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I ,  S 
ABSTRACT 

Samples w e r e  generated f r o m  populations w i t h  known mean, 

s tandard  dev ia t ion  and covariance matrix f o r  t h e  repeated 

measures design f o r  specified values  of t he  v1 and v2 para- 

m e t e r s .  

The r e s u l t s  of t h i s  study i n d i c a t e  t h a t  as d . f .  and 

he terogenei ty  of covariance increased i n  the population, t he  

approximations t o  the  c e n t r a l  F d i s t r i b u t i o n  and the 9 test  

become inc reas ing ly  more e f f e c t i v e  i n  accounting f o r  b i a s  i n  

t h e  F s ta t i s t ic  r e s u l t i n g  from v i o l a t i o n s  of the  model. 

When the  power of t he  various tests w a s  inves t iga ted  

over t h e  var ious  values  of noncent ra l i ty ,  it w a s  found t h a t  

t he  o v e r a l l  l e v e l  of power for  t he  exac t  F reminded r e l a t i v e -  

l y  i n v a r i a n t  when the  m o d e l  w a s  v io l a t ed .  

procedures using the  F d i s t r i b u t i o n  w e r e  used when v i o l a t i o n s  

of t he  model f o r  the exac t  F was presen t  i n  the  populat ion,  

and hence " l o g i c a l l y "  appropr ia te ,  t he  power of these  tests 

approached t h a t  of t he  exact F. 

Descr ip t ive  measures of t h e  d i s t r i b u t i o n  of eps i lon  reveal-  

When the approximate 

ed t h e  sample estimates of the parameter t o  be best when 

sampling from the  extreme ranges of t he  domain of the  s t a t i s t i c .  

As t h e  d . f .  i n  the covariance matrix increased ,  d i f f e r e n t i a l  

p r e d i c t i o n  of t he  parameter, given the  sample mean, improved. 
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CHAP'ER I 

INTRODUCTION 

An experimental  study can be classified as a repeated 

measures des ign  whenever the to ta l  degree of freedom (d.f.) 

is g r e a t e r  than t h e  to ta l  m&er of s-&fects (E) i:: an axal- 

y s i s  of var iance  (Anova) paradigm. I n  order t o  have m o r e  d . f .  

than experimental  s u b j e c t s ,  more than one observat ion pe r  sub- 

ject must have been made: consequently, there is a departure  

f r o m  the usua l  Anova assumption of independence of measures. 

Repeated measures designs are q u i t e  popular i n  the 

psychological  l i t e r a t u r e .  Lana & Lubin (1961, 1963) made a 

survey of t h r e e  journals :  Journal of Comparative and physio- 

l o g i c a l  Psychology, Journal  of Experimental Psychology and, 

Journa l  of Abnormal and Social  Psychology, for  the years  1957 

through 1959 and found that  over 35% of t h e  experiments appear- 

i n g  i n  these  journa ls  used repeated measures designs.  

The lay-out of a typical repeated measures design,  assum- 

i n g  a s i n g l e  c l a s s i f i c a t i o n ,  f ixed cons tan ts  u n i v a r i a t e  model, 

would c o n s i s t  of an n x k score matrix: i . e . ,  2 s u b j e c t s ,  each 

measured across  k c l a s s i f i c a t i o n s ,  and each of t h e  measures 

between s u b j e c t s  would be independent, b u t  measures along t h e  

1 
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- k c l a s s i f i c a t i o n s  w o u l d  be dependent s ince  the measures are 

m a d e  on t h e  s a m e  experimental subjec ts .  1 

Under  such a model, devia t ions  about the grand mean: 

e.g., to ta l  sum of squares  (S.S.)  , are broken down i n t o  between 

subjects and wi th in  subject va r i a t ion .  

v a r i a t i o n  i s  again partitioned i n t o  between treatment and 

" re s idua l "  v a r i a t i o n .  The res idua l  v a r i a t i o n  i s  the d i f f e rence  

between total  w i t h i n s u b j e c t  v a r i a b i l i t y  and between treatment 

v a r i a t i o n .  

r i a te  d.f .  ( i n  the general  case,  ( n - l ) ( k - l ) d . f . ) ,  becomes the 

error t e r m  o r  denominator of the F ra t io  and the  between treat- 

ment v a r i a t i o n  divided by its appropriate d.f. (k-1) becomes 

t h e  numerator for  the F r a t i o .  

The wi th in  subject 

This re s idua l  va r i a t ion ,  when divided by the approp- 

Thus, i t  should be observed that  t h e  sampling u n i t  i s  

s u b j e c t s  w i th in  groups and t h a t  t h e  t o t a l  d . f . ,  nk-1, i s  g r e a t e r  

than t h e  number of subjects used i n  the experiment. This i s  one 

of the great advantages of the repeated measures design--econ- 

omy of subjec ts ;  and w h e r e  the assumption of homogeneity of 

covariance holds  up, it has been contended (Winer, 1962) that 

the ind iv idua l  d i f f e rence  f ac to r  has been controlled. (As w e  

shal l  see later,  such a contention r e s u l t s  i n  a paradox: t o  

minimize the  error var iance,  t o  inc rease  the p o w e r  of the F 

tes t ,  m a x i m u m  and cons tan t  covar ia t ion  i s  needed ... which 

implies maximization of ind iv idua l  d i f f e rences  .) 
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A basic assumption of the u n i v a r i a t e  Anova model i s  

zero or  homogeneous covariat ion,  between t reatments ,  i n  t h e  

universe.  Since repeated measures involves  measuring subjects 

across t i m e ,  the usual  outcome of such experimentation does 

n o t  r e s u l t  i n  zero  co r re l a t ion  and of tent ime,  the c o r r e l a t i o n  

matrix does n o t  show homogeneity ( G a i t 0  & Wiley, 1963; Lubin, 

1962; Lana & Lubin, 1963). Non-homogeneous c o r r e l a t i o n  r e s u l t s  

when such factors as carry-over and sequence effects, f a t i g u e ,  

warm-up and t r a n s f e r  of t r a in ing  occur during c o l l e c t i o n  of 

da ta .  Suggestions have been made (Box & Mueller,  1958; Winer, 

1962) to  adminis ter  treatments randomly wi th in  subjects--thus,  

sequence and carry-over e f f e c t s  should cancel  ou t .  However, 

when the independent variables l i e  on a t i m e  continumn; i .e.,  

measurements are made from one t i m e  i n t e r v a l  to  the  next ,  as i n  

l ea rn ing  experiments,  such randomization is  not  possible. 

Having e s t ab l i shed  t h a t  v i o l a t i o n s  of the repeated 

measures model do occur,  the e f f e c t s  of such v i o l a t i o n s ,  espe- 

c i a l l y  v i o l a t i o n  of the assumption of homogeneity of covariance,  

should be examined. 

A s  f a r  back as 1948, Kogan had suggested t h a t  non-homo- 

geneous c o r r e l a t i o n s  result  i n  a biased F s ta t is t ic .  H e  con- 

tended that  where the  c o r r e l a t i o n s  are p o s i t i v e ,  b u t  unequal, 

a posit ive bias i n  t h e  F t e s t  r e s u l t s ;  i .e.,  t h e  test yields  

s i g n i f i c a n t  r e s u l t s  too of ten .  This view is  also he ld  by Box 



I 4 

I 

(1954),  G a i t o  & Wiley (1963), G e i s s e r  & Greenhouse (1958),  

Lana & Lubin (1963) and Winer (1962), j u s t  t o  mention a f e w .  

The reason the r e s u l t a n t  F, a r i s i n g  o u t  of non-homogen- 

eously c o r r e l a t e d  data, i s  biased can be seen f r o m  the fact  

that the c e n t r a l  F d i s t r i b u t i o n  is based on the n u l l  case of 

I 

no t reatment  d i f f e rences ,  where the numerator and denominator 

of the F ra t io  estimate the s a m e  quant i ty .  Thus, when the 

n u l l  hypothesis (H ) is t rue ,  both numerator and denominator 

are estimates of  experimental  error. B o x  (1954) h a s  shown 

that when the assumption of homogeneity of covariance i s  

v i o l a t e d ,  t h e  numerator and denominator of the F r a t i o  do not  

estimate the s a m e  quantity when there is no treatment effect. 

0 

Various attempts have been m a d e  to  contend w i t h  th is  

bias. Three approaches have been predominant i n  attempting 

to  dea l  w i t h  this problem of t h e  i n f l a t e d  F; they are: (1) where 

possible, more c a r e f u l  design and con t ro l  of the experiment, 

(2)  use of m u l t i v a r i a t e  ana lys i s  and, (3) co r rec t ion  of the 

biased F by ad jus t ing  the d.f ,  t o  have F approximate a c e n t r a l  

F d i s t r i b u t i o n .  

As mentioned before, Box & Mueller (1958) have recommended 

randomization of t reatment  assignment wi th in  subjec ts .  They 

have shown that if t rea tmen t s  are assigned by t h e  f u l l y  random- 

i z e d  design of  randomized blocks design ( i .e. ,  matched s u b j e c t s ) ,  

the expected value (E) for the covariance i s  zero.  Where econ- 
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omy of subjects i s  necessary and constant or  zero covariance 

i s  not possible by any randomization procedure, one of the 

other two approaches would have to be used. 

