Hz for the deployed array. The frame

design itself is the principal contributing factor in conveying stiff-

ness to the deployed array. By selecting a deployed array configura-

tion that minimizes the cantilever length, the frame stiffness require-

ment is lessened. The dynamic analysis of Subsection 7.3.3.1 derives

the array resonant frequencies.

Because of the increase in dynamic loading conditions

for increasing station numbers along the spacecraft (see Subsection

2.5.2) the attachment between the array and spacecraft is located at the

aft attachment point. No other attachment along the spacecraft is

made.

The electrical requirement of IOOV resulted in a

mechanical module size of 56.5 x 58.4 in. Three mechanical modules

are contained in each subpanel. (See Fig. 4-2.)

The stowed package of the solar panels must fit within

the dynamic envelope. This requirement determines the maximum solar

panel frame size and the solar panel curvature rise. By designing the

mechanical modules so that each module's surface has a 10-degree slope
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at its periphery, maximum usage could be made of the packaging volume

(see Fig. 4-3). This constitutes a curvature rise of 3 inches.

The stowed package is strapped down to form a rigid

unit. This allows transfer of boost loads from subpanel to subpanel.

Providing the frame assembly with a tongue-and-groove design achieves

this design requirement at little additional weight.

Deployment of the array causes loadings on the frame

structure; to minimize this, considerable effort was expanded on

deployment sequencing and limiting the closing loads to those accept-

able to the design.

The following items summarize the structural concept

findings:

i. The optimum subpanel contains 3 mechanical modules with a

total area of 69 sq ft.

2. The mechanical module (consistent with electrical require-

ments and packaging envelope) is 58.4 x 56.5 in.

3. The stowed subpanels are arranged 4 to a quadrant, as shown

in Fig. 4-4.

4. By overlapping the subpanels in two of the quadrants, an

interlocked package is obtained with considerable load

restraint.

4.1.2 Electrical Layout

The electrical module layout is illustrated in

Fig. 4-5. The figure delineates dimensions of this integral unit of

the total array and shows the number of cells and spacing between

cells in the 10.4 kW array. A typical series string of cells consists

of 280 2-cm-square solar cells with a spacing of i0 mils between cells

in both directions. The basic solar cell submodule consists of 6

cells in parallel with a total of 18 cells in parallel for the elec-

trical module. The resulting power module (comprising 5.184 cells)

supplies approximately 216W (IOOV at 2.16A) of useful electrical power

based on the requirement of i0 W/ft 2.
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The submodule is made up of a 2-cm-square solar cell

(4 mils thick) and a l-mil integral cover glass. The cell has a 10.6

percent conversion efficiency at AM0, 28°C. The cell has wrap-around

around contacts and is qinterconnected with a silver bus bar.

4.1.3 Mechanisms

The array concept shown in this section is a two-sector

system developed from the arrangements evaluated in Section 6. The

selected pattern has the merit of providing the lowest mass moment and

can be deployed without superimposing significant torsional moments on

the spacecraft. If trapezoidal panels were adopted for the design,

complex problems would occur in fabrication and analysis, which would

make the array unjustifiably complex. Thus, only rectangular panels

were considered for further study.

The rectangular panels for the i0 kW array can be

packaged in a standard OAO shroud. (The Surveyor shroud with its con-

ical envelope was found to yield a less effective package.) It was

necessary to modify the aerodynamic shape of the selected package for

this study. Figure 4-6 shows the variations which have taken place in

the evolution from a four- to a two-quadrant array, together with the

variations proposed for the aerodynamic envelope.

Modification of the envelope is justified by the fact

that the main purpose is the development of a lightweight demonstration

panel and it was required that the geometry be defined very early in

the program. Further studies indicated that the array design would

require a shroud modification.

The deployment sequence adopted for the selected array

is shown in Fig. 4-7 and Fig. 4-8. The sequence starts with the outer

panels, which are referenced in Fig. 4-8 as 4, 8, 5, 7, sector I; and

9, 13, I0 12, sector 2. This sequence allows the overlapped panels to

be deployed with minimum disturbance to the spacecraft; all rotational

moments cancelling. Following this maneuver, the latch devices con-

straining panels 2, 6 and II, 15 are activated, allowing deployment
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of all but the remaining four panels (i, 3 and 14, 16) to take place.

To complete the array pattern, the stow latches are triggered to allow

movementof panels I, 3, 14, and 16.
The panels are latched after successful deployment by

spring-biased pawls situated at the same locations as the drive springs.
There are two power sources and latching mechanismsper panel together

with signaling microswitches.
The objective in the stowed configuration is to allow

the panels to rest together with minimumspace and provide shear paths

through the panel frames for the vibratory loads experienced during the
launch. Figure 4-9 (as well as Fig. 4-6 and Fig. 4-8) showsthe manner

in which the array is overlapped to obtain a symmetrical stacking arrange-

ment, allowing the hinge brackets to be in the vacant corner spaces.
Becauseof the biconvex structural design, the maximumdiameters and

tangential points to the spacecraft dynamic envelope occur at the panel
centers.

The panels will be self-supporting and are not con-

nected to the spacecraft structure other than at station 0, thus mini-

mizing vibration amplitude gain effects.

Figure 4-10 illustrates the stowed configuration with

banding and spring ejectors superimposed on the latched panels. The

banding would be used as an additional constraint if subsequent analysis

discloses buckling of the panels due to longitudinal environmental load-

ing during launch modes.

Initially, one of the requirements was to package the

5 kWarray within the dynamic envelope of the Atlas/Agena nose fairing,
and package the I0 kWarray in the Atlas/Centaur nose fairing. During

the development, however, it was clearly seen that this would restrict

the design concepts; since the prime effort is in lightweight array
study and development, restrictions of exact space for packaging were

considered unimportant at this stage.
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The Surveyor shroud has a severe taper commencingat
120 in. beyond station 0, which had to be extended by 113 in. Alter-

natively, the aerodynamic shape could be modified to encompassthe stowed

array (Fig. 4-7).

In the stowed condition, the panels are subjected to
the vibrations introduced by the spacecraft's launch vehicle. These in-

crease in magnitude along the spacecraft structure due to the system
gain. Rigid connection to the spacecraft structure (remote from the
spacecraft/launch vehicle interface) was not considered because such

mounting would tend to accentuate transmission of high-amplitude vibra-

tion to the panel. A better approach is to nest the frames and mechani-

cally lock them at either end with latches of the retractable-shaft type.

Using this technique the retractable pin absorbs the shear loads, yet

retains the features of reliability and lightness of weight.

Figure 4-11 illustrates the releasing device adopted;

improvementsalready have been attempted in the design by providing a

meansof repeatedly retracting the pin by manually pulling the end of

the shaft. (It is shownin the drawing in various stages of deployment.)

This feature reduces the requirement for either actuation of the initia-

tor or removal of the device (impossible if the componentsare welded

to save the bolt weight). Internally, there is a soft aluminumbolster
pad which absorbs most of the firing impact by becoming distorted. The

result is that the frame on which the componentsare mountedreceives

an attenuated pulse of insignificant proportions.

With the demandfor reliable lightweight actuators,

springs were selected and the application modified in an attempt to

achieve somecontrol over the panel velocity. The approach adopted

in this study (shown in Fig. 4-12) is to allow the spring to be de-

ployed beyond its normal free condition. With this approach, the

springs begin to exert a resisting force which increases in magnitude

as the panel reaches full deployment. Theoretically, an absolute balance

is possible neglecting friction and constraints of positive latching
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when deployed. As a result, a compromiseis necessary; thus, a limiting
factor was established on the basis of the impact loads which could be

tolerated by the structure. Weight of one motor is approximately 5.5 oz;

spring weight is 3 oz.

4.1.4 Solar Array Weight & Power Predictions

Table 4-1 presents the weight and power predictions of

the 10.4 kW array. Column i summarizes the weight of the array using

the same materials and techniques as will be used in the demonstration

panel.

Column 2 gives the weight of the array based on technol-

ogy which is under development including the use of beryllium framework

and aluminum electroformed structures.

4.2 Atlas/Agena 5 kW Array

Engineering emphasis to date has been placed on the I0 kW

array. Design and discussion of the 5 kW array will be incorporated

into the final report.
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TABLE4-1

PROJECTEDWEIGHTANDPOWERCHARACTERISTICS_10.4 kWARRAY

Item

Cover glass

Filter Adhesive

Solar Cell

Interconnector

Cell Adhesive

Dielectric

Dielectric Adhesive

Thermal Control Paint

Cabling & Hardware

Mechanisms

Substrate

Frame

SumTotal

Description
3 mil microsheet 2 x 2 cm
I rail integral cover glass 2 x 2 cm

2 mil RTV-602
none

4 mil conventional contact 2 x 2 cm
4 mil wrap-around contact 2 x 2 cm

Bus bar & solder
Printed circuit back contact

4 mil RTV-40
Same

I mil H-film
Same

2 mil RTV-40, 18%of area
Same

3 mil laminar X-500

None, anodized substrate

Separate cable bundles

Major cabling incorporated in frame

See Section 7.1.2

Same

2 mil electroformed nickel

Electroformed aluminum alloy

I0 mil aluminum box beam

Beryllium frame

ib

Watt/ft 2

Demonstration

Panel Design

lb/ft 2 lb

0.0394 41.0

0.0096 I0.0

0.0530 55.1

0.0200 20.8

0.0207 22.8

0.0072 7.9

0.0037 4.1

0.0240 29.7

0.0228 28.2

0.0376 46.7

0.0664 73.0

0.0815 I01.0

440.3

10W/ft 2Specific Power

Array Power Watt 10400W

Weight/Power Ib/kW 42.4 ib/kW

Array Design

ib/ft 2 ib

0.0131 13.7

0.0530 55.1

0.0100 10.4

0.0207 22.8

0.0072 7.9

0.0037 4.1

0.0050 6.2

0.0376 46.7

0.0464 51.1

0.0538 66.7

285.0

10W/ft 2

10400W

27.4 Ib/kW
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5. COMMENTSONCOMPONENTSTATUS

The program goal of a 5 to I0 kW solar array with a weight-to-

power ratio of 25 to 50 ib/kW requires that the specific weight

of each of the array componentsbe minimized. The cell stack, power

cabling, structures, and mechanismsare the prime componentsof the

array. Each of these items requires design improvements if the over-

all specific weight is to be reduced. The decrease in specific weight

of one unit without a corresponding decrease in another will not

achieve a lightweight solar array.

This section projects the present and future status of cell

stack components. In the early 1960's, the Ranger spacecraft design

had a solar array with a specific weight of 1.9 ib/ft 2. At present,

solar array specific weights have decreased to approximately I Ib/ft 2.

By the mid-1970's, flight hardware can be decreased to approximately

0.25 lb/ft 2.

5.1 Solar Cells

At present, phosphorous diffused n-p solar cells are the

only cells being used on solar-powered spacecraft (except in specific

instances requiring the higher voltages of the p-n cells). The dis-

cussion in this section is limited to silicon n-p solar cells.

The lightest weight silicon solar cells presently available

in production quantities are 12-mil chips with an area of i x 2 or

2 x 2 cm, containing solderless sintered silver-titanium ohmic con-

tacts as shown in Fig. 5-1. The specific weight of the cell is typi-

cally 0.16 Ib/ft 2. Cells can be obtained in quantities up to 11.3 per-

cent AM0, 28°C minimum average efficiency. The typical cost for these

solar cells ranges from perhaps $i0 per cell for 2 cm squares (11.3

percent AM0 efficiency) to $5 per cell for the same size at 10.5 percent

AMO efficiency.
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Silicon solar cells available in limited quantities for

experimental use include the following variations. (See Fig. 5-2 and

Table 5-1.)

I. Back-contact or wrap-around cells

2. Front-contact cells

3. Dendritic cells up to 30 cm length using either normal or

wrap-around contacts.

4. Larger area silicon cells (up to 3 cm squares)

5. Aluminum- and lithium-doped silicon cells

6. Thin solar cells

The wrap-around contacts shown in Fig. 5-3 offer several

interesting features:

I. The cell permits connection of both the positive and nega-

tive contacts on the rear surface of the cell. A better

packaging factor is possible, thereby permitting closer

spacing of the cells.

2. Absence of the contact strip from the active surface in-

creases the active cell area, thereby increasing the power

output per cell.

3. A disadvantage of the wrap-around cell is the replaceability

limitation. Removal of a single failed cell from the array

is prohibited since none of the soldered connections are

visible or accessible.

4. Limited data indicates that a 5-percent loss in power occurs

during the fabrication of wrap-around cell arrays.

Very little costing data is available on I x 2 cm and 2 x 2

cm wrap-around cells, but it is expected that these cells would soon

be in the same general price range as the normal-contact silicon n-p

solar cells. The front-contact solar cell offers the same active

area as a normal-contact cell; but since both contacts are on the top

surface, fabrication and repair is simplified. Since all soldered

connections are visible, any damage to the contacts can be easily

7027-IDR 5-3
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TABLE 5-1

AVAILABLE VARIATIONS IN SOLAR CELL FABRICATION

I. Contacts:

2. Surface Area:

3. Dopant:

4. Thickness:

5. Internal Properties:

a) Normal contacts (with ohmic strip and

grid lines on n side of cell and large

area contact on p side of cell).

b) Wrap-around contacts (with both n strip

and large area p contact on rear side of

solar cell). Grid lines are on top
active surface.

c) Front contacts (with both n and p con-

tact strips and grid on top active sur-

face of cell).

In production: I x 2 cm; 2 x 2 cm.

In development: 2 x 3 cm, 3 x 3 cm, I x 30 cm,

2 x 30 cm, 3 x 30 cm, i x

13 cm.

Phosphorus -- Present n-p silicon solar
cell.

Aluminum -- Under development to produce

radiation-resistant p-n cells.

Lithium -- Low-concentration dopant used in

conjunction with phosphorus to obtain a

cell that has low-temperature radiation

annealing properties.

18 mils to 4 mils.

With and without drift fields.
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located. The cost of these cells should eventually fall into the

same price range as the normal-contact silicon cells now on the

market.

The large-area dendritic solar cells under investigation

by Westinghouse Company and others have been fabricated with AM0 effi-

ciencies ranging up to 9 percent. Solar cells measuring I x 15 cm and

i x 30 cm with drift field structures have been fabricated. The ohmic

contacts on these dendritic cells are similar to those of the top con-

tact n-p silicon solar cells. Costing data, again, is not readily

available due to the limited number of cells presently being manu-

factured.

