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ABSTRACT ;?yé -

A study has been made of the problem of elastic collisions and
energy transfer between gases which have separate Maxwellian velocity
distributions. It is shown that the expression for the energy transfer
rate obtained by Desloge (1962) for gases of arbitrary temperature and
particle mass can be adapted into a convenient form which involves a
ratio of the particle masses, the difference in the gas thermal energies,
and a collision frequency for energy transfer. An analysis is then made
of the collision frequency in terms of an average momentum transfer
cross section which is defined for conditions of thermal nonequilibrium.
The general equations are then specialized to consider the problem of
elastic electron collisions in heavy particle gases. To obtain useful
numerical expressions for electron-neutral particle collision frequen-
cies and energy transfer rates, an analysis has been made of the

momentum transfer cross sections for N OZ’ O, H, and He. Calcula-

2!
tions have also been made of the Coulomb momentum transfer cross

section, collision frequency, and energy transfer rate. These results

are then compared with previous work.

-i-




I. - INTRODUCTION

In order to understand the thermal behavior of ionized
atoms or molecules which are subjected to selective heating pro-
cesses it is necessary to know the different rates of collisional
energy transfer between charged and neutral particle species. Once
these have been determined it is possible to use energy balance
equations to derive appropriate temperatures for each of the species
present, Hence, in all generality it is necessary to have expres-
sions for electron-ion, electron-neutral, and ion-ion energy transfer
rates. The use of the full set of such energy transfer relations
is currently required in the theoretical description of electron

and ion temperatures in the upper atmosphere.

In this paper an investigation is made of elastic collisional
energy transfer between mixed gases of arbitrary particle mass having
separate Maxwellian velocity distributions. It is shown in Section II
that the exact equation for energy transfer, derived by Desloge (1962),
can be separated into three fundamental factors, each of which depends
upon a different aspect of the collision process and gas composition.
The concept of a nonequilibrium collision frequency for energy trans-
fer is introduced for particle interactions of somewhat arbitrary
cross section. In a similar manner the equations leading to the de-
velopment of an average nonequilibrium momentum transfer cross section

are derived.

Following the presentation of the general relations, which
are valid for particles of arbitrary mass and temperature, the results
are specialized to consider elastic collisions between electrons and
heavy particles. 1In Section III we consider the difficulties invol-
ved in deriving average momentum transfer cross sections for electron -

heavy particle interactions.




For electron collisions with other charged particles it is found
that the classical Rutherford differential scattering cross section
can be used to arrive at results which are in accord with previous
calculations. The problem of elastic electron collisions with neu-
tral particles is more difficult and it is necessary to analyze
both laboratory data and theoretical derivations in order to arrive
at useful sections for NZ’ 02, O, He, and H.

The application of the cross section data is made in
Section IV to obtain expressions for momentum transfer collision
frequencies and rates of electron energy transfer. A comparison
is then made between the present results and those which have been
used in earlier studies of electron energy transfer rates as applied

to the problems of the ionospheric energy balance.

Section V is devoted to a general sumnary of the results

of this study.

II. - BASIC EQUATIONS

1. General Derivation

The derivation of the equation which describes the rate of
energy exchange between two gases with Maxwellian velocity distributions
having different temperaturesand particle masses has been made by Des-
lo#ge (1962). By applying velocity distribution techniques to the
mechanics of elastic collisions he was able to evaluate the average

rate of change of the total kinetic energy of one gas as

1/2
du, (mym,) (T,- T,) o ,
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where
1 2_ 3.
U1 —f 2 mlvlfld i (2a)
2k’1‘1 2kT2 -1
Rt (20)
1 2

qD(g) =21 /pc(g,e) (l-cos 6) sin 0 d6 (2¢)
and

U - gas tot~l kinetic energy

n - particle number density

m - particle mass

T - Maxwellian temperature

k - Boltzmann's constant

g - relative velocity between particles

qD(g) -~ velocity dependent momentum transfer cross section

v - particle velocity in laboratory system

d3§?— velocity space volume element

6 - center of mass scattering angle
o(g,0) - differential scattering cross section

f - velocity distribution function.

Equation (1) is valid for conditions where separate Maxwellian velocity
distributions can be maintained and where a suitable momentum transfer
cross section can be found. 1In particular, Deslolige (1962) has shown
that this equation accurately describes the energy transfer rates for

both elastic spheres and Coulomb particles.

In the interests of further clarity, it will now be shown
that it is possible to rearrange equation (1) in such a way that a
deeper physical insight can be obtained into the problem of elastic
collisional energy transfer between Maxwellian distributions of par-

ticles.




As a brief guide, the following discussion is based upon a simple
model of energy transfer for a single particle moving in a gas.

By defining an appropriate collision frequency for energy transfer
and a momentum transfer cross section it is possible to derive

a general functional form for the energy exchange rate between two
gases. Such a form can be compared with equation (1) to obtain
specific equations for the collision frequency and momentum trans-
fer cross section which are applicable to the problem of energy

transfer.