When there i s  a lack of homogeneity i n  the population 

variance-covariance matrix (E), Bock (19631, Gaito & Wiley 

(19631, and Lana & Lubin (1963) have recommended the use of 

Hotelling's T s t a t i s t i c ,  which when modified by Rao's method 

(1952, pp. 239-2441, provides a test  for  homogeneity of means 

--by an exact test for  differences between correlated means. 

2 

There are,  however, certain disadvantages i n  the use of 

2 multivariate procedures. In  order to calculate T , it i s  

necessary to obtain the inverse of the sample variance- 

covariance matrix (V ) .  Without the use of a high-speed data 

processing system and corresponding computer programs, the 

en t i re  operation i s  both laborious and t i m e  consuming. Danford, 

Hughes & &Nee (1960) have shown tha t  when the assumption of 

equal covariances i s  fu l f i l l ed ,  the usual univariate procedures 

lead to a more powerful tes t  than Hotelling's T . However, as  

- n becomes large; i.e., as the d.f. increases, both procedures 

lead to equally powerful t e s t s .  They also found that  when the 

assumptions of homogeneity of variance and covariance did not 

hold, and both multivariate and univariate Anova t e s t s  w e r e  

made on the s a m e  data, it was noted that ,  I' ... asymptotically, 

the univariate and multivariate tests are  identical".  The 

k 

2 
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conclusions drawn from their  study are, ".. . essentially,  the 

same inferences are made from the univariate and multivariate 

analyses". 

The f ina l  approach, where the d. f. for  a univariate F 

a r e  adjusted to account for  bias,  has been the most popular 

with respect t o  the solutions suggested and derivations of 

correction factors. 

The i n i t i a l  work done with correction of the univariate 

F dis t r ibut ion by adjustment of the d.f, was due to Box (1954). 

Box assumes a multivariate normal dis t r ibut ion and shows tha t  

under the n u l l  hypothesis the true distribution of the univar- 

ia te  F can be approximated by adjusting the d.f. for the biased 

F, The d.f. for  numerator and denominator are  both multiplied 

by a fraction, epsilon ( e ) .  ( e  i s  used to designate the sample 

estimate of epsilon). 

the posit ive bias by a reduction of the d.f.; consequently, a 

larger  value for  F i s  needed to re jec t  H when the s t a t i s t i c  

i s  biased. 

Here, an attempt is made to account for 

0 

The test r a t io  i s  

(k-1) e , (k-1) (n-1) e 
F 

... where e can be estimated from V 

sample variance covariance matrix. 

where Vk i s  the k' 
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Epsilon i s  equal t o  

2-2 k 2 -  2 kk 2 k (vtt  - v) /(k-l)  (CC v - 2k C 7; + k v . . ) .  tS st t=l 

- 
Then, vts are the elements of  V v 

k' tt i s  the mean of the 

- t h  diagonal  terms: i.e., the  var iances ,  v i s  the mean of t row 

o r  column, and 6.. i s  the grand mean of V. 

t 

Box developed t h i s  cor rec t ion  f o r  the  case of the s ing le  

c l a s s i f i c a t i o n .  G e i s s e r  & Greenhouse (1958) and Bhat (1958) 

have extended BOX'S results t o  inc lude  mul t ip le  groups. G e i s s e r  

& Greenhouse, working w i t h  a two f a c t o r  model, analogous t o  

L indqu i s t ' s  Type I design (1953), demonstrated t h a t  the lower 

bound on c i s  (k-l)-' and the upper bound i s  uni ty .  

I n  a la ter  a r t i c l e ,  Greenhouse & G e i s s e r  (1959) recommend 

t h e  following s t e p s  i n  t e s t i n g  an F r a t i o ,  from a repeated 

measures model, f o r  s ignif icance.  F i r s t ,  t he  un iva r i a t e  F i s  

computed and the  regular  t e s t  8 (k-11, ( n - l ) ( k - l )  d.f .  i s  made. 

If however, the regular  test r e s u l t s  i n  a r e j e c t i o n  of H the 

next s t e p  would be a (conservat ive)  test Q 1, (n-1) d.f ... B u t  

0' 

i f  t h i s  test shows no evidence of  s ign i f icance ,  a problem arises: 

should BOX'S eps i lon  s t a t i s i t i c  be used t o  make an approximate 

test  of the  n u l l  hypothesis?  

Lana & Lubin (1963) have i n t e r p r e t e d  Geisser & Greenhouse's 

r a t i o n a l e  i n  the following manner 



. 

They ( G e i s s e r  & Greenhouse) argue that since 
no one has shown what sample estimate of epsilon 
i s  most appropriate, and the robustness of epsilon 
has not been investigated, i t  is best to  use a con- 
servative test. (Lana & Lubin, 1963, pp.733) 

Lana & Lubin also comment on Geisser & Greenhouse's 

posit ion with respect to the si tuation where H i s  rejected 

when the regular test i s  used, but not with the conservative 

0 

test. 'I ... G e i s s e r  & Greenhouse apparently would next t ry  

Box's approximate t e s t ,  using a sample estimate of epsilon. 

W e  would recommend an exact multivariate t e s t  such as  Rao's 

( the modification of Hotelling's T ) . I '  
2 

It would seem that  BOX'S approach would be one of l a s t  

resor t .  The implication here is that  e i ther  the sample esti- 

mate of epsilon is a poor one, for  some undisclosed reason, 

or  that  the experimenter has no idea as  to the s t r u c t u r e  of 

the population variance-covariance matrix. When no adequate 

a p r io r i  estimates of e can be made, omwould assume maximum 

bias  to operating and uses  a conservative test: i . e . ,  Q 1, (n-1) 

d.f. I n  the i r  def ini t ive a r t ic le ,  G e i s s e r  & Greenhouse's f ina l  

recommendation i s  to use the conservative test although the 

correction may be too conservative. Thus, w e  now have a neg- 

a t ive  bias  i n  the F test rather than a posit ive one. 1 
Another problem related to the t e s t  for  a significant F 

i s  the Type I1 error.  The fac t  that  the Type I error i s  under- 
I 

estimated when the population variance-covariance matrix shows 
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a lack of  homogeneity, the p robab i l i t y  of a Type I1 error may 

n o t  be t h e  s a m e  as f o r  the unbiased test. The effect  of not  

reducing the  d.f .  t o  compensate fo r  an i n f l a t e d  F i s  to raise 

CY l e v e l ,  e.g,;  an CY of  -05 is r e a l l y  -07: a n  inc rease  i n  t h e  

p r o b a b i l i t y  of the Type I e r ro r .  A l l  other th ings  being 

equal ,  t h i s  w i l l  r e s u l t  i n  a corresponding decrease of t h e  

p r o b a b i l i t y  of a Type I1 error. Thus, t h e  p o w e r  of t h e  F tes t  

i s  a r t i f i c i a l l y  i n f l a t e d .  Conversely, applying a conservat ive 

o r  overcor rec t ion  t o  the d.f .  w i l l  r e s u l t  i n  a decrease of  the 

p r o b a b i l i t y  of a Type I e r r o r ,  and a corresponding loss i n  

p o w e r .  J u s t  how much t h e  p robab i l i t y  of the Type I1 error i s  

effected by a lack of homogeneity of covariance i s  not  known. 

I n  order  that the p o w e r  of the F test may be evaluated 

when these co r rec t ion  procedures are appl ied  t o  l i m i t  the bias 

due t o  heterogeneous covariances,  t h e  p o w e r  func t ions  of the 

repeated measures design needs t o  be known. 

d i c a t i o n  i n  the l i t e r a t u r e  of adequate p o w e r  curves t o  f i t  re- 

peated measures models. However, fo r  those models w h e r e  scores 

are independent of one-another, w e  see that p o w e r  i s  dependent 

upon three parameters: 

There i s  no in-  

degrees of freedom i n  the numerator 

(v , )  , degrees of f r e e d o m  i n  the denominator of the F ra t io  
.L 

(v,) and a noncen t r a l i t y  parameter, designated by del ta  ( 6 ) -  

Dixon & Massey (1957) and Scheffg (1959) have shown 

that d e l t a  i s  dependent upon: the number of cases sampled per  
I 
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t reatment  o r  condi t ion ,  the v a r i a t i o n  between population means 

and an estimate of the  error var iance i n  the population. For 

repeated measures designs,  e spec ia l ly  where C shows he terogenei ty ,  

an  estimate of the error variance i s  d i f f i c u l t  t o  m a k e .  Since 

t h e  error var iance i s  a d i r e c t  funct ion of the average covar- 

iance ,  the noncen t r a l i t y  parameter w i l l  d i f f e r  from the inde- 

pendent measures m o d e l  where the expected value f o r  t h e  covar- 

i ance  i s  zero. 