Larger-area top-contact silicon cells, 3 x 3 cm, are avail-

able in limited quantities; these have the same general properties of

the smaller cells. The use of the larger cell reduces the number of

intercell spaces required and permits packaging factors of up to 97

percent if wrap-around contacts are used.

Preliminary costing data have been obtained for 3-cm-square

cells. For small quantity production, the cost ranges from $13 per cell

for an 8-mil cell (with 11.2 percent average AMO efficiency) to $18 per

cell for a 6-mil cell (at 10.4 percent average AMO efficiency). These

efficiencies are rated at 28°C, 0.14 W/cm 2. It is expected that the

cost per cell will decrease as production quantities become available.

The aluminum-doped p-n solar cells are presently under in-

vestigation, and samples are available in very limited quantities.

This type of cell appears to have improved radiation-resistant prop-

erties compared to the boron-doped p-n solar cell. Characteristics of

aluminum-doped cells are currently being investigated.

The lithium-doped solar cell is under investigation at NASA/

Goddard under the direction of Dr. Fang. This type cell appears to

have excellent low-temperature radiation annealing properties. Data

indicate complete recovery in 24 hours (at 28°C) after radiation has

ceased. Investigation is continuing to determine annealing effects at

high temperatures under continuing radiation bombardment.
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Progress in the development of thin solar cells has led to

a presently obtainable 4-mil solar cell with an AM0efficiency of
between 7.5 and 8.5 percent. The efficiency of thin solar cells will

probably always be less than that obtainable with thicker cells due
to transmission losses through the thin cells, but predicted AMOef-

ficiencies for the 1970-1985period range from 9.5 to 10.5 percent.

The development of thin cells is now accelerating due to the increas-

ing demandfor large, lightweight solar arrays. A major problem, at

present, is the reduction of cell costs. The thin solar cell is

high-priced due to high cell attrition rates during cell and array

fabrication. In addition, development costs are still being included

in the basic cell price.

5.2 General Properties of N-P Solar Cells

The spectral response of a typical n-p solar cell is shown

in Fig. 5-4. The spectral response of a solar cell shows at what

wavelengths the solar cell operates and indicates the relative output

at these wavelengths. Thus, a typical n-p solar cell operates between

0.3 and i.i_. The rest of the incident spectrum (less than 0.37 and

greater than i.i_) is either reflected from the surface, transmitted

through the cell without creating electron hole pairs, or reradiated

from the cell in the form of heat. Figure 5-5 shows the spectrum re-

sponse of a typical n-p silicon solar cell in relation to the spectrum

of incident sunlight.

The electrical characteristic curve of a typical n-p silicon

solar cell is shown in Fig. 5-6. The curves show the typical limits

encountered in the operation of solar cells in space at various tem-

peratures.

The open-circuit voltage per cell ranges from approximately

0.55V at 25°C to 0.39V at 100°C. The voltage of a solar cell can be

assumed to be independent of the efficiency of the cells and the im-

pinging solar intensity, but it is very dependent upon the cell tem-

perature and internal series resistance. The cell current is a direct

7027-IDR 5-8
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function of the solar intensity and cell efficiency; it is relatively

independent of the cell temperature and internal series resistance.

The fact that a solar cell is a semiconductive device indi-

cates that some of the cell characteristics are affected by temperature

and intensity. These effects are shown in Fig. 5-7. These curves are

typical for n-p solar cells of present manufacture and are probably

typical for cells to be manufactured in the future. The combined

effects of the temperature-dependent parameters result in significant

changes in the cell operating power. Thus, temperature effects must

be considered in the system analysis. For present cells, the output

power decreases from 0.3 percent per °C to 0.5 percent per °C for in-

creases in temperature. Figure 5-8 summarizes the effects of both

temperature and intensity on current (under short-circuit conditions),

voltage (under open-circuit conditions), and maximum power output of

a solar cell.

5.3 projected Technology of Silicon Solar Cells

Table 5-11 shows the predicted silicon cell general charac-

teristics from the present to the 1970-1980 time period. The relative

improvement of efficiency for thin solar cells (less than 12 mils

thick) will exceed that obtained for the thicker cells over the next

i0 years. The efficiency of the 4-mil cells should be expected to be

improved to approximately 9.5-10.5 percent in 1970 to 1980, for about

a 25 percent increase in efficiency. Two other expected major improve-

ments in silicon solar cell technology during the next I0 years will

be (i) the enlargement of the basic cell size to a maximum of approxi-

mately 3 x 30 cm (90-100 cm2), and (2) a projected lowering of bare

cell costs from $2/cm 2 at present to approximately $1.50/cm 2 in the

1970 time period. It is also expected that some improvements will be

made in increasing the radiation resistance of n-p silicon solar cells

by possibly changing the dopant material used to obtain the p material,

improving the drift field cells presently under development, or by

changing the material used in the contacts to the solar cell.
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TABLE5-11

PREDICTEDSILICONSOLARCELLCHARACTERISTICS

Type
OhmicContact

Thickness

Weight

BaseResistivity
Size

Power Output at
55°C for 12-mil cell

Total Cell Efficiency
at 28°C (Average

Production)
Cost/cm2

Present (19667

n -on -p

Top -solderless

Silver-titanium

12 mils

0.07 gm/cm 2

I-I0 ohm-cm

i cm x 2 cm

2 cm x 2 cm

13. I n_q/cm2

I0.5_ (12 mils)

9.54 (8 mils)

7.5-8.5_ (4 mils)

$2.00/cm 2

1970-1980

n-on-p drift field

Wrap-around A -T.
g l

12, 8, 4 mils

0.023 gm/cm 2 for

4 mils thick

1-25 ohm cm

Same, also 3 x 3 cm

I cm x 30 cm

2 cm x _0 cm

3 cm x 30 cm

14.6 n'_l/cm 2

ii.7_ (12 mils)

Ii._ (8 mils)

9.5-i0.5_ (4 mils)

$1.50/cm 2
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In summary, it is expected that the n-p silicon solar cell

technology in the 1975-1985 time period will provide a solar cell

capable of producing approximately II W/ft 2. This power will be pro-

duced at a cost of approximately $I00 per watt based on bare cell

costs. The silicon solar cell will continue to be the prime source

of electrical power in space for missions requiring power up to ap-

proximately 50 kW, since the solar cell is a proved piece of space

hardware capable of supplying reliable power at reasonable cost and

specific weights.

5.4 Cover Glass and Its Effect on Cell Characteristics and

Array Weight

5.4.1 General

The chief function of the cover glass on the solar

cell is to provide a surface with a high thermal emission to permit

the cell to operate at a lower temperature and higher performance

level (see Fig. 5-9). The front surface of a typical bare solar cell

has an absorptivity curve as shown in Fig. 5-10. It has _n _ of 0.935
s

(absorptivity) and an ¢ (emissivity) of 0.368 at 127°C, yielding

_s/_ of 2.54 and an in-space temperature of 85°C (assuming the rear

surface is radiating with an ¢ of 0.9). This results in a relative

power output of only 77 percent of the power capability at 28°C.

By the addition of a glass cover with a deposited

antireflective coating to the surface of the solar cell, the absorp-

tivity characteristics of the unit can be improved as shown in Fig.

5-11. The antireflective coating reduces transmission losses related

to the index of refraction of the cover material. The cell with

added cover glass now has an _ of 0.813 and an _ of 0.835 at 60.2°C,
S

yielding an _s/¢ ratio of 0.974 and an in-space temperature of 36°C

(assuming the rear surface is radiating with an ¢ of 0.9). This

results in a power output equivalent to 92 percent of the power capa-

bility at 28°C. A net gain of 15.8 percent over the bare cell is

shown, including transmission losses from the antireflective coating.

This covered cell provides the most favorable power gain.

7027-IDR
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The type of filter shown has been used extensively

and is readily available in large quantities. A red cutoff coating

(which can be used to further cool the cells by reflecting the un-

usable light in the red region) does not provide any appreciable gain

over the blue filtered cover since for the Jupiter mission the panels

are already operating at a low temperature thermal equilibrium as a

result of the low illumination levels. The addition of a red filter

would also increase the cover glass cost with no significant increase

in power capability. Information on spectral filters is summarized

in Table 5-111.

One characteristic of the film filters is that when

the temperature is increased, the blue filter will shift to the longer

wavelengths; as the temperature is decreased, the filter will shift

to shorter wavelengths. The wavelength shift of these filters is

essentially a linear function of the film temperature, because the

materials which form the various layers have indexes of refraction

which vary linearly with temperature. As a result, the o_tical thick-

ness of adjacent layers can be perfectly matched at only one tempera-

ture (called the design temperature). In general, these filters re-

tain their transmission and cutoff shape characteristics over a wide

temperature range, but serious transmission losses may occur at filter

temperatures exceeding 100°C. In the case of the Jupiter mission,

this will be no problem except during that part of the trajectory.

where the array is swinging in towards the sun and high temperatures

(190°C) may be reached. For the portion of the orbit where tempera-

tures are less than 100°C, no measurable change in transmission loss

will occur due to filtering shifts.

5.4.2 Integrated Cover Glass

The need for reducing the weight and complexity of

solar cell assemblies led to the development of the process for in-

corporating an integrated cover glass directly on the silicon solar

cell without the use of an intervening adhesive. This development
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has enabled solar cell manufacturers to decrease the cover glass

thickness to less than i mil while eliminating the cover glass adhe-

sive weight and the subsequent degradation in adhesive transmission

properties due to the space environment. The major problem in the

application of integrated cover glass, both of the boron and phosphor

silicates and slurried or sputtered quartz, is the decreased optical

transmission through the cover glass. The present cover and adhesive

combination has a combined transmission-loss factor of 0.94 while the

integrated cover glass has a transmission loss factor of 0.91. This

leads to a subsequent 3 percent decrease in solar array power output,

but the weight-to-power ratio for the integrated cover glass is equal

to or less than that for the cover-adhesive combination. This is

because of the thinner cover glass obtainable with the integrated

process and because the cover glass adhesive is eliminated.

The spectral filtering and transmission properties

of the integrated cover glass can be made equivalent to that of the

cover-adhesive combination; therefore, only the specific power (watts

per ib) need be investigated in comparing the integrated cover glass

to the cover-adhesive combination. This comparison, summarized in

Section 6, indicates the integrated cover glass has definite advantages

over the presently used cover-adhesive combination.

5.5 Solar Array Weight

The specific weight of both the entire solar array and its

components is steadily decreasing; the expected trends are shown in

Fig. 5-12. The lower curve shows the specific weight of the substrate/

frame (without solar cells). As shown, in 1962 the capability was

approximately 1.2 Ib/ft 2 (Ranger). Specific weights have been de-

creasing until at the present time a specific weight of about 0.5

ib/ft 2 is obtainable (Mariner '64). The specific weight of the sub-

strate/frame is expected to decrease as newer substrate designs are

introduced.
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The second curve in Fig. 5-12 shows the expected decrease in

solar cell specific weight as thin cells with increased efficiency are

developed. The probable minimumpractical thickness for silicon solar
cells is 4 mils (equivalent to a specific weight of 0.053 Ib/ft2).

The third curve showsthe expected decrease in cover glass

weight after about 1970 whencells with integrated cover glass become
items of standard use. At present, the minimumglass thicl_ess is

4 mils. This gives minimumradiation protection but practical thermal

control. The thin (2 mils or less) integrated cover glass will give

the samethermal control. The expected minimumspecific weight for
cover glass will be approximately 0.02 Ib/ft 2.

The top curve shows the expected trend in total array specific

weight including such items as adhesives, bus bar, solder, paints, hard-

ware, cabling, etc. The specific weight of these miscellaneous items,

taken as a group, is expected to decrease uniformly from a maximumvalue
of 0.32 ib/ft 2 in 1962 to approximately a 0.050 ib/ft 2 by 1970. Improve-

ments are also expected in decreasing hardware requirements and minimiz-

ing cooling weights by improved designs. The trend in specific weight

indicates that expected minimumtotal array specific weight after 1970
could be 0.25 ib/ft 2.
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6. SOLAR ARRAY STRUCTURAL TRADE STUDIES

The development of a lightweight solar array requires that each

of its components be designed to achieve minimum specific weight with-

out significantly decreasing the photovoltaic conversion efficiency.

Large lightweight array development requires structural/mechanical

design that minimizes packaging volume and has minimal influence on

spacecraft design. EOS's program is primarily directed toward develop-

ing a lightweight structure that can be used in a large array. The

cell and cover glass combination with its specific power characteristics

was defined early in the program. The major portion of the trade study

analysis is therefore directed toward development of a biconvex hollow

core structure of minimum practical weight. Since the demonstration

panel is designed to be a section of a larger array, it was necessary

to define subpanel configuration and establish package dimensions. This

was accomplished as a result of trade studies comparing the advantages

of various configurations in both stowed and deployed states. The

areas of evaluation in these trade studies included:

i. Analysis of package requirements in stowed and deployed state

2. Comparison of structural concepts

3. Comparison of performance and design criteria of biconvex

hollow core structure versus other practical structures

6.1 Selection of Array Packaged and Deployed Configuration

Studies were conducted to determine structural planform

sizes and compare methods of latching the stowed array. One result

of the study was the definition of the demonstration panel geometry.

The array's planform arrangement was established after the

study of basic alternatives shown in Figs. 6-1 and 6-2. Competing

characteristics considered are: exposed area, shroud size and shape,
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limits of the biconvex structure, and stability of the spacecraft.

The four-quadrant approach established the requirements for a "spider"

tie pattern or trapezoidal panels due to the limited space available

close to the spacecraft. A spider, or cruciform, array of small size

presents minor problems for deployment and cabling. However, as the

array area increases, deployment becomesmore complex. Spacecraft

stability when subjected to attitude control accelerations is a major
consideration. Trapezoidal panels would be desirable for easier

packaging within the tapering shroud. However, with the adoption

of the biconvex approach for panel structural rigidity and lightness,

the complications involved with trapezoidal panels are undesirable.

These complications include determination of points of intersection

of compoundcurves for manufacture, hinging, and latching. Conse-

quently, the rectangular shape panel was retained.

