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A REVIEW OF BALL MOTION IN AN ANGULAR CONTACT BALL BEARING 

by R. J. Parker, E. V. Zaretsky, and W. J. Anderson 

Lewis Research Center 

Cleveland, Ohio 

ABSTRACT 

A significant portion of total ball-bearing friction results from 

National Aeronautics and Space Administration 

friction due to sliding or spinning in the contacts of the balls and races. 

A brief review of the nature of this ball-race contact including analyses of 

ball spin and microslip and the factors contributing to the problem are 

presented in this paper. 
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NOMENCLATURE 

contact area, sq in. 

semi-major axis of colitact ellipse, in. 

semi-width of contact of two cylinders in contact, in. 

semi-width of no slip region of two cylinders in contact, in. 

semi-minor axis of contact ellipse, in. 

distance from center of contact area to center of no slip region, in. 

ball diameter, in. 

pitch diameter, in. 

Young's modulus of elasticity, psi 

complete elliptic integral of the second kind 

surface displacements, in. 

friction force, lbs 

rolling resistance, lbs 

coefficient of kinetic friction 
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coef f ic ien t  of spinning f r i c t i o n  
fS  

K e l a s t i c  constant 

k 

M bearing torque due t o  spinning, l b - in .  

b a l l  spinning moment, lb- in .  

modulus of complete e l l i p t i c  i n t e g r a l  of t h e  second kind E(k) 

Ms 

pN 

n number of b a l l s  

normal load per u n i t  length of two cyl inders  i n  contact,  l b / h .  

normal b a l l  load, l b  'No 

Q,Q',Q" t angent ia l  t rac t ion ,  lb / in  

QS 

q 

2 

f r i c t i o n a l  heat generation due t o  b a l l  spinning on race,  

t angen t i a l  force per  u n i t  length of two cylinders i n  contact,  

l b / in .  

Btu/min 

R rad ius  of b a l l  or cylinder, i n .  

r' polar  coordinate distance, i n .  

r l i m i t  of r integrat ion,  i n .  i 

compressive s t r e s s  acting on any poin t  on the  contact area,  p s i  

compressive s t r e s s  for two cyl inders  of u n i t  length under 

r o l l i n g  contact,  p s i  

sXY 

sY 

U per iphera l  veloci ty ,  in/min 

v veloci ty ,  in/min 

X,Y,Z  d is tance i n  p r inc ipa l  direct ion,  i n .  

c1,1,~,2,6,p,$' angles defined i n  f igures  3 and 4, deg 

P bearing contact angle, deg 

P i  

P O  

inner-race contact angle a t  load and speed, deg 

outer-race contact angle a t  load and speed, deg 
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r r o l l i n g  f ac to r  

6 Poisson's r a t i o  

h contact f a c t o r  

5 s l i p  r a t i o  f o r  two cylinders i n  r o l l i n g  contact 

s l i p  r a t i o  f o r  b a l l  r o l l i n g  i n  conforming groove 
50 

P radius  of groove, i n .  

cp polar  coordinate angle, deg 

w angular veloci ty ,  rad/min 

INTRODUCTION 

The r o l l i n g  contact phenomenon, t h e  in t e rac t ion  of two or more 

bodies i n  r o l l i n g  contact,  has been the subject  of much study, debate, 

and controversy f o r  severa l  decades. Many unresolved questions cur ren t ly  

e x i s t ,  i n  addi t ion t o  numerous new problems which develop as machine 

elements become more complex and as loads,  temperatures, and speeds 

increase within these  elements. 

In  order t o  understand the  various fac tors  influencing ro l l i ng -  

element design, fa t igue ,  and lubricat ion,  an understanding of bearing 

kinematics is  a prime prerequis i te .  While considerable ana ly t i ca l  

and experimental work have been conducted i n  t h i s  area,  a summation 

under one cover a t  t h e  time of t h i s  wr i t ing  w a s  nonexistent. Therefore, 

it i s  t h e  object ive of t h i s  a r t i c l e  t o  treat r o l l i n g  element kinematics 

i n  i t s  most elementary comprehensive form. 

of r o l l i n g  element bearings w i l l  be presented w i t h  spec i f i c  emphasis 

on b a l l  bearings under a t h r u s t  load. 

f r i c t i o n  losses  of b a l l  spinning and of r o l l i n g  with microslip and 

e l a s t i c  compliance w i l l  be discussed. 

A review of t h e  kinematics 

The e f f e c t s  on overa l l  bearing 
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BALL MOTION I N  AN ANGULAR CONTACT RACEWAY 

Fatigue i n  bearings i s  a phenomenon dependent on element loading 

and ra te  of cycling. The r a t e  of cycling is dependent on bearing 

geometry, t he  number of r o l l i n g  elements, and the  angular ve loc i ty  of 

t he  inner race.  

