

NASA SP-6009(Cl)

GPO PRICE
 \$

CFSTI PRICE(S) S < 50

Hard copy (HC) \qquad
Microfiche (MF) \qquad

FORECASTS AND APPRAISALS FOR MANAGEMENT EVALUATION

 Volume 2

L

Prepared by
 APOLLO PROGRAM OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

APOLLO PROGRAM OFFICE OF MANNED SPACE FLIGHT

FORECASTS AND APPRAISALS
 FOR
 MANAGEMENT EVALUATION

Volume 2

Prepared by
APOLLO PROGRAM OFFICE

FOREWORD

This document, though an official release of the Apollo Program Office, is furnished for information purposes only. Its purpose is to create awareness, stimulate interest and further promote understanding in the art and science of making real-life forecasts and their subsequent utilization in the control of space vehicle weight and performance throughout the Apollo Program.

This book is primarily intended for those in the Apollo Program who are responsible for the administration, design, development, manufacture, and test of the Apollo System. New theorems have been developed, as well as application of proven techniques but more importantly, a weight/performance forecasting methodology has been developed and automated. The text emphasizes the utilization of forecasting devices as applied to space vehicle weight and performance since these two parameters are of vital interest to all levels of management as well as technical personnel. Further, weight is tangible and readily measurable and can be readily related to performance.

The text provides, to those who wish to apply the developed methodology, all details necessary to do so and includes the mathematical development, computer program user's manuals and necessary instructions and procedures.

Forecasts and Appraisals for Management Evaluation text is intended to be a constructive aid to the NASA Apollo team in assisting them in the weight and performance area.

TABLE OF CONTENTSParagraphTitlePage
APPENDIX A - WEIGHT/PERFORMANCE DATA
A. 1 INPUT DATA FLOW A-1
A.1.1 MEASURING INDICES A-1
A.1.2 WEIGHT/PERFORMANCE DATA FLOW A-1
APPENDIX B - PROBABLE ERROR RELATIONSHIP AND USE
B. 1 SELECTION OF MODEL B-1
B. 2 ESTABLISHING CONFIDENCE LIMIT LINES B-1
B. 3 VALUES OF PROBABLE ERROR B-1
B. 4 SECONDARY USE OF PROBABLE ERRORS AND DERIVATION B-2
APPENDIX C - MATH MODELS
C. 1 LINEAR MAXIMUM LIKELIHOOD C-1
C.1.1 PREDICTION AND PREDICTION INTERVAL C-5
C.1.2 APPENDIX C-10
C.1.3 SAMPLE CALCULATIONS C-12
C. 2 THE EXPONENTIAL MODEL C-24
C.2.1 METHOD I C-30
C.2.2 METHOD II C-35
C.2.3 PREDICTION AND PREDICTION INTERVAL C-37
C. 3 THE LOGISTICS MODEL C-42
C.3.1 ESTIMATION OF PARAMETERS C-42
C.3.2 PREDICTION AND PREDICTION INTERVAL C-46
C. 4 ADAPTIVE (FOURIER) EXPONENTIAL MODEL C-53
C.4.1 FOURIER SMOOTHING C-55
C.4.2 SEPARATION OF THE EXPONENTIAL CONTENT C-57
C.4.3 ESTIMATION OF PARAMETERS AND PREDICTION C-60
C.4.4 FOURIER ANALYSIS OF A FUNCTION CONTAINING AN EXPONENTIAL TERM C-62

TABLE OF CONTENTS (Cont.)
Paragraph Title Page
C.4.5 LEAST-SQUARES APPROXIMATION OF AN EMPIRICAL FUNCTION BY ANOTHER FUNCTION C-63
C. 5 NOMENCLATURE C-66
APPENDIX D - PERFORMANCE RELATIONSHIPS
D. 1 INTRODUCTION D-1
D. 2 DERIVATION OF EQUATIONS D-1
D. 3 EXAMPLES OF GENERALIZED EQUATIONS TO DETERMINE TRADE-OFF FACTORS D-7
D. 4 EXAMPLES OF USE OF EQUATIONS TO OBTAIN TRADE-OFF FACTORS D-8
D.4.1 EXAMPLE I D-8
D.4.2 EXAMPLE II D-13
APPENDIX E - USER'S GUIDE
INTRODUCTION 1
HISTORICAL BACKGROUND 1
MARK II SYSTEM PHILOSOPHY 2
MARK II COMPUTER SYSTEM 4
Program Control 4
Input Data Processing 4
Trend Prediction 6
Output Data Processing 6
PURPOSE OF THE CURRENT PUBLICATION 7
REVISIONS 7

Reference No.
EXECUTIVE CONTROL (SPACE) 54S
CONTROL PROGRAM (GOODE) 55S
MAXIMUM LIKELIHOOD LINEAR 56S
MAXIMUM LIKELIHOOD NONLINEAR 57S
ADAPTIVE (FOURIER) EXPONENTIAL 58S

TABLE OF CONTENTS (Cont.)

Paragraph Title Page
Reference No.
ASYMPTOTIC (LOGISTIC) EXPONENTIAL 59S
OUTPUT PROGRAM (OUTPUT) 60S
HISTORY PLOT PROGRAM (HIS) 61S
TITLING SUBROUTINE (TITLE) 62S
SUMMING PROGRAM (SUM) 63 S
DECISION RELEVANCY (Criticality) 64S
OVERALL COST ESTIMATION 65 S
UPDATE PROGRAM 66S
SUBROUTINE GETDAT 67 S
NORMALIZATION SUBROUTINE (NORM12) 68S
DOUBLE PRECISION MATRIX INVERTER (DPM1) 69S
PROBABLE ERROR PROGRAM (RSS) 70S
PLOTTING SUBROUTINE (UMPLOT) 71S

LIST OF ILLUSTRATIONS

Figure Title Page
A-1 Form for Typical Control Weight Information A-5
A-2 Typical Data Submittal Requirements A-6
A-3 Mass Properties Summary - Form 1 - Part I A-7
A-4 Mass Properties Summary - Form 1 - Part II A-8
A-5 Detail Mass Properties - Form 2 - Part I A-9
A-6 Detail Mass Properties - Form 2 - Part II A-10
A-7 Mass Properties Change Analysis - Form 3 - Part I A 11
A-8 Mass Properties Change Analysis - Form 3 - Part II A-12
A-9 Weight and Balance History Log - Form 4 - Part I A-13
A-10 Weight and Balance History Log - Form 4 - Part II A-14
A-11 Sequenced Mass Properties Data A-15
A-12 Current Weight Summary - Saturn IB A-16
A-13 Current Weight Summary - Saturn V A-17
A-14 Current Weight Summary - Apollo Spacecraft A-18
A-15 Current Weight Status A-19
A-16 Current Change Analysis A-20
A-17 Pending Change Analysis A-21
A-18 Sequenced Mass Property Data A-22
A-19 Performance Increase Shopping List A-23
A-20 Propulsion Summary - Saturn V A-24
A-21 Spacecraft Performance and Propulsion Summary A-25
B-1 The Behavior of $\sigma_{\hat{w}_{k}}$ with Time B-3
B-2 B-4
B-3 B-5
C-1 Maximum-Likelihood Linear Model Showing the Two Types of Error C-7
C-2 Sample Computer Printout Spacecraft Weight (2 sheets) C-25
C-3 Possible Combinations of Nonlinearity C-59

APPENDIX A

WEIGHT/PERFORMANCE DATA

A. 1 INPUT DATA FLOW

A.1.1 MEASURING INDICES

The establishment and documentation of control indices was achieved in the Apollo program through publication by the NASA Office of Manned Space Flight, of the Apollo Program Specification. This document establishes control values for vehicle weights and payload capabilities. Control weights were established separately for early Saturn IB and Saturn V mission vehicles and the operational vehicles. Each set of control values for the Saturn IB and Saturn V Launch Vehicle and the Block I and Block II Spacecraft are based upon the mission objectives and requirements presented in the Manned Space Flight Program Directive, Apollo Flight Mission Assignments. They include the typical information shown in Figure A-1.

A.1.2 WEIGHT/PERFORMANCE DATA FLOW

The second requirement, a periodic flow of current weight/performance status data, was met by the development of two documents, the Office of Manned Space Flight, Apollo Program Mass Properties Standard and the Office of Manned Space Flight Weight and Performance Data Submittal Requirements. The first of these two documents, the Mass Properties Standard was prepared for the Apollo Program primarily as a guide for contractor use in controlling and reporting mass property data to the Marshall Space Flight Center and the Manned Space Flight Center. It established a system for the management of mass properties in the design and use of space vehicles. The document was designed for three objectives:
a. To permit the organization of systematized, verifiable, and controllable mass properties of vehicle systems.
b. To facilitate rapid establishment and reporting of inputs for the weight/ performance relationship.
c. To enable parametric extrapolation from reported systems to newly evolving systems.

Included in this standard, in addition to the specific definition of the many terms frequently used in discussion of mass properties and control are detail description and
submittal frequencies for the type of mass property reports required throughout the various program phases. Illustrated in Figure A-2 are the reports required from functional studies through flight operations. The reporting formats to be utilized are shown in Figures A-3 through A-11.

In addition, the standard provides a functional code system for a three-generation breakdown of vehicle items according to their functional use. The objectives of the functional code are:
a. To provide a basis for computing weight summaries.
b. To allow direct substantiation of weight summaries and analysis methods.
c. To provide a uniform basis for design weight comparison of vehicle system.
d. To facilitate the preparation of weight summaries for complete vehicles, in such a way that a given section, stage, or module summary may be readily included in the summary of the total vehicle.
e. To provide identifiable vehicle coordinate location data.

The functional code, along with the nomenclature employed, are considered as the basic functional breakdown of vehicle items. The code consists of first-generation items, each of which is broken down into second-generation items. The second-generation items are further broken down into third-generation items. The first 16 first-generation codes include items which are essentially fixed in location and weight. The summary of these items is the dry weight of the particular stage or module being considered. The remaining first-generation code items include items which are variable either in location or weight. The summary of these items in a given stage or module configuration, as in flight sequence, is the variable weight and this weight when added to the dry weight is the total weight of the particular stage or module for the particular configuration. For example, this weight would be the total weight at lift-off, at a particular point in time, or at separation.

The second document, Weight and Performance Data Submittal Requirements, establishes the minimum requirements for uniform weight and performance data submittals. These inputs are to be supplied by the appropriate NASA Centers to the office of Manned Space Flight support of the Apollo Program Office Weight/Performance Management System for the surveillance and assessment of the Apollo Program Status.

This document, from a data flow point of view, actually completes the data flow cycle. The standard closed the data gap between the contractors and the NASA Centers, and the Submittal Requirements closes the data gap between the NASA Centers and the Office of Manned Space Flight.

The Weight and Performance Data Submittal Requirements document, like the standard, includes, for each data submittal requirement, a detail description and submittal schedule for the type data to be reported and the formats to be utilized. Each of these data submittal requirements is discussed below.

A.1.2.1 Weight and Associated Properties

These data are submitted monthly and include Weight Status, Change Analysis, and Sequence Mass Properties for each numbered launch vehicle and spacecraft combination. Useable propellants reported are based upon the specific defined mission requirements in accordance with the Office of Manned Space Flight Program Directive Apollo Flight Mission Assignments. Control weights are in accordance with the "Apollo Program Specification and Specification Weight," and are the weights specified in the contractor's statement of work or procurement specification.

For this segment of data, formats illustrated in Figures A-12 through A-18 are utilized.

The Current Weight Summary, Figures A-12, A-13, and A-14, summarize each reported launch vehicle and spacecraft from the stage and module level to launch vehicle capability and total spacecraft weight. The Current Weight Status Figure A-15, includes a weight breakdown to the functional system level for each launch vehicle stage and total launch vehicle as reported on formats shown in Figures A-12 and A-13 and for each spacecraft module and total spacecraft as reported on the format shown in Figure A-14. Figure A-15 (Format 1D) also includes program maturity data in the form of a percentage breakdown of current weight. This information is the percent of estimated, calculated, and actual weights that comprise the current weight. Weight changes that have taken place since the last report also are shown on the format for Current Weight Status.

The Current Change Analysis and Pending Change Analysis, Figures A-16 and A-17 (Formats 2A and 2B) which are referenced in the last column of the Current Weight Summary and Current Weight Status formats, require brief concise statements explaining the weight changes that have taken place since the last report.

Discussion concerning changes planned for incorporation at some future date, in the various launch vehicle stages and spacecraft modules, are also included.

The Sequenced Mass Property Data Figure A-18 (Format 3) includes weight, center of gravity, inertia, and time of occurrence data, and provides a weight account linked to space vehicle performance and to principal events throughout the flight profile. Each discrete weight-loss event is listed and identified along with time of occurrence. All weight is accounted for. Weight losses which occur over a period of time, such as full thrust propellants are summarized. Propellants carried as part of full thrust propellants, but not given thrust credit in the performance calculation, are clearly identified.

A.1.2.2 Vehicle Performance Increase Shopping List

The Performance Increase Shopping List, Figure A-19 (Format 4) provides, on a current basis, a list of selected items which, when initiated, will result in increased vehicle performance. Following initial submittal, the list is updated and submitted to the Office of Manned Space Flight as additional information becomes available.

A. 1.2.3 Performance Analysis Data

These data are submitted monthly and include propulsion and velocity capability data for each numbered launch vehicle and spacecraft combination. For this segment of data, Figures A-20 and A-21 (Formats 5B and 5C) are utilized.

The Propulsion Summary, Figure A-20 (Format B) summarizes propulsion parameters used in the determination of launch vehicle payload, as reported under segment A for the Saturn IB and Saturn V launch vehicles. The Performance and Propulsion Summary, Figure A-21 (Format 5C) summarizes both performance and propulsion parameters used in the determination of Block I and Block II spacecraft propellant loading and gives total weight as reported for the Apollo spacecraft.

Control Point	Item	Control Weight (Pound)			
		201	202	203	204
S-IB	Dry Weight				
	Propellant Tank Capacity				
	Separation Weight				
$\begin{aligned} & \text { S-IB/S-IVB } \\ & \text { Interstage } \end{aligned}$	Total Weight				
S-IVB	Dry Weight				
	Propellant Tank Capacity				
	Separation Weight				
Instrument Unit	Total Weight				
Launch Vehicle	Payload Capability				

Figure A-1. Form for Typical Control Weight Information

Figure A-2. Typical Data Submittal Requirements
Figure A-3.

A -10

Figure A-7.
*Cross out if not applicable.

[^0]Figure A-9.

Figure A-10.

Figure A-11.

Vehicle No. Mission Type	Saturn IB Current Weight Summary				
Control Point	Item	Control Weight	Current Specification Weight	Current Weight	Comments and/or Reference to Change Analysis
S-IB	Dry Weight				
	Separation Weight				
	Useable Propellant				
	Propellant Tank Capacity				
$\begin{aligned} & \text { S-IB/S-IVB } \\ & \text { Interstage } \end{aligned}$	Total Weight				
S-IVB	Dry Weight				
	Separation Weight				
	Useable Propellant				
	Propellant Tank Capacity				
Instrument Unit	Total Weight				
Launch Vehicle	Liftoff Weight				
	Payload Capability	*			
*Includes ___ pounds parking orbit loss.					

Vehicle No. Mission Type	Current	aturn V Weight Sun	nmary	Dat	
Control Point	Item	Control Weight	Current Specification Weight	Current Weight	Comments and/or Reference to Change Analysis
S-IC	Dry Weight				
	Separation Weight				
	Useable Propellant				
	Propellant Tank Capacity				
$\begin{aligned} & \hline \text { S-IC/S-II } \\ & \text { Interstage } \end{aligned}$	Total Weight				
S-II	Dry Weight				
	Separation Weight				
	Useable Propellant				
	Propellant Tank Capacity				
$\begin{aligned} & \hline \text { S-II/S-IVB } \\ & \text { Interstage } \end{aligned}$	Total Weight				
S-IVB	Dry Weight				
	Separation Weight				
	Useable Propellant*				
	Propellant Tank Capacity				
Instrument Unit	Total Weight				
Launch Vehicle	Liftoff Weight				
	Payload Capability				
*Includes \qquad pounds parking orbit loss. **Guaranteed.					

Vehicle No. \qquad Mission Type \qquad Apollo Spacecraft Current Weight Summary					
Control Point	Item	Control Weight	Current Specification Weight	Current Weight	Comments and/or Reference to Change Analysis
Command Module	Total Weight (Including Crew)				
Service Module	Dry Weight				
	Injected Inert Weight				
	Useable Propellant				
	Propellant Tank Capacity				
LEM Ascent Stage (Exclude Crew)	Dry Weight				
	Injected Inert Weight				
	Usable Propellant				
	Propellant Tank Capacity				
LEM DescentStage	Dry Weight				
	Injected Inert Weight				
	Useable Propellant				
	Propellant Tank Capacity				
Adapter	Total Weight				
Launch Escape System	Total Weight				
Spacecraft	Liftoff Weight				
	Injected Inert Weight				

Figure A-14.

Figure A-15.

A-20

Performance Increase Shopping List			
1.	Index Number		An identification numbering sequence prefixed by NASA Center initials, e.g., MSC-1, MSC-2, MSC-3, etc.
2.	Description		Short title and concise description. Relate to control point where possible.
3.	Payload/Weight Change	-	Predicted payload increase, weight change, and/or other vehicle property change.
4.	Status		Provide dates, schedules, possible or actual vehicle effectivity for the following categories of change: proposed, approved - still pending, incorporated.
5.	Cost Effect		Indicate the dollar value per pound of payload increase with point of effectivity.
6.	Influence on Reliability	-	Evaluate, insofar as possible, the predicted effect of change on mission success, and/or other reliability factors.
7.	Schedule Impact		Indicate the schedule slippage, if any, due to implementation and indicate effectivity (vehicle number) desired and expected.
8.	Originator	-	Name, code, and initiation date.
9.	Cognizant Office and Responsible Personnel	-	Office code, location, and name.
10.	Remarks	-	Explanatory notes, substantiation, and references.

[^1]| Vehicle No. \qquad Mission Type \qquad | Date | | |
| :---: | :---: | :---: | :---: |
| | rn V
 Summary | | |
| Propulsion Data | Stage | | |
| | S-IC | S-II | S-IVB |
| Engine Model | F-1 | J-2 | J-2 |
| Engine Type | RP-1/LOX | $\mathrm{LH}_{2} / \mathrm{LOX}$ | $\mathrm{LH}_{2} / \mathrm{LOX}$ |
| Thrust (Pounds)/Engine | (Nominal) | (Nominal) | (Nominal) |
| Control Weight* | | | |
| Current Performance** | | | |
| Specific Impulse (${ }_{\text {sp }}$, Sec.) | (Nominal) | (Nominal) | (Nominal) |
| Control Weight* | | | |
| Current Performance** | | | |
| Oxidizer/Fuel Ratio | | | |
| Control Weight* | | | |
| Current Performance** | | | |
| *As related to Control Weight value of Format 1B.
 ${ }^{* *}$ As related to Current Weight. | | | |

Format 5B

Vehicle No. \qquad	Date		
Spacecraft Performance and Propulsion Summary			
Propulsion Dat	Stage or Module		
	Service	LEM Descent	LEM Ascent
Engine Model			
Engine Type			
Thrust (Pounds)/Engine	(Nominal)	(Nominal)	(Nominal)
Control Weight*			
Current Performance**			
Specific Impulse (${ }_{\text {sp }}$, Sec.)	(Nominal)	(Nominal)	(Nominal)
Control Weight*			
Current Performance**			
Oxidizer/Fuel Ratio			
Control Weight*			
Current Performance**			
Velocity Capability (Feet per second)***			
Control Weight*			
Current Performance**			
*As related to Control Weight value of Format 1C. **As related to Current Weight. ${ }^{* * *}$ To be completed in accordance with the discrete velocity increments (set forth in the Apollo System Specification) used in computing the weights of Format 1C.			

Format 5C

APPENDIX B

PROBABLE ERROR RELATIONSHIP AND USE

B. 1 SELECTION OF MODEL

In any forecasting process there is some degree of uncertainty associated with predicted numbers. This degree of uncertainty many result from errors in selecting an inadequate model or from the tolerance expected in measurement or the displacement from the mean due to random changes up until ship date or a host of other reasons. But the fact remains that forecast analysis is based on the production of the best available quantitative values. This in turn necessitates selection of a single, most-likely weight at the specific date, and this is taken as the mean expected weight.

B. 2 ESTABLISHING CONFIDENCE LIMIT LINES

For purposes of illustrating the range of the scatter of potential weights at ship date, the upper and lower 95 percent confidence limit lines are calculated. In this instance, the upper confidence limit is defined as a "one tailed" limit below which, for a large sample, 95 percent of the points would fall. That is, for a large sample, 5 percent of the data could be expected to exceed the upper confidence limit value.

Confidence limit lines are readily presented in graphic form but difficult to visualize in tabular form; hence, the term probable error is introduced as follows:

Probable error is the numerical difference between the upper (95 percent) confidence limit and forecasted weight at the shipping date.

Probable error is then tabulated adjacent to forecasted values in the detail result tables so that the reader can readily grasp the magnitude of uncertainty of any forecasted value.

This then is the primary use of probable error - a ready index of the prediction accuracy.

B. 3 VALUES OF PROBABLE ERROR

The values of probable error are obtained directly from the forecast and analysis of the functional system. For stages and modules and for over-all spacecraft and launch
vehicles, the probable errors are then calculated using appropriate factors and a simple root-sum-squared process. The resultant probable errors are only approximate, but sufficient to give an indication of expected range of the final weights about the predicted weight.

B. 4 SECONDARY USE OF PROBABLE ERRORS AND DERIVATION

A secondary use of probable errors is for assistance in forecasting launch vehicle capability dispersion and space weight tolerance at ship date. In functional system weight forecasted errors, there are numerous factors which contribute to these errors. In a general sense, these kinds of errors can be classed into three categories:
a. Errors represented by a variation of reported weight about the "true" weight, which are in turn a function of estimation processes, calculation accuracies, or actual measuring equipment precision. These errors can be expressed as e_{m} in Figure B-1 with standard deviation, σ_{m}.
b. Variation of true weight about its "true" expected growth line on a more or less random pattern due to the myriad of random forces at work. This variation, approximated by e_{R} with standard deviation σ_{R}, is associated with the random changes in weight being made right up until launch date.
c. Error of the forecasted line, calculated from the limited available sample, to exactly match the "true" trend line. This error is expressed as $\mathrm{e}_{\mathrm{w}_{\mathbf{k}}}$ in Figure B-1 with standard deviation $\sigma_{\mathbf{w}_{k}}$.

For initial mathematical approximations, all three of these errors are assumed to be normally distributed with zero mean. Further, the first two kinds of error are indistinguishable and are represented here by

$$
\sigma_{\mathrm{k}}^{2}=\sigma_{\mathrm{m}}^{2}+\sigma_{\mathrm{R}}^{2}
$$

where σ_{k} is the assumed standard deviation of the reported data bout the "true" but unknown trend line, indicated as e_{k} in Figure B-1.

In the early maximum likelihood models, σ_{k} is assumed to decrease in some relation to program progress, as indicated by changes from estimated to calculated to actual measurements. In the larger sense, these $\mathrm{E} / \mathrm{C} / \mathrm{A}$ values may be considered as a kind of program maturity factor. The expected value of σ_{k} is therefore assumed to decrease in some fashion, represented schematically in Figure B-2, and approaches a final value as the discrete parts of the functional system move from estimated to

B-2

- calculated to actual status, and as measurement cccuracies increase due to installation of better facilities.

Figure B-1

The behavior of $\sigma_{\hat{w}_{k}}$ with time is dependent on the nature of the fundamental model assumed. For the linear case, $\sigma_{\hat{w}_{k}}$ increases rather linearly with time from current to ship; for the nonlinear model, increases in a nonlinear fashion, as illustrated in Figure B-2.

The total variation of the reported weight about the forecasted line is designated as e_{T} with standard deviation σ_{T} found by

$$
\sigma_{\mathrm{T}}^{2}=\sigma_{\mathrm{k}}^{2}+\sigma_{\hat{\mathrm{w}}_{\mathrm{k}}}^{\wedge^{2}}
$$

Figure B-2

The expected value of σ_{T} will therefore vary in a manner predetermined by the combined variations of σ_{k} and σ_{R} with time, and can readily take a shape such as indicated by any of the curves A, B, C, or D shown in Figure B-3. Curve A represents the case where σ_{k} is decreasing slowly and $\sigma_{\hat{w}_{k}}$ increasing rapidly; curve D is the opposite extreme with rapid decrease in σ_{k} and.slow rise in $\sigma_{\hat{w}_{k}}$. Or, from the program control viewpoint, curve A represents the case where the variations of weight about the mean line are not expected to damp out significantly as the program matures while the expected errors in duplicating the true growth line increase markedly with time in the forecasting range. Curve D is just the opposite; program maturity effects are expected to significantly minimize the range of the weight variation about the true growth line, while accuracy remains high for prediction line matching the true growth line. Curves B and C are intermediate situations.

The question naturally arises, "What can be forecasted about the value of σ_{T} at the time we reach ship date?" For this discussion, it is appropriate to express the variation in terms of the probable error (PE) at the ship date, the difference between the upper confidence limit and the mean line, as

$$
\mathrm{PE}_{\mathrm{S}}=\mathrm{C}_{1} \sigma_{\mathrm{T}_{\mathrm{s}}}
$$

where C_{1} is a factor varying from 1.645 for a large sample to 2.132 for a sample of only six observations, and $\sigma_{\mathrm{T}_{\mathrm{S}}}$ is the actual expected value of σ_{T} at ship.

- For a large sample (less than 10) a value of 2 is a reasonable approximation for C, and the equation now reads

$$
\mathrm{PE}_{\mathrm{S}} \cong 2 \sigma_{\mathrm{T}} \cong 2 \sqrt{\sigma_{\mathrm{k}}^{2}+\sigma_{\mathrm{w}}^{2}}{ }_{\mathrm{k}_{\mathrm{s}}}^{2}
$$

It is significant to note that the probable error at ship date will decrease as the actual time approaches the ship date due to decreases in both $\sigma_{\mathbf{k}_{\mathbf{S}}}$ and $\sigma_{\hat{w}_{\mathbf{k}_{\mathbf{S}}}}$. The decrease in $\sigma_{\mathrm{k}_{\mathrm{S}}}$ can be predicted prior to ship and will correspond to expected decrease in weight oscillations with expected changes from estimated to calculated to actual. Likewise, $\sigma_{\hat{w}_{\mathbf{k}_{\mathrm{S}}}}$ at ship date can be estimated from known accuracies of prediction in the current observed range.

If the resultant probable error at ship, PE_{S} is excessively high, the over-all mission could be needlessly jeopardized by the necessity of providing excessive launch capability to handle the large contingency factor. In any event, if $\sigma_{\mathrm{w}_{\mathrm{k}_{\mathrm{S}}}}$ is significantly greater than $\sigma_{k_{S}}$, then it is possible that mass measurement accuracy requirements are excessive - a very expensive situation indeed. That is, if $\sigma_{k_{S}}$ is low, then σ_{m} must also be low which may not be reasonable in view of the large variation of expected vehicle requirements as evidenced by a large $\sigma_{\hat{w}_{k}}$. Since σ_{m} is related to mass property measurement, and high accuracies of mass measurement (to minimize σ_{m}) are very costly, then it may be valuable to consider if potential cost reductions may be achieved by relaxing the requirements for σ_{m}.

Figure B-3

APPENDIX C

MATH MODELS

C. 1 LINEAR MAXIMUM LIKELIHOOD

In this discussion it is assumed that the reported weight data, represented by the random variable \underline{w}_{i} observed at time t_{i}, are generated in a linear fashion. Hence, the assumed model is

$$
w_{i}=a+b t_{i}
$$

where a and b are unknown parameters to be estimated. It can be said then that this model represents the expected value of the weight or

$$
\mathrm{E}\left\{\underline{w}_{\mathrm{i}}\right\}=\mathrm{w}_{\mathrm{i}}=\mathrm{a}+\mathrm{b} \mathrm{t}_{\mathrm{i}}
$$

It is also assumed that the value of the random variable \underline{w}_{i} can be expressed as its expected value plus an unobservable error which is a random variable with zero mean and standard derivation σ_{i}. Thus,

$$
\underline{\mathrm{w}}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}+\underline{\mathrm{e}}_{\mathrm{i}} .
$$

The observed weight w_{i} is reported as a summation of three values. One of these reflects that portion whose weight is totally estimated, the second is that portion which is calculated (from final design drawings) and the third is the portion which is actual or manufactured so that it can be actually weighed. The weight is therefore expressible as

$$
\underline{w}_{i}=E_{i} \underline{w}_{i}+C_{i} \underline{w}_{i}+A_{i} \underline{w}_{i}
$$

where
$\mathrm{E}_{\mathrm{i}} \underline{\mathrm{w}}_{\mathrm{i}}=$ fraction of $\underline{w}_{\mathrm{i}}$ which is estimated.
$C_{i}{\underset{w}{i}}=$ fraction of \underline{w}_{i} which is calculated.
$A_{i} \underline{w}_{i}=$ fraction of \underline{w}_{i} which is measured or actual.

Each of the three coefficients $\mathrm{E}_{\mathbf{i}}, \mathrm{C}_{\mathbf{i}}$, and A_{i} is available for every observation, or reported value of \underline{w}_{i}. The three components of \underline{w}_{i} can now be expressed as a mean value plus an error, yielding

$$
\underline{w}_{i}+\left(w_{E_{i}}+\underline{e}_{E_{i}}\right)+\left(w_{C_{i}}+\underline{e}_{C_{i}}\right)+\left(w_{A_{i}}+\underline{E}_{A_{i}}\right)
$$

where the three component means are assumed derived from the mean value of \underline{w}_{i} as follows:

$$
\begin{aligned}
{ }^{w_{E_{i}}} & =E_{i} w_{i} \\
{ }^{w_{C_{i}}} & =C_{i} w_{i} \\
w_{A_{i}} & =A_{i} w_{i}
\end{aligned}
$$

Since $E_{i}+C_{i}+A_{i} \equiv 1.0$, it follows that

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{E}_{\mathrm{i}}}+\mathrm{w}_{\mathrm{C}_{\mathrm{i}}}+\mathrm{w}_{\mathrm{A}_{\mathrm{i}}} \\
& \underline{e}_{\mathrm{i}}=\underline{\mathrm{e}}_{\mathrm{E}_{\mathrm{i}}}+\underline{\mathrm{e}}_{\mathrm{C}_{\mathrm{i}}}+\underline{\mathrm{e}}_{\mathrm{A}_{\mathrm{i}}}
\end{aligned}
$$

Note that the term "error" is used here in a very broad sense. Even if the total weight could be measured exactly, without any error in the conventional sense, this weight would not be expected to follow a straight line. Instead, the exact weight is considered a random phenomenon whose dispersion about some trend is caused by the interaction of many random causes. It is this dispersion or deviation which is referred to as error.