We consider first the average energy loss per collision
of a single particle of mass m. and kinetic &, traveling through

1 1
a gas composed of particles of mass m, and average energy ¢ The

2 2’

average loss of kinetic energy per collision, &Ae , for this single

1
particle is, as shown by Crompton and Huxley (1962),
2m m _
= - == (e - Ty 3)
(m, +m,)

To describe the rate at which the single particle losses
energy per unit time we may introduce the concept of the single par-

ticle collision frequency given by

Vi2 T M8 9y (%)

with n, the ambient gas number density. Since this quantity repre-

sents the collision rate of a single particle in a gas we may now
combine equations (3) and (4) to obtain the average rate at which

the single particle losses energy as

Le 2m
1™ -
—mT 2 €ty

5 (5)
At (m1+mb)
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I1f, instead of a single particle, we have a large number
of particles combining to form a Maxwellian gas mixed with the ori-

ginal gas, we may approximate the total average energy exchange rate

by the expression

du 2m. m
= - ==~ n_ (e.-€.) Vv (6)
" @tmy? 11U %2 Vw2
)
. _
1 2= —
Uy =2 ™Y1 T M5 &)

where EI is now an average energy which corresponds to the Maxwellian
distribution of single particles which we permitted to become the
mixed gas. Likewise, ;12 is now an average collision frequency which,
unlike equation (4), must now be suitably defined to take account of

the many different relative velocities between the various gas particles.

The derivation leading to equation (6) is not rigorous since
the proper averaging techniques of kinetic theory needed to arrive
at an exact expression have not been used. It gives, however, a
functional form for the energy exchange rate between two gases which
can be used to decompose the original exact result of Deslolige (1962),
given in equation (1), into three factors ; a ratio of masses, a diffe-
rence in average particle energies, and an energy transfer collision
frequency., The first two quantities are independent of the mode of
interaction between the two gas species, depending only upon the
appropriate masses and average gas thermal energies. It is thus the
collision frequency which must contain the factors which relate to the

interparticle forces.

In order that the correct form for an average collision
frequency may be synthesized from the comparisonof equations (1) and
(6) we require that the functional form of the average collision

frequency be




2 8 Q (8)

which allows for the presence of an arbitrary numerical factor in

the final result for ; The quantity E is the Maxwellian ave-

rage relative velocit;Zbetween the particles of the two gases while

6; is the defined average momentum transfer cross section appropriate

for conditions of thermal nonequilibrium. The quantity g can be de-
rived directly for the motions of two gases having distribution functions

f. and £, by the equation

1 2
- - - 3 3-
gufffllevl-vz v, v, (9)
3=
where d vy, are the respective velocity space volume elements for the
’
two velocity distributions. For f1 and f2 representing separate

Maxwellian velocity distribution functions it is possible to inte-
grate equation (9) to obtain,
8ky 1/2 T T 1/2
g-(-) [—1+—Z] , (10)
T m m

2

the subscripts applying to the parameters of each respective gas.

With this result it is now possible to synthesize the
necessary expressions for the average energy transfer collision
frequency and the average momentum transfer cross section. Through
manipulation of equations (1), (6), (8), and (l0) the latter quantity

becomes

oo}

3
Q, =K j; 85 qD(g) exp (-ng) (11)

where, from (2b),

2k’1‘1 2k’1‘2 -1
- | e 2 12)
1 2 -

and it is assumed that el 2 le and ez - 2 sz.




Equation (11) is the generalization of the momentum transfer cross
section to situations where thermal equilibrium does not prevail

between gases composed of particles with different masses and dif-
ferent Maxwellian distributions. Under a condition of equilibrium

we may take T1= T2 which reduces ab immediately to the standard form for
the average momentum transfer cross section given by Dalgarno, et al.

(1958).

In a similar manner the comparison of equations (1), (6),
and (8) and (11) permits the recognition of the average momentum

transfer collision frequency as

Y12

Lo

n, 8 QD (13)

or, using equation (10),

_ 4 ,8k\120T, T,A1/2_
Vi ® 5“2(7) [E;+€] ) (14)

which represents the generalization to conditions of different
Maxwellian velocity distributions of two gases. For an equilibrium

state such as T,= T,= T andwith prepresenting the two particle re-

1 2
duced mass,
_ 4 ( 8kT\ 1/2 _
- — —_— , 1
Vi2 3 "\ m > Q, (15)

which is a factor of 4/3 larger than the total scattering collision
frequency derived by Chapman and Cowling (1952). This same factor has,
however, been noted by Nicolet (1953) in an analysis of electron col-
lision frequencies based upon an analysis of collision intervals and

diffusion coefficients derived by the velocity distribution method.

As a final result it is now possible to express equation (1)
in terms of the collision frequency, difference in energy, and mass

factor as




U, ) -
T - 7 k(T - TZ) Vig® (16)
(m1+m2)

This equation represents the final goal of the derivation since we now
have decomposed the general equation into a form which relates to different

aspects of the collision process for energy transfer.

2. Application to Electron Energy Transfer

We now extend the preceding equations to consider the pro-
blem of an electron gas mixed with another gas composed of heavy par-
ticles such that m, << m,. The equations derived for this situation will

2
be applicable to elastic electron-neutral and electron-ion collisions.

From equation (11) the average momentum transfer cross sec-

tion becomes

) -<2kT) L viqpv) e

where v is the electron velocity since, for m << m,

velocity g is determined almost entirely by the motions of the e-

2
m

LV
2k1‘e dv , (17)

, the relative
lectrons alone.

