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ABSTRACT 

We have calculated the bremsstrahlung emitted from thermal 

plasmas which co-exist with a f lux of energetic (suprathermal) electronse 

We find that under some circumstances the radiation emitted can be 

greatly increased compared to the emission from a Maxweliian plasma with 

no energetic particles present, The enhanced emission occurs at the 

fundamental and second harmonic of the electron plasma frequency, 



1, INTRODUCTION 

There a re  many astrophysical and laboratory plasmas which consis t  

of a "thermal" plasma co-existing with a f lwr  of energet ic  p a r t i c l e s ,  

energet ic  p a r t i c l e s  may be d is t r ibu ted  i so t rop ica l ly  i n  ve loc i t i e s ,  o r  possess 

a net  streaming motion with respect t o  the  "thermal" plasma,, 

t h e  bremsstrahlung emission from such plasmas using several  d i f f e ren t  non- 

r e l a t i v i s t i c  ve loc i ty  d is t r ibu t ion  functions which describe s t ab le  s i t ua t ions ,  

We f ind  t h a t  under some circumstances t h e  bremsstrahlung emitted a t  

The 

We have calculated 

w and e 

(we i s  the  electron plasma frequency) can be enhanced by several  orders  

of magnitude compared t o  t h e  thermal emission from a Maxwellfan plasma with 

no energet ic  p a r t i c l e s  present ,  

In  t h e  following calculat ions w e  make use of an expression f o r  t h e  

emission of electromagnetic radiat ion by a field-free homogeneous plasma of 

ions and electrons previously derived by Dupree (these reference8 w i l l  

be r e fe r r ed  t o  as I and I1 throughout t h i s  paper),  

i n t eg ra l s  over products of spec t ra l  dens i t i e s ,  See(ksw) Sii(k,w) e t c ,  , 
(see equation 2 )  f o r  t h e  f luctuat ing number dens i t i e s  of the electrons and 

ions,  The complicated integratfons involved i n  obtaining the emission from 

equation 2 have so far p roved too  d i f f i c u l t  t o  car ry  out exactly,  so t h a t  in 

order t o  convert (2 )  i n t o  something more t ransparent  f o r  some pa r t i cu la r  

plasmas w e  have made a number of approximations based on t he  behavior of t he  

spec t r a l  dens i t i e s  S ( lc ,w)  as f'unctions of 4 and w I n  pa r t i cu la r  we 

note t h a t  f o r  wave numbers 121 < % , where % is  t h e  Debye w a x  number, 

t h e  spec t r a l  density S has resonances at w = 0 and w e , and Sii has 

The formula involves 

W 

ee 



a resonance a t  w E 0 , These resonances correspond t o  a spectrum of longi- 

t ud ina l  e lec t ron  plasma o s c i l l a t i o n s  and ion waves exc i ted  i n  t h e  medium i n  

t h e  sense tha t  they represent Fourier components of t h e  s p e c t r a l  dens i t i e s  

f o r  which w and & a r e  approximately r e l a t e d  8s they  would be f o r  propaga- 

t i n g  Vlasov ion and e lec t ron  plasma waves, 

t o  divide the contr ibut ions t o  t h e  bremsstrahlung i n t o  two par t s :  

from t h e  range 

a p a r t  from jlcl < kD (wave cont r ibu t ion) ,  

It turns out t o  be convenient 

a p a r t  

ILI > % (which we c a l l  t h e  c o l l i s i o n a l  cont r ibu t ion) ,  m d  

Now for a plasma i n  thermal equilibrium t h e  c o l l i s i o n a l  contr ibut ion 

t o  t h e  rad ia t ion  a t  frequency .Q is  given by approximately ( i n  the  nota t ion  

of II), 

6 w m  e - 
- 2 2  emiss 6n noR ve 

2 is t h e  e lec t ron  thermal ve loc i ty ,  ko = K"/e and wL is t h e  where 

l a r g e r  of Sa o r  we The wave-emissfon p a r t  i n  t h i s  case is represented 

by two small resonances at .Q z w and 2 w  with a neg l ig ib l e  area under 

them, 

'e 

e e 

I f ,  on the  o ther  hand, w e  consider a plasma containing a f lux  of 

energet ic  p a r t i c l e s ,  it t u r n s  out t h a t  t h e  wave emission p a r t  of t h e  spectrum 

.I represented by two emission l i n e s  a t  w and 2we - can become eu f f i c fen t ly  

enhanced t h a t  it becomes t h e  dominant f ea tu re  of t h e  spectrum, 
e 

One Can 



visua l ize  t h e  suprathermal pa r t i c l e s  as dr iving the  wave f i e l d  pa r t  of t he  

longi tudinal  f luc tua t ion  spectrum up t o  a high amplitude through a process of 

Cerenkov emission of e lectron plasma o s c i l l a t i o n s ,  

waves, o r  components of t h e  f luctuat ion spectrum, then "collide" w i t h  each 

other  and with low frequency ion density f luc tua t ions  and e m i t  electromagnetic 

r adi at ion ., 

These e l e c t r o s t a t i c  

Th i s  enhanced rad ia t ion  however depends sens i t ive ly  on the veloci ty  

d i s t r ibu t ion  of t he  energetic pa r t i c l e s  s ince they a l so  re-absorb (through 

Landau damping) the  Cerenkov electron plasma o s c i l l a t i o n s  as w e l l  as emit them, 

W e  shall see t h a t  t h e  most r a d i a t i v e  plasmas are those for  wnich the ve loc i ty  

d i s t r ibu t ion  of the suprathermal pa r t i c l e s  i n  some given d i rec t ion  has a small 

der iva t ive  i n  ve loc i ty  space,, 

plasma o s c i l l a t i o n s  driven by the energet ic  p a r t i c l e s ,  and consequently increases  

the  height of the resonance i n  See(IcDu) at  w z w 

This minimizes the  Landau damping of t he  electron 

e "  

