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DEFINITION OF SYMBOLS 

Latin Symbols 

A 

C 

C 

D 

E 

F 

Rl 

R2 

t 

X. 
1 

X 

X 

Definition 

algebraic substitution used to simplify an expression 

integration constant used in the DuBois-.Reymond equation 
when subscripted 

fixed discontinuity in a state variable when unsubsc ripted 

specified relationship between variables a t  a point of 
discontinuity 

Weierstrass excess function 

fundamental function appearing in the formulation of the 
multiplier rule 

a function of the end points to be extremized 

the numerical value of g 

Lagrange multipliers associated with the end point 
constraints 

a region of 2n-t-1 dimensional space in  which the constraints 
are assumed to have three orders of continuous deriva- 
tives 

the union of all R 

a region such that the m (n+ 1) dimensional point 
[ 4,. . . , t , x( t l ) ,  . . . , x (  t ) ]  a re  interior to i t  m m 

regions 
11 

the independent variable 

any of the set  of original state variables 

the entire se t  of x.'s 

used only as k: a se t  not identical to k in the Weierstrass 
test 

1 
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DE FINITION O F  SYMBOLS ( Cont'd) 

Latin Symbols 

Z i 

Z 

Z 

Greek Symbols 

A 

E 

'i 

A 

n. 
1 

7 

Subscripts 

f 

h 

i 

j 

k 

Definition 

variables employed after the transformation which include 
both the initial state variables and the value of the inde- 
pendent variable at which discontinuities occur 

the entire s e t  of z.'s 

used only as 2: a set  not identical to 2 in the Weierstrass 
test 

1 

indicates the ma nitude of discontinuity in the ith state 
variable at the j' time point as in Ax.. 

11 

a small number 

a Lagrange multiplier 

the entire s e t  of A.'s 

a s e t  of numbers used in the Clebsch condition 

1 

independent variable in the transformed problem 

a dynamical constraint 

an end point constraint 

indicates a f inal  point 

dummy summation variable: range i, . . . , n 

xn' index used on a member of the set {xi,. . . , 
index used on a member of the se t  { t,, . . . , t } m 

index used on a member of the se t  {z,, . . . ,zN} 
or dummy summation index 
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DEFINITION OF SYMBOLS (Cont'd) 

Subscripts 

m 

n 

N 

P 

P 

q 

Q 

r 

S 

a 

P 

V 

Superscript 

Definition 

the number of values of the independent variable a t  which 
discontinuities occur in the state variables 

the number of state variable in the original problem 

the number of state variables in the transformed 
problem 

the number of end point constraints 

the number of end point constraints in the transformed 
problem 

the number of constraints in the original problem 

the number of constraints in the transformed problem 

dummy summation index: r = 1,. . . , m 

dummy summation index: s = 1,. . . , N 

index on constraints in transformed problem: 
a = 1, ..., Q 

index on constraints in original problem: P = 1,. . . ,q  

index on end point constraints: v = 1,. . . , p (original 
problem) or  v = 1,. . . , P (transformed problem) 

index on constraints in original problem: y = 1, . . . , q 

indicates an initial point in the original problem 

indicates an initial point in the transformed problem 

indicates a final point in the transformed problem 

indicates the particular a rc  under consideration 

vi 



DEFINITION OF SYMBOLS (Concluded) 

Other Notation Definition 

indicates a quantity expressed in terms of the transformed 
variables 

indicates a derivative with respect to the independent 
variable of the initial problem 

indicates a derivative wi th  respect to the independent 
variable of the transformed problem 

vii 



A REVIEW OF SOME EXISTING LITERATURE CONCERNING 
DISCONTINUOUS STATE VARIABLES IN THE CALCULUS 

OF VARIATIONS 

SUMMARY 

The important problem of determining optimal trajectories for prob- 
lems with discontinuous state variables has been treated by a few authors in  
rather esoteric papers. This paper summarizes the contents of two of these 
in  a fairly detailed discussion. An attempt has been made to develop ex- 
plicitly those relationships which are not contained in material dealing with 
the case of continuous state variables. 

The essential feature of the discussion is a transformation from a set  
of state variables with points of discontinuity to a set of new variables which, 
though greater in  number, are continuous. 
Euler, Weierstrass, and Clebsch, along with the transversality conditions, 
a r e  discussed in  the transformed problem; the results are rewritten in the 
original variables. 

The necessary conditions of 

The bulk of material covered assumes that the magnitudes of the dis- 
continuities are known a priori, but the case of unknown discontinuities is 
treated in  the latter portion of the paper. 

I NTROD UCT I ON 

Most of the modern texts dealing with the subject of classical mechanics 
are oriented to those areas  which form a basis for quantum mechanics. The 
recent interest in the application of classical mechanics to astronautics 
cannot be adequately treated by the texts which deal primarily with ground- 
work for quantum mechanics, and for this reason much research has been 
done into the older literature of mechanics. 

One such area which arises in  the aerospace field is the necessity of 
considering discontinuous integrands in the problems formulated via calculus 
of variations techniques. This problem has been treated only very recently, 
and the formulation rests on the doctoral dissertation of C .  H. Denbow which 
w a s  published in  1937 (Ref. I) .  



Denbow did not assume discontinuous variables but rather a problem 
situation in  which unknown corner points existed. The basic idea of this 
paper was  extended by Hunt (Ref. 2) to a case in which the variables were 
assumed to be discontinuous. The points at which the discontinuities appear 
a re  unknown, but the magnitudes of the discontinuities are assumed known. 
Mason, et. al. (Ref. 3) , have treated the problem in which both the loca- 
tions and magnitudes of the discontinuities are unknown. The work of Boyce 
(Ref. 4) extends Hunt's treatment to explicit recognition of the control varia- 
bles and to the inclusion of inequality constraints in the formulation. 

In order to obtain some insight into the necessity of considering such 
problems, w e  note that it is often desirable to determine a so-called opti- 
mum rocket trajectory, that is the trajectory which maximizes - or  mini- 
mizes - some quantity depending upon the end points of that trajectory. 
Within this framework we can treat the problem of finding the maximum pay- 
load that a vehicle can deliver to a specified orbit. 

The problem developed by Bunt covers the case in which there is a 
known vehicle, i. e. , the dry weights of the individual stages a r e  known. By 
this assumption we know, at launch, what the discontinuity in the mass must 
be at each staging point. (Note that the thrust actually "tails off" then 'Ibuilds 
upt1 so that thrus t  may be regarded as a continuous variable. Then the ac- 
celerations a re  discontinuous only at points where the mass is discontinuous. 1 

The problem of Mason et. al. is applicable to the case in which an 
existing rocket is not specified, but rather one in which individual stages a re  
designed in such a way that a maximum payload with given liftoff thrust is 
obtained. It is well known that optimum weight ratios exist between suc- 
cessive stages; since these a re  coupled with the trajectory to be flown, we 
have a full  calculus of variations problem. 