The noncent ra l i ty  

has no term to account 

parameter mentioned by Scheffe’ (1959) 

for  non-zero covariance.  Consequently, 

the problem arises: are the three (aforementioned) parameters 

of  Scheffe’ s u f f i c i e n t  t o  account for  the p o w e r  of the repeated 

measures model? However ,  t h e  problem becomes c r i t i ca l  only 

when the p o w e r  of the independent and dependent measures models 

are to  be compared along a continuum of  noncent ra l i ty .  For the 

case w h e r e  the average co r re l a t ion  i n  the population is  the 

s a m e  and homogeneity of variance e x i s t s  between treatment con- 

d i t i o n s ,  comparisons of d i f f e r e n t  p o w e r  l e v e l s  of sample F’s- 

drawn under varying sample sizes, degree of he te rogenei ty  i n  C, 

or  number of t reatment  conditions i s  possible using Scheffe 
/ 

measure of noncent ra l i ty ,  where the error var iance term i s  

equal to  (l-r ) ,  w h e r e  5 i s  the average c o r r e l a t i o n  between the -2 I. 
i k treatments. 
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CHAPTER TI 

METHOD AND PROCEDURE 

I. 
I 
I 
I 

The procedure used i n  t h e  p re sen t  research  involved cal- 

c g l a t i n g  a l a r g e  number of  statist ics,  each based upon samples 

which w e r e  drawn a t  random f r o m  a universe  having spec i f i ed  

characteristics. On the basis of the s t a t i s t i c a l  tests made 

on these samples, the p r o b a b i l i t i e s  of the  Type I and I1 errors 

w e r e  determined. 

1. Simulation of Data 

L e t  Z equal  a k x 1 vector  drawn f r o m  a & v a r i a t e  

m u l t i v a r i a t e  universe ,  k denoting the  number of treatment 

c l a s s i f i c a t i o n s  for which a given s u b j e c t  produces a measureable 

response,  where 

S 

conta ins  k independent scores f o r  any one 
zS * This vec to r ,  

i nd iv idua l  i n  a universe  of 11 people and n such vec to r s  may be 

represented as a sample of n x k scores. 

L e t  equal  a universe of i n t e r c o r r e l a t i o n s  among errors, 

where 

R = F F' 

T o  genera te  correlated sample scores f r o m  t h e  universe  of 

11 
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er rors ,  we  l e t  

F Z = Z where 
S r' 

E ( Z  Z ' ) = E ( F Z  Z ' F ) = F ( E Z  Z ' ) P '  r r  s s  s s  

T h ~ s ,  t o  impose in te rcor re la t im xatr ix ,  R on the errors ,  the 

vector 2 i s  sampled from a universe of scores and premulti- 
S 

plied by factor matrix, F. 

Let ui (i = 1 , 2 ,  ..., k) be a vector of means, where C u  i 

= 0. I n  order to simulate raw scores with universe means given 

th by ui, the i- treatment mean i s  added to the ith element of 

the vector of error  scores. The r e s u l t ,  S i s  a k x 1 vector 

of - k raw scores for  a given individual: n such vectors are  

r 

drawn from the universe with t he  resultant raw scores having 

appropriate u and sigma i n  expectation. 

2. The Simplex 

It was previously mentioned tha t  R w i l l  not be homo- 

geneous when there i s  a practice or  carry over e f fec t  across 

treatments. I n  experimentation where repeated measures models 

a re  appropriate, t h i s  i s  the usual case. The simplex i s  one 

of the more common forms of sampling covariance matrices en- 

countered i n  psychological research, especially where "learn- 

ing" i s  involved. Anderson (1958) and Jones (1960) describe 

the patterning of correlations i n  the simplex a s  a decrease 

I. 
I *  
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i n  magnitude of the co r re l a t ions  i n  successive diagonals  

away f r o m  the main diagonal.  

The p r i n c i p l e  of the simplex i s  l i k e  that of a folding 

telescope, i n  that  the d i f f e r e n t  s t ages  o r  components of t he  

simplex fol3.ow the p r inc ip l e  of inc lus ion  (Jones,  1960).  That 

3' * . * '  
i s  to say, R is included i n  R w h i c h  is included i n  R 1 2' 

w h i c h  i s  included i n  R Algebraically, 
j. 

R1 = f l  

R2 = f + f2 1 

R = fl + f2 + -.. + f ( a f t e r  Jones,  1960). 
j j 

The perfect simplex is so s t ruc tu red  as  t o  have R and 1 

F subject t o  the same conditions--except, the s t ruc tu red  

variables don ' t  a l l  have equivalent var iances  (Jones,  1960).  

1 

T a b l e  2.1 

VARIABLE 2 3 4 

.60 .40 -30 1 

2 -80 .50 

3 090 

Matrix of I n t e r c o r r e l a t i o n s  Having P e r f e c t  S impl ic ia l  Form. 

1. 
I 
II 

I n  add i t ion ,  t h e  matr ix  could be Grammian i n  form. I n  the 

manipulation of  psychological variables o r  the measurement of 
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psychological  t raits ,  one would not  expect to f i n d  the i n t e r -  

c o r r e l a t i o n  matrix to  have negative roo t s ,  

3 .  Evaluation of t h e  Magnitude of the  Type I Error 

To r e c a p i t u l a t e ,  various procedures have been recommended 

to  test  the F s ta t i s t ic  r e s u l t i n g  f r o m  a repeated measures de- 

s i g n  w h e r e  the assumption of homogeneity of covariance has 

been v io l a t ed ,  

F, sampled under condi t ions  of he te rogenei ty  i n  C w i l l  become 

i n f l a t e d ,  and t h e  use  of the F d i s t r i b u t i o n  @ k-1 and (n-1) 

(k-1) d.f .  t o  test H results i n  a p o s i t i v e  bias i n  F when H 

i s  t r u e .  Assuming that the experiment f r o m  which the sample 

covariance matrix w a s  constructed c a n ' t  be a l t e r e d ,  three alter- 

n a t i v e s  for t e s t i n g  H aga ins t  some a l t e r n a t i v e ,  H are open 

to the experimenter: 

These procedures have been suggested because 

0 0 

0 0' 

a. perform the usual t es t  Q k-1 and (n-1) (k-1) d . f . ;  

b. use an approximation of the  c e n t r a l  F d i s t r i b u t i o n  

by ad jus t ing  the d. f . : 
c. o r  use an exact, mu l t iva r i a t e  s ta t i s t ic  such as  

2 T .  

Y V 2  
By sampling f r o m  a universe where t h e  parameters v 

(d . f . l s )  as w e l l  as t h e  degree of bias i n  C (as indexed by 

BOX'S eps i lon )  are known, j u s t  how much of a departure  from 

the assumptions of the "usual" F test r e s u l t s  i n  a Type I error- 

as d i f f e r e n t  f r o m  the alpha l e v e l  chosen to  test  F, could be 
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determined empirically. 

estimates of epsilon to adjust v and v would enable us to 

measure the degree to which th i s  correction procedure removes 

the b ias  i n  F, As a control, T could also be calculated on 

these same data. This would provide a control i n  the sense 

that T would be the appropriate exact s t a t i s t i c  to use when 

C i s  not homogeneous. 

Testing these same data using sample 

1 2 

2 

2 

Lana & Lubin (1963) suggest that  the sample estimate of 

epsilon may not be the best  estimate of the parameter, epsilon. 

I n  the present study, s i n c e  the value of the parameter epsilon 

is known, adjusting the v and v parameters using the popula- 1 2 

t ion value of epsilon, and comparing the result ing probability 

of the Type I error  w i t h  t h o s e  determined using the "biased" F 

test ,  F- adjusted by the s t a t i s t i c  epsilon and T , the re lat ive 
2 

m e r i t  of the use of the actual parameter, epsilon, could be 

determined. 

4. Power of the Tests Under Conditions 
of Heterogeneity i n  C 

Testing H against some al ternate  hypothesis, H1 , when 
0 

w e  can specify tha t  H i s  false,  w e  a re  confronted with the 

probability of comi t t ing  a Type I1 error.  Using the various 

approximations of the F distribution, and the T s t a t i s t i c ,  

0 

2 

knowing the values of the vl, v 2 ,  e ,  and 6 ,  parameters, the 

power of these tests may be determined by the re la t ive  number 

of t i m e s  H may be rejected. Unlike the Type I error ,  there 
0 



i( 16 

1. 
1 

i s  no readily available index, such a s  alpha, which we may use 

to compare the empirical values of the Type I1 error.  Power 

curves for the F-test are presented i n  Dixon & Massey (1957). 

Since the present model departs from the fixed constants model 

a s  given by Dixon & Massey, a comparison of the empirical value 

of the power of these t e s t s  and any expected value, i s  not 

possible. However, the r e l a t i v e  power of the various t e s t  

s t a t i s t i c s  may be compared. 

5. Sampling Characteristics of Epsilon 

Since  the sampling distribution of epsilon is  unknown, 

any attempts to associate a probability of getting a sample 

value differ ing from i t s  expected value, by some magnitude, 

would be beyond the scope of t h i s  study. Selected descriptive 

measures of how w e l l  a limited sample of epsilon s t a t i s t i c s  from 

a specified population, compares with the parameter, epsilon, 

a re  used. 

6. Selection of Parameters 

A. Average universe correlation. 

The R matrices w e r e  selected such tha t  the average cor- 

re la t ion ,  between treatments, i n  the universe was constant, 

throughout, but the resultant variance-covariance matrices d i f -  

fered i n  degree of heterogeneity. The basic axis of difference 

was i n  t e r m s  of the magnitude of the parameter, epsilon, i .e. ,  

the "severity" of BOX'S correction: the smaller the value of 

epsilon, the more d.f. los t .  
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The average cor re la t ion2  was determined such t h a t  the 

r e l i a b i l i t y  of the data  was both  cons tan t  f o r  the e n t i r e  study 

and uniformly high from matrix to  matr ix;  e.g. ,  r = .64, w h e r e  

2 
e 2 - 2  

t 
2 and (J = (J e - p a t  , thus. . .  

