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A REVIEW OF BALL MOTION IN AN ANGULAR CONTACT BALL BEARING
by R. J. Parker, E. V. Zaretsky, and W. J. Anderson
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
ABSTRACT
A significant portion of total ball-bearing friction results from
friction due to sliding or spinning in the contacts of the balls and races.
A brief review of the nature of this ball-race contact including analyses of

ball spin and microslip and the factors contributing to the problem are

presented in this paper.

NOMENCLATURE
A contact area, sq in.
ag semi-major axis of contact ellipse, in.
b semi-width of contact of two cylinders in contact, in.
b! semi-width of no slip region of two cylinders in contact, in.
bo semi-minor axis of contact ellipse, in.
C distance from center of contact area to center of no slip region, in.
d ball diameter, in.
E pitch diameter, in. ‘
El,EZ Young's modulus of elasticity, psi
E(k) complete elliptic integral of the second kind
e,e',e" surface displacements, in.
F friction force, lbs
Fr rolling resistance, 1lbs
fk coefficient of kinetic friction

™™ X-52207
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fs coefficient of spinning friction

K elastic constant

k modulus of complete elliptic integral of the second kind E(k)

M bearing torque due to spinning, 1lb-in.

Mé ball spinning moment, lb-in.

n number of balls

PN normal load per unit length of two cylinders in contact, lb/in.'

PNO normal ball load, 1b

Q,Q',Q" tangential traction, lb/in2

Qg frictional heat generation due to ball spinning on race, Btu/min

q tangential force per unit length of two cylinders in contact,
1b/in.

R radius of ball or cylinder, in.

r! polar coordinate distance, in.

ri limit of r integration, in.

SXy compressive stress acting on any point on the contact area, psi

Sy compressive stress for two cylinders of unit length under

rolling contact, psi

U peripheral velocity, in/min
v velocity, in/min
X,¥,2 distance in principal direction, in.

a],%2,0,4,¥ angles defined in figures 3 and 4, deg
B bearing contact angle, deg
By inner-race contact angle at load and speed, deg

BO outer-race contact angle at load and speed, deg



Y rolling factor

3} Poisson's ratio

A contact factor

€ slip ratio for two cylinders in rolling contact
go slip ratio for ball rolling in conforming groove
p radius of groove, in.

) polar coordinate angle, deg

w angular velocity, rad/min

INTRODUCTION

The rolling contact phenomenon, the interaction of two or more
bodies in rolling contact, has been the subject of much study, debate,
and controversy for several decades. Many unresolved questions currently
exist, in addition to numerous new problems which develop as machine
elements become more complex and as loads, temperatures, and speeds
increase within these elements.

In order to understand the various factors influencing rolling-
element design, fatigue, and lubrication, an understanding of bearing
kinematics is a prime prerequisite. While considerable analytical
and experimental work have been conducted in this area, a summation
under one cover at the time of this writing was nonexistent. Therefore,
it is the objectivé of this article to treat rolling element kinematics
in its most elementary comprehensive form. A review of the kinematics
of rolling element bearings will be presented with specific emphasis
on ball bearings under a thrust load. The effects on overall bearing
friction losses of ball spinning and of rolling with microslip and

elastic compliance will be discussed.
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BALL MOTION IN AN ANGULAR CONTACT RACEWAY

Fatigue in béarings is a phenomenon dependent on element loading
and rate of cycling. The rate of cycling is dependent on bearing
geometry, the number of rolling elements, and the angular velocity of
the inner race.