2, BASIC EQUATIONS 

Consider the  energy U ( E )  i n  a t ransverse ( r ad ia t ion )  mode of 

wave-number 9 i n  a plasma, Dupree's r e s u l t  (I1 7,") f o r  the rate at which 

energy is emitted i n t o  t h i s  mode can be wr i t ten  as, 



where t h e  summations are over charged species  of number densi ty  n and charge 
a 

2 1 f 2  and plasma frequencies o = (4nn qa/ma) The quant i ty  5 is t h e  'a a a 

e l e c t r i c  f ie ld  f o r  an electromagnetic wave of un i t  energy densi ty  ( f o e o v  

the polar izat ion vector w i t h  normalization €DE.* = 2 n ) ,  and and - K are 

5 fer 

ID- 

t h e  frequency and waveanumber of t h e  emitted electromagnetic wave, 

' l3e functions n n S (lc.,u> are spec t r a l  dens i t i e s  f o r  the  f luc tua t ing  
a 8 

of the  various components,, They are defined as the  "a 6 ~ o l  
number dens i t ies  

Fourier transforms of autocorrelat ion funct ions f o r  the normalized densi ty  

f luc tua t ions ,  

- 

It should be noted i n  equation ( T O T )  of reference 2 t h a t  (dU/dt)emiss 

i s  given i n  terms of  a Laplace transform i n  t i m e  plus  ita complex conjugate, 

If one makes use of t h e  r e l a t ions  ( i n  t h e  notat ion of  II), 



the two complex condugate terms of I1 

equation (2 )  i n  terms of the Fourier transforms 

can be combined t o  give t h e  above 

SaB(&,u) 

The spec t r a l  dens i t i e s  SaB can be expressed so le ly  i n  terms of 

t he  one-particle d i s t r ibu t ion  functions,  

homogeneous plasma free of external magnetic o r  e l e c t r i c  fields they become, 

fa ., (see the  Appendix), For a 

where 

and D is t h e  Landau denominator (or  longi tudinal  d i e l e c t r i c  constant)  



The in t eg ra l s  i n  equation ( 6 )  are defined f o r  

'a * La 

a l s o  be noted t h a t  t he  arguments of all t h e  functions on the  r i g h t  side of 

( 4 )  and throughout ( 5)  are  

Re(a) > 0 and t h e  functione 

represent t h e i r  continuations throughout the $-plane, It should 

(&*fa) , 

Equations (2)-(6)  are our basic  equations and w i l l  be used t o  

compute (dU/dtlemiss fo r  various d i s t r ibu t ion  functione fa(q) We s h a l l  

include i n  the  functions fa both the  thermal and the suprathermal p a r t i c l e s ,  - 
The way i n  which these  f luc tua t ions  ''gcatter'' o f f  each o ther  and 

radiate can be represented,diagramatically (Fig,  ll0 Thus consider t he  first 

term i n  ( 2 )  which involves a convolution of S and SUB , The frequencies 

and wave-numbers add t o  give the frequency and wave number of t h e  f i n a l  

electromagnetic wave, 

VT 

FOP the  pa r t i cu la r  case of an electron-ion plasma (subscr ip ts  

f o r  which qe - -qi ne = n = n the  spec t r a l  dens i t i e s  See SiiD and Sei 

readi ly  reduce t o  

e f 

i 0 

(9) 2 
3 



- 7 -  

where the arguments for a t h e  functions on t he  r i g h t  of  the above equation8 

are (Lh) 
concerned with See and Sii 

In t h e  frequency ranges of i n t e r e s t  t o  us, w e  shal l  only be 

It is also useful  t o  note tha t  i f  we def ine,  

then 

and 

Re[Ua(&, iw) l  - i;" f Fa(;) 

Equation (8) f o r  

Rosenbluth 

See 
is thus i n  agreement w i t h  t ha t  given 'by Rostoker and 

( 3 )  

In order  t o  obtain the emission in t ens i ty ,  I , from (2)  w e  must 

mult iply (dU/dt ) mise by the densi ty  of s t a t e s ,  &/a , f o r  t he  elect-  

magnetic modes. "hu w e  def ine 



- 8 -  

where 

per u n i t  volume of plasma, 

of r ad ia t ion  are i so t ropic  and for frequencies R w we have approximately 

Q 2 w 

dI/m is t h e  energy emitted per second per u n i t  frequency i n t e r v a l  

For plasmas i n  which t h e  propagation proper4Aee 

e 
2 2  

e 9 K2 c2 , and accounting for two polar iza t ions ,  

2 l / 2  dn a m 2  - w e )  
- =  

n2  2 dQ - 

Now in t he  following calculat ions we shal l  be in t e re s t ed  in t h e  

bremsetrahlung at  frequencies R severa l  w In  t h i s  r a g e  

K z O(k V / c )  << k where D e  D 

t h i s  reason it is usefu l  t o  expand t h e  integrand of ( 2 )  in powers of 

"he r e s u l t  of doing t h i s  gives for t h e  fir& two terms, 

e 

is the electron thermal ve loc i ty ,  For 'e 

IKI 

where f o r  an electron-ion plasma 
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In making t h e  expansion, t h e  spec t r a l  densi ty  S (K-k w )  i n  the  integrand 

of (2) is also Taylor expanded and the r e su l t i ng  term i n  as /ak can be 

in tegra ted  by p a r t s  making use o f t h e  symmetry of the  integrand, 

IJY --* 
uv - 

I n  a non-re la t iv ie t ic  plasma t h e  first term, (dU/dt)l dominates 

(dU/dtI2 i n  t he  region Q c several  w , except i n  t he  neighbourhood e 

n I 2we 0 A t  t h i s  p a r t i c u l a r  frequency (dU/dtI2 dominates s ince  it contains 

t h e  e f f e c t  of the wave-wave sca t t e r ing  of  e lec t ron  plasma o s c i l l a t i o n s ,  

n I 2 w  

6pi r 0 

'ee 

For 

t he  ion number densi ty  f luc tua t ions  involved i n  (16) are such t h a t  

6pe) , " ~ U E  we s h a l l  only r e t a i n  the  term involving the  product 

e' 