The average electron collision frequency can likewise
be obtained from equation (l4) under the assumption that
Te/mé>> Tz/m2 as
- 4 < 8kTe 1/2 _
T3 M :—j) % (e

dependent upon the electron temperature alone.

Finally, the rate of exchange of kinetic energy between the

electron gas and the second gas is obtained from equation (16) as




du

e _ e B} 3
Fs 3n_ m k (T-T,) v, (19)

B

or, in terms of QD,

du_ m ( 8KT_ \1/2 _
E—- = - 4 nenz m—z k m > QD (Te- TZ) (20)
e

It is interesting to note that the energy transfer collision
frequency, ;;. can be directly related to the theory of the electrical
conductively of a plasma. From Shkarofsky, et al. (1961) the equiva-
lent collision frequency of electrons which limits the conduction of current

in a plasma subjected to a weak electric field can be derived as
m v
v SRR T
°°[ e ]e 2kT dv
3 e
\/; v +uw
e
=

vequiv e 1 m v2
v4 e‘ £ dv
o 2 2 2kTe

vV +w
e

(21)

where ve is the velocity dependent electron collision frequency for
momentum transfer defined in equation (4) and w is the angular fre-
quency of the applied electric field. It the radio frequency w is
much larger than the collision frequency such that wz >> vi this

equation reduces to

2
mv
= Te ® 4 - =
vequiv = 3kTe \/; v ve e 2k’1‘e dv (22)

which is exactly the same as the electron collision frequency given in
equation (18). Thus, by means of high frequency radio experiments in
dilute plasmas it should be possible to obtain experimental data which

can be used directly to calculate elastic electron energy transfer rates.
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The application of the preceding eguations

[

5 the protlem

of determining elecivon collisinn fraquencies and energy excheonge vates
in heavy gases is made in the following seciions. First, however, it
is necessary to adcpt adequate expressicns feor the momentum transfer
cross sections. For electron-neutral ccllisions there exis:t no con-
venient analytical results anc it is receszscry to analyze existing
laboratory and theoretical results., The problem of Coulomb ccllisions,

however, is amenable tc a direct theoretical approazh.
pp

ITI.- ELECTRON CROSS SECTICONS FOR MOMENTUM TRANSFER

1. Cross Sections for Neutral Particles

Since theovreticzl methods usually de not yield aceurate values
of qD for low energy electron-neutral collisions it is necessary to
rely upon the available experimental measurements., Descrip:iions of the
current methods used to obtain momentum transfer cross sections for
electron-neutral collisions can be found in Massey and Burhop (1952),
McDaniel {1964), and Rasted (1264). As has bzen ewmphesized, 1t is the
collision cross saction for momentum irarnsfar which is of dominacing
importance in determining the form of the enevgy equations, Unfor-
tunately, most early experimenis were designed to give vziuesd the
total scettering cross section and it is orly within the past 15 years,
with the advent of the mizrowave conductivity and drift velocity methods,
that accurate valves of the momentum transfer eross section have been

determined.

In the following sections each atwospharic gas s considered
separately with respect to electron ceollisions and appropriate expressions

for the momentum transfer section are adopted.
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1.1 Molecular Nitrogen

The results of theoretical studies and experimental measurements
for %G by various workers over the past 28 years are given by Shkarofsky,
et al. (1961). Corrections have been made by these authors for the velo-
city distributions of the colliding electrons in all the previous experi-
ments. Nevertheless, the values of the measured cross sections vary by
as much as 65%. More recent studies have been based upon microwave
and electron mobility experiments. These methods have tended to produce
much more consistent data and are capable of covering a wide range of
electron energies. The results of recent experiments are presented in

Figure 1.

At low electron energies in the range 0.003 to 0.05 ev, Pack
and Phelps (1961) have measured the drift velocity of electrons under
the influence of a constant electric field. Their data on the momen-
tum cross section agree well with the earlier measurements of Pack,
et al. (1951) who used a microwave conductivity device over the energy
range 0.02 to 0.03 ev. Anderson and Goldstein (1956a), employing a
slightly different microwave technique, obtained results which diverge
from other work, showing a substantial increase in qD at low electron
energies. When the work of Crompton and Huxley, as reported by
Shkarofsky, et al. {(1961), and Crompton and Sutton (1952) is con-
sidered, it appears that experimental errors probably exist in
Anderson and Goldstein's work. Further, Huxley (1956) obtained re-
sults consistent with the earlier measurements of Crompton and Sutton

and the later data of Pack and Phelps.

Frost and Phelps (1962) and Englehardt, et al. (1964) have
used a method of integrating the Boltzmann equation to choose proper
values for qD. Their method consisted of adopting appropriate sets of

elastic and inelastic cross sections and then solving the Boltzmann
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equation for the equilibrium electron velocity distribution function
in the presence of an electric field energy source. Next, they com-
puted the electron mobilities and diffusion coefficients. Since these
are experimentally known quantities, the theoretical results could

be compared with the measurements. When differences existed, sui-
table changes were made in the cross sections until consistent re-

sults followed.