The three errors are assumed to be normally and independently distributed with zero mean and standard deviations $\sigma_{\mathrm{E}_{\mathrm{i}}}, \sigma_{\mathrm{C}_{\mathrm{i}}}$, and $\sigma_{\mathrm{A}_{\mathrm{i}}}$. It then follows that the variance of the error is expressible as

$$
\sigma_{i}^{2}=\sigma_{\mathrm{E}_{\mathrm{i}}}^{2}+\sigma_{\mathrm{C}_{\mathrm{i}}}^{2}+\sigma_{\mathrm{A}_{\mathrm{i}}}^{2}
$$

It is further assumed that the ratio of standard deviation to mean of the three random weight components is constant, or specifically,

$$
\frac{{ }^{\sigma} E_{i}}{{ }^{w_{E_{i}}}}=\mathrm{s}
$$

$$
\begin{aligned}
& \frac{{ }^{\sigma} \mathrm{C}_{i}}{{ }^{\mathrm{w}_{\mathrm{C}_{\mathrm{i}}}}}=\mathrm{R}_{1} \mathrm{~s} \\
& \frac{{ }^{\sigma} \mathrm{A}_{\mathrm{i}}}{{ }^{\mathrm{w}_{\mathrm{A}_{\mathrm{i}}}}}=\mathrm{R}_{2} \mathrm{~s}
\end{aligned}
$$

The ratio s is an unknown parameter which will be estimated while the factors R_{1} and R_{2}, which define the relationship among the three ratios, must be specified. The variance of the $i^{\text {th }}$ observation can now be expressed as

$$
\sigma_{i}^{2}=s^{2} m_{i}^{2}
$$

where $\mathrm{m}_{\mathrm{i}}{ }^{2}$ is a weighting factor defined as

$$
m_{i}^{2}=w_{i}^{2}\left[E_{i}^{2}+R_{i}^{2} C_{i}^{2}+R_{2}^{2} A_{i}^{2}\right]
$$

This weighting factor is actually a constant but contains the unknown value of w_{i}. For computational purposes one will need some estimate, say \widetilde{w}_{i}, of w_{i} and use instead of $m_{i}{ }^{2}$,

$$
\tilde{m}_{i}^{2}=\widetilde{w}_{i}^{2}\left[E_{i}^{2}+R_{1}^{2} C_{i}^{2}+R_{2}^{2} A_{i}^{2}\right]
$$

As a first estimate of w_{i} the actual observed value can be used, i.e., $\tilde{w}_{i}=w_{i}$, or a least squares fit performed and points from the resulting function used. In the computer program developed for this linear maximum likelihood technique the latter procedure is used. The resulting \tilde{w}_{i} is further improved in an iterative fashion by the maximum likelihood estimator for w_{i}.

The final assumption is that the random variables \underline{w}_{i} and \underline{w}_{j}, where $i \neq j$, are independent. This is perhaps the most limiting assumption. For example, a project manager may decide to freeze the weight of some component for several months, the fact that the weight stays constant during that time is then not attributable to randomness, but is rather a result of strong dependence. The likelihood function is

$$
L=\prod_{i=1}^{n}\left[\frac{1}{s m_{i} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\underline{w}_{i}-a-b t_{i}}{s m_{i}}\right)^{2}}\right]
$$

and the maximum of this function is

$$
L_{\max }=\prod_{i=1}^{n}\left[\frac{1}{\hat{s} m_{i} \sqrt{2 \pi}} e^{\left.-\frac{1}{2}\left(\frac{\underline{w}_{i}-\hat{\underline{a}}-\hat{\underline{b}} t_{i}}{\hat{s} m_{i}}\right)^{2}\right]}\right]
$$

where $\underline{\hat{a}}, \underline{\hat{b}}, \underline{\hat{s}}$ are maximum likelihood estimators of the unknown parameters a, b, and s. Taking the partial derivatives of $\ln \mathrm{L}$ with respect to each of the three parameters and equating them to zero produces the following normal equations:

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\underline{w}_{i}-\underline{\hat{a}}-\underline{\hat{b}} t_{i}}{m_{i}^{2}}=0 \\
& \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\underline{\hat{a}}-\hat{\underline{b}} t_{i}}{m_{i}^{2}}\right) t_{i}=0 \\
& \frac{1}{n} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\underline{\hat{a}}-\underline{\hat{b}} t_{i}}{m_{i}}\right)^{2}=\underline{\hat{s}}^{2}
\end{aligned}
$$

Solving the first two equations for $\underline{\hat{a}}$ and $\underline{\hat{b}}$ yields

$$
\begin{aligned}
& \hat{\underline{a}}=\frac{C \underline{E}-B \underline{F}}{D} \\
& \hat{\hat{b}}=\frac{A \underline{F}-B \underline{E}}{D}
\end{aligned}
$$

where

$$
A=\sum_{i=1}^{n} \frac{1}{m_{i}^{2}}
$$

$$
B=\sum_{i=1}^{n} \frac{t_{i}}{m_{i}^{2}}
$$

$$
\begin{aligned}
& \mathrm{C}=\sum_{i=1}^{n} \frac{\mathrm{t}_{\mathbf{i}}^{2}}{\mathrm{~m}_{\mathrm{i}}^{2}} \\
& \mathrm{D}=\mathrm{AC}-\mathrm{B}^{2} \\
& \mathrm{E}=\sum_{i=1}^{n} \frac{\underline{w}_{i}}{\mathrm{~m}_{\mathrm{i}}^{2}} \\
& \mathrm{~F}=\sum_{i=1}^{n} \frac{\underline{w}_{i} t_{i}}{\mathrm{~m}_{\mathrm{i}}}
\end{aligned}
$$

It is interesting to note at this point that by setting $m_{i}=1$, which says that $\sigma_{i}^{2}=s^{2}$, a least squares fit is obtained. Although \hat{a} and $\underline{\underline{b}}$ are unbiased, i.e., $E(\hat{a})=a$ and $\mathrm{E}(\hat{\mathrm{b}})=\mathrm{b}$, the estimator $\hat{\underline{s}}$ as defined above is biased. Its unbiased form (see C.1.2 to this section) is given by

$$
\underline{\hat{\mathbf{s}}}=\frac{1}{n-2} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\underline{\hat{a}}-\underline{\hat{b}} t_{i}}{m_{i}}\right)^{2}
$$

C.1.1 PREDICTION AND PREDICTION INTERVAL

One of the benefits accruing from the maximum likelihood method is that one has enough information to establish a confidence interval, called prediction interval. Let $\left(t_{k}, \underline{w}_{k}\right)$ be pairs of future observations, which are to be predicted. The model holds in analogy to the original model, namely

$$
\underline{w}_{k}=w_{k}+\underline{e}_{k}
$$

If a, b, and s were known we could determine $w=a+b t_{k}$ and use s to assess the confidence interval due to the error e_{k}. What is instead available are the estimators \hat{a}, $\underline{\hat{b}}$, and $\underline{\hat{S}}$. The predicted value of \underline{w}_{k} is the estimator of w_{k}

$$
\hat{\mathrm{w}}_{\mathrm{k}}=\hat{\hat{a}}+\hat{\hat{b}} \mathrm{t}_{\mathrm{k}}
$$

Note that

$$
\mathrm{E}\left\{\underline{\mathrm{w}}_{\mathrm{k}}\right\}=\mathrm{E}\left\{\underline{\underline{w}}_{\mathrm{k}}\right\}=\mathrm{w}_{\mathrm{k}}
$$

Since both $\underset{\hat{a}}{\hat{a}}$ and $\underline{\hat{b}}$ are linear combinations of the normally distributed random sariable $\underline{W}_{i}, \hat{\underline{w}}_{\mathrm{k}}$ is also normally distributed, hence

$$
\underline{\underline{w}}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}}+\underline{\mathrm{e}}_{\hat{\mathrm{w}}_{\mathrm{k}}}
$$

where $\underline{\mathrm{e}}_{\hat{\mathrm{w}}}^{\mathrm{k}}$ is a normal error with zero mean. Let \underline{u}_{k} be the difference between the $\mathrm{k}^{\text {th }} \stackrel{-\mathrm{w}_{\mathrm{k}}}{ }$ observation and prediction

$$
\underline{\mathrm{u}}_{\mathrm{k}}=\underline{\mathrm{w}}_{\mathrm{k}}-\underline{\hat{\mathrm{w}}}_{\mathrm{k}}=\underline{\mathrm{e}}_{\mathrm{k}}-\underline{\mathrm{e}}_{\mathrm{w}_{\mathrm{k}}}
$$

It is seen that the error \underline{u}_{k} has two sources. One, \underline{e}_{k}, tells us that the observation \underline{w}_{k} will deviate from its expected value, while secondly our estimate of the expected value contains the error $\underline{e}_{\hat{w}_{k}}$. These two errors and their relationship are illustrated in Figure $\mathrm{C}-1$. In this diagram, the true trend line is provided by

$$
\mathrm{E}\left\{\underline{w}_{\mathrm{i}}\right\}=\mathrm{w}_{\mathrm{i}} .
$$

The error \underline{u}_{k} is again normal with parameters

$$
\begin{aligned}
& E\left\{\underline{u}_{k}\right\}=0 \\
& { }_{o_{u_{k}}}^{2}=\operatorname{var}\left(\underline{u}_{k}\right)=\operatorname{var}\left(e_{k}\right)+\operatorname{var}\left(\underline{e}_{\hat{w}_{k}}\right)
\end{aligned}
$$

The last equation follows from the stipulated independence of observations. The varionce of \underline{e}_{k} is simply

$$
\operatorname{var}\left\{\underline{e}_{k}\right\}=\sigma_{k}^{2}=s^{2} \cdot m_{k}^{2}
$$

In place of $\mathrm{m}_{\mathrm{k}}{ }^{2}$ we use its estimate

$$
\underline{m}_{\mathrm{k}}^{2}=\hat{\mathrm{w}}_{\mathrm{k}}^{2}\left[\mathrm{E}_{\mathrm{k}}^{2}+\mathrm{R}_{\mathrm{t}}^{2} \mathrm{C}_{\mathrm{k}}^{2}+\mathrm{R}_{\mathrm{z}}^{2}{A_{\mathrm{k}}^{2}}_{2}\right]
$$

The variance of $\underline{e}_{\hat{w}_{k}}$ is obtained from the earlier expression for $\underline{\hat{w}}_{k}$

$$
\operatorname{var}\left(e_{\hat{w}_{k}}\right)=\operatorname{var}\{\underline{\hat{a}}\}+t_{k}{ }^{2} \operatorname{var}\{\hat{b}\}+2 t_{k} \operatorname{cov}\{\underline{\hat{a}}, \underline{\hat{b}}\}
$$

> -
> Distribution of e_{k}, the difference
between observed weight and true
trend, is a normal distribution

号
Figure C-1. Maximum-Likelihood Linear Model Showing the Two Types of Error

This equation contains the covariance of $\underline{\hat{a}}$ and $\underline{\hat{b}}$ which implies that $\underline{\hat{a}}$ and $\underline{\hat{b}}$ are dependent. There is a simpler way to find var ($e^{-} \hat{w}_{k}$).

Going back to the normal equations solution it is seen that \hat{w}_{k} can be expressed as a function of the random variables \underline{E} and F ,

$$
\hat{\mathrm{w}}_{\mathrm{k}}=\alpha_{\mathrm{k}} \underline{\mathrm{E}}+\beta_{\mathrm{k}} \underline{\mathrm{~F}}
$$

where

$$
\begin{aligned}
\alpha_{\mathrm{k}} & =\frac{\mathrm{C}-\mathrm{B} \mathrm{t}_{\mathrm{k}}}{\mathrm{D}} \\
\beta_{\mathrm{k}} & =\frac{\mathrm{At} \mathrm{k}_{\mathrm{k}}-\mathrm{B}}{\mathrm{D}} .
\end{aligned}
$$

This leads to

$$
\operatorname{var}\left\{\underline{e}_{\mathrm{w}_{\mathrm{k}}}\right\}=\alpha_{\mathrm{k}}^{2} \operatorname{var}\{\underline{\mathrm{E}}\}+\beta_{\mathrm{k}}^{2} \operatorname{var}\{\underline{\mathrm{~F}}\}+2 \alpha_{\mathrm{k}} \beta_{\mathrm{k}} \operatorname{cov}\{\underline{E}, \underline{\mathrm{~F}}\}
$$

Since both \underline{E} and \underline{F} consist of a sum of independent normal random variables, we can write down directly,

$$
\begin{aligned}
& \operatorname{var}\{\underline{E}\}=\sum_{i=1}^{n} \frac{\sigma_{i}{ }^{2}}{m_{i}{ }^{4}}=s^{2} \sum_{i=1}^{n} \frac{1}{m_{i}^{2}}=s^{2} A \\
& \operatorname{var}\{\underline{F}\}=\sum_{i=1}^{n} \frac{t_{i}{ }^{2}}{m_{i}{ }^{4}} \sigma_{i}{ }^{2}=s^{2} \sum_{i=1}^{n} \frac{t_{i}{ }^{2}}{m_{i}{ }^{2}}=s^{2} C
\end{aligned}
$$

The covariance of \underline{E} and \underline{F} is defined as

$$
\begin{aligned}
\operatorname{cov}\{\underline{E}, \underline{F}\}= & E\left\{\left(\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}}\right)\left(\sum_{i=1}^{n} \frac{\underline{w}_{i} t_{i}}{m_{i}^{2}}\right)\right\} \\
& -E\left\{\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}}\right\} E\left\{\sum_{i=1}^{n} \frac{w_{i} t_{i}}{m_{i}^{2}}\right\}
\end{aligned}
$$

The equation for $\hat{\underline{w}}_{\mathrm{k}}$ is simplified by the fact that, due to independence,

$$
\mathrm{E}\left\{\underline{w}_{\mathrm{i}} \underline{w}_{\mathrm{j}}\right\}=\mathrm{E}\left\{\underline{w}_{\mathrm{i}}\right\} \cdot \mathrm{E}\left\{\underline{w}_{\mathrm{j}}\right\}, \quad \mathrm{i} \neq \mathrm{j}
$$

and there results

$$
\begin{aligned}
\operatorname{cov}\{\underline{E}, \underline{F}\} & =E\left\{\sum_{i=1}^{n} \frac{t_{i}^{2}}{m_{i}^{4}} w_{i}^{2}\right\}-\left[E\left\{\sum_{i=1}^{n} \frac{t_{i}}{m_{i}^{2}} w_{i}\right\}\right]^{2} \\
& =\sum_{i=1}^{n} \frac{t_{i}^{2}}{m_{i}^{4}} \sigma_{i}^{2}=s^{2} B
\end{aligned}
$$

So now the expression for var $\left\{\underline{e}_{w_{k}}\right\}$ becomes

$$
\operatorname{var}\left\{\underline{\mathrm{e}}_{\mathrm{w}_{\mathrm{k}}}\right\}=\mathrm{s}^{2}\left[\alpha_{\mathrm{k}}^{2} \mathrm{~A}+\beta_{\mathrm{k}}^{2} \mathrm{C}+2 \alpha_{\mathrm{k}} \beta_{\mathrm{k}} \mathrm{~B}\right]
$$

or by substitution for α_{k} and β_{k}

$$
\operatorname{var}\left\{\underline{e}_{\hat{w}_{k}}\right\}=\frac{s^{2}}{D}\left[A t_{k}^{2}-2 B t_{k}+C\right]
$$

It is now clear that

$$
\begin{aligned}
& \operatorname{var}\{\underline{\hat{a}}\}=s^{2} \frac{C}{D} \\
& \operatorname{var}\{\underline{\hat{b}}\}=s^{2} \frac{A}{D} \\
& \operatorname{cov}\{\underline{\hat{a}}, \underline{\hat{b}}\}=-s^{2} \frac{B}{D}
\end{aligned}
$$

and

$$
\operatorname{var}\left\{\underline{u}_{k}\right\}=s^{2}\left(m_{k}^{2}+\frac{A t_{k}^{2}-2 B t_{k}+C}{D}\right)
$$

If s were known the prediction interval could be readily established since \underline{u}_{k} is normally distributed. For example, for a 95 percent interval on \underline{w}_{k} one would use

$$
\underline{\hat{\mathrm{a}}}+\underline{\hat{b}}_{\mathrm{k}} \pm 1.96 \sigma_{\mathrm{u}_{\mathrm{k}}}
$$

With $\hat{\underline{s}}$ available instead of s , this may still be used if the sample is large enough, say $n>30$. For small samples the random variable

has the Student Tdistribution with $n-2$ degrees of freedom, $\hat{\mathrm{s}}$ being the unbiased estimator for s. From this follows the small sample distribution of \underline{u}_{k}

$$
\underline{\mathrm{u}}_{\mathrm{k}}=\underline{\mathrm{t}}_{\sigma_{\mathrm{u}_{\mathrm{k}}}} \frac{\hat{\mathbf{s}}}{\mathrm{~s}}=\underline{\mathrm{t}} \cdot \underline{\hat{\sigma}}_{\mathrm{u}_{\mathrm{k}}}
$$

where

$$
\hat{\sigma}_{u_{k}}=\hat{\hat{s}}\left(m_{k}^{2}+\frac{A t_{k}^{2}-2 B t_{k}+C}{D}\right)^{\frac{1}{2}}
$$

The confidence interval containing $(i-\epsilon$) of all possible outcomes of \underline{w} is then

$$
\underline{\hat{\mathbf{a}}}+\hat{\hat{b}} \mathrm{t}_{\mathrm{k}} \pm \mathrm{t}_{\epsilon / 2} \hat{\underline{\sigma}}_{u_{k}}
$$

in the case of a sample with $n=10$, and a 95 percent interval, the value of $t_{\epsilon / 2}$ is 2.306 as compared to 1.96 used earlier.

C. 1.2 APPENDIX

It was seen in the preceding discussion that the maximum-likelihood estimator $\hat{\underline{s}}$ of the parameter s is

$$
\underline{\hat{s}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\hat{\hat{a}}-\hat{b} t_{i}}{m_{i}}\right)^{2}
$$

This estimator is to be tested for bias, which means that its expected value has to be found.

$$
E\left\{\underline{\hat{s}}^{2}\right\}=E\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\hat{\underline{w}}_{i}}{m_{i}}\right)^{2}\right\}
$$

The following transformations are made:

$$
\begin{aligned}
E\left\{\underline{\hat{s}}^{2}\right\} & =E\left\{\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\left(\underline{w}_{i}-w_{i}\right)-\left(\hat{\mathbf{w}}_{i}-w_{i}\right)}{m_{i}}\right]^{2}\right\} \\
& =E\left\{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_{i}^{2}}\left[\left(\underline{w}_{i}-w_{i}\right)^{2}-2\left(\underline{w}_{i}-w_{i}\right)\left(\hat{w}_{i}-w_{i}\right)+\left(\hat{w}_{i}-w_{i}\right)^{2}\right]\right\} \\
& =s^{2}+\frac{1}{n} \sum_{i=1}^{n} \frac{1}{m_{i}^{2}}\left[-2 \operatorname{cov}\left\{\underline{w}_{i}, \underline{\hat{w}}\right\}+\operatorname{var}\left\{\underline{\hat{w}}_{i}\right\}\right]
\end{aligned}
$$

For the last term the following earlier results are used:

$$
\operatorname{var}\{\underline{\hat{w}}\}=\operatorname{var}\left\{\underline{e}_{\hat{w}_{i}}\right\}=\frac{s^{2}}{D}\left(A t_{i}^{2}-2 B t_{i}+C\right)
$$

and

$$
\sum_{i=1}^{n} \frac{1}{2} \operatorname{var}\left\{\underline{\hat{w}}_{i}\right\}=\frac{s^{2}}{D}\left(A C-2 B^{2}+A C\right)=2 s^{2}
$$

The middle term in the $E\left\{\hat{\underline{s}}^{2}\right\}$ expression is treated as follows:

$$
\operatorname{cov}\left\{\underline{w}_{i}, \hat{\underline{w}}_{j}\right\}=E\left\{\underline{w}_{i} \cdot \hat{\underline{w}}_{i}\right\}-w_{i}^{2}
$$

Next,

$$
E\left\{\underline{w}_{i} \cdot \hat{w}_{i}\right\}=\alpha_{i} E\left\{\sum_{j=1}^{n} \underline{w}_{i} \frac{\underline{w}_{j}}{m_{j}^{2}}\right\}+B_{i} E\left\{\sum_{j=1}^{n} \underline{w}_{i} \frac{w_{j} t_{j}}{m_{j}^{2}}\right\}
$$

Now, using $E\left\{\underline{w}_{i} \cdot \hat{\underline{w}}_{j}\right\}=w_{i} w_{j}$ for $(i \neq j)$

$$
\mathrm{E}\left\{\underline{w}_{\mathrm{i}} \cdot \hat{\mathrm{w}}_{\mathrm{i}}\right\}=\frac{\alpha_{i}+\beta_{i} \mathrm{t}_{\mathrm{i}}}{m_{i}^{2}}\left(E\left\{\underline{w}_{i}^{2}\right\} \cdot{w_{i}}^{2}\right)+w_{i}^{2}
$$

and

$$
\operatorname{cov}\left\{\underline{w}_{\mathrm{i}}, \hat{\underline{w}}_{\mathrm{i}}\right\}=\left(\alpha+\beta_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right) \frac{\sigma_{\mathrm{i}}^{2}}{\mathrm{~m}_{\mathrm{i}}^{2}}=\left(\alpha+\beta_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right) \mathrm{s}^{2}
$$

Further

$$
\sum_{i=1}^{n} \frac{\alpha_{i}+\beta_{i} t_{i}}{m_{i}^{2}}=\sum_{i=1}^{n} \frac{C-B t_{i}+A t_{i}^{2}-B t_{i}}{m_{i}^{2}\left(A C-B^{2}\right)}=\frac{A C-B^{2}+A C-B^{2}}{A C-B^{2}}=2
$$

Combining this with the expressions for $E\left\{\hat{\underline{s}}^{2}\right\}$ and

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{m_{i}^{2}} \operatorname{var} \underline{\hat{w}}_{i} \\
& E\left\{\underline{\hat{s}}^{2}\right\}=s^{2}-\frac{4 s^{2}}{n}+\frac{2 s^{2}}{n}=\frac{n-2}{n} s^{2}
\end{aligned}
$$

From this follows that the unbiased estimator of s should be

$$
\hat{\underline{s}}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\hat{\hat{a}}-\underline{\hat{b}} t_{i}}{m_{i}}\right)^{2}
$$

C. 1.3 SAMPLE CALCULATIONS

An understanding of the computational mechanics involved in exercising this model can be best obtained by examining a step-by-step numerical example. The following material results from a calculation using the appropriate expressions from the above discussion. The computer program was applied to the same set of input data and the agreement between final results was very good. The computer output is included at the end of the computations (see Figures C-2 and C-3).

C-12

The original data is as follows:

Case No. 30

Date	$\mathrm{t}_{\mathbf{i}}$	$\underline{w}_{\mathrm{i}}$	A_{i}	$\mathrm{C}_{\mathbf{i}}$	E_{i}	i^{2}
$8 / 63$	1	86405	0	0.90	0.10	1
$9 / 63$	2	87916	0	0.90	0.10	2
$10 / 63$	3	-	-	-	-	-
$11 / 63$	4	86648	0.01	0.91	0.08	3
$12 / 63$	5	-	-	-	-	-
$1 / 64$	6	-	-	-	-	-
$2 / 64$	7	86992	0.02	0.90	0.08	4
$3 / 64$	8	86542	0.02	0.90	0.08	5
$4 / 64$	9	-	-	-	-	-
$5 / 64$	10	88056	0.02	0.90	0.08	6
$6 / 64$	11	88460	0.02	0.90	0.08	7
$7 / 64$	12	88791	0.02	0.92	0.06	8

For the least squares estimators, $\underline{\hat{a}}_{\ell s}$ and $\underline{\hat{b}}_{\ell s}$,

$$
\begin{aligned}
& \hat{\underline{a}}_{l s}=\frac{C \underline{E}-\mathrm{BF}}{\mathrm{D}} \\
& \hat{\underline{b}}_{l s}=\frac{\mathrm{AF}-\mathrm{BE}}{\mathrm{D}}
\end{aligned}
$$

where:

$$
\begin{aligned}
& A=\sum_{i=1}^{n} \frac{1}{m_{i}^{2}} \\
& B=\sum_{i=1}^{n} \frac{t_{i}}{m_{i}^{2}} \\
& C=\sum_{i=1}^{n} \frac{t_{i}^{2}}{m_{i}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& D=A C-B^{2} \\
& \underline{E}=\sum_{i=1}^{n} \frac{w_{i}}{m_{i}^{2}} \\
& \underline{F}=\sum_{i=1}^{n} \frac{w_{i} t_{i}}{m_{i}^{2}}
\end{aligned}
$$

These equations give the maximum likelihood estimators, $\hat{\hat{a}}$ and $\underline{\underline{b}}$. By setting the $m_{i}=1$, the least squares estimators are obtained.

$$
\mathrm{C}-14
$$

$$
\begin{aligned}
& \begin{array}{lllll}
i & t_{i} & t_{i}^{2} & w_{i} & w_{i} t_{i}
\end{array} \\
& A=\sum_{i=1}^{8}\left(\frac{1}{1}\right)_{i}=8 \\
& B=\sum_{i=1}^{8} t_{i}=55 \\
& C=\sum_{i=1}^{8} t_{i}{ }^{2}=499 \\
& D=A C-B^{2}=8(499)-(55)^{2} \\
& =3992-3025=967 \\
& \underline{E}=\sum_{i=1}^{8} \underline{w}_{i}=699806
\end{aligned}
$$

$$
\begin{aligned}
& \underline{F}=\sum_{i=1}^{8} w_{i} t_{i}=4829217 \\
& \hat{\underline{a}}_{\ell s}=\frac{C E-B F}{D}=\frac{499(699806)-55(4829217)}{967}=\frac{349203194-265606935}{967} \\
& =\frac{83596259}{967}=86449.079 \\
& \hat{\mathrm{~b}}_{\ell_{S}}=\frac{\mathrm{AF}-\mathrm{BE}}{\mathrm{D}}=\frac{8(4829217)-55(699806)}{967}=\frac{38633736-38489330}{967} \\
& =\frac{144406}{967}=149.334
\end{aligned}
$$

For the least squares curve fit,

$$
\mathbf{w}_{i}=\hat{\underline{a}}_{l s}+\underline{\hat{b}}_{l s} t_{i} .
$$

i	t_{i}	$\hat{\mathrm{b}}_{l s} \mathrm{t}_{\mathrm{i}}$	$\hat{\mathrm{a}}_{l \mathrm{~s}}+\hat{\mathrm{b}}_{\ell \mathrm{s}}^{\mathrm{t}}{ }_{\mathrm{i}}$	w_{i}
1	1	149.334	86598.413	86598
2	2	298.668	86747.747	86748
3	4	597.336	87046.415	87046
4	7	1045.338	87494.417	87494
5	8	1194.672	87643.751	87644
6	10	1493.340	87942.419	87942
7	11	1642.674	88091.753	88092
8	12	1792.008	88241.087	88241
9	13	1941.342	88390.421	88390

For the first estimate of m_{i},

$$
\begin{aligned}
& \tilde{m}_{i}^{2}=\tilde{w}_{i}^{2}\left(E_{i}^{2}+R_{i}^{2} C_{i}^{2}+R_{2}^{2} A_{i}^{2}\right) . \\
& R_{i}=25, R_{1}^{2}=625 \\
& R_{2}=50, R_{2}^{2}=2500
\end{aligned}
$$

Further iterations of m_{i} using values of w_{i} obtained from the maximum likelihood estimators were not made in the hand calculations.