This paper does not add anything new to the above theories. The pur- 
pose is, rather, to expand the above work to such a level that most workers 
familiar with variational methods (at  the level of Bolza's problem) can obtain 
a knowledge of the discontinuous problem with a minimum of time expendi- 
ture. All  of the above papers a re  rather formidable and leave much of the 
developmental work to the reader. 

The notation used in Hunt's work wil l  be retained, wi th  the exception 
that certain conventions (such as summation on repeated indices and a sub- 
script notation for partial derivatives) will be replaced by more explicit 
notation for clarity. The subscript notation is probably the most difficult 
part of the study, and any simplification proves most beneficial. 
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Finally, it wi l l  prove worthwhile to car ry  references to a specific 
problem throughout the development in order to both illustrate and moti- 
vate the theory. The example that will  be chosen is, of course, the multi- 
stage rocket problem. 

FORMULATION OF THE PROBLEM 

The problem of Mayer considers the techniques of finding a maximum 
or minimum of some function of the end points 

/ 

(where to,% a r e  the initial and final times; x( tO) ,  x(Q) a re  some functions of 
these time points). It is assumed that the x's must satisfy certain differen- 
tial equations and end point conditions. In our present problem we shall be 
concerned with a finite number of time points a t  each of which certain condi- 
tions shall be specified. 
staging occurs, for example. ) 

(These can be thought of as  the points at which 

To illustrate the problem, we assume that we have n variables, 
xi(t) ( i  = I,. . . , n) and m time points tj, j = I,. . . ,m. Assuming that we 
already know the answer, as is usual in calculus of variations, the following 
diagram illustrates the xi( t) for 3 variables and 4 junctions, i. e. , n = 3, 
j = 4. 

tl tz 5 t 
In this case the xi( t) have been chosen to maximize a function 
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In general, we w r i t e  

The x's are ,  again as usual, subject to certain differential equation 
constraints along the trajectory. If we have q such constraints we can write 
these as 

But if, for example, we wish to change the nature of a differential 
equation at some time point tj then we must append an additional label to ob- 
tain something like 

@Lj)(t ,x,k) = 0 (valid for t 2 t.) 
J 

(Specifically, w e  might wish to let  @ ( J )  be a flight path equation which in- 

cludes aerodynamic effects and @ (1" be the corresponding flight path equa- 

of constraints must be less than the number of variables or  there wil l  be no 
freedom to choose an optimum path. Thus, we require 

P 
tion with the atmospheric terms t eleted.) It should be noted that the number 

with the strict inequality assumed to hold. 

To obtain the range on j we relate this index to our number of end 
points. For a rc  number one, with t, I t < h ,  we have j = I; that is, all our 
equations on the first arc  are labeled with a I, and the differential equations 
a re  

4 



The second arc is labeled with a 2, etc. We must include the las t  end point, 
&, for some arc ,  and since w e  have excluded the right-hand end point on 
each arc  we wr i t e  

For j = 1,2, .  . . ,m-2, w e  have t. - J < < t j+i  

For  j = m - I  , we have t. 5 t s  tj+l 
J 

(Note that m points give m-I arcs ,  so in the 4") = 0 equations we have j 
never equal to m.) P 

Other constraints on our problem a re  the conditions which must be 
(This condition allows us  to specify whatever seems met at the points t- 

appropriate at eacKstaging p i n t  such as initial latitude, final orbital in- 
clination, altitude of second stage cutoff, etc.) If we label our constraints 
a t  the t. points by qv, we have 

J 

$Jv [ t,, . . . , tm , x( ti) , . , x( t ) 1 = 0 m 

where, again, the x's a r e  assumed to represent the entire set  (x,,.. . , K) . 
Now the range on v must be determined. This procedure essentially counts 
how many things we can fix. 
points 5, which gives m conditions. We may also fix all the x's at ti and 
tm, giving 2n more points. 
(not both) side of an intermediate time point, t.. 

fix the x's a t  both sides of 5 since we shall later specify the magnitude of 
the discontinuity; this procedure could yield internal inconsistencies. ) We 
obtain a total of 

We may, if necessary o r  desirable, fix all time 

Finally, we can specify all the x's a t  either 
Since we have n x's fixed 

at either side of m-2 points, n(m-2) more con d itions a re  added. (We cannot 

m + 2n + n(m-2) = m(n+i) . 
This is the maximum number of $ constraints we may have. Thus, 

V 

v = I,. . . ,p;  p 5 m(nt-I). 
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These remarks preface the following statement of our problem. 

Find in a class of admissible* arcs 

xi(t) ( i = i ,  ..., n; t i s  tc  t 1 m 

satisfying differential equations of the form 

4p ( j )  (t, x,k) = 0 ( p =  I,.  . . , q <  n) ( 2) 

(for j = I,. . . ,m-2 we have t. - < t tj+l J 

J j+ I for j = m - I  we  have t. 5 t 5 t ) 

and end conditions of the form 

one which minimizes 

We have now isolated all discontinuities at the points t. Since we J'  
shall apply the multiplier rule, we require that the @ (j' functions a r e  of class 

c3 (i.e., +p (J)eC3). This requirement is assumed to hold in some region of 
a 2n+l dimensional space ( n  x's, n 2 s  and one t) which we label as R i j  (the 
j is discussed below). Furthermore, the multiplier rule requires that the 

cpjj) equations a re  independent. Since this condition must hold on each arc ,  
we may state independence by requiring that the matrix 

P 

:* The term "admissible'! requires some explanation and will be defined on 
page 7, paragraph 3. 
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be of rank q. (Remember w e  have q equations. 1 Thus, we are assured 
that we can uniquely solve for the q k's. 

1 

Another requirement which must be assumed for the following theory 
to be valid is that our 2n+l dimensional points a r e  all interior to the region 

Rij. 

We require an independence relationship among the z,bv's for similar 
reasons. That is, we require that the matrix 

be of rank p ( w e  had p end conditions). Also, let R, be a region such that 
the m( n+i) dimensional points [ti,. . . , &, x( ti) , .. . , x( tm) 1 a r e  interior to 
q. In this region we require that all z,byrs and g are of class C3. 