The need for a rigid structure during launch with distribu-

tion of panel latching points around the array resulted in the compact

approaches illustrated in Fig. 6-2. As shown,the concept of a sym-

metrical two-sector array was selected both for the 5 and i0 kW

arrays.

An alternative method of constraining movementof the panels

is by banding the array. The release mechanismsconsidered for this

application were guillotine cable cutters. In addition to the band-

ing, however, individual release devices would be required to allow

for sequential deployment with additional weight. Another reason
which influenced the decision in favor of individual release units

was the uncertainty of clearing the severed banding from the array.

One approach would be to propel the pieces away from the panels by

meansof the stored energy from springs. Figure 6-3 illustrates the

concept.
Estimates of weights and reliability were the deciding

factors in formulating the decision to proceed with the retractable

pin devices.
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6.2 Comparison of Substrate Structure

This trade study was performed to determine the biconvex

hollow core structure's potential as a lightweight array concept by

approximate comparison with several other types of substrate.

At the beginning of the program a selection was made of

potential structural concepts that would meet the lightweight criteria.

From these concepts 5 candidates were selected for further study.

They are:

I.

2.

3.

4.

5.

Conventional flat plate sandwich design with structural beams

Prestressed tapes

Prestressed diaphragm

Honeycomb flat plate design

Hollow core biconvex design

The detailed analysis of the study may be found in Appendix C.

The study indicated that the hollow core design had a weight

advantage (as did the prestressed tape and prestressed diaphragm) over

the more conventional corrugated and honeycomb concepts. The specific

weight values are shown in Table 6-I.

The study ground rules for substrate structure comparison were

to use the same criteria and requirements. They are:

i. Design loading condition

2. Cell stack weight (0.16 ib/ft 2)

3. Surface dimensions (subpanel width of 58.6 in.)

4. Gain factors (40 for substrate, I0 for frame)

The one variable in the analysis was the attachment points. Each concept

had the attachment points at the position that best suited its design.

6.2.1 Corrugated Sandwich Construction

The corrugated sandwich structure is shown in Fig. 6-4.

Earlier work on a similar program had produced design curves to optimize

the structure; these were used in the analysis. The results of the study

defined a 0.265-in. high beryllium corrugation and a I x 1.5 in. 2 box

beam.
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6.2.2 Prestressed Tape Concept

Figure 6-5 shows a sketch of the prestressed tape con-

cept. The 0.2-in. wide by 0.003-in° thick fiber glass tapes are stretched

over a beryllium frame to a pretension of 84 Ib/in. Because of the high

prestress the frame must be reinforced with stiffeners. The frame con-

sists of two identical halves, one upper and one lower. Thus, the tapes

can be inserted between the frame halves. The analysis shows a need of

a 2 x 0.75 x 0.014 in. 2 box section for the frame and a 0.75 square

box section for the stiffeners. The stiffeners are located as shown on

the figure. A significant problem area would be relaxation of the tapes

during the flight caused by creep. This creeping would tend to lower

the natural frequency.

6.2.3 Prestressed Diaphragm Concept

The prestressed diaphragm concept (shown in Fig. 6-6)

is similar to the one described above, except that a thin membrane is

used instead of the tapes. The membrane is made of 0.O01-in.-thick

beryllium foil. The frame is the same as in the tape design even though

a smaller size could be used due to the smaller membrane loads. The

metal diaphragm will perform better since creep is not a problem.

6.2.4 Honeycomb Construction

The honeycomb concept sh_n in Fig. 6-7 is similar

to the corrugated sandwich construction.

Study of the design indicates that a panel height of

0.5 in. and facing sheets of 0.002 in. will produce the lightest weight

design. Beryllium facing sheets are bonded to an aluminum honeycomb

core. The core is fabricated from O.O005-in. foil, with I/8-in. openings.

6.2.5 Biconvex Hollow Core

The biconvex hollow core concept, shown in Fig. 6-8,

has been given a thorough analysis (see Section 7). The concept uses

an electroformed spherical cap which has been perforated with holes to

remove approximately 81.5 percent of the top surface. The membrane is
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FIG. 6-8 SKETCH SHOWING BICONVEX HOLLOW CORE CONCEPT
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essentially a top and bottom skin supported by cylinders with the skin

removed within the cylinders. The curvature increases the buckling

strength and the natural frequency.

The material used is nickel substrate and aluminum

frame. By using aluminum substrate and beryllium frame further reduc-

tion in the weight may be obtained.

6.3 Hollow Core Design Optimization for Minimum Specific Weight

Equations used to obtain the data and information in this trade

study are shown in Appendix E.

Many factors affect the hollow core design. Figure 6-9 shows

the geometry parameters. The parameters considered are:

I. Solar cell weight -- W (this includes cells, coverglass,
sc

dielectric, adhesives, etc.)

2. Input inertia effect -- go - gstat (dynamic and static environ-

ment)

3. Structure gain -- q (dynamic magnification factor)

4. Radii describing the curvature and size of the panel -- RI, R2.

5. Half-angles of the curved surfaces -- 6, 8

6. Density of the structural material -- p

7. Skin thickness -- t

8. Hole pattern

9. Hole spacing -- 2a (diagonal distance across square hole pattern)

I0. Hole size -- d

ii. Panel material

All of these parameters must be evaluated before an optimum design can

be found. Essentially, the parameters can be grouped as: (I) geometry,

(2) dead-load and loading conditions, and (3) material.

A computer program was used to study the biconvex hollow core

design because of the large number and range of variables to be considered.

The program was derived from the equilibrium equations shown in Appendix E.

The equations were simplified to lessen the program complexity, but the

results are representative of the trends. The demonstration panel design

was analyzed to the equations given.
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This section contains a series of graphs which summarizethe

results of the computer study. Each graph considers a specific cell
stack weight of 0.16 ib/ft 2 and a square hole pattern. The remaining

significant parameters are noted.

The first graph, Fig. 6-10, showsrelative comparisons between

substrate specific weight and: (I) depth of section, and (2) material

gage. The thinner section depths indicate a minimum, and if the range

of thickness of material had been computed beyond 0.002 in.,the thicker

section depth would also show the same trend. It is expected that sec-

tion depths thinner than 0.I in. would soon show a reversal in specific

weight, but fragility of the electroforming mandrel dictated this value

as a minimum thickness.

Figure 6-11 defines specific weight for: (I) variations in

hole diameter/spacing (d/a) ratio, and (2) depth of section. The d/a

ratio has an upper limit of 1.4, which is the value where the holes are

touching. This curve indicates that depth of section is the more criti-

cal parameter for minimum specific weight.

The third graph, Fig. 6-12, shows the relationships of specific

weight to: (I) substrate span and (2) section depth. The biconvex

substrate is shown to have a small increase in specific weight for a

large change in span.

Figure 6-13 considers the specific weight variations due to

the change in curvature of the biconvex substrate. The curve shows a

drastic increase at small angles. This range is where the curved struc-

ture approaches a flat plate.

The fifth graph, Fig. 6-14, defines the first mode resonant

frequency of the biconvex structure as a function of: (i) substrate

span, (2) section depth, and (3) hole geometry. The curve shows the high-

stiffness value of this structural concept.

Figure 6-15 shows the critical buckling pressure and inertia

loading pressure as a function of: (I) substrate span, and (2) section

depth. These critical buckling pressures are defined as the pressure
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at which the substrate buckles. This is not the local crippling of

the hollow core surface. The curve indicates the large margin between

applied and critical pressures.

The seventh graph, Fig. 6-16, defines the specific weight of

the hollow core structure as a function of: (i) structural material

and (2) dynamic magnification factor. Comparison of curves 2 and 4

shows that an aluminum substrate is half the weight of a nickel sub-

strate. Curves 2 and 3 show that decreasing the assumed magnification

factor by two decreases the specific weight by 30 percent.

Figures 6-17 and 6-18 define the relationship between sub-

strate specific weight (slanted hole pattern) and: (I) land dimension,

(2) skin thickness, and (3) hole diameter/spacing ratio. Practical

limits on mandrel fabrication require a land dimension (the distance

between edges of adjacent holes) of at least 0.05 in. for a hole diam-

eter of about i in. Using this limit, Fig. 6-17 shows the minimum

specific weight is 0.066 ib/ft 2 for a hole diameter/spacing ratio of

1.9.

The trade study indicates that the structure can be thin

(panel height) and still have large radius of curvature before struc-

ture will become critical for any given size.

For a panel size as needed in the demonstration panel, the

study indicates an optimum configuration of:

Size:

Hole diameter:

Hole spacing:

Radius of curvature:

Panel thickness:

Skin thickness:

58.6 x 56.7 in.

1.00 in.

1.05 in.

R = 163.25 in.

h = 0.I00 in.

t = 0.002 in.
2

With this configuration, the structure weighs 0.066 ib/ft
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7. DESIGNANALYSIS

This section outlines the engineering analysis used to develop

and design the demonstration panel and the feasibility study for a

10.4 kW solar array. The study areas discussed are:

i. Weight estimates of demonstration panel and 10.4 kW array.

2. Structural and dynamic analysis of demonstration panel and

10.4 kW array.

3. Thermal analysis of hollow core substrate.

4. Solar cell characteristics in a Jupiter mission environment.

5. Solar-electric propulsion power conditioning.

7.1 Weight Estimate of Demonstration Panel and 10.4 kW Array

The weights of the demonstration panel and the I0 kW array

are shown in Table 7-1. The completed demonstration panel will weigh

7.2 Ib and will have a structure specific weight of 0.168 Ib/ft 2. The

demonstration panel weight, when revised to include mechanisms and

cabling, will increase to 9 lb. A weight-to-power ratio is not shown

for the actual demonstration panel because of the various cell stack

combinations. Also shown in Table 7-1 is an estimate of the weight of

the 10.4 kW array with the same design features as the demonstration

panel, but using materials and components which should be available

in 1967.

7.1.1

components:

I.

2.

3.

4.

Structural Assembly

The structural assembly consists of the following

Hollow core substrate

Box beam frame members

Joining clip

Bonding adhesives and mechanical fasteners
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7.1.2 Electroformed Nickel Substrate

The electroformed nickel substrate has a specific

weight of 0.066 ib/ft 2 as determined by analysis (see Appendix D).

The trade study in Section 6 shows that by changing to electroformed

aluminum the specific weight will decrease to 0.051 ib/ft 2.

Using aluminum as the frame material gives a specific

weight of 0. ii0 ib/ft 2, but the use of beryllium results in a specific

weight of 0.054 ib/ft 2. The specific weight values include the weight

of the joining clips, adhesives, and mechanical fasteners.

7.1.3 Mechanical Assembly

The mechanical assembly consists of the following

components with specific weights as shown:

I. Hinges and deployment springs

2. Deployed position latches

3. Pyrotechnic release devices

4. Signaling circuits

5. Interpanel electrical cables

Total

Specific Weight

0.005 ib/ft 2

0.003 Ib/ft 2

0.016 Ib/ft 2

0.011 Ib/ft 2

0.003 ib/ft 2

0.038 Ib/ft 2

7.1.4 Photovoltaic Assembly

The photovoltaic assembly consists of the following

components:

I. Cover glass

2. Cover glass adhesive

3. Solar cell

4. Interconnector

5. Cabling

6. Cell adhesive

7. Dielectric

8. Dielectric adhesive

9. Thermal control paint
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For a spacecraft operating outside the earth's radi-

ation belts, a typical cover glass is approximately 6 mils of micro-

sheet (7094 quartz). The cover used for this program is 3 mils thick.

Test data shows that i to 2 mils of glass can be deposited directly

on a cell with only a 3-percent decrease in power-producing capability

of the cell at the end of one year (as compared to using a 6 mil cover).

The use of integrated cover glass for interplanetary probe missions will

greatly reduce the weight, complexity, and cost of fabricating a solar

photovoltaic array.

The panel specific weight decreases by an additional

0.0096 Ib/ft 2 if an integrated cover glass is used which eliminates the

requirement for the cover glass adhesive.

Typical bus bar weight is approximately 0.03 Ib/ft 2,

which is a small part of the total array weight. It is expected that

the use of the wrap-around solar cell will minimize bus bar intercon-

nections and decrease the weight and complexity.

The power cabling for typical current array designs

use printed circuits to interconnect electrical section and copper-

jacketed wire for the main power leads. The specific weight in the

10.4 kW array using this cabling concept is 0.300 ib/ft 2. Preliminary

designs indicate it is possible to incorporate the main power leads in-

to the frame structure as flat strips. An alternate method would be

to insulate certain frame members and use them as the conductors. The

cabling weight is decreased significantly since most of the cabling is

included in the structure weight; the remainder is estimated to have a

specific weight of 0.005 ib/ft 2. The dielectric uses a l-mil H-film

with a specific weight of 0.0072 Ib/ft 2. No improvements are expected

in reducing the weight of the dielectric, either film or paint, in the

near future.

The adhesive to be used to bond the cell to the di-

electric and the dielectric to the substrate on the demonstration panel

will be RTV-40,a silicone adhesive which will have an approximate

7027-IDR 7-6



thickness of 4 mils when used to bond the cell to the dielectric and

2 mils when bonding the dielectric to the substrate. The specific

weights for this adhesive are 0.0207 Ib/ft 2 and 0.0072 Ib/ft 2. The

dielectric adhesive covers only i0 percent of the substrate area.

The thermal control surface for the demonstration

panel will be a 3-mil organic paint with a specific weight of 0.024

Iblft 2. The thermal control surface for the 10.4 kW array will be

incorporated into the substrate by anodizing the aluminum hollow core

and pigmenting the H-film.

7.2 Structure Stress and Dynamic Analysis

Theoretical equations have been developed to enable struc-

tural analysis of the solar panel structural members, Since instability

is the main contributing factor, empirical data have been used to arrive

at the analytical expressions. The empirical data has been extracted

from NASA publications (such as NASA TN 3781), and has been proved in

numerous practical applications. It was necessary to confirm the fail-

ure mode of the hollow core substrate before the tests defined in Sec-

tion 9 were performed. These tests confirmed that the failure mode

was crippling of the surfaces between holes. The tests showed that

even after crippling, the structure was able to carry full load, with

a column-type failure as a secondary effect.

The demonstration panel was analyzed utilizing the equilibrium

equations defined in Appendix D. It was found structurally sound for the

most critical loading condition.