0 

r = l -  
2 
t CT 

2 - 2  - 
(at  - p (JJ = p .  r = l -  

2 
t (T 

2 (a t  = t o t a l  variance) 

B. R matrices and the parameter epsi lon.  

The index used t o  def ine the  degree of he te rogenei ty  i n  

C ,  from which sample covariance mat r ices  w e r e  drawn, i s  the  

parametr ic  value of BOX'S epsi lon.  By spec i f ing  a series of 

such matrices, where the value of c is manipulated along the 

1 t o  (k-l)-' continuum, e f f e c t s  of the change i n  he te rogenei ty  

i n  C may be observed i n  a d i s t r i b u t i o n  of sample Fs from C. As 

heterogenei ty  increases  what i s  the  e f f e c t  on the  F s t a t i s t i c ?  

The values  of eps i lon  were o r d i n a l l y  chosen such t h a t  a high,  

medium and low bias matrix C, could be defined. Since the  

range of sample values  of  eps i lon  i s  dependent upon the  v1 

parameter,  a d i f f e r e n t  s e r i e s  of eps i lons  was used fo r  each 

parameter used i n  the  study. Tables 2.2 through2.3 conta in  v1 

a complete layout  of t he  values of eps i lon  chosen f o r  each v1 

va lue  used. 
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C. - k ,  t h e  number of  treatment c lass i f icat ions.  

One advantage of the ana lys i s  of var iance i s  t h a t  - k means 

are simultaneously compared. Any a d d i t i o n a l  comparisons, using 

the t tes t ,  r e s u l t s  i n  a change i n  the alpha l e v e l ,  as given 

by t h e  following equation,.  . 
h 1 - (1- alpha) , where h specifies the number 

of comparisons being made among means, 

Consequently, if one wants to  take advantage of the  

s t a b i l i t y  of alpha using a proper exact test and t h e  c e n t r a l  

F d i s t r i b u t i o n ,  a t  least three means of treatment should be 

compared. For the p resen t  study, a t  least three treatments,  

are necessary if a simplex pa t t e rn ing  of c o r r e l a t i o n s  i n  R i s  

des i r ed ,  TWO values  f o r  k w e r e  used for  th i s  study. A 

k = 3 w a s  chosen i n  o rde r  t h a t  a minimum value i n  the accept- 

able range of v could be had and k = 5 w a s  a r b i t r a r i l y  chosen. 1 

D. -' n the number of subjec ts  o r  sampling u n i t s  per element of 

c .  

The values  of - n i n  t h i s  study, as  i n  most models f o r  t h e  

I 
I 1 
I 
I 
!I 
I 

use  of t e s t i n g  s ta t i s t ica l  hypotheses, have an  effect on t h e  

sampling error the sample covariance matrix w i l l  contain.  Gen- 

eral ly  speaking, as  - n increases ,  the sampling error decreases. 

I n  t e r m s  o f  t he  p o w e r  of the F test ,  the sampling e r r o r  i n  the  

covariance matr ix  must be estimated i n  order that  the noncen- 

t r a l i t y  parameter may be defined. As the sampling error de- 
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creases, a l l  other f a c t o r s  being cons tan t ,  p o w e r  of the test 

inc reases .  

It w a s  mentioned t h a t  both a n  approximate and exact  test 

w a s  used t o  test H f o r  s ignif icance.  The exact t es t  u s e s  the 

F d i s t r i b u t i o n  to determine the p l e v e l  for  a sample value of 

T , however, the d.f .  parameters are not  determined i n  the 

s a m e  way for  a un iva r i a t e  F as f o r  T . The d.f .  f o r  the co- 

var iance  matr ix  f r o m  w h i c h  the value of T i s  determined must 

be a t  least  n-k-2, Therefore, any value of  T2 ca lcu la t ed  

f r o m  a C no t  having the required minimal d.f .  w i l l  not  be 

meaningful,  b u t  i n  s o m e  cases,  e.g.; w h e r e  n-k-1 i s  non-negative, 

and F s ta t i s t ic  w i l l  be meaningful. 

These fac ts  have important i m p l i c a t i o n s  when s e l e c t i n g  

0 

2 

2 

2 

2 values  for n. I f  T i s  to be used and the da ta  are appropr ia te  

for  the model, s u f f i c i e n t  d . f .  must be present  f o r  t h e  T tes t .  

However, as i n  the present study, w h e r e  i t  i s  of i n t e r e s t  t o  

know the empirical values  of the Type I and Type I1 errors of 

t h e  F test when T c a n ' t  be used, t h i s  comparison cannot be 

made. 

- 
2 

2 

The values  of  - n w e r e  chosen such that: 1) a minimum d.f .  

2 
w a s  p re sen t  for  an F b u t  not  a T test: 2 )  a minimum d.f .  w a s  

p re sen t  for  t h e  T test: 3 )  and two o t h e r  values ,  n= 10 and 

n= 1 5  w e r e  a l s o  chosen, The f irst  two values  f o r  E ,  j u s t  above 

and j u s t  b e l o w  the requi red  number for the  T tes t ,  w e r e  d i f -  

2 

2 
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Table 2.2 

Population Covariance Matrices 

(k= 3; n= 4, 6, 10, 15) 

Heterogeneity 
Index 

1.00 -66 

1-00 

1.0 

1.00 59 

1-00 ::I 
1.0 

1.00 -40  .17 

1.00 -92 

1.00 

-99 

.74 

- 54 



Table 2.3 

Population Covariance Matrices 

(k= 5; n= 6, 7, 10, 15) 

r 1.00 .63 -63 . 63 -62' -99 

1.00 -66 -65 -64 

1.00 -66 -67 

1.00 -68 

l.OC, 

Heterogeneity 
Index 

1.00 .58 -52 -48 -42 

1.00 .73 .70 -58 

1.00 -78 075 

1.00 . 79 
1.oc 

. 78 

1.00 . 36 -31 -17 .14 

1.00 . 83 .75 -52 

1.00 .88 .84 

1.00 -89 

1.oc 

-50 

21 

k 
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f e r e n t  for  the var ious values of - k,  as should be evident  by 

the fact  t h a t  v2  is  dependent upon & as  w e l l  as 2. 

2.2 through 2.3 contain a complete desc r ip t ion  of the values 

of - n chosen f o r  t h e  study. 

E. Values of the treatment means. 

Tables 

When the probability of the Type I error w a s  i nves t iga t ed ,  

the va lues  of the cons tan t s  a ,  w e r e  equal across treatments.  

Since the Type I error i s  relevant  only when population means 

are equal ,  the cons tan t s  w e r e  set  equal t o  zero when the n u l l  

hypothes is  w a s  t r u e .  

Inves t iga t ion  of the Type I1 error and i t s  complement, 

p o w e r ,  involves  another  parameter, the noncent ra l i ty  parameter. 

The p o w e r  of the F test  is dependent upon three parameters, 

d . f .  fo r  the numerator, d . f .  for  the  denominator and the non- 

c e n t r a l i t y  parameter designated, d e l t a ,  ( 6 ) .  

k 
n R  The dimensions of the Z matrix determines the two d.f.  

parameters and the va lues  of the f ixed  cons tan ts  ( a ' s ) ,  r e l a t i v e  

to  the populat ion error variance and sample s i z e ,  determines 

the non-central i ty  parameter. 

Scheffg (1959) ind ica t e s  the  non-central i ty  parameter i s  

equal t o  
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... fo r  the f i x e d  constants  model w i t h  independent 

observa t ions ,  v iz .  ; non-repeated measures. 

Since assumptions of  the model w e r e  violated no appropr ia te  

non-cent ra l i ty  parameter i s  indicated.  6 w a s  set equal to  2 

the var iance of the constants  a; weighted by n,  the sample 

size for each of the treatment observat ions,  e.g.; 

2 
n c (a; - cr..) 

k 

The r e s t r i c t i o n ,  n = n = n w a s  used such tha t  each 
1 2 1' 

treatment  received equal weighting. 

Ten va lues  of noncent ra l i ty ,  i l l u s t r a t e d  i n  Table 2 . 4  

ranging f r o m  .01 to  20.00 w e r e  chosen such that a reasonably 

continuous func t ion  for  power w a s  obtained. The usual  compar- 

i sons  of t h e  p o w e r  of two t e s t s  having the same d.f .  i s  not  

possible, although the F and T s ta t i s t ics  w e r e  both the r e s u l t s  
2 

of samples from the s a m e  variance-covariance matrix. Power 

comparisons w e r e  made between the var ious  approximate F tests 

and T 

F. 

2 i n  t e r m s  of - k and - n rather than v1 and v2 .  

N u m b e r  of sample covariance matrices. 

For the inves t iga t ion  of t h e  Type I error 1000 sample 

covariance matrices w e r e  drawn for  each n ,  k ,  and eps i lon  com- 

b ina t ion ,  r e s u l t i n g  i n  12,000 sample covariance matrices. For 

the p o w e r  comparisons 500 sample covariance matrices w e r e  
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I 
1- 

drawn for each n, k 

resulting in 60,000 

epsilon and noncentrality combination 

covariance matrices. 