In figure 1 a section of an angular contact ball bearing under
pure thrust load is shown. If wi is the angular velocity of the inner
race, the velocity of point A is

v, =@ AB (1)

Similarly, if wo is the angular velocity of the outer race,
then the velocity of point C is
v, = wOEJS (2)

c
The velocity of the ball center Vo is

o] C
Substituting equations (1) and (2) into equation (3) gives

V=]2—“(VA+V) (3)

1 @, w
VO=§- ?l(E-dcosB)+ ?O-(E+dcosﬁﬂ (4)

The angular velocity of the separator or cage and the ball set

about the shaft axis is

v
= 2
(DO - E/z (5)
Then _
woz%@i@ _9_9_%5__@_)+w0<1+§_9§iﬁ)] (8)

The speed of the separator when the outer race is fixed is



M Y * Q

Since B < 900, the separator speed is always less than half the
shaft speed. When both races rotate, the speed of the inner race

relative to the separator is

@ -, = % (w; - @) (} + 9—E§§—§> (8)

i

“ﬁ/c

The speed of the outer race relative to the separator is

Wofo = Oy = @, = % (wb - mi) (1 - 9;2%§_§) (s)

From equations (8) and (9), the speed of the inner race relative
to the separator is always greater than that of the outer race relative
to the separator; therefore, a point on the inner-race ball track
will recelve a greater number of stress cycles per unit time than will
a point on the outer race.

For ball bearings that operate at nominal speeds under a thrust
load, the centrifugal force on the balls is negligible and the forces
that keep the ball in equilibrium are the two contact forces. For
such conditions, the contact forces are equal and opposite, and the

inner- and the outer-race contact angles are approximately equal.

The motion of a ball in angular contact ball bearings has been
experimentally observed by Shevchenko [1] and by Hirano [2]. Shevchenko
utilized high speed photography and Hirano measured the change in
magnetic flux induced by a magnetized ball. Both means of observation
were successful in determining the ball angular velocity and the axis of

rotation of the balls. Results of these tests will be discussed later.
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BALL SPIN

Spinning moment. - The previous section treated the velocities of

bearing components in their most simplified form. In a thrust loaded
ball bearing another velocity component, ball spin, is introduced.
Ball spinning is responsible for a major portion of the overall
friction in a thrust loaded bearing and can account for high heat
generation rates [3]. Measurements of ball spinning friction have been
performed by Reichenbach [3] and Miller [4] for various geometries
and loads. Ball spinning moment in an angular contact ball bearing
was determined by Poritsky, et al. [5] by integrating the friction
force over the contact ellipse. Figure 2 illustrates the contact
ellipse over which sliding due to spinning takes place. Since the
sliding motion is a rotation about‘the ellipse center, the direction
of sliding is normal to the radius vector to the point (x,y) as shown.
The friction force is assumed to be in the direction opposite to that
of sliding and of a magnitude proportional to the normal compressive
force

aF = £ 8, dA (10)
where fs is the coefficient of spinning friction (assumed independent
of the contact stress SXy ) and dA is the element of area. Intro-
ducing polar coordinates r, ¢, the moment of the local friction force
is seen to be

dMS

fSSXyr dA

_ 2 .
= fSyyr® dr dp (11)




h is given b
where Sxy is gi y

o e - (- )T

Substituting from equation (12) into equation (11), and introducing r,

¢, one obtains for the net moment

2n 't

3fPyo 5 1 2 L 2| »\1/2
Mg = Zragh, r (1 - ag COS @ + b, sin @) |r dr dp (13)
O

where the limits of integration for r go from O +to the edge of the

ellipse

ab
00

1/2
[i(bo cos (p)2 + (a, sin cp)z] /

The integration with respect to r may be carried out in terms of

rt o= (14)

elementary functions. The @-integration leads to a complete elliptic
integral of the second order. Hence,
3
M, =3 fSPNOaOE(k) (15)

where
1/2

b \2
o

k=]l - <??> (16)

Ball spinning plus rolling will occur at one race contact, whereas
rolling without spin will occur at the other even if the contact angle
B is equal at both races. Rolling without spin will occur at the con-
tact where the ball spinning moment is the greater. For the angular
contact bearing illustrated in figure 1 having equal race curvatures,
the semi-major axis of the contact ellipse will be greater at the inner

racé than at the outer race. Hence, the spinning moment will be greater
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and rolling will occur at the inner race. At the outer race, spinning
plus rolling will take place. This action is known as inner-race ball
control.