To return to the subscript which w a s  placed on Ri, the raison d'&re 
for j is that we considered each individual arc on which the differential 
equations held as separate segments. If we now take the union of all Ri j l s ,  
we obtain the total region Rp Jn se t  notation 

m- i 
Ri = U Rij 

j= i 

( m  t.'s give m-i arcs) .  An arc  in  Ri can be defined as an arc  xi( t) over 
the range ti 5 t 5 tm which is continuous except possibly at a finite number 
of points, t. ( j  = I,. . . ,m) ; xi( t) consists of a finite number of arcs,  and 
xi(t) is assumed to have continuous first order derivatives (xi(t)cCi). 
The term "admissible" arc  can now be defined. 

J 

J 

Definition: An admissible a rc  for our problem is a set [ t i , .  . . , t 1 
and an arc interior to Ri, all of whose ends and corners 
[ ti, x( ti) ] a r e  interior to 

m - 
J J 

7 
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By this definition an admissible a rc  gives well defined values to @ (j’ , g, P 
$+ and J. 

This information is preliminary. We turn now to the transformation 
of our stated problem into a form tractable to classical methods. 

TRANSFORMATION OF THE PROBLEM 

A s  is well known, the theory of variational techniques cannot handle 
problems involving discontinuous variables. 
technique existed to make all variables continuous. The observation of 
the diagram on page 3 and a little reflection might give r ise  to the following 
concept. The variable xi is obviously discontinous at the point h. But if 
we were to regard xi on the first a rc  and xi on the second arc  as - two 
variables instead of one discontinuous variable, then we have a problem in- 
volving only continuous variables. We bought this condition by adding 
another variable, but that is not a strong penalty since we already know how 
to treat the multiple variable problem. 

These could be applied if a 

The discontinuity of xi at 4 still exists, of course, since we have not 
altered the physics of the situation We must eventually find a method of 
connecting our path across this point, but, as wi l l  be later demonstrated, 
the natural corner conditions will  do just this. 

This, in essence, is the philosophy behind the manipulations that 
follow: transfer from a problem involving discontinuous variables to one in- 
volving an expanded se t  of continuous variables. 

We initiate the procedure by transforming the time. To do this, in- 
troduce a ficticious time T and define t(T) as 

t = t j  + (tj+l - t j ) T  ( j =  I, . . . ,m-  1) 

with T having a range 0 5 T 5 I. For our first a r c  we have 

so t =ti + (4 - ti)T which gives j = 1. For our last arc ,  

tm-l 5 t 5  t m’ 
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The variables x. a r e  functions of t, and we introduce new variables 
and call them z's, whici are functions of T.  They a re  defined in terms of 
the x's by 

Z ( 7 )  = X. (t) (j-I)  n+i 1 

That subscript on z looks a bit odd, but the original approach shows that it 
can be explained. On the first a rc  (t, cr t 5 Q )  we have variables xi,. . . , xn. 
For this arc ,  as noted above, j = I. So on the first a rc  

Now we must introduce new z's for the second arc ,  and since we have used 
up zl, . . . ,zn we s ta r t  the second arc  variables as 

z ( T )  = x.( t) (second arc) , n+i 1 

which can also be written a s  

Z (7) = x p .  (2-1) n+i 

Since j = 2 on the second arc ,  we have 

Z ( T )  = x. (t) (second arc) .  (j-I) n+i 1 
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Continuing in  this way we  find that 

( 7 )  =xi( t )  ( j  th arc).  
Z (j-I) n+i 

As noted above, for  the last arc,  j = m - I. So we obtain our j range as 

j = I , .  . . , m-I. 

To see how many variables we really have introduced, w e  se t  j and i to 
their maximum values and find 

Z = z  ( m-2) n+n (m-I) n' 

which tallies with the figure where we had n = 3, m = 4 giving z9. A simple 
count on this diagram shows nine variables. 
on the horizon; for it is not unusual to use 12 x's and 5 staging points in a 
trajectory - which means 48 variables to consider. ) 

(Here the first cloud appears 

Now we consider our discontinuity in terms of the z's. Our variables 
are defined at the left end of an arc ,  which is the right side of tj  denoted by 
t?. The value - which is unspecified - of xi( t) at the left side of t. (i. e., 
$e right end of the previous arc) we shall call t . Here we consider that J - 

j 

Directly from the definition of the z's (eq. 6 )  we have 

A t  the other end of this interval we have the same 3 evaluated at tj+i-. We 
still have z since we don't s tar t  our new set of z's until we move to (j-I) n+i 
the right of t so 

I O  

pi' 



(1) xi'tj+l-) = z (j-I) n+i 

For the value of 3 at the right of tj+l, i. e., xi( tj+i+) , we note that w e  are 

into the next set of z's; thus w e  add n to our previous value giving 

(0) = z  ( 0 ) .  xpj+i'" = z ( j-I) n+n+i j n+i 

Adding the last two equations we have 

or 

( 1) + [ Xi( tj+i+) - xi(tj+l - ) 1 = Zjnti( 0) 
Z 

( j - i )  n+i 

( 7) 
= z  (0). ( j-i) n+n+i 

The term in parentheses is our known discontinuity of the 5 at the point 

Now this is good for any x, so i = I,. . . ,n. Our last discontinuity in 
which in our equations shows up as xi(tj+l). So we the x's occurs at t 

must have 
m- 1' 

j + i = m - i - ,  j = m - 2 .  

Our first discontinuity occurs at 4, so x. (4) - x (t  
range of j in equation (7) is 

1 - j = i. Thus o u r  
1 i j+l 

j = 1, ..., m-2. 
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This defines our first (m-I) n variables. We now add to this the time 
points t. and make them variables of our problem. Since we have numbered J 

(m-I) n our z's from zi,. . . , z we start numbering the new z variables (which 

(we have m t . ' s ) .  
3 are really jus t  the tj's) with m-l)wl, . . . , z  'r (m- I) n+m 

Then 

t. = z 
J (m-i)n+j' 

Since our t.'s are constant we have 
3 

Z' = O  ( j =  1, ..., m) 
(m-I) n+j 

dz where zt = - for any z. 
dT 

We have collected a total of 

These a r e  all the variables that we shall need. 

( m -  l ) n + m  = N 

variables. 

The function g, which we  wish to extremize is 

The values of all the t.'s in this equation and the values of 5ls a t  the corner 
points (at one side o r  the other of the corner points - and we chose the right 
side for every point except the last one) have now been expressed in terms 
of the z. ( 0) , zi( I), which we shall denote by z (0) , z (  I). Thus J becomes 

1 

J;c = g;[ z (O) , z ( l ) ]  

where the * indicates a functional dependence of Z. 