See in (dU/dt)2 i n  t he  following ca lcu la t ions ,  

3, ISOTROPIC DIS'I'RIBUTIOlJs 

I n  t h i s  sec t ion  we shall consider severa l  i so t rop ic  d i s t r ibu t ions  

V I  ) which have high energy t a i l s  on them represent ing an i so t rop ic  f e , i (  1- 
f lux of energet ic  p a r t i c l e s  i n  a "thermal" plasma, 

t h e  angular p a r t s  of the 

s p e c t r a l  dens i t i e s  become fbc t ions  of 

SaB(k,w) ,, Further,  not ing t h a t  1,12 - = 2n 

For such d i s t r ibu t ions  

dk, in tegra t ions  can be ca r r i ed  out s ince  t h e  

k = l&l "hey w i l l  be wr i t ten  as 

and 5 0 - 6 - 5 0 c* = 0 , 



and 

It should be noted t h a t  w e  sometimes obtain a divergence a t  zero 

i n  the '  k in tegra ls  i n  (17) and (IS), 

expansion f n  K/k of t h e  o r ig ina l  integrand i n  (21, I n  such cases we s h a l l  

cut  off  t h e  k i n t e g r a l  f o r  < K << kD 

t o  (dU/dt) from the  s m a l l  range of wave numbers 0 6. lkl 2 K ,, 

This is due t o  a breakdown of  t h e  

and neglect  t he  contr ibut ion 

1 2  m 

The following th ree  d i s t r ibu t ions  will be considereds 

* - 

These functions have a f i n i t e  energy densi ty ,  but the  next higher 
moment, f o e o  
This does not alter t h e  general  behavfow of t h e  s p e c t r a l  dens i t i e s  however, 

the f lux of energy i n  one d i r ec t ion  across  a sur face ,  diverges,  



- f  fi i ~ a x  ( i f f  1 

where 

Is S= 0 if e VE and = 1 otherwise, a l s o  VE severa l  Ve and 

Note t h a t  all the  d i s t r ibu t ion  functions are normalized t o  uni ty ,  

Also i n  t h e  above three cases  w e  have taken 

i o e a ,  the  thermal components of the e lec t rons  and ions in cases (ii) and (iii) 

have equal temperatures, and the k ine t ic  temperatures of the complete distri- 

but ions in (i) a r e  a l so  equal,  

Case (i) 

Using t h e  d i s t r i b u t i o n s  (19) t he  in t eg ra t ions  i n  (4)-(9) are 

r e a d i l y  done by contours and w e  f ind  f o r  t h e  Landau denominator, 

wf ( 3kVe+iw ) wi 2 ( 3kVi+iw 

3 D(k,iw) = 1 + + 
( kVe+iw ( k V i + i w )  



By similar methods the spectral densities become, 

3kVe+iw 

( kVe+iw) 3 

3 3  2k Vi 
+ w 

4 
(w2+k2<)2 e 

2 

and 

we(3kVe+fw) 2 
l *  

(kVe+io)3 

2 3 3  

4 2  
i f  3-x - 6 ~  

1 +  
k2L2 ( l+x: ) 

2 

2 

2 3 kVf + iw 
(24) ( kVi+iw 3 

If we define dimensionless variables x - w/kVe xi - w/kVi e 
and the Debye length L = G1 = Ve/we = Vf/wi then See(k,w) can be 

wri tt en 

2 2 w n  - 2 kLlD[ See(k,w) = e o  
2 2  

(1 + xe) 

2 128x, 
.A * 2 + 

k4L4(1+xi)B 



- 

I 

I 
I -  

= 13 - 

w i t h  

We have p lo t ted  the  dimensionless quantity nowe See(k,w) as 

a f b c t i o n  of ( w / w e )  f o r  several  values of (k/%) i n  figure 2, It 

i s  c l ea r  t h a t  f o r  k k,, there is a sharp resonauce at w a w and a 

low-frequency resonance near w z 0 , These resonances become more proo 
e 

nounced as k becomes smaller, One can readi ly  ver i fy  t h a t  the  width of 

t he  resonance at w I w is, for s m a l l  k , given by the Landau damping 

decrement, yL , f o r  longitudinal electron plasma osc i l la t ions ,  This can 

be obtained by calculat ing the  zeros of (22) fo r  s m a l l  

e 

k whfch gives, 

y L (Resonance d is t r ibu t ion)  = &we (ty 
The corresponding damping decrement f o r  a Maxwellian plasma is 

f o r  s m a l l  k 

so that t h e  resonance at w r w and k % i n  the  f'unction See is 

much sharper f o r  the  Maxwellian case, 

i n  figure 2 for k = ol k 

e 

Its width would not be resolvable 

D "  
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The function Sii is similar t o  See at low frequencies, but 

does not possess a resonance at w = o e "  

Case ( i f )  

The integrat ions using the  d is t r ibu t ions  (20) i n  (4)-(12) a re  

again tedious but straightforward, The Landau denominator fo r  t h i s  case 

becomes 

where 

We note f o r  future  reference the  asymptotic expansions, 

Further, t h e  spec t ra l  dens i t ies  fo r  t h e  dis t r ibut ion6 (20) become 



where is a step function, I~(X) = O if  x < O , = 1 if  x > o . 
If we set B = 1 , t h i s  reduces t o  the usual spectral density for 

(3 .4)  a hydrogen plasma in thermal equilibrium 

Next suppose 8 if 1 ,, Then it is clear from (20) tha t  there i r  a 

shel l  (in velocity space) of monoenergetic electrons in the thermal plasma, 



and the i r  contribution t o  

(14) 

See is represented by the terns mult ipl ied by 

i n  (28)-(3O), Now an extremely important fea ture  of t h i s  d i s t r ibu t ion  

is  t h a t  t h e  energetic e lec t rons  do not contr ibute  t o  t h e  imaginary p a r t  of D, 

as is c l e a r  by inspection of (2810 Equivalently, they do not contr ibute  t o  

t h e  Landau damping of e l e c t r o s t a t i c  o sc i l l a t ions ,  

In  f igure  3 we have drawn re( ) and Fe(vx’ - 
I 

f o r  t he  d i s t r ibu t ion  (2010 The f’unctfon fe is simply 

I 

f ( v ) = -  l3 exp(- -) + IsC-IVxJ + VE) 
e x  v 6  e 

where Is is t h e  usual s t e p  function, For t h e  range of phase v e l o c i t i e s  