For electron energies between 0.02 ev and 0.1 ev the data

of Pack and Phelps (1961) can be represented by the equation

qD = 18.8 x 10_16 51/2 cm2 ,

(23)
where € is the electron energy measured in electron volts (ev). For
energies above 0.1 ev this expression leads to an overestimate of the
true cross section. From the data of Englehardt, et al. (1964) a sui-

table generalization to include the region 0.1 - 1.0 ev is

/2, 1/2 -16 2

q, = (18.3 - 7.3 el x 10 cm . (24)

D ) €

Applying equation (17) to equation (24) yields

-17

1/2 x 10 cm2 (25)

= -4
Q (N, = (2.82 - 3.41 x 107°'T) T

In essence, this result represents the first correction to the work

of Pack and Phelps (1961) such that the collision frequency and energy
loss rate can now be evaluated over the range 100° =< Te £ 4500°K., For
low temperatures the correction term, 3.41 x 10-4 Te, is small, At
temperatures above 2000°K, however, there is a significant reduction
of the cross section below that which follows from the original cross

section of Pack and Phelps.

The results of all experimental and thecretical studies of

the electron-molecular oxygen momentum transfer cross section conducted
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prior to 1958 have been compiled by Shkarofsky, et al. (19€1). 1In
general, the vericues results do not yield consistent values.. How-
ever, the early work of Crompton and Huxley, as reported by Cook and
Lorents (196(C), over the energy range 0.2 to 2.0 ev has been found

to agree well with later data, In particular, Phelps (1960) ana-
lyzed the 9.3 Mc microwave conductivity data given by Van Lint (1959)
and matched it tc an z3sumed first power dependence upon - the electron
velocity to determine a single particle collision cross section.
Recently, Mentzoni (1965) has made a direct measurement of the elec-
tron collision frequency. By assuming the cross section to be pro-
portional to the electron energy, he found a collision cross section

which was a factor of 1.6 smaller than that given by Phelps.

Phelps (1963) conducted an analysis using the Boltzmann e-
quation to evaluate the drift velocity and ratio of the diffusion
coefficient to the electron mobility. By adjusting the various
cross sections, he was able to find agreement between predicted and
measured values. Phelps and Hake (1965) repeated the analysis using
more refined measurements of electron mobility and diffusion coefficients.
Their results, shown in Figure 2, should be accurate to within 20%
in the electron energy range 0.2 € ¢ € 2,0 ev. A difficulty ariseq‘
in adopting a simple expression to represent the energy dependence
of the crcss section, As a first approximation a good fit to the
experimental data is

l6 2

12y 0 107 em (26)

qD = (2,2 +5.1¢
over the energy range 0.02 & ¢ < 1,0 ev. From equation (17) Q, is

given by

2 .1/

Q ©) =2.2x107® (1 +3.6x 10 T, 2y ow? 27)

and applies fcr 150° « T < 5000°.
e
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There are several experimental results for the values of
the total scattering cross section, qT, in atomic oxygen, but none
for the momentum transfer cross section since the chemical acti-
vity of oxygen makes measurements difficult in any closed container.
Neynaber, et al. (1961) conducted a total scattering experiment but
no data were taken below electron energles of 2 ev, far above the
thermal energies of the upper atmosphere. At this energy it was
found that 9 = 5.5 x 10-16 cmz. Another experiment by Lin and
Kivel (1959) was made at a lower energy. They found a momentum

transfer cross section of 1.5 x 10'-16 cm2 at a mean electron ener-

gy of 0.5 ev.

From quantum theory, Klein and Bruckner (1958) derived a
method of relating scattering phase shifts to measurements of photo-
detachment cross sections. It was later pointed out by Cooper and
Martin (1962) that the calculated photodetachment cross sections did
not match recent results and, further, that the effective range theory
used by Klein and Bruckner was not valid at low electron energies.
Cooper and Martin then recalculated the entire problem, obtaining
new values of the phase shifts. In the absence of direct experi-
mental results these values can be used to obtain an expression for
the momentum transfer cross section according to the relation (McDaniel,
1964) |

4n 2
= 2 - 8
4, k1 }: (L +1) sin (6L 6L+1) , (28)
2nmm v L
Where k1 - n is the quantum mechanical wave number of relative

motion, h is Planck's constant, L is the angular momentum quantum
number, and 6L is the L-th wave partial wave phase shifts of the ra-

dial solution to Schrudinger's equation.
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Temkin (1958) also approached the problem in a theoretical
manner and made a calculation of the S-wave contribution to the total
scattering cross section., He compared his results with those of
Bates and Massey (1947) and concluded that the true value of the
total scattering cross section was bracketed by the two calculations.
The results of these calculations are shown in Figure 3. To give an
indication of the true value of Y the values of P-wave phase shifts
given by Cooper and Martin have been added to the S-wave values of
Temkin, and Bates and Massey. The values for the scattering phase
shifts given by Cooper and Martin are accepted here as providing a
basis for determining the momentum transfer cross section for atomic
oxygen. Extrapolating from the good agreement found by these authors
for the problem of negative ion photodetachment, it appears that the
error involved in using the theoretical phase shifts for determining
9, should be less than 30% for electron energies below 0.5 ev., Thus,
it does not appear unreasonable to accept an average value of
9, = (3.4 +1.0) x 10.16 cm? for electrons in atomic oxygen. Using
this expression the average momentum transfer cross section becomes

ED(O) = (3.4 +1.0) x 1016 ca?, (29)

independent of the electron temperature for Te < 4000°K.