The results of the structural analysis on the demonstration

panel showed that the substrate will meet design loads with local

crippling as the most probable failure mode. The interconnection indi-

cates a minimum margin of 2.5. The frame was determined to have a

critical margin of safety of 0.23, with local buckling of the frame

surface as the failure mode. Section 9 describes this analysis.
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The dynamic analysis of the biconvex hollow core structure

has not been completed. The exact solution of the equation for dynamic

response is yet to be solved.

The theory for the dynamic analysis of the biconvex hollow

core substrate is contained in Appendix C. The first mode resonant fre-

quency was determined from these equations to be 84.7 Hz. The substrate

center-point displacement is calculated to be a maximum of 1.47 in. at

resonance. The deployed array is estimated to have a first torsional

resonance of 0.038 Hz. This is the lowest deployed array frequency.

Appendix C contains a discussion of the incorporation of

viscoelastic adhesives for increasing structural damping. The present

demonstration panel design is being evaluated to determine what design

gains can be made in the specific weight by incorporating the visco-

elastic adhesive. This study will be reported in the final report.

The biconvex hollow core construction demands continuous

support along the edges to prevent panel instability. This means that

to assure that the boundary conditions (assumed in the analysis) hold

true, a support structure of sufficient rigidity must be designed.

Several frame constructions have been investigated. Principal evalua-

tion criteria are as follows:

I. The frame must provide ample strength to prevent excessive

distortion during maximum loading.

2. It must possess good torsional stiffness.

3. It must have the ability to restrain combined loading (verti-

cal and horizontal).

The requirements above dictate a box cross section; to assure

minimum torsional effects, the box is split to form a double box so

that the substrate panel can be attached to the center of the box

cross section.

Because of the need for tongue-and-groove construction for

packaging of the array, the box cross section derives additional rein-

forcing against column and buckling instability. The demonstration

panel frame is fabricated from lO-mil aluminum sheet stock.
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The demonstration panel design produces a frame that will

weigh on the order of 2.5 lb.

The basic theory of the biconvex hollow core concept demands

strict adherence to the boundary conditions. If the boundary condi-

tions change, a substantial change in the hollow core characteristic may

take place. One may therefore set as governing factors, for both the

frame and the interconnection, the following:

I. The hollow core edges must remain in place for all loading

conditions, within elastic limits.

2. The edge restraint caused by the interconnectlon must approach

that of simple support, minimizing moment input to the hollow

core.

3. The interconnection must transfer the loading equally from

both top and bottom skins of tb_ hollow core.

4. The interconnection must transfer the load uniformly along

the edges, minimizing stress concentrations.

5. The interconnection must minimize the effect of differential

growth of frame and hollow core substrate, caused by environ-

ment or fabrication.

6. The effect of deviation from the nominal curvature of both

mating edges shall be reduced in the interconnection.

Point one concerns itself mainly with the frame, even though

the tangential rigidity of the interconnection enters into overall

action. The column length is so short that stability is not of concern.

(Substrate-to-frame interconnection is shown in Fig. 7-1.)

Points (2) and (3) state that the interconnection must approach

a hinge, with very small flexural rigidity, assuring freedom of the edges

to rotate. The interconnection must be bonded to the top and bottom

skins such that the membrane loading can be distributed evenly. Point

(4) indicates that the interconnection must run the full length of the

hollow core boundary.

7027-IDR 7-9
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The established method for attachment of the two mating parts

is through an adhesive bond. Most adhesives need curing for long peri-

ods of time at elevated temperatures. The interconnection must therefore

be constructed such that the thermal growth loads are minimized at the
interface. The interconnection will be attached to the hollow core

structure and then the assembly is attached to the frame assembly by

ambient temperature means, such as mechanical fasteners. There is going

to be somedifference in the thermal growth of the interconnection and

the hollow core, but this loading can be relieved by milling slots in

the interconnect ion surfaces bonding to the hollow core. The difference

in thermal growth existing during the casting period, can be relieved

by somedistortion of the hollow core; i.e., edge loading.
To tolerate normal fabrication deviations, it is necessary

to make the interconnection pliable or flexible radially conforming

to the contour of the two mating parts. Thus_ the edges maybe fit

to each other with a minimumof stress input or buildup.

Manyschemeshave been considered for the interconnection.

Two concepts are shownin Fig. 7-2 and 7-3. Nonmetallic molded sections

have been studied, but their use was omitted because of the uncertainty

in space operation (outgassing and its temperature sensitivity).

Onemay obtain one addedbenefit from the adhesive bond mate-

rial between clip and substrate, and that is a certain amount of visco-

elastic damping in the joint.

7.3 Panel Thermal Analysis

7.3.1 Thermal Considerations

The efficiency of silicon solar cells decreases with

increasing temperature. A 2°C temperature increase lowers the electri-

cal output by I percent. In order to maximize the electrical power and

minimize solar array weight and area, it is necessary to maintain the

solar cells at the lowest possible temperature while absorbing a large

percentage of the incident solar radiation.
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The control of solar panel temperatures is passive

and is accomplished by the use of thermal coatings on both sides of

the panel. Once thermal coatings have been selected, the temperature

of a sun-facing solar panel varies primarily with the intensity of

solar radiation. The construction of the panel substrate and sup-

porting frame, as well as interactions with the spacecraft bus and

with an adjacent planet during orbit, will also affect the average

steady-state temperature and the detailed distribution of tempera-

ture throughout the panel assembly.

Changes in the solar radiation intensity incident on

solar panels during transit occur slowly enough to enable thermal anal-

ys_ to be based on quasi steady-equilibrium conditions. The primary

concern of this analysis is the effect of the substrate construction

on solar cell temperatures. An ideal solar array would absorb only

that part of the solar spectrum which can be converted to electrical

power and would radiate infrared from both sides via an isothermal

black plate. Since approximately half the absorbed solar radiation

must be conducted through the substrate before heing radiated to space

from the back surface of the panel, the front (cell side) of the panel

is normally slightly hotter than the back side.

7.3.2 Methods of Analysis

The temperature drop through a simple laminated sub-

strate (such as a flat aluminum plate or membrane including cells,

filter covers, etc.) can be calculated on the basis of a one-dimen-

sional model. Approximately 8 percent of the absorbed radiation is

converted to electrical power, and the remaining energy is radiated

to space from the top surface (filter covers) and from the bottom

surface (black paint). The bottom surface is thermally connected to

the top through several thermal resistances in series.

The temperature distribution through a substrate

structure which is more complicated than described above must take

into account conduction in directions other than normal to the cell

7027-IDR 7-14
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surface. Thermal radiation between members of the thermal substrate

is significant only in designs where large temperature variations

occur between the panel surfaces (an undesirable situation from the

standpoint of solar cell efficiency). In the case of lightweight

structures, the conductivity of the solar cells parallel to the panel

surface may be a significant part of the thermal circuit.

The hollow core substrate structure under considera-

tion represents a complex geometrical problem for the thermal analyst.

As a result, a digital computer program, which takes into consideration

both radiation and conduction heat transfer, has been used to compute

the temperature distribution for the hollow core substrate. Through

a study of the symmetry of the hexagonal hole pattern for the hollow

core substrate, a triangular section (Fig. 7-4) was selected as repre-

sentative of the structure for thermal analysis. The boundaries of

this segment have no heat flow through them. This section can be

divided into four distinct segments: (I) a pie-shaped dielectric

skin with cells attached and an open back surface; (2) an irregularly

shaped nickel segment of the front-cell surface which has a closed

back; (3) a cylindrical nickel segment which forms part of the hole wall;

and (4) a bottom segment of black-coated nickel which is shaped identi-

cal to the second item.

The thermal model described here was then subdivided

into 47 nodal areas for the purposes of digital computation. The node-

to-node conductances and the radiation coefficients were computed for

input to the program, and matrix information was tabulated so that the

computer could solve the 47 simultaneous algebraic equations by a

numerical iteration process. The energy absorbed by the top surface

of the panel was computed as heat sources for each of the nodes involved.

7.3.3 Characteristics of Hollow Core Structure

A detailed digital computer analysis of the hollow

core structure has been completed. The example discussed here is for

a l-mil electroformed nickel substrate with 0.8-in. holes and a spacing
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of 0.l-in. between holes (d/a = 1.8). The panel thickness was assumed

as 0.2-in.; 4-mil cells with 2-mil filter covers were considered (each

with a l-mil dielectric skin between cells and substrate). This example

is considered to be a conservative one, as the thermal resistances will

be higher than, for example, substrates with heavier walls and smaller

panel thicknesses.

The following assumptions concerning the surface prop-

erties of the completed panel were used in this analysis: Solar ab-

sorptivity of top surface, _ = 0.8; total thermal emissivity of top
s

surface, ¢t = 0.8; thermal emissivity of bottom surface, ¢b = 0.9.

(The power converted by the cells into electricity was neglected in

this case.) Further, it was assumed that only the horizontal surfaces

of the back surface were coated with black paint, leaving the sides of

the cylindrical holes with a specularly reflective, natural finish.

The results of the analysis for earth-space solar radi-

Btu .
ation intensity, (S = 444_) show a maximum difference of 5.5°F

between the hottest spot on the front surface and the coldest spot on

the rear surface. The average effect on solar cell temperatures is

to raise their temperatures less than 2°F compared with a perfectly

conducting system.

The only apparent uncertainty in the analysis is the

assumption that the cells effectively contributed to the transverse

conduction of the assembly when they in fact are not joined in a con-

tinuous sheet. An examination of the data shows that this might influ-

ence the temperatures in a relatively small region where the hollow

core structure shields the back of" the cell top surface. Assuming that

the silicon did not contribute at all to the conduction increases the

predicted temperature of the hottest spot by approximately 2°F.

It appears from this analysis that the hollow core

structure, when used as the open structure under consideration here,

has excellent thermal characteristics from the standpoint of solar cell

efficiency. A lightweight structure of this type would be very easily

influenced by transient changes in the thermal environment. However,
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since it is a good conducting system internally there should be no

difficulty with thermal stresses due to temperature gradients within

the substrate. Differential expansions or contractions between mate-

rials with differing properties or between the panel and its frame are

a potential source of concern. Thesewill be examined later for a

particular case.

7.3.4 T_hermal Coatings

The primary function of the filter, or cover glass,

conventionally applied to the top of a silicon solar cell is to in-

crease the thermal emissivity of the topside of the solar panel without

appreciably decreasing the transmission of energy at useful wavelengths.

In a lightweight panel the cover glass may be a significant contributor

to the panel weight if used in normal thicknesses. However, a coating

of SiO less than 2 mils thick will double the emissivity of a bare cell

(from 0.35 to 0.70), and a thin cover glass(0.002 in.) can be expected

to produce an emissivity of at least 0.8. The use of blue and infrared

reflective coatings can also reduce cell temperatures by lowering the

amount of energy absorbed at wavelengths which cannot be converted to

electric power by the cells.

A black paint coating will be used on the back side

of the solar panel to maximize the emissivity of that surface and mini-

mize the solar cell temperatures. Several durable, stable, and space-

proved black coatings (such as Laminar X-500) are available. Most appear

to require a minimum thickness of approximately 2 mils to obtain a full

value of their thermal emissivity, which will vary between 0.85 and 0.95

for the temperature in an earth-space environment. The emissivity value

obtained will depend upon the brand, the batch, and the application

process. An examination of the thermal circuit of the hollow core

structure reveals that there is a slight advantage in not coating the

walls of the cylindrical holes on the bottom of the panel. Although

the effect is not important for cylinders with a large d/a ratio, re-

flective walls allow the end of the cylinder (the coated back of the
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dielectric skin) to radiate to space with geometric view factor of 1.0.

If the walls of the cylinder are black, additional conduction must take
place before all of the heat is radiated.

7.4 Solar Array Characteristics as a Function of Mission Trajectory

Assuming that a solar cell output of i0 W/ft 2 is desired (at

55°C and i AU) to a cell efficiency (at air mass zero and 28°C) of 9.5

percent (active area efficiency of I0 percent). This efficiency in-

cludes cover glass losses (0.94 loss factor) and fabrication/mismatch

losses (0.965 loss factor). It also includes an approximate temperature

coefficient of power of 0.4 percent per degree Celsius.

Figure 7-5 shows the characteristic curve for a 10.6 percent

efficient 2-cm-square solar cell with a resistivity of 5 to i0 ohms/cm.

This curve has been incorporated into a computer program to calculate

a total array output at sun-probe distances bearing 0.6 to 5.2 AU.

Figures 7-6 through 7-15 give E/I characteristics and the P/E character-

istics for a 10.4 kW solar array operating from 0.6 to 5.2 AU. In most

cases where the array is either close to or far from the sun, (i.e.,

not in near-earth space), the shape of the E/I and P/E curves at the

higher voltages appears to be distorted. This is due to the manner in

which the curves are obtained by linear extrapolation of the current

and voltage axes as a function of the temperature intensity at which

the array is operating. Very little data is presently available in

the quadrants which the axes must be extrapolated to expand or decrease

the solar cell characteristic curves. An important result of this

analysis is the requirement for data to be taken on the operation of

solar cells in the second and fourth quadrant in order to expand the

E/I curves beyond the short-circuit current and open-circuit voltage

point into the negative-voltage and negative-current regions. This

will enable the computer to extrapolate using known data points to

the new operating conditions without obtaining apparently distorted

characteristic curves.
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7.5 Solar-Electric Propulsion Power Conditioning

Figure 7-16 is a nominal power-versus-voltage characteristic

curve for the 10-kW Jupiter flyby solar array. This figure and the

previous E/I curves illustrate the severe electrical mating problems

involved in solar-electric propulsion. In order to define the power

conditioning and control subsystem mating requirements (and thus the

design approach), the solar-electric propulsion system operational

modes must first be defined.

7.5.1 System Operational Modes

The thrust profile that can be followed over the

trajectory may be either one that varies with the power actually avail-

able (thus being somewhat unpredictable and possibly requiring one or

more impulsive midcourse corrections), or one that is preprogrammed as

a function of available power to eliminate the need for impulsive cor-

rections.