Table 2. 4 

Values for 6 - the Noncentrality Parameter 
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CHAPTER I11 

RESULTS AND DISCUSSION 

Samples w e r e  generated and evaluated f o r  the various 

combinations of t h e  n ,  k, heterogenei ty  and noncent ra l i ty  

parameters.  When noncent ra l i ty  was zero ,  t he  Type I errors 

for  t h e  var ious tests of H w e r e  determined by the  percentage 

of t i m e s  H w a s  r e j ec t ed .  When noncent ra l i ty  was g r e a t e r  than 

zero ,  power of the  test was ca l cu la t ed  i n  a s i m i l a r  manner. 

0 

0 

1. me Type I Error. 

The r e s u l t s  of the probabilities of the  Type I error 

a r e  shown i n  Tables 3.1 through 3.5. Appendix I conta ins  t a b l e s  

of t h e  p r o b a b i l i t i e s  f o r  each  of the  condi t ions.  The r e s u l t s  

of Table 3.1 show a general  p a t t e r n  f o r  each of the tests on 

Ho for both alpha = -01  and -05. 
3 

Resul ts  using the  exact F test ( v  v ) i n d i c a t e  a n  in -  1' 2 

crease i n  p o s i t i v e  bias i n  the s t a t i s t i c  as heterogenei ty  i n  

the populat ion covariance matrix is  increased. A p o s i t i v e  

b i a s  is  a l s o  observed even when eps i lon  (the va lue  of w h i c h  is 

used t o  index heterogeneity) approaches uni ty .  This would 

i n d i c a t e  t h a t  t he  exac t  F test is s e n s i t i v e  t o  s l i g h t  departures  

from the assumption of homogeneity of covariance.  

2 5  
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The genera l  p a t t e r n  of r e s u l t s  f o r  tests on H using 
0 

t h e  Box s t a t i s t i c  approximation t o  the  c e n t r a l  F d i s t r i b u t i o n ,  

F@le, v2e, i n d i c a t e s  t h a t  as heterogenei ty  was increased bias 

i n  the s ta t i s t ic  w a s  s l i g h t l y  negat ive for  minimal heterogenei ty  

a d  becomes s l i g h t l y  p o s i t i v e l y  b iased  f o r  departures  f r o m  

homogeneity of covariance.  I t  should be noted that  the  degree 

of depar ture  f r o m  homogeneity of covariance had a negl igable  

effect on b i a s .  When the  Anova m o d e l  was appropr ia te ,  i .e. ;  

e p s i l o n  approaches un i ty ,  the approximate F test  produced 

r e l a t i v e l y  less bias than the  exac t  F test .  Using t h e  Box 

s ta t i s t ic ,  the re fo re ,  w i l l  serve t o  l i m i t  bias due t o  sampling 

f l u c t u a t i o n s  i n  V when the population covariance matrix ind i -  k 

cates homogeneity. 

The r e s u l t s  of tests on H using the population value 0 

of F w e r e  s i m i l a r  t o  those 
v 2  of e p s i l o n  t o  a d j u s t  and 

obtained when H was t e s t e d  by adjustment of d . f .  w i t h  the 

sample estimate of eps i lon .  I t  is observed t n a t  th is  procedure 

is i n e f f e c t i v e  when the covariance matrix is homogeneous 

because t h i s  test 1s the sa.= as t h e  exac t  F. It  would s e e m  

t ha t  the sample estimate of eps i lon  is a good one judging by 

t h e  s i m i l a r ,  (unbiased) F s t a t i s t i c s  obtained with both the  

0 

populat ion and sample estimates of the  s t a t i s t i c ,  

The test  on Ho, a s  suggested by Geisser & Greenhouse, 

whereby t h e  v and v parameters assume t h e  values  of 1 and n-1, 
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r e spec t ive ly ,  produced r a t h e r  conservat ive Type I errors. That 

i s  t o  say ,  t he  use of t h i s  procedure, i n  a l l  cases, produced a 

nega t ive ly  b iased  F s t a t i s t i c .  When the  model w a s  appropriate, 

a seve re  loss of d . f .  r e s u l t s  i n  near zero  probabilities. In- 

c r eas ing  he terogenei ty  resu l ted  i n  only a s l i g h t  decrease i n  

the bias ,  b u t  t he  r e s u l t i n g  Type I error remained h ighly  biased. 

The r e s u l t s  j u s t  reported a r e  based on the probabilities aver- 

aged across t h e  n and k parameters. The da ta  a s  a whole, however, 

r evea l s  an i n t e r e s t i n g  f a c t  about the use of t h i s  "conservative" 

procedure.  Only when heterogenei ty  is maximal, i n  a s ta t i s t ica l  

sense,  and t h e  Grammian s t r u c t u r e  of R i s  demanded, as i n  the  

case of eps i lon  approaching .SO for k = 3 ,  does the G e i s s e r  & 

Greenhouse procedure y i e l d  a r e l a t i v e l y  unbiased test. F a i l u r e  

t o  ob ta in  s i m i l a r  r e s u l t s  when k was 5 i s  explained by the  f a c t  

t h a t  for  l a r g e r  order R matrices, maximal heterogenei ty  of l/k-1 

is not obta inable  i f  R is t o  have G r a d a n  properties and p o s i t i v e  

i n t e r c o r r e l a t i o n s .  Therefore, t h e  value of 6 = -50 when k = 5 

does n o t  f u l f i l l  t he  c r i t e r i o n  of being the lower bound f o r  the 

domain of eps i lon .  Only when d a t a  are sampled f r o m  covariance 

matrices wi th  maxima1 heterogenei ty  is  such a severe  cur ta i lment  

of d .  f .  warranted. 

2 
Resul ts  obtained using t h e  exact, mu l t iva r i a t e  T test 

show Type I errors s i m i l a r  t o  those produced by the  approximate 

F test using the  Box procedure t o  a d j u s t  d . f .  I n  genera l ,  when 
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there w a s  a depar ture  f r o m  the assumption of homogeneity of 

covariance,  T produced Type I e r r o r s  converging on alpha. 2 

Table 3.2 and Table 3.3 show the  r e s u l t s  of the  

p r o b a b i l i t i e s  of the me I e r r o r  f o r  d i f f e r e n t  k f o r  var ious 

degrees  of heterogenei ty  i n  the covariance matrix. The r e s u l t s  

of the exact E' t e s t  (ui, v , )  i n d i c a t e  t h a t  as k increased f r o m  

3 t o  5, t h e  p o s i t i v e  b i a s  i n  the  s t a t i s t i c  a l s o  increased. The 

L 

over-a l l  effect  becomes more pronounced as heterogenei ty  in -  

c reases :  for  the case where he te rogenei ty  w a s  moderate, t he  bias 

w a s  somewhat less f o r  k = 3 ,  than k = 5. 

The tes t  on H using the sample estimate of eps i lon  t o  0 

a d j u s t  d . f ,  shows a n  ove ra l l  e f f e c t  of a s h i f t  i n  bias,  from 

negat ive  t o  s l i g h t l y  pos i t i ve ,  a s  k increases .  As heterogenei ty  

increased ,  a s t a b i l i t y  of  the Type I error was noted when k = 3 ,  

b u t  when k = 5,  bias was s l i g h t l y  negative f o r  l o w  heterogenei ty  

and became s l i g h t l y  posit ive when heterogenei ty  was maximal, 

T e s t s  us ing the  parametric va lue  of eps i lon  t o  approximate F 

i n d i c a t e  t h a t  an inc rease  i n  k r e s u l t s  i n  a n  o v e r a l l  increase  

i n  the Type I error, Increasing heterogenei ty  d i d n ' t  r e s u l t  i n  

an  appreciable change i n  the  Type I error when k = 5: the  r e s u l t s  

for k = 3 are no t  as clear. T e s t s  us ing the  G e i s s e r  & Greenhouse 

procedure show t h a t  an  increase  i n  k r e s u l t s  i n  an increase  i n  

t h e  degree of negat ive b i a s ,  

t o  decrease the  bias, b u t  only s l i g h t l y .  

Increas ing  heterogenei ty  serves  



A s  depar tures  f r o m  homogeneity of covariance w e r e  

2 evidenced, t h e  bias i n  the  T test became neg l ig ib l e ,  regard- 

less of the  value of k. 

Tables 3.4 and 3.5 show t h e  effect ,  on the Type I error, 

of a n  increase  i n  n for varying degrees of heterogenei ty  i n  t h e  

covariance matrix. When the covariance matrix w a s  homogeneous, 

w e  w e r e  sampling f r o m  a population which w a s  congruent with t h e  

assumptions of t h e  model, As w e  increase  n and consequently,  

t h e  v parameter, the sampling error f o r  any given (exac t )  

s t a t i s t i c  should decrease and the Type I error should approach 

2 

alpha when the  s ta t i s t ic  is free of bias. I f  t h e  s t a t i s t i c  i n  

ques t ion  has  r e l a t i v e l y  less sampling error a s  n inc reases ,  it 

is s a i d  t o  be cons i s t en t .  