For the maximum likelihood estimators, $\underline{\hat{a}}_{\mathrm{m}} \ell^{\text {and }} \underline{\underline{b}}_{\mathrm{m}} \ell^{\prime}$

$$
\begin{aligned}
& \hat{a}_{m \ell}=\frac{C \underline{E}-B \underline{F}}{D} \\
& \hat{\underline{b}}_{m \ell}=\frac{A \underline{F}-B E}{D}
\end{aligned}
$$

where:

$$
\begin{aligned}
& A=\sum_{i=1}^{n} \frac{1}{m_{i}{ }^{2}} \\
& B=\sum_{i=1}^{n} \frac{t_{i}}{m_{i}{ }^{2}} \\
& C=\sum_{i=1}^{n} \frac{t_{i}{ }^{2}}{m_{i}{ }^{2}} \\
& D=A C-B^{2} \\
& \underline{E}=\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}{ }^{2}} \\
& \underline{F}=\sum_{i=1}^{n} \frac{W_{i} t_{i}}{m_{i}^{2}} \\
& \mathrm{t}_{\mathrm{i}} \quad\left(\mathrm{t}_{\mathrm{i}} / \mathrm{m}_{\mathrm{i}}{ }^{2}\right) \times 10^{14} \\
& 1 \\
& 2 \\
& 4 \\
& 7 \\
& 8 \\
& 10 \\
& 11 \\
& 12 \\
& 25.100432 \\
& 50.028174 \\
& 98.940208 \\
& 175.088886 \\
& 199.420264 \\
& 247.585040 \\
& 271.420974 \\
& 286.455360 \\
& 1354.039338 \\
& 1 \\
& \left(\mathrm{t}_{\mathrm{i}}{ }^{2} / \mathrm{m}_{\mathrm{i}}^{2}\right) \times 10^{14} \quad\left(\underline{\mathrm{w}}_{\mathrm{i}} / \mathrm{m}_{\mathrm{i}}^{2}\right) \times 10^{14} \\
& 25.100432 \\
& 100.056348 \\
& 395.760832 \\
& 1225.622202 \\
& \text { 1595.362112 } \\
& \text { 2475.850400 } \\
& \text { 2985.630714 } \\
& 3437.464320 \\
& 12240.847360 \\
& 2168702.4 \\
& 2199138.5 \\
& 2143242.8 \\
& 2175904.6 \\
& 2157278.6 \\
& 2180134.8 \\
& \text { 2182718. } 1 \\
& 2119554.8 \\
& 17326674.6
\end{aligned}
$$

$$
\left(\mathrm{t}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} / \mathrm{m}_{\mathrm{i}}^{2}\right) \times 10^{14}
$$

2168702.4 4398276.9 8572971.1 15231332.4 17258228.5 21801348.3 24009899.4 25434657.9 118875416.9

[^2]\[

$$
\begin{aligned}
& A=\sum_{i=1}^{8} \frac{1}{m_{i}{ }^{2}}=198.09422 \times 10^{-14} \\
& B=\sum_{i=1}^{8} \frac{t_{i}}{m_{i}{ }^{2}}=1354.0393 \times 10^{-24} \\
& C=\sum_{i=1}^{8} \frac{t_{i}{ }^{2}}{m_{i}{ }^{2}}=12240.847 \times 10^{-14} \\
& D=A C-B^{2}=\left(198.09422 \times 10^{-14}\right)\left(12240.847 \times 10^{-14}\right)-\left(1354.0393 \times 10^{-14}\right)^{2} \\
& =\left(2424841.1 \times 10^{-28}\right)-\left(1833422.5 \times 10^{-28}\right) \\
& =591418.6 \times 10^{-28} \\
& \underline{E}=\sum_{i=1}^{8} \frac{\underline{w}_{i}}{m_{i}{ }^{2}}=17326674.5 \times 10^{-14} \\
& \underline{F}=\sum_{i=1}^{8} \frac{\underline{w}_{i} t_{i}}{m_{i}^{2}}=118875416.9 \times 10^{-14} \\
& \hat{\underline{a}}_{\mathrm{m} \ell}=\frac{\mathrm{CE}-\mathrm{BF}}{\mathrm{D}} \\
& =\left(12240.847 \times 10^{-14}\right)\left(17326674.5 \times 10^{-14}\right)-\left(1354.0393 \times 10^{-14}\right)\left(118875416.9 \times 10^{-14}\right) \\
& 591418.6 \times 10^{-28} \\
& =\frac{2.120931716 \times 10^{-17}-1.609619863 \times 10^{-17}}{5.914186 \times 10^{-23}} \\
& 5.914186 \times 10^{-23} \\
& =\frac{0.511311853 \times 10^{-17}}{5.914186 \times 10^{-23}}=86455.153
\end{aligned}
$$
\]

$$
\begin{aligned}
\hat{\mathrm{b}}_{\mathrm{m} \ell} & =\frac{\mathrm{AF}-\mathrm{BE}}{\mathrm{D}} \\
& =\frac{\left(198.09422 \times 10^{-14}\right)\left(118875416.9 \times 10^{-14}\right)-\left(1354.0393 \times 10^{-14}\right)\left(17326674.5 \times 10^{-14}\right)}{591418.6 \times 10^{-28}} \\
& =\frac{2.354853299 \times 10^{-18}-2.34609982 \times 10^{-18}}{5.914186 \times 10^{-23}} \\
& =\frac{8.753479 \times 10^{-21}}{5.914186 \times 10^{-23}}=148.008
\end{aligned}
$$

For the maximum likelihood curve fit,

$$
\mathrm{w}_{\mathrm{i}}=\hat{\underline{a}}_{\mathrm{m} \ell}+\hat{\underline{b}}_{\mathrm{m} \ell}^{\mathrm{t}}{ }_{\mathrm{i}}
$$

i	t_{i}	$\hat{\underline{b}}_{\mathrm{m} \ell} \mathrm{t}_{\mathrm{i}}$	$\hat{\underline{a}}_{\mathrm{m} \ell}+\hat{\mathrm{b}}_{\mathrm{m} \ell}{ }^{\mathrm{t}} \mathrm{i}$	$\mathrm{w}_{\mathrm{i}(\mathrm{m} \ell)}$
1	1	148.008	86603.161	88603
2	2	296.016	86751.169	86751
3	4	592.032	87047.105	87047
4	7	1036.056	87491.209	87491
5	8	1184.064	87639.217	87639
6	10	1480.080	87935.233	87935
7	11	1628.088	88083.241	88083
8	12	1796.096	88231.249	88231
9	13	1924.104	88379.257	88379

For the unbiased maximum likelihood estimator, $\underline{\hat{\mathbf{s}}}$,

$$
\hat{\underline{s}}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\hat{a}_{m \ell}-\hat{\underline{b}}_{m \ell} t_{i}}{m_{i}}\right)^{2}
$$

i	$\underline{W}_{\mathrm{i}}$	$\underline{\hat{a}}+\underline{\hat{b}} t_{i}$	$\underline{w}_{i}-\underline{\hat{a}}-\underline{\hat{b}} t_{i}$	$\left(\underline{w}_{i}-\underline{\hat{a}}-\underline{\hat{b}} \mathrm{t}_{\mathrm{i}}\right)^{2}$
1	86401	86603.161	-202.161	4.08690699×10^{4}
2	87916	86751.169	1164.831	1.35683126×10^{6}
3	86648	87047.185	-399.185	1.59348664×10^{5}
4	86992	87491.209	-499.209	2.49209626×10^{5}
5	86542	87639.217	-1097.217	1.20388515×10^{6}
6	88056	87935.233	120.767	1.45846683×10^{4}
7	88460	88083.241	376.759	1.41947344×10^{5}
8	88791	88231.249	559.751	3.13321182×10^{5}
	i	$1 / \mathrm{m}_{\mathrm{i}}{ }^{2}$	$\left(\underline{w}_{i}-\underline{\hat{a}}-\underline{\hat{b}} t_{i}\right)^{2} / m_{i}^{2}$	
	1	$25.100432 \times 10^{-14}$	1.0258313×10^{-8}	
	2	$25.014087 \times 10^{-14}$	$33.9398952 \times 10^{-8}$	
	3	$24.735052 \times 10^{-14}$	3.9414975×10^{-8}	
	4	$25.012698 \times 10^{-14}$	6.2334051×10^{-8}	
	5	$24.927533 \times 10^{-14}$	$30.0098868 \times 10^{-8}$	
	6	$24.758504 \times 10^{-14}$	0.3610946×10^{-8}	
	7	$24.674634 \times 10^{-14}$	3.5024988×10^{-8}	
	8	$23.871280 \times 10^{-14}$	7.4793777×10^{-8}	
	Σ		$86.4934870 \times 10^{-8}$	
	$=\frac{1}{n-2} \sum_{i=1}^{8}\left(\frac{\underline{w}_{i}-\hat{\underline{a}}-\hat{\underline{b}} t_{i}}{m_{i}}\right)^{2}$			
	$=\frac{1}{8-2} \cdot 86.4934870 \times 10^{-8}$			
	$=14.415581 \times 10^{-8}$			
	$=3.7967856 \times 10^{-4}$			

For the error in the observed value, s_{1},

$$
s_{1}^{2}=\operatorname{var}\left\{\underline{e}_{k}\right\}=s^{2} \cdot m_{k}^{2}
$$

Using $\hat{\underline{s}}$ for s and $\hat{\underline{m}}_{k}$ for m_{k}, where

$$
\hat{\underline{m}}_{\mathrm{k}}=\hat{\underline{w}}_{\mathrm{k}}^{2}\left(\mathrm{E}_{\mathrm{k}}^{2}+\mathrm{R}_{\mathrm{l}}^{2} \mathrm{q}_{\mathrm{k}}^{2}+\mathrm{R}_{2}^{2} \mathrm{~A}_{\mathrm{k}}^{2}\right)
$$

then

$$
s_{1}=\hat{\underline{s}} \cdot \hat{\underline{w}}_{k}\left(E_{k}^{2}+R_{1}^{2} C_{k}^{2}+R_{2}^{2} A_{k}^{2}\right)^{\frac{1}{2}}
$$

i	$($	$) \times 10^{-2}($	$)^{\frac{1}{2}} \times 10^{-1}$	$\hat{\mathrm{w}}_{\mathrm{k}} \times 10^{-4}$	$\hat{\mathrm{w}}_{\mathrm{k}}($	$)^{\frac{1}{2}} \times 10^{-6}$
			$\mathrm{~s}_{1} \times 10^{-2}$			
1	5.312500	2.3048861	8.6603161			
2	5.312500	2.3048861	8.6751169	1.9961042	7.5787797	
3	5.335626	2.3098974	8.7047185	2.0107007	7.5917320	
4	5.222504	2.2852799	8.7491209	1.9994190	7.6341995	
5	5.222504	2.2852799	8.7639217	2.0028014	7.6913653	
6	5.222504	2.2852799	8.7935233	2.0095662	7.62989200	
7	5.222504	2.2852799	8.8083241	2.0129486	7.6427343	
8	5.380004	2.3194836	8.8231249	2.0465094	7.7701574	

For the error in the predicted value, s_{2},

$$
s_{2}=\operatorname{var}\left\{e_{\hat{\underline{H}}_{k}}\right\}=\frac{s^{2}}{D}\left(A t_{k}^{2}-2 B t_{k}+C\right)
$$

where:

$$
\begin{aligned}
& A=\sum_{k=1}^{n} \frac{1}{m_{k}{ }^{2}} \\
& B=\sum_{k=1}^{n} \frac{t_{k}}{m_{k}^{2}} \\
& C=\sum_{k=1}^{n} \frac{t_{k}{ }^{2}}{m_{k}^{2}} \\
& D=A C-B^{2}
\end{aligned}
$$

Using $\hat{\underline{s}}$ for s_{1}

$$
s_{z}=\underline{\hat{s}}\left(\frac{A t_{k}^{2}-2 B t_{k}+C}{D}\right)^{\frac{1}{2}}
$$

where:

$$
\begin{aligned}
& \mathrm{A}=1.9809422 \times 10^{-12} \\
& \mathrm{~B}=13.540393 \times 10^{-12} \\
& \mathrm{C}=122.40847 \times 10^{-12} \\
& \mathrm{D}=59.141860 \times 10^{-24} \\
& 2 B=27.080786 \times 10^{-12}
\end{aligned}
$$

$\times 10^{12}$
A

27.080786	1
54.161572	4
108.323144	16
189.565502	49
216.646288	64
270.807860	100
297.888646	121
324.969432	144

D
59.141860
59.141860
59.141860
59.141860
59.141860
59.141860
59.141860
59.141860

1. 645342676
2. 287931539
0.774077805
0.505718551
0.550244493
0.840264915
1.085759396
1.398243389

$\times 10^{12}$

3. 9809422
7.9237688 31.6950752 97.0661678 126.7803008 198.0942200 239.6940062 285.2556768

122.40847
122.40847
122.40847
122.40847
122.40847
122.40847
122.40847
122.40847
97.3086262
76.1706668
45.7804012
29.9091358
32.5424828
49.6948300
64.2138302
82.6947148

$\times 10^{-2}$

4.8701714
4.3088608
3.34 .04762
2.7000227
3.7967856
2.8163774
$3.7967856 \quad 3.4803356$
3.7967856
3.9562141
3.7967856
4.4895661

Thus the two errors, s_{1} and s_{2}, are

i	s_{2}	s_{1}
1	487.0	757.9
2	430.9	759.2
3	334.0	763.4
4	270.0	759.1
5	281.6	760.4
6	348.0	763.0
7	395.6	764.3
8	449.0	777.0

For the 95 -percent confidence interval,

$$
\sigma_{u k}^{2}=\operatorname{var}\left\{\underline{u}_{k}\right\}=\operatorname{var}\left\{\frac{e_{k}}{}\right\}+\operatorname{var}\left\{\underline{e}_{w_{k}}\right\}
$$

where u_{k} is the error between the $k^{\text {th }}$ observation and the prediction. Then,

$$
\begin{aligned}
& \hat{\underline{\sigma}}_{u k}^{2}=s_{1}^{2}+s_{2}^{2} \\
& \hat{\sigma}_{u k}=\left(s_{1}^{2}+s_{2}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\text { Confidence Interval }=\hat{\underline{a}}+\underline{\underline{b}} t_{\mathrm{k}} \pm \mathrm{t}_{\epsilon / 2} \hat{\sigma}_{\mathrm{uk}}
$$

and for a 95 -percent interval with sample size $n=8$,

$$
t_{\epsilon / 2}=2.447
$$

	(1)	(2)	(3)	(4)	(5)
	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-14}$
i	S_{1}	$\mathrm{S}_{1}{ }^{2}$	S_{2}	$\mathrm{s}_{2}{ }^{2}$	$\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}$
1	7.5787797	57.437902	4.8701714	23.718569	81.156471
2	7.5917320	57.634395	4.3088608	18.566281	76.200676
3	7.6341995	58.281002	3.3404762	11.158781	69.439783
4	7.5913653	57.628827	2.7000227	7.290123	64.918950
5	7.6042075	57.823972	2.8163774	7.931982	65.755954
6	7.6298920	58.215252	3.4803356	12.112736	70.327988
7	7.6427343	58.411388	3.9562141	15.651630	74.063018
8	7.7701574	60.375346	4.4895661	20.156204	80.531550
	$\times 10^{-2}$				
i	$\hat{\sigma}_{u k}$	$t_{\epsilon / \Sigma} \mathcal{Z}^{\hat{\sigma}} u k$	$\underline{\hat{a}}+\underline{\hat{b}} t_{k}$	-95\% C.I.	+95\% C.I.
1	9.0086886	2204.426	86603.161	84398.735	88807.587
2	8.7292999	2136.060	86751.169	84615.109	88887.229
3	8.3330536	2039.098	87047.185	85008.087	89086.283
4	8.0572297	1971.604	87491.209	85519.605	89462.813
5	8.1090045	1984.273	87639.217	85654.944	89623.490
6	8.3861784	2052.098	87935.233	85883.135	89987.331
7	8.6059873	2105.885	88083.241	85977.356	90189.126
8	8.9739373	2195.922	88231.249	86035.327	90427.171

C. 2 THE EXPONENTIAL MODEL

The data used to quantize the model consist of n observations of the random variable \underline{w}_{i} made at times t_{i}. The expected value of \underline{w}_{i}, or the assumed process model, is given by the following exponential function of time,

$$
E\left\{\underline{w}_{i}\right\}=w_{i}=a-b e^{-c t_{i}}, c>0
$$

Two methods have been used to evaluate the parameters a, b, and c. In one, the classic, direct application of maximum likelihood estimation results in four normal equations, three of which are coupled and non-linear. Solution of this trio is accomplished by an iterative numerical procedure. Experience has shown, however, that this iterative process often fails to converge, in which event the model cannot be used. The second method, designed to overcome this problem, results in three, linear, normal equations, two of which are coupled. The linearity is achieved by assigning values to c (the parameter producing the non-linear terms in the first method) from within a known interval. This allows a straightforward solution for a and b evaluation of the likelihood function. This is repeated for other values of c within the interval and the

AUG ${ }^{1} 3$	*	86401	**	10	*	90	*	0	**	757.9	*	1281.5
SEP'63	*	87916	**	10	*	90	*	0	**	759.2	*	1097.8
OC T'63	*		**		*		*		**		*	
NOV'63	*	86648	**	8	*	91	*	1	*	763.5	*	734.6
DEC '63	*		**		*		*		**		*	
JAN'64	*		**		*		*		**		*	
FEB'64	*	86992	**	8	*	90	*	2	**	759.2	*	250.7
MAR'64	*	86542	**	8	*	90	*	2	**	760.5	*	207.5
APR'64	*		**		*		*		**		*	
MAY'64	*	88056	**	8	*	90	*	2	**	763.0	*	460.5
JUN'64	*	88460	**	8	*	90	*	2	**	764.3	*	633.1
JUL'64	*	88791	**	6	*	92	*	2	**	777.1	*	811.9

BEGIN EXTRAPOLATION

AUG '64	*	**	6	*	89	*	5	**	750.6	*	993.5
SEP'64	*	**	6	*	85	*	9	**	724.0	*	1176.7
OCT'64	*	**	5	*	82	*	12	**	697.3	*	1360.7
NOV'64	*	*	5	*	79	*	16	**	670.5	*	1545.4
DEC '64	*	**	5	*	76	*	19	**	643.7	*	1730.4
JAN'65	*	**	5	*	72	*	23	*	616.7	*	1915.7
FEB'65	*	**	4	*	69	*	26	**	589.7	*	2101.2
MAR ${ }^{6} 5$	*	**	4	*	66	*	30	*	562.6	*	2286.9
APR'65	*	**	4	*	62	*	33	**	535.4	*	2472.7
MAY'65	*	**	4	*	59	*	37	**	508.1	*	2658.6
JUN'65	*	**	4	*	56	*	40	**	480.7	*	2844.5
JUL'65	*	**	3	*	53	*	44	**	453.2	*	3030.5
AUG'65	*	**	3	*	49	*	47	**	425.7	*	3216.6
SEP'65	*	**	3	*	46	*	51	**	398.0	*	3402.7
OCT'65	*	**	3	*	43	*	54	**	370.3	*	3588.9
NOV'65	*	**	3	*	39	*	58	**	342.5	*	3775.1
DEC'65	*	**	2	*	36	*	61	**	314.7	*	3961.3
JAN'66	*	**	2	*	33	*	65	**	286.8		4147.6
FEB'66	*	**	2	*	30	*	68	**	258.8		4333.8
MAR'66	*	**	2	*	26	*	72	**	230.8	*	4520.1
APR'66	*	**	2	*	23	*	75	**	202.8	*	4706.4
MAY'66	*	*	1	*	20	*	79	**	174.8	*	4892.7
JUN'66	*	**	1	*	16	*	82	**	146.9	*	5079.0
JUL'66	*	**	1	*	13	*	86	**	119.3	*	5265.3
AUG'66	*	**	1	*	10	*	89	**	92.2	*	5451.7
SEP'66	*	**	0	*	7	*	93	**	66.4	*	5638.0
OCT'66	*	**	0	*	3	*	96	**	44.5	*	5824.4
NOV'66	*	**	0	*	0	*	100	**	35.1	*	6010.8

Figure C-2. Sample Computer Printout Spacecraft Weight (Sheet 1 of 2)

$\begin{aligned} & * * * * \\ & * * * * \end{aligned}$	LEAST						
****	SQUARE	**	CONF	*	MEAN		CONF.
****	86598	**	82960	*	86603	*	90246
****	86748	**	83485	*	86751	*	90017
****		**		*		*	
****	87046	**	84454	*	87047	*	89640
****		**		*		*	
****		**		*		*	
****	87494	**	85535	*	87491	*	89448
****	87644	**	85710	*	87639	*	89568
****		**		*		*	
****	87942	**	85754	*	87935	*	90116
****	88092	**	85654	*	88083	*	90512
****	88241	**	85481	*	88231	*	90981
****	88390	**	85332	*	88379	*	91426
****	88540	**	85146	*	88527	*	91908
****	88689	**	84934	*	88675	*	92417
****	88838	**	84701	*	88823	*	92945
****	88988	**	84453	*	88971	*	93489
****	89137	**	84195	*	89119	*	94044
****	89286	**	83927	*	89267	*	94607
****	89435	**	83652	*	89415	*	95178
****	89585	**	83372	*	89563	*	95754
****	89734	**	83088	*	89711	*	96334
****	89883	**	82800	*	89859	*	96918
****	90033	**	82509	*	90007	*	97505
****	90182	**	82215	*	90155	*	98095
****	90331	**	81920	*	90303	*	98686
****	90481	**	81623	*	90451	*	99280
****	90630	**	81324	*	90599	*	99875
****	90779	**	81023	*	90747	*	100471
****	90929	**	80722	*	90895	*	101069
****	91078	**	80420	*	91043	*	101667
****	91227	**	80116	*	91191	*	102266
****	91377	**	79812	*	91339	*	102866
****	91526	**	79507	*	91487	*	103467
****	91675	**	79202	*	91635	*	104069
****	91825	**	78896	*	91783	*	104671
****	91974	**	78589	*	91931	*	105273
****	92123	**	78282	*	92079	*	105877
****	92273	**	77975	*	92227	*	106480
****	92422	**	77667	*	92375	*	107084

Figure C-2. Sample Computer Printout Spacecraft Weight (Sheet 2 of 2)
search is directed always toward the c value providing higher values of the likelihood function. When the maximum value of this function is thus determined, the corresponding values of a, b, and c are, by definition, the maximum likelihood estimators and the model is then quantized. It should also be noted that the second method leads directly to a means of determining confidence intervals, whereas the first method would require the use of Monte Carlo methods or linear approximations.

As both of these methods have been programmed and used (the second is used exclusively at this time) the following discussion includes the details of both. The first portion is identical in both cases.

It has been assumed that the following relationship holds:

$$
\underline{w}_{i}=w_{i}+e_{i}
$$

where \underline{e}_{i} is an unobserved normal error having zero mean and standard deviation σ_{i}. The observed weight consists of three parts, namely

$$
\underline{w}_{i}=E_{i} \underline{w}_{i}+C_{i} \underline{w}_{i}+A_{i} \underline{w}_{i}
$$

with

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{i}} \underline{w}_{\mathrm{i}}=\text { fraction of } \underline{w}_{\mathrm{i}} \text { which is Estimated. } \\
& \mathrm{C}_{\mathrm{i}} \underline{w}_{\mathrm{i}}=\text { fraction of } \underline{w}_{i} \text { which is Calculated. } \\
& A_{i} \underline{w}_{i}=\text { fraction of } \underline{w}_{i} \text { which is Actual or manufactured. }
\end{aligned}
$$

The coefficients E_{i}, C_{i}, and A_{i} are available for every observation. Each of the three parts is now broken into its mean plus an error,

$$
\underline{w}_{i}=\left(w_{E_{i}}+\underline{e}_{E_{i}}\right)+\left(w_{C_{i}}+\underline{e}_{C_{i}}\right)+\left(w_{A_{i}}+\underline{e}_{A_{i}}\right)
$$

with the assumption

$$
\begin{aligned}
& w_{E_{i}}=E_{i} w_{i} \\
& w_{C_{i}}=C_{i} w_{i} \\
& w_{A_{i}}=A_{i} w_{i}
\end{aligned}
$$

It follows that,

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{E}_{\mathrm{i}}}+\mathrm{w}_{\mathrm{C}_{\mathrm{i}}}+\mathrm{w}_{\mathrm{A}_{\mathrm{i}}} \\
& \underline{e}_{\mathrm{i}}=\underline{e}_{\mathrm{E}_{\mathrm{i}}}+\underline{e}_{\mathrm{C}_{\mathrm{i}}}+\underline{\mathrm{e}}_{\mathrm{A}_{\mathrm{i}}}
\end{aligned}
$$

The term "error" should be understood in a very broad sense. Even if the total weight would be measured exactly, without any error in the conventional sense, this weight would still not be expected to follow the exponential function.

Instead, view the exact weight as being a random phenomenon, the deviation of which from some trend is caused by the interaction of many random causes. It is this deviation which is the "error" of interest here.

The three component errors are assumed to be normally and independently distributed with zero mean and standard deviations $\sigma_{\mathrm{E}_{\mathrm{i}}}, \sigma_{\mathrm{C}_{\mathrm{i}}}$, and $\sigma_{\mathrm{A}_{\mathrm{i}}}$. A fundamental result of statistics then states that

$$
\sigma_{i}^{2}=\sigma_{E_{i}}^{2}+\sigma_{C_{i}}^{2}+\sigma_{A_{i}}^{2}
$$

It is further assumed that the ratio of standard deviation to mean of the three random weights is constant, specifically

$$
\begin{aligned}
& \frac{\sigma_{E_{i}}}{{ }^{w_{E_{i}}}}=\mathrm{s} \\
& \frac{{ }^{\sigma} \mathrm{C}_{i}}{{ }^{w_{C_{i}}}}=\mathrm{R}_{\mathrm{i}} \mathrm{~s}
\end{aligned}
$$

$$
\frac{{ }^{\sigma} \mathrm{A}_{\mathrm{i}}}{\mathrm{w}_{\mathrm{A}_{\mathrm{i}}}}=\mathrm{R}_{2} \mathrm{~s}
$$

The ratio s is an unknown parameter which will be estimated, while the factors R_{1} and R_{2} must be specified.

The variance of the $i^{\text {th }}$ observation now obtains as

$$
\sigma^{2}=s^{2} \cdot m_{i}^{2}
$$

where $m_{i}{ }^{2}$ is a weighting factor

$$
m_{i}^{2}=w_{i}^{2}\left[E_{i}^{2}+R_{1}^{2} C_{i}^{2}+R_{i}^{2} A_{i}^{2}\right]
$$

The weighting factor is actually a constant, but contains the unknown value of w_{i}. For computational purposes one will need some estimates \widetilde{w}_{i} of w_{i}, and use instead of $m_{i}{ }^{2}$

$$
\tilde{\mathrm{m}}_{\mathrm{i}}^{2}=\tilde{\mathrm{w}}_{\mathrm{i}}^{2}\left[\mathrm{E}_{\mathrm{i}}^{2}+\mathrm{R}_{1}^{2} \mathrm{C}_{\mathrm{i}}^{2}+\mathrm{R}_{2}^{2} \mathrm{C}_{\mathrm{i}}^{2}\right]
$$

As a first estimate of w_{i} one can use the actual observation, i.e., $\widetilde{w}_{i}=w_{i}$, or else points from a linear curve fit. The latter procedure is used in the computer program developed for this model.

The final assumption is that the random variables \underline{w}_{i} and \underline{w}_{j}, where $\mathbf{i} \neq \mathrm{j}$, are independent. This is perhaps the most limiting assumption. For example, a project manager may decide to freeze the weight of some component for several months. The fact that the weight stays constant during that time is then not attributable to randomness, but is rather a result of strong dependence.

The likelihood function is

$$
L=\prod_{i=1}^{n}\left[\frac{1}{s m_{i} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\underline{w}_{i}-a+b e^{-c t_{i}}}{s m_{i}}\right)^{2}}\right]
$$

It is at this point that the treatment diverges as described earlier. In the first case, $\hat{a}, \hat{b}, \hat{c}$, and \hat{s} are to be estimated, while in the second, values are assigned to c and a, b and s only are estimated.

C.2.1 METHOD I

It is required that the maximum likelihood estimators $\hat{a}, \hat{b}, \hat{c}$, and \hat{s} be found which yield the maximum value of the likelihood function, i.e.,

$$
L_{\max }=\prod_{i=1}^{n}\left[\frac{1}{\hat{s m}_{i} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\underline{w}_{i}-\hat{\hat{a}}+\underline{\hat{b}} \mathrm{e}^{-\hat{\hat{c}^{t}}} \mathrm{i}}{\hat{\hat{\mathrm{~s}} m_{\mathrm{i}}}}\right)^{2}}\right]
$$

Taking the partial derivatives of the natural logarithm of L

$$
\ln L=-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-a+b e^{-c t_{i}}}{s m_{i}}\right)^{2}-\frac{n}{2} \ln 2 \pi-n \ln s-\sum_{i=1}^{n} \ln m_{i}
$$

with respect to the four parameters and equating them to zero produces the following normal equations

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\underline{w}_{i}-\hat{\hat{a}}+\underline{\hat{b}} \mathrm{e}^{-\hat{\mathrm{c}} \mathrm{t}_{i}}}{m_{i}^{2}}=0 \\
& \sum_{i=1}^{n} \frac{\underline{w}_{i}-\underline{\hat{a}}+\hat{\hat{b}} e^{-\hat{\underline{c} t}} \mathbf{i}}{m_{i}^{2}}\left(e^{-\hat{c}^{2}} \mathbf{i}\right)=0 \\
& \sum_{i=1}^{n} \frac{\underline{w}_{i}-\hat{\hat{a}}+\hat{\underline{b}} e^{-\hat{\underline{c} t}} i}{m_{i}^{2}}\left(-t_{i} \underline{\hat{b}} e^{-\hat{c} t_{i}}\right)=0 \\
& \underline{\underline{s}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\hat{\underline{a}}+\underline{\hat{b}} e^{-\underline{\hat{c}_{t}}} i}{m_{i}}\right)^{2}
\end{aligned}
$$

Of these four equations, the last one is seen to be independent, while the first three are simultaneous equations. Since they are nonlinear, there exists no closed form solution. The computer program resorts to an iterative solution, the derivation of which is given in the following section. One starts out with an initial estimate $\hat{\underline{a}}_{1}, \hat{\underline{b}}_{1}$,
and \hat{c}_{1} of the three parameters a, b, and c. The iterative scheme provides correc. tions of the previous estimate. Thus, after the $\mathrm{j}^{\text {th }}$ iteration,

$$
\left[\begin{array}{l}
\hat{\underline{a}}_{j+1} \\
\hat{\underline{b}}_{j+1} \\
\hat{\underline{c}}_{j+1}
\end{array}\right]=\left[\begin{array}{l}
\hat{a} \\
\hat{a}_{j} \\
\underline{b}_{j} \\
\hat{c}_{j}
\end{array}\right]+\left[\begin{array}{l}
\hat{\alpha}_{j} \\
\hat{\underline{\beta}}_{j} \\
\hat{\underline{Y}}_{j}
\end{array}\right]
$$

where the corrections $\underline{\hat{\alpha}}, \hat{\underline{\beta}}$, and $\hat{\underline{y}}$ are determined by

The weighting factor $m_{i j}{ }^{2}$ (i.e., m^{2} for the $i^{\text {th }}$ data point and the $j^{\text {th }}$ iteration) is in agreement with the $m_{i}{ }^{2}$ equation given earlier.

$$
m_{i j}^{2}=\left[\hat{a}_{j}-\hat{b}_{j} e^{-\hat{c}_{j} t_{i}}\right]^{2}\left[E_{i}^{2}+R_{1}^{2} C_{i}^{2}+R_{2}^{2} A_{i}^{2}\right]
$$

The iterative process is terminated when $\hat{\alpha}, \hat{\beta}$, and $\hat{\gamma}$ have become small enough to be insignificant.

After $\underline{\hat{a}}, \underline{\hat{b}}$, and $\underline{\hat{c}}$ have thus been determined, the unbiased estimator of s is computed.

$$
\underline{\hat{s}}=\sqrt{\frac{1}{n-3} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\underline{\hat{a}}+\underline{\hat{b}} e^{-\hat{\mathrm{c}} \mathrm{t}_{i}}}{m_{i}}\right)}
$$

C.2.1.1 Numerical Solution of Nonlinear Normal Equations

Two methods are explored for the solution of the nonlinear normal equations. The first method is described on pages 478-480 of Reference while the second method is Newton's method, to be found on pages 204-205 of the same reference.

The first method was found superior for the model at hand. It converged on the average after 10 iterations while the second method always took longer, usually at least twice as long. In some cases it did not converge at all where the first method had converged. The first method is therefore the one now being used in the program. These two methods are described in a general form in the following paragraphs.