Race curvature directly affects contact ellipticity. Thus,
differences in race curvature at the inner and outer races will cause
differences in spinning moments at the two race contacts and will govern
where ball control takes place. Ball centrifugal force, which may be
significant at high speeds, increases the load at the outer race, and
ball control is generally shifted to the outer race.

In summation, if

M > M

s
(inner) (outer)

then rolling will occur at the inner race while rolling with spinning

will occur at the outer race. This phenomenon is referred to as inner

race control. If, on the other hand

M <M

(inner) (outer)
rolling will occur at the outer race while rolling with spinning will
occur at the inner race. This is referred to as outer race control.
The kinematics of a ball bearing is greatly affected by ball control.

Spin velocity. - Once the race where ball control occurs has been

determined, the ball spin velocity can be calculated. Ball spin velocity
is a function of the contact angle and the inner race speed. Figure
3(a) represents an angular contact ball bearing under thrust load with

ball control at the outer race. ZFrom this figure,

E d
VB = (Di[g - 5 cos Bi] (17)




Solving for tan %o

CO
OA

tan (142 =
sin Bo (18)

E
= +
3 cos BO

From figure 3(a)
T

u=2+Bi-BO+CL2 (19)

Solving for sin A5

sin X = —gg—
BA
sin p (20)
= 2 1/2
E/d E/d :
([N Ly s W
Solving for Wyg11 s '
o =2
all BE .
aﬁ[(E/d) - cos Bi] 2
_= (sin oq + tan ap cos aq) (21)
1
1]z
+ E/d : -2 E/d cos
sin(Bo - mz) sin(Bo - mz)

Referring to figure 3(b) and solving for the velocity of the ball

relative to the velocity of the inner race,

/i T Ppa11 TN (22)
Solving for the angle V,

\If=Bj_‘Bo+a'2 (23)
The angular velocity of the ball relative to the angular velocity of

the inner race can be written
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W /q = Wpg + g1 (24)

Solving for the spinning velocity at the inner race

w = wball sin ¥ + aa sin Bi

Substituting equations (21) and (23) into (25).
[

oy

w;[(B/d) - cos B;1/(sin o + tan o, cos o

Dy = / o y /2
E/d y E/d
“[sinwo-az.] el 9]“5}

- . sin(Bi - B +ag) +oay s1n B (Zé)

For ball bearings that operate at nominal speeds, centrifugal forces
are negligible and the contact angles at the inner- and outer-races
remain essentially equal. Thus for outer race control, if Bo = By»

equation (21) becomes
o, (E/d - cos B.)
i i

a1l = 2 cos ey (27)
and ¥ = as and equation (25) beccmes
w i = (l)Dall sin C(oz + (Dl sin Bi (28)

Substituting equation (27) into equation (28)

aﬁ(E/d - cos Bi)31n a,

w.. = + w, sin B.
s1 2 cos %, ; S B1

| (29)
tan o, fp .
O~ \3 - cos ﬁi + sin Bi

Referring to figure 4(a), there is shown a similar bearing but with

1l

inner-race control. Comparing figure 4(a) with figure 3(a), it can
readily be noted that the kinematics are different due to the fact that
rolling occurs at the inner race contact. The solution to T is

similar to that of ® s Solving for the tangential velocity of the



ball at point 3B, V.