For a l l  tests employed on H with t h e  exception of the 
0' 

exact F t es t  @%, 

n e g 8  gable.  For increas ing  n, t h e  c o n s i s t e n t  p rope r t i e s  of t h e  

3 ,  the o v e r a l l  effect  of increas ing  n was 

exac t  F s ta t i s t ic  w e r e  observed. For l a r g e  n,  t he  p robab i l i t y  

of the Type I error and alpha tend t o  converge, i nd ica t ing  the 

unbiased characteristic of the s ta t i s t ic ,  Increasing heterogene- 

i t y  i n  t h e  covariance matr ix ,  the effect  of increas ing  n showed 

a r e l a t i v e l y  c o n s i s t a n t  decrease i n  b i a s ,  though the bias was 

s t i l l  l a r g e l y  posit ive,  

The effect of increasing n for  tests on H using Box's 0 

sample estimate t o  a d j u s t  d.f. of F, w a s  negl igable ,  This 
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s t a t i s t i c  remained r e l a t i v e l y  stable even as heterogenei ty  w a s  

increased ,  Only a s l i g h t  p o s i t i v e  bias w a s  evidenced for maximal 

heterogenei ty .  S imi l i a r  r e s u l t s  w e r e  obtained when t h e  para- 

metric value of eps i lon  was used t o  approximate the F d i s t r i b u t i o n ,  

The G e i s s e r  & Greenhouse procedure produced a negat ively 

b iased  s ta t i s t ic  (close t o  zero i n  some cases): as heterogenei ty  

increased ,  the bias decreased somewhat. The r e s u l t s  reported i n  

t a b l e s  3.4 and 3.5 i n d i c a t e s  the T test  t o  be robust  t o  hetero-  

gene i ty  of covariance and produces a r e l a t i v e l y  unbiased test 

for a l l  n ' s  across the heterogenei ty  continuum. Only when 

he terogenei ty  was evidenced i n  t h e  covariance matr ix  d id  t h e  test 

produce a negat ive  bias which tends t o  inc rease  with increases  

i n  n. 

2 

Conclusions about the Type I error. --- 

Increases  i n  t h e  he-ogeneity of t h e  population covariance 

matrix produced an  increas ing  degree of p o s i t i v e  b i a s  i n  the 

exact F s t a t i s t i c  @vl, 

covariance w a s  evidenced, approximate tests using t h e  F d i s  t r i-  

bu t ion ,  ad jus ted  by the sample estimate and parametric values of 

Box's eps i lon ,  as w e l l  as  the exact mul t iva r i a t e  T s t a t i s t i c ,  

tended t o  produce r e l a t i v e l y  unbiased tests of H 

he te rogenei ty ,  approached t h e  maximum value ( a s  indexed by 

As depar tures  from homogeneity of 
v 2 -  

2 

Only when 0' 

0' = l/k-1) w a s  t h e  G e i s s e r  & Greenhouse procedure of t e s t i n g  H 
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us ing  an approximation t o  the c e n t r a l  F d i s t r i b u t i o n ,  e f f e c t i v e  

i n  producing a r e l a t i v e l y  unbiased tes t .  Increasing k for  var ious 

degrees  of heterogenei ty  produced s l i g h t  increases  i n  t h e  “ype 

The exact F showed a decrease i n  I error f o r  a l l  tests on H 

bias wi th  a n  increase  i n  n ,  i l l u s t r a t i n g  the consistency of the 

s ta t is t ic .  For the other tes ts  on H employed i n  this  s tudy,  

t h e  effect of changes i n  n were negl igable  over the  range 

employed. 

0- 

0 

Table 3.1 

P r o b a b i l i t i e s  of the Type I Error:  
Averaged across 11 and & 

2 
A l p h a  Heterogeneity TEST 
Level F 8 e ’  1,n-1 T 

.01 Min. .01813 -00750 . 01813 -00063 .00505 
Mod. .02963 -01225 .01088 .00231 .00967 
Max. -05088 .01350 -01300 -00525 -01260 

-05 Min . .07488 .04863 .07488 .01575 .03583 
Mod. ,09286 .05638 -06025 .02475 .04117 
Max . -11838 . 06238 . 06413 .04125 .06083 

‘I 



Table 3.2 

Probabilities of the Type I Error: at CY = .01 
Averaged across n - 

TEST 
2 

- k Heterogeneity 
Index F € e '  1,n-1 T 

3 0 99 .01775 .01100 .01775 .00125 .00433 
74 .03250 .01525 .00675 .00450 .00800 

0 54 .04325 .01200 ,00900 .00825 .01366 

5 .99 .01850 .00400 ,01850 .OOOOO -00566 
.78 .02675 ,00925 .01500 .00012 -01133 
.50 .05850 .01500 .01700 .00225 .01066 

Table 3.3 

Probabilities of the Type I Error: at CY = -05 
Averaged across n - 

2 
- k Heterogeneity TEST 

Index F c c '  1,n-1 T 

3 99 .07275 -05575 .07275 .02750 .03300 
.74 .09475 .06450 ,05425 .04000 -03800 
0 54 ,11050 .06325 .05900 .05800 .06833 

5 99 .07700 .04150 .07700 .00400 .03866 
.78 .09100 .04825 .06625 .00950 -04433 
-50 .12625 .06150 -06925 .02450 .05333 



Table 3 -4 

Probabilities of the Type I Error: at cy = -01 
Averaged across k 

- n Heterogeneity 

4 (or) 6 

6 (or) 7 

10 

15 

Min. 
Mod. 
Max. 

Min. 
Mod. 
Max. 

Min. 
Mod. 
Max. 

Min. 
Mod. 
Max. 

F 

.0200 

.02% 

.0550 

.0225 

.0290 
-0550 

.0205 

.0245 

.0490 

.0095 

.0310 

.0440 

- 

TEST 
c 

-0050 
.0105 
.0115 

-0080 
-0080 
.0140 

-0105 
-0125 
-0125 

.0065 
-0180 
-0160 

33 

e '  

-02 00 
.OllO 
-0110 

.0225 

.0105 

.0125 

.0205 
-0085 
-0135 

-0095 
-0135 
-0150 

1, n-1 

.oooo 

.0030 

.0045 

.0015 
-0015 
.0060 

* 0000 
.0025 
.0050 

-0010 
-0030 
.0050 

2 T 

-0060 
-0090 
.OllO 

-0060 
.0090 
.0145 

.0030 

.OllO 
-0110 

I 
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Table 3.5 

Probabilities of the Type I Error: at CY = -05 
Averaged across - k 

2 
n Heterogeneity TEST 

F c c '  1, n-1 T 

4 (or) 6 Min. .0770 .0395 .0770 ,0135 
Mod. ,1055 .0530 .0635 .0235 
Max. ,1430 .0645 .0650 .0440 

6 (or) 7 Min, .0900 ,0560 ,0900 ,0170 .0360 
Mod. .0890 ,0515 ,0590 .0195 .0430 
Max , .1125 .0605 .0625 -0410 -0580 

10 Min. .0715 ,0510 .0715 .0180 .0395 
Mod. ,0825 -0565 .0540 .0255 ,0415 
Max. .1120 ,0670 .0710 .0430 .0680 

Min. .0610 .0480 .0610 ,0145 .0320 
Mod, .0945 .0645 -0645 -0305 .0390 
Max. .IO60 .0575 .0580 .0370 -0565 

15 

I 
D 
1 
D 
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2. The Power of the Tests 

The data in Appendix I1 shows the power of the different 

2 F tests and that of T when these statistics were tested for 

significance at the -05 and .01 levels for the various combinations 

of n, k, and index of heterogeneity in the covariance matrix. 

For each point on these graphs, 500 statistics were sampled. 

In general, when the model was said to hold, i.e,; the 

covariance matrix was homogeneous, the exact F and the Box 

procedure for approximating the F distribution using the parameter 

8 to adjust d.f.8 were the most powerful, with the other 

Box procedure using the parameter,€, the Geisser & GreenhOUSe, 

and T tests showing a decreasing degree of power, in that 

order 

2 

The criterion chosen to provide a basis of comparison of 

the obtained power curves is twofold. 

1. Which test is most powerful, and does this power hierarchy 

among tests remain consistent as noncentrality increases? 

2, How divergent are the power curves for a given com- 

pari son? 

Comparing power curves for all n, k, and epsilon values, 

when H is tested at .01 and .OS, we observe that as the G 

level increases (from -05 to .Ol), the curves for the five tests 

show a greater degree of divergence and tend to have the expected 

level of power. 

0 
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As the degree of heteroeneity in the population increased, 

the exact F statistic remained consistently the most powerful 

test and maintains the same level of power. The divergence 

among the power curves for the other tests decreased and approached 

that of the exact F as both heterogeneity in the covariance 

matrix and n, increased to their maximum values for this study. 

As thev parameter increases from 2 to 4, a greater divergence 

of the power curves for the five different tests on H for the 

data drawn from the same population was found. As expected, the 

0 

2 overall level of power for all five tests is higher as v and I, 

increases. 

1 

With respect to comparisons among the five tests on H where 0' 

the statistics were sampled from the same population, in all 

but one case, the exact F was most powerful. Tests using the 

population value of epsilon and sample value of the statistic, 

were second and third in the power hierarchy. Although the 

differences in power of t h  aforementioned Box tests and the 

exact F was slight, they were considerably more powerful than 

the Geisser & Greenhouse and T procedures. The T and Geisser 
2 2 

& Greenhouse tests showed a consistant reversal of power across 

the noncentrality continuum. As a rule, T was more powerful 

for low noncentrality but as noncentrality increased, the 

2 

Geisser & Greenhouse procedure became more powerful. Apparently 

T is more sensitive to differences between means when these 2 

dmerences are slight. As these differences became relatively 
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largerc the Geisser & Greenhouse procedure produced the more 

sensitive test, 

Only one departure f m m  tkese generalizatians was c b s z r v ~ d .  