Consider the problem of representing the mean of a stochastic process $\underline{w}(t)$ by some function $g(t)$ containing k unknown parameters θ_{1} to θ_{k}, namely

$$
\mathrm{E}\{\underline{\mathrm{w}}(\mathrm{t})\}=\mathrm{g}\left(\mathrm{t} ; \theta_{\mathrm{I}}, \ldots, \theta_{\mathrm{k}}\right)
$$

Estimation of these parameters is to be made from the observation $\left(\underline{w}_{i}, t_{i}\right) i=1, \ldots, n$. Both the least-squares and the maximum-likelihood methods then lead to the condition

$$
\sum_{i=1}^{n}\left[\frac{\underline{w}_{i}-g\left(t_{i} ; \theta_{1}, \ldots, \theta_{k}\right)}{m_{i}}\right]^{2}=\min
$$

or more generally

$$
\sum_{i=1}^{n}\left[f\left(\underline{w}_{i}, t_{i} ; \theta_{1}, \ldots, \theta_{k}\right)\right]^{2} \quad=\min
$$

The realization of this condition occurs when θ_{1} to θ_{k} assume simultaneously the values of the values of the estimators $\hat{\theta}_{I}$ to $\hat{\theta}_{\mathrm{k}}$ which are determined from the k simultaneous equations.

$$
\sum_{i=1}^{n} f\left(\underline{w}_{i}, t_{i} ; \hat{\theta}_{1}, \ldots, \hat{\theta}_{k}\right) \cdot \frac{\partial}{\partial \theta_{l}} f\left(\underline{w}_{i}, t_{i} ; \hat{\theta}_{1}, \ldots, \hat{\theta}_{k}\right)=0 .
$$

$$
\ell=1,2, \ldots, k
$$

When the function f is linear in the parameters θ_{1} to θ_{k}, then solution of this equation in closed form is straightforward. We are concerned now with cases where f is not linear in at least one of the coefficients θ_{1} to θ_{k}.

C.2.1.2 First Method

This method involves a linearization of the function f in the form of a truncated Taylor series. Let us write

$$
\mathrm{f}\left(\underline{\mathrm{w}}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}} ; \hat{\theta}_{1}, \ldots, \hat{\theta}_{\mathrm{k}}\right)=\mathrm{f}_{\mathrm{i}}(\bar{\theta})
$$

where $\bar{\theta}$ is the vector of estimators, i.e.,

$$
\bar{\theta}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots, \hat{\theta}_{\mathrm{k}}\right)
$$

and let us define an incremental estimator vector

$$
\bar{\delta}=\left(\hat{\delta}_{1}, \hat{\delta}_{2}, \ldots, \hat{\delta}_{k}\right)
$$

The linearization is

$$
\mathrm{f}(\bar{\theta}+\bar{\delta})=\mathbf{f}_{\mathrm{i}}(\bar{\theta})+\sum_{\ell=1}^{\mathrm{k}} \hat{\delta}_{\ell} \cdot \frac{\partial \mathbf{f}(\bar{\theta})}{\partial \theta}
$$

Now introduce the new function into the objective function

$$
\sum_{i=1}^{n}\left[f_{i}(\bar{\theta}+\bar{\delta})\right]^{2}=\min
$$

and consider the value of $|\bar{\theta}|$ fixed while that of $\bar{\delta}$ is to be determined from this condition. It follows that

$$
\begin{aligned}
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}(\bar{\theta}+\bar{\delta}) \cdot \frac{\partial}{\partial \theta_{\ell}} \mathrm{f}(\bar{\theta}+\bar{\delta}) & =0 \\
\ell & =1,2, \ldots, \mathrm{k}
\end{aligned}
$$

which after substitution of the linearization becomes explicitly

$$
\sum_{i=1}^{n}\left[f_{i}(\bar{\theta})+\hat{\delta}_{1} \frac{\partial \mathrm{f}_{\mathrm{i}}(\bar{\theta})}{\partial \theta_{1}}+\ldots+\hat{\delta}_{k} \frac{\partial \mathrm{f}_{\mathrm{i}}(\bar{\theta})}{\partial \theta_{\mathrm{k}}}\right] \frac{\partial \mathrm{f}_{\mathbf{i}}(\bar{\theta})}{\partial \theta_{\ell}}=0
$$

$$
\ell=1,2, \ldots, k
$$

Let $\bar{\theta}_{\mathrm{j}}$ be the estimator before the $\mathrm{j}^{\text {th }}$ iteration. The $\mathrm{j}^{\text {th }}$ iteration yields an improvement such that

$$
\bar{\theta}_{j+1}=\bar{\theta}_{j}+\bar{\delta}_{j}
$$

where

$$
\left[\begin{array}{c}
\hat{\delta}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\hat{\delta}_{\mathrm{k}}
\end{array}\right]_{\mathrm{j}}=\left[\mathrm{a}_{\mathrm{rs}}(\mathrm{j})\right]^{-1}\left[\mathrm{~b}_{\mathrm{r}}(\mathrm{j})\right]
$$

and, from a solution of the normal equations

$$
\begin{aligned}
& a_{r s}(j)=\sum_{i=1}^{n} \frac{\partial f_{i}\left(\bar{\theta}_{j}\right)}{\partial \theta_{r}} \cdot \frac{\partial f_{i}\left(\bar{\theta}_{j}\right)}{\partial \theta_{s}} \\
& b_{r}(j)=\sum_{i=1}^{n} f_{i}\left(\bar{\theta}_{j}\right) \cdot \frac{\partial f_{i}\left(\bar{\theta}_{j}\right)}{\partial \theta_{r}}
\end{aligned}
$$

Note that the matrix $a_{r s}$ is symmetrical.

C.2.1.3 Second Method

Again taking the function

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(\underline{w}_{i}, t_{i} ; \hat{\theta}_{1}, \ldots, \hat{\theta}_{k}\right) \cdot \frac{\partial}{\partial \hat{\theta}_{\ell}} \mathrm{f}\left(\underline{w}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}} ; \hat{\theta}_{1}, \ldots, \hat{\theta}_{k}\right) & =0 \\
\ell & =1,2, \ldots, k
\end{aligned}
$$

a new function $\mathrm{F}_{\mathrm{i} \ell} \ell^{(\bar{\theta})}$ is defined

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i} \ell}(\theta)=\mathrm{f}_{\mathrm{i}}(\bar{\theta}) \cdot \frac{\partial}{\partial \theta} \mathrm{f}_{\ell}(\bar{\theta}) & =0 \\
\ell & =1,2, \ldots, \mathrm{k}
\end{aligned}
$$

This function involves the solution of k simultaneous nonlinear equations, which will be Newton's method. This again makes use of linearizing $\mathrm{F}_{\mathrm{i} \ell}(\bar{\theta})$ through a truncated Taylor series and provide iterative improvements on some initial estimator. Using the earlier expression for $\bar{\theta}_{j+1}$ and

$$
\left[\begin{array}{c}
\hat{\delta}_{1} \\
\vdots \\
\hat{\delta}_{k}
\end{array}\right]{ }_{j}
$$

for the iteration we find

$$
\begin{aligned}
& a_{r s}(j)=\sum_{i=1}^{n} \frac{\partial F_{i r}(\bar{\theta})}{\theta \partial_{s}}=\sum_{i=1}^{n} \frac{\partial F_{i}(\bar{\theta})}{\theta \partial_{r}} \cdot \frac{\partial F_{i}(\bar{\theta})}{\partial \theta_{s}}+F_{i}(\bar{\theta}) \frac{\partial^{2} F_{i}(\bar{\theta})}{\partial \theta \theta_{r} \partial \theta_{s}} \\
& b_{r}(\mathbf{j})=\sum_{i=1}^{n} F_{i r}(\bar{\theta})=\sum_{i=1}^{n} F_{i}(\bar{\theta}) \cdot \frac{\partial F_{i}(\bar{\theta})}{\partial \theta_{r}}
\end{aligned}
$$

It is interesting to note that the $\mathrm{b}_{\mathrm{r}}(\mathrm{j})$ values are identical for the two methods.

C.2.2 METHOD II

In this approach, as values are assigned to c, denoted by \tilde{c}, the maximum likelihood function becomes

$$
L_{\max }=\prod_{i=1}^{n}\left[\frac{1}{\underline{\hat{s} m_{i} \sqrt{2 \pi}}} \cdot e^{\left.-\frac{1}{2}\left(\frac{\underline{w} i-\underline{\hat{a}}+\hat{\underline{b}} e^{-\tilde{c} t_{i}}}{\underline{\hat{s} m_{i}}}\right)^{2}\right]}\right]
$$

where $\underline{\hat{a}}, \underline{\hat{b}}, \underline{\hat{s}}$ are maximum likelihood estimators and \tilde{c} is a value for c in its range of values. Since it is often more convenient to maximize the natural logarithm of L, the maximum of which coincides with that of its argument, we have instead,

$$
\ln L=-\frac{1}{2} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-w_{i}}{s m_{i}}\right)^{2}-\frac{n}{2} \ln 2 \pi-n \ln s-\sum_{i=1}^{n} \ln m_{i}
$$

By setting the partial derivatives of $\ln \mathrm{L}$ with respect to the three parameters $\mathrm{a}, \mathrm{b}, \mathrm{s}$ equal to zero, the three normal equations for the maximum likelihood estimators are obtained.

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial a} \left\lvert\, \begin{array}{l}
a=\frac{\hat{a}}{b=\underline{\hat{b}}} \\
c=\tilde{c}
\end{array} \sum_{i=1}^{n} \frac{\underline{w}_{i}-w_{i}}{m_{i}{ }^{2}}=0\right. \\
& \left.\frac{\partial \ln L}{\partial b}\right|_{\begin{array}{l}
a=\hat{a} \\
b=\underline{\hat{a}} \\
c=\tilde{c}
\end{array}} ^{l}=\sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-w_{i}}{m_{i}^{2}}\right) e^{-\widetilde{c t}_{i}}=0 \\
& \frac{\partial \ln L}{\partial s} \left\lvert\, \begin{array}{l}
a=\frac{\hat{a}}{b}=\frac{1}{\hat{b}} \\
c=\tilde{c} \\
\hat{s}^{3}
\end{array} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-w_{i}}{m_{i}}\right)^{2}-\frac{n}{\hat{s}}=0\right.
\end{aligned}
$$

Solving the first two simultaneously yields

$$
\left[\begin{array}{l}
\hat{a} \\
\hat{b}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{n} \frac{1}{m_{i}^{2}} & -\sum_{i=1}^{n} \frac{e^{-\widetilde{c t}_{i}}}{m_{i}{ }^{2}} \\
\sum_{i=1}^{n} \frac{e^{-\widetilde{c t}}}{m_{i}}
\end{array}\right]^{-1} \quad-\sum_{i=1}^{n} \frac{e^{-2 \widetilde{c c_{i}}}}{m_{i}{ }^{2}} \quad\left[\begin{array}{l}
\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}} \\
\sum_{i=1}^{n} \frac{\underline{w}_{i} e^{-\widetilde{c t}}{ }_{i}}{m_{i}{ }^{2}}
\end{array}\right]
$$

After $\hat{\hat{a}}$ and $\hat{\underline{b}}$ have been determined, the unbiased estimator of s, rather than the maxi-- mum likelihood estimator defined by the third normal equation is computed. It is

$$
\underline{\hat{s}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(\frac{\underline{w}_{i}-\underline{\hat{a}}+\underline{\hat{b}} e^{-c t_{i}}}{m_{i}}\right)^{2}}
$$

Once the values for "a" and "b" are determined for a given c value, the value $\ln L$ is computed. This process is continued for each c in the range. The maximum $\ln L$ determines the parameters a, b, c to be used by the model.

C.2.3 PREDICTION AND PREDICTION INTERVAL

Consider pairs $\left(t_{k}, \underline{w}_{k}\right)$ which are to be predicted.

$$
\underline{w}_{k}=w_{k}+\underline{e}_{k}
$$

Since a, b, and s are not known, we use the estimators $\hat{\hat{a}}, \underline{\hat{b}}$, and $\hat{\underline{s}}$ to assess the confidence interval due to the error \underline{e}_{k}. The predicted value of \underline{w}_{k} is the estimator of w_{k},

$$
\hat{\underline{w}}_{\mathrm{k}}=\hat{\hat{a}}-\hat{\underline{b}} \mathrm{e}^{-\widetilde{\mathrm{c}} \mathrm{k}}
$$

and

$$
\mathrm{E}\left\{\underline{\mathrm{w}}_{\mathrm{k}}\right\}=\mathrm{E}\left\{\hat{\mathrm{w}}_{\mathrm{k}}\right\}=\mathrm{w}_{\mathrm{k}}
$$

Both $\underset{\hat{a}}{\hat{a}}$ and \hat{b} are inear combinations of the normally distributed random variables ${\underset{W}{w}}$, hence $\hat{\mathrm{w}}_{\mathrm{k}}$ is normally distributed and

$$
\underline{\hat{w}}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}}+\underline{e}_{\mathrm{w}}^{\mathrm{k}}
$$

where $\hat{e}_{\hat{w}}^{\hat{w}}$ is a normal error with zero mean. Let \underline{u}_{k} be the difference between the $k^{\text {th }}$ observation and prediction

$$
\underline{\mathrm{u}}_{\mathrm{k}}=\underline{\mathrm{w}}_{\mathrm{k}}-\underline{\hat{\mathrm{w}}}_{\mathrm{k}}=\underline{\mathrm{e}}_{\mathrm{k}}-\underline{\mathrm{e}}_{\hat{w}_{\mathrm{k}}}
$$

It is seen that the error \underline{u}_{k} has two sources. One, \underline{e}_{k}, says that the observation \underline{w}_{k} will deviate from its expected value, while secondly the estimate of the expected value contains the error $\underline{e}_{\mathrm{w}_{\mathrm{k}}}$. The error $\underline{\mathrm{u}}_{\mathrm{k}}$ is again normal with parameters

$$
\begin{aligned}
& E\left\{\underline{u}_{k}\right\}=0 \\
& \sigma_{u_{k}}^{2}=\operatorname{var}\left\{\underline{u}_{k}\right\}=\operatorname{var}\left\{\underline{e}_{k}\right\}+\operatorname{var}\left\{\underline{e}_{\hat{w}_{k}}\right\}
\end{aligned}
$$

The last equation follows from the stipulated independence of observations. The variance of e_{k} follows simply from

$$
\operatorname{var}\left\{\underline{e}_{k}\right\}=\sigma^{2}=s^{2} \cdot m_{k}^{2}
$$

In place of $\mathrm{m}_{\mathrm{k}}{ }^{2}$ its estimate is used

$$
\underline{\hat{m}}_{\mathrm{k}}^{2}=\hat{\underline{w}}_{k}^{2}\left[\mathrm{E}_{\mathrm{k}}^{2}+\mathrm{R}_{1}^{2} \mathrm{C}_{\mathrm{k}}^{2}+\mathrm{R}_{2}^{2}+\mathrm{A}_{\mathrm{k}}^{2}\right]
$$

The variance of $\mathrm{e}_{\mathrm{w}_{\mathrm{k}}}$ is

$$
\operatorname{var}\left\{\underline{e}_{w_{k}}\right\}=\operatorname{var}\{\underline{\hat{a}}\}+e^{-2 c t_{k}} \operatorname{var}\{\underline{\hat{b}}\}-2 e^{-c t} k_{\operatorname{cov}}(\hat{a}, \hat{b})
$$

This equation contains the covariance of $\underline{\hat{a}}$ and $\underline{\hat{b}}$ which implies that $\underline{\hat{a}}$ and $\underline{\hat{b}}$ are dependent. From the solution of the normal equations,

$$
\begin{aligned}
& \underline{\hat{a}}=\frac{\underline{B D}-\underline{E}}{A D-C^{2}} \\
& \hat{\hat{b}}=\frac{\underline{B C}-A E}{A D-C^{2}}
\end{aligned}
$$

where

$$
A=\sum_{i=1}^{n} \frac{1}{m_{i}^{2}}
$$

$$
\begin{aligned}
& \underline{B}=\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}} \\
& C=\sum_{i=1}^{n} \frac{e^{-\tilde{c t_{i}}}}{m_{i}^{2}} \\
& D=\sum_{i=1}^{n} \frac{e^{-2 \tilde{c} t_{i}}}{m_{i}^{2}} \\
& \underline{E}=\sum_{i=1}^{n} \frac{w_{i} e^{-\tilde{c t}_{i}}}{m_{i}^{2}}
\end{aligned}
$$

Therefore $\underline{\hat{w}}_{k}$ can be expressed as a function of random variables \underline{B} and \underline{E}

$$
\hat{\underline{\mathrm{w}}}_{\mathrm{k}}=\alpha_{\mathrm{k}} \underline{\underline{B}}+\beta_{\mathrm{k}} \underline{\mathrm{E}}
$$

where

$$
\begin{aligned}
\alpha_{k} & =\frac{D-C e^{-\widetilde{c t}}{ }_{k}}{A D-C^{2}} \\
\beta_{k} & =\frac{A e^{-\widetilde{-t_{k}}}-C}{A D-C^{2}}
\end{aligned}
$$

This leads to

$$
\operatorname{var}\left\{\underline{\mathrm{e}}_{\mathrm{w}_{\mathrm{k}}}\right\}=\alpha_{\mathrm{k}}^{2} \operatorname{var}\{\underline{\mathrm{~B}}\}+\beta_{\mathrm{k}}^{2} \operatorname{var}\{\mathrm{E}\}+2 \alpha_{k_{k}} \operatorname{cov}\{\underline{\mathrm{~B}}, \underline{\mathrm{E}}\}
$$

Since both \underline{B} and \underline{E} consist of a sum of independent normal variables we can write

$$
\operatorname{var}\{\underline{B}\}=\sum_{i=1}^{n} \frac{\sigma_{i}{ }^{2}}{m_{i}^{4}}=s^{2} \sum_{i=1}^{n} \frac{1}{m_{i}^{2}}=s^{2} A
$$

$$
\operatorname{var}\{\underline{E}\}=\sum_{i=1}^{n} \frac{e^{-2 \widetilde{\mathrm{ct}_{i}}}}{m_{i}^{4}} \sigma_{i}^{2}=s^{2} \sum_{i=1}^{n} \frac{e^{-2 \widetilde{\mathrm{ct}_{i}}}}{m_{i}{ }^{2}}=s^{2} D
$$

The covariance of \underline{B} and \underline{E} is defined as

$$
\begin{aligned}
\operatorname{cov}\{\underline{B}, \underline{E}\}= & E\left\{\left(\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}}\right)\left(\sum_{i=1}^{n} \frac{\underline{w}_{i} e^{-\tilde{c}_{i}}}{m_{i}^{2}}\right)\right\} \\
& -E\left\{\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}}\right\} E\left\{\sum_{i=1}^{n} \frac{\underline{w}_{i} e^{-\tilde{c t}_{i}}}{m_{i}^{2}}\right\}
\end{aligned}
$$

This equation is simplified by the fact that, due to independence

$$
E\left\{\underline{w}_{i} \underline{w}_{j}\right\}=E\left\{\underline{w}_{i}\right\} \cdot E\left\{\underline{w}_{j}\right\}, i \neq j
$$

and there results

$$
\begin{aligned}
\operatorname{cov}\{\underline{B}, \underline{E}\} & =E\left\{\sum_{i=1}^{n} \frac{e^{-\widetilde{c t}_{i}}}{m_{i}^{4}} \underline{w}_{i}^{2}\right\}-e^{-\widetilde{c t}_{i}}\left[E\left\{\sum_{i=1}^{n} \frac{\underline{w}_{i}}{m_{i}^{2}}\right\}\right] \\
& =\sum_{i=1}^{n} \frac{e^{-\widetilde{c t}_{i}}}{m_{i}^{4}} \sigma^{2}=s^{2} c
\end{aligned}
$$

Therefore

$$
\operatorname{var}\left\{\underline{\mathrm{e}} \hat{\mathrm{w}}_{\mathrm{k}}\right\}=\mathrm{s}^{2}\left[\alpha_{\mathrm{k}}^{2} \mathrm{~A}+\beta_{\mathrm{k}}^{2} \mathrm{D}+2 \alpha_{\mathrm{k}} \beta_{\mathrm{k}}^{\mathrm{C}}\right]
$$

or by substitution

$$
\operatorname{var}\left\{\mathrm{e}_{\hat{w}_{k}}\right\}=\frac{\mathrm{s}^{2}}{A D-C^{2}}\left[A e^{-2 \tilde{c}_{k}}-2 C e^{\cdot-\tilde{c t}_{k}}+D\right]
$$

By comparison of this expression with the initial expression for var $\left\{\underline{e}_{\mathbf{w}_{\mathbf{k}}}\right\}$, it is seen that

$$
\begin{aligned}
& \operatorname{var}\{\underline{\hat{a}}\}=s^{2} \frac{D}{A D-C^{2}} \\
& \operatorname{var}\{\underline{\hat{b}}\}=s^{2} \frac{A}{A D-C^{2}} \\
& \operatorname{cov}\{\underline{\hat{a}}, \hat{\underline{b}}\}=s^{2} \frac{C}{A D-C^{2}}
\end{aligned}
$$

now

If s were known the prediction interval could be readily established since \underline{u}_{k} is normally distributed. For example, for a 90 percent interval on \underline{w}_{k} one would use

$$
\underline{\hat{a}}-\underline{\hat{b}} \mathrm{e}^{-\tilde{c}_{\mathrm{t}}^{\mathrm{k}}} \pm 1.96 \sigma_{u_{\mathrm{k}}}
$$

With $\hat{\underline{s}}$ available instead of s, this may still be used if the sample is large enough, say $\mathrm{n}>30$. For small samples we know that the random variable

$$
\underline{\mathrm{t}}=\frac{\frac{\mathrm{u}_{\mathrm{k}}}{\sigma_{\mathrm{u}_{\mathrm{k}}}}}{\sqrt{\frac{\hat{\mathrm{~s}}^{2}}{\mathrm{~s}^{2}}}}
$$

has the Student t distribution with $n-2$ degrees of freedom, \widehat{s} being the unbiased estimator for s. From this follows the small sample distribution of \underline{u}_{k}

$$
\underline{u}_{\mathrm{k}}=\underline{\mathrm{t}} \sigma_{\mathrm{u}_{\mathrm{k}}} \frac{\hat{\underline{s}}}{\mathrm{~s}}=\underline{\mathrm{t}} \cdot \sigma_{\mathrm{u}_{\mathrm{k}}}
$$

where

$$
\hat{\sigma}_{\underline{u}_{k}}=\underline{\hat{s}}\left(m_{k}+\frac{A e^{-2 \tilde{c} t_{k}}-2 C e^{-\tilde{c t_{k}}}+D}{A D-C^{2}}\right)^{\frac{1}{2}}
$$

the confidence interval containing $(1-\epsilon)$ of all possible outcomes of \underline{w}_{k} is then

$$
\hat{\underline{a}}-\underline{\hat{b}} \mathrm{e}^{-\hat{\mathrm{ct}}} \mathrm{k} \pm \mathrm{t}_{\epsilon / 2} \hat{\sigma}_{\mathrm{u}}
$$

C. 3 THE LOGISTICS MODEL

The computer program for this model fits a curve of the form

$$
w_{i}=\frac{a}{1+b e^{-c t_{i}}}
$$

through a set of observations \underline{w}_{i} made at times t_{i} by the method of weighted least squares.

A range of values of c is established and for each c in the range, initial estimates of a and b in the above model are made. An iterative procedure is employed to obtain corrections, Δa_{j} and Δb_{j} for a and b respectively. When $\left|\Delta a_{j} / a\right|$ and $\left|\Delta b_{j} / b\right|$ are both less than $\epsilon=0.001$, the iteration process is terminated. The weighted sum of the squares of the errors

$$
S=\sum_{i=1}^{n} \rho_{i}\left(\underline{w}_{i}-w_{i}\right)^{2}
$$

is computed and the program repeats the above process for the next value of c in the range. When all c values have been exhausted, the minimum S is determined through inspection and the corresponding values of a, b, and c are the desired parameters to be used in the model.

C.3.1 ESTIMATION OF PARAMETERS

The weighted least squares criteria for fitting a curve to data requires that we minimize

$$
\mathrm{S}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \rho_{\mathrm{i}}\left(\underline{w}_{\mathrm{i}}-\mathrm{w}_{\mathrm{i}}\right)^{2}
$$

where
\underline{w}_{i} is the observation made at time t_{i}.
w_{i} is the prediction given by the model at time t_{i}.

This equation is nonlinear in the parameters a and b as are the normal equations.
This means we must use an iterative procedure to determine the minimum value of S. To apply this technique S is written as

$$
S=\sum_{i=1}^{n}\left[F_{i}\left(\underline{w}_{i}, t_{i}, a, b, c\right)\right]^{2}
$$

and using a truncated Taylor series expansion we have

$$
F_{i}\left(\underline{w}_{i}, t_{i}, a, b, c\right)=F_{i}\left(\underline{w}_{i}, t_{i}, a, b, c\right)+\frac{\partial F_{i}}{\partial a}\left|\begin{array}{l}
\hat{a}_{j} \\
\hat{b}_{j} \\
c
\end{array} \Delta a+\frac{\partial F}{\partial b}\right|_{\hat{b}_{j}}^{\hat{b}_{j}} \Delta b
$$

where \hat{a}_{j}, \hat{b}_{j} are estimates of $a, b ; \Delta a, \Delta b$ improvements to the estimators \hat{a}_{j}, \hat{b}_{j}. In the computer program c ranges from 0.001 to 2 in step sizes of 0.001 . $S_{\text {min }}$ then is given by the iterative process

$$
\left[\begin{array}{c}
\hat{a}_{j+1} \\
\hat{b}_{j+1}
\end{array}\right]=\left[\begin{array}{l}
\hat{a}_{j} \\
\hat{b}_{j}
\end{array}\right]+\left[\begin{array}{c}
\Delta a_{j} \\
\Delta b_{j}
\end{array}\right]
$$

where the corrections Δa_{j} and Δb_{j} are determined by

$$
\left[\begin{array}{ll}
\Delta a_{j} \\
\Delta b_{j}
\end{array}\right]=-\left[\begin{array}{ll}
\sum_{i=1}^{n}\left(\frac{\partial F_{i}}{\partial a}\right)^{2} & \sum_{i=1}^{n}\left(\frac{\partial F_{i}}{\partial a}\right)\left(\frac{\partial F_{i}}{\partial b}\right) \\
\sum_{i=1}^{n}\left(\frac{\partial F_{i}}{\partial a}\right)\left(\frac{\partial F_{i}}{\partial b}\right) & \sum_{i=1}^{n}\left(\frac{\partial F_{i}}{\partial b}\right)^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\sum_{i=1}^{n} F_{i}\left(\frac{\partial F_{i}}{\partial a}\right) \\
\sum_{i=1}^{n} F_{i}\left(\frac{\partial F_{i}}{\partial b}\right)
\end{array}\right]
$$

and

$$
\left\{\begin{array}{l}
F_{i}=\rho_{i}^{\frac{1}{2}}\left(\underline{w}_{i}-w_{i}\right) \\
\frac{\partial F_{i}}{\partial a}=\rho_{i}^{\frac{1}{2}} 1+b e^{-c t_{i}} \\
\frac{\partial F_{i}}{\partial b}=\rho_{i}^{\frac{1}{2}} a^{-c t_{i}}\left(1+b e^{-c t_{i}}\right)^{2}
\end{array}\right.
$$

Substituting these into the above solution yields

The iteration process is terminated when $\left|\Delta a_{j} / a_{j}\right|<0.001$ and $\left|\Delta b_{j} / b_{j}\right|<0.001$.
To initialize the problem first guesses of \hat{a}_{1} and \hat{b}_{1} are required. A least squares curve fit of the form

$$
\tilde{w}_{i}=\tilde{a}+\tilde{b} t_{i}
$$

is fitted to the observed weights.

$$
\tilde{\mathrm{a}}=\frac{\sum_{i=1}^{\mathrm{n}} \underline{w}_{\mathrm{i}} \rho_{\mathrm{i}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}^{2} \rho_{\mathrm{i}}-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} \rho_{\mathrm{i}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} \underline{w}_{\mathrm{i}} \rho_{i}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \rho_{\mathrm{i}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}}^{2} \rho_{\mathrm{i}}-\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{i}} \rho_{\mathrm{i}}\right]^{2}}
$$

$$
\tilde{b}=\frac{\sum_{i=1}^{n} \rho_{i} \sum_{i=1}^{n} \rho_{i} w_{i} t_{i}-\sum_{i=1}^{n} \rho_{i} w_{i} \sum_{i=1}^{n} \rho_{i} t_{i}}{\sum_{i=1}^{n} \rho_{i} \sum_{i=1}^{n} \rho_{i} t_{i}^{2}-\left[\sum_{i=1}^{n} t_{i} \rho_{i}\right]^{2}}
$$

This least squares curve fit is matched with the logistic model at two time points for a value of $\mathrm{c}=0.1$. (For $\mathrm{c}=0.1$ the logistic curve is approximately a straight line in the region where the two curves are to be matched.) The two time points chosen were $t_{1}=n / 4$ and $t_{2}=3 n / 4$. This leads to

$$
\begin{gathered}
\frac{\hat{a}_{1}}{1+\hat{b}_{1} e^{-0.1 t_{2}}}=\tilde{a}+\tilde{b} t_{1} \\
\frac{\hat{a}_{1}}{1+\hat{b}_{1} e^{-0.1 t_{2}}}=\tilde{a}+\tilde{b}_{2}
\end{gathered}
$$

Solving these two equations in the two unknowns \hat{a}_{1} and \hat{b}_{1} yields

$$
\begin{aligned}
& \hat{b}_{1}=\frac{\tilde{b}\left(t_{1}-t_{2}\right)}{\left[e^{-0.1 t_{2}}\left(\tilde{a}+\tilde{b} t_{2}\right)-e^{-0.1 t_{1}}\left(\tilde{a}+\tilde{b} t_{1}\right)\right]} \\
& \hat{a}_{1}=\left(\tilde{a}+\tilde{b}_{1}\right)\left(1+\tilde{b}_{1} e^{-0.1 t_{1}}\right)
\end{aligned}
$$

These values are used as a first approximation to a and b for the first value of c in the established range of c values. They are then improved upon by the iteration process discussed above. The final values of a and b for the first c value are then used as a first estimate for the next value of c in the range, etc.

Once a and b are determined for a given c, a value of S is computed. This is done for each c in the range. The minimum S determines the parameters a, b, and c to be used by the model.