0 

of waves by the fast p a r t i c l e s  is zero s ince the damping decrement, 

s m a l l  is proportional t o  afe(vx)/avx vx w/k , This  f a c t  can lead  t o  a 

grea t ly  enhanced l eve l  of f luc tua t ion  in (30)  f o r  the wave number range 

and VE > w/k several  V , due t o  t h e  f a c t  t h a t  t he  energet ic  p a r t i c l e s  

Cerenkov-emitting e l e c t r o s t a t i c  (1onKitudinal) waves but  not contr ibut ing t o  

Iu/kl a VE it is again evident that  t h e  contr ibut ion t o  t h e  Landau damping 

yL when 

I ...I 

k a kD 

e 

t h e i r  reabsorption b~ Landau damping, 

Case ( i i i )  

- 

The d i s t r ibu t ion  (21) has similar 

f o r  case (ii). Instead of a &-function at 

flux of energetic p a r t i c l e s  confined t o  t he  

proper t ies  t o  t h a t  discussed above 

VE 
region > vE , The gap i n  

however w e  consider a continuous 
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veloci ty  space from several  - Ve 1 ~ 1  VE is a region where the only 

p a r t i c l e s  present a r e  the small number of thermal p a r t i c l e s  i n  the  Maxwellian 

tai l ,  

ve loc i t i e s  several  - Ve S w/k 6 VE su f fe r  very l i t t l e  Lmdau damping, 

ever they are driven i n  t h i s  region by the  fast electrons and so give rise 

t o  an enhancement of those Fourier components of 

veloci ty  range, In  f igure 4 we have sketched f e ( i v l )  and Fe(vx) L ~ F  

case ( f i f i ,  

The r e s u l t  is again that e l ec t ros t a t i c  waves i n  the  region of phase 

How- 

i n  t he  above phase 'ee 

The d is t r ibu t ions  (21) lead simply t o  

with 



and 

The functions R and I are those defined i n  (29l0 Also, 

where the  la rger  of  VE o r  u is used a t  the lower l i m i t ,  and 

4, APPROXIMATIONS FOR ISOTROPIC DISTRIBUTIONS 

By inspection of f igure  2 and equatfcn (23) f o r  See(k,w) we 

see t h a t  f o r  k < 

k,, the peak a t  w P w vanishes but  w = w and 0 Further,  f o r  k > 

t ha t  at the  or igin remainso For t h i s  l a t t e r  range of k the function 

See(k,w) 

near,ly constant fo r  0 5 w k V then f o r  w > k Vi it drops off rapidly 

t h i s  function i s  highly peaked a t  the two frequencies 

e e 

has two "shelves" as a function of w Roughly speaking it fs 

i 



u n t i l  it reaches a second near ly  constant value throughout t h e  range several  

k Vi I w L k Ve 

One can verify that these fea tures  are a l s o  cha rac t e r i s t i c  of t h e  other  d i s t r i==  

butions (20) and (21) provided (1 - 8 )  << 1 , 

This second shelf  then drops towards zero f o r  w > k Ve 

I n  the  following calculat ions w e  concern curselves with electromagnetic - - 
rad ia t ion  of frequency L! i n  t h e  range w w few w where Wi w e we 0 e 

and S w i t h  arguments i~ and C2 - w o  
P ‘ie ef Now (17) involves See 

Thus w i t h  2 in t h e  above range of frequencies e i ther  w or  - ~r) m u s t  

be O(n) However f o r  a frequency argument of O ( Q >  t he  spec t ra l  densf t fes  
2 

are of  r e l a t i v e  magnitudes, See 5 O \ r :  f 7  9 ‘ie E Sei t O@) and Sii f O&) , 
s ince  

densi ty  f luctuat ions,  Further, at l o w  frequencies 

Thus from inspection of (17) we see t h a t  the  dDminant contribution t o  

der ives  from the first term fcr emission frequencdee fn t h e  range w < 0 e few w 

it comes from the  in tegra t ion  frequencies w in t he  region w 5 0 so t h a t  

t h e  prcduct S (k,w) S. (k,Q-w) 2 O(1) i n  the  in t eg ra l  (171, 

E4 .> m and t h e  ions do not  contr ibute  much t o  high frequency number 

See(&! H 01 E s ( w  E o), f i  

(dU/dt)l - 
eo 

ee li 

iiow w e  f ind  it usefu l  t o  s p l i t  t h e  k integrat ions i n  (17) and (18) 

i n t o  two p a r t s  as follows, 



and Sii appropriate t o  these  two ranges, and make appoxfmations fo r  

The first in tegra l  derives mainly from the resonances i n  See and Sii for 

which w and k a r e  approximately related as i f  t h e  spec t r a l  densi ty  

described a epectrum of propagating Vlasov e lec t ron  glasna o s c i l l a t i o n s  and 

ion waveB, "he second i n t e g r a l  der ives  from a wide range of" o for  a given 

'ee 

k We shall r e f e r  t o  the  above contr ibut ions t o  t h e  i n t e g r a l  over k as 

the  wave m d  co l l i s iona l  contributions respect ively,  In  general  t h e  separa- 

t i o n  of (35) i n t o  two p a r t s  is somewhat a rb i t r a ry ,  

t h e  laree enhancemect of rad ia t ion  emission over the  thermal value comes 

from a resonance i n  S fo r  k k and i n  t h i s  case t h e  separat ion is 

w e l l  defined indeed! 