When v1 = 2 for n = 10, and the degree of heterogeneity was 

moderate, T produced the most powerful test. For various 2 

2 levels of non-centrality, T was the least powerful test, relatively 

spezkin- 3 ,  for all.  other para lwters  studied, 

General Conclusions Concerning Power Of The Tests 

Although power comparisons were made between statistics 

which showed a degree of bias of type I error when H was true, 

the exact F test for the current model tends to remain robust 

with respect to power. When the assumption of homogeneity 

of covariance was violated, as indicated by a value of the 

parameter, epsilon <lt the power of the approximate tests using 

the F distribution increased and approached that cf the exact 

F test. This indicates that the various correction procedures 

0 

are effective in maintaining relatively high levels of power 

for approximations of the F distribution, even though a curtail- 

ment of the d.f. results from these procedures, when the 

assumption of homogeneity of covariance has been violated. 

I 
I 

Whether or not the power of these tests is inflated was 

not determinable from this study. However, if the power of the 

exact F test was inflated, any increase of heterogeneity in the 

B .  
I 

covariance matrix did not tend to further inflate the power of 1 
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the s t a  i s t i c ,  Again we see that the F s - a t i s t i c  i s  f a i r ly  

robust, powerwise, t o  violations of the assumption of homogeneity 

of covariance - 

3 .  Sampling Characteristics of Box's s 

Table 3.7 contains the means and standard deviations 

of the epsilon s t a t i s t i c s  which w e r e  used to adjust the d . f .  

of the F s t a t i s t i c  for data collected to evaluate the Type I 

er ror .  

The distributions of L show marked skewness when the 

n h b e r  of treatment c lass i f icat ions of the covariance matrix 

i s  three. When k is  increased to  five,  the distribution be- 

comes more symetrical. 

A s  the d . f .  of C increased (an increase of n, re la t ive 

to k ) ,  the var iabi l i ty  i n  epsilon decreased, as  indicated by 

a reduction i n  the standard deviation of e .  A n  increase i n  

the d.f .  i n  C resulted i n  a greater disparityof the sample 

mean of the dis t r ibut ion and the value of the parameter, 

epsilon, when k was increased from three to five.  Therefore, 

a s  the number of elements which compose Z increased, the 

greater was the departure of the sample mean of e from the 

parametric value of the s t a t i s t i c .  I t  was also observed that 

as the index of heterogeneity of the covariance matrix, given 



c 

39 

by the  parameter, eps i lon ,  showed g r e a t e s t  he te rogenei ty ,  

when k= 3 ,  t he  r e l a t i o n  of the sample mean and the parameter, 

e ,  remained i n v a r i a n t  with an increase  i n  d . f .  i n  E .  Under 

t h i s  condi t ion,  a convergence of t he  sample mean and the para- 

m e t r i c  value of s was evidenced, 

of these  eps i lon  s t a t i s t i c s  tended t o  be skewed p o s i t i v e l y ,  

i .e . ;  away from the  end of the continuum ind ica t ing  extreme 

he terogenei ty ,  and w e r e  l ep tokur t ic .  Why t h i s  happened when 

he terogenei ty  was maximal, b u t  not when minimal ,  i s  not c l e a r .  

The frequency d i s t r i b u t i o n s  

The po in t  b i s e r i a l  co r re l a t ion  c o e f f i c i e n t s  shown i n  

t a b l e s  3.6 and 3.7 w e r e  used a s  d e s c r i p t i v e  measures t o  de te r -  

mine how w e l l  t he  sample estimates of eps i lon  could p red ic t  

t h e  value of the  parameter, I f ,  f o r  example, we draw samples 

of 6 from two d i s t i n c t  covariance matr ices ,  d i f f e r i n g  only i n  

t he  value of the  parameter, eps i lon ,  a po in t  b i s e r i a l  c o r r e l a t -  

ion  c o e f f i c i e n t  between the  samples drawn from these  d i f f e r e n t  

populat ions can provide an index of  the  degree to which w e  

can spec i fy  the populat ion values (parameters) of eps i lon  from 

knowledge of the means and standard devia t ions  of the sampling 

d i s t r i b u t i o n  of the s t a t i s t i c .  

When samples w e r e  drawn from the extremes of the range 

of the  domain of eps i lon ,  pred ic t ion  was super ior  t o  when 

samples w e r e  drawn from the midrange. As the  d. f .  of C increas-  

ed,  so d i d  the  p r e d i c t a b i l i t y  of the  parameter, eps i lon .  When 
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I t h e  o r d e r  of  C was maximal, f o r  t he  cond i t ions  s t u d i e d ,  pre- 

d i c t i o n  of E from the  middle  p o r t i o n  of the range of the 

s t a t i s t i c  was s l i g h t l y  super ior  t o  t h e  case  when k = 3 .  
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Tabie 3.6 

Descr ip t ive  Measures of Samples of Box's Epsilon 
(k = 5) 

- n Heterogeneity Mean 
Index 

7 0 99 .609 
-50 .426 
- 7 8  .553 

( o v e r a l l )  .529 

10 

15 

0 99 .690 
-50 .454 
-78  -611 

( o v e r a l l )  -585 

0 99 .770 
-50 .464 
.78 .661 

( o v e r a l l )  .632 

CT 

.099 
-081 
099 

.121  

-086 
.075 
.098 
-131 

-076 
-070 
.095 
.150 

r 
Pt 

.466 

.605 

.139 

.567 

.707 
-140 

.651 
-789 
.138 



n - 

6 

1 0  

1 5  

Mean CT 
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Table 3.7 

Descr ip t ive  Measures of Samples of Box's Epsilon 
(k = 3)  

Heterogeneity 
Index 

0 99 
0 54 
0 74 

( o v e r a l l )  

-99 
.54 
0 74 

(ove ra l l )  

.99 
0 54 
.74 

( o v e r a l l )  

.774 

.547 
-694 
-672 

-851 
0 543 
.720 
-705 

.890 
0 543 
0 735 

-126 
.051 
-126 
.142 

-103 
.033 
-112 
-155 

082 
.026 
.098 

-508 
.619 
.lll 

.668 

.738 
-070 

.736 

.791 

.054 
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4 .  SUMMARY 

Samples w e r e  genera ted  from popula t ions  w i t h  known mean 

D and C (covar iance  matrix) for t h e  repea ted  measures des ign  

for specified va lues  of the v 1 

o f  n for a k of t h r e e  w e r e  4 ,  6, 10  and 15,  and f o r  k = 5 w e r e  

6 ,  7 ,  1 0 ,  and 15. Heterogenei ty  i n  C w a s  de f ined  by t h e  s e v e r i t y  

of t h e  l o s s  of d . f . ,  as  indexed by the pa rame t r i c  value of 

Box's e p s i l o n ,  e .  Minimum, moderate and near  maximal cond i t ions  

of  he t e rogene i ty  w e r e  e s t a b l i s h e d .  When t h e  value of  t h e  

n o n c e n t r a l i t y  parameter w a s  z e r o ,  t h e  Type I error w a s  s t u d i e d ;  

when n o n c e n t r a l i t y  w a s  g r e a t e r  than  zero, t h e  power of t h e  

tests was i n v e s t i g a t e d ,  

and v2  parameters .  The values  

The r e s u l t s  of this  study i n d i c a t e  t h a t  a s  d . f .  and 

h e t e r o g e n e i t y  of  covariance inc reased  i n  t h e  popu la t ion ,  t h e  

approximations t o  the c e n t r a l  F d i s t r i b u t i o n ,  as  suggested by 

Box, and the T t es t ,  become i n c r e a s i n g l y  m o r e  e f f e c t i v e  i n  

account ing for  bias i n  the F s t a t i s t i c  r e s u l t i n g  from v i o l a t i o n s  

of t h e  model. When he te rogene i ty  i n  C was maximal for t h e  

p r e s e n t  s tudy ,  o n l y  then was t h e  Geisser and Greenhouse pro- 

cedure e f f e c t i v e  i n  achieving a r e l a t i v e l y  unbiased test  o f  

2 

HO 

When t h e  p o w e r  o f  the var ious  tests w a s  i n v e s t i g a t e d  1 
over  t h e  va r ious  va lues  of n o n c e n t r a l i t y ,  i t  w a s  found t h a t  t h e  

o v e r a l l  l e v e l  of p o w e r  for the e x a c t  F remained r e l a t i v e l y  
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invariant when homogeneity of covariance was violated. 

When the approximate procedures using the F distribution 

were used when violations of the model for the exact F was 

present i n  E ,  and hence "logically" appropriate, the power of 

these tests approached that of the exact F. 

Descriptive measures of the distribution of c revealed 

the sample estimates of the parameter to be best  when samp- 

l ing  from the extreme ranges of the domain of the s t a t i s t i c .  

A s  the d , f .  i n  C increased, d i f fe ren t ia l  prediction of the 

parameter, given the sample mean, improved, 



A P P E I X  I 

PROBABILITIES OF THE TYPE I ERROR 

P r o b a b i l i t i e s  of the Type I error are  reported f o r  each 

of  the n ,  k, eps i lon  or  heterogenei ty  condi t ions  f o r  s t a t -  

i s t i c s  t e s t e d  a t  the  -01 and .05 l e v e l s .  