In  f igure  1 a sec t ion  of an angular contact b a l l  bearing under 

pure t h r u s t  load is  shown. 

race,  t he  ve loc i ty  of po in t  A is  

If ai i s  t h e  angular ve loc i ty  of the  inner 

v A = u p  

Similar ly ,  i f  a0 i s  the  angular ve loc i ty  of the outer  race,  

then the  ve loc i ty  of point  C i s  

v =uCD 
c o  

The ve loc i ty  of the  b a l l  center V i s  

1 v = -  

Subs t i tu t ing  equations (1) and ( 2 )  i n t o  equation (3) gives 

0 

(3) o 2 ('A + 'C) 

1 % - (E  - d COS p )  + - (E  + d COS p )  0 2 2  2 (4) 

The angular ve loc i ty  of t he  separator or cage and the  b a l l  set 

about the sha f t  ax i s  i s  

' 0  = -  
E/2 

Then 

( 5 )  

The speed of the  separator  when the outer  race  is fixed is  



Since p < 90°, t h e  separator  speed i s  always l e s s  than half  the  

sha f t  speed. When both races  ro t a t e ,  the  speed of t h e  inner  race 

r e l a t i v e  t o  the  separator  i s  

The speed of t he  outer  race r e l a t i v e  t o  the  separator  i s  

1 
0 c 2  "o/c = a - Lu = - (ao - ai) 

(9)  

From equations (8) and (9),  t he  speed of t h e  inner race r e l a t i v e  

t o  the  separator  i s  always grea te r  than t h a t  of t he  outer race r e l a t i v e  

t o  the  separator;  therefore ,  a poin t  on the  inner-race b a l l  t r ack  

w i l l  receive a grea te r  number of s t r e s s  cycles per  u n i t  time than w i l l  

a po in t  on the  outer  race .  

For b a l l  bearings t h a t  operate a t  nominal speeds under a t h r u s t  

load, t he  cent r i fuga l  force on the  ba l l s  i s  negl ig ib le  and the  forces 

t h a t  keep the  b a l l  i n  equilibrium are  t h e  two contact  forces .  For 

such conditions,  t he  contact forces  a re  equal and opposite, and the  

inner-  and the  outer-race contact angles a r e  approximately equal. 

The motion of a b a l l  i n  angular contact  b a l l  bearings has been 

experimentally observed by Shevchenko [l] and by Hirano 121. Shevchenko 

u t i l i z e d  high speed photography and Hirano measured the change i n  

magnetic f lux  induced by a magnetized b a l l .  Both means of observation 

were successful  i n  determining t h e  b a l l  angular ve loc i ty  and the ax i s  of 

r o t a t i o n  of t h e  ba l l s .  Results of these tests w i l l  be discussed l a t e r .  
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BALL SPIN 

Spinning moment. - The previous section t r ea t ed  the  v e l o c i t i e s  of 

bearing components i n  t h e i r  most simplified form. In  a t h r u s t  loaded 

b a l l  bearing another ve loc i ty  component, b a l l  spin,  i s  introduced. 

B a l l  spinning i s  responsible  f o r  a major port ion of the  overa l l  

f r i c t i o n  i n  a t h r u s t  loaded bearing and can account for  high heat 

generation r a t e s  [3]. Measurements of b a l l  spinning f r i c t i o n  have been 

performed by ReicheEbach [3! and Miller [ 4 ]  f o r  various geometries 

and loads.  

w a s  determined by Poritsky, e t  a l .  [5] by in tegra t ing  the  f r i c t i o n  

Bal l  spinning moment i n  an angular contact b a l l  bearing 

force over the contact e l l i p s e .  Figure 2 i l l u s t r a t e s  t h e  contact 

e l l i p s e  over which s l id ing  due t o  spinning takes place.  Since t h e  

s l i d i n g  motion i s  a ro t a t ion  about the e l l i p s e  center ,  t h e  d i r ec t ion  

of s l i d i n g  is  normal t o  the  radius  vector t o  the  poin t  (x,y) as shown. 

The f r i c t i o n  force i s  assumed t o  be i n  the d i r ec t ion  opposite t o  t h a t  

of s l i d i n g  and of a magnitude proportional t o  t h e  normal compressive 

force  

d F = f S  dA (10) S x y  

where fs  i s  the  coe f f i c i en t  of spinning f r i c t i o n  (assumed independent 

of t h e  contact s t r e s s  SXy ) and dA i s  t h e  element of area. In t ro-  

ducing polar  coordinates r, cp, the moment of t h e  l o c a l  f r i c t i o n  force 

i s  seen t o  be 
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i s  given by sxY where 

Subs t i t u t ing  from equation ( 1 2 )  i n t o  equation (ll), and introducing r, 

cp, one obtains  f o r  t h e  net moment 
231 r '  

MS = 3fspN0JJ2 2naobo [ - [(L &O cos q)2 + (& s i n  c$-].y2 d r  dcp (13) 

0 

where t h e  l i m i t s  of i n t eg ra t ion  f o r  r go from. 0 t o  t h e  edge of the  

e l l i p s e  

a b  
0 0  

rt = (14) 
k b o  cos 9)' + (ao s i n  c p )  