C.3.2 PREDICTION AND PREDICTION INTERVAL

Unlike the linear and exponential models, the logistic model involves a quotient of the parameters a and b. This non-linear combination no longer allows one to say, even if a and b are normally distributed, that the combination is normally distributed. The following discussion resolves this difficulty by using the first values of a and b, with $c=0.1$, to obtain the variance. An approximation is made, based on the number of observation values being more than ten, which yields a slight overestimate to the predicted value as a linear combination of a and b. This error is the estimate of the expected value combined with the error obtained by considering that the observation will deviate from its expected value yields a variance from which, for a specified level of confidence, a confidence interval or prediction interval can be obtained.

Defining the following quantities,

$$
\begin{aligned}
& \underline{\alpha}=\sum_{i=1}^{n} \underline{w}_{i} \rho_{i} \\
& \beta=\sum_{i=1}^{n} t_{i}^{2} \rho_{i} \\
& \gamma=\sum_{i=1}^{n} t_{i} \rho_{i} \\
& \underline{\delta}=\sum_{i=1}^{n} t_{i} \underline{w}_{i} \rho_{i} \\
& \epsilon=\sum_{i=1}^{n} \rho_{i}
\end{aligned}
$$

and recalling the earlier expressions defining the initial estimates of the parameters a and b, a and b may be expressed as

$$
\begin{aligned}
& \widetilde{\mathbf{a}}=\frac{\underline{\alpha}-\gamma \underline{\delta}}{\epsilon \beta-\gamma^{2}} \\
& \widetilde{\mathrm{~b}}=\frac{\epsilon \underline{\delta}-\underline{\alpha} \gamma}{\epsilon \beta-\gamma^{2}}
\end{aligned}
$$

Now, assuming the value $\mathrm{c}=0.1$ and recalling that

$$
\begin{aligned}
& \hat{a}_{1}=\left(\tilde{a}+\tilde{b} t_{1}\right)\left(1+\hat{b}_{1} e^{-0.1 t_{1}}\right) \\
& \hat{b}_{1}=\frac{\tilde{b}\left(t_{1}-t_{2}\right)}{\left[e^{-0.1 t_{2}}\left(\tilde{a}+\tilde{b} t_{2}\right)-e^{-0.1 t_{1}}\left(\tilde{a}+\tilde{b} t_{1}\right)\right]}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \hat{a} \approx \hat{a}_{1} \\
& \hat{b} \approx \hat{b}_{1}
\end{aligned}
$$

Making the appropriate substitutions into the model

$$
\hat{\hat{w}}_{\mathrm{k}}=\frac{\hat{\mathrm{a}}}{1+\hat{\mathrm{b}} \mathrm{e}^{-0.1 \mathrm{t}_{1}}}
$$

yields

$$
\hat{w}_{k}=\frac{\left(\tilde{a}+\widetilde{b t}_{1}\right)\left[1+\frac{\tilde{b}\left(t_{1}-t_{2}\right) e^{-0.1 t_{1}}}{e^{-0.1 t_{2}}\left(\tilde{a}+\widetilde{b t}_{2}\right)-e^{-0.1 t_{1}}\left(\tilde{a}+\tilde{b}_{1}\right)}\right]}{1+\frac{\widetilde{b}\left(t_{1}-t_{2}\right) e^{-0.1 t_{1}}}{\left[e^{-0.1 t_{2}}\left(\tilde{a}+\widetilde{b t_{2}}\right)-e^{-0.1 t_{1}}\left(\tilde{a}+\widetilde{b}_{1}\right)\right]}}
$$

This expression is highly nonlinear in the terms a and b. However, simplification followed by an approximation results in a linear expression as seen below.

$$
\begin{aligned}
& =\left(\tilde{a}+\tilde{b} t_{1}\right)\left[1+\frac{\tilde{b}\left(t_{1}-t_{2}\right)\left(e^{-0.1 t_{1}}-e^{-\tilde{c} t_{1}}\right)}{e^{-0.1 t_{2}}\left(\tilde{a}+\widetilde{b} t_{2}\right)-e^{-0.1 t_{1}}\left(\tilde{a}+\widetilde{b} t_{1}\right)+\widetilde{b}\left(t_{1}-t_{2}\right) e^{-\widetilde{c t}} \dot{i}}\right] \\
& =\left[1+\frac{\tilde{b}\left(t_{1}-t_{2}\right)\left(e^{-0.1 t_{1}}-e^{-\tilde{c}_{1}}\right)}{-e^{-0.1 t_{1}} \widetilde{b}\left[t_{1}-e^{-0.1\left(t_{2}-t_{1}\right)} t_{2}\right]+\widetilde{a}\left(e^{-0.1 t_{2}}-e^{-0.1 t_{1}}\right)+\widetilde{b}\left(t_{1}-t_{2}\right) e^{-\tilde{c t}_{1}}}\right] \\
& \text { - }\left(\tilde{a}+\tilde{b} t_{1}\right)
\end{aligned}
$$

For $n>20 \ln 3$

$$
\begin{aligned}
\hat{\underline{w}}_{k} & \left.\approx\left(\tilde{a}+\tilde{b} t_{1}\right)\left[1+\frac{e^{-0.1 t_{1}}-e^{-\tilde{c}_{i}}}{e^{-\tilde{c}_{i}}-e^{-0.1 t_{1}}\left\{1-\frac{t_{2}\left[e^{-0.1\left(t_{2}-t_{1}\right)}+1\right]}{t_{1}-t_{2}}\right.}\right\}\right] \\
& \approx\left(\tilde{a}+\tilde{b} t_{1}\right)\left[1+\frac{1-e^{-\tilde{c}_{i}+0.1 t_{1}}}{e^{-\widetilde{c t}_{i}+0.1 t_{1}}-1+\frac{e^{-0.1 \frac{n}{2}}+1}{\frac{n}{2}}}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\hat{w}_{k} & \approx\left(\tilde{a}+\tilde{b} t_{1}\right)\left[1+\frac{1-e^{-\tilde{c} t_{i}+0.1 t_{1}}}{e^{-\tilde{c}_{i}+0.1 t_{1}}-1+\frac{3 n}{4} \cdot \frac{2}{n}}\right] \\
& \approx\left(\tilde{a}+\tilde{b} t_{1}\right)\left[1+\frac{1-e^{-\tilde{c t}_{i}+0.1 t_{1}}}{-\tilde{c}_{i}+0.1 t_{1}}-0.5\right.
\end{array}\right]
$$

and note that $\tilde{c}=0.1, t_{1}=n / 4, t_{2}=3 n / 4$.

$$
\begin{aligned}
& \approx\left(\tilde{a}+\tilde{b} t_{1}\right)\left[1-7 . \ddot{57}\left(e^{-\tilde{c} t_{i}+0.1 t_{1}}-1\right)\right] \\
& \approx\left(\tilde{a}+\frac{n \widetilde{b}}{4}\right)\left[1-7 . \ddot{57}\left(e^{-0.1 t_{i}+\frac{n}{40}}-1\right)\right]
\end{aligned}
$$

Now let

$$
k_{t_{i}}=1-7 . \ddot{57}\left(e^{-0.1 t_{i}+\frac{n}{40}}-1\right)
$$

and applying the earlier expressions for \widetilde{a} and \widetilde{b}

$$
\begin{aligned}
\widetilde{\mathrm{a}}+\frac{\mathrm{n} \tilde{\mathrm{~b}}}{4} & =\frac{\underline{\alpha} \beta-\gamma \underline{\delta}}{\epsilon \beta-\gamma^{2}}+\frac{\epsilon \underline{\delta}-\underline{\alpha} \gamma}{\epsilon \beta-\gamma^{2}} \cdot \frac{\mathrm{n}}{4} \\
& =\frac{\beta-\frac{\mathrm{n} \gamma}{4}}{\epsilon \beta-\gamma^{2}} \underline{\alpha}+\frac{\frac{\mathrm{n} \epsilon}{4}-\gamma}{\epsilon \beta-\gamma^{2}} \underline{\delta} \\
& =\mathrm{A} \underline{\alpha}+\mathrm{B} \underline{\delta}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{A}=\frac{\beta-\frac{\mathrm{m} \gamma}{4}}{\epsilon \beta-\gamma^{2}} \\
& \mathrm{~B}=\frac{\frac{\mathrm{n} \epsilon}{4}-\gamma}{\epsilon \beta-\gamma^{2}}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \operatorname{var}\left\{\bar{w}_{i}\right\}= E\left\{(A \underline{\alpha}+B \underline{\delta})^{2} k_{t_{i}}^{2}\right\}-E^{2}\left\{\left(A \underline{\alpha}+B \underline{\delta} k_{t_{i}}\right\}\right. \\
&= {\left[A^{2} k_{t_{i}}^{2} E\left\{\underline{\alpha}^{2}\right\}+B^{2} k_{t_{i}}^{2} E\left\{\underline{\delta}^{2}\right\}+2 A B k_{t_{i}}^{2} E\{\underline{\alpha} \underline{\delta}\}\right] } \\
&-\left[A^{2}{\left.k_{t_{i}}^{2} E^{2}\{\underline{\alpha}\}+B^{2} k_{t_{i}}^{2} E^{2}\{\underline{\delta}\}+2 A B k_{t_{i}}^{2} E\{\underline{\alpha}\} E\{\underline{\delta}\}\right]}^{=}\right. \\
& A^{2} k_{t_{i}}^{2} \operatorname{var}\{\underline{\alpha}\}+B^{2} k_{t_{i}}^{2} \operatorname{var}\{\underline{\delta}\}+2 A B k_{t_{i}}^{2} \operatorname{cov}\{\underline{\alpha} \underline{\delta}\}
\end{aligned}
$$

Using the following expression for the observation range weighting factor from

$$
\rho_{i}=\alpha^{n-i}\left(E_{i}+R_{1} C_{i}+R_{2} A_{i}\right)
$$

and also

$$
\mathrm{S}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \rho_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{i}}-\overline{\mathrm{w}}_{\mathrm{i}}\right)^{2}
$$

Let

$$
\widetilde{S}=\frac{S}{n-2}
$$

so that

$$
\operatorname{var}\{\underline{\alpha}\}=\widetilde{\mathrm{S}} \epsilon
$$

$$
\operatorname{var}\{\underline{\delta}\}=\widetilde{\mathrm{S}} \beta
$$

$$
\operatorname{cov}\{\underline{\alpha}, \underline{\delta}\}=\widetilde{\mathbf{s}} \gamma
$$

thus

Using

$$
\mathrm{A}=\left(\frac{\beta-\frac{\mathrm{n} \gamma}{4}}{\epsilon \beta-\gamma^{2}}\right)
$$

and

$$
\mathrm{B}=\left(\frac{\frac{\mathrm{n} \epsilon}{4}-\gamma}{\epsilon \beta-\gamma^{2}}\right)
$$

$\operatorname{var}\left\{\hat{\mathbf{w}}_{\mathbf{k}^{2}}\right\}=\mathrm{k}_{\mathrm{t}_{\mathrm{i}}^{2}} \cdot \tilde{\mathrm{~s}}\left[\frac{\left(\beta^{2}-\frac{n \beta \gamma}{2}+\frac{n^{2} \gamma^{2}}{16}\right) \epsilon+\left(\frac{n_{\epsilon}^{2} \epsilon^{2}}{16}-\frac{n \epsilon \gamma}{2}+\gamma^{2}\right) \beta+2 \gamma\left(\frac{n \beta \epsilon}{4}-\frac{n^{2} \gamma \epsilon}{16}-\gamma \beta+\frac{n \gamma^{2}}{4}\right)}{\left(\epsilon \beta-\gamma^{2}\right)^{2}}\right]$
$=\frac{k_{\mathrm{t}_{1}^{2}}^{2}}{\mathrm{t}_{1}} \cdot\left[\frac{\beta^{2} \epsilon-\frac{n \beta \gamma \epsilon}{2}+\frac{\mathrm{n}^{2} \gamma^{2} \epsilon}{16}+\frac{\mathrm{n}^{2} \beta \epsilon}{16}-\frac{n \beta \gamma \epsilon}{2}+\beta \gamma^{2}+\frac{n \beta \gamma \epsilon}{2}-\frac{n^{2} \gamma^{2} \epsilon}{8}-2 \beta \gamma^{2}+\frac{\mathrm{n}^{2}}{2}}{\left(\epsilon \beta-\gamma^{2}\right)^{2}}\right]$
$=k_{t_{\mathrm{i}}}^{2} \cdot \widetilde{s}\left[\frac{\left(\beta \epsilon^{2}-\gamma^{2} \epsilon\right) \frac{n^{2}}{16}+\left(\gamma^{3}-\beta \gamma \epsilon \frac{n}{2}+\left(\beta^{2} \epsilon-\beta \gamma^{2}\right)\right.}{\left(\epsilon \beta-\gamma^{2}\right)^{2}}\right]$
$=\mathrm{k}_{\mathrm{t}_{\mathrm{i}}^{2}}^{2} \cdot \widetilde{s}\left(\frac{\frac{\mathrm{en}^{2}}{16}-\frac{\gamma \mathrm{n}}{2}+\beta}{\epsilon \beta-\gamma^{2}}\right)$

$$
\begin{aligned}
& \operatorname{var}\left\{\hat{\underline{w}}_{k}\right\}=A^{2} k_{t_{i}}^{2} \widetilde{S} \epsilon+B^{2} k_{t_{i}}^{2} \widetilde{S} \beta+2 A B k_{t_{i}}^{2 \widetilde{ }} \widetilde{\gamma}_{\gamma} \\
& =k_{t_{i}}^{2} \widetilde{S}\left(A^{2} \epsilon+B^{2} \beta+2 A B \gamma\right) \\
& =\mathrm{k}_{\mathrm{t}_{\mathrm{i}}}^{2} \cdot \widetilde{\mathrm{~s}}\left[\left(\frac{\beta-\frac{\mathrm{n} \gamma}{4}}{\epsilon \beta-\gamma^{2}}\right)^{2} \epsilon+\left(\frac{\frac{\mathrm{n} \epsilon}{4}-\gamma}{\epsilon \beta-\gamma^{2}}\right)^{2} \beta\right. \\
& \left.+2 \gamma\left(\frac{\beta-\frac{\mathrm{n} \gamma}{4}}{\epsilon \beta-\gamma^{2}}\right)\left(\frac{\frac{\mathrm{n} \epsilon}{4}-\gamma}{\epsilon \beta-\gamma^{2}}\right)\right]
\end{aligned}
$$

since it is assumed that

$$
\underline{w}_{i}=w_{i}+\underline{e}_{i}
$$

where e_{i} is an unobservable normal error having zero mean and standard deviation σ_{i}

$$
\underline{w}_{i}=E_{i} \underline{W}_{i}+C_{i} \underline{w}_{i}+A_{i} \underline{w}_{i}
$$

Then each of the three parts is broken into its mean plus an error

$$
\underline{w}_{i}=\left(\underline{w}_{E_{i}}+\underline{e}_{E_{i}}\right)+\left({ }_{w_{C}}+\underline{e}_{C}\right)+\left({ }_{w_{i}}+\underline{e}_{A_{i}}\right)
$$

and the assumption

$$
\begin{aligned}
& { }^{w_{E_{i}}}=\mathrm{E}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \\
& { }^{w_{C_{i}}}=\mathrm{C}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \\
& \mathrm{w}_{\mathrm{A}_{\mathrm{i}}}=\mathrm{A}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{E}_{\mathrm{i}}}+{ }^{\mathrm{w}} \mathrm{C}_{\mathrm{i}}+\mathrm{w}_{\mathrm{A}_{\mathrm{i}}} \\
& \underline{e}_{\mathrm{i}}=\underline{e}_{\mathrm{E}_{\mathrm{i}}}+\underline{e}_{\mathrm{C}_{\mathrm{i}}}+\underline{e}_{\mathrm{A}_{\mathrm{i}}}
\end{aligned}
$$

These three errors are assumed normally and independently distributed with zero mean and standard deviations $\sigma_{\mathrm{E}_{\mathrm{i}}}, \sigma_{\mathrm{C}_{\mathrm{i}}}, \sigma_{\mathrm{A}_{\mathrm{i}}}$.

It is further assumed that the ratio of the standard deviation to the mean of the three random weights is the constant s. Then the variance of the $i^{\text {th }}$ observation may be expressed as

$$
\sigma_{\mathrm{i}}^{2}=\mathrm{s}^{2} \cdot \rho_{\mathrm{i}}^{2} \cdot \mathrm{w}_{\mathrm{i}}^{2}
$$

Let \underline{u}_{k} be the difference between the $\mathrm{k}^{\text {th }}$ observation and prediction

$$
\underline{u}_{\mathrm{k}}=\underline{w}_{\mathrm{k}}-\hat{\mathrm{w}}_{\mathrm{k}}=\underline{e}_{\mathrm{k}}-\underline{\mathrm{e}}_{\hat{w}_{\mathrm{k}}}
$$

where $\underline{e}_{\mathrm{w}_{k}}$ is the variance of \hat{w}_{k} and \underline{e}_{k} is the error related to our observation $\sigma_{i}{ }^{2}$. Note that the error \underline{u}_{k} is again normally distributed with mean zero and

$$
\begin{aligned}
\operatorname{var}\left\{\underline{\mathrm{u}}_{\mathrm{k}}\right\} & =\operatorname{var}\left\{\underline{\mathrm{e}}_{\mathrm{k}}\right\}+\operatorname{var}\left\{\underline{\mathrm{e}}_{\hat{w}_{\mathrm{k}}}\right\} \\
& =\mathrm{s}^{2} \rho_{\mathrm{i}} \hat{\mathrm{w}}_{\mathrm{k}}^{2}+\mathrm{k}_{\mathrm{t}_{\mathrm{i}}}^{2} \widetilde{\mathrm{~s}}\left(\frac{\frac{\epsilon \mathrm{n}^{2}}{16}-\frac{\gamma \mathrm{n}}{2}+\beta}{\epsilon \beta-\gamma^{2}}\right)
\end{aligned}
$$

So the upper confidence limit for the $i^{\text {th }}$ observation

$$
\hat{w}_{k}+\frac{t_{p}}{2} \cdot \sqrt{s^{2} \rho_{i} \hat{w}_{k}^{2}+{k_{t}}_{2}^{c} \cdot \widetilde{s} \cdot\left(\frac{\frac{\epsilon n^{2}}{16}-\frac{\gamma n}{2}+\beta}{\epsilon \beta-\gamma^{2}}\right)}
$$

for Student t variable \underline{t}, where p is the percent confidence limit desired and $n-2 d e-$ grees of freedom.

C. 4 ADAPTIVE (FOURIER) EXPONENTIAL MODEL

The models discussed in paragraphs C.1, C. 3, and C. 4 are based on the assumption that the under lying process generating varying monthly weight estimates can be approximated by an analytic man value function. In this paragraph a model is discussed which, rather than assuming such a function, senses the latest tendencies of the trend and is therefore adaptive. It reflects only immediate past history, ireating the weight increment as a random variable. In the simplest case the expected value of the increment is constant, that is, with w_{i} being the $i^{\text {th }}$ observation we have

$$
w_{i+1}-w_{i}=a+R_{i}
$$

where a is the mean increment and R_{i} is a random residual of zero mean. Going one step further one many assume that the next increment also depends on what has happened in the past, specifically one may make it proportional to the last increment, namely,

$$
w_{i+1}-w_{i}=a+b\left(w_{i}-w_{i-1}\right)+R_{i}
$$

This equation contains a linear autoregressive term $b\left(w_{i}-w_{i-1}\right.$, where be is a parameter; it represents a mixed autoregressive model. This equation, without the residual . term, is also a difference equation and has the solution

$$
w_{i+1}-w_{i}=c b^{i}+\frac{a}{1-b}
$$

where the constant \mathbf{c} depends upon the initial condition w_{1}. Returning to the original process, and provided that observations are equally spaced in time, the solution becomes

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{1}+\mathrm{cb} \frac{1-\mathrm{b}^{\mathrm{i}-\mathrm{l}}}{1-\mathrm{b}}+\mathrm{a} \frac{\mathrm{i}-1}{1-\mathrm{b}}
$$

The only acceptable case of this expression in the weight trend problem is that where $0 \leq b \leq 1$; in that case it represents a straight line with a superimposed decaying exponential.

The application of the simple and plausible argument that the forces at work in the weight evolution process, and the increments which they cause from one observation to the next, are on the average constant, but also proportional to the latest increment, has resulted in the above model. This model has some desirable properties. It is simple. Its behavior is asymptotically linear, but it allows for perturbations which change the trend. Thus it is adaptive and a suitable model for processes which behave linearly in some time interval, but whose parameters are subject to slow variations with time.

Unfortunately there is one shortcoming. Experimentation with estimation of the parameters a and b from data which were generated in accordance with the model revealed that with 20 to 30 observations available the estimators for a and b were not consistently good, and the resulting prediction was not only inferior to the conventional linear regressive prediction, but sometimes outright wrong. Two factors compound the difficulty. Firstly, using increments, which is analogous to differentiation, increases the relative magnitude of the residuals; the effect of noise becomes more pronounced. Secondly, if there is little exponential trend in the data, which means that b is close to one, then separation of linear and exponential trend becomes difficult. For with $b-1$, the functions

$$
w_{i+1}-w_{i}=a
$$

C-54
and

$$
w_{i+1}-w_{i}=b\left(w_{i}-w_{i-1}\right)
$$

are linearly independent and there exists then an infinity of solutions. To overcome these difficulties we decided to use a model which, without the residual, has the same time dependent behavior as this model, but which is not autoregressive in its structure. This model is

$$
w_{i+1}-w_{i}=a+b e^{-\alpha t_{i}}+R_{i}
$$

Here t_{i} denotes the time of the $i^{\text {th }}$ observation. When observations are equally spaced, namely $t_{i+1}=t_{i}+\Delta t$, there follows

$$
w_{i+1}=\left(w_{1}-c\right)+i a+c e^{\alpha t_{i}}+\sum_{j=1}^{i} R_{j}
$$

where

$$
c=b\left(1-e^{\alpha \Delta t}\right)^{-1}
$$

This equation contains the constant term ($w_{1}-c$), the linear term ia, and the exponentially decaying term ce ${ }^{-\alpha t_{i}}$. If straightforward maximum likelihood techniques were used to estimate the parameters a, c, and , then one would again encounter the problem mentioned before; the functions ia and ce ${ }^{-\alpha t_{i}}$ may be almost linearly dependent, which means that there are infinitely many combinations of these functions which will make a good fit.

As a consequence one may obtain estimators which make little sense. For this reason it was decided to first separate the nonlinear part by a Fourier analysis and then to treat the remainder as the increment process described by the very first equation.

C. 4.1 FOURIER SMOOTHING

A transformation of variable is made

$$
x_{i}=w_{i}-\frac{t_{n}-t_{i}}{t_{n}-t_{1}} w_{I}-\frac{t_{i}-t_{1}}{t_{n}-t_{1}} w_{n}
$$

This transformation is such that $X_{1}=0, X_{n}=0$. The functional behavior of X_{i} ($1 \leq \mathrm{i} \leq \mathrm{n}$) is represented exactly by the following Fourier series

$$
X_{i}=B_{1} \sin \pi \frac{t_{i}-t_{1}}{t_{n}-t_{1}}+B_{2} \sin 2 \pi \frac{t_{i}-t_{1}}{t_{n}-t_{1}}+\ldots+B_{n-2} \sin (N-2) \pi \frac{t_{i}-t_{1}}{t_{n}-t_{1}}
$$

The Fourier coefficients B_{k} are

$$
B_{k}=\frac{2}{n-1} \sum_{i=2}^{n-1} X_{i} \sin k \pi \frac{t_{i}-t_{1}}{t_{n}-t_{1}}, \quad k=1,2, \ldots, n-2
$$

A smoothed function \widetilde{X}_{i} through the data X_{i} is obtained by truncating the X_{i} series and by adjusting the coefficients B_{k}, namely

$$
\tilde{X}_{i}=\sum_{i=1}^{4} B_{k}^{\prime} \sin k \pi \frac{t_{i}-t_{1}}{t_{n}-t_{1}}
$$

The truncation serves to suppress noise. The $\widetilde{\mathrm{X}}_{\mathrm{i}}$ series contains four terms. This number of terms was arrived at empirically by experimentation. The adjustment of the coefficients serves to obtain a smoothed function which does not have any points of inflection. This adjustment is achieved by comparing the coefficients B_{k} to the Fourier coefficients \bar{A}_{k} of an exponential whose decay rate α is such that

$$
\mathrm{e}^{-\alpha\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{1}\right)}=0.1
$$

where the value 0.1 was selected empirically. The rule for adjustment is

$$
\begin{aligned}
& B_{1}^{\prime}=B_{1} \\
& B_{k}^{\prime}=\left\{\begin{array}{ccc}
B_{k} & \text { if } & 0 \leq B_{k} / B_{1} \leq \bar{A}_{k} / \bar{A}_{1} \\
B_{1} \bar{A}_{k} / A_{1} & \text { if } & B_{k} / B_{1}>\bar{A}_{k} / \bar{A}_{1} \\
0 & \text { if } & B_{k} / B_{1}<0
\end{array}\right\}, k=2,3,4,5
\end{aligned}
$$

If the first Fourier coefficient B_{I} is less than 5 percent of the increase of w_{i} in the interval (ℓ, n) then it is assumed that w_{i} contains no significant nonlinear trend and the smoothed function is

$$
\tilde{\mathrm{X}}_{\mathrm{i}}=0, \text { if }\left|\frac{\mathrm{B}_{1}}{\mathrm{w}_{\mathrm{n}}-\mathrm{w}_{1}}\right| \leq 0.05
$$

The smoothed function \tilde{w}_{i} through the normalized observations follows from reversing the variable transformation

$$
\widetilde{w}_{i}=w_{1}+\left(w_{n}-w_{1}\right) \frac{t_{i}-t_{1}}{t_{n}-t_{1}}+\widetilde{X}_{i}
$$

C.4.2 SEPARATION OF THE EXPONENTIAL CONTENT

The model assumes that the nonlinearity present in the data be of exponential form. The next step is to find that exponential which best matches the nonlinearity $\widetilde{\mathrm{X}}_{\mathrm{i}}$. The matching is very conveniently done in the spectral domain, using the least squares error as criterion. The Fourier spectrum of \widetilde{X}_{i} is compared with the spectra of 13 functions, having the form

$$
f_{\ell}(t)=a+b t+e^{-\alpha_{\ell}\left(t-t_{1}\right)}
$$

where the range of the decay constants α_{ℓ} is selected empirically such that the $\min \left(\alpha_{\ell}\right)=\alpha_{1}, \max \left(\alpha_{\ell}\right)=\alpha_{13}$, and

$$
\begin{aligned}
& e^{-\alpha_{1}\left(t_{n}-t_{1}\right)}=0.7 \\
& e^{-\alpha_{13}\left(t_{n}-t_{1}\right)}=0.1 \\
& e^{-\alpha_{\ell}\left(t_{n}-t_{1}\right)}=0.75-0.05 \ell
\end{aligned}
$$

The spectrum corresponding to $\mathrm{f}_{\ell}(\mathrm{t})$ is

$$
A_{k}\left(\alpha_{\ell}\right)=\frac{2}{k \pi} \cdot\left\{\frac{(-1)^{k} e^{-\alpha_{\ell}\left(t_{n}-t_{1}\right)}-\frac{1}{2}}{1+\left[\frac{k \pi}{\left(t_{n}-t_{1}\right) \alpha_{\ell}}\right]^{2}}\right\}, \begin{aligned}
& k=1,2, \ldots, 5 \\
& \ell=1,2, \ldots, 13
\end{aligned}
$$

We consider now four possible combinations of nonlinearity (see Figure C-3).
Case $1-B_{1}$ is negative and $w_{n}-w_{1}$ is positive.
Case $2-B_{1}$ is positive and $w_{n}-w_{1}$ is positive.
Case $3-B_{1}$ is positive and $w_{n}-w_{1}$ is negative.
Case $4-B_{1}$ is negative and $w_{n}-w_{1}$ is negative.

Cases 1 and 3 are rejected because an extrapolation of their behavior does not agree with the physical picture of weight growth. It is then assumed that no nonlinearity exists, that is, $\widetilde{\mathrm{X}}_{\mathrm{i}}=0$.

In Cases 3 and 4 the comparison of the $B_{k}{ }^{\prime}$ and the $A_{k}\left(\alpha_{\ell}\right)$ is such that one wants to find the value α^{\prime} where $\alpha_{1} \leq \alpha^{\prime} \leq \alpha_{13}$, which produces the least squares error. The criterion for the error as expressed by the two spectra is $\mathrm{E}\left(\alpha_{\ell}\right)$

$$
\mathrm{E}\left(\alpha_{\ell}\right)=\sum_{\mathrm{k}=1}^{5}\left[\mathrm{C}_{\ell} \mathrm{A}_{\mathrm{k}}\left(\alpha_{\ell}\right)\right]^{2}-\sum_{\mathrm{k}=1}^{5} \mathrm{C}_{\ell} \mathrm{A}_{\mathrm{k}}\left(\alpha_{\ell}\right) \mathrm{B}_{\mathrm{k}}^{\prime}, \ell=1,2, \ldots, 13
$$

where the comparative magnitude of the exponentials, C_{ℓ}, is determined from empirical considerations, namely

$$
\begin{aligned}
& \mathrm{C}_{\ell}=-0.8 \frac{\mathrm{w}_{\mathrm{n}}-\mathrm{w}_{1}}{1-\mathrm{e}^{-\alpha_{\ell}^{\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{1}\right)}}} \text { in Case } 2 \\
& \mathrm{C}_{\ell}=-\frac{\mathrm{w}_{\mathrm{n}}-\mathrm{w}_{1}}{1-\mathrm{e}^{\alpha_{\ell}\left(\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{1}\right)}} \quad \text { in Case } 4
\end{aligned}
$$

The value α^{1} has the property

$$
\mathrm{E}\left(\alpha^{\prime}\right)=\min \mathrm{E}(\alpha) \quad \alpha_{1} \leq \alpha \leq \alpha_{13}
$$

The exponent with decay constant α^{\prime} gives the best fit. We first find α_{j} such that

$$
\mathrm{E}\left(\alpha_{\mathrm{j}}\right)=\min \mathrm{E}\left(\alpha_{\ell}\right) \quad \ell=1,2, \ldots, 13
$$

If α_{j} coincides with one of the end points, namely $\alpha_{j}=\alpha_{1}$ or $\alpha_{j}=\alpha_{13}$, then $\alpha^{\prime}=\alpha_{j}$. Otherwise α^{\prime} is determined by interpolation with a parabolic arc

$$
\alpha^{\prime}=-\frac{\mathrm{b}}{2 \mathrm{c}}+\alpha_{\mathrm{j}-1}
$$

Figure C-3. Possible Combinations of Nonlinearity
where

$$
\left[\begin{array}{l}
b \\
c
\end{array}\right]=\left[\begin{array}{cc}
\left(\alpha_{j}-\alpha_{j-1}\right) & \left(\alpha_{j}-\alpha_{j-1}\right)^{2} \\
\left(\alpha_{j+1}-\alpha_{j-1}\right) & \left(\alpha_{j+1}-\alpha_{j-1}\right)^{2}
\end{array}\right]^{-1}\left[\begin{array}{ll}
E\left(\alpha_{j}\right) & -E\left(\alpha_{j-1}\right) \\
E\left(\alpha_{j+1}\right) & -E\left(\alpha_{j-1}\right)
\end{array}\right]
$$

Having found α^{\prime}, the corresponding Fourier coefficients are obtained and the magnitude c^{\prime} of the exponential content is

$$
c^{\prime}=\frac{\sum_{k=1}^{5} A_{k}\left(\alpha^{\prime}\right) B_{k}^{\prime}}{\sum_{k=1}^{5} A_{k}^{2}\left(\alpha^{\prime}\right)}
$$

There is one restriction in Case 4, which is to avoid crossing into negative weights in the prediction range. Any index ℓ when it has the property $C_{\ell}>0.8 \mathrm{w}_{1}$ is considered a forbidden region. If there is a forbidden region at all then it will involve an index set $\ell=1,2, \ldots$, f. If $f=13$ then nonlinearity must be rejected and we assume again $\widetilde{X}_{\mathrm{i}}=0$. If $1 \leq \mathrm{f}<13$, and α_{j} falls in the forbidden region, including $\alpha_{\mathrm{j}}=\alpha_{\mathrm{f}}$, then we substitute $\alpha^{\mathbf{t}}=\alpha$.