1l

Solving for

tan an

Now assuming a cone rolling about line of zero velocity

Y11 =

11

B

V. = BHw,
1

@O
5 (E - 4 cos B;)

tan &g

a/z

AB

sin Bi
E/d - cos B;

@<

al

From figure 4(a)

tan a

and

tan %o

Adding

tan Sl

Substituting equation (35) into equation (32)

“%a11 =

_ BD
AD
. D&
AD
equations (33) and (34)
+ tan ap = BD j;PG = EE

AD AD

Vy

AD(tan a, + tan az)

®; sin Bi

(tan a, + tan mé)cos ay

(30)

(31)

(52)

(33)

(36)
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Solving for a3 from figure 4(a)
@2 =7 - 0 - L (37)

and

Bl
9=§+al+[3i-[30 (38)

Solving for p , from the law of cosines,

TAC - (%)2 + O_A2 - 2@) (OA)cos p (39)
OAC - (%—)2 + EKZ - 2(%) (CA) cos 6 (40)

and from figure 4(a),

T_ 4
2 sin rx,l

(41)

Q
1]

Substituting equations (40) and (41) into equation (39), rearranging,

and simplifying
2 2 2
(%) + 0% - X
a\,—
Z(E)(OA)

sin a,l - cos 6

cos [

(42)

1/2
(sin2 a; +1 -2 cos 6 sin dl)

In order to solve for a.)b all determine the value of CLl from equa~
tion (31) and determine the value of a, from equations (37), (38) and
(42). Then @ oqp 1S obtained from equation (36).

Referring to figure 4(b), the spinning velocity at the inner race

is

Oy = Qpgqp sin(By + oy - B) (43)
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For‘the special case where the contact angles Bi and BO are
equal, the spinning velocity at the outer race for inner race control
is given by

o =Q 0 sin o (44)

The effects on bearing operation of ball spin can be seen once the
spinning moment, spinning velocity, and the location of race control
have been determined.

The heat developed in the ball-race contacts due to spinning is
given by

QS 3 m.)sMs (45)

The bearing torque due to spinning is then given by

M = (46)

}—'-8 Im@

The frictional heat generated at the ball-race contact where
spinning takes place accounts for a significant portion of the total
bearing friction loss. Where centrifugal forces are significant, the
normal load at the outer race-ball contact is increased and the resulting
divergence of contact angles tends to increase the spinning velocity,
and aggravate the problem of heat generation.

The effects of ball spinning can be minimized by decreasing the
size or mass of the balls, using more open race curvatures, and by
using smaller contact angles. Care must be taken in adjusting the
latter two design features since the resulting increase in stress could

produce a significant decrease in fatigue life.
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The heat generation in the ball-race contacts can cause thermal
gradients in the bearing which induce thermal stresses which in turn may
affect fatigue life. In addition, this heat generation must be minimized
for bearings used in cryogenic or other marginal lubrication applications
as shown by Scibbe and Anderson [8].

Another factor that may further complicate the analysis of motion
in a ball bearing under thrust load is the gyroscopic moment that acts
on each ball. This gyroscopic moment, which may be great enough to cause
slip at the ball-race contact in high-speed lightly-loaded bearings with
large balls, results in a skewed direction of the rolling axis so that
wball does not lie in the x-z plane of figure 3. Hirano in reference
[2] has shown that consideration of this gyroscopic moment was necessary
to explain his experimental results with the theoretical works of Jones
(71.

SLIP AND ELASTIC COMPLIANCE OF BODIES IN CONTACT

True rolling, in which no relative slip of the contacting surfaces
of two bodies under a normal compressive load occurs, is for all practical
purposes nonexistent. For true rolling to occur, (a) the contactihg
materials must be perfectly inelastic or (b) the local tangential fric-
tion force developed in the contact area must equal or exceed the force
necessary to cause local tangential elastic deformation and prevent
interfacial slip. The latter phenomenon is known as elastic compliance.

The solution of slip within the contact region has been summsrized
and discuyssed by Johnson [9]. cCarter [10] presented the solution to
the two-dimensional problem and, subsequently, Poritsky [11] aiscussed

the problem in more detail.
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Referring to figure 5, there is shown two cylinders of unit length

of radii R and R in rolling contact at periphersal velocities. U

1 2 1

and U2 under a normal force PN producing & Hertzian contact of width
Z2b with a stress distribution of Sy. A tangential force g due to
kinetic frietion fk is present without sliding where g < kaN.