However, aa we shall see 

ee D 

"Collisional" Contribution (k > kn) 

Consider t h e  in t eg ra l  

S (k,w) is l a rges t  i n  the region Iw/k Vel e. 1 , f o e a p  mk Ve w 5 k Ve ee  

Also S (k,Q-w) i s  appreciable only i f  I(Q-w)/k Vil 1 , T h i s  l a t t e r  

condition allows us t o  replace,  
if 



and t h e  condition for See t o  be appreciable becomes * kVi C kVe, i a e o O  

approximately k > R/Ve 

mately as, 

Thus, we now evaluate the  above in tegra ls  approxi- 

The upper l i m i t  ko 

(ko *> $1, k 

"cut off" and therefore  does not suffer  from t h i s  "defect" of the theory,)  

is t h e  usual inverse distance of c losest  approach 

(The wave pa r t  of the  in t eg ra l  i n  (35) does not need t o  be 

Now consider case ( i f )  with (1 6) = 0 I) Using (29a), (30) reducee 

i n  the  above range t o ,  

> 
w n  e o  '2 S (k,w)2 ee 

(37) 

It then readi ly  follows from the  first term of (17) tha t  

6 u r n  e 

where wL i s  the  l a r g e r  of  we o r  fl 



Q 22 m 

Equation (38) is the result usually given(2u5e6u7) for the 

bremsstrahlung emission from a plasma in thermal equilibrium, This 

"collisional contribution" varies only by multiplicative factors of 

if we depart from the Maxwellian case and consider the resonance distrf- 

but ions (19) 

O(1) 

To (38) we must a l s o  add the "wave-emission" contribution from 

the sharp resonances in See or Sii at u g , O  D ~ e D k < k , , o  For 

thermal equilibrium these resonances do not give an appreciable contribution 

to the emission since they have a neglibible area under them, 

some non-thermal situations they give rise to a rersonanee emission fn 

(dU/dt Iemiss at S2 2 we 2we and these resonances may become the 

dominant contribution to the total emissiono We shall next calculate theseo 

However fop 

wave 

Wave-contribution to the mission ( k  c k,) 

Case ( f )  

Expanding (22) in e o  Consider the resonance for k kD w 4 w 

kVe/w we have 

e 

w w e 

2 

D( I k io) 2 
e 

and from (231, 

w e 

(39 )  



Thus 

is nearly 

f la t  i n  t h e  region 0 c w c kV and f o r  w kV See decreases as w 

In  the  low frequency region t h e  second term of (23) dominates, 

f o r  t he  purpose of being able t o  carry through the  integrat ions,  represent 

'ee 

and width as (23) by simply evaluating (23) a t  

r e s u l t  by k Vi/(@ + k Vi) Thus a function tha t  reproduces 

the resonance regions - but not accurately away from reeonanee - is, 

'ee Next, w e  observe t h a t  at the low frequency end, 
04 

i i 
We s h a l l ,  

i n  t h i s  region by a resonance function w i t h  t he  same approximate height 

w E 0 and multiplying the  

4 4  4 4 4  
'ee in 

Similarly,  

Note, for low frequency fluctuations,  See 2 Sii 



Now consider t he  w in tegra t ions  i n  (17)  and (181, If we neglect 

terms of order t he  l i n e  widths of the  resonances we can f o r  t h e  purpose of 

in tegra t ion  f u r t h e r  simplify th ings  by wr i t ing  &-functions i n  (42) and (43 )  Of 

equivalent weight t o  t h e  areaa under the  resonances, Thus noting k 9 0 

1 and 6 ( w )  is i n t e rp re t ed  so  t h a t  j S l w >  dw 9 

0 

Equation ( 4 5 )  can a l s o  be viewed as an approximation LatPed on tak ing  

t h e  l i m i t  M + f o r  t h e  ion masso In  t h i s  l i m i t ,  

where i s  the  s ing le  time dens i ty  co r re l a t ion  funct ion,  A 

ca lcu la t ion  os <&pi &pil&> w i l l  show t h a t  f o r  k 4 kD is d i f f e r s  from 

1/2no only by mul t ip l ica t ive  f ac to r s  of 0(1), Our f i n a l  r e s u l t s  f o r  

t he  emission w i l l  be s imi l a r ly  l imi t ed  i n  accuracy, 

It now read i ly  follows from (17) and (18) t h a t  f o r  t h e  frequency 

range of i n t e r e s t ,  



2 4  e w K  

is neglected as (wave ) The contribution to Q z fw in (dU/dtI2 e 

3 

small 
(wave ) compared to (dU/dt)l 0 

If we next compute the total emission using (12) and (13) the 

contributions of the "wave-emission" to radiation at Q L w and $2 9 2w 

become 
e e 

where L = l$' is the Debye length, 

(469 

(47) 

It is interesting at this point to compare this with the corresponding 



emission at w and 20 from a Maxwellfan plasma, S i m i l a r  approximations e e 

t o  those made above a r e  ca r r i ed  out using ( 2 8 ) - ( 3 0 )  w i t h  B e l  and w e  f i n d  9 

‘wave) (Resonance d i s t r i b u t i o n )  12we 
Ihw wave (Maxwellian) 

e 

1 (wave) (Rescnance d i s t r i b u t i o n )  * w e  ” = e  I ( (Maxwellian 1 
7 

w e 

where 

Note t h e  emission contr ibutf  ona IUe ,2w 

c o l l i s i o n a l  o r  continuous spectrum pa r t  (38)”  

differences between the  resonance a r d  Maxweliim d i s t r i b u t i o a s  a they are not 

spectacular  differences,  

C is a constant of order ?milty and i s  defined following equation ( 5 5 > , ,  

(Max) are i n  addltfori t o  t h e  i. wave 1 
e 

We see t h a t  although the re  are 

Cases (if) and (ifi) 

The d i s t r i b u t i o n s  (20 )  a r e  a special  case of (21), so we shal l  here 

consider case ( f i i )  and l a t e r  spec ia l i ze  t h e  r e s u l t s  for case ( i f )  

First, in the s p e c t r a l  deneity 6 given by (33) we observe t h a t  ee  
t h e  energetic p a r t i c l e s  cont r ibu te  t o  t h e  enhancement of f luc tua t ions  with 