I 

45 
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Probability of the Type I Error. 
(k= 5; alpha= -01) 

- n Heterogeneity 
Index 

6 .99 

7 

10 

15 

6 .78 

7 

10 

15 

6 .50 

7 

10 

15 

F 

,021 

.023 

.023 

.007 

.025 

.032 

-021 

-029 

.051 

.063 

.066 

.054 

8 

* 004 

.002 

.007 

.003 

-006 

.006 

.Oll 

.014 

.009 

.015 

-016 

.020 

TEST 
6 '  

* 021 

.023 

.023 

007 

.013 

.016 

.012 

* 019 

.014 

-017 

.018 

.019 

1, n-1 

-000 

.ooo 
-000 

.ooo 

.ooo 

.ooo 

.ooo 

.001 

.OOl 

.004 

* 002 

.002 

2 
T 

.006 

.008 

.003 

* 009 

.012 

.012 

.011 

.010 

. o n  
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I 
1- 
1. 
1 
R 
R 

I 

Probability of the Type I E r r o r .  
(k= 5; alpha= -05) 

- n Heterogeneity 
Index 

F 

6 .99 .086 

7 .091 

10 .071 

15 -060 

6 .78 .094 

7 .093 

10  .072 

15 . l o 5  

6 .50 .133 

7 .12 5 

10  .124 

15 -123  

e 

.036 

.047 

.044 

039 

.035 

.047 

.046 

-065 

.050 

-058 

.073 

.065 

TEST 
6' 

.086 

.091 

-071 

-060 

.064 

.068 

.057 

.076 

.062 

.067 

-081 

.067 

1, n-1 

.004 

-005 

.005 

-002 

.009 

.007 

.006 

.016 

.020 

.024 

-028 

-026 

T2 

-040 

.049 

.027 

.044 

-046 

-043 

-049 

.059 

.OS2 
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Probability of the Type I Error. 
(k= 3; alpha= .01) 

- n Heterogeneity 
Index 

F 

4 .99 .019 

6 .022 

10 .018 

15 .012 

4 .74 .034 

6 .026 

10 .028 

15 .033 

4 .54 .060 

6 .047 

10 -032 

15 .034 

e 

.006 

.014 

.014 

.OlO 

.015 

-010 

.014 

-022 

.014 

.013 

.009 

.012 

TEST 
e '  

.019 

.022 

-018 

-012 

.009 

005 

005 

-008 

.008 

-008 

.009 

-011 

1,n-1 

.ooo 

.003 

.ooo 
-002 

-006 

.003 

* 005 

005 

-008 

.008 

.008 

.009 

2 T 

.006 

-004 

-003 

.009 

-005 

.OlO 

.Oll 

-019 

-011 
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Probability of the Type I Error. 
(k= 3; alpha= .05) 

- n Heterogeneity 
Index 

F 

4 -99 -068 

6 -089 

10 -072 

15 .062 

4 -74 .117 

6 .085 

10 -093 

15 .084 

4 -54 ,153 

6 . l o o  
10 -100 

15 -089 

e 

043 

.065 

-058 

0 057 

.071 

.056 

.067 

.064 

.079 

.063 

.061 

-050 

TEST 
e' 

.068 

.089 

.072 

.062 

.063 

.050 

.051 

.053 

-068 

.058 

.061 

.049 

1, n-1 
.023 

.029 

.031 

.027 

.038 

-032 

-045 

.045 

-068 

(. OS8 

-058 

.048 

2 T 

.023 

-030 

.037 

.042 

-037 

.035 

.) 067 

.077 

.061 



Twelve p o w e r  curves  are presented i n  this sec t ion  

w h i c h  are concidered to be r ep resen ta t ive  of the p o w e r  funct-  

i o n s  obtained i n  this study. 

1.  
I 

APPENDIX I1 

SELECTED POWER CURVES 

1 
50 
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FOOTNOTES 

Some au thor s  have refered to  th i s  as  a **mixed*' model 

because the - n dimension, the s u b j e c t s ,  is the r e s u l t  of a ran- 

d o m  s a m p l e ,  but the - k dimension, the treatments, is composed 

of a d i s c r e t e  o r  f i n i t e  var iab le .  

1 

Cor re l a t ion  c o e f f i c i e n t s  w e r e  transformed by a 2 

-1 hyperbolic a r c t a n  conversion for  the averaging procedure. 

3The tests of the n u l l  hypothesis, 

coded i n  the following tables i n d i c a t e d  are 

as F; F as c v c v c  1 2  
sample estimate of Box 

as presented i n  the  

manner: F 
v v  1 2  

s s t a t i s t i c ) :  

as F1, n-1 as  c '  (parametric value of e s p i l o n ) ;  
v c '  v c '  1 2 

F 

L 
1, n-1 (Geisser & Greenhouse's procedure) ;  and T as  T . 

63 



Anderson, T. W. I n t roduc t ion  t o  M u l t i v a r i a t e  S t a t i s t i c a l  - 
Analys is ,  N.Y.: Wiley, 1960. 

B h a t ,  B. R. On the d i s t r i b u t i o n  of va r ious  sums of squares  i n  
a n  a n a l y s i s  of var iance table for d i f f e r e n t  classifi- 
c a t i o n s  w i t h  c o r r e i a t e d  and non-homogeneous errors, 
J. Roy. S t a t i s t .  - -  SOC. Ser .  E., 1960, 21, 114-119. - 

Bock, D. R. M u l t i v a r i a t e  anova procedures  for  repeated 
measures. I n  H a r r i s ,  C .  Problems I n  Measuring Change. 
Madison: Un ive r s i ty  of Wisconson P r e s s ,  1963. 

- 

Boneau, C. A.  The effects of v i o l a t i o n s  of the assumptions 
underlying the t test .  Psychol. Bu l l . ,  1960, 57, 
49-63. 

Box, G. E,  P, Some theorems on q u a d r a t i c  forms a p p l i e d  i n  the 
s tudy  of a n a l y s i s  of va r i ance  problems, I: E f f e c t  of 
i n e q u a l i t y  of var iance  i n  the one-way c l a s s i f i c a t i o n .  
Ann. Math. S t a t i s t . ,  1954, 25, 290-302. (a) -- 

BOX, G. E, P. Son;€ theorems m quadratic forms applied i n  the 
s tudy  of a n a l y s i s  of va r i ance  problems. 11: Effects  
of i n e q u a l i t y  of var iance  and c o r r e l a t i o n  b e t w e e n  
errors i n  the two-way c l a s s i f i c a t i o n .  Ann. Math. 
S t a t i s t . ,  1954, 25, 484-498. (b) 

-- 

B o x ,  G. E. P. & Mueller, M. E. Randomization and least squares  
estimates. - -  J. Am. S t a t i s t .  ASSOC., 1959, 54, 489-502. 

Danford, M. B., Hughes, H. M.,  & M c N e e ,  R. C ,  On the a n a l y s i s  
of repeated-measurements experiments.  B i o m e t r i c s ,  
1960, 16 ,  547-565. 

Dixon, W. J ,  & Massey, F. J, I n t r o d u c t i o n  - to  S t a t i s t i c a l  
Analys is .  N. Y.: M c G r a w - H i l l ,  1957. 

G a i t o ,  J. & Wiley, D. Univar ia te  anova procedures  i n  the 
measurement of change. I n  H a r r i s ,  C.  Problems - i n  
Measuring Change. Madison: Un ive r s i ty  of Wisconson 
P r e s s ,  1963. 

64 



65 

G e i s s e r ,  S. & Greenhouse, S. S, Extension of Box's r e s u l t s  on 
the use  of t h e  F d i s t r i b u t i o n  i n  m u l t i v a r i a t e  ana lys i s .  
Ann. Math. S t a t i s t . ,  1958, 2 9 ,  885-891. -- 

G e i s s e r ,  S.  & Greenhouse, S. S. On methods i n  the a n a l y s i s  of 
prof i le  data. Psychometrika, 1959, 24 ,  95-112. 

Jones ,  M, B. Molar c o r r e l a t i o n a l  a n a l y s i s .  U, S. Naval School 
of Aviat ion Medicine, U. S, Naval Aviat ion Medical 
Center ,  Pensacola,  F l a , ,  Monograph N o .  4,  1960. 

Kogan, L. S, Analysis  of variance -- repeated measurements. 
Psychol. Bul l  1948, 45, 131-143. * 

Lana, R. E ,  & Lubin, A .  The effect  of c o r r e l a t i o n  on the 
repeated measures design. Educat. - and Psychol. - Meas,, 
1963, 23, 729-739. 

Lubin, A.  S t a t i s t i c s .  Annual Review - of Psychol., 1962, 13,  
345-370. 

Lindquis t ,  E. F, Design - and Analysis  - of Experiments. Boston: 
Houghton M i f f l i n ,  1953. 

b o ,  C. R, Advanced S t a t i s t i c a l  Methods - i n  B i o m e t r i c  Research. 
N. Y.: Wiley, 1952. 

Schef fe ,  H. - The Analysis - of Variance. N, Y.: Wiley, 1959. 

Wirier, B. J,  S t a t i s t i c a l  P r i n c i p l e s  - i n  Experimental Desiqn. 
N. Y,: M c  G r a w - H i l l ,  1962. 