No experimental measurements have been made for the electron-
hydrogen momentum transfer cross section. However, recent theoretical
treatments of electron scattering in hydrogen have produced predicted
total cross sections which are in good agreement with the measured
total cross section as determined by Neyaber, et al. (1961) and
Brackman, et al. (1958). Thus, the error involved in using the same
partial wave phase shifts to determine the momentum transfer cross

section by means of equation (28) should not be large. Two similar
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theoretical calculations of the scattering phase shifts for electrons

in atomic hydregen have been published by Smith, et al. (1962) and Burke

and Schey (1962). Both derivations employ a close coupling approcimation

where the scattering wave function is expanded in terms of hydrogen

atom stationary eigenstates. For the present treatment, the results |

of Smith et al. are used.

In calculating qD from the partial wave phase shifts for
atomic hydrogen it is necessary to include both the singlet and
triplet contributions to the scattering. Using equation (28) with
the proper weighting factors yields a form for qD shown in Figure 4.
A suitable analytic expression for the energy dependence is

6 2

qy = (54.7 - 28.7 ¢) x 1071 ca?, (30)

which gives a cross section considerably larger than that found for
the other atmospheric constituents. Using this expression the average
momentum transfer cross section is

- - - 2
Q@) = (54.7 - 7.45 x 10 3 T,) x 10 16 m , (31)

over the temperature range 150° = Te £ 5000°, 1Itis difficult to assess
the error involved in deriving QD but an arbitrary estimate of + 25%,
based on the correspondance between theoretical and experimental results
for the total cross section, should give a reasonable indication. A
difficulty is noted, however, in that there exist no reported measurements
of the scattering cross section below 1 2v, and it is possible that there

may be errors in the application of theoretical values to this region.

1.5. Helium

The experimentally determined values for qD are in good agreement.
Pack and Phelps (1961) conducted an electron drift experiment over the

energy range 0.003 < £ < 0.05 ev obtaining a constant cross section of
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-1 2
5.6 x 10 6 cm . Phelps, et al. (1951) performed a microwave conductivity

experiment over the range 0.02 < € < 0.04 ev, finding virtually the

same value. Gould and Brown (1954) made a separate determination by

a different microwave technique which gave the value 5.2 x 10-16 cm2

for all energies between 0.0 and 4.0 ev. Anderson and Goldstein (1956b)

made microwave conductivity measurements down to electron energies of 0.05 ev

-16 2
c

and found a constant cross section of 6.8 x 10 m .

Thus, for the case of electron-helium scattering, it appears
reasonable to accept the value 9, = (5.6 +0.6) x 10-16 cmz, corres-
ponding to an uncertainty of 10%, over the energy range 0.0 to 5.0 ev.
The average momentum transfer cross section is

Q (He) = (5.6 +0.6) x 10716 ca? (32)

independent of the electron temperature.

The values of 65 for the different gases considered here are
shown in Figure 5 as a function of electron temperature. The largest
cross sections are associated with H and Nz. these reaching values
of 60 x 10.16 cm2 and 12 x 10-16 cmz, respectively. The cross sections
of He an O are essentially constant over the range of temperatures in-
dicated here. However, there must exist some uncertainty in the
velocity dependence of 9% for several gases. For N2 and 02 the un-
certainty in QD should be less than 20% (Englehardt, et al. 1964 ;
Phelps and Hake, 1965) while for He a value of 10% is adequate. It
is difficult to assess the possible error in the quantum calculations
of 9y for H and O but the previous arbitrary estimates of *+ 25% and #
30%, respectively, should be reasonable. In fact, further experimen-
tal studies of H and O are needed to check the theoretical cross sec-

tions presented here.
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2, Cross Section for Charged Particles

The momentum transfer cross section for charged particles
of arbitrary mass can be derived through a knowledge of the differen-
tial scattering cross section and application of equations (2¢) and
(11). For electrical forces the interaction varies as r.2 and the
Rutherford differential scattering cross section applies in the

form (McDaniel, 1964)

Z.2_e
172
c(6,8) -( 2
2ug

where i is the two particle reduced mass,

22_6
> sin 4( E’) , (33)

Zl 2 are the respective atomic
?
charges, e is the electron charge, and 8 is the center of mass scattering

angle. Applying this to equation (2) yields

Z1Z2e2 2 1
qD = &n( 2 ) 1n [1 - cos@ ] ’ (34)
2ug m

The normal limits of integration for equation (2) should cover all
scattering angles between O and n radians. However it is found that
the use of zero for the lower limit causes the Coulomb integral to
diverge. To prevent this, the integration is arbitrarily truncated at
a minimum angle, Gm, whose value must be determined from the para-
meters of the charged particle gas. From Bachynski (1965) the relation
between the impact parameter, b, the scattering angle, 6, and the

relative velocity,g, is given by

2
(1-cos@) = —, (35)

1+ (b/b)

2 o
leze

where b = 2 using previously defined quantities, From this
o

ug

equation it is®seen that the minimum scattering angle, em, is deter-
mined by the maximum value of the impact parameter b. As discussed

bu Montgomery and Tidman (1964), collisions leading to large scattering
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angles are rare in a plasma gince the iong range Coulomb force tends
to deflect the slow thermzl particles cnly through small eangles. A

good approximaticn is that b >> bo, with the result that equation (34)

becomes
b (2
(1 - cos6_) = z( -9> (36)
m b
1
where b1 is the maximum impact parameter corresponding to em.