VE 2 E > several. Ve 

equation (32)  fo r  D 

but  not t o  t h e i r  Landau damping as represented in 

This range of phase v e l o c i t i e s  cont r ibu tes  most t o  



t h e  wavememission p a r t  of t h e  rad ia t ion  and w e  s h a l l  neglect  o ther  contrf-  

butions and make approximations t o  appropriate  t o  t h i s  range, 'if and 'ee 

Now consider t he  resonance i n  See(kew) i n  t h e  neighbourhood 
2 w zw Recalling t h a t  I ( x )  = exp(-x /2) , w e  shall assume t h a t  

throughout t he  range 

e o  
w VE > - > several  V w z O(w , k < kD e k e e 

If we 

becomes, 

a l so  make use of the  asymptotic expansions (29a),  equation (33)  

Next, def ine a dimensionless i n t e g r a l  over t h e  energet ic  p a r t i c l e s ,  

Then neglecting terms of order the line breadth of t he  resonance at 

t he  f'unction See(k,w) 

w 1 we , 
can be replaced i n  the  i n t e g r a l s  by t he  following 

-functions,  

+ 6(u +J-)] (53) 



We a l s o  requi re  an approximate form f o r  s e e E \ ~ @ u )  x Sli(kDu) 

at w E 0 I n  t h i s  ease these  functions have a weak maximum near t he  Origin 

at (u z. kVi 

(34)  at w = kV and multiplying the  r e s u l t  by k V, [ ( w  -k Vi)  + k Vi] 

so t h a t  t he  "equivalent resonance" has t he  same height and width as t h e  t r u e  

one a t  w 2 kVi I n  t h i s  case sfnee (1 - 6:' I and using the a.eymp%otfc 

expans ions ( 29a 1 , 

Thus we proceed i n  a similar manner as before by evaluat ing 

f 1 
4 4  2 2 2 2  4 4  

Note t h a t  the  exis tence of a tenuous f l u x  of energet ic  electrons i n  t h e  medium 

does not appreciably d t e r  the low frequency resonance i n  sii 

For t h e  purposes of in tegra t ion  i f  we again neglect, terms of order  

t h e  l i n e  breadths we can wr i t e ,  

2 2  
where t h e  &-function 9s defined as i n  ( 4 5 )  and C = 1 ( 1 ) / [ ( 2 = R ( l ) )  9 I (l)],, 

As we pointed out i n  the  paragraph following equation ( 4 5 )  w e  can 

also regard (55) 8s the  r e s u l t  of taking 11 + i n  which case 

<&pi  &pilk> 271 6 ( w )  which would lead t o  a value f o r  t h e  constant 

I n  t h i s  case t h e  wel l  known equilibrium co r re l a t ion  
sii - 
C = no (61). 6pilk) 1 



function including self cor re la t ion  ie 

Thus f o r  s m a l l  k e k,, C = 1/2 in t h i s  approximation, This is to be 

compared with 1(1)/[(2-R(1))2 + 12(1)] g ,35 which w e  obtained from our 

ii approximate representat ion (54) for  s 

It now follows t h a t  

The k i n t e g r a l s  have been cut off at a lower l i m i t  such that  

i o e o ,  k = k,,(Ve/VE) 

i n  the range 

reduce the l e v e l  of f luc tua t ion ,  

we/k = VE 

s ince  t h e  spec t ra l  dens i t i e s  calculated do not apply 

we/k > VE where Landau damping due t o  the  fast e lec t rons  will 
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Multiplying ( 5 6 )  and ( 5 7 )  by t h e  densi ty  of states (131, not ing 

I, KI = (a2 = u:)"~/c * and in t eg ra t ing  over ds1 

i n t e n s i t i e s  a t  t he  first and second harmonics, 

w e  obtain t h e  emission 

where 

kD v2 
dk kpjs2g +in)' \vE exp($,) . e  7 

r e  ) kD 
kD 5 

2 2  
and t h e  approximations t o  J1 J2 follow from t h e  in.jgualfty exp(VE/2Ve) >> 1 

e It is c l e a r  t h a t  t he  e d s s f o n  of bremsstrahlung a t  we and 2w 

represented by (58) and (59)  can be many o rde r s  of magnitude l a r g e r  than the 

thermal (Maxwellfan) l e v e l  f o r  t hese  two harOmfCso The exponential  f ac to r s  



i n  ( 6 0 )  control  t h i s  s i t u a t i o n ,  

rad ia t ive  than  (19) f o r  example although both d i s t r ibu t ions  represent plasmas 

containing suprathermal e lectrons 

The d i s t r ibu t ion  (21) is a l so  much more highly 

The basic  reason for t h i s  is due t o  t he  @ i n  ve loc i t i e s  

Ve e c VE which only t h e  few Maxwellfan t a i l  p a r t i c l e s  occupy. Longitudinal 

Cerenkov waves (included in S 1 are  emitted in to  the  phase veloci ty  range ee 
w Ve e i; < V by the energet ic  e lectrons,  but only reabsorbed (Landau damped) 

by the  f e w  thermal p a r t i c l e s  far out on t h e  Maxwellian t a i l ,  

E 

In applying (581, ( 5 9 )  t o  physical  s i tua t iona  t h e  following condi- 

t i o n s  should be noted, The f luctuat ion dens i t i e s  Sue were calculated 

assuming an i n f i n i t e  homogeneous plasma, 

brium established between the  emission and re-absorp%fon of e l e c t r o s t a t i c  

( longi tudina l )  waves f o r  t h e  s m a l l  wave-number par t  of the spec t r a l  density,  

This can only be t h e  case f o r  a bounded plasma if t h e  propagation length 