12 



(j) 's. A s  in the case of the z's there will Next we transform the + 
P 

be many more +( j )  ' s  in the representation in terms of T, Z ,  z1 than there 
were in  terms o P t,x, k. The new functions are defined as 

The justification for  the (j-I) q+p subscript is much the same as before. On 
the first a rc ,  j = I; we range p from i to q (q  constraints). On the next 
arc  we start by numbering +* = @T2-uq+l - - +xij-I)q+l ( j  = 2 on the second 

q+i 
a rc ) ,  etc. Again, for m time points t. we obtain m-I arcs. So in equation 
(9) we have 

J 

j = I,. ..,m-I 

p = I,. . . , q  

and we still have 

This condition accounts for our original differential equation constraints. 
But equation (8) also produces additional constraints of certain z"s, so we 
can write 

( 7 ,  Z ,  Z') = 2' (m-I) n+j' 

The subscript of the left side was  cnosen to pick up directly after the last sub- 
script of equation (9) .  That is, we insert our maximumvalue of j ( =  m-I) and 
p(= q) in this equation giving 

13 



and start equation ( I O )  at @* The right side subscript comes directly 

from equation (8) . Note that the two subscripts do not agree numerically. The 
only variable subscript in  this equation, j, to account for all the time points t.,  
is 

(m-I) q+I* 

1 

j = I, ..., m. 

We had previously defined (m-I) n+m = N variables and now we have 
defined a total of (m-I) q+m constraints. If w e  subscript all of our 
an e, we see that the first (m-I) n of these 

' s  with 

@: 
(e = I, ...,( m-l)q) 

a re  defined for 0 4 T < I (excluding the right end of our interval again). The 
second s e t  

are defined for 0 5 T 5 I. 
in to equation (8). ) The total number of constraints we label as 

(It  does not matter which value of T is plugged 

(m-1) q+m = Q. 

For the end conditions we had qV = 0, where Y = I,. . . , p 5  m(n+l) .  
We can now get 6 ' s  - i. e . ,  transform qY into dependence upon z, T variables - 
just as w e  got g? from g. This gives us  our first p conditions. But there 
are others. 

In equation (7) we define 

(Note that our discontinuity here is at  the right end of the jth arc. 
occurs at the j+i s 

subscript across the equation.) Equation (7) may now be written 

Thus i t  . This accounts for the difference of the j ' point 3+i 

14 



= z  ( I )  + AX.. - z (0) = 0. ( i1) 5 j-i)n+i+p (j-1) n+i 13 ( j- i) n+n+i 

The left subscript starts with j = i, i = 1, so we pick up at $'& 

should since above we used up p$'s. For the last point we have t. = tm - 
so our last arc  is the j-2'nd one giving a range to j of 

as we 

J 

i+P 

j = I , .  . . ,m-2. 

i, as usual, refers to our variables xi,. . . ,K so we have 

i =  1,. ..,n. 

Putting j and i to their maximum values we find we have accumulated 
(m-2- I) n+n+p = ( m-2) n+p. 

Our final two end point constraints a r e  on the end values of T .  

Since our last constraint w a s  $'% we have 
( m-2) n+p 

Thus our new (transformed) end conditions a re  

where 

y = i,. . . , (m-2) rx-pi-2 = P. 

The original problem has now been transformed into the problem of 
finding, in a class of a rcs  defined by z . ( T )  satisfying +* = 0 and e = 0, 3 a 
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an arc  which minimizes J* = 
hypothesis of Bolza’s problem, and we can apply the standard formulation 
as given by Bliss (Ref. 5 ) .  The proof that the solution to our original prob- 
lem has a solution which is equivalent to that of the transformed problem when 
written in the original coordinates is not obvious from a mathematical view- 
point. The argument which justifies this statement is given in Reference 2, 
and it wi l l  not be reproduced a t  this time since no real  gain would come of 
it. We shall now proceed to examine in detail the derivation which pro- 
duces the Euler equations, transversality conditions, Weierstrass condi- 
tion, and Clebsch condition for the discontinuous state variable problem. 

[ Z ( T ~ )  , z ( T ~ )  1.  This now satisfies the 

THE EULER EQUATIONS AND TRANSVERSALITY 
CONDITIONS 

Since the problem of Bolza is now applicable to our task, we can 
apply the multiplier rule as given by Bliss (Ref. 4).  An admissible solu- 
tion, E + ,  of the equations @: = 0 ( CY= I,. . . ,&) defined on [ T ~ , T ~ ] ,  is said 
to satisfy the multiplier rule i f  there exist constants A; , lv ( v  = I,. . . , P) 

not all zero and a function I?‘ ( T , Z , Z ’ , ~ ’ : :  ) = 5 A’;+: with multipliers 

A* (7)  continuous on [ T ~ ,  T ~ ]  except possibly a t  values of T defining corners 
of EF where they have well defined right and left limits, such that the 
e qua ti o ns 

C Y = I  

CY 

are satisfied along E: , and such that the equation 

P 

v= I 
+ lvdz); = 0 

holds at the ends of E’* for every choice of differentials dT1, dz. ( T ~ )  , d ~ ~ ,  
dzj ( T ~ ) .  Every minimizing arc ,  E% 
the multiplier rule. 

J for the problem of -. Bolza must _- satisfy 
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The function F s  defined in  the above statement can be written by use 
of equations (9) and (IO) as 

+ Z '  
(m-i)  q+r (m:l) n+r r=l 

where we have split our constraints into the two groups defined by equations 
(9) and ( IO). The j subscript affixed to Fs is (mechanically) necessary 
because of the free j subscript on the right hand side of the equation; its 
physical significance corresponds to the possibility of F+ differing from 
I?? 

non-subscripted j would require an additional summation. ) 
produced from application of equation (12) to the function F% have different 
characteristics depending upon whether w e  consider the first (m-I) n of 
these equations or the last m equations. 

by variations in the @* ' s .  Note that j is not sumrded. (Obtaining a 

The equations 
J+ 

Application of t h e  Euler Equations t o  t h e  
F i rs t  (m-1) n Variables 

For the first (m-I) n equations, w e  begin by consideration of the 
term 

But 

x.(t)  = z ( 7 )  
1 (j-I) ni-i 

so that 

d-r k ( t )  = z' 
1 (j-i) ni-i dt* 
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Since 

- t. . dt 
dT - tj+i J 
- -  

Then 

giving 

I dk. 
- - 1 

dztj-i)n+i tj+i - tj 

In the above sum we obtain a non-zero term for only one value of s. Then 

From equation (14), by direct differentiation, 

and since 
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we have 

The next term of equation (12) which we develop is 

aF;F a f i  dx a p t  

8Z k k=i axs &k axi 
= ( k =  I,... ,(m-1)n) 

dxi 
- (again, x depends only upon z and = I) 

S d z  (j-i)n+i 

Equation (12) thus reads 

( 15) 

- C  = 0. 
(j-1) n+i 

We now transform multipliers to convert equation (15) into a more 
useful form. Since A3 is a constant, w e  have the definition 

19 



and the transforms of the multipliers A* (7) are defined by 
CY 

t - t. 
Note that in the right hand term we have simply replaced T by .' - 

t j+i  - t. j 
that is, A* I ' - indicates a functional dependence. Note that 

(1-1) q+P \tj+l 
is a constant multiplying all multipliers by the same value for a I 

tj+i - tj 
given j. 