Several different approaches have been taken to relate the
characteristic parameters of the plasma t¢ the maximum impact para-
meter bl' Chapman and Cowling (1952) assumed thet the maximum inter-
action distance was limited to the average interparticle spacing.
This ignored, however, the influence of the longer range ccllisions
which are respcnsible for the small angular deviations of the electrons.
A more accurate treatment was introduced by Cohen, et al. (1950) who
took into consideration the shielding of charge due to electrostatic
polarization effects. By means of Poisson’s equation in conjunction
with the Boltzmann equation for nearly equilibrium conditions, it
can be shown (Salpeter, 1963) that the potential, ¢(r) of a particle

of charge Z e at an origin of ccordinates within a plasma i{s given by

1
Zie
P(r) = == exp {~r/i) a7
where r is the radial separation distance and AD is the Debye shielding

distance, defined as

1 Zn Z.n
—_— 2} 11,22
AD2 4me le + kTZ }- R (38)

with Tl 2 the respective Maxwellian temperatures and n the number
H

12
densities. For a plasma, the Debye length represents the maximum

distance over which microscopie density fluctuations are correlated
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by random electric fields. The Debye length can also be interpreted

as a measure of the effective range of the Coulomb interaction between
two charged particles. Cohen, et al. (1950) essentially prove this

and conclude that the Debye length should be used in equation (34) as the

maximum impact parameter. Therefore,

( lezeZ 2 ugz A ]
q = 16n 2 ) In - XD (39)
2ug Zie

for the velocity dependent momentum transfer cross section., This
equation is a general relation for particles of arbitrary mass and
can be used for electron-ion, electron-electron, and ion-ion inter-

actions.

The argument of the logarithm in equation (39) can be
rewriten in terms of the energy € of two colliding particles, as

viewed in the center of mass system, in the form

2
1¥:4 2e

AaZZez }\D=ZZe2 %’ “o
1“2 122

This term is common to all calculations of ionized gases and, accor-
ding to Chapman (1956), can introduce a possible error of 10% into
the derivation of the cross section. Table 1 lists the values of

In A for various particle energies and Debye lengths.

For the ionospheric conditions of particle energies and
Debye lengths, it is found that most normal variations lie within
the indicated uncertainty of 10% at 15.0 + 1.5. However, for some
problems involving very energetic photoelectrons, a higher value

may be required.
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Table 1 Values of 1n A

AD(cm)
e (ev) 0.1 0.5 1. 2. 5. 10.  20. s0.  100.
1x10"2 9.5 1.1  11.8 12.5 | 13.5  14.1 14.8 15.8 | 16.4
5x10"2 11.1 12.8 | 13.5 14.1 15.1  15.8 16.4 | 17.4 18.1
1x10~} 11.8 13.5 14.1 14.8 15.8  16.4 | 17.1  18.1 18.8
5x10° L 13.5 15.1 15.8 16.4 | 17.4  18.1 18.8 19.7 20.4
1x10° 14.1 15.8  16.4 | 17.1 18.1  18.8 19.4 20.4 21.1
5x10° 15.8 17.4 18.1 18.8 19.7  20.4 21.1 22,0 22.7

1

16. 18.1 . . . 1.1 21. 22.7 23.4

1x101 6.4 18.8 19.4 20.4 2 7
5x10 18.1 19.7  20.4 21.1 22.0  22.7 23.4 24.3 25.0
1x102 18.8 20.4  21.0 21.7 22.6  23.4 24.0 24.9 25.7

With equations (20) and (39) it is possible to derive QD for

two gases in the different Maxwellian temperatures. The result is

_ n zlzze2 2 In A
Q, = 5( " KT. KT, 2 (41)
@5
m +m
1 2

and is valid for particles of arbitrary mass and charge. An interesting
feature of this cross section is its rapid decrease with increasing gas

temperatures.

Por electron-ion scattering this equation may be reduced by

taking Te/me >> Ti/mi’ Z. =1,2. = Zi, giving

1 2

2

2 :
- n (Z,e') 1ln A
Q) (et) = 5 —A—e— (42)

2 2
(kT)

dependent only upon the electron temperature. Numerically this becomes,
with In A = 15)
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as(e-i) = (6.6 + 0.6) IO-SITz cm? (43)

A brief comparison can be made here regarding the relative
importance of electron-neutral and electron-ion collisions. For nu-
merical purposes a general electron-neutral cross section of leO.16 cm2
is adequate. Thus, the ratio of the electron-neutral cross sections
can pe written as

11, 2
R=0Q,/Q, =13x10 /T . (44)

Since the electron temperature, Te, generally assumes values between
250° and 3600°K in the upper atmosphere, we see that the ratio of the
cross sections varies from 2x106 to 1x104. This implies that the
effects of electron-ion collisions will become important when the
ratios of the ion to neutral densities reach leO.7 and 1x10'4,

respectively.

IV - ELECTRON COLLISION FREQUENCIES AND ENERGY TRANSFER RATES

1. Neutral Gases

The momentum transfer cross sections for electron-neutral
collisions which were adopted in the previous section can be used
to arrive at expressions for the electron energy transfer collision
frequencies and energy transfer rates. Tables 2 and 3, respectively,

give the final results.