The exponential trend contained in the data w_{i} has now been identified and is subtracted from the data. There remains the corrected data Z_{i},

$$
z_{i}=w_{i}-c^{\prime} e^{-\alpha^{\prime}\left(t_{i}-t_{i}\right)}
$$

In the cases where nonlinearity was rejected, i.e., where $\widetilde{\mathrm{X}}_{\mathrm{i}}=0$, we have $\mathrm{c}^{\prime}=0$, and $Z_{i}=w_{i}$.

C.4.3 ESTIMATION OF PARAMETERS AND PREDICTION

A linear fit is made through the Z_{i} based on increments, including decreasing weighting. The increments are

$$
Y_{i}=Z_{i}-Z_{i-1}, i=2,3, \ldots, n
$$

The model is

$$
Y_{i}=a+R_{i}
$$

where R_{i} is a normal residual having zero mean. The estimator \hat{a} is determined from

$$
\hat{a}=\frac{\sum_{i=2}^{n} \rho^{t_{n}-t_{i}} Y_{i}}{\sum_{i=2}^{n} \rho^{t_{n}-t_{i}}}
$$

where the weighting coefficient ρ is defined by $\rho^{\mathrm{n}-1}=\mathrm{k}$ and k is given as input to the computer program. If k is not specified the program uses $\rho=k=1$. The estimator $\hat{\sigma}^{2}$ for the variance of Y_{i} is

$$
\hat{\sigma}^{2}=\frac{1}{n-2} \sum_{i=2}^{n} \rho^{t_{n}-t_{i}}\left(Y_{i}-\hat{a}\right)^{2}
$$

In making the prediction it is necessary to distinguish whether the estimator \hat{a} is positive or negative. In the latter case the monthly increments are reduced exponentially in the prediction range, in order to prevent crossing into negative weights. There follows

$$
w_{m}=z_{n}+\left(t_{m}-t_{n} \hat{a}+c^{\prime} e^{-\alpha^{\prime}\left(t_{m}^{\left.-t_{1}\right)}\right.}, \hat{a}>0, m>n\right.
$$

or

$$
w_{m}=\beta^{\left(t_{m}{ }^{\left.-t_{n}\right)}\right.} z_{n}+c^{\prime} e^{-\alpha\left(t_{m} t_{1}\right)}, \hat{a}<0, m>n
$$

where

$$
\beta=\frac{\mathrm{Z}_{\mathrm{n}}+\hat{\mathrm{a}}}{\mathrm{Z}_{\mathrm{n}}}
$$

The upper 95 percent confidence limit G is determined from

$$
G_{m}=w_{m}+1.64 \sqrt{\left(t_{m}-t_{n}\right) \hat{\sigma}^{2}}
$$

C.4.4 FOURIER ANALYSIS OF A FUNCTION CONTAINING AN EXPONENTIAL TERM

Consider the function

$$
f(x)=a+b x+e^{-\alpha x}
$$

in which a and b are arbitrary constants while α is positive. The domain of $f(x)$ is the interval ($0, L$). We wish to represent the nonlinear part of $f(x)$ by a rapidly converging Fourier series. We first subtract from $f(x)$ a linear function such that

$$
g(x)=f(x)-a^{\prime}-b^{\prime} x
$$

and

$$
g(0)=g(L)=0
$$

There follows

$$
\begin{aligned}
& a^{\prime}=1+a \\
& b^{\prime}=\frac{1}{L}\left(e^{-\alpha L}-1\right)+b \\
& g(x)=-1-\frac{1}{L}\left(e^{-\alpha L}-1\right) x+e^{-\alpha x}, 0 \leq x \leq L
\end{aligned}
$$

The Fourier analysis is applied to data whose first and last points go through zero by virtue of removing a linear function from the original data. In order that the first derivative be a continuous function, it is hypothesized that the smoothed curve fit to the data be a periodic sine-type function, $g(x+L)=-g(x)$ with the interval where the data fall representing a half-period. It is important that a function with a continuous first derivative is used as the terms of a Fourier series expansion decay as n^{k+1} where k is the highest order derivative that is continuous. The Fourier series representation of this sine-type function contains only sine terms, thus

$$
g(x)=\sum_{k=1}^{\infty} A_{k} \sin \frac{k \pi}{L} x
$$

with

$$
A_{k}=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{k \pi}{L} x d x
$$

The following integrals are involved in evaluating this expression

$$
\begin{aligned}
& \int_{0}^{\mathrm{L}} \mathrm{e}^{-\alpha \mathrm{x}} \sin \beta \mathrm{xdx}=\frac{\beta\left[1-(-1)^{\mathrm{k}} \mathrm{e}^{-\alpha \mathrm{L}}\right]}{\alpha^{2}+\beta^{2}}, \beta=\frac{\mathrm{k} \pi}{\mathrm{~L}} \\
& \int_{0}^{\mathrm{L}} \sin \beta \mathrm{xdx}=\frac{1}{\beta}\left[1-(-1)^{\mathrm{k}}\right] \\
& \int_{0}^{\mathrm{L}} \mathrm{x} \sin \beta \mathrm{xdx}=\frac{\mathrm{L}(-1)^{\mathrm{k}}}{\beta}
\end{aligned}
$$

The resulting Fourier coefficients are

$$
A_{k}=\frac{2}{k \pi}\left[\frac{1}{1+\frac{\beta}{\alpha}^{2}}\right] \quad\left[(-1)^{k} e^{-\alpha L}-1\right]
$$

C.4.5 LEAST-SQUARES APPROXIMATION OF AN EMPIRICAL FUNCTION BY ANOTHER FUNCTION

Consider the case where we have a function $f(x)$, defined on the interval ($0, L$), which was obtained from smoothing of empirical data with a truncated Fourier series

$$
f(x)=\sum_{i=1}^{n} B_{i} \sin \frac{i \pi}{L} x, 0 \leq x \leq L
$$

To approximate $f(x)$ by some known function $g(x ; \alpha)$ which is also given in its Fourier series representation

$$
g(x ; \alpha)=\sum_{k=1}^{\infty} A_{k}(\alpha) \sin \frac{k \pi}{L} x
$$

The approximation is of the form

$$
f(x) \approx \operatorname{Cg}(x ; \alpha)
$$

where the magnitude C and the parameter α may be varied in order to obtain the best approximation. The least-squares criterion requires that

$$
E=\int_{0}^{L}[f(x)-\operatorname{Cg}(x ; \alpha)]^{2}, \quad d x=\text { minimum }
$$

and there follow, from differentiation with respect to the parameters, the simultaneous equations

$$
\int_{0}^{\mathrm{L}}[\mathrm{f}(\mathrm{x})-\operatorname{Cg}(\mathrm{x} ; \alpha)] \mathrm{g}(\mathrm{x} ; \alpha) \mathrm{dx}=0
$$

and

$$
\int_{0}^{\mathrm{L}}[f(x)-\operatorname{Cg}(x ; \alpha)] \frac{\partial g(x ; \alpha)}{\partial \alpha}
$$

Rather than solving these two equations simultaneously the approach will be taken of first holding α fixed, solving the first equation, then varying α and locating the minimum of E in some way. The first equation is rewritten as

$$
\int_{0}^{\mathrm{L}} \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x} ; \alpha) \mathrm{dx}=\mathrm{C} \int_{0}^{\mathrm{L}} \mathrm{~g}(\mathrm{x} ; \alpha) \mathrm{g}(\mathrm{x} ; \alpha) \mathrm{dx}
$$

In virtue of the orthogonality properties of the Fourier series we have

$$
\sum_{i=1}^{n} A_{i}(\alpha) B_{i}=C \sum_{k=1}^{\infty} A_{k}^{2}(\alpha)
$$

and the factor C which provides the best approximation in the sense of least squares is

$$
\mathrm{C}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{i}}(\alpha) \mathrm{B}_{\mathrm{i}}}{\sum_{\mathrm{k}=1}^{\infty} \mathrm{A}_{\mathrm{k}}{ }^{2}(\alpha)}
$$

For practical purposes the sum in the denominator cannot be carried to infinity. The question arises how many of the coefficients A_{k} are needed. One feels intuitively that all coefficients with $k>n$ should be omitted, since in the Fourier series terms of order greater than n cannot contribute anything to the function $f(x)$. It will now be shown that the integrated square error E is indeed smallest if the following expression for C is used:

$$
C=\frac{\sum_{i=1}^{n} A_{i}(\alpha) B_{i}}{\sum_{i=1}^{n} A_{k}{ }^{2}(\alpha)}
$$

Expanding E

$$
E=\int_{0}^{L}\left\{[f(x)]^{2}-2 \operatorname{Cf}(x) g(x ; \alpha)+[\operatorname{Cg}(x ; \alpha)]^{2}\right\} d x
$$

substituting

$$
\begin{aligned}
& E=\int_{0}^{L}[f(x)]^{2} d x-C^{2} \int_{0}^{L}[g(x ; \alpha)]^{2} d x \\
& \frac{2 E}{L}=\sum_{i=1}^{n} B_{i}^{2}-C^{2} \sum_{k=1}^{\infty} A_{k}{ }^{2}(\alpha) \\
& \frac{2 E}{L}=\sum_{i=1}^{n} B_{i}^{2}-\frac{\left(\sum_{i=1}^{n} A_{i}(\alpha) B_{i}\right)^{2}}{\sum_{k=1}^{\infty} A_{k}^{2}(\alpha)}
\end{aligned}
$$

The error thus expressed implies that the Fourier series of the approximating function $\mathrm{g}(\mathrm{x} ; \alpha)$ is carried to an infinity of terms.

Since

It is seen that if $\mathrm{g}(\mathrm{x} ; \alpha)$ is represented only by the first m terms of its Fourier series, where $\mathrm{m}<\mathrm{n}$, then E will be smaller. The desired conclusion is now at hand. The approximating function for $f(x)$ which produces the best approximation in the sense of least squares is

$$
\operatorname{Cg}(\mathrm{x} ; \alpha)=\sum_{\mathrm{k}=1}^{n} \mathrm{~A}_{\mathrm{k}}(\alpha) \sin \frac{\mathrm{k} \pi}{\mathrm{~L}} \mathrm{x}
$$

where C is is determined from the second expression for C. The integrated error square is

$$
\frac{2 E}{L}=\sum_{i=1}^{n} B_{i}^{2}-\frac{\left(\sum_{i=1}^{n} A_{i}(\alpha) B_{i}\right)^{2}}{\sum_{k=1}^{n} A_{k}^{2}(\alpha)}
$$

The optimal value of the parameter is the one which minimizes E. This value may have to be determined by searching methods rather than analytically.

C. 5 NOMENCLATURE

a, b, c Model parameters.
$\hat{a}, \hat{b}, \hat{c} \quad$ Maximum likelihood estimators of the model parameters.
$\operatorname{cov}\} \quad$ Covariance of two random variables in the argument $\}$.
e
Unobservable error between observed value and mean value provided by model.
E, C, A Proportions of observed value which are Estimated, Calculated, and Actual.
E\{ \} Expected value of the argument $\}$.
$L \quad$ Likelihood function.
$\mathrm{m} \quad$ Weighting factor based on E, C, and A .
n Number of observations.
C-66

R_{1}, R_{2}	Weighting terms defining relationship between s values for the E, C, and A weight components.
s	Constant ratio of standard deviation to weight components (i.e., E, C, and A components).
\hat{s}	Maximum likelihood estimator of s.
t	Time.
\underline{t}	Parameter of Students t distribution.
var $\}$	Variance of the random variable in the argument $\}$.
\underline{w}	Weight.
$\underline{\hat{w}}$	Predicted value of weight.
\underline{w}	Observed value of weight.
σ	Standard deviation.

Subscripts

i The value of i denotes a specific observed data point.
$\mathrm{k} \quad$ The value of k denotes a specific predicted point.

APPENDIX D

PERFORMANCE RELATIONSHIPS

D. 1 INTRODUCTION

When drag, angle of attack, and gravity losses do not change significantly as a vehicle's weight is perturbed, the impulse velocity rocket equation can be used with good accuracy to determine the effect of vehicle perturbations on stage dry weight, propellant loading, and specific impulse. This is the case with the Apollo Spacecraft during earth orbit, translunar injection, and the remainder of its space flight. When applied to the Saturn/Apollo launch vehicle this equation yields significant errors due to the changing velocity losses. In either case, the velocity increment used in the impulsive equation must include all velocity losses as well as the actual change in velocity.

Using this equation, trade-off factors can be found as the ratio of total derivatives. Partial derivatives are evaluated from known mass ratios, ideal velocity increments, and specific impulses. Control values are used to evaluate these derivatives. Appropriate assumptions must be made to eliminate or evaluate total derivatives not directly entering into the trade-off factor. These assumptions can include such constraints as constant propellant loading or a given ratio of stage propellant loadings, no change in ideal impulsive velocity or specific impulse, constant liftoff weight, etc.

The following paragraphs show the derivation of the generalized equations for the impulsive velocity changes of an N -stage rocket vehicle in terms of the changes in stage specific impulse, stage dry weight, and stage propellant loading. Expressions are presented for the velocity change of:
a. the $\mathrm{k}^{\text {th }}$ stage.
b. the sum of the first K stages.
c. the sum of all N stages.

D. 2 DERIVATION OF EQUATIONS

Consider the impulsive velocity change rocket equation

$$
\begin{equation*}
\Delta V=I_{s p} g \ln \frac{W_{1}}{W_{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta \mathrm{V}=\text { ideal velocity change (fps) } \\
& \mathrm{I}_{\mathrm{sp}}=\text { specific impulse (sec) } \\
& \mathrm{g} \quad=\text { acceleration due to gravity (ft/ } \mathrm{sec}^{2} \text {) } \\
& \mathrm{W}_{1}=\text { weight at beginning of } \Delta \mathrm{V}(\mathrm{lbs}) \\
& \mathrm{W}_{2}=\text { weight at end of } \Delta \mathrm{V}(\mathrm{lbs})
\end{aligned}
$$

The weight at the start of the impulsive velocity change can be thought of as made up of "dry" weight (W_{D}) and propellant weight (W_{P}), where the "dry" weight is the total vehicle weight less the propellant weight burned to achieve the velocity change.

$$
\begin{equation*}
w_{z}=w_{D} \tag{2a}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{1}=w_{D}+w_{P} \tag{2b}
\end{equation*}
$$

Equation (1) can then be written

$$
\begin{equation*}
\Delta \mathrm{V}=\mathrm{I}_{\mathrm{sp}} \mathrm{~g} \ln \left(\frac{\mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{p}}}{\mathrm{~W}_{\mathrm{D}}}\right) \tag{3}
\end{equation*}
$$

The total differential of velocity change is then

$$
\begin{equation*}
\mathrm{d}(\Delta \mathrm{~V})=\frac{\partial(\Delta \mathrm{V})}{\partial \mathrm{I}_{\mathrm{Sp}}} \mathrm{dI}_{\mathrm{sp}}+\frac{\partial(\Delta V)}{\partial \mathrm{W}_{\mathrm{D}}} d \mathrm{~W}_{\mathrm{D}}+\frac{\partial(\Delta \mathrm{V})}{\partial \mathrm{W}_{\mathrm{P}}} \mathrm{~d} \mathrm{~W}_{\mathrm{p}} \tag{4}
\end{equation*}
$$

From Equation (3)

$$
\begin{align*}
& \frac{\partial(\Delta \mathrm{V})}{\partial \mathrm{I}_{\mathrm{Sp}}}=\mathrm{g} \ln \left(\frac{\mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{P}}}{\mathrm{~W}_{\mathrm{D}}}\right) \tag{5}\\
& \frac{\partial(\Delta \mathrm{V})}{\partial \mathrm{W}_{\mathrm{P}}}=\frac{\mathrm{I}_{\mathrm{Sp}} \mathrm{~g}}{\left(\mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{P}}\right)} \tag{5b}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{(\Delta V)}{\partial W_{D}} \frac{-I_{s p} g\left(\frac{W_{P}}{W_{D}}\right)}{\left(W_{D}+W_{P}\right)} \tag{5c}
\end{equation*}
$$

D-2

Substituting the preceding partial derivatives into Equation (4)

$$
\begin{align*}
\mathrm{d}(\Delta \mathrm{~V})= & {\left[g \ln \left(\frac{\mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{P}}}{\mathrm{~W}_{\mathrm{D}}}\right)\right] d I_{\mathrm{Sp}}+\left(\frac{g I_{\mathrm{Sp}}}{\mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{P}}}\right) d \mathrm{~W}_{\mathrm{P}} } \\
& -\left[\left(\frac{g I_{\mathrm{sp}}}{\mathrm{~W}_{\mathrm{D}}+\mathrm{W}_{\mathrm{P}}}\right)\left(\frac{\mathrm{W}_{\mathrm{P}}}{\mathrm{~W}_{\mathrm{D}}}\right)\right] d \mathrm{~W}_{\mathrm{D}} \tag{6}
\end{align*}
$$

For a multi-stage vehicle the above equation can be used by adding the velocity increments from each stage burned during the mission. Care must be taken to include all weight including propellants, above the stage being burned, as dry weight in evaluating the derivatives for the stage being burned. For example, for a two-stage vehicle, the second stage dry weight plus propellants plus the first stage dry weight must be included as dry weight in evaluating first stage derivatives.

Now consider the " $\mathrm{K}^{\text {th }}$ stage" of an " N -stage" vehicle. Using Equation 4, an incremental impulsive velocity change occuring during this stage is given by

$$
\begin{equation*}
d(\Delta V)_{K}=\left(\frac{\partial \Delta V}{\partial I_{S p}}\right)_{K} d I_{S p_{K}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{K} d W_{D_{K}}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{K} d W_{P_{K}} \tag{7}
\end{equation*}
$$

where $W_{D_{K}}$ includes all the vehicle weight at burnout of the $K^{\text {th }}$ stage and is therefore given by

$$
\begin{equation*}
\mathrm{w}_{\mathrm{D}_{\mathrm{K}}}=\sum_{\mathrm{i}=\mathrm{K}}^{\mathrm{N}}\left(\mathrm{w}_{\mathrm{D}_{\mathrm{i}}}+\mathrm{w}_{\mathrm{P}_{\mathrm{i}+1}}\right) \tag{8}
\end{equation*}
$$

The convention used herein is that when the subscript is greater than the upper limit (N in the above equation) the value of the parameter is zero. From Equation (8),

$$
\begin{equation*}
\mathrm{dW}_{D_{K}}=\sum_{i=K}^{N}\left(d W_{D_{i}}+d W_{P_{i+1}}\right) \tag{9}
\end{equation*}
$$

Equation (7) can then be written

$$
\begin{align*}
d(\Delta V)_{K}= & \left(\frac{\partial \Delta V}{\partial I_{S p}}\right)_{K} d I_{S p_{K}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{K} \sum_{i=K}^{N}\left(d W_{D_{i}}+d W_{P_{i+1}}\right) \\
& +\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{K} d W_{P_{K}} \tag{10}
\end{align*}
$$

By summing Equation (10) from 1 to K the incremental impulsive velocity change for the first K stages is obtained.

$$
\begin{aligned}
& \sum_{j=1}^{K} d \Delta V_{j}=\sum_{j=1}^{K}\left\{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right) d I_{j p_{j}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right) \sum_{j} \sum_{i=j}^{N}\left(d W_{D_{i}}+d W_{P_{i+1}}\right)\right. \\
&\left.+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{j} d W_{P_{j}}\right\}
\end{aligned}
$$

or

$$
\begin{align*}
\sum_{j=1}^{K} d \Delta V_{j}= & \sum_{j=1}^{K}\left(\frac{\partial \Delta V}{\partial I_{S p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{K} \sum_{i=j}^{N}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{j} d W_{D_{i}} \\
& +\sum_{j=1}^{K} \sum_{i=j}^{N}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{j} d W_{P_{i+1}} \tag{11}
\end{align*}
$$

In double summations, as in the above equation, the inner summation is performed once for each value of the outer summation index. It can be shown that

$$
\begin{align*}
\sum_{j=1}^{K} \sum_{i=j}^{N}\left(\frac{\partial \Delta V}{\partial W_{D}}\right) d W_{D_{i}}= & \sum_{j=1}^{N} \sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{D_{j}} \\
& -\sum_{j=K_{K+1}}^{N} \sum_{i=K+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{D_{i}} \tag{12a}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{j=1}^{K} \sum_{i=j}^{N}\left(\frac{\partial \Delta V}{\partial W_{D}}\right) d W_{P_{i+1}}= & \sum_{j=2}^{N} \sum_{i=1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{P_{j}} \tag{12b}\\
& -\sum_{j=K+2}^{N} \sum_{i=K+1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{i} d W_{P_{j}}
\end{align*}
$$

Substituting Equations (12a and 12b) into Equation (11)

$$
\begin{aligned}
\sum_{j=1}^{K} d(\Delta V)_{j}= & \sum_{j=1}^{K}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{N} \sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{D_{j}} \\
& -\sum_{j=K+1}^{N} \sum_{i=K+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{D_{j}}+\sum_{j=2}^{N} \sum_{i=1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{P_{j}} \\
& -\sum_{j=K+2}^{N} \sum_{i=K+1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i} d W_{P_{j}}+\sum_{j=1}^{K}\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{j} d W_{P_{j}}
\end{aligned}
$$

or factoring,

$$
\begin{align*}
& \sum_{j=1}^{K} d(\Delta V)_{j}=\sum_{j=1}^{K}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{N}\left\{\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]\right. \\
& \left.-\left[\sum_{i=K+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]\right\} d W_{D_{j}} \\
& +\sum_{j=1}^{N}\left\{\left[\left[\sum_{i=1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]-\left[\sum_{j=K+1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)\right]\right\} d W_{i}\right] \\
& +\sum_{j=1}^{K}\left(\frac{\partial \Delta V}{\partial W_{P}}\right) d W_{j}{ }_{j} \tag{13}
\end{align*}
$$

Now introducing a unit step function, δ_{jK}, defined as

$$
\begin{equation*}
\delta_{\mathrm{jK}}=1 \quad \mathrm{j} \leq \mathrm{K}, \quad \delta_{\mathrm{jK}}=0 \quad \mathrm{j}>\mathrm{K} \tag{14}
\end{equation*}
$$

Equation (13) can be further factored to yield

$$
\begin{align*}
&-\left[\sum_{i=K+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)\right. \\
&\left.+\sum_{i}\right]\left\{d W_{D_{j}}\right. \\
& j=1 {\left[\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]-\left[\sum_{i=K+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]\right.} \tag{15}\\
&\left.+\delta_{j K}\left(\frac{\partial \Delta V}{\partial W_{P}}\right)\right\} d W_{P_{j}}
\end{align*}
$$

Equation (15) gives the incremental impulsive velocity change through the first K stages of an N -stage vehicle. By letting K equal N the total incremental impulsive velocity change through the N stages can be found.

Letting K equal N ,

$$
\sum_{j=1}^{N}\left[\sum_{i=K+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)\right] d W_{i}=\sum_{j=1}^{N}\left[\sum_{i=N+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}}=0
$$

and

$$
\sum_{j=1}^{N}\left[\sum_{i=K_{+1}}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{P_{j}}=\sum_{j=1}^{N}\left[\sum_{i=N+1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{P_{j}}=0
$$

since the lower limit of the summation index is greater than the upper limit. Equation (15) then becomes, for $K=N$,

$$
\begin{align*}
\sum_{j=1}^{N} d(\Delta V)_{j}= & \sum_{j=1}^{N}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{N}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}} \\
& +\sum_{j=1}^{N}\left\{\left[\sum_{i=1}^{j-1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]+\left(\frac{\partial \Delta V}{\partial W_{p}}\right)_{j}\right\} d W_{P_{j}} \tag{16}
\end{align*}
$$

Equation (16) gives the total incremental impulsive velocity change for an N -stage vehicle. All partial derivatives are calculated from a nominal or reference mission using Equations (5a, 5b, and 5c).

D. 3 EXAMPLES OF GENERALIZED EQUATIONS TO DETERMINE TRADE-OFF FACTORS

Equations (10), (15), or (16) can now be used to obtain trade-off factors (sensitivity factors). This is done by imposing constraints dictated by the vehicle configuration and mission and by setting to zero all differentials not of interest. The trade-off factors are then the ratio of the coefficients of the differentials being considered.

Possible constraints which might be imposed include:

1. No change in total ideal velocity. This assumes no change in velocity losses and that the vehicle can still perform the nominal mission. The nominal mission is that at which the partial derivatives are evaluated.
2. No ideal velocity change in any given stage (as opposed to constraint 1 in which the sum of the ideal velocity for all stages is constant).
3. Constant consumed propellant per stage.
4. Constant total consumed propellant.
5. Constant consumed propellant ratio among stages.
6. Constant liftoff weight.
7. Constraints imposed by stage definition (when one physical vehicle stage is broken into two or more "stages" for analysis purposes because of engine restarts or discrete weight jettisons during any phase).
8. Combinations of the above constraints.

D. 4 EXAMPLES OF USE OF EQUATIONS TO OBTAIN TRADE-OFF FACTORS

Consider a three-stage launch vehicle to inject a payload into translunar or interplane-• tary flight. The launch mission profile is the same as the Saturn V/Apollo LOR vehicle, i.e.,

1. Liftoff to first stage jettison.
2. Second stage ignition to launch escape system jettison.
3. LES jettison to second stage jettison.
4. Third stage ignition to earth orbit.
5. Translunar or interplanetary injection (propellant boil-off occurs during earth orbit).

For analysis purposes the above five phases will be considered as "stages" (i.e., $N=5$).

D.4.1 EXAMPLE I

Constraints:

1. Total mission ideal velocity constant $\left[\sum_{\mathrm{j}=1}^{5} \mathrm{~d}(\Delta \mathrm{~V})_{\mathrm{j}}=0\right]$
2. Injection ideal velocity constant $\left[\mathrm{d}(\Delta \mathrm{V})_{5}=0\right]$
3. Constant consumed propellant loading per physical stage.

Constraint 1 above implies that Equation (16) must equal zero, while constraint 2 im plies that Equation (10) equals zero for $K=5$. Constraint 3 implies

$$
\begin{equation*}
d W_{P_{1}}=d W_{P_{2}}=d W_{P_{3}}=0 \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
d W_{P_{4}}+d W_{P_{5}}=0 \tag{17b}
\end{equation*}
$$

From Equation (16),

$$
\begin{align*}
\sum_{j=1}^{5} d(\Delta V)_{j}= & \sum_{j=1}^{5}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{5}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}} \\
& +\sum_{j=1}^{5}\left\{\left[\sum_{i=1}^{j=1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{j}\right\} d W_{P_{j}} \tag{18}
\end{align*}
$$

Factoring in constraint 1 and Equations 17a and 17b

$$
\begin{align*}
0= & \sum_{j=1}^{5}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{5}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}} \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}\right] d W_{D_{4}} \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}\right] d_{5} W_{D_{5}} \tag{19}
\end{align*}
$$

Making use of Equation (17b) the above equation reduces to

$$
\begin{align*}
0= & \sum_{j=1}^{5}\left(\frac{\partial \Delta \mathrm{~V}}{\partial \mathrm{I}_{\mathrm{Sp}}}\right)_{\mathrm{j}} \mathrm{dI}_{s_{\mathrm{j}}}+\sum_{j=1}^{5}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}} \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}-\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}\right] d W_{D_{5}} \tag{20}
\end{align*}
$$

From Equation (10) (constraint 2)

$$
\begin{equation*}
0=\left(\frac{\partial \Delta V}{\partial \mathrm{I}_{\mathrm{Sp}}}\right)_{5} d \mathrm{I}_{\mathrm{sp}_{5}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{5} d \mathrm{~W}_{\mathrm{D}_{5}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5} d \mathrm{~W}_{\mathrm{P}_{5}} \tag{21}
\end{equation*}
$$

Solving for $\mathrm{d}_{\mathrm{P}_{5}}$,

$$
d W_{P_{5}}=-\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}} d I_{s p_{5}}-\frac{\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}} d W_{D_{5}}
$$

Substituting for $\mathrm{dW}_{\mathrm{P}_{5}}$ in Equation (20),

$$
\begin{align*}
& 0=\sum_{j=1}^{5}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{5}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}} \\
& -\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}-\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{4}\right] \\
& {\left[\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}} \mathrm{dI}_{\mathrm{sp}_{5}}+\frac{\left(\frac{\partial \Delta V}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{5}}{\left(\frac{\partial \Delta V}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}} \mathrm{dW}_{\mathrm{D}_{5}}\right]} \tag{22}
\end{align*}
$$

All trade-off factors involving the weight or specific impulse of any stage with respect to the weight or specific impulse of the same or any other stage can now be determined from Equation (22). This is done by solving Equation (22) for the ratio of the two differentials making up the trade-off factor, assuming all other differentials to be zero. Payload is included in last stage dry weight.

Some specific examples of the calculation of trade-off factors are:
a. The ratio of first stage dry weight to last stage dry weight (that is, payload).