In the case of preprogrammed thrust, several thrust

profiles can be considered. Under most operating conditions, the mass

flow and specific impulse can be varied in the thrustor to produce the

programmed thrust value employing the full available power rather than

the predicted value. However, the ralationship

46 q P = F I (i)
sp

shows that if the I is near a value for which the efficiency varies
sp

linearly with I it will not be possible to maintain the required
sp

thrust when P changes. Such a lack of controllability is exhibited

at an I of about 4000 sec for the contact ion engine, 3000 sec for
sp

the Cs bombardment engine and 2000 sec for the Li-H arc jet. Opera-

tion on programmed thrust should be carried out with I values at
sp

least i000 sec above these values, or else the power profile should

also be programmed at a conservative value throughout the thrusting

phase. Figure 7-17 illustrates some of the choices of thrust and

power profiles.
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With a second equation,

F =_g I , (2)sp

it can be seen that only one of the variables of F, _, I is independent
sp

if P is fixed.

Case i corresponds to operating at constant power,
chosen conservatively at a value which can be assured with sufficient

reliability throughout the thrust phase. Note that thrust control will

require simultaneous changes in _ and I to correct for errors in P
sp

or changes in _. This case represents simplicity in power conditioning
but a large loss in available energy.

Case 2 uses the available power profile to give constant

thrust. If the variations in power output are large, as could be the

case with solar energy sources, this modeof operation in unattractive.

The basic problem is the linear variation of efficiency with I at the
sp

lower I values as discussed previously.
sp

Case 3 uses a thrust profile that tracks the nominal
power profile, with I maintained essentially constant. Such operation

sp
is particularly suitable for the bombardmentengine and the Li-H arc jets.

The contact engine will suffer a small efficiency loss with falling mass

flow. A variation of this case that is quite attractive for all thrustor

types is to select two or more levels of constant power, switching in or

out thrustor modules as power level changes.

Case4, based on constant massflow, requires both F

and Isp to vary as (P _)I/2 where _ depends on Isp. There appear to be
no special advantages for operating in this mode.

Case 5 is particularly attractive for the contact ion

engine. It uses a linear relationship _ = I which has been found tosp
give near-maximumefficiency at each I for the contact engine. The

sp 1/3
massflow and specific impulse will vary as (P _) and thrust as
(p _)2/3. As before, the thrust profile will be maintained by varying

Isp and _ to utilize the available p_er.
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For the mission under consideration, the case i opera-

tional modecould be used effectively provided that it met trajectory

requirements without undue loss of available power. Integration with

payload power requirements is also another important consideration.

The initial problem associated with using all or a

fixed percentage of the available source power in the other operational
modesconcerns the determination of that power. Preprogrammingas a

function of time could possibly be used. If the unit thrustor size was

relatively small (e.g., i - 2 kW), direct programmingas a function of

the rate of charge and magnitude of source voltage and current could be

utilized. After the source electrical capabilities are determined, the

load can be varied accordingly as a function of thrustor preprogramming.

An example would be thrustor module changes (case 3). The output volt-

age excursions required for maximumuse of available photovoltaic system

power, however, are much larger than the excursions for case I, the con-

stant power profile. Thus, case 3 regulation requirements will be greater
than those for case I.

7.5.2 Power Conditioning Design Approach

With the exception of regulation requirements, case I

and case 3 operational modes could use the same power conditioning de-

sign approach. There are three basic design approaches that could be

used. The first would use a single power conditioning subsystem for

each unit thrustor. The second could use a single power conditioning

subsystem for several thrustors, and the third would use a modularized

power conditioning and control subsystem for each thrustor.

Based on engineering considerations such as redundancy/

reliability, heat rejection, fabrication, logistics, stability, available

component capabilities, and control, the third approach is by far the

most attractive. This is substantiated by the results of a past modu-

larized power conditioning development program. The results of this

program indicate that power conditioning including controls, radiators,

and redundancy could be presently fabricated at 8 Ib/kW at 90 percent

efficiency for a 2.5 kW cesium electron bombardment thrustor.
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Oneof the basic problems that is eliminated with this

approach is the stability problem with high efficiency regulation. In

the modular approach the output voltage for 80 percent of the engine

power requirements is regulated by switching in and out open-loop dc-

to-dc converter modules. Thus, the stability problem is reduced con-

siderably.
The selection of transistors versus silicon-controlled

rectifiers for control and switching involves consideration of the power,

forward current, and breakdownvoltage ratings of available semiconductors.

Without using hybrid parallel-series combinations of

these active devices, which would require compensation circuitry, pres-
ent transistors have sufficient ratings for the modular approach. The

single power conditioning unit approach would require SCR's. SCRdc-to-

dc converters would have to be operated at lower switching frequencies

than the transistor approach. This would result in additional magnetic

componentweight. The SCRapproach also requires considerable commuta-

ting circuitry.

7.6 Structural Material Evaluations

Aluminum will be used in the frame and interconnection struc-

ture for the demonstration panel; all pertinent mechanical properties

can be found in MIL-HBK-5.

The demonstration panel materials requiring developmental

testing to establish their physical properties are:

i. Electroformed nickel

2. Structural adhesive

3. Dielectric film

Section 9 defines the procedures to perform this testing. Testing of

the electroformed nickel has been completed.

The electroformed nickel tensile test samples were found

to have an ultimate strength between 146,000 to 150,000 psi with I0

percent elongation in 1-in. gage length. The 2 mil/in, yield

strength is 104,000 to 109,000 psi. The stress-strain curve shown
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in Fig. 7-18 does not showa true elastic behavior, but in the lower

range of the curve the slope approximates the modulus of nickel. Thus,
for analytical purposes, one can use E = 31.106 psi. The ultimate

strength of 80,000 psi and yield strength of 50,000 psi used in the

analysis is conservative.
Several structural adhesives have been tested and will be

given further testing. They are:

I. A nylon-epoxy adhesive film (FM-1000).

2. Several epoxies (Epon 919, 934)

A procedure will be developed from these tests to obtain the required

cleanness. Tooling is being designed to apply the correct bond pres-

sures. The cure cycle, heating rate, cure temperature, and other

parameters are also being determined from the tests.
The dielectric materials being considered for the demonstra-

tion panel are fiber glass and DuPont Kapton H-film. The fiber glass is

a flight-proved material, having been used on Ranger and Syncom-3. The

recently developed Kapton H-film has been shownto maintain its physi-
cal, electrical, and mechanical properties over a wide temperature range.
The H-film can be used from -269° to +400°Cwithout adverse effects. In

comparison, the fiber glass dielectric is limited to operation between
-65°C and +85°C.

The tensile properties of the Kapton H-film and fiber glass

are shownin Fig. 7-19, while the thermal characteristics of each are

shownin Fig. 7-20. As shown, the H-film has a higher thermal conduc-

tivity than fiber glass, thus aiding to cool the panel during the part
of the mission where the trajectory is near the sun.
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8 .  MANUFACTURING O F  THE DEPDNSTRATION PANEL 

T h i s  s e c t i o n  d e f i n e s  t h e  manufac tur ing  p l a n s  and p r o c e s s e s  t o  b e  

used i n  f a b r i c a t i o n  and assembly of t h e  demons t r a t ion  p a n e l .  

p r o c e s s e s  a r e  b e i n g  developed i n  t h e  sample p a n e l  program. For  t h i s  

r e p o r t ,  t h e  d i s c u s s i o n  i s  l i m i t e d  t o  t h e  hol low c o r e  s t r u c t u r e  d e v e l -  

These 

opment. 

and o t h e r  a r e a s .  

The f i n a l  r e p o r t  will cover  t h e  p h o t o v o l t a i c  assembly,  f rame,  

F I G .  8-1 ALUMINUM MANDREL FOR FABRICATION O F  HOLIDW CORE STRUCTURE 

8- 1 7 0 2 7 - I D R  



8.1 Hollow Core Structure Development

The hollow core structure which supports the solar cells will

be fabricated by the electroforming process. Electroforming is defined

as the production or reproduction of articles by electrodeposition upon

a mandrel or mold that is subsequently separated from the deposit.

With the use of the electroforming process an extremely light-

weight and relatively stiff structural element can be fabricated eco-

nomically. The process permits the fabrication of the hollow core

structure as an integral unit, without welded or bonded joints.

The hollow core structure is fabricated by preparing an alu-

minum mandrel similar to the one shown in Fig. 8-1. Flat aluminum

sheet stock is set up and drilled to the required hole pattern. In

extremely lightweight structures (such as the solar panel) the holes

in the mandrel are very close together, and aluminum in the T-6 condi-

tion is used to prevent tearing of the material between the holes during

drilling. After drilling, each hole is reamed and chamfered. These

operations are required to produce an even, electroformed surface; the

process will replicate exactly even the smallest surface irregularity.

Special tooling is required to insure hole uniformity.

After the mandrel has been cleaned and prepared, it is

mounted in a reciprocator and electroformed in a nickel sulfamate

electrolyte. A sketch of the electroforming setup is shown in Fig.

8-2. As shown, the mandrel is mounted in the electroforming bath

between two anode baskets. Between each basket and the aluminum man-

drel, there is a fiber glass profile mask. The purpose of this mask

is to reduce the effect of the high current density that develops at

the edge of the mandrel. As the thickness of the electroformed de-

posit is directly related to current density, the thickness at the

edge of the mandrel would be greater if the part were plated without

a mask. The mask acts as a resistance in the flow path of the nickel

from the anode to the cathode; proper sizing permits a uniform thick-

ness to be obtained. Reciprocation of the mandrel is used to minimize
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variations in the current density distribution in the bath. The

gusher provides bath agitation which reduces pitting and removes

hydrogen gas from the cathode.

After the required thicl_ess of nickel has been deposited

on the mandrel, the aluminum is removed by etching with diluted hydro-

chloric acid. The resulting hollow core structure is shown in Fig. 8-3.

8.2 Status of Program

Several types of extremely lightweight hollow core struc-

tures have been successfully fabricated by EOS. The weight require-

ment for this part of the solar panel is 0.066 Ib/ft 2, which requires

an 82-percent open area. As this requires a structure that had not

previously been fabricated, a three-phase development study has been

established to verify the design and fabrication process for the hol-

low core structure. The three phases are:

i. Fabrication of buckling specimens (Phase I)

2. Full-scale plating tests (Phase II)

3. Fabrication of demonstration panel (Phase III)

To date, only the Phase I study has been completed. It was

the purpose of this study to verify on a small scale the fabrication

procedures and provide test data to verify the design analysis of the

structure. Both of these objectives were met. A hollow core sample

of the required weight was fabricated to successfully carry the design

loads. The results of these tests are detailed in Section 9.

Phase II (full-scale plating tests) is currently in progress

to establish the exact masking and electroforming parameters for the

full-scale panel.

Phase III (actual fabrication of the demonstration panel)

will only be attempted after the full-scale plating tests have been

completed. Each of these process development tests is described in

detail in Section 9.

7027-IDR
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FIG. 8-3 SUBSTRATE CONSTRUCTION - HOLLOW CORE STRUCTURE 
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The development studies are necessary because the electro-
forming process is affected by several variables which must be fixed

for each type of structure, then closely maintained to insure suc-
cessful fabrication.

The proper combination of the following parameters must be
established and maintained:

! Bath composition (chemical analysis)

2 pH

3 Current density

4 Plating temperature
5 Masking

6 Agitation

7 Reciprocation

8 Deposit stress

The methods and results of these interactions have been

documentedby several investigators, but without much agreement. The

proper combination of these variables will be developed during the

process studies of Phase I and Phase II. This will result in a process

specification to be used for the Phase III demonstration panel.

In general, the fabrication process for the full-scale hol-
low core structure will be as follows:

I. Drill, ream, and chamfer 6061-T6 aluminum plating mandrel

to the proper pattern.
2. Form mandrel to the final panel contour and trim to size.

3. Surface-finish mandrel as required.

4. Electroform mandrel to required thickness using parameters
established under Phase I and Phase II studies.

5. Removealuminum mandrel by etching.
6. Bond to supporting frame.
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9. TESTS, TEST PLANS, AND DATA SUMMARY

This section defines the tests and test plans for the demonstra-

tion panel, sample panels, and solar cell. The tests are conducted to

qualify the demonstration panel design, verify the structural analysis

and determine the electrical characteristics of individual cells and

electrical modules. The section discusses the results of tests con-

ducted to date and indicates what data will be obtained from tests yet

to be conducted.

A formal test specification will be developed before the start of

the demonstration panel test and will amplify and bring together the

material contained in different parts of this section.

9.1 Thermal Tests

9.1.i purpose

The purpose of the planned thermal tests is to make

a comparative experimental measurement of the effects of the light-

weight hollow core substrate structure on solar cell performance.

The proposed method involves the measurement of open-circuit cell

voltages under illumination intensities similar to the earth-space

environment. A direct comparison will be made between a completed

sample of the hollow core solar panel and another completed sample

with identical cells and coatings using a flat aluminum sheet as

substrate. A series of calibration tests will be conducted to estab-

lish precision in the tests.

The analysis of the temperature distribution (see

Subsection 7.4) does not indicate that a thermal penalty on cell per-

formance is probable. These tests will be conducted to verify that

conclusion. Although it will be difficult if the temperature gradf-

ents are as small as predicted, the tests may give an indication of
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the average effect of the local temperature variations in the celled

surface on the electrical output of the array. Although the effect

of changing the temperature of an isothermal panel has been accurately

determined, the effect of scattered local "hot spots" is not well

understood at the present time.

9.1.2 Apparatus

The thermal tests will be conducted in a 2 ft 3

vacuum chamber in which black liquid-nitrogen-cooled walls have been

placed. Illumination will be provided by high temperature incandes-

cent lamps or an arc source with a significant percentage of radiation

in the band between 0.7 and 1.0_. The solar panel samples, complete

with silicon cells and thermal coatings, will be instrumented for nomi-

nal temperature. No attempt will be made to measure the detailed tem-

perature due to the thinness of the nickel hollow core substrate walls.

Cold wall temperatures, lamp power, and chamber pressure will also be

measured during the test. A radiometer survey will be conducted to

determine the uniformity of illumination, which will be adjusted if

necessary.

9.1.3 Procedure

The basic procedure will consist of measuring the

open-circuit voltage of the cells on a hollow core substrate and a

flat plate sub strate while both are being illuminated at the same

time. The lamp power will be adjusted so that the samples are operat-

ing at a steady-state temperature similar to that predicted for the

earth-space environment. A series of calibration tests will be con-

ducted to establish precision in the comparison. The two samples will

be tested with the backs insulated to calibrate the cells. Each test

will be rerun with the two sample positions reversed to eliminate

dissimilarities in the illumination.
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9.2 Dynamic Tests

9.2.1 Modal Test of Substrate

The purpose of the modal tests of the substrate will

be to verify the natural frequencies and mode shapes predicted in Sub-

section 7.3.1 and to determine the damping coefficients for the sig-

nificant modes of natural vibration.