A comparison of these values can be made with those previously
reported. Care must be taken, however, to consider only elastic energy loss
processes since, as shown by Gerjuoy and Stein (1955) and Frost and Phelps
(1962), the impact exciatation & rotational and vibrational states in
diatomic molecules can be an efficient energy loss process for an elec-

tron gas.
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Table 2 Electron Collision Frequencies (sec-l)

=z
< |
»

-11 -
2.33x10 () [1 - 1.21xi0 4 ]t

<l
s

1.82x10" 0 a(o,) [1 + 3.6x10"2 Tellz] Tellz

2.8x10 0 n(0) Tellz

9

o
< |
[

4.5%10 1/2

w
<|
]

-4
n(H) [1 - 1.35x10 Te] T,

He : 33 = 4.6x10" 10 1 (He) rel/z

Table 3 Elastic Electron Energy Transfer Rates (ev cm-3 sec-l)

19

N, : dU_/dt 1.77x10°

-4
) n n(N,) [1 - 1.21x10 re] T, (T,- T

1.21x10" 8

0, : dUe/dt

, an@©,) [1+ 3.6x10"2 rel’z] rz’z -1

3.74x10 28 0 noy T Y
e e

‘ 2
o : dUe/dt (Te T)

16

- S nei1n~® /2 .
H o :dU /de 9.63x10  ° n_n(H) [1 - 1.35x10 re] T, (T,- T

2.46x10" %7 o (ie) rell

2
He : dU_/dt (T,- )

For Nz, Dalgarno, et al. (1963) used an energy loss equation
which was based upon the cross section measurements of Pack and

Phelps (1961). This gave

EE§é§11 - - 9.85x10" 20 T, (T~ ) n(y) n, e en™> sec”l (45)
A discrepancy is noted, however, if one uses the value of ab. given

in equation (25), which is also valid for the low temperatures where
the data of Pack and Phelps (1961) apply. It appears that equation (45)
1s @ factor of 1/2 smaller than would be found through application of

the energy transfer rate given by equation (18). Hence, it is found
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that equation (45) underestimates the elastic energy transfer rate
for Te < 3600°K.

In considering 02, Dalgarno, et al. (1963) adopted the value

fggzégzl = - 6.1x10-20 Te(Te- T) n(02)ne ev cm-3 sec-l, (46)
based upon the microwave studies of A.V. Phelps (Dalgarno, 1961).
This equation yields energy loss rates which are 20 to 30% larger
than those given in Table 3. This difference arises from the use
here of newer cross section data and the application of the exact

energy transfer equatiorn.

The problem of electron energy loss in atomic oxygen has
been considered by Hanson and Johnson (1961) and Hanson (1963). In
the latter paper a cross section of 2::10-16 cm? was adopted, leading

to an energy transfer rate of

dau_ (0)
e
dt

(T - T) n(O)n ev crn-’3 sec-l.
e e

47)
If, however, equation (18) had been applied with the stated cross

= - 1.42x10 18 161/2

section, this rate would be a factor of 1.55 greater. In the same
-1 2
way, Dalgarno, et al. (1963) took a cross section of 6x10 7 cm

and arrived at the expression

du (0) - -
2(Te- T) n(O)ne ev cm 3 sec 1 .

(48)
Again, the direct use of their cross section in equation (18) leads

-1
= - 1.31(10

8
T 1/
e

to the value

dUe(O)
dt

= - 6.6::10-19 Tell

2 (Te- T) n(O)ne ev cm.3 sec_l. (49)
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which is a factor of 5.7 lower than the present rate. However, if the
rate given by equation (48) is their final result, then the actual mo-
mentum transfer cross section used was 1.8x10-16 cm? which is close to

the value adopted here.
For atomic hydrogen and helium there appear to be no de-
terminations of energy transfer rates which could be used for compa-

rison with this work.,

2. Charged Particles Gases

Using the previous value for ab, the charged particle col-

lision frequency of a particle of mass m, in a gas of particles of

1
mass m2 is
2 2
4 2.2 e In A
v == VIE _1_2_) -
Y12 7 3 ““2( m KT, kT,  3/2 (50)
<__l 2
ot )
1 ™
To reduce this to electron-ion scattering we take Te/me > Ti/mi
and Z1 = 1 giving
- @,e%? 1n 4
v == {Znn (51)
e 3 i (kT )3/2
e
or, numerically with ln A= 15,,
v o= (54. + 5.)n_/T 3/2 sec-l. (52)
e i" e

This result agrees with that derived by Nicolet (1953) from the
work of Chapman and Cowling (1952).

There have been three experimental studies which have sub-
stantiated the expression adopted here. Anderson and Goldstein (1956a)
conducted microwave experiments in a decaying nitrogen plasma and

found a collision frequency which agrees with equation (52) to within 10%.
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Chen (1964) has reported a more refined experimental technique which
permitted him to measure the electron-ion collision frequency in a
neon plasma. He found that equation (52) correctly represents the
collision frequency over a wide range of temperatures and ion den-
sities. The numerical results of his experiments agree to within 6%.
Mentzoni (1965) has also been able to confirm the validity of
equation (52) to within the indicated accuracy of 10%.