Equation (15) now reads 

where we have substituted 

To explain the change of the integration limits, we note f i rs t  that since 

w e  have 
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which explains the lower limit. The upper limit, T , is 

t - ti 
J T =  
tj+i - tj  

which is actually our upper limit. But since the integral is taken to any 
value of the independent variable, now t, we simply se t  

t - t. 
-4. 
tj+i  1 - t. 

We can now w r i t e  our function F as F( t, x, k,A) with 

where it is now understood that we restrict  ourselves to the arc  
t. 5 t 5 t so that 3 j + l  

The range on j ,  as usual,  is due to the m-1 arcs  generated by m points 
ti,. . . , &. Equation (17) now assumes the fairly simple form 

= 0. ( t .  5 t < tj+l). 
a F  aF q- J ~ ~ t -  C(j-i)n+i 1 

ti 
J 
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Application of t h e  Euler Equations t o  the 
Last m Variables 

Thus far we have applied equation (12) ( a  portion of the multiplier 
rule) to the set of variables corresponding to our original x’s. But we have 
a number of other variables to consider; these a r e  the points ti,. . . , by 
and we now investigate the application of the Euler equations to these. This 
wi l l  result in determination of the multipliers A+ (m-I) q+r’ 

To reiterate the applicable equations, w e  have, f irst ,  

ap:: -T-- j -  a I?$ - -  7 

Ck = 0 (k = I,. . . ,N) 
azk T~ azk 

where N (= (m-I) n+m) is the total number of constraints. In deriving equa- 
tion ( 18) we usea up only the first (m-l)  n variables (i. e. , the original set  
of x’s) . To proceed to the last m equations, we use the DuBois-Reym-ond 
equation (12) (which is really a generalized form of the Euler equations). 
As before , 

The first  derivative yields 

J =h:K 
a21 (m- i )q+i  (m-I) M-I 

Note that a specific value of r has been chosen - namely I. We shall ex- 
amine the first  of these new equations in detail. 

a p  
az The next derivative to be taken, 

(m-l)n+l  

, for k = (m-I) M-I, requires 

is just another label for ti we have 
k 

more work. Recalling that z 
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(m-I) n+l az 

By definition of T 

and the only place w e  have t, is when j = I. In that case 

t =  t i +  ( 5  - t i )T .  

Then if we set  j = I, F% becomes 
1 

From the equation given for t with j = I we have 
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I I I 1  111 I 111-1.111 II II 

Also, since the x.'s and t.'s are independent variables we  have 
1 J 

Then 

A s  commented previously 

dT x . = z  - 
1 i dt 

and 

t - t, 
tz - ti 7 =  (for j = I ) ,  

so 

and 

Finally, 
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am a B Inserting the expressions thus derived for and - in  the 
DuBOis-Reymond equation, we find azt (m-I) n+l at1 

This equation, unlike those above, 
arc and merely determines the multiplier 

does not restrict  the minimizing 
A+ ( T )  which is associated 

( m- I) q+l 
with the equation z '  

immediately apparent but equation (19) wi l l  be of value in later work. 

= 0. The usefulness of this derivation is not (m-I) n+l 

First  Use of t h e  Transversal i ty Condition: 
Application t o  t h e  Coefficients of d q  m-l)n+j  

The transversality condition, equation (13) ,  must be written in ex- 
panded notation. Thus, 

where the sum is taken over all z variables, s = 1,. . . , N(=(m-I) n+m) . 
Furthermore 
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Since transversality must hold irrespectively of the values chosen 
for  the differentials, the individual coefficients must vanish. 
(13) we gather together the individual pieces of the dzk coefficients and 
write expressions at the end points as 

From equation 

Summations on s do not appear since w e  chose the specific coefficient s = k. 
Furthermore, the sum on v extends over all end conditions I,. . . , P(=( m 
-2) n+pt-2). The above equations are decoupled at the points T ~ ,  T~ since 
dz (T ) and dzk(72) are independent insofar as transversality considerations 
are concerned. 

k i  

We now restrict our discussion by deciding on a value of k to be in- 
As w a s  done in the derivation of equation ( 1 9 ) ,  we use k = 
The first specific equation in this derivation w a s  

vestigated. 
(m-l)q+l. 

J = x(m-i)4+1. 
azl (m-1) n+i 

The above two transversality conditions now take the form 
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(Note that our variable z cannot enter $P; and (m-1) q+l (m-2) n+pi 
so that our sum could run only to P-2, but it makes no dif- m-2) n+p2  

ference if we  car ry  it to P.) 

We now choose X$ and L, in such a way that 

so that our second transversality at T~ gives 

Returning to equation (19) w e  can choose our upper limit of integration to be 
T~ so that the integral vanishes. This leaves 

‘7m-i) q+i - ‘(m-i)n+i = 0, 

but since this A at T~ vanishes we  have 

= 0. ‘(m-i) n+i 
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Equation (19) then becomes 

dT = 0. 

If we now choose our upper integration limit as T ~ ,  we obtain an ex- 
pression for A* 
versality condition gave another expression for A'* 

eliminate this Lagrange multiplier between them giving 

( T ~ )  in  te rms  of the integral. But our first trans- 
(m-I) n+i 

( T ~ )  and we can (m-1) n+i 

Equation (21) is essentially a modification of equation ( 19) 
formation derived by the first transversality condition has been incorporated 
into equation ( 19) to obtain (21). In order to obtain directly useful information, 
further development of equation (21)  is required. This development is initiated 
by evaluating the integral in  this equation in the next derivation. 

To initiate this third segment, we note that by definition of T, 

(for j = I ) ,  I d  - d - - -  - 
dt & - ti d~ 

which gives 

I k. = - z' 
1 % - t i  i 
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and 
A .. 1 x. = z" . 

1 (h - til2 i 

Previously we required that our minimizing arc ,  E% , had no corners 
between any pair of the points (tj+l, tj) ; thus we can differentiate the follow- 

ing expression (which is written simply as an inspired guess). 

where we have converted from T to t via absorption of 4 - ti. 