The in t eg ra t ion  with respect  t o  r may be ca r r i ed  out i n  terms of 

elementary funct ions.  The cp-integration leads  t o  a complete e l l i p t i c  

i n t e g r a l  of t h e  second order.  Hence, 

M = -  f P a E(k) 
s 8 s N o o  

where 

Ball spinning p lus  r o l l i n g  w i l l  occur at one race contact,  whereas 

r o l l i n g  without spin w i l l  occur at t h e  other even i f  t h e  contact angle 

P i s  equal at both races .  Rol l ing without spin w i l l  occur at t h e  con- 

t a c t  where the  b a l l  spinning moment i s  t h e  grea te r .  For t he  angular 

contact bearing i l l u s t r a t e d  i n  f igure 1 having equal race curvatures, 

t h e  semi-major axis of t h e  contact e l l i p s e  w i l l  be  grea te r  at t h e  inner 

race  than at the  outer  race.  Hence, t h e  spinning moment w i l l  be  grea te r  
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and r o l l i n g  w i l l  occur at the  inner  race. A t  t h e  outer race,  spinning 

p lus  r o l l i n g  w i l l  take place.  This action i s  known as inner-race b a l l  

cont ro l .  

Race curvature d i r e c t l y  a f f e c t s  contact e l l i p t i c i t y .  Thus, 

differences i n  race curvature at t h e  inner and outer races  will cause 

d i f fe rences  i n  spinning moments at the two race contacts  and w i l l  govern 

where b a l l  cont ro l  takes  place.  B a l l  c en t r i fuga l  force,  which m a y  be 

s ign i f i can t  2t high speeds, increases t h e  load a t  t h e  outer  race, and 

b a l l  cont ro l  i s  general ly  sh i f t ed  t o  t h e  outer race.  

I n  summation, i f  

. > Ms 
( inne r )  (ou te r )  

MS 

then r o l l i n g  w i l l  occur at  t h e  inner race  while r o l l i n g  w i t h  spinning 

w i l l  occur a t  t h e  outer race.  This phenomenon i s  r e fe r r ed  t o  as inner 

race  cont ro l .  If, on t h e  other hand 

(ou te r )  
< Ms 

( inne r )  
MS 

r o l l i n g  w i l l  occur at t h e  outer race while r o l l i n g  with spinning w i l l  

occur at t h e  inner race.  This i s  referred t o  as outer race cont ro l .  

The kinematics of a b a l l  bearing i s  g r e a t l y  a f fec ted  by b a l l  contr.ol. 

Spin ve loc i ty .  - Once t h e  race where b a l l  control  occurs has been 

determined, t he  b a l l  sp in  ve loc i ty  can be calculated.  B a l l  spin ve loc i ty  

i s  a funct ion of t he  contact angle and t h e  inner race speed. 

3(a) represents  an angular contact b a l l  bear ing under t h r u s t  load w i t h  

Figure 

b a l l  cont ro l  q t  t he  outer  race.  From t h i s  f igure ,  
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Solving fo r  t a n  a2, 

- co 
OA 

t a n  a2 = - - 

s i n  Po 
- 
- E  

d - + cos Po 

From f igu re  3(a) 

J[ 
I-1 = z +  Pi - Po + a 2  

Solving for s i n  %, 

- 
BD 
BA 

s i n  = = 

Solving for  

vB 
% a l l =  z. 

uiC(E/d) - COS P i 1  
- - 

( s i n  a1 + t a n  % cos a1) 

1 

{ +[&I2 - .[*j cos .>”’ 
Referr ing t o  f igu re  3 (b )  and solving f o r  t h e  ve loc i ty  of t h e  b a l l  

r e l a t i v e  t o  the  ve loc i ty  of the  inner race,  
- %/i = <dl 7 ai 

Solving fo r  the  angle $, 

The angular ve loc i ty  of t he  b a l l  r e l a t ive  t o  t h e  angular ve loc i ty  of 

t h e  inner race can be wr i t t en  
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- - 
%/i = Gi + m s i  

Solving fo r  the spinning ve loc i ty  at  the inner  race 

L o -  s i n  9 + cu s i n  P 
s i  - %dl i i 

Subs t i t u t ing  equations (21 )  and ( 2 3 )  i n to  ( 2 5 )  

cui[ (E/d) - cos p i ] / ( s in  a1 + t a n  a2 cos a1) 

sin(pi - P + z ) + cui s i n  Pi (26) 0 2  

for b a l l  bearings t h a t  operate at nominal speeds, c e n t r i f u g d  forces  

a re  negl ig ib le  and t h e  contact angles at t h e  inner- and outer-races 

remain e s s e n t i a l l y  equal. Thus f o r  outer race control ,  i f  Po = Pi, 
equation ( 2 1 )  becomes 

a. (E/d - cos P .  1 
1 1 

%all = 2 cos a2 

and $ = and equation (25)  becames 

= cuball s i n  % +cui s i n  Pi 

Subs t i t u t ing  equation (27 )  i n t o  equation ( 2 8 )  