(Slip is to be differentiated from slide as follows: slip refers to a
relative velocity at a point in the contact area, whereas slide refers
to overall body movement associated with slip at all points in the con-
tact area.)

Where complete slip is present in the contact area, at a specific

value of y on the contact area the tangential traction is

2f, P 2\1/2
v - XN ¥y
Q' = £,8 = —F é. bz) (47)

The traction produces surface strains in the contact area given by

4f P X
k N v

de!
- o N (48)

where the elastic constant

K = ———o (49)

To obtain a region of no-slip a second tangential traction given by

2 2f P 2|1/2

Q" = - (%i) iﬁN 1-Gte) , (50)

b2

acting over the strip of width 2b' (the no slip region) is added to

Q', equation (47), to give a value Q. The strains due to Q", by



16

analogy with equation (48), are given by

2
4 +
Bé‘_(bj £ Pgly * e)K
Sy b b12

(51)
‘4kaN(y + ¢)K

=i 2
b

These distributions of traction and strain are illustrated in figure 6(a).

Thus the net strain in the no slip region is

de _ oe! + de"
oy 9y oy
(52)
4kaNKc
=—5 = constant
b

Applying equation (52) to each body in turn and remembering that
the traction on the lower surface -is opposite in sign to that on the °

upper surface gives a slip ratio

AU 2(Ul - Uz) ) Bel ) Bez
=T T (u, +0,) Oy ~9dy

1 2

(53)
4f P (K. + K )c
kN 1 2
= = constant
b2

The value of b' is determined by the equilibrium of the integrated

traction Q with the applied force g , resulting in

1/2
’bl
3 - ( - f%“) (54)

XN
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In figure 6(a), for rolling contact
c=b-b' (55)
Where the bodies are stationary, the center of no slip or locked region
coincides with the center of the contact area as shown in figure 6(b),
therefore c¢ = 0.
Solving for c¢ in equation (55) in accordance with equation (54)

the expression for the slip ratio between two cylinders equation (53)

becomes
1/2
4f P (K. + K_) \
£ = - k N % 2 1-11 -E§%;> (56)
g

The case of a ball rolling on a grooved surface is somewhat differ-
ent than a cylinder or roller in rolling contact with another roller or
a plane surface. As shown in figure 7, the ball rolls about the X - X!
axis and makes contact with the grooved surface from points 1 to 4.

If the groove is fixed, then for zero slip over the contact ellipse

no point within the ellipse should have a velocity in the direction of
rolling. The surface of the contact ellipse is curved, however, so

that the points 1 and 4 are at different radii from the X - X' axis
than are points 2 and 3. For an inelastic ball, points 1 and 4 must

have different velocities with respect to the X - X' axis than do points
2 and 3 because the velocity of any point on the ball relative to the

X - X' axis equals the angular velocity times the radius from the X -

X' axis. Slip must occur at various points over the contact ellipse
unless the body is so elastic that yielding can take place in the con-

tact area to prevent interfacial slip. The theory of Reynolds [12] and
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later Heathcote [13] assumed that the interfacial slip took place, and
that the forces required to make & ball roll are the forces required to
overcome the friction due to interfacial slip. In the contact ellipse,
according to Heathcote's theory, rolling without slip will occur at a
specific radius from the X ~ X' axis. Where the radius is greater
than this radius to the rolling point, slip will occur in one direction,
and, where it is less than the radius to this rolling point, slip will
occur in the other direction. In figure 7(b) the lines to points 2 and
3 represent the approximate location of the rolling bands, and the
arrows shown in the three portions of the contact area represent the
directions of interfacial slip when the ball is rolling out of the page.

The location of the two rolling bands relative to the axis of the
contact eliipse can be obtained by means of a summation of the forces
acting on the ball in the direction of rolling.

This problem was solved by Anderson [14], Halling [15], and -
Johnson [9]. The solution that follows is that of Johnson [9].