The doubly curved substrate panel, supported in the

manner which best approximates the boundary conditions assumed in the

analysis, will be excited by at least two electromagnetic shakers

driven by the same oscillator. These shakers will drive the panel by

coupling with eddy currents generated in the panel surface and will

not be mechanically attached to the panel. The natural modes will be

tuned in by (I) placing the shakers at locations where maximum ampli-

tudes in the mode of interest are expected and (2) adjusting the fre-

quency and amplitude of the excitation until the excitation is in phase

with the velocity of the response, which is the condition for resonance.

The nodal patterns will be detected by sprinkling a mixture of poly-

vinylchloride (PVC) pellets (Monsanto Chemical Company, Opalon 300 FM

resin) and magnesium stearate powder in a ratio of I0 parts PVC to 1

part Mg stearate. This mixture will stick to the curved surface and

tend to gather the nodes of the vibrating shell.

Each time a natural mode is tuned in, the structural

damping coefficient for that mode will be determined by placing a dis-

placement pickup (preferably of the capacitance or microwave type) at

a point of large amplitude vibration in the mode and recording the

decay of the vibration when all excitation is shut off simultaneously.

The damping can be estimated by applying the logarithmic decrement

method to the record of the decay.

9.2.2 Sinusoidal and Random Vibration Hard Mount Tests

The purpose of the sinusoidal and random test will

be primarily to verify that the demonstration panel can meet the re-

quirements specified in the Design Criteria and Requirements Specifi-

cation. For the present design, these requirements are:
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I. Three sweepsof sinusoidal vibration from 2 to 200 Hz at
1.0 min/octave with levels of 1.5g rms from 2 to 50 Hz and

2.0g rms from 50 to 200 Hz.
2. Three minutes of gaussian vibration at 0.2g2/Hz, band-

limited between 200 and 2000 Hz.

A secondary purpose of the sinusoidal tests, which

will be accomplished first in the testing sequence, will be to verify

by low level tests that the gains used to establish the design loads

for the panel were conservative and that positive margins of safety

will exist when the environments above are applied.

9.3 Static Strength Tests

9.3.1 Bucklin_ Tests of Hollow Core Substrate

9.3.1.1 Objective of Tests

The objective of the tests is to confirm the

mode of failure and the empirical buckling coefficients used in the

analysis of the hollow core substrate.

9.3.1.2 Summary of Results

The tests confirmed that the primary failure

made in the hollow core structure is crippling of the small flat sur-

faces between the cylinders, followed by secondary column-type failure

of the total substrate. The tests also confirmed that the empirical

buckling coefficients assumed in the analysis are safe to use.

9.3.1.3 Test Specimens and Their Preparation

The test specimens are electroformed to the

same procedure as those for the demonstration solar panel, with respect

to current densities, electrode arrangement, etc. More than one speci-

men is electroformed from each mandrel. After removal of mandrel, the

specimen is visually checked for structural soundness.

Epoxy shoes are cast on each side of the

specimen. The specimen is aligned such that its mid-plane is coinci-

dent with the shoe center line. The epoxy shoe surface is machined
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so that the load surfaces are parallel. A I/8-inch radius mill is

used for this operation. (See Fig. 9-1 for dimensions.) The specimen

is shown ready for test in Fig. 9-2.

9.3.1.4 Test Plan

The Instron testing machine used for the

compression tests is shown in Fig. 9-3. The machine has a range of

0-20,000 lb. The strain rate is maintained at a constant rate of

5.0 in./min until buckling has occurred, and a maximum load-carry-

ing capacity has been reached.

Before each test series, the machine is

calibrated over the anticipated loading range, providing a permanent

record for data reduction. A dead weight is used for this purpose.

The test fixture is mounted in the testing machine during calibration.

The test fixture is so constructed that it

assures uniform loading over the length. The contact surface is

cylindrical, assuring line contact and a minimum eccentricity. The

two fixture halves are visually aligned in the testing machine before

each run, assuring a line load transfer.

After fixture mounting and calibratinn, the

test specimen is inserted into the fixture and aligned until specimen

is vertical and has full-length contact.

The zero load point is marked before test-

ing. The test is initiated and continued past crippling and secondary

column-type failure until the load starts to drop off, then the load

is released and the zero point remarked on the record. The record is

labeled with specimen number and remarks of the test procedure and

result.

9.3.1.5 Test Results

The test results were derived from 21 hollow

core samples. The table in Fig. 9-1 defines the geometry variations

of the samples. Figure 9-4 shows typical data documentation; load

strain relations for one of the samples are shown in the chart of

Fig. 9-5.
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FIG. .9-3 INSTRON PRESSURE TESTING MACHINE 
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The results of the tests have been a con-

firmation of the anticipated failure modeand the assumedbuckling

strengths. Onemust take into consideration such things as the edge

effects, the sections deviating from the hollow core design (sections

without holes), shrinking stress from the epoxy shoes. All of these

effects reduce the overall strength. These latter effects explain

the variation in the load-strain curve within the samedesign. One

may, therefore, expect higher strength in the structure hollow core,
where the restraining factors have been eliminated.

The tests have confirmed that the crippling
coefficients are

K = 6.98 for square pattern

K = 12.00 for triangular pattern for unidirectional
loading

9.3.1.6 Anticipated Failure Loads

The formula for flat plate failure is

K 2.. E ,t\ 2

eR = . _b)
12(I - ¥2)

centers):

For square pattern (0.5-in. diam, 0.848-in.

• • 0.002 2
9.6 2 , 25 .106 (0.848 - 0.500 )FcR

1211- (0.3) 2j

FcR = 7150 psi

Pcr = FcR x A

PCR = 7150 x 0.0021 = 15.1 ib/in.
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FCR

For triangular hole spacing:

2
12 •

25 106 ( 0.002
(4a 1.732d)1211- (0.3) 2]

_2

1085

(4a - 1.732d)

d = 0.250

d = 0. 500

d = O.750

d = I. 000

FcR = 15220 PcR = 34.8 ib/in.

FcR = 9720 PcR = 13.0 ib/in.

FcR = 6740 PcR = 6.3 ib/in.

FcR = 8010 PcR = 4.6 ib/in.

rather than local stress.

is used.

The crippling is caused by average stress

For this reason the average cross section

Amean = (2 - --dacos8 + _) t

PCR = FCR

d

0.250

0.500

0.750

1.000

A
mean

P
cr

40.6 Ib/in.
17.3 Ib/in.

9.5 Ib/in.

7.4 ib/in.

It can be seen that the test results and the

calculated failure strengths correspond. The tests also indicated that

even though the structure crippled, it is still capable of carrying the

full load. The deformation must be extremely high to arrive at a sig-

nificant drop in load-carrying capacity. Figure 9-6 shows one of the

specimens exhibiting a bowedcondition under load.
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9.4 Photovoltaic Tests

9.4.1 Solar Cell Grading

Solar cells used in the fabrication of the two sample

panels (5 in_) and for the large demonstration panel (5 ft 2) shall be

2
of two types: (I) 8 mils thick, 2 cm , with 3-mil microsheet cover-

slides and an average efficiency of 11.6 percent AMI, and (2) 4 mils

2
thick, 2 cm , with 3-mil microsheet coverslides and an average effi-

ciency of 9.8 percent AMI (see Figs. 9-7 and 9-8).

A representative cell from each cell thickness shall

be calibrated at the Table Mountain test site, and used as a standard

in the electrical testing of the cells and arrays.

A cell and submodule test fixture will be designed

to prevent damaging the thin solar cells and to obtain optimum ohmic

contact to the cells and submodules.

The cells will be tested at 28 (12)°C at i00 mW/cm 2

with a tungsten light source. They will be graded with respect to cur-

rent output at a constant voltage of 450 mV. The cells will be grouped

in a matrix of equal current outputs and the matrix will be used to

select 6 cells with the same current outputs to form 6 cell submodules.

The 6 cell submodules shall be tested at 28 (±2)°C at

i00 mW/cm 2 with a tungsten light source, similar to the test described

above.

A test log of cell grouping and submodule test data

will be maintained to allow compilation of the degradation values of

submodule fabrication.

9.4.2 Solar Cell 3-_uadrant Characteristics Test

The characteristic of the solar cell E/I curve in the

negative voltage and current region is not presently well known. Be-

cause of this lack of data, extrapolation into these regions leads to

approximations which give deformed characteristic curves. It is the

purpose of the 3-quadrant characteristic test to determine the E-I
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curve in the first, second, and fourth quadrant in order to obtain

values which can be incorporated into computer programs to allow

extrapolations over wide temperature and intensity ranges. These

large scale extrapolations using known data points will enable the

computer to obtain E-I characteristic curves which maintain a con-

tinuous form from the short-circuit to the open-circuit condition

without step deformations.

The test plan for the 3-quadrant characteristic test

will be generated during the period between the interim report and the

final report; the test itself will also be conducted during this period.

9.4.3 Low and High Intensity Solar Cell Tests

In conjunction with the 3-quadrant characteristic

test, the solar cell characteristic curve at low intensities, down to

5 mW/cm 2, and at high intensities, up to 400 mW/cm 2, will be obtained

in order to verify the extrapolation methods performed by the computer.

Again, very little data is presently available on the performance of

solar cells at either very low or very high intensities (especially of

solar cells that have not been fabricated for the specific operation

at these particular intensities). It will be the purpose of these

tests to measure standard N-P silicon solar cells with the standard

number of grid lines (5 or 6) at low and high intensities, using both

a tungsten light source and solar simulator to obtain cell character-

istic curves over a wide range of intensities. The temperature of the

cell will be kept constant at 28°C in order to eliminate the tempera-

ture as a variable parameter. These tests should lead to a better

understanding of the operation of silicon solar cells over wide inten-

sity ranges. They will culminate in preparation of a theoretical model

which can be incorporated into a computer to aid in analyzing a solar

photovoltaic that must operate over large ranges of intensity.

The test procedure will be formulated in the period

following the interim report; the test itself will also be performed

in this time period.
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9.4.4 Low and High Temperature Solar Cell Tests

It will be the purpose of these tests to determine

the changes in the solar cell operating parameters such as open-circuit

and maximum output voltage, short-circuit and maximum-drain current,

and maximum output power as a function of temperature over a large

temperature range (-150 to +200°C). Very little data is available

covering extremes of temperature which can be encountered in a solar

photovoltaic array (0.6 to 5.2 AU). It will be the purpose of this

test to measure the characteristics of a solar cell operating at a

constant intensity but varying temperature in order to obtain values

over large temperature ranges which can be incorporated into the com-

puter program to aid in analyzing the performance of a solar photo-

voltaic array operating from 0.6 to 5.2 AU.

The test plan (and test itself) will be formulated

and performed in the period between the interim and final report.

9.4.5 Demonstration and Sample Panel Electrical Tests

The purpose of the electrical tests on the assembled

demonstration and sample panels is to determine by comparative meas-

urement the effect of assembly procedures and environmental testing on

electrical performance. The results of these tests will indicate any

electrical degradation experienced by the celled panels. Measurements

will be taken of current and voltage value for the various electrical

sections when exposed to sunlight. The sunlight tests are to be con-

ducted after electrical assembly and before and after each of the de-

sign qualification tests.

The test site is to be the sun deck facility at EOS.

A calibrated cell (reference Subsection 9.4.1) is to be used as the

standard by which to check the solar intensity.

The results of these tests are not meant to give pre-

diction of the power performance of the electrical module hollow core

substrate design, as this is beyond the scope of the effort; it will,

however, provide a basis for performance definition. The intent of

the test is to show (by absence of change in electrical output of the

panel after each test) that structure concept is compatible with thin

cell/filter systems.
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9.5 Material Tests

9.5.1 Tensile Test of Electroformed Nickel

Tensile properties of electroformed nickel will be

established throughout the development studies to insure the process

variables are being kept under control and that the design properties

are consistent.

It is not possible to electroform tensile specimens

at the same time the structures are being electroformed; therefore,

tensile specimens are fabricated before and after the structures. This

gives a reliable indication of the before/after properties of the

electroforming bath.

Specimens were run before and after the Phase I test

specimens; results are discussed in Section 6.

Specimens will also be run before and after the Phase

II samples and before and after the demonstration panels. The tensile

specimens will be plated to a somewhat greater thickness than the 2-mil

hollow core structure to facilitate machining and testing to ASTME-8.

9.5.2 Bonding of Thermal Control Paint, (RTV-60)_ and
Dielectric Adhesive to Nickel and H-Film

A series of tests will be conducted to verify that

the RTV-60, thermal control paint, and the dielectric adhesive develop

full bond strength when applied to nickel and H-film surfaces. The

test procedure will be to apply the various coatings to each of the

two materials. The coated nickel and H-film are then to be subjected

to thermal shocks. If the test specimen coating exhibits no flaking

or peeling, the material combination will be qualified. The tests are

not meant to space-qualify the individual materials; material selection

is based on use of space-proved materials.

The tests are to serve a second purpose in that they

will develop application techniques for achieving minimum weight before

development of the demonstration panel.

Two types of thermal control paints are to be eval-

uated on nickel strips and electroformed hollow core samples. One paint
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is a polyurethane base type with a high-gloss black finish (Laminar
X-500). The other is a flat black epoxy base type (Cat-a-Lac 463-3-8).

Both materials have been used successfully on aluminum alloys for the

Ranger and Mariner programs.
The cell adhesive to be evaluated on H-film is RTV-60.

This adhesive has been used on manyspace programs.
The H-film dielectric will be bonded to the nickel

hollow core with the following adhesives:

i. RTV-60

2. Epon934A&B
3. General Electric SR-585

4. American CyanamidCo. FM-IO00

9.6 Electroforming

The supporting substrate for the solar cells is a nickel

hollow core structure fabricated by an electroforming process. This

subsection details the three-phase process development studies which

are being performed to produce the hollow core solar panel. The three-

phase study consists of:

I. Phase I -- Fabrication of buckling specimens

2. Phase II - Full-scale plating tests

3. Phase III -- Fabrication of demonstration panel

The first phase of this study, already completed, has shown

that the nickel hollow core structure capable of carrying the required

design loads can be fabricated to a weight of 0.066 ib/ft 2. Phase II,

now in progress, will establish the process requirements for the full-

scale panel. Phase III will result in production of a demonstration

panel to verify the fabrication process, weight, and design allowances

for the solar panel. Each of the phases is discussed in the following

paragraphs.