'%i 

(E/d - cos P .  ) s i n  a. 
- L I & + cu. s i n  P,i 

%.i - 2 cos a2 1 

= aira: 6 - cos PJ + s i n  pi] 
(29) 

Referring t o  f igu re  4(a), there  i s  shown a similar bear ing bu t  w i t h  

inner-race control .  Comparing f igure  4(a) with f igu re  3(a),  it can 

r ead i ly  be  noted that the kinematics a r e  d i f f e r e n t  due t o  the f a c t  that 

r o l l i n g  occurs at t h e  inner race contact.  The solut ion t o  cuso i s  

similar t o  tha t  of wsi. Solving for  t h e  t angen t i a l  ve loc i ty  of the 
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b a l l  at point  B, VB 

'% 
= 2 (E - d COS p i )  

Solving f o r  t an  aL, 

s i n  pi 
- - 

E/d - COS pi 

Now assuming a cone r o l l i n g  about 1-ne of zero veloc 

vB 
%a l l  - - 

BG 
- -  

From f igu re  4(a)  

BD t a n  al = - - 
AD 

and 

Adding equations (33) and (34) 

- 
BG 

t a n  "[1 + t an  a2 = - - = -  BD + E 
AD AD 

Subs t i t u t ing  equation (35) i n t o  equation (32) 

vn 

(33) 

(35) 

cui s i n  pi - - 
( t a n  "1 + t an  =;)cos "1 
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Solving fo r  a2; from f i g u r e  4 ( a )  

a - ~ r - e - p  2 -  

and 

Solving f o r  IJ. ; from t h e  l a w  of cosines, 

x2 = ($ + z2 - 2 t )  (0A)cos p 

and from f igu re  4 (a ) ,  

d 
2 s i n  a 

- 
CA = 

1 

Subs t i tu t ing  equations (40) and (41) i n t o  equation (39), rearranging, 

and simplifying 

s i n  a - cos 8 1 - - 
112 

( s in2  a + 1 - 2 cos e s i n  5)  1 

determine t h e  value of a from equa- %all l I n  order t o  solve f o r  

t i o n  (31) and determine the  value of a2 from equations ( 3 7 ) ,  (38) and 

(42 ) .  Then %all i s  obtained from equation (36) .  

Referr ing t o  f igure  4(b), t h e  spinning ve loc i ty  at t h e  inner  race 

i s  
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For the  spec ia l  case where the  contact angles 

equal, the  spinning ve loc i ty  at the  outer race  f o r  

i s  given by 

u) = u j d l  s i n a  

The e f f e c t s  on bear ing operation of ba l l  spin 

so 1 

Pi and Po a r e  

inner race  control  

(44) 

can be seen once t h e  

spinning moment, spinning veloci ty ,  and t h e  loca t ion  of race control  

have been determined. 

The heat developed i n  t h e  b d i - r a c e  contacts  due t o  spinning is 

given by 

Qs n u J M  s s  (45) 

The bear ing torque due t o  spinning i s  then given by 

QS 
(46) M = -  

(0. 
1 

The f r i c t i o n a l  heat generated at  t h e  ba l l - r ace  contact where 

spinning takes  place accounts f o r  a s ign i f i can t  port ion of t h e  tota3. 

bear ing f r i c t i o n  loss .  

normal load at t h e  outer race-ba l l  contact i s  increased and the  r e s u l t i n g  

divergence of contact angles tends t o  increase the  spinning ve loc i ty ,  

and aggravate the  problem of heat generation. 

Where cent r i fuga l  forces  a re  s ign i f i can t ,  t h e  

The e f f e c t s  of b a l l  spinning can be minimized by decreasing t h e  

s i z e  or mass of the  ba l l s ,  using more open race curvatures,  and by 

using smaller contact angles.  Case must be taken i n  ad jus t ing  t h e  

l a t t e r  two design f ea tu res  s ince the r e s u l t i n g  increase i n  s t r e s s  could 

produce a s ign i f i can t  decrease i n  f a t igue  l i f e .  
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The heat generation i n  the  bal l - race contacts  can cause thermal 

grad ien ts  i n  t he  bearing which induce thermal s t r e s s e s  which i n  t u r n  may 

a f f e c t  f a t igue  l i f e .  I n  addition, t h i s  heat generation must be minimized 

for  bear ings used i n  cryogenic or other marginal l ub r i ca t ion  appl ica t ions  

as shown by Scibbe and Anderson [81 

Another f ac to r  t h a t  may fu r the r  complicate the  analysis  of motion 

i n  a b a l l  bear ing under t h r u s t  load i s  t h e  gyroscopic moment t h a t  a c t s  

on each b a l l .  

s l i p  a t  the  ba l l - race  contact i n  high-speed l ight ly- loaded bear ings with 

l a rge  b a l l s ,  r e s u l t s  i n  a skewed d i r ec t ion  of t h e  r o l l i n g  axis so t h a t  

cu Hirano i n  reference 

[ 2 1  has shown t h a t  considerat ion of this gyroscopic moment w a s  necessary 

t o  explain h i s  experimental r e s u l t s  with t h e  t h e o r e t i c a l  work6 of Jones 

This gyroscopic moment, which may be grea t  enough t o  cause 

does not l i e  i n  the  x-z plane of f igu re  3. 
b a l l  

h 1 , .  