Referring again to figure 7, the ball of radius R rolls in a
closely conforming groove of radius p . A normal load PN produces

o}

an elliptical contact area having semi-major and semi-minor axes a,

and b, respectively (fig. 8) which, it will be assumed, are given
with sufficient accuracy by the Hertz theory.
From the Hertzian equations [16 and 17],

3Py (K, + K_)R
e = o 1 2 (57)

o}

where
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) (56)

e
1
é’

and E(k) is the complete elliptic integral of the second kind. The

compressive stress SXy » acting at any point is as follows (17]

3P 2|1/2

N 2
= —20 - (XY (L
Sxy "~ 2magb, = (;o) (bo) (60)

Assuming that the transverse profile of the ball can be specified

by

Z & = (61)

the peripheral velocity of points on the surface of the ball is given by

2
Uy = wé - }ZC_R) (62)

while points on the groove move with a constant velocity U,. Heathcote
[13] maintained that rolling without sliding would take place on two
bands, symmetrically disposed gbout the center line of the contact
ellipse. However, as previously discussed, this conclusion takes no
account of the ability of the surfaces to deform elastically and accomo-
date the difference in velocity by an extension of one surface and a

compression of the other.
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Johnson [9] analyzes the problem of tangential elastic compliance
by dividing the elliptical contact area into thin slices parallel to the
rolling direction and then applying the two-dimensional Carter-Poritsky
theory to individual slices, neglecting;any interaction between them.
This approach is expected to be valid where the contact ellipse is
narrow in the direction of rolling..

Referring to figure 8, consider a strip at a distance x from the

center line, then by equations (53) and (62)

£ = Y- U? -1 - Y2 _ %
aR @R 2R
(63)
i
R
° 5%

where £ 1is the slip ratio for the strip and go is the slip ratio

for the overall motion of the ball.
To apply the solution for two cylinders in contact to each individual
strip, substitute equation (53) into (63). Then

+
4kaN(Kl Kz)c

=t -
b2 ° =

X |
X (64)

where the semi-length of the strip
1/2

b = bo[ ; (;‘—O>2] (65)

and where PN is the intensity of load per unit length on the strip.

Solving for P

N

3Py b7 2
P = o Ao (66)
N pE T ER(K ¥ K

O 0O
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from Hertzian equations and equations (57) and (60).

Substituting equation (66) into equation (64) and rearranging gives

2
c 2R X
== —— [ - (67)
b 4fk7\b < o 2R2>

2 2
Multiplying equation (67) by RaO/RaO and combining terms gives

c ai 2R2§o X 2
b "4f rRNo 2 - (a_ (68)
k aq o)
Let -
2
2R &
2
o= —2 (69)
a
o
Then ‘ .
5 - .
a /,
c o} 2 x\2
s e — - [ 2 70
b 4fkR%b [% <a6> ] (70)

It follows from the theory of two rollers in contact, some slip
will occur at the trailing end of the elemental strip for which the
slip ratio £ 1is not zero. Eguation (70) defines the amount of slip
at any value of x. There will be no slip where ¢ 1is zero. At this
value of ¢, x = + Yao. At other values of x some slip occurs. (d/b
cannot exceed unity, which corresponds to complete slip of the strip.)

The tangential force per unit length transmitted by each strip is

found from equations (54) and (55) where

N I 3

Using equation (66)

- ) & B F- )
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a4 1is of opposite sign inside and outside the no-slip bands. For the
ball to be in equilibrium when rolling freely in a straight groove there
must be no resultant couple about an axis through the center of the ball.

Therefore,

ao ao
2
fq(R-z)mifq%_%)w=o (73)
0 0

This condition determines the value of Y and hence the position of
the no-slip bands.

The resistance to rolling is then given by

F_ =2 q * dx (74)

Equations (70), (72), (73), and (74) provide a complete solution to the
tangential tractions, microslip and rollihg resistance due to slip in
any particular situation.