The right hand side is now expanded - by the chain rule, and we pick 
up a second summation on the first terms since we apply the chain rule 
through the x variables: 

(above equation concluded on following page) 
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where the relationship 

\ 

between z!' and *& derived above w a s  used. By dif- 
ferentiation of equation ( 15), w i h  j = I,& w e  have 

o r  

Insertion of this expression into our above equivalence gives 

where the last step follows, since $4~ vanishes along an extremal. We now 
P set 

for  algebraic convenience. 
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Then 

y 4 ( 1 - r ) d 7 = A  d r  
71 

We a re  now in a position to begin evaluation of the integral contained 
in equation (21).. The last equation in (21) gives 

7 2  7 2  7 2  

71 71 71 

- T A  + S A d r .  

The first  portion of this integral can be written as  

Setting u = 7, dv = dA, we obtain via integration by parts 

The total expression for equation (21) is now 
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Substituting the value of A back in the integral where it appears gives 

Again using the fact that our @::' ' s  a r e  satisfied along an extremal, i.e. , 
@* = 0 ,  this becomes P 

P 

Inserting A (as w a s  done above during the integration) gives 

= o .  
P 

c ( 7 2 )  v=i ( m- 1) n+i 
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The only portion of this equation evaluated at Ti gives r ise  to 

Previously w e  chose Xi  ,lv in  such a way that 

We can add the last  two equations to give 

We can now make the identifications 

3- 
t2 - ti 

Z! 
1 

t2 - ti 
= x. 

1 
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and obtain 

We had defined for our first a rc  

so the above equation becomes 

This equation applies a t  our initial time point. The right hand end 
point, &, has a similar relationship (derived in the same way) which is 

n m 

i ax. m v=l m i= i 

(The evaluation at upper and lower points as in the last two equations indi- 
cates whether the term is to be added or  subtracted.) 

The rest of the equations come from the observation that the evalua- 
tion of our basic equation at 72 yields 

P ad* 
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since the first  term vanishes identically at ~ ~ ( 7 ~  = 1). This term would 
vanish in any case since our x variables are defined on the interval 

or T~ 5 T < iz and +*' = 0 along an extremal. Then 
tj < 3+i P 

will  yield the 
(m- 1) q+2 Now the next equation for the point 5, i.e., z 

equation 

Addition of the las t  three equations yields 

- k  2 
P = i  i=i 

Making the same identifications between the z representation and x repre- 
sentation, as was  done above, and r e c a a g  the definition of F, we have 
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The above equation could jus t  as well have been derived in terms of any 
other point T so 

j’ 

tj + 

k = 0 ( j = 2 , . . . , m - i ) .  (23b) 
i a+ + -  

Second Use of t h e  Transversal i ty Condition: 
Application t o  t h e  Coefficients of d q  a n d d q  

The transversality condition, equation ( 13) , has not yet been played out. 
We derived our first set of conditions by equating to zero the coefficients of 

( T ~ ) ,  ( i  = 1,. . . ,n). Another set of condi- dz ( T ~ )  and dz 

tions could be derived by equating to zero the coefficients of dT1 and d ~ ~ .  
These are associated with the end conditions $* 

= T~ - i = 0. Such a procedure does yield values of the multi- 
‘( m-2) n+p+2 
pliers I and I but since these do not come into our 

problem at any other point we really do not require them. 

( m- I) n+j ( m- I) n+i 

= 0 and (m-2) n+p+i 

(m-2) n+p+i (m-2) n+p+2’ 

T h i r d  Use of t h e  Transversal i ty Condition: 
Application t o  t h e  Coefficients of d q  j-lln+i 

Another important set of conditions, however, does come from set- 
ting to zero the coefficients of dz ( T ~ )  and dz (j-l)n+i ( 71) ( j - i )  n+i 
( j = i  ,..., m - l ; i = l ,  ..., n). Weshal l invest igatethecaseofj=l  (i.e., 
the first arc) in detail. From equation (13) 

+ A% dg:: + Ivd#* = 0 . 
V 

36 



A s  before, 

and 

and 

which, for j = I, gives 

Thus 

q a+ q n a@ aks 

p=i s=i 
- -  * A -  
azl P azi 

- E A *  4 = E E Ap a% az! 
s 1  i p=i 
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For j = i we have 

i - d r  ---. 
dt 4 - t, ' 

then 

Transversality now reads 

Now equation (11) with j = 1 gives 

In our summation on +* above, the last two terms (i. e., r1 = 
V 

= O  and ~ 2 - 1 = +  = 0) contribute nothing. If 
'Tm-2) n+p+ i (m-2) n+p2 
we wr i te  our summations as 
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P-2 a q  
- -  - p - =  f&-+ c I - v az 

a$$ wy” P a q  P-2 

i v az v az i v=i  i v=i i v.=p+i az 
P i  

then the last sum yields simply 

Note that we do not obtain the multiplier I 

with respect to z.. Thus, transversality now gives 

here since our derivative is 
n+i+p 

1 

(remember the last term is associated with T~ although it is a constant) 
giving r i se  to the two equations 

and 

The last equation is unique in that it occurs at the left hand end point. 
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J u s t  as we transformed the A* , @$, zi, and A8 before we now do so 
again to equation (25) giving P 

Equations (24) and (26) are the f i r s t  two equations from the trans- 
versality condition applied to Zi. Equation (26) is in final form but (24) 
may be modified. This is done by combining it with the "next" equation - 
i. e. , since equation (24) is valid at the right hand end of the first arc ,  it 
would seem that w e  would be able to combine it with an equation which 
holds at the left end of the second a rc  ( for  the same x variable) giving an 
equation valid across the point Q. 

The next equation we need can be derived from equation (25) . The 
first point to be noted is that two of the terms in equation (24) vanish iden- 
tically. Earlier i t  w a s  commented that, for our x variables, the range of 
definition w a s  t. 5 t 5 t For our present transversality application we J j+i '  
a r e  dealing with the variables z 

these z's are defined for T~ I T < 7-2 and our variables a r e  not defined at T ~ .  
So our g~ is a function of T~ only at the point t 

of the entire interval). We may now w r i t e  equation (24) as 

for  j = I,. . . , m; i = I , .  . . , n. Thus, ( j -I)  n+i 

(i. e. , right hand end point m 

To obtain the equation which corresponds to the variable x., but on 
the next arc ,  we use a similar procedure. For the first term we &e 
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for j =2 .  So 

+ -  a I [Zi(T2) +AX.. 
i+p 11 n+ i a i  

Then for the point T~ we have 

Addition of this equation to the modified form of equation (24) cancels the 
constant I i+p , leaving: 

Converting this to the original coordinates we have 



o r  

Now the p i n t  f is not unique; we can apply the same argument to 
Thus, any other p i n t  t. ( j  = 2,. . . , m-I) . 