7027-IDR 9-22



9.6.1 Phase I - Fabrication of Bucklin_ Specimens

The purpose of this study was to fabricate several

specimens of various hollow core designs that would (I) establish feasi-

bility of the fabrication process and (2) provide test data to establish

the validity of the design analysis.

During Phase I, 41 hollow core specimens were fabri-

cated from 6 different designs. These designs are shown in Figs. 9-9

through 9-13.

Two aluminum mandrels were fabricated for each pattern

design so that structures of both l-mil and 2-mil nickel could be fabri-

cated. The specimens were fabricated by drilling and reaming 0.100-in.-

thick 6061-T-6 aluminum. After the mandrels were prepared they were

placed in the electroforming bath as shown in Fig. 9-14. The plating

parameters used were:

I. Bath type -- Nickel sulfamate, consisting of analysis nickel

(9.3 oz/gal), nickel chloride (0.41 oz/gal), and boric acid

(5.3 oz/gal)

2. pH -- 4.2 to 4.8

3. Bath temperature -- 130 to 135°F

4. Stress -- 5-15 compressive

All specimens electroformed without difficulty. After electroforming,

the specimens were immersed in a 30 percent solution of muriatic acid

to etch out the aluminum mandrel. During this operation several of the

l-mil samples failed. The few that did successfully pass the etching

operation subsequently failed during the cutting and casting operations.

These problems did not develop with the 2-mil specimens, however. Be-

cause of these failures, the l-mil specimens were dropped from further

evaluations.

The samples were cut to size after etching, as shown

in Fig. 9-15. To load the specimens from the edges in compression, a

loading foot was cast along two edges from epoxy resin. A completed

specimen ready for testing is shown in Fig. 9-16.
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FIG. 9-14 ELECTROFORMING BATH SETUP - BUCKLING SPECIMENS 
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F I G .  9-15 N I C K E L  HOTLOW CORE STRUCTURE AFTER CUTTING 
AND ETCHING 
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Test results for these specimens are detailed in

Subsection 9.3.1 of this report. The fabrication and test of these

specimens has definitely shown the feasibility of producing the hollow

core structure by the electroforming process and that the nickel hollow

core can meet the design load and weight requirements.

9.6.2 Phase II -- Full-Scale Platin_ Test s

This development study is required to establish the

exact masking and plating parameters that will be used in plating the

full-scale demonstration panel. Experience has shown that scale-up

of masking and anode placement does not always prove successful.

This study will establish the full-scale plating bath

and the masking and anode placements to be used. An etching study will

also be made on a full-scale panel. These studies will be made using a

commercially available perforated aluminum sheet for the mandrel. The

mandrel will have hole sizes of 7/8 in. dia spaced on 1-1/8 in. stag-

gered centers. The mandrel will give approximately 55 percent open

area. The mandrel will be reamed and chamfered to give the required

plating surface. If the forming tool for the demonstration panel man-

drels is completed in time, the perforated mandrels will be formed to

the contour before the plating tests are run; if not, the mandrels will

be plated flat. The major tasks that will be performed under this study

are :

i. Set up the full-scale plating bath, consisting of agitation,

reciprocation, establishing and monitoring bath parameters,

and determination of mask and anode arrangement.

2. Fabricate sample panels. This effort includes completion of

perforated screen mandrel, electroforming, performance of etch

study and conducting section and thickness checks.
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9.6.3 Phase III -- Model Demonstration Panel

The final phase of the process development studies

is the fabrication of a demonstration model panel. This panel will

be fabricated using the processes developed under the Phase I and II

studies. The fabrication will be controlled with a structure manu-

facturing process specification developed from the Phase I and II data.

(The preliminary specification is included as Appendix A. It will be

changed as required by the Phase II study data.)

Three mandrels will be fabricated to insure attain-

ment of the demonstration panel. The three mandrels will be produced

by stack drilling. The major tasks in this phase will be:

i. Fabricate mandrels. Effort involves drilling, reaming, and

polishing; fabrication of forming mold; and forming of

mandrels.

2. Electroform mandrels

3. Etch aluminum mandrels

4. Bond hollow core structure to supporting frame

9.7 Structural Bond _Frame to Frame and Substrate to Clip Bracket)

Tests are to be conducted to evaluate the physical properties

and viscoelastic damping effect of the FM-1000 epoxy adhesive used to

bond the frame section together and to bond the hollow core to the

attachment clip. The tests will evaluate the amount of damping added

and the pull and peel strength of the nickel-to-aluminum and aluminum-

to-aluminum interfaces. The tests will be conducted to determine shear

strength on tensile shear samples and evaluate internal damping on

cantilevered laminated prismatic beams.

The test results will define process specifications to achieve

specific strength of material characteristics; they will also determine

bond line thickness requirements to obtain maximum structural damping for

minimum weight.
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APPENDIX A

MANUFACTURING PROCESS SPECIFICATION OUTLINES

This appendix contains outlines for the manufacturing process

specifications written for the fabrication and assembly of the demon-

stration panel. The purpose of these specifications is.to serve as a

record of the critical areas of manufacturing of this new concept in

solar arrays. The electroforming of large hollow core substrates, the

assembly of thin 4-mil cells into submodules, and their attachment to

the substrate are the particular processes to be documented. The speci-

fications define the innovations in tooling and fabrication techniques

required to achieve a structurally and electrically sound solar panel.

AI Preliminary Hollow Core Structure--Process Specification Outline

1.0 Mandrel

I.I Material - Aluminum 6061-T6 (QQA 327)

1.2 Hole pattern - per EOS Drawing 1100317

1.3 Contour -- per EOS Drawing 1100317

2.0 Electroforming

I.i Material -- Electroformed nickel

1.2 Bath -- Sulfamate nickel

(Ni-9.3 oz/gal; NIC12-0.41 oz/gal; HBO3-5.5 oz/gal)

1.3 Plating parameters:

pH = 4.2 to 4.8

current density = 60 amp/ft 2

bath temperature = 130 - 135°F

stresses = 5-15 compressive

time = as required by thickness
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1.4 Tensile panel before electroforming panel
(thickness 0.010 in.)

1.5 Tensile panel after electroforming panel

1.6 Handling of panel after electroform (use white gloves)

3.0 Etch aluminummandrel (white gloves)

3.1 Solution-- 30 percent (by vol) muriatic acid
3.2 Position-- vertical (remove and reimerse as required)

3.3 Time -- until reaction stops
3.4 Changesolution
3.5 Check for further reaction

4.0 Bonding to support frame

(process to be developed)

A2 Demonstration Panel Electrical Assembly Process Specification
Outline

1.0 Solar cell grading

I.I Cell and filter handling and storage

1.2 Grading test procedure

1.3 Tooling and facilities requirements

2.0 Submodule Assembly

2.1 Interconnector and cell assembly

2.2 Application of filter

2.3 Testing of submodule

2.4 Tooling and facilities requirements

3.0 Dielectric and thermal control application to demonstration

panel

3.1 Application of dielectric

3.2 Application of thermal control coating

3.3 Tooling and facilities requirements

4.0 Submodule assembly on demonstration panel

4.1 Bonding submodules to dielectric

4.2 Tab and interconnection soldering

4.3 Cabling of demonstration panel

4.4 Tooling and facilities requirements
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5.0 Performance testing of demonstration panel

5.1 Test facilities and instrumentation

5.2 Demonstration panel handlin 8
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APPENDIX B

ANALYSIS OF STRUCTURAL CONCEPTS (TRADE STUDIES)

B.I STRUCTURE TRADE STUDIES

Considerable effort has been expended upon studies and evalua-

tions of various solar panel structures for use on the demonstration

panel. Analysis associated with this effort may be found in the

attached sections. It was found that the electroformed biconvex con-

struction lends itself readily to application involving environments

described in the design criteria, with weight estimates equal to or

less-than the other concepts evaluated. Five different design con-

cepts were picked for evaluation in this study: 3 rigid and 2 semi-

rigid designs. These designs are described in the following sub-

sections.

B.I.I Conventional Flat Plate Construction

The solar panel substrate is of sandwich construction with

corrugated reinforcement on the backside. The substrate is attached

to box beams carrying the load back to the spacecraft. Both al_ninum

and beryllium alloys were evaluated; the latter was found optimum with

an average specific weight W of

W = 0.4129 ib/ft 2 (including cells)

B.I.2 Prestressed Tapes

In this concept, narrow, thin fiber glass tapes are stretched

in a "beach chair" arrangement over a frame structure. The tapes are

arranged such that the solar cells are supported along the edges and

open over the remaining area. The prestress precludes significant

additional loading caused by environment. The frame must withstand

both the prestress and environmental loads during boost phase. This

report indicates an average weight of

W = 0.374 ib/ft 2 (including cells)
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B.1.3 Prestressed Diaphragm

In this concept a thin membrane is used instead of the inter-

laced tapes. The diaphragm will be able to transmit shear better than

in the tape concept. In addition, a reduced prestress can be used,

thus reducing the size of the frame assembly. This report indicates

an average specific weight of:

W = 0.3054 ib/ft 2

The frame must be reinforced to withstand the boost phase environment,

increasing the frame weight:

W = 0.345 ib/ft 2

B.I.4 Honeycomb Construction

This design is similar to the one of Subsection B.I.I, with

the only difference being that the substrate is of double-sheet con-

struction with honeycomb core bonded between the sheets. Beryllium

sheets of 0.002 inch will be used for the facing sheet and aluminum

sheets of 0.0006 inch for the core, bonded into an assembly. The sub-

structure will be similar to that in Subsection B.I.I. The average

specific weight will be

W = 0.4148 ib/ft 2

B.I.5 Hollow Core Biconvex Solar Panel

This design incorporates the inherent rigidity of the curved

panel as well as its membrane-type loading characteristic. All the

unnecessary material has been removed from the panel surface; the

panel is supported along the edges by flexible clips to assure simple

support, minimizing any induce moment in the structure. The clips are

attached firmly to a rigid frame structure, thus assuring complete edge

support of the hollow core.

The analysis of this concept is included in Appendixes C and

D. The average specific weight has been calculated to be

2
W = 0.3397 ib/ft
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B.2 Concept Analyses

The following pages comprise documentation on the analyses

for the five concepts considered.
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APPENDIX C

STRUCTURAL ANALYSIS OF HOLLOW CORE SUBSTRATE

The weight of the hollow core substrate is dependent on a number

of variables, such as skin thickness, hole size, depth of section,

percent of open area, etc. _le choice of the specific design is de-

pendent on the frame used, attachment point, environment, and other

design conditions. To handle the large number of design parameters

and arrive at an optimum substrate structure, a computer program was

derived and used in the analysis.

This appendix provides a record of the equations used in the

analysis and presents some of the results of this analysis. The com-

puter program is now checked out and available for further design

calculations.
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APPENDIX D

EQUATION DERIVATIONS FOR STRUCTURAL ANALYSIS

OF DEMONSTRATION PANEL

This appendix contains the detailed stress analysis of the

demonstration panel. The derivations for the equations used to ana-

lyze the biconvex substrate are presented on the following pages.
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APPENDIX E

DYNAMIC ANALYSIS AND EQUATION DERIVATIONS

This appendix shows the equations for analyzing the biconvex

structure mode shapes and natural frequencies.

The substrate frequencies are defined in Appendix D. A calcula-

tion is included here to indicate substrate deflection for the boost

conditions; the deployed array minimum resonant frequencies are also

estimated in this appendix.

The internal loads for the biconvex substrate can be obtained

from the derived equations once the mode shapes are determined. Equa-

tion complexity dictates that the mode shapes must be determined by

test.

Also discussed here is a method of analysis to determine the

effect and optimum design of viscoelastic adhesive damped structures.

E.I Prediction of Natural Frequencies and Mode Shapes of the

Substrate

The mathematical model of the thin shell of the panel shown

in Fig. E-I will be developed from the shallow shell theory presented

by Marguerre (Ref. I). The quantities I/R I and I/R 2 represent the

principal curvatures of the panel; _ and _ are orthogonal curvilinear

coordinates along the principal directions; U, V, and W are displace-

ments of the shell midsurface along the principal and radial directions.

The sign conventions for membrane stresses and moments are also shown

in Fig. E-I.

The shallow shell theory, as written in terms of a stress

function _ and the radial displacement W takes the following form if

the radial inertia is included
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IW

_Y

X R1

x

E-2



R2 b_ 2 b[_2 bt 2

(1)

_®-_ _ o_ - _ _ = (2)

Equation 1 is the condition for radial equilibrium of the shell and

Eq. 2 is the condition for compatibility of the displacements. D is

a stiffness parameter given by

D

Eh 3

12 (I- 2)

where E is the modulus of elasticity and _ is Poisson's ratio, p is

the mass density of the shell.

Other relations which are required to formulate the boundary

conditions are:

I. The membrane stress relations

N2 = _ 2

2. The moment and shear relations

/_2W

.i= D_--+o
_et2 _2/

{_2w

M 2 = D _='-_ +u

702 7= IDR E -3



HI2 = -D (i - _)

Q1 = -D_-_ V2W

Q2 = "D_ V2W

The stress-strain relations from which the displacements U and V can

be found are:

Ell

N I = _ (¢_ + %) ¢_)
1-%)

Eh

N 2 = _ (¢_ + %) ¢_)
1-%)

Eh

NI2 = 2(l+u) ¢c_

where

c = _.E+ w_.
a bcz R I

= _v + w_.
¢_ be R 2

¢c_ = _s_'_S+_vbcv

Boundary conditions for demonstration panel.