From Equation (22) retaining only $\mathrm{d}_{\mathrm{D}}{ }_{\mathrm{D}}$, and $\mathrm{dW}_{\mathrm{D}_{5}}$ among the differentials,

$$
\begin{gathered}
\left(\frac{\partial \Delta V}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{1} d \mathrm{~W}_{\mathrm{D}_{1}}+\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{1}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{2}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{3}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}\right. \\
+\left(\frac{\partial \Delta \mathrm{V}}{\left.\left.\partial \mathrm{~W}_{\mathrm{D}}\right)_{5}\right]_{5} \mathrm{~d}_{\mathrm{D}_{5}}}\right. \\
+\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}-\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{4}\right]\left[\frac{\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{5}}{\left(\frac{\partial \Delta \mathrm{~V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}} d \mathrm{~W}_{\mathrm{D}_{5}}\right]=0
\end{gathered}
$$

or, solving for the desired ratio,

$$
\begin{equation*}
\frac{d W_{D_{1}}}{d W_{D_{5}}}=\frac{\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}+\frac{\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}}\left[\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}-\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}\right]}{-\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}} \tag{23}
\end{equation*}
$$

b. The ratio of second stage specific impulse to weight of propellant boiloff in earth orbit (that is stage four "dry weight"). Note that the boiloff propellant must be considered as dry weight in this analysis due to constraint 3 and the fact that all d_{F} 's have been assumed zero in deriving Equation 22. Also note that calculation stages two and three are both physical vehicle stage two. Therefore when considering changes in physical stage specific impulse, the change of specific impulse in all the calculation stages making up that physical stage must be considered (that is, $\mathrm{dI}_{\mathrm{Sp}_{2}}=\mathrm{dI}_{\mathrm{Sp}_{3}}$). This, of course, is not true for dry weight and propellant changes since these changes have been allowed for in the derivation of the basic equations by the definition of the calculation stages.

From Equation 22, retaining only $\mathrm{dI}_{\mathrm{Sp}_{2}}, \mathrm{DI}_{\mathrm{sp}_{3}}$, and $\mathrm{dW}_{\mathrm{D}_{4}}$ among the differentials

$$
\begin{aligned}
\left(\frac{\partial \Delta V}{\partial \mathrm{I}_{\mathrm{Sp}}}\right)_{2} \mathrm{dI}_{\mathrm{Sp}_{2}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{3} \mathrm{dI}_{\mathrm{sp}_{3}} & +\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{1}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{2}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{3}\right. \\
& \left.+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}\right] \mathrm{d}_{\mathrm{D}_{4}}=0
\end{aligned}
$$

while from physical considerations

$$
\mathrm{dI}_{\mathrm{sp}_{2}}=\mathrm{dI}_{\mathrm{sp}_{3}}
$$

Again solving for the desired ratio,

$$
\begin{equation*}
\frac{\mathrm{dI}_{\mathrm{sp}_{2}}}{\mathrm{dW}_{\mathrm{D}_{4}}}=\frac{\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{1}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{2}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{3}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}\right]}{\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{2}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{3}} \tag{24}
\end{equation*}
$$

c. The ratio of second stage specific impulse to fourth stage specific impulse. From Equation 22 retaining only $\mathrm{dI}_{\mathrm{Sp}_{2}}, \mathrm{dI}_{\mathrm{sp}_{3}}, \mathrm{dI}_{\mathrm{Sp}_{4}}$, and $\mathrm{dI}_{\mathrm{Sp}_{5}}$ among the differentials,

$$
\begin{aligned}
& \left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{2} \mathrm{dI}_{\mathrm{sp}_{2}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{3} \mathrm{dI}_{\mathrm{sp}_{3}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}^{\prime}}\right)_{4} \mathrm{dI}_{\mathrm{sp}_{4}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{5} \mathrm{dI}_{\mathrm{sp}_{5}} \\
& +\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}-\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{4}\right]\left[\frac{\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{5}}{\left(\frac{\partial \Delta \mathrm{~V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}} \mathrm{dI}_{\mathrm{sp}_{5}}\right]=0
\end{aligned}
$$

while from physical considerations

$$
\mathrm{dI}_{\mathrm{sp}_{2}}=\mathrm{dI}_{\mathrm{sp}_{3}}
$$

and

$$
\mathrm{dI}_{\mathrm{sp}_{4}}=\mathrm{dI} \mathrm{sp}_{5}
$$

Solving for the desired ratios,

$$
\begin{equation*}
\frac{\mathrm{dI}_{\mathrm{sp}_{2}}}{\mathrm{dI}_{\mathrm{sp}_{4}}}=\frac{\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{4}-\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{4}-\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{4}\right]\left[\frac{\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{5}}{\left(\frac{\partial \Delta \mathrm{~V}}{\partial \mathrm{~W}_{\mathrm{p}}}\right)_{5}}\right]}{\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{2}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{3}} \tag{25}
\end{equation*}
$$

Other trade-off factors can be calculated in like manner by considering other differentials. This is not as laborious as might be suspected at first glance since the individual partial derivatives need only be calculated once, and their groupings, the coefficients of the differentials, also need only be calculated once.

D.4.2 EXAMPLE II

Constraints:

1. Total mission ideal velocity constant $\left[\sum_{j=1}^{5} d(\Delta V)_{j}=0\right]$
2. Injection ideal velocity constant $\left[d(\Delta V)_{5}=0\right]$
3. Constant consumed propellant ratio among stages.
4. Constant second physical stage propellant consumed prior to LES jettison (i.e., constant second calculation stage propellants, $d_{W_{P_{2}}}=0$).
5. Constant liftoff weight.

From constraints 1 and 2, as in Example I,

$$
\begin{align*}
\sum_{j=1}^{5} d(\Delta V)_{j}= & \sum_{j=1}^{5}\left(\frac{\partial \Delta V}{\partial I_{S p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{5}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right] d W_{D_{j}} \\
& +\sum_{j=1}^{5}\left\{\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{j}\right\} d W_{P_{j}} \tag{26}
\end{align*}
$$

and

$$
\begin{equation*}
0=\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5} d I_{S_{5}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5} d W_{D_{5}}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5} d W_{P_{5}} \tag{27}
\end{equation*}
$$

From constraint 4,

$$
\begin{equation*}
\mathrm{dW}_{\mathrm{P}_{2}}=0 \tag{28}
\end{equation*}
$$

While from constraint 3

$$
\begin{equation*}
\mathrm{R}_{1}=\frac{\mathrm{W}_{\mathrm{P}_{2}}+\mathrm{W}_{\mathrm{P}_{3}}}{\mathrm{~W}_{\mathrm{P}_{1}}} \tag{29a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{\mathrm{W}_{\mathrm{P}_{4}}+\mathrm{W}_{\mathrm{P}_{5}}}{\mathrm{~W}_{\mathrm{P}_{1}}} \tag{29b}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathrm{R}_{1} \mathrm{~d} \mathrm{~W}_{\mathrm{P}_{1}}=\mathrm{d} \mathrm{~W}_{\mathrm{P}_{2}}+\mathrm{d} \mathrm{~W}_{\mathrm{P}_{3}}=\mathrm{d} \mathrm{~W}_{\mathrm{P}_{3}} \tag{30a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{R}_{2} \mathrm{dW}_{\mathrm{P}_{1}}=\mathrm{d} \mathrm{~W}_{\mathrm{P}_{4}}+\mathrm{d} \mathrm{~W}_{\mathrm{P}_{5}} \tag{30b}
\end{equation*}
$$

From constraint 5,

$$
\begin{align*}
& d W_{D_{1}}+d W_{D_{2}}+d W_{D_{3}}+d W_{D_{4}}+d W_{D_{5}}+d W_{P_{1}}+d W_{P_{2}}+d W_{P_{3}} \\
& +d W_{P_{4}}+d W_{P_{5}}=0 \tag{31}
\end{align*}
$$

Substituting Equations (28, 30a, and 30b) into the above equation,

$$
\begin{aligned}
& d W_{D_{1}}+d W_{D_{2}}+d W_{D_{3}}+d W_{D_{4}}+d W_{D_{5}}+d W_{P_{1}}+0+R_{1} d W_{P_{1}} \\
& +R_{2} d W_{P_{1}}-d W_{P_{5}}=0
\end{aligned}
$$

Solving for $d W_{P_{1}}$,

$$
\begin{equation*}
d W_{P_{1}}=\frac{-\left(d W_{D_{1}}+d W_{D_{2}}+d W_{D_{3}}+d W_{D_{4}}+d W_{D_{5}}\right)}{1+R_{1}+R_{2}} \tag{32}
\end{equation*}
$$

From Equation (27)

$$
\begin{equation*}
d W_{P_{5}}=-\left[\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5} d I_{s p_{5}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5} d W_{D_{5}}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}}\right] \tag{33}
\end{equation*}
$$

Substituting the above into Equation (30b),

$$
\begin{equation*}
d W_{P_{4}}=R_{2} d W_{P_{1}}+\left[\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5} \mathrm{dI}_{\mathrm{Sp}_{5}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5} d W_{D_{5}}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}}\right] \tag{34}
\end{equation*}
$$

Expanding the last summation of Equation (26), with constraint 1, let

$$
\text { Sum }=\sum_{j=1}^{5}\left\{\left[\sum_{i=1}^{j=1}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}\right]+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{j}\right\} d W_{P_{j}}
$$

then

$$
\begin{aligned}
\operatorname{Sum}= & {\left[\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{1}\right]_{2} d W_{P_{1}}+\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{2}\right] d W_{P_{2}} } \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{3}\right] d W_{P_{3}} \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}\right] d W_{P_{4}} \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{a}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}\right] d W_{P_{5}}
\end{aligned}
$$

Substituting Equations (28, 30a, 33, and 34) into the above equation,

$$
\begin{aligned}
& \text { Sum }=\left[\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{1}\right] d W_{P_{1}}+\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{\partial}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{B}\right] R_{1} d W_{P_{1}} \\
& +\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{a}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}\right] \\
& \left\{R_{2} d_{W_{P_{1}}}+\left[\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5} d I_{s p_{5}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5} d W_{D_{5}}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}}\right]\right\} \\
& -\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{3}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}\right] \\
& {\left[\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right){ }_{5} \mathrm{dI}_{\mathrm{sp}_{5}}+\left(\frac{\partial \Delta V}{\partial \mathrm{~W}_{\mathrm{D}}}\right) \mathrm{dW}_{5} \mathrm{~W}_{5}}{\left(\frac{\partial \Delta V}{\partial \mathrm{~W}_{\mathrm{p}}}\right)_{5}}\right]}
\end{aligned}
$$

Factoring,

$$
\begin{align*}
& \text { Sum }=\left\{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{1}+\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{1}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{2}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{3}\right]_{1}\right. \\
& \left.+\left[\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{1}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{2}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right)_{3}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{4}\right] \mathrm{R}_{2}\right\} \mathrm{d} \mathrm{~W}_{\mathrm{P}_{1}} \\
& -\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}-\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}\right] \\
& {\left[\frac{\left(\frac{\partial \Delta V}{\partial \mathrm{I}_{\mathrm{sp}}}\right)_{5} \mathrm{dI}_{\mathrm{sp}_{5}}+\left(\frac{\partial \Delta \mathrm{V}}{\partial \mathrm{~W}_{\mathrm{D}}}\right) d \mathrm{dW}_{\mathrm{D}_{5}}}{\left(\frac{\partial \Delta \mathrm{~V}}{\partial \mathrm{~W}_{\mathrm{P}}}\right)_{5}}\right]} \tag{35}
\end{align*}
$$

Substituting Equations (32, 35) into Equation (26), using constraint 1,

$$
\begin{align*}
0= & \sum_{j=1}^{5}\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{j} d I_{s p_{j}}+\sum_{j=1}^{5}\left[\sum_{i=1}^{j}\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{i}-\frac{Q}{1+R_{1}+R_{2}}\right] d W_{D_{j}} \\
& -\left[\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{4}-\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{4}+\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}\right]\left[\frac{\left(\frac{\partial \Delta V}{\partial I_{s p}}\right)_{5} \mathrm{dI}_{s p_{5}}+\left(\frac{\partial \Delta V}{\partial W_{D}}\right)_{5} d W_{D_{5}}}{\left(\frac{\partial \Delta V}{\partial W_{P}}\right)_{5}}\right] \tag{36}
\end{align*}
$$

Where Q is the coefficient of $d W_{P_{1}}$ in Equation (35). Equation (36) is comparable to Equation (22) of Example I, and can be used to compute the desired trade-off factors in the same manner as was done in Example I. R_{1} and R_{2} are given by Equations (29a, 29b) or can be assigned arbitrarily. By letting R_{2} go to zero and retaining R_{1}, the case of constant propellant loading in the third physical stage and a constant propellant loading ratio between the first two physical stages can be investigated using Equation (36).

MARK II
COMPUTER PROGRAM DESCRIPTIONS
(USER'S GUIDE)

23 December 1965

Apollo Support Department General Electric Company Daytona Beach, Florida

Abstract

The Mark II Computational System is being designed and developed for the purpose of prediction analysis. This User's Guide describes and explains how to use the computer programs comprising Mark II.

Title Page
INTRODUCTION 1
HISTORICAL BACKGROUND 1
MARK II SYSTEM PHILOSOPHY 2
MARK II COMPUTER SYSTEM 4
Program Control 4
Input Data Processing 4
Trend Prediction 6
Output Data Processing 6
PURPOSE OF THE CURRENT PUBLICATION 7
REVISIONS 7
Reference No.
EXECUTIVE CONTROL (SPACE) 54 S
CONTROL PROGRAM (GOODE) 55 S
MAXIMUM LIKELIHOOD LINEAR 56 S
MAXIMUM LIKE LIHOOD NONLINEAR 57 S
ADAPTIVE (FOURIER) EXPONENTIAL 58 S
ASYMPTOTIC (LOGISTIC) EXPONENTIAL 59 S
OUTPUT PROGRAM (OUTPT) 60S
HISTORY PLOT PROGRAM (HIS) 61S
TITLING SUBROUTINE (TITEL) 62 S
SUMMING PROGRAM (SUM) 63 S
DECISION RELEVANCY (Criticality) 64 S
OVERALL COST ESTIMATION 65 S
UPDATE PROGRAM 66 S
SUBROUTINE GETDAT 67 S
NORMA LIZATION SUBROUTINE (NORM12) 68 S
DOUBLE PRECISION MATRIX INVERTER (DPM1) 69 S
PROBABLE ERROR PROGRAM (RSS) 70 S
PLOTTING SUBROUTINE (UMPLOT) 71S
REFERENCE MANUAL (SPACE) iii

INTRODUCTION

This section describes:
a. The historical development of the Mark II System,
b. The current, general philosophy of the Mark II System,
c. The Mark II Computer System,
d. A brief description of the current document.

HISTORICAL BACKGROUND

In August of 1964, work was started on a computer program which could predict the weight of functional systems at some future date. The first model to be programmed was a linear model whose parameters were estimated by maximum-likelihood estimation. At that time, there was a small number of functional systems the weights of which had to be predicted each month. Input data for each functional system was kept on punched cards. As more data was received, the deck was simply enlarged to include the new information. As long as there were only a few functional systerns and a limited amount of data for each, this mode of operation was quite satisfactory.

In December of 1964, the exponential model was introduced. About this same time the computerized removal of nonrandom changes was initiated. With the increasing number of functional systems being processed, the card input of data was becoming cumbersome. To alleviate this problem, the Weight Data File (WDF) was created in March 1965. The Weight Data File is a magnetic tape record of all the reported observed weights, nonrandom changes, and other weight data. A program was written to update the Weight Data File as additional information became available.

In order that running of the linear and/or exponential-model computer programs be as easy as possible, a combination program was written in April 1965. This program allowed the running of either or both of the existing programs, permitting a significant reduction in the necessary control cards. The combination program, along with the Update program and the Weight Data File, served as the core of the first system assembled for the purpose of trend prediction. This first system, which was no more than a loosely tied-together group of programs, was called Mark I and was completed during April 1965.

Since Mark I was first introduced, it has undergone many revisions. New auxiliary programs have been written and tied into this collection of programs. Two new trend models were developed and programmed.

The Fourier model was developed in May 1965, and the logistic model in June 1965. It soon became apparent that Mark I was becoming obsolete. Another revision was in order and an entirely new system design was initiated in June 1965. The new system was appropriately named Mark II.

The Mark II System is still in an evolutionary state, and will continue to be for quite some time to come; however, enough of the initial concept formulation and sufficient programs are completed to warrant the publishing of the first User's Guide.

MARK II SYSTEM PHILOSOPHY

Mark II is a system of computer programs written for the IBM 7044 computer. These programs operate as physically independent but functionally consistent units. Each program in the system is designed for a specific task. Each may utilize output from other programs in the system and from information stored in the Weight Data File. The system operates under a monitor system, SPACE (an acronym for Subsystem Processor for the Apollo Computing Effort), which handles communication between programs. The system also provides a tape library of Mark II programs and has bi-. nary input/output (I/O) capabilities.

Most computer programs are designed to be run under control of a supervisory program or "system. The advantages of these system attributes accrue from their ability to provide standardized I/O subroutines, as well as an automated means of executing the desired program or sequence of programs.

The particular system attributes that were sought for Mark II were:
a. The I/O subroutines must be as efficient as possible, for large quantities of binary data.
b. The I/O routines must provide a very convenient and flexible means of program intercommunication.
c. The system itself must provide the capability of a program library such that the desired programs for a production run can rapidly be called from magnetic tape or disk file in any order.

SPACE, which operates as a subset of the $7040 / 7044$ IBJOB Processor Monitor, was - chosen as the executive or administrative program for Mark II. The framework of SPACE is centered around a collection of seven versatile I/O subroutines. By using these subroutines the programmer candisassociate himself completely from such problems as the physical aspects of retrieving or creating externally stored data, blocking/ unblocking logicial records, file positioning, synchronized CPU/channel overlap, and the differences in the characteristics of recording devices. Thus he is permitted to concentrate on his primary task - the internal processing of data.

A basic requirement of any executive monitor is to automate the running of a series of data processing programs by calling these programs from a library tape as they are needed. This requirement necessitates the SPACE user to create his own library by employing the chain feature of IBLDR. Enhanced by these facilities, the objectives of the monitor may be outlined as follows:
a. To create data files on a given I/O device with the ability to randomly access any of these files.
b. To enable "data-sharing" capabilities whereby files of output data from any program(s) can serve as input data to any later program(s), either within the same job or not.
c. To provide a framework around which systems of data processing programs can be developed. Once data is available in the standard SPACE file format, the whole range of previously written programs is available to process it.
d. To provide a flexible means of program intercommunication.

Since we have a monitor system specializing in a library of intercommunicating programs, we can build Mark II as a series of programs rather than just one program. This modularized concept is very desirable for many reasons three of which are:
a. Each program can be written as efficiently as possible without worrying about interfering with other program areas.
b. Many programmers can work on Mark II permitting many programs to be written in a short span of time.
c. New capabilities can be easily added to Mark II by replacing the affected programs by new ones or by adding new programs to the series.

An examination of the weight trending problem indicates that the operations fall into one of four groups:
a. Program Control.
b. Input Data Processing.
c. Trend Prediction.
d. Output Data Processing.

These groups are functionally dependent in that any one group depends on another for instructions, input data, output data, etc. The basic logical structure of the Mark II system is illustrated in Figure 1. The four functional components are indicated together with the important data links.

Program Control

This group is the most sensitive of the four. Often referred to as the monitor or executive routine, it has the responsibility of accurately interpreting the user's instructions and of providing the required output. It establishes the proper sequence of operations for each job to be run and then monitors the resulting execution. It efficiently handles the flow of large blocks of data into and through the computer and communicates with all programs in the system.

The user, having decided on a sequence of operations, turns control over to the monitor. Thereafter, the monitor functions much as a bookkeeper. It executes programs in a specified order and keeps track of all data generated by individual programs.

When the sequence of operations has been completed, the job is terminated. Notice that the user has the flexibility of performing a long and involved analysis study or making a series of several short computer runs each with a specific goal in mind.

Input Data Processing

Input data may be classified as:
a. Functional System Weight Data.
b. Instructions.

Functional System Weight Data is a complete history of the weight data for a given functional system. This data includes time points, Estimated, Calculated, and Actual (E/C/A) weight percentages, nonrandom weight changes, shipping date, etc. The

Figure 1. Mark II Basic Flow
historical weight data is stored on magnetic tape and is updated monthly or whenever a weight change is received. This involves the extraction of raw data from reports, graphs, charts, etc. and the preparation of such data for the computer. Input data cards must be punched, and when all the raw data has been reduced to data cards, the cards are processed by a computer program which performs data consistency checks and then updates the weight data file. Thus, the entire history of weight data for each functional system is stored on magnetic tape. This history data file will be called the Weight Data File (WDF).

A second type of input data is classified as input instructions. It includes operating instructions and sequencing instructions. For example, the user must specify what particular trend prediction programs are to be executed for each functional system. He must also specify which auxiliary programs, if any, are to be executed, and the order in which these auxiliary programs are to be executed.

Trend Prediction

Four prediction models are currently available in the Mark II Computer System:
a. Maximum Likelihood Linear.
b. Maximum Likelihood Nonlinear.
c. Adaptive (Fourier) Exponential.
d. Asymptotic (Logistic) Exponential.

Each of the models operates in the same general manner. The weight data for the given functional system is moved from a temporary storage location to a working storage area. Here it is prepared for the actual trending operation by removal of nonrandom changes and normalization of any outliers. This pretrend data preparation is dictated by the user, and the appropriate instructions are entered into the computer as input instructions. Once the data has been prepared for prediction analysis, program parameters are computed and the mean trend line is determined. Posttrend operations are now executed, and include computation of the prediction lines, calculation of confidence limits, and the introduction of $\mathrm{E} / \mathrm{C} / \mathrm{A}$ effects in the prediction range. The entire set of weight data, to include history data and predicted data, is stored on magnetic tape for future reference.

Output Data Processing

The output data processing programs perform various computations on the trended data in orucr to provide the most timely output for the user. Tabular listings and plots of
each functional system that was trended during the computer run are presented. Another program computes the total weight of a spacecraft or launch vehicle from the individual functional systems which comprise the spacecraft or launch vehicle. Other operations in this area include:
a. Computation of probable errors.
b. Analysis of trade-offs.
c. Scheduling computations.
d. Cost data processing.

The result of this group of programs is a set of tabular data, graphs, and charts which present a complete picture of the current weight status of a launch vehicle or spacecraft.

Figure 2 presents, in elemental form, the concepts discussed above. Here, the elements for Prediction Analysis have been arranged in five groups:
a. Monitor and Executive Routine.
b. Data File Library - WDF.
c. Pretrend Data Processing.
d. Trend Prediction.
e. Prediction Output Processing.

PURPOSE OF THE CURRENT PUBLICATION

This document, as published today and as will be subsequently updated, will serve as an up-to-date description of the programs and capabilities available with the Mark II System. Each program currently incorporated in the system will be represented by a section containing the following information:
a. A brief word description of each program.
b. A pictorial representation of the output tape written by the program or typical printed output from the program.
c. A flow chart.
d. A computer program listing.

REVISIONS

As new programs are added or as existing programs are modified, revisions will be published documenting these additions and revisions.

Figure 2. Mark II Prediction Analysis Computation System Elements

The decimal numbering system has been chosen to allow some flexibility in paginating revisions and/or additions. In addition to a Reference (page) No., each page will show - its Issue Date and the date of the Superseded page.

EXECUTIVE CONTROL-54S (SPACE)

Overall control of the Mark II Computational System is maintained by the executive program, SPACE, which operates as a subset of the 7040/7044 IBJOB Processor Monitor. The user is referred to the Appendix for a complete description of SPACE.

The link structure of the complete Mark II System is presented on Reference No. 54.5 Notice that the first link is the SPACE link while the very last link is the Utility link. Since the Mark II System operates by loading the specified program link into core storage from the Mark II library and by executing the specified program, the input data deck consists of a link card, followed by the input data for that program. Program data decks are stacked one behind the other in the order in which the programs are to be executed. The remainder of this section will be devoted to presenting several examples of job deck "set-ups".
\qquad。 Issue Date
\qquad

EXAMPLE 1 - It is desired to run the trend prediction programs on the specified functional systems, the History Plot Program, the Summing Program, and the Probable Error Program. The complete input deck would look as is shown below:

The data deck listed above will perform the operations specified in the example heading. In particular, the following items should be noted:

- Packet A, which consists of the "Reels" card, must be the first card in the input deck. For this example, the results of the linear program would be written on reel 691; the results of the nonlinear program would be written on reel 692; the results of the Fourier model would be written on reel 693 ; and the results of the logistic model would be written on reel 84.
- Packet B consists of those data cards which are necessary to run the trend prediction programs. It should be noted that the link card is the first card of this package and is followed by the data cards required by the Main Program (GOODE).
- Packet C consists of those cards necessary to run the History Plot Program.
- Packet D consists of those cards necessary to run the Summing Program.
- Packet E consists of those cards necessary to run the Probable Error Program.

The following points should be noted concerning the job deck setup:

- The "Reels" card is the first card in the deck.
- Each packet consists of a link card (which acts as a trigger to SPACE to call the desired link into core storage from the library and to begin execution) and the program input data. For a complete description of the program input data the user is referred to the individual program descriptions.
- The individual programs may be run in any sequence desired. It should be remembered, however, that the Summing Program (SUM) and the Probable Error Program (RSS) require the output of the Trend Prediction Programs. Thus, any of the following sequences of packets would be acceptable:

$$
\begin{aligned}
& \text { A, B }, \mathrm{C}, \mathrm{E}, \mathrm{D} \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}, \mathrm{C} \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{E}, \mathrm{D}, \mathrm{C} \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{E} \\
& \mathrm{~A}, \mathrm{~B}, \mathrm{E}, \mathrm{C}, \mathrm{D} \\
& \mathrm{~A}, \mathrm{C}, \mathrm{~B}, \mathrm{D}, \mathrm{E} \\
& \mathrm{~A}, \mathrm{C}, \mathrm{~B}, \mathrm{E}, \mathrm{D}
\end{aligned}
$$

EXAMPLE 2 - Run the Trend Prediction Programs only. The sequence A, B will perform this operation.

EXAMPLE 3-Run the History Plot Program and the Trend Prediction Programs. The ${ }^{-}$ sequence A, C, B will perform this operation.

EXAMPLE 4-Run the History Plot Program only. The input deck appears as:

CARD COLUMNS

REELS *
1122100
1234100
HIS

NOTE

The "Reels" card contains no reels information since it is not necessary to mount the trending tapes; however, this card is still necessary.

EXAMPLE 5-Run the Summing Program only. The input deck will be as:
CARD COLUMNS

NOTE
The "Reels" card contains the reels numbers of the tapes upon which the linear, nonlinear, Fourier, and logistic results have already been written. The link card (card No. 2 above) contains the integers 3322 which represent the numbers of data files written on each of the four trending tapes.

EXAMPLE 6 - Run the Probable Error Program only.
CARD COLUMNS

REELS R -1 R-2 R 693
SUM 22 *
MISION $105 \quad 12 \quad 65$ *
PARTS 1122100 L/V FACTOR . 185 *
PARTS 1234100 L/V FACTOR . 810 *
ENDCSE*
END RSS *

NOTE

The "Reels" card contains two "scratch" reels (see SPACE Reference Manual) and reel 693 which contains the results of the Fourier model which has previously been run. The integer 22 on the SUM card (card No. ${ }^{2}$) is the number of data files on the Fourier tape.

Note that the Trend Prediction Programs and the History Plot Program must have the Weight Data File (WDF) advance mounted. The symbolic address should be U07 with a file identifier FTC01.

The following programs are not run under the control of SPACE but are run as separate jobs independent of SPACE:
a. Update Program (66S)
b. Decision Relevancy Program (64S)
c. Cost Program (65S)

The job deck setup and necessary control cards to run these programs are described in the individual program references.

beniky
FLINK mIS OUTPUT

HIFLIR mistiay $10 / 75 / 05$
mirlif umplot 13／04／gs H」ら「OJい」

IENTHY
FLINK S：MM HISTHY
91HLDK SHMIN：11；30165
Sunflubl
SENTHY
GLINK HSS SLMINS
TIALUR RFPOHT $17 / 18 / 65$
SIHLTR PROCES $17 / 19 / 55$
SIHLUR PRINT 19／18／65
SIHLER GTATA OS／2G／6
HEDUNJI

SENIRY
flink utlity
\＄1fliok UTLis 04／10／EF
UT＿nound
senitiay
SENDCH

CONTROL PROGRAM - 55 S (GOODE)

This program is the Control Program for the Trending System. It calls any or all of the four trending methods, the Output Routine, and the History Plot Routine, including any associated subroutines. The main job of this program is to set up the necessary instructions to process the functional system assemblies through the various trend prediction models. GOODE performs all of the input functions for the dependent programs. The data cards are read in one by one, analyzed, and stored in core storage. They are then sorted into an array of ascending case numbers to avoid the expense of constant winding and rewinding of the data tapes to match the cases with the files. The cards are analyzed one by one, and the arguments are prepared for the desired trending method(s). GOODE also retrieves the necessary trending information from the Weight Data File and stores this information into a working location in core.

At this time the card image is scanned and the desired trend prediction programs are called and executed. At the completion of execution of each trend prediction program, control is returned to GOODE which determines if all the required prediction programs have been called and executed. After all prediction programs for that card have been executed, the next card image is processed in the same manner. When all the input data has been processed, GOODE calls the Output Program which reads the four binary files generated by the prediction programs. At the completion of the Output Program, control is returned to SPACE.

If the History Plot Routine is to be used, the cards are stored and sorted in the same manner as in trending. The trending methods, however, are bypassed and the History Plot Program is called. The History Plot Program prepares its own output. When GOODE is through processing all of the case numbers, it simply returns control to SPACE directly, bypassing the Output Program.

GOODE accepts two basic types of input which must be in the following forms:

INPUT FOR TREND PREDICTION ANALYSIS

Columns

Program Indicator - Used Only on the last card of the deck

Starting Case Number
Ending Case Number (Optional)
\(\left.\begin{array}{l}1-3

4-10

12-18\end{array}\right\}\)| Punch "END" |
| :--- |
| 7 digits (integer) |
| required. |

Programs or Trending Methods on which data is to be run
a. Linear (56S)
b. Nonlinear (57S)

20
c. Logistic Model (59S)

- Option 1

24

- Option 2

26
Indicated by an " X " punched in the column.

- Option 3

28

- Option 4
- Program Maturity Factor α
d. Fourier Model (58S)
- Weighting Factor α
e. Normalization Factor

46
31-34 Number with decimal point punched in Column 32.
36 \} Indicated by an "X" punched in the column.
41-44 $\}$ Number with decimal point punched in Column 42.