1 

A s  a final datum from the transversality applied to the set of variables 
under discussion, we obtain a condition at the right hand end of the final arc. 
A s  was done above, we obtain 

'0 ax.(t  ag + P axi(tm) a $V + [ g y m  = 0 .  
1 m v=l 

Summary of In format ion Derived f rom the 
Transversa lity Condition 

Equations (22) ,  (23a), (23b), (26),  (28a), and (28b) a re  the set  of 
transversality conditions we have now derived for the problem. 
follows : 

These a re  as 

t l  
= o  

m t 

= o  
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L +  

at. 
J v = i  J i= I 

The conditions can be counted to determine the exact number derived. 
Only one each is obtained from equations (22) and ( 23a)’, and, since j = 2,. . . , 
m-I, m-2 equations are derived from (23b). 
conditions. 

Thus, our first set yields m 

Equation (26) with i = 1,. . . , n yields n conditions as does equation 
(28b). Inequation(28a),  w e h a v e i = i ,  ..., n a n d j  = 2  ,..., m-I, giving 
(m-2)n equalities. Our total from the second set is now mn, so we obtain 
a final total of m + mn = m (n+i) conditions. 

The next obvious question is the utilization of these equations. They 
are used for obtaining the values of the end point multipliers A,, I 

written in matrix notation as 

. . ,P 
a total of pi unknowns. Notice that this entire set of equations may be P’ 
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= 0 (29) 

(where a summation is implied when a repeated index occurs). Now since 
w e  have p + i  unknowns (with p 5 m(n+i)) and m(n+i) equations we have 
more equations that unknowns (unless p = m( n+i) ) and some equations had 
better be dependent; otherwise w e  have an inconsistency. That is, each 
(pt-2) x ( p 2 )  submatrix must be singular; or,  better, the augmented co- 
efficient matrix should have rank < pt2. 

( A t  this point Hunt argues that ho., A(]) do not simultaneously vanish 
and that A" ,Iv do not all vanish. Hi s  arg&ent is primarily referenced to 
Bliss and wil l  not be reproduced here since inclusion of the details would 
be a rather lengthy process.) 
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To proceed to a few definitions, we state first that an extremal for 
the problem of Bolza is an arc  without corners in Rj together with a se t  of 
multipliers zj( T) ,A% ,A% (7) (with j = 1,. . . , N; CY = 1,. #. ,M ; 0 5 T 5 1) 
such that the functions ~ f (  T )  , A& ( T) have continuous first order derivatives 

~~ 

and satisfy the constraints $): = 0. 
the determinant 

An extremal is called non-singular if 

j , k =  l,.. . , N  

CY,  CY^, = 1, . ,& 

is non-zero along the extremal. An extremal is normal if it satisfies the 
multiplier rule with a unique set  of multipliers having ho = t. 

These definitions for  the transformed problem can also be restated 
for the original problem we attacked. 
an arc  in Ri and a s e t  of multipliers, xi( t ) ,  Ao, h#)(t) (where ?(t) is 

n; j = 1,. . . ,m-1; p = 1,. . . ,q; t. - the arc)  with i = 1,. . . , 
have corners only at tj ( j  = 1,. . . ,m) . Between corners, ki(t) and A(') ( t)  
have continuous first  order derivatives, and the 3 ' s  satisfy the consfraints 

Thus, an extremal is defined to be 

which 
J -= < t j + i  

( j )  = 0. An extremal is non-singular if the determinant % 

R 

a2 F 
a$aki 

3 
a ki 

3 
h ak 

0 

is non-zero along the extremal. An extremal is normal if  it satisfies the 
multiplier rule with a unique set of multipliers having ho = 1. Normality 
for the original problem implies normality for the transformed problem, 
but this will  not be proven here. 
in wha t  is to follow. 

Only the normal case wi l l  be considered 
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THE NECESSARY CONDITIONS OF WEIERSTRASS AND CLEBSCH 

The Weierstrass function, E,  is defined by 

a m  N 

k= 1 
(T,Z,Z',&) . 

An arc  is said to satisfy the Weierstrass necessary condition (for a minimum) 
if 

at every element (~,z,z',hJ,:) of the arc  for all sets  (T,z,Z') # (  T , z , z ' )  
interior to the region R? and satisfying the equations @; = 0. 
minimizing arc for the problem of Mayer o r  Bolza must necessarily satisfy 
this condition. 

Every normal 

Using (14) (which defines 5% ) this condition may be written as 

1 
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A s  has been done before, w e  indicate the derivative of a starred quantity with 
respect to the kk 
p 
even though we can indicate the derivative of @ with respect to ki, we 

This is done with the understanding that when w e  w r i t e  
(x, k, t) we imply @ I x ( T , z ) , ~ ( T , z , z ' )  , t ( ~ ) 1  , S O  that 

( j -1) q+P (j-1) q+P 

really have the independent variable as T, not t. Thus, in @ and 
(j-1) q+P 

(7 )  s 

a* 
w e  substitute t = t. J + ( t  1-1 - t . ) T r . X i ( t )  J = Z ( j- 1) n+i a$ 

To comment on the application of this test, we  first note that we can 
consider all possible sets like (z, Z t ,  T )  in equation (32) , and then we pick 
out those which satisfy equation (32) .  Note that those we pick must satisfy 

= 0. Those we select are a sub- the equations z t  

set (of all possible choices). 
condition need only be members of the set of variables which correspond to 
the X I S ,  namely z1 

(j-l)n+i* 
# Z  and choose Z'  = z  

(j-1) n+i ( j-I) n+i one index where Zl( j - l )n+i  

for all other values of j. Then the sets which satisfy equation (32)  in z 
notation must satisfy equation (34) when we change to an x representation. 

= 0 and @:< 
( j -  1) q+P ( m- 1) n+j 

Those we vary to check the Weierstrass 

We vary these one at a time; that is', we  choose 

(j-l)n+i 

In the other direction, if each of the m-1 expressions ( j  = I,. . . ,m-l ,  
one condition on each arc) is non-negative, then Weierstrass' condition is 
satisfied. 

We can transform these (m-1) equations to a complete representa- 
tion in our original notation to obtain the condition that 

This equation must hold at every point ( t ,  x,k,A) of E on the m-1 intervals 
for all sets (t, x, A) # (t ,x,  k) which satisfy @ = 0 and are 

P region Ri. 
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By definition of our F function and the requirement that t > t. 
J+i 1 w e  must have 

E(t,x,k,A,% = F(t,x,k,A) - F(t ,x ,k ,h)  

n 
2 0. aF( t, x, L, A) 

ak. i= I 1 
- (ki - H,) 

This is the Weierstrass condition for the original problem and must hold 
for every minimizing arc. 