SLIP AND ELASTIC COMPLIANCE OF BODIES I N  CONTACT 

True ro l l i ng ,  i n  which no r e l a t i v e  s l i p  of the  contacting surfaces  

of two bodies under a normal cmpressive load occurs, i s  f o r  all p r a c t i c a l  

purposes nonexistent.  For t r u e  r o l l i n g  t o  occur, (a) the  contact ing 

mater ia l s  must be pe r fec t ly  i n e l a s t i c  or  ( b )  t h e  l o c a l  t angen t i a l  f r i c -  

t i o n  force  developed i n  the  contact a r ea  must equal or  exceed the  force 

necessary t o  cause locd l  tangent ia l  e l a s t i c  deformation and prevent 

i n t e r f a c i a l  s l i p .  The l a t t e r  phenomenon i s  known as e l a s t i c  compliance. 

The so lu t ion  of s l i p  wi th in  the contact region has been summasized 

and discyssed by Johnson [91. 

the  two-dimensional problem and, subsequently, Poritslry 

t h e  problem i n  more d e t a i l .  

Carter [lo] presented the  so lu t ion  t o  

111 discussed 
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Referr ing t o  f igu re  5, there  

of radii R1 and R2 i n  r o l l i n g  

and U2 under a normal force 

2b with a s t r e s s  d i s t r i b u t i o n  of 

pN 

i s  shown two cyl inders  of u n i t  l eng th  

1 contact at per ipheral  v e l o c i t i e s .  U 

producing a Hertzian contact of width 

S . A t angen t i a l  force  q due t o  
Y 

i s  present without s l i d ing  where q < f P 
fk  k N' 

k ine t i c  f r i c t i o n  

( S l i p  i s  t o  be d i f f e r e n t i a t e d  from s l ide  as follows: s l i p  refers t o  a 

r e l a t i v e  ve loc i ty  at a point i n  t h e  contact area,  whereas s l i d e  r e f e r s  

t o  ove ra l l  bcdy movement associated with s l i p  at all poin ts  i n  t h e  con- 

t a c t  a rea . )  

Where complete s l i p  i s  present i n  t h e  contact area, at a s p e c i f i c  

value of y on the  contact area t h e  t angen t i a l  t r a c t i o n  i s  

The t r a c t i o n  produces surface s t r a i n s  i n  t h e  contact a r ea  given by 

4 f P  K y  

b2 

de t k N  
-q= - 

where t h e  e l a s t i c  constant 
2 

1 - 6, 
I K =  

nEl 
(49) 

To obtain a region of no-sl ip  a second tangent ia l  t r a c t i o n  given by 

ac t ing  over t h e  s t r i p  of width 2b' ( t h e  no s l i p  region) i s  added t o  

Q ' ,  equation ( 4 7 ) ,  t o  give a value Q. The s t r a i n s  due t o  Q", by 
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analogy with equation (48),  a r e  given by 

4f P ( y  + c)K 
k N  - .. -. .. 

b2 

These d i s t r ibu t ions  of t r a c t i o n  and s t r a i n  are i l l u s t r a t e d  i n  f i g u r e  6 (  a) .  

Th~s +,he net s t r a i n  i n  t h e  no s l i p  region i s  

4f P Kc 

b2 
- - = constant 

Applying equation (52) t o  each body i n  t u r n  and remembering t h a t  

t h e  t r a c t i o n  on t h e  lower surface i s  opposite i n  s ign t o  t h a t  on t h e  

upper surface gives  a s l i p  r a t i o  

4f P (K + K ) c  
= constant - k N  1 2 - 

b2 

(53) 

The value of b '  i s  determined by the  equilibrium of the  in tegra ted  

t r a c t i o n  Q with the  applied force q , r e su l t i ng  i n  
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I n  figure 6 (a ) ,  f o r  r o l l i n g  contact 

(55) c = b - b '  

Where t h e  bodies a r e  s ta t ionary ,  the  center of no s l i p  o r  locked region 

coincides wi th  t h e  center  of the  contact a r ea  as shown i n  figure 6 (b ) ,  

t he re fo re  c = 0. 

Solving f o r  c i n  equation (55) i n  accordance with equation (54) 

t h e  expression f o r  t h e  s l i p  r a t i o  between two cyl inders  equation (53) 

be comes 

The case of a b a l l  r o l l i n g  on a grooved surface i s  somewhat d i f f e r -  

ent  than a cyl inder  or r o l l e r  i n  r o l l i n g  contact with another r o l l e r  or 

a plane surface.  A s  shown i n  f igure  7, t h e  b a l l  rolls about the X - X '  

axis and makes contact with t h e  grooved surface from poin ts  1 t o  4. 