The energy transfer rate between two charged gases having
Maxwellian velocity distributions but no restriction on the tempera-

tures or masses is

dU1 (lezez)2 In A
rral L N e e 53
12 (.__l + __g)
m 1 mz

which, for electron-ion energy transfer, reduces to the well known form,

dUe m 1/2 (Ziez)2 in A
— = -4\V2nan k(T -T,) ———— . (54)
dt e i { e i (kTe)3/2

Numerically, this becomes for singly charged ions,

du (Te- Ti)

—_e . -6 -3 -1
ac - (7.7 +0.8) x 10 n n, —A . 372 ev cm ~ sec (55)
i"e

where Ai is the ion atomic mass in amm,

It is interesting to note that for a fixed temperature Tz

in equation (53) there occurs a maximum energy transfer rate which,
1" 3+ 2m1/m2)T2.

For electron-ion energy tranafer this reduces to the usual result that

for the general case, is found at a temperature T

Te = 311. This analysis ignores, however, the contribution of the
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temperature dependence of the term In A, For electron-ion energy

transfer inclusion of this effect leads, for In A = 15, to the

relation Te = 3.5 Ti' an increase in the critical temperature by 16%.
The importance of equation (53) lies in the possibility of

describing all charged particle energy transfer in terms of one general

result ; the reduction to eleztron-ion, electron-slectron, or ion-ion

cases being made simply through a proper choice of subscripts, charges and

mass ratios,

V.- SUMMARY AND CONCLUSIONS

It has been shown that a suitable synthesis can be made
of the elastic energy transfer equation such that a generalized
energy transfer collision frequency can be defined for conditions
of thermal nonequilibrium. In considering the specific problem of
electron-neutral collisions it was necessary to analyze both labo-
ratory data and theoretical studies of scattering phase shifts in
order to arrive at satisfactory expressions for the average momen-
tum transfer cross sections. Thus, while 65 for NZ' 02, and He are
founded upon experimental results, the values for O and H have been

newly derived from the recent theoretical calculations of scattering

phase shifts.

The derivation of the charged particle momentum transfer cross
gection was shown to follow from the standard expression for the Rutherford
differential scattering cross section and the final expressions are
valid for charged gases of arbitrary temperatures and particle masses,
relativistic effects being ignored. A comparison of the electron-ion
and electron-neutral cross sections was made to indicate the much lar-

ger value which is associated with charged particle collisions.
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Using the different momentum transfer cross sections
electron-neutral coliision frequencies and energy transfer rates
were derived and compared with expressions previously used. 1In
general, the differences between various authors can be as large

as a factor of two.

The probiem of ion collision frequencies and energy

transfer will be discussed in a subsequent paper.

ACKNOWLEDGEMENTS

The direction of Dr. M. Nicolet is gratefully acknowledged.
The author held a NASA predoctoral traineeship while at the Ionosphere
Research Laboratory, the Pennsylvania state University. The support
for further research at the Institut d'Aeronomie Spatiale de Belgique
was provided by grant ONRG-00006-66 from the Office of Naval Research.




- 34 -

BIBLIOGRAPHY

ANDERSON, J.M. and GOLDSTEIN, L. , ‘“Momentum Transfer Cross Sections
and Fractional Energy loss in the Collision of Slow Elec-
trons with Nz”, Phys. Rev, 102, 388 (1956a).

ANDERSON, J.M. and GOLDSTEIN, L., “Variation of Electron Energy of
Collision Cross of Helium for Slow Electrons", Phys. Rev,
102, 933 (1956b).

BACHYNSKI, M.P., The Particle Kinetics of Plasmas, to be published

Addison-Wesley, New York, (1966).

BATES, D.R. and MASSEY, H.S.W., "The Basic Reactions of the Upper
Atmosphere II : The Theory of Recombination in the Ionized
Layers” Proc. Roy. Soc. 192, 1 (1947).

BRACKMAN, R.T., FITE, W.L. and NEYNABER, R.H., "Collisions of Electrons
with Atomic Hydrogen : Elastic', Phys. Rev, 112, 1157 (1958).

BURKE, P.G. and SCHEY, H.M., "Elastic Scattering of Low-Energy Electrons
in Atomic Hydrogen", Phys. Rev. 126, 147 (1962).

CHAPMAN, S., "Notes on the Solar Corona and the Terrestrial Ionosphere",
Smithsonian Contributions to Astrophysics 2, 1 (1956)

CHAPMAN, S. and COWLING, T.G., Mathematical Theory of Nonuniform Gases.

Cambridge University Press, Cambridge, (1952).

CHEN, C.L., "Electron Collision in Neon Plasma®, Phys. Rev. 135, A627 (1964).

COHEN, R.S., SPTIZER, L. and ROUTLEY, P., “Electrical Conductivity
of an Ionized Gas"”, Phys. Rev. 80, 230 (1950).

COOK, C.J. and LORENTS, D.C., "Electron Collision Frequencies and
Scattering Cross Sections in the Ionosphere", SRI Project No.
PAU-3340, Report Number 6, 15 August, 1961,

COOPER, J.W. and MARTIN, J.B., "Electron Photodetachment from Ions and
Elagtic Collision Cross Sections for 0, C, Cl, and F", Phys.
Rev. 126, 1482 (1962).

CROMPTON, R.W. and SUTTON, D.J., "Experimental Investigation of the
Diffusion of Slow Electrons in Nitrogen and Hydrogen", Proc.

Roy. Soc. (London), A215, 467 (1952)