In such a piasma there is an equi l i -  

R = (w/k)y;'(k) 

smallest l i n e a r  dimension Ls of the plasma, where yL is the Landau damping 

decrement, 

f o r  a Fourier component of wave-number k is less than the  

The first condition for  the app l i cab i l i t y  of (58)-(60) t o  a 

bounded plasma is thus ,  

where L is t he  Debye length,  



Also (58) and ( 5 9 )  w i l l ,  not be \ r a l id  if t h e  f luc tua t ion  spectrum 

is so l a rge  as t.0 invti lfdate t h e  perturbation theory ( i n  powers of t h e  %a 
3 -1 plasma parameter g = (noL 1 <.c 1)  which underl ies  (21, ( b ) *  and (510 From 

inspection of t h e  expressions for 

rernaina v a l i d  provided yI >., O(g1 From physical considerations one 

See(w 2 w 1 we see t h a t  t he  expansion e 

JA 

would expect t h e  remnance expreeesonb Tor S ee to be c o ~ r e c t ~  if y e  vc 

where w c  is t h e  electron c o l l i s i o n  frequency, In  this ease L m d a u  damping 

r a the r  than cor re la t ion  ( s c l k s i s n a l ;  dawping is p r m a r r l y  r.esponrsible for 

t h e  re-absorption of e l ec t r cn  plasma oscXllations emitted by t h e  energet ic  

e lec t rons  i n  the plasma, Hovevey v 1s ECY cJ(g! q ~ a n t ~ f t y ,  so that t he  

above requirement can be wr i t t en  

frequency and neglect ing terms O ( E ]  t h i s  eonditfcn becmmee, 

( " -  

yL > >  v c @  i o e o F  using the Bpitzer  c o l l i s i o n  

61b 

50 BREMSSTRAHLUNG FRCM STABLE E1,ECTRON STRBkMS IN A PLASFA.. 

I n  t h i s  s ec t ion  we are concerned wick t h e  case of  an e lec t ron  beam 

traversfng a Maxwellian plasma of e lec t rons  and ions ,  

are  assmed t o  have a spread of  v e l o c i t i e s  such t ha t  the d i s t r i b u t i o n s  are 

-* a tab le  which o f  course is a necessary condition f o r  q q l f c a b f l i t y  of t h e  

emission formula (2 )  

The beam electrons 
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The following two cases are considered: 

Case (i) 

fi = 6 ( ~ +  , M +  QO e 

where 

Equation ( 6 3 )  is the condition tha t  t h e r e  is no current i n  the p l a s m ,  and 

(659 the  condition f o r  t h e  electron beam of' density (1 = 8 )  t o  be s t ab le ,  

The above case is  ident ical  t o  tha t  considered 5y RostokeriS9 i n  a r e l a t ed  

ca lcu la t ion  of the coulomb energy density in wave-number space f o r  a f luctu-  

a t i n g  plasma, 

If w e  increase U t o  t h e  point where 6 + 0 in (65) then we e 

reach a s i tua t ion  i n  which one wave number & p a r a l l e l  t o  U and of 

magnitude z ue/Ue 

s p e c t r a l  density See diverges, However the radiat ion emitted 8s given by (16) 

- 
first becomes unstable, For t h i s  unstable wave number the  
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involves in t eg ra l s  over - k and w We can approximate these if 6 is 

small t o  estimate t h e  contribution from t h e  resonance at the  n e a ~ l y  unstable 

wave-number, However it tu rns  out tha t  these i n t e g r a l s  are f i n i t e  as 6 -* 0 

and represent an uninterest ing change i n  t h e  bremsetrahlmg i c e o g  t h e r e  fs 

no 

( 5 8 )  and ( 5 9 ) o  

spectacular increase i n  t h e  ernissson such as t h a t  repreeented by equations 

The reason appears t o  be that only a single wave number fs first 

unstable,  All t h e  r e s t  are Landau damped, For enhasced emission we requf~e  

t h a t  a range of wave-numbers are bordering on i n s t a b i l i t y  = or  a t  l eas t  t h a t  

a range of wave-numbers have an extremely small. Landau damping, 

next t r ea t  an example of this l a t t e r  case In more (?&ail , 

Case ( i f )  

Ye shall 

Consider t h e  d f s t r i b u t r s a  

where we have set M -f mD i o e a p  t h e  ions  form a u.nil"orm pos i t i ve  background 

with a small amount of d r i f t  velocity t o  satisfi t h e  zeso-current condition, 

The function Ic(vx) w i l l  3e cnosen as t i  s t e p f u n c t i o n  IC = 1 for 

0 9 v 5 VE and Io = 0 o%kieiwf&e, 
X 



For the wave emission contribution from k e k end w _= w we D e 

assume t h a t  exp(,w2/k2f) (1 - 8 )  <c 1 Thus for  kD f kx (Ve/VE)kD 

It readfly follows t h a t  t h e  r a t e  at  which the second harmonic mode of the  

rad ia t ion  f i e l d  i s  excited is, 



Since ( V  /V ) >> 1 mst o f t h e  contribution t o  the  i n t e g r a l s  E e  
comes from k r k r 0 and kx E (V / V , j k  Thus t h e  emission a t  the 

second harmonic reduces t o ,  

Y =  2 E D e  

where & i s  a u n i t  vector along the  x axis, 

It i s  c l ea r  t h a t  t h e  emission i s  again considerably increased above 

i t s  thermal l eve l  by t h e  presence of t h e  exponential f a c t o r  in (71)0 The 

appl icabi l i ty  of t h i s  r e s u l t  i s  as before subgect t o  the conditions (618,) 

and (61b) ,  

6, CONCLUDIN~J REMARKS 

The l a rge  amounts of rad ia t ion  represented by formulas (581, (59)  

and (71) a r e  e s sen t i a l ly  the  r e s u l t  of choosing a p a r t i c u l a r  c l a s s  of d f s t r i -  

bution functions which describe a Maxwellfan plasma co-existing w i t h  a f lux  
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of suprathermal e lec t rons ,  

energet ic  p a r t i c l e s  do not  contr ibute  t o  t h e  Landau dEtnping of  longi tudinal  

waves but only t o  t h e i r  emission into a ce r t a in  range of phase ve loc i t i e s ,  

Such waves are only damped by t h e  Maxwellian p a r t i c l e s ,  

enhanced f luc tua t ion  spectrum and corresponding increased emissfon of rad ia t ion ,  