If t h e  groove i s  fixed, then f o r  zero s l i p  over t he  contact e l l i p s e  

no point  within t h e  e l l i p s e  should have a ve loc i ty  i n  t h e  d i r ec t ion  of 

r o l l i n g .  

t h a t  t h e  poin ts  1 and 4 a r e  at d i f f e ren t  radii from the  X - X '  axis 

than a r e  poin ts  2 and 3. 

The surface of t h e  contact e l l i p s e  i s  curved, however, so 

For an i n e l a s t i c  b a l l ,  po in ts  1 and 4 must 

have d i f f e r e n t  v e l o c i t i e s  w i t h  respect t o  t h e  

2 and 3 because t h e  ve loc i ty  of any point  on the  b a l l  r e l a t i v e  t o  t h e  

X - X' 

X.- X' axis than do poin ts  

axis equals t h e  angular veloci ty  times the  radius  from t h e  X - 
X '  

unless  t h e  body i s  so e l a s t i c  t h a t  y ie ld ing  can take  place i n  t h e  con- 

t a c t  =ea t o  prevent i n t e r f a c i a l  s l i p .  

axis. S l i p  must occur at  various poin ts  over the  contact e l l i p s e  

The theory of Reynolds [121 and 
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l a t e r  Heathcote [131 assumed tha t  t h e  i n t e r f a c i a l  s l i p  took place,  and 

t h a t  the forces  required t o  make a b a l l  roll are t h e  forces  required t o  

overcome t h e  f r i c t i o n  due t o  i n t e r f a c i a l  s l i p .  I n  t h e  contact e l l i p s e ,  

according t o  Heathcote's theory, ro l l i ng  without s l i p  w i l l  occur at a 

spec i f i c  rad ius  from the  X - X '  axis. Where the  radius  i s  g rea t e r  

than t h i s  rad ius  t o  t h e  r o l l i n g  point ,  s l i p  w i l l  occur i n  one d i r ec t ion ,  

and, where it i s  l e s s  than t h e  radius  t o  t h i s  r o l l i n g  point,  slip will 

occur i n  t h e  other  d i r ec t ion .  

3 represent  t h e  approximate loca t ion  of t h e  r o l l i n g  bands, and the  

arrows shown i n  the th ree  port ions of the contact area represent  t h e  

d i r ec t ions  of i n t e r f a c i a l  s l i p  when the b a l l  i s  r o l l i n g  out of t h e  page. 

i n  f3:gcrre ?(?I) t h e  l i n e s  t o  poin ts  2 and 

The loca t ion  of t he  two r o l l i n g  bands r e l a t i v e  t o  the  axis of t h e  

contact e l l i p s e  can be obtained by means of a summation of t h e  fo rces  

ac t ing  on the  b a l l  i n  t he  d i r ec t ion  of r o l l i n g .  

This problem w a s  solved by Anderson [141, Halling [ E l ,  and 

Johnson [ S I .  The solut ion tha t  follows i s  t h a t  of Johnson [91.  

Referr ing again t o  f igu re  7, the b a l l  of radius  R rolls i n  a 

c lose ly  conforming groove of radius  p . A normal load PN produces 

an e l l i p t i c a l  contact a r ea  having semi-major and semi-minor axes 
0 

a. 

and bo respec t ive ly  ( f i g .  8) which, it w i l l  be  assumed, are given 

with su f f i c i en t  accuracy by t h e  Hertz theory.  

From t he  Hertzian equations [16 and 171, 

2 b =  
0 2Aa0 

3PN 0 (K1 + K2)R 
( 5 7 )  

where 



1 9  

-$] 
Eo A =  

2 
1 - 6 2  

KZ = nE2 

(59) 

and E(k)  i s  t h e  complete e l l i p t i c  i n t eg ra l  of t he  seconl! kind. The 

compressive stress ac t ing  at  any point  i s  as follows [ 171  ’ 

L 

Assuming t h a t  t h e  

2 

2R 
X Z Z  - 

d 

t ransverse p ro f i l e  of t he  b a l l  can be spec i f ied  

t h e  per iphera l  ve loc i ty  of po in ts  on t h e  surface of t he  b a l l  i s  given by 

u 1 =+g)  
while poin ts  on t h e  groove move with a constant ve loc i ty  

[131 maintained t h a t  r o l l i n g  without s l i d i n g  would take place on two 

bands, symmetrically disposed about the center  l i n e  of t he  contact 

e l l i p s e .  However, as previously discussed, t h i s  conclusion takes  no 

U2. Heathcote 

account of t h e  a b i l i t y  of the  surfaces t o  deform e l a s t i c a l l y  and accomo- 

da te  t h e  d i f fe rence  i n  ve loc i ty  by an extension of one surface and a 

compression of t h e  other .  
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Johnson [ 91 analyzes t h e  problem of t angen t i a l  e l a s t i c  compliance 

by dividing t h e  e l l i p t i c a l  contact mea  i n t o  t h i n  s l i c e s  p a r a l l e l  t o  t h e  

r o l l i n g  d i r ec t ion  and then applying the two-dimensional Carter-Poritsky 

theory t o  ind iv idua l  s l i c e s ,  neglecting any in t e rac t ion  between them. 