It follows from the analysis that when the coefficient of friction
is so high that slip is restricted to a vanishingly small region at the
trailing edge of the contact ellipse, ¥ = 0.5, that is, the no-slip
lines are located at x = + 0.5 age For tﬁe Heathcote assumption of
sliding at all points within the contact ellipse except on the no-slip
lines, ¥ =~ 0.35. From the Heathcote assumption the rolling resistance
is

2
0.080 kaNan
F,. = 5 (75)
R
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To determine Y for a given application, a value of Y lying
between the extreme values of 0.35 and 0.5 is agsumed. Then equation
(70) gives the amount of slip on each strip. Substituting equations
(70) and (72) into equation (73) provides a check on whether the value
of ¥ which has been chosen is correct. Having obtained a value of 7
which satisfies equation (73), the rolling resistance can be found frbm
equation (74). Referring to figure 9, Johnson [9] calculated the amount
of microslip on the contact ellipse for two conditions presented in
teble I for a steel ball rolling freely in a conforming groove. For
case (a) (fig. 9(a)) slip occurs over a substantial portion of the con-
tact area. Whereas, for case (b) figure 9(b), the slip is more moderate
over the contact area, occurring at the trailing end. Johnson 9]
has experimentally observed microslip areas similar to those in figure 9.

The effects of rolling with spin were treated by Johnson in [9],
(18], and [19] and by Halling in [15] and [20]. Johnson has reported
that the spinning moments are less for rolling with spinning than for
spinning alone. He has also shown experimentally that locked regions
(elastic compliance) do occur to various extents depending on friction
coefficient, spinning velocity, and rolling velocity.

In the analysis of roller andrball, there was no consideration of
the effect of lubricant in the contact area. If a lubricant film is
present, there are several questions which arise. Among these are,
can there be regions of elastic compliance or no-slip (locked) regions
as are illustrated in figures 7 and 97 If such regions exist, are they
modified by the presence of a lubricant film? While no theoretical or

experimental work considering the presence of a lubricant is reported
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in the literature, it is interesting to speculate as to the effect.

An elastohydrodynamic film can change both the stress distribution
and contact geometry for two rolling bodies in contact. Additionally,
standard lubricants may become pseudosolids under high rolling-contact
pressure. If this be so, the lubricant may be capsgble of transmitting
the shear stresses which are necessary to maintain elastic compliance.
If, however, the lubricant does not act as a pseudosolid the probable
condition existing would be that gpproaching the assumptions of Heath-
cote [13] and, for a ball in a groove, T - 0.35.

As of the date of this writing both theoretical and experimental
work need to be performed in this area to determine the effect of a
lubricant on elastic compliance, to determine the effect of elastic
compliance on contact stresses; and to determine if a relation exists
between elastic compliance and rolling-element fatigue.
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TABIE I. - EXAMPLES OF BALL ROLLING IN A

CONFORMING GROOVE (refe 9)

Example

(a)
(Fig. 9(a))

(b)
(Fig. 9(p))

Ball Radius/Groove Radius 0.948 0.815
(R/p)
Contact Ellipticity 6.9 3.1
. (80/bo)
Contact Size/Ball Radius 0.103 0.066
(ao/R)
Rolling Resistance
Normal Load ?
F_/P.
r/ Ng
Johnson's Theory 7.0 X 1070 1.9 X 107°
Heathcote's Theory 8.5 X 107° 3.4 X 107°
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(b) Vector diagram,
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Figure 3. - Outer race control (ref. 8),
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Figure 4. - Inner race control (ref, 8).
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Figure 7. - Differential slip due to curvature
of contact ellipse.

Figure 8. - Tangential tractions on an elemental strip of an elliptical
contact area for a ball rolling freely in a conforming groove (ref. 9).
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Figure 9. - Microslip on the contact area of a ball rolling freely in a con-
forming groove (ref. 9).