To delineate the Clebsch condition briefly, suppose we find 
numbers  IT^,.. . ,IT which a re  not all zero and which satisfy n 

n, a4 (j)(  t, x, k) 

i= I 'a jr  i 
IT. = 0 

1 

for all j = I,.  . . , m-I. Then every normal minimizing arc must satisfy 
the condition that 

2 0  
i=l h=l 

as is shown in Bliss (Ref. 4) using the Weierstrass necessary condition. 

THE PROBLEM OF UNSPECIFIED D iSCONTiNUITIES 

We have thus far determined a set  of four necessary conditions which 
treat the problem of an optimal trajectory with specified discontinuities at 
unspecified points. 
conditions.) It is now possible to generalize the above formulation with little 
additional work to the point at which problems having unknown discontinuities 
at unknown time points can be treated. 

(Note, however, that w e  have not derived sufficient 
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In the case of a rocket vehicle which has constant thrust for  each 
stage, prespecifying our corner points (i. e., staging times) automatically 
prespecifies the mass that must be dropped. In order to determine the 
optimal weight staging we need a formulation which neither requires the 
staging times nor the drop weights to be specified. 

The difference may be illustrated as follows. For a fixed discon- 
tinuity we have an equation of the form 

where C is a given constant. For a variable discontinuity we could w r i t e  

x.(t+) - x. ( t .7  = C(t .  - t ) .  
1 j  1 J  J j-1 

In the second case the discontinuity depends upon the length of the segment 
preceding the point t.. 

I 

It is worthwhile to recall at  this time that the discontinuity values 
assumed in the earlier part  of this report, A?. 
boundary conditions. 
built into the transformed problem to account for the discontinuities. 

did not enter into our J '  For this reason, equations (11) were specifically 

To proceed to the present problem, we now try to minimize 

(37) 
- - g[ t,, .. . # tm, x(tl+), x(tJ, .  . . , X(t,) 1 
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where j = I,. . . ,m-I and k = 2, . . . ,m. 
main the same as they were previously. We can have three types of boundary 
conditions. The first, for  no discontinuity is 

The @ p  constraint equations re- 

qv = x.(t.') - a ( t 3  = 0, 
1 1  1 J  

which is stated at every corner where the 4 ) s  are continuous. The second 
type of boundary condition is 

+v = x.( t.-) - x.(t.+) - Constant = 0 ,  (39) 
1 J .  1 J  

which is the type considered in the first part of this paper. Third, w e  have 

where the D's are specified functions (which, for example, give a relation- 
ship between the burning time of a stage and the drop weights). 

The basic difference between the present formulation and the previous 
work was  that w e  had to include the constraints (11) which related to the dis- 
continuity A%.. If we explicitly include the constraints given above by equa- 
tions (38) , ( d 9 ) ,  and (40) , then we can exclude the constraints of equations 
( 11). (What we have really done is to convert all constraints to the form of 
equations (11) and then renumber them from the beginning as +v, 
v = I,. . . , p sm(  ntl). 

The modification due to excluding the constraints of equations (11) is 
rather minor. In the development of equation (24) ,  an end point multiplier 
P turned up which was then eliminated by the same term in a subsequent 

equation. This time we do not get the term P to occur in either case and 

there is no necessity to add the equations in question to eliminate it. 
Notice that we  have both the points t+  and t- in the constraints z,hv since 
our discontinuity is not fixed. Previously it was  argued that the terms of 

i+p 

i+P 

J J 

occurred only at the p i n t  tm. In the the form A: -- ag and -- a% 
azi ( Q )  azi( 7 2 )  

present case this is not true since the discontinuity is not fixed. 
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Nithout further ado, w e  wr i t e  the two equations that replace equa- 
tion (28a) a s  

The D functions occurring in equation (40) modify the problem by their 
occurrence in the z,bV constraints. 

RESULTS AND CONCLUSIONS 

Our first set  of variables were xi,. . . ,xn. These a r e  the coordinates 
of the point in phase space. Af te r  transformation these become 
21,. . . ,z ( m- 1) n' 

The second se t  of variables were ti,. . . , h. These are  the Wmes" 
(i. e., values of'the independent variables) a t  which discontinuities occur. 

Between 
( m- 1) n+m' 

After transformation these become z .. ,z 

these two, we now have variables z l , .  . . , z after the transforma- 
(m-I) n+m tion, and we set  (m-1) n+m = N. 

(m-i)n+i'* 

The first set  of constraints we labeled a s  4:) = 0, where the j 
indicated the particular "arc" (or  interval between two values of t.) on 
which the constraint applies and the /3 indicates the particular constraint 
on this arc. Af te r  transformation these become $3,. . . , 

J 

(Wn) q m - 0  q 

The second set of constraints were z1 = 0, which were intro- 

duced to account for the time points I+. . . , tm being constant. Our total s e t  
of constraints were 43,. . . , 

( m- i) n+j 

, and we se t  (m-I) q+m = Q. m- i) q+m 

The first set  of end conditions were the +, = 0 constraints, o r  
+I , .  . . , +p (p lm(n+ l )  1. After  transformation these became &, . . . ,#$. 
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The second se t  of end conditions accounts for the discontinuities of 
the 5 ' s  at the t-  points which are ,  after transformation, z( j-i) (1) -AX.. - 

J 1J 
Z = 0, which were written as zp = 0. (j-1) n+n+i ( j- I) n+i+p 

The third set were 7 1 = .. +(m-2) n+pi = 0 and 7 2  - = #(m-2)mptZ = 0. 
This gives the total se t  as 4,. . . ,$(m-2) n+pti, and we label (m-2) n+p+i =P. 

Next, certain Lagrange multipliers A*, Iu, A, were introduced and 
the function I?% formed. Application of the multiplier rule yielded the 
following results: 

The Euler equations for the original set of x variables are 

J 

Transversality conditions: 

ti 
= o  aF - -  a% -=-+ Ll 

lo BXi(tl) 

P 

v = i  v axi( ti) a$ 

52 

I I  1111.IIIII.1 II 



= o  9+ 
t.- 
3 

t 
aF m = o  a +V P 

+ 'v ax.(t ) axi 
ag 

i m  '0 ax.(t 
1 m v=i 

Weierstrass condition: 

Clebsch condition: 

7T7T 2 0 .  a2F ( t ,  x, k) 
--&a$ i h 

i=l h=i 

The problem with unspecified discontinuities is similar to equalrlon 
(40) in which the D functions appear, modifying the z,$, constraints. Aside 
from this difference, the only modifications occur in the fourth equation 
listed above under transversality. This becomes the two equations 

The Weierstrass and Clebsch conditions for this case have not been 
inv e s ti ga ted her e. 
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