This approach i s  expected t o  be va l id  where the  contact e l l i p s e  i s  

narrow i n  t h e  d i r ec t ion  of rol l ing, .  

Referring t o  f igu re  8, consider a s t r i p  at a dis tance x from t h e  

center l i n e ,  then by equations (53) and ( 6 2 )  

2 
n 

u1 - u2 . = 1 - - - -  u2 x 5 =  

= Eo - 
2 

X - 
2 

2R 

where 5 is  t h e  s l i p  r a t i o  f o r  t h e  s t r i p  and 5 ,  i s  t h e  s l i p  r a t i o  

f o r  the ove ra l l  motion of the ball. 

To apply the  so lu t ion  f o r  two cyl inders  i n  contact t o  each ind iv idua l  

s t r i p ,  subs t i t u t e  equation (53) i n t o  (63) .  Then 

where t h e  semi-length of t he  s t r i p  

and where PN 

Solving f o r  PN 

i s  t h e  i n t e n s i t y  of load per wit length  on the  s t r i p .  



2 1  

from Hertzian equations and equations (57)  and (60 ) .  

Subs t i t u t ing  equation (66)  . i n t o  equation (64 )  and rearranging gives  

C 

2R 

2 2  
Multiplying equation (67 )  by R a o / R a o  and combining terms g ives  

2 a 

6 C =zmE k O [(F) - ($1 
L e t  

2 
2 2R 5 ,  

y = -  
2 a 
0 

Then - 

It follows from the  theory of two r o l l e r s  i n  contact,  some s l i p  

w i l l  occur a t  the  t r a i l i n g  end of the  elemental s t r i p  f o r  which the  

s l i p  r a t i o  5 i s  not zero. Equation ( 7 0 )  defines  t h e  amount of s l i p  

at  any value of x. There w i l l  be no s l i p  where c i s  zero. A t  t h i s  

value of c, x = + ya . A t  other  values of x some s l i p  occurs. (c/b 

cannot exceed uni ty ,  which corresponds t o  complete s l i p  of t h e  s t r i p .  ) 

0 - 

The t angen t i a l  force per u n i t  length t ransmi t ted  by each s t r i p  i s  
\ 

found from equations (54) and (55) where 

Using equation (66)  
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q 

b a l l  t o  be  i n  equilibrium when r o l l i n g  f r e e l y  i n  a s t r a igh t  groove the re  

must be no r e su l t an t  couple about an axis through t h e  center  of t h e  b a l l .  

Therefore, 

i s  of opposite s ign ins ide  and outside t h e  no-slip bands. For t h e  

This condition determines t h e  value of r 
t h e  no-sl ip  bands. 

and hence the  pos i t i on  of 

The res i s tance  t o  r o l l i n g  i s  then given by 

Equations (70),  ( 7 2 ) ,  ( 7 3 ) ,  and (74) provide a complete so lu t ion  t o  t h e  

tangent ia l  t r ac t ions ,  microsl ip  and r o l l i n g  res i s tance  due t o  s l i p  i n  

any pa r t i cu la r  s i t ua t ion .  

It follows from t h e  ana lys i s  t h a t  when t h e  coef f ic ien t  of f r i c t i o n  

i s  so high t h a t  s l i p  i s  r e s t r i c t e d  t o  a vanishingly small region at t h e  

t r a i l i n g  edge of the  contact e l l ipse ,  

l i n e s  are  located at 

s l i d i n g  at all points  within t h e  contact e l l i p s e  except on t h e  no-slip 

l i n e s ,  Y = 0.35. 

is 

Y = 0.5, t h a t  is, t h e  no-sl ip  

x = + 0.5 ao. For the  Heathcote assumption of 
I - 

From t he  Heathcote assumption t h e  r o l l i n g  res i s tance  

0.080 fkPN-aE 
V F =  

R2 r ( 7 5 )  
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To determine r for a given application, a value of y l y ing  

between the  extreme values of 0.35 and 0.5 i s  assumed. 

(70)  gives t h e  amount of s l i p  on each s t r i p .  

( 7 0 )  and ( 7 2 )  i n t o  equation ( 7 3 )  provides a check on whether t h e  value 

of Y which has been chosen i s  correct .  Having obtained a value of y 

which s a t i s f i e s  equation ( 7 3 ) ,  t h e  r o l l i n g  r e s i s t ance  can be  found from 

equation ( 7 4 )  

of microsl ip  on the  contact e l l i p s e  for two conditions presented i n  

t a b l e  I f o r  a s t e e l  b a l l  r o l l i n g  f r ee ly  i n  a conforming groove. 

case (a )  ( f i g .  9 ( a ) )  s l i p  occurs over a subs t an t i a l  port ion of t h e  con- 

t a c t  area.  

over t he  contact area,  occurring at t h e  t r a i l i n g  end. 

has experimentally observed microslip areas similar t o  those i n  f igu re  9. 