The support condition for the demonstration panel will be

such that

W = V = M I = N I = 0 on _ = O, _ = _o

U = W = M 2 = N 2 = 0 on _ = 0, B = _o

7027-IDR
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Mode Shapes and Frequency Equations

The form of the series solutions which satisfy the boundary con-

ditions above are:

= A sin I _ sin _ sin _ t (3)
._j _., mn n mn

m=ln=l

W = B sin X _ sin _ sin w t
__ tJ mn n mn

m=l n=l

(4)

where

= n__._ and _m m_In %

Substitution of Eqs. 3 and 4 in 1 and 2 leads to the following set of

algebraic equations in A and B
mn mn

- 2n _ 2"-i.
fl_kR212n + R_ _m2 Amn + L.D (I + _m2)_ + ph Wmn_ Bmn

=0

k +l.l,_) Amn- 'kR 2 n _i _m Bran = 0

The condition which must be satisfied for a solution for A and B
mn mn

to exist is that the determinant of the coefficients vanishes. That

is

-(R'_ A'2+n _II m, " _" (A'2n + Ij'2m) 2 L_D + + _h mn._j

2
which may be solved for

mn

7027-IDR E-5



r" ;:k _m
2

2 i i D _2 + _t2m + Eh I
mn ph _I n 2

L Xn2 + "m j

For the special case of the demonstration panel R 1 = R 2 = R and the

frequency equation becomes

(5)

2 i I:212Wmn = ph-- D k + _m + R2

whereas for a flat plate R I = R 2 = = the frequency equation becomes

2 = -- k + ta,mmn ,Oh

It is interesting to note that at the lower frequencies, i.e., small

m and n, the term due to the panel curvature, Eh/R 2, is the predominate

term in the frequency equation whereas for large m and n, high fre-

quencies, the frequencies of the doubly curved panel approach those

of a flat plate as is expected. This substantial increase in the

fundamental and lower natural frequencies of the panel is the inherent

advantage of the curved panel over the flat panel.

Some interesting conclusions about the nature of the vibra-

tion of the panel can be drawn from the form of the solutions Eqs. 3

and 4 and the resulting frequency Eq. 5. The solutions are expansions

in a set of generalized coordinates which are the normal modes of the

system each of which is associated with a frequency • • For a square
mn

panel, that is for _o = _o and R I = R 2 = R the frequency equation is

symmetric in m and n which means that the initial conditions (or forc-

ing function) may be chosen in a way where for m _ n

r=-

W = _A
Lmn

sin m_ sin nn nW n_

_o _o + Anm sin-- sin% Sod
sin t
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with A and A completely abitrary and still have motion at the
mn nm

natural frequency _mn" For examples of the different types of natural

vibration which can occur at a given frequency, _mn' see Ref. 2.

E.2 Response of Substrate to Sinusoidal and Random Input

Where the panel is excited by moving supports, the total

= = = is
displacement at _ O, _ _o' _ O, and _ = _o

W = W sin _t.
s o s

Assume that the displacement of the panel relative to the supports is

given by

w = w (=,S) q(t)

qo sin n_ _ sin _ sin w t
m_

o o

q(t) = qo sin _mnt

that is, assume _s = Wmn = _II and that the response is primarily the

fundamental mode of the panel. The total displacement is then given

by

z = w q(t) + w
s

Lagrange's equations for a nonconservative system,my be written as

where

d

_o °fo
i

o o
(_+_s)2 d_d_

(6)

i 2

V "_ _KEq
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i 2
D = _CE q

KE = Effective Stiffness

CE = Effective Damping

Performing the operations indicated in Eq. 6 gives

I_o °'o I_o _o

- 2 ]2
-411

o o o o

+ C E i 911 qo + KE qo = 0
(7)

Let

_o °/o

11 = _ _ P W (_,_)d_ d_
o o

_o

12 = _ _ P [_ (_,_)]2 d_ d8
o o

Then Eq. 7 becomes

2 2 "

-_iI qo 12 + (CE i Ws + KE) qo = _II W ° II (8)

at resonance _s _ _II and the panel spring forces balance the inertia

i.e.,

2

KE qo = CUll qo 12

so that Eq. 8 becomes

qo 11

W'-o : -i _E Wll
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or neglecting phase

qo Ii

_o = q _Ii

but the critical damping coefficient is given by

CC = 2 q_-2 KE

and since

(9)

CC = 212 Wll (i0)

and the dynamic magnification factor for the panel is

i i

Q = _ = 2 CE/C C (11)

where _ is the structural damping coefficient for the first mode; sub-

stituting Eq. i0 and II in 9 gives

qo II

w" =T'22Qo

then

W ____

I I _

12 Q w (c,,iS)ws

and

II _

= I_ Q w (_,_)Ws

or

II Q

W = 2 _ (@' B) U s

12 Wll

7027-IDR E-9



I I
Bo C_o 4o,

= _ _ psin" " o o-- _ sin 8 d_ d8 =
_-- _2

O O O O

p

12

so that

_o °'o r_
2. 2. _o o

= _ _ ;) sin --_ sin _- _ d(v d8 = 4
O O O O

mp

W 16 9-_ _ (_,_)
2 2 s

_r _11

Maximum Deflection of Demonstration Panel - Sinusoidal Input

Assume an input acceleration of 1.5 g's to the substrate e.g.,

no amplification in the frame. From Eq. I0 of Subsection E.I

2

w'iz = 32,000

assume _ = 0.04; Q = 25; for maximum W, _ = _o/2, _ = _o/2

W = (16)(25)(1.5)(387) = 232,200

_2 (32,000) 315,826

(12)

W = 0.735 inches at the center of the panel

Consideration of Random Vibration Environment

The random vibration environment is band limited between 200 and

2000 cps and is not expected to produce critical design loads since

the solar panel structure will have its primary resonances well below

200 cps.

E.3 Dynamics of Deployed Array

E.3.1 Estimate of Lower Bound of Natural Frequencies of the

Deployed Array

An estimate of the lowest natural frequencies of the

deployed array has been made based on the following assumptions.

7027-IDR E-IO



I. All the load is carried by the two frame members which

attach to the spacecraft as cantilever beams.

2. The stiffness added to the structure by the panels is

neglected.

3. The mass and mass moment of inertia is uniformly distributed

along the beams.

4. The torsional frequency is calculated based on differential

bending of the cantilever beams, neglecting the torsional

stiffness of the box beams and cross members.

All of these assumptions will lead to estimates of

natural frequencies which are conservatively low.

0

I i

I
4
i
I
I
I
I
I
i
I

_-o-_
i

o'_ b

I

The array shown above is reduced to the model shown on the following

page.
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M = 8 x m = 8 x 0.06476 = 0.51808 Ib sec2/in-
total

I00, = 2100, + 4(100, + ma 2) + 2(100, + mb 2)
total

I00 , = 17.7 ib-in-sec 2

I00,
total

2
= 2913.4 ib- in-sec

8El
K -

L 3

E = 107 psi

L = 360 in

= 30in

I = 0.0528 in 4 (section moment of inertia of frame)

K = _(i07)(0"0528_ = 0.0905 Ib/in

(3.6) 3 x 106

The fundamental cantilever frequency is given by

f _ I m

27T y mtota I
= 0.094 cps

the first torsional frequency is given by

f = i---_'2K---_" = 0. 038 cps

2_ Y I00,
total
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E.3.2 Mathematical model of Deployed Array - Stiffness

Matrix Analysis

The test results from the demonstration panel will

be used to deduce a stiffness matrix and a damping matrix for the

deployed array from which the frequencies, mode shapes, and frequency

response can be calculated.

E.4 Analysis of Viscoelastic Dampin_ in Composite Structures

In order to minimize the dynamic magnification factor of

the frame structure, the feasibility of incorporating a frame design

which uses composite beams with constrained layers of viscoelastic

material is being investigated. The constrained layer approach was

chosen over a free layer arrangement since the former provides more

damping with less added weight than the latter.

Consider a general composite beam which has cross section

as shown != W 2 _I H3 1

,] o
_2_1 J

i ® i

TI ,l-r

and

and @ Primary Structure

@ Viscoelastic Layer

h 2 is thickness of the viscoelastic material

W 2 is width of the viscoelastic material

H3, I is the distance between the neutral axes of sections I

3 of the composite beam.

The loss factor for the composite beam is given in Ref. 3.

_YX

I + (2+Y)X + (I+Y)(1+82 ) X 2

(13)
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Where Y is a geometry parameter given by

y

2

H3

i I

E_I + E_3 (EIII + E313)

and X is a parameter given by

_2 ,

G2W2 k ' i I I i= i-- I !-- +

where

= loss factor of viscoelastic material in shear

E = modulus of elasticity, psi
2

A = cross sectional area, in

I = section moment of inertia

G = shear modulus, psi

= wavelength, in = _/E/p/f

for a given geometry of the primary structure, Y, and a given loss

factor= _, Eqo 13 may be maximized by adjusting X.

X
optimum

1

(14)

(15)

(16)

the maximum loss factor for the composite beam is

qmax = 2
2 + Y +--

X
opt

(17)
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APPENDIXF

THERMALANALYSISANDDERIVATIONS

F.I Thermal Analysis of Hollow Core Substrate

The steady-state equilibrium temperature distribution within

a typical section of the hollow core nickel substrate has been deter-

mined through the use of a digital computer program and an IBM 7094

computer. The conducting material is first divided into a number of

nodal areas used to approximate the continuous region such that a

simple heat balance equation can be written for each node:

Ri = _ Cji (Tj - T.)l + _ S..jl(T_ - T4) + Qi

The conductance between the i th node and any other (j) node

is given as Cji, the corresponding radiation coefficient is Sji , and

the heat source of the i th node is Qi" At steady-state equilibrium,

the residual, Ri, is zero for each node. The digital computer pro-

gram uses Newton's formula and a numerical relaxation technique to

establish each of the temperatures such that each residual is reduced

to zero.

The conductance between nodes is calculated for each mutual

conducting boundary as:

k A..

_ ]i
C .. -

jl X..
jl

where k is the thermal conductivity of the material, A.. is the cross-
jl

sectional area of the boundary between i and j, and Xji is the length

between these two node centers. The radiation coefficients, Soi, in
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the problem under consideration, are between exterior surface elements

and deep space. With specularly reflecting walls on the substrate

.¢.. In the
holes, the rsdiation coefficient can be calculated as oA l i

case of segments radiating from two sides, c i can be replaced with

the sum of the top and bottom emissivities. The solar radiation ab-

sorbed was included as heat source terms, Qi = A.S_.I

F.2 Predicted Temperature Distribution

The predicted temperature distribution for earth-space solar

radiation intensities is given in the data below.

Area Emissivity Heat Absorbed Temperature

Node (ft x 104 ) (e) (Btu/hr x 1047 (OF)

1-3 0.015 1.7 5.4 126.1

4-6 0.046 1.7 16.5 126.1

7-9 0.076 1.7 26.9 126.1

10-12 0.106 1.7 37.6 126.1

13-15 0.137 1.7 48.7 126.1

16-18 0.167 1.7 59.2 126.1

19-21 0.197 1.7 70.0 126.1

22-24 0.228 1.7 80.8 126.1

25-27 0.261 0.8 93.0 126.2

28 0.360 0.8 128.0 126.7

29-31 0 0 126.1

32-34 0 0 125.7

35-37 0 0 125.4

38-40 0 0 125.1

41-43 - 0 0 124.8

44-46 0.261 0.9 0 123.8

47 0.360 0.9 0 121.2
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Conductance (Btu/hr-°F_

C 1 0.0047 C7

C 2 0.155 C
8

C 3 0.0094 C9

C 4 0.0775 CI 0

C 5 0.0142 CI I

C6 0.0515

0.0188

0.0388

0.0236

0.0309

0.0283

CI, for instance, is C14 = C41 --C25 = C52

C12 = C21 = C23 --C32 , etc.

= C36 = C63; C 2 is
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APPENDIXG

PROGRAMDRAWINGLIST ANDDETAILDRAWINGS

G.I Drawin$ List

The drawings related to this program are listed in the table

below. The detail drawings for the demonstration panel are also

listed in this appendix.

EOS Drawing Number

1100300

1100301

*1100302

*1100303

*1100304

*1100305

*1100306

*1100307

*1100308

*1100309

*1100310

*1100311

*1100312

*1100313

*1100314

*1100315

*1100316

*1100317

1100318

1100319

*1100320

Title

Solar Panel Assembly, Demonstration

Substrate Assembly

Upper Frame Assembly

Lower Frame Assembly

Clip Substrate - Upper

Clip - Substrate - Lower

Channel - Lower = 58.6

Channel - Lower - 56.7

Channel - Upper 58.6

Channel - Upper - 56.7

Hinge Bracket

Upper Corner Bracket

Bottom Corner Bracket

Frame (46)

Frame (45)

Frame (44)

Frame (43)

Hollow Core Substrate

Molding, Proposed Cross Section

Molding, Proposed Cross Section

Frame, Proposed Cross Section
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EOS Drawing Number

1100321

1100322

1100323

1100324

1100325

1100326

1100327

*1100328

*1100329

*1100330

*1100331

1100332

1100333

1100334

1100335

1100336

1100337

1100338

* 1100339

*1100340

*1100341

*1100342

1100343

* 1100344

1100345

1100346

1100347

1100348

Title

Array Studies

Array Studies

Art Work "P" Bus Bar

Art Work '_q" Bus Bar

Art Work "P" Bus Bar

Art Work "N" Bus Bar Module

Prototype Solar Panel Assembly

P Bus Bar, Detail

N Bus Connection, Detail

N Bus Bar, Detail

P Bus Connection, Detail

Photovoltaic Assembly, Demonstration
Panel

not used

Proposed Current Flow in Eight Sub-

panels for I000 sq. ft. Array

Assembly - Stowed Configuration

Stowed Configuration I000 sq. ft.

Solar Panel Deployment i000 sq. ft.

Hinge - Spring - Damper Configuration

Hinge - Latch - Configuration

Hinge Configuration

Hinge Configuration

Panel Latch

Pin Puller

Bus Connector and Crossover

Assembly - Stowed Configuration

With Band

Stowed Configuration 500 sq. ft.

I0 kW Solar Panel, Electric Propulsion,

Jupiter Fly-By

not used
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EOS Drawin_ Number

1100349

1100350

91-11966

91-11967

91-11968

91-11970

91-11985

G.2 Miscellaneous Drawinss

Title

not used

not used

Plating Mandrel, Hollow Core Sample,

Pattern for Part HH-

Plating Mandrel, Hollow Core Sample,
Pattern for Part SU-

Plating Mandrel, Hollow Core Sample,
Pattern for Part SC-

Plating Mandrel, Hollow Core Sample,
Pattern for Part H-H-4

Plating Mandrel, Hollow Core Sample,
Pattern for Part H-H-8

The following pages comprise drawings, astericked in the

above list, for the demonstration panel which have not been referenced

in this report.
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