These d is t r ibu t ions  have the  property t h a t  t he  

This results i n  an 

On t h e  other  hand w e  found t h a t  a resonance d i s t r ibu t ion  (191, for 

which t h e  suprathermal e lec t rons  do contr ibute  eppreciably t o  LandEtu damping 

at all phase ve loc i t i e s ,  gave l i t t l e  increase in t h e  emission, 

- 

The above d i s t r fbu t i ans  represent two extreme8 and many physical 

s i t u a t i o n s  may a lso  be described by dist r ibu ' t ions which l i e  somewhere between 

them, However t h e  r ad ia t ive  case for t he  i so t ropic  function ( 2 1 )  which has a 

a i n  veloci ty  between the  thermal and energet ic  p a r t i c l e s  is a physically 

q u i t e  r ea l i zab le  s i t ua t ion  - and is l i k e l y  t o  occur i n  many astrophysical  

plasmas, 

a l a t e r  paper, is t o  theor ies  of Type I1 so la r  rad io  outbursts ,  

are general ly  thought t o  o r ig ina t e  i n  e lectron plasma o s c i l l a t i o n s  which i n  

tu rn  are driven by energet ic  electrons in the  so l a r  corona, 

One appl icat ion of our r e su l t s ,  which we s h a l l  explore i n  detail  i n  

These bu r s t s  
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Derivation of the Spec t ra l  Density 

In  t h i s  appendix w e  derive fo-rmulas (4061 for  the s p e c t r a l  

densi ty  function S,,(L,u] A formula f o r  See(kDu) has been given 

by Rosenbluth and Rostoker A general expression for S (&to) e f n c l u d h g  a% 

t ransverse  fieids, is given i n  (15,7), But t h e  evaluation of t h i s  expression 

d i r e c t l y  i s  needlessly complicated s ince  the  spec t r a l  densi ty  r u c t i o n s  

required i n  (2) describe t h e  f luctuat ions of" charges in t e rac t ing  through 

Coulomb f ie lds  only, 

a lgebraic ,  and therefore  it could have been car r ied  through using only 

Coulomb forces ,  

e x p l i c i t  formula f o r  s ~ ~ ( I c ~ ~ ~  , 

3 

However, t h e  der ivat ion leading t o  <1507) is purely - 
We now out l ine  t h i s  procedure and use it t o  deternine an 

As i n  I , 6N ( r  v t )  is a s i x  dimensional phase space densi ty  a -@d 

f luc tua t ion ,  and 

In t he  Coulomb approximation, the operator i n  the  l inear ized  Vlasov equation 

(after Fourier transforming the f: dependence) can be wri t ten  

N (5) = f (v) is a one p a r t i c l e  d i s t r ibu t ion  function, < a  ) a -  

And wi th  t h i s  notat ion,  t h e  l inear ized  Vlasov equation becomes 



o r  simply 

i n  t h e  notation of I 

The so lu t ion  t o  ( ~ 3 )  is given by t h e  operator  P'c'(k -0 t) where 

( c  1 The Laplace transform of P (LQt> i o e o s  

is e x p l i c i t l y  given by (116~31~ 

As in I we a t t ach  subscripts and 2 t o  t h e  coordinates and w r i t e  

t h e  correlcitfon function 

The i n t e g r a l  and summation operators  P(&) m d  P(2)  operate only on 

coordinates with &, and 2 subscr ip ts  respcqt ive ly ,  

of the cor re la t ion  function (+or a spatially, homogeneous plasma) ie denoted 

The Fourier  transform 

bY 



N o w ,  according t o  (5 ,4 )gB the  two-time corre la t ion  frinetion is 

given by 

The operand on t h e  right-hand side is the  time-asymptotic two particle 

corre la t ion  function including self-correlat ion,  

funct ion is given by 

According t o  (18~2) t h i s  

o r  in t he  notat ion of I 

which defines t h e  quant i ty  A9(c’(AB210 Using (Ab)  and ( A 5 ) ,  t h i s  can be 

w r i t t e n  



Now w i n g  t h i s  formula in ( A 9 )  along w i t h  the r e l a t ion  

P"'(t+T) we obtain 

Pcc'(t) P"'(T) 

Taking t h e  Laplace transform ( w i t h  reepect t o  t i m e )  of both sides gives 



i 
I .  

and v 11 4 "  
To obtain density f luc tua t ions ,  we in tegra te  both sides over 

Consequently the  P 

will be replaced w i t h  the  operators 

magnetic f i e l d  (116~3) gives t h e  familiar result 

operators occurring on the  right-hand s i d e  of (Al4) 

dv-P(') For the  case of zero i 

bec omes 

Subs t i tu t ing  (A18)  and ( ~ 1 6 )  i n t o  (A141 and using (A151 yie lds  



And with a l i t t l e  algebra,  t h i s  tecomes 

and U a r e  given by ( 5 )  arld ( 6 )  wffh fw s B where raB 

The spec t ra l  density S (k,u) is the  F'ouyfer transform with respect a$ 

t o  t i m e ,  and (A20) is the Laplace tmnsform, 

re la ted ,  

However, the  two a r e  eaoi ly  



and using (3b) 

= (6Pa6P&,iU) + (6Ps6Pal&,iw)+ 

Substituting (A201 i n t o  (A21), and using 

one immediately obtains (4 1 



Figure Captions 

Figure 1 

Schematic representation of  t h e  s c a t t e r i n g  of  longi tudinal  

f l uc tua t ions  i n t o  a t ransverse wave of wave number & and frequency ,, 

Figure 2 

A p lo t  of t h e  s p e c t r a l  densi ty  S (k,w) f o r  an electron-ion 
ee 

2 2 2  plasma with ve loc i ty  d i s t r ibu t ions  f = 4 V 3  /n ( v  +V l 3  and 

‘e = (M/m)1’2 Vi = 43Vi 
eili e , i  e , i  

Figure 3 - 
The electron d i s t r ibu t ion  functions fe (  ) and fe (vx)  f o r  

a Maxwellian plasma co-existing with a mono-energetic f l u x  of e lec t rons ,  

Figure 4 - 
The electron d i s t r i b u t i o n  functions f e (  ) and fe(vx)  for 

a Maxwellian plasma with an i s o t r o p i c  f lux  of energet ic  e lec t rons  i n  t h e  
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