Then equation 

Subs t i tu t ing  equations 

Referring t o  f igure  9, Johnson [ 9 1  calculated t h e  amount 

For 

Whereas, f o r  case (b )  f igure 9 ( b ) ,  t h e  s l i p  i s  more moderate 

Johnson [91 

The e f f e c t s  of r o l l i n g  with spin were t r e a t e d  by Johnson i n  [91, 

[lS], and [E l ]  and by Halling i n  [ 151 and [ 201. Johnson has reported 

t h a t  t h e  spinning moments are l e s s  for  r o l l i n g  with spinning than f o r  

spinning alone. He has a l so  shown experimentally t h a t  locked regions 

( e l a s t i c  compliance) do occur t o  various ex ten ts  depending on f r i c t i o n  

coe f f i c i en t ,  spinning veloci ty ,  and r o l l i n g  ve loc i ty .  

I n  t h e  ana lys i s  of r o l l e r  and b a l l ,  there  w a s  no considerat ion of 

the  e f f ec t  of lubr icant  i n  the  contact a rea .  If a lubr icant  f i lm  i s  

present ,  there  a r e  several  questions which a r i s e .  Among these  are, 

can there  be regions of e l a s t i c  compliance or no-sl ip  (locked) regions 

as a r e  i l l u s t r a t e d  i n  f igu res  7 and 9? If such regions e x i s t ,  a r e  they 

modified by the  presence of a lubricant  film? 

experimental work considering t h e  presence of a lubr icant  i s  reported 

While no t h e o r e t i c a l  or 
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i n  t h e  l i t e r a t u r e ,  it i s  in t e re s t ing  t o  speculate as t o  t h e  e f f ec t .  

An elastohydrodynamic f i lm can change both t h e  s t r e s s  d i s t r i b u t i o n  

and contact geometry fo r  two r o l l i n g  bodies i n  contact.  Additionally,  

standard lub r i c  an ts  may b e come pseudo so l ids  under high r o l l i n g  -cont ac t  

pressure.  If t h i s  be so, t he  lubricant  may be capable of t ransmi t t ing  

t h e  shear s t r e s s e s  which are necessary t o  maintain e l a s t i c  compliance. 

If, however, the  lubr icant  does not ac t  as a pseudosolid t h e  probable 

condition ex is t ing  would be  t h a t  approaching the  assumptions of Heath- 

cote  [I31 and, for a b a l l  i n  a groove, y -, 0.35. 

A s  of t h e  da te  of t h i s  wr i t ing  both theo re t i ca l  and experimental 

work need t o  be performed i n  t h i s  area t o  determine the  e f f e c t  of a 

lubr icant  on e l a s t i c  compliance, t o  determine t h e  e f f e c t  of e l a s t i c  

compliance on contact s t resses ;  and t o  determine i f  a r e l a t i o n  e x i s t s  

between e l a s t i c  compliance and rolling-element fa t igue .  
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TABU I- - EXAMPLES OF BALL ROLLING I N  A 

CONFORMING GROOVE (ref 9)  

Example 

Ball Radius/Groove Radius 
(R/P) 

Contact E l l i p t i c i t y  
t '  

I (Bo/bo) 

Contact S i  z e/Ball Radius 
( "o/R ) 

Rolling Resistance. 
Normal Load ' 

Johnson's Theory 

Heathcote's Theory 

0.948 

6.9 

0 .lo3 

7.0 x 
8.5 x 

3.1 

0.066 

-..------ 
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Figure 1. - Ball in an angular-contact raceway. 
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Figure 2. - Contact ellipse (ref. 5). 
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J 
(a) Schematic (no scale). 

Figure 3. -Outer race control (ref. 8). 

(b) Vector diagram. 

(a) Schematic (no scale). 

Figure 4. - Inner  race control (ref. 8). 
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Figure 5. -Two cylinders of unit length under rolling 
contact (ref. 9) .  
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(a) Rolling contact 
(b) Static contact 

Figure 6 - Tangential tractions, surface strains, and micro-slip of two cyl- 
inders of unit length under rolling contact (ref. 9). 



(a) Ball roll ing on groove. 

Y 

(b) Contact ellipse. 

Figure 7. - Differential slip due to curvature 
of contact ellipse. 
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Figure 8. - Tangential tractions o n  an  elemental str ip of a n  elliptical 
contact area for a ball rolling freely in a conforming groove (ref. 9). 

(b) Case b. (a) Case a. 

forming groove (ref. 9). 
Figure 9. - Microslip o n  thecontact area of a ball ro l l ing freely in a con- 