- See NORM 12 ($6 /$ S $)$

INPUT FOR HISTORY - PLOTS

Columns

Program Indicator - Used Only on the last card of the deck

Starting Case Number
Ending Case Number (Optional)

Example of Trend Data Deck

Card 1 tells GOODE to trend all of the cases on the WDF from 0611903 through 0611909 by the Linear Prediction Model and also by the Logistics Model with option 3, and using an alpha of 0.85 for $\mathrm{E} / \mathrm{C} / \mathrm{A}$ effects over the observed range (see Logistics, 59 S). The final piece of information is a normalization option of 3 (see NORM 12) which is used for all trend programs selected on that card.

The END card signifies the completion of the trend data deck.

Once GOODE has processed the above cards, control is passed to the Output Routine which after its processing is completed passes control to SPACE.

Example of History Plot Data Deck

CARD COLUMNS

```
1-4-4_12
    0611900
    0651000
HIS
```

The above data deck setup would produce History Plots for the modules 0611900 and 0651000 , and upon completion, control would be returned to SPACE.

[^3]```
$IbFTG GOUNE LIOT,KEF
 INTEGER RLLLS,WO゙CT
 (OmmON/ACCess/ H(lluo),WuCl,lu(12),PKOS
```



```
 1 PUS(15),TRLPUS(1b),RWCNI(1b),UNITu(15)
 COMMON/PHILE/NFYLE(4,3U0),NFY(4)
 COMM(N /PPJU/ ACTUAL(1U0), CALC ilUu), LUT (10U), (UMM (12),
 1 LSQR (100), MLAN (100), viCUNF (100), UviZ (1UU),
 2 MSQR (100), PCUNF (100), S1 (100), S2 (100),
 3 TIME (100), wLIGHT(IUU), buY (1UU), IITLE(g),
 N , NTOT
 CummON /BLULN/ NCASL (IU), lIITLl(gu), AAA (Ibu), NANum(1u),
 l
 2 CulOLk(30U), AulU(N(3UÖ), doluck.(30U)
 COMMON /LUGIS/ KEEP(4),ALP
 COMMON /SIXS/LEEP(2),SALP
 COMMON /OTT/N2I,DI,DZ,JIRUN
 COMMON /HIP/IUFT,JOPT,KCPT,MPATH
 DIMLNSION CINP(4UUL),NINP(4000)
 UIMENSION AM2(20),T2(9),TIMEZ(IUO),Nz(IUU),EST2(1U0),CALC2(IUO),
 l ACT2(10л),E2(100)
 DIMENSION Ll(b),CLIOT(5)
 EQUIVALLNCL (C IINP,NINH)
 DATA L/u/
```



```
 lATA CLIOT/3HbOU,3Hb7う,3Hbgu,3H0OU,3nHIO/
 DATA ClISP/㑑PT/
 DATA ININE /9/
 INTEGER CADENU,TILT
 IB=C
 IF(L .NE. O) GO TO 412
390 I=1
400 K=20*(1-1)+1
```




```
 CINP(K+11),CINH(N+12),CINP(N+1)
```



```
 l - lX,Il)
 IF (XPYZ .NLE (LIST(5)) uU Tu 4UUI
 IIV = I - I
 DO 2U心 LOV=1,IIV
 KL=(20*(LOV-1)) + 18
 NINP(KL) = 5.
 200 CONTINUE
 GO IO 4Cl
4001 IF (:PYZ .LW. civu) vo TO 401
 I = I +1
 =0 10 400
401 I IVIAX=I-1
 READ (1) N2l,U1,0<
 CALL SORT(CINP,IMAX,CU,I)
 L=1
```



```
 1,(W2(I),I=1,N2),(EST2(I),I=1,N2),(CALCZ(I),I=1,N2),(ACTC(I),I=1,M&
 2),(B2(I),I=1,N2)
 IF (CASENU -LU. IILT) GO IU 400
4U31 IF(CASLNU •LT.NINP(L), EU TU 4U3
 IF((ASENO •LW. NINP(L)) UU TU 4U4
 IF(CASENO -LE.NINP(L+1)) GU TU 4U4
 GO TO 408
404 IB=Ib+l
 IF(IB.GT.IU) GOTO408
 NCASE (IB)=CASENO
 NANUM(IB)=NA2
 NN(IM(IB)=NZ
 KI=15*(IB-I)
 DO 4\cup5 I 2=1,NA2
 Kl=K 1 + 1
4\cup5 AAA(K1)=AA2(12)
 Kl=9*(IB-1)
 DO 4v6 I 2=1,9
 Kl=K: +l
4C6 TTITLE(K1)=T2(I2)
 Kl=3L*(IB-1)
 DO 4U7 I 2 = 1,N2
 K1=K1+1
 TBLUCK(K1)=TINE 2(12)
 WBLOCK(K1)=W2(I2)
 EBLOCK(Kl)=EゝT2(12)
 CHLUCK(K1)=(ALC2(12)
 ABLUCK(K1)=ACT2112)
4.7 bSLUCK(K1)=02(12)
 GO TO 4U3
408 NTOT=Ib
 K=L
 IF(NTUT •UT. 1U, NTUT = IU
 0C 4081 JG=1,5
4`81 L1(J`)=0
 IF (XFYZ •NL. (LIJT(5)) GO TU 408C
 IF (NINH(K+17) *NL•0) LI(v)=5
 GO TO 412
4V82 IF (GlNP(N+Z) -NE. LLANK) LI(l) = 1
 IF(CINP(K+3) -NE. ULANK) LI(2)=L
 KOPT=NINP(K+14)
 IF((INP(K+4) etwe bLANK) uv TU 410
 LI(3)=3
 CO 4\cup9 j`=1,4
 KEEP(J9)=0
 KPOINT = K+4+J9
 IF(CINP(KPUINT) •ivte ELANK) NEEP(JOY)=J?
4C9 CONTINUE
 ALP=CINP(K+9)
40 IF((INP(n+1U) LW.ULANK) GU TU 412
 Ll(4)=4
 DO 411 J9=1,2
 LEEP(J9)=0
```

Reference No.
Supersedes
KPOINT $=K+10+J 9$
IF( CINP(KPOINT) •NF. BLANK) LEEP(J9)=J9
411 CONTINUE
$S A L P=C I N P(K+13)$
412 DO 413 J9=1,
IF(LI(J9) ©LW•U) GUTO413
NPATH=L1(J9)
$A R G=C L I S T(N P A T H)$
$\operatorname{LI}(\sqrt{\prime})=0$
(ALL SPACE(ARG)
413 CONTINUE
$L=L+20$
$I L L=(L-1) / 2 j$
IF (IMAX •NE. ILL , GO TU 4031
58 REWIND I
$L=0$
IF (XPY2 ・とU. (LIJT(5)) (HLL JPACL
(ALL SPACL (CLISP)
ENO

## MAXIMUM LIKELIHOOD LINEAR - 56S

The program fits a straight line through a set of observations $W_{i}$ made at time $t_{i}$ by the method of maximum-likelihood estimation. In the underlying model, each observation $W_{i}$ is considered an independent and normally distributed random variable having mean $Y_{i}$ and variance $\sigma_{i}^{2}$. The mean is assumed to change linearly with time

$$
\mathbf{Y}_{\mathbf{i}}=\mathrm{a}+\mathrm{b} \mathbf{t}_{\mathbf{i}}
$$

and the variance of the $i$-th observation is assumed to be

$$
\sigma_{i}^{2}=S^{2} Y_{i}^{2}\left[A_{i}^{2}+r_{1}^{2} C_{i}^{2}+r_{2}^{2} E_{i}^{2}\right]
$$

where:
a $=$ intercept of mean.
$b=$ slope of mean.
$A_{i}=$ fraction of $W_{i}$ which is measured.
$C_{i}=$ fraction of $W_{i}$ which is calculated.
$E_{i}=$ fraction of $W_{i}$ which is estimated.
$\mathrm{S} \quad=$ relative standard deviation of the measured weight.
$r_{1} S=$ relative standard deviation of the calculated weight.
$\mathbf{r}_{2} \mathbf{S}=$ relative standard deviation of the estimated weight.

It should be noted that individual observations $W_{i}$ are weighted depending on the weight breakdown and depending on the ratios $r_{1}$ and $r_{2}$. The choice of these ratios is left to the user; in line with the model, they should be $r_{2} \geq r_{1} \geq 1$. The effect of the weighting is to consider observations with a greater amount of measured or calculated weight as more significant than others. $r_{1}$ and $r_{2}$ are functional system parameters, and at the present time, are part of the History data for each functional system. Suggested values are $r_{1}=2, r_{2}=5$.

The maximum-likelihood method yields estimators $\hat{a}, \hat{b}$, and $\hat{S}$ of the parameters $a$, $b$, and $S$. The estimator of the assumed mean line

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\hat{\mathrm{a}}+\hat{\mathrm{b}} \mathrm{t}_{\mathrm{i}}
$$

Reference No.
is the predicted weight or curve fit. The 95 percent confidence interval is also computed. The confidence interval is a function of $S$ and is based on small sample methods using Student's $t$ distribution.

Input to 56 S consists of a case number and its associated weight data. This input is specified on a data card which is read by the Control Program 55S. For a detailed description of this data card see program 55 S .

The output consists of a file of data as is described on the following page.


| FILEID | $=$ label identifier |
| :---: | :---: |
| FILENO | $=$ file number |
| DATE | $=$ date file was created (MMDDYY) |
| PROG | $=\mathrm{BCD}$ name of program |
| LRS | $=$ size of logical records within the file |
| V | $=$ control word for SPACE |
| CASENO | $=$ case number (integer) |
| MONTH | $=$ month in which first data point was observed (integer) |
| YEAR | $=$ year of first observation (integer) |
| N | $=$ number of observations (integer) |
| P | $=$ number of predictions (integer) |
| NPROG | $=$ code word |
| TITLE | $=$ case title |
| TIME | $=$ time points |
| WEIGHT | $=$ normalized weights |
| EST | $=$ estimated percentages |
| CALC | = calculated percentages |
| ACTUAL | $=$ actual percentages |
| BUY | = nonrandom changes \#1 (buyoffs) |
| MEAN | $=$ mean trend line |
| PCONF | $=+95 \%$ confidence limits |
| MCONF | $=$ nonrandom changes \#2 (outhers) |
| UW2 | $=$ observed weights |
| PRED | $=$ prediction line |



```
$IDFTC LINEAR LIST,RLF
 INTEGER RELLS
 INTEGER CADLNO,P,PIVUNIH,PYEAR,YEAR
 REAL LSUR,MVANgNICUNF,MSUR
 COMMON /ACCESS/ HC(1UU),WOCT,IU(12),PROG
 COMiNON /SYSTEM/ NTAPLכ,RLELכ(15),CNTRLS(15),FILEJ`(15),LRO(1b),
 1 POS(15),TRLPOS(15),RWCN((15),UNIT`(15)
 COMMON /PFILE/ NFYLE(4,3C0),NFY(4)
 COMMON/PYOU/ ACTUAL(100), CALC (1U0), ᄃST (10U), (UNi (12),
 1 LSQR (ICO), {VLAIV (lOO), MLONF (IUC), UW2 (100),
 2 MSQR (100), PCUNF (100), S1 (10)), 22 (10U),
 3 TIME (IUU), wLIUNT(IUU), UUY (IUU), 11/LL(g),
 N,NTOT
 OIMENSIUN STUDNT(31)
 LQUIVALLNCL (COM(1),PMUNTH), (CUM(2),rYEAK), (CUM(3),MUNTH),
 2 (COM(4),YEAR), (CUM(5),R1), (CUF(6),K2), (CUM(8),BSUSN), (CUM(9),
 4 (COM(10),NSUUP)
 UATA STUDNT /12.706.4.303.j.102.2.776.2.571.2.447.2.305.<.3U6,
 2.26<.2.220,2.<01,2.179,2.16J,2.145.<.131,<.1くv,
 2.110.2.101,2.C93,2.086,2.00U,2.U74, L.065, L.004,
```



```
 UATA NPRQG/3HLIN/
 DO 13`0 Il=1,NTUT
 (ALL GETUAT(IPSNT,II,(ASLNU)
 BPRIM = U.O
 CPRIM = 0.0
 EPRIM = U.O
 FPRIM = U.O
 DO 1(50 I =1,N
 BPRIM = BPRIM + TIME(I)
 CPRIM = CPRIM + TIME(I)**2
 EPFIM = EPRIM + WEIGHT(I)
1050 FPRIM = FPRIM + WEIGHT(I) * TIME(I)
 UPRIM = FLUAT(iv) * CPRINi - UPRINi**2
```




```
 0O 1057 I=1,N
 LSQR(I) = ATWIST + BTWIST*IIME(I)
1057 MSUR(I) = L勺UK゙(I)**) * (ACIUAL(I)**2 + N1**2**(ALC(I)**L +
 1 R2**2 * EjT(I)**2)
 ITERAT = 3
1062 A = 0.0
 B=0.0
 C=0.0
 E=0.0
 F=0.0
 DO 1074 I=1,N
 A = A + 1.0/MSQR(I)
 B = B + TIME(I) / MSQR(I)
 C = C + TIME(I)**2 / MSQR(I)
 E = E + WEIGHT(I) / MSQR(I)
```

```
1074 F = F + WEIGHT(I) * TIME(I) / MSQR(I)
 D=A*C - 3**2
 AHAT = (E*C - F*B)/D
 BHAT = (A*F-B*E)/D
 DO 1102 I=1,N
1102 MEAN(I) = AHAT + EHAT*TIME(I)
 ITERAT = ITERAT - 1
 IF (ITERAT •EQ. O) GO TO 1114
 DO 1111 I=1,N
1111MSGR(I)= MEAN(I)**2 * (ACTUAL(I)**2 + KI**2* (ALC(I)**2 +
 1 R2**2 * EST(I)**2)
 GO TO 1062
1114 NPLUS1 = N + 1
 NPLUSP = 12*(PYEAR - YEAR 1 + PMONTH - MUNTH +1
 K85=TIME(N)
 P=NPLUSP-K85
 NPLUSP=N+P
 IF(IPSNT .UT. 6) GOTO 112V
 DO 1124 K=NPLUSI, NPLUSP
 EST(K) = EOT(N)
 CALC(K) = CALC(N)
1124 ACTUAL(K)= ACTUAL(N)
 GO TO 1164
1125 IFI NSUBP .NE. O 1,GO TO 1143
 OO 1140 K=NPLUSl,INPLUSP
 EST(K) = CSUSF
 CALC(K) = BSUEP
1140 ACTUAL(K) = ASJGP
 GO TO 11G4
1143 LO 1146 B-NPLUS1,NPLUSP
 toT(N) = (COUGP - EuT(N)) * FLUAT(N-iv) / FLUAI(P) + Lご((v)
 CALC(K) = (OOUOP - CALC(N)) * rLUAT(A-N) / FLUAT(P) + (ALL(SN)
1146 ACTUAL(N) = (A\cupUBr-ACTUAL(N)) \dot{x FLUAT(N-N)/FLUAT(r) + MCTUAL(N)}
1164 UG 1167 i=NPLUS1,NPLUSP
 TINE(K) = TIGE(K-I) + 1.0
 LSER(K) = ATWIOT + ETMIST * TIM:EZ(K)
1167 NEAAO(K) = MHMI + UHAT * TIML(K)
 SuNi = こ.:
 OC 1173 1=1,N
1173 SLIN = SuNi + (NEIGHT(I) - MEAN(I))**2 /MUUK(I)
 RHO = \circlearrowleftGRT(1.u/FLUAT(iv-2)*コUVI)
 k = N-2
 IF (f .CT. 31) K = 31
 001215 I=1,NPLUSP
 sl(I)=RHU * VVEAN(I)* SuKl(ACIUAL(I)**2+ (ALC11)**<
 1+EST(I)**2)
 ALPHA = (C - B *TIME(I))/0
 ALPHA2 = ALPHA**2
 UETA = (A * TIME(I) -E) / D
 BETA2 = BETA**2
 ALPHAA = ALPHAZ * A
 BETAC= EETA2 *C
 ALEECB2 = 2.U * ALPHA * BLTA * 0
```

S2（I）＝RHO＊SURT（ALPHAA＋BLTAC＋ALGLB2） UENO＝STUDNT（K）＊SQRT（SI（I）＊＊2＋S2（I）＊＊2）
$1215 \operatorname{PCONF}(I)=\operatorname{MEAN}(1)+\operatorname{DENO}$
$\operatorname{NFY}(1)=\operatorname{NFY}(1)+1$
NFI $=N F Y(1)$
NF11＝ISIGN（NF1，REELS（1））
NFILE＝REELS（1）＊1000＋NF11
NFYLE（1，NF1）＝CASENO
DIFRC $=U W 2(N)-\operatorname{MEAN}(N)$
DO 1216 IW＝NPLUSI，NPLUSP
WEIGHT（IW）＝MEAN（IW）
1216 UW2（IW）＝NEIUHT（IW）＋DIFRC
ID（7）＝CASENO
ID（8）$=$ MONTH
$\operatorname{ID}(9)=Y E A R$
$\operatorname{ID}(1()=N$
ID（11）$=P$
$10(12)=N P R O G$
CALL ABUUT1（NFILE，1）
CALL AUOUT2（NFILE，TITLE，9）
（ALL AこUU「2（ivFILE，TIME，NPLUUP）
CALL A OUUT 2 （NFILE，wLIGHT，NPLUDP）
CALL AbUUT 2 （NFILE，EST，NPLUUP）
CALL AbUUT2（NFILE，（ALC，NPLUSP）
CALL AECUT2（NFILE，ACIUAL，NPLUSP）
CALL AuOUT 2 （NFILE，BIJY，N）
CALL AOUUT 2 （NFILE，，VILAN，iNPLUゝP）
CALL AbOUT 2 （NFILE，PCUNF，NPLUSP）
CALL AEOUT 2 （NF ILE，MCONF，IVPLUSP）
1217 CALL AUGUTZ（NFILE，JW2，NPLUSP）
1300 CONTINUE
CALL GOODE
END

## MAXIMUM LIKELIHOOD NONLINEAR - 57S

The data available for curve fitting consists of a set of observations $W_{i}$ made at time $t_{i}$. The expected value of $W_{i}$ is assumed to be an exponential function of time,

$$
E\left\{W_{i}\right\}=Y_{i}=a-\mathrm{b}^{-\mathrm{ct}}{ }_{\mathrm{i}} \quad \mathrm{c}>0
$$

where $\mathrm{a}, \mathrm{b}$, c are parameters to be determined. So that the curve will approach the value a asymptotically, c has been restricted to positive values. A range of c values has been established, and for each $c$ in the range, a curve of the above form is fit to the observations $W_{i}$ by the method of maximum-likelihood estimation. For each curve so fitted, values of $a$ and $b$ are determined, and the natural logarithm $\bar{L}$ of the likelihood function is computed. When all c values in the range have been exhausted, the maximum $\overline{\mathrm{L}}$ is determined through inspection, and the corresponding values of $\mathrm{a}, \mathrm{b}$, c are the desired parameters.

The analysis and further assumptions used in the model were identical to those in the linear model described in the previous section. The maximum-likelihood method yields estimators $\hat{a}, \hat{b}, \hat{S}$ of the parameters $a, b, S$ while $c$ is determined from empirical considerations. The estimator of the assumed mean line

$$
\hat{Y}_{i}=\hat{a}-\hat{b} e^{-c t_{i}}
$$

is the predicted weight or curve fit. The 95 percent confidence interval is also computed. The confidence interval is a function of $S$ and is based on small sample methods using Student's t distribution.

The range of c values established within the program limits c to the following values:

$$
\mathrm{c}=\mathrm{k}(.001) \quad \mathrm{k}=1,2, \ldots, 2000
$$

Thus the greatest value that c can attain is the valuc $\mathrm{c}=2$, while the minimum value of $c$ is the value $c=.001$. When $c=2$, the exponential very quickly approaches the

- asymptote a. For example, if $c=2, t=5$ then

$$
\begin{array}{ll}
\mathbf{Y}_{\mathbf{i}}=a-b e^{-c t_{i}} & \text { all } i \\
\mathbf{Y}_{5}=a-b(.000045) & i=5 \\
\mathbf{Y}_{\mathbf{i}} \approx a=1 \geq 5
\end{array}
$$

For any value of $c>2$, this same phenomenon occurs even more quickly and since the curve is essentially the constant $\mathrm{Y}=\mathrm{a}$, no loss will result by restricting $\mathrm{c} \leq 2$. Likewise, when $c=.001$, the curve resembles a straight line with a steep slope and will exhibit no exponential trend until the value of $t$ becomes quite large. For example if $c=.001$, then the curve will not exhibit the same tendencies as that shown in the preceding example until $t=10,000$ months. For $0<c<.001$ this phenomenon is even more pronounced. Thus, it does not seem unreasonable to restrict $c$ to the above values.

Input to 57 S consists of a case number and its associated weight data. This input is specified on a data card which is read by the Control Program - 55S. For a detailed description of this data card see program 55S. Output consists of a file of data as is described on the following page.


| FILEID | $=$ label identifier |
| :--- | :--- |
| FILENO | $=$ file number |
| DATE | $=$ date file was created (MMDDYY) |
| PROG | $=$ BCD name of program |
| LRS | $=$ size of logical records within |
|  | the file |
|  | $=$ control word for SPACE |
| V | $=$ was observed (integer) |
| CASENO | $=$ case number (integer) |
| MONTH | $=$ month in which first data point |
| YEAR | $=$ year of first observation (integer) |
| N | $=$ number of predictions (integer) |
| PPROG | $=$ code word |
| TITLE | $=$ case title |
| TIME | $=$ time points |
| WEIGHT | $=$ normalized weights |
| EST | $=$ estimated percentages |
| CALC | $=$ calculated percentages |
| ACTUAL | $=$ actual percentages |
| BUY | $=$ nonrandom changes \#1 (buyoffs) |
| MEAN | $=$ mean trend line |
| PCONF | $=+95 \%$ confidence limits |
| MCONF | $=$ nonrandom changes \#2 (outliers) |
| UW2 | $=$ observed weights |
| PRED | $=$ prediction line |

$\qquad$


```
$IBFTC NONLNR LIST,REF
 INTEGER REELS
 INTEGER CASENO,P,PMONTH,PYEAR,YEAR
 COMMON /ACCESS/ HC(1UL),WDCT,IU(12),PROG
 COMMUN /SYSTEM/ NTAPES,RLELS(15),CNTRLS(15),FILLU(15),LRS(1)),
 1 PUS(15),TRLPUS(15),RNCN1(15),UNITコ(15)
 CUMMON /HPUG/ A(100),B(1UC),D(1UO),CUM(12),LSUK(1UU),YUAK(IUU),
 l
 2
```




```
 COMMON /PFILE/ NFYLE(4,3UU),NFY(4)
 DIMENSIUN LVI(IUい),YTEST(1~O),OUM(lひU),UEV(IUU),心TJUNT(31)
 EQUIVALLNCE (CUM(1),PMONTH), (COM(2),PYEAK), (CUM(3),MUNIH),
 2 (COM(4),YEAR), (COM(5),R1), (CUM(6),R2),
 3 (COM(7),ASUBP), (CUM(8),BOUBP), (CUM(9),CSUDP),
 4 (CCM(10),NSUBP)
 UATA STUUNT /12.7J6,4.3」3,3.182,2.776,2.571,2.447.<.362,<.3U6,
 l 2.262.2.228, <.2U1,2.179.2.16u,2.143,2.131,2.12u,
 2 2.110.2.101,<.093,2.080,2.080,L.U74,<.064,<.064,
```



```
 LATA PI /0202622U77325/
 UATA NPRUG/3HEXP/
 CALL TRAPOK
 DC 13CO II=1,NTOT
 CALL GETUAT(IPSWT,II,CASENO)
 NPLUS1 = N + 1
 APLLSP = 12*(PYEAR - YEAR) + PMONTH - NUNTH + 1
 K85=:(N)
 P=NPLUSP-K8j
 NPLUSP=N+P
 00 45~ I =NPLUSI,NPLUSP
450 T(I)=T(I-l) + l.
 H=0.
 TSQ=l.
 S=0.
 YT=U.
 DO 500 I=1,N
 H:H + T(!)
 TSQ=TS2+T(I)**2
 S=S + Y(I)
500 YT=YT + Y(I) # T(I)
 HALF=(TSQ * 2 - H* YT)/IFLUAT(N) * TSQ - H**2)
 HBET=(FLuAT(N) * YT - H * u)/(rluAT(N) * lvo - H**2)
 DO SUL J=1,N
&OO YDAR(J)=HAL! + HELT * T(J)
 OELC=1.
 C=.1
 001400 12=1,3
 DELC=じヒLC**1
 IF(C.E.Q.O.) C=DËLC
 00 1100 J1=1,20
 DO 810 k=1,5
 ONE=O.
```

```
 TWO=1.
 FOR=0.
 FIV=0.
 S IX=0.
 00 700 N=1,N
 SGM(M)=YBAR(M)**2 * (A(M)**2 + R1**2*B(M)**2 + R 2***2* L(M)**2)
 ONE=ONE + 1./SQM(N*)
 TWO=TWO - EXP(-C * T(M))/SQM(M)
 FOR=FOR - EXP(-2. * C * T(M))/SQM(M)
 FIV=FIV + Y(M)/SQM(M)
 700SIX=SIX + Y(M) * EXP(-C * T(M))/SWM(N|)
 TRE= -TWO
 AHAT=(FUR * FIV - TwU * SIX)/(UNE * FUR - TNU * 「KL)
 EHAT = (UNE * OIX - TRE * FIV)/(UNL * FUR - iNU* (NE)
 DO BUC M=1,N
 OOO YEAK (M) = AHAT - SHAT * EXP(-C * T(H))
E10 CONTINUE
 SSO=C.
 EMMS=0.
 DO 9CO II=I,N
 EM(II)=SQRT(SQM(II))
 EMMS = EMMS +ALOG(EM(II))
 SOCSSQ=SSG+(Y(II) - YロAR(II))**2/SQN(II)
 SSQ=SSO/FLOAT(N-2)
 LLBAR= -FLUMT(N) * ALUG(2.* PI)/2. - FLUAT(N) * ALUG(SUW)/2.-LMMU
 IF(J1 .EQ. 1) GO TO 1050
 IF(LlEAR .lT. ElMAX) GU TU 106U
1050 CTEST=C
 ATEST=AHAT
 BTEST=BHAT
 ELMAX=ELBAR
 SAV1=CNE
 SAV'3 = TRE
 SAV4=FOR
 SAV'S=SSO
 しO1し55 N1=1,N
1\therefore5S YTEST(N1)=YUAR(N1)
1し6O゙こ=C + ごELC
1200 CONTINUE
 CC 1:1U M1=1,N
1110 YBAR(M1)=YTEST(N1)
 C=CTEST - DELC
1400 CON:INUE
1410 DO 1500 KK=1,NPLUSP
1500 YEAK゙(Kん)=A!LこT - OTLOT * EXH(-CTEST * T(KN))
 K=N-2
 1F(K.CT. 31) K=31
 心` 151U LL=NPLUS1,NPLUSP
 A(LL) = (MUUうP - A(N)) # FLUAT(LL-iv)/rLUAT(F) + A(N)
 U(LL) = (OSUOP - U(N)) * FLUAT(LL-N)/FLUAT(r) + O(|)
 U゙(LL) = (Cこんur' - U(N)) * FLUA|(LL-iv)/FLUAl(F) + J(N)
```



```
 UENUM=5AV1*(-SAV4)- SAV 3**2
```

```
 ALPHA=(-SAV4 -(SAV3*EXP(-CTEST* T(LL))))/D.ENOM
 DETA=(SAV1 * EXP(-CTEST * T(LL))- SAV3)/ DENOM
 ALPHAZ = ALPHA ** 2
 BETA2 = BETA ** 2
 ALPHAA = ALPHA2 * SAVI
 GETAD = BETA2 * (-SAV4)
 ALBEC2 = 2.* ALPHA * OETA * SAV3
 OEV(LL)=SURT(כAVS) * SQRI(SUM(LL) + ALPHAA + BETAU + ALDEC(2)
1510 PCONF(LL)=YOAR(LL) + STUDNI(K) * DEV(LL)
 NFY(2) = NFY(2) + 1
 NF2 = NFY(2)
 NF22=1SIGN(NF2,REELS(2))
 NFILI=REELS(2)*1000 + NF22
 NFYLE(2,NF2) = CASENO
 OIFRC = UW2(N) - YBAR(N)
 DO 666 MOM = NPLUSI,NPLUSP
 Y(MOM) = YBAR(MOM)
 666 UW2(MOM) = Y(MOM) + DIFRC
 ID(7)=CASENO
 ID(8)= MONTH
 ID(9)= YEAR
 ID(10)=N
 ID(11)=P
 ID(12)=NPROG
 CALL ABOUTI(NFILE,I)
 CALL ABOUT2(NFILE,TITLE,9)
 CALL AEOUT2(NFILE,T,NPLUSP)
 (ALL ABUUT2 (NFILE,Y,NPLUSP)
 CALL ABOUT2(NFILE,D,NPLUSP)
 CALL ABUUT2(NFILE,B,NPLUSP)
 CALL. ABUUT 2(NFILE,A,NPLUSP)
 CALL ABOUT2(NFILE,BUY,N)
 CALL ABOUT2(NFILE,YBAR,NPLUSP)
 CALL ABOUTZ(NFILE,PCONF,NPLUSP)
 CALL ABOUT2(NFILE,MCONF,NPLUSP)
?217 CALL ABOUT2 (NFILE, UW2, NPLUSP)
1300 CONTINUE
 cALL GOCDE
 END
```


## ADAPTIVE (FOURIER) EXPONENTIAL - 58S

The program accepts a set of weights $W_{i}$ observed at time $t_{i}$ and predicts the trend of the data at a future date. The model does not assume that the observations are dispersed about a specified mean-value function (as do the other trend prediction programs). Instead, it is adaptive, meaning that it senses the latest tendencies of the trend and projects them into the prediction range. To get away from the mean value function, one must look at the weight increment from the latest observation to the next one. This increment is considered a random variable.

The model chosen was one which expressed the same time-dependent behavior desired in all the models, but which was not autoregressive in its structure. The model is,

$$
\mathrm{w}_{\mathrm{i}+1}-\mathrm{w}_{\mathrm{i}}=a+b e^{-\alpha t_{i}}+\mathrm{R}_{\mathrm{i}}
$$

where $a$ is the mean increment and $R_{i}$ is a random residual of zero mean. When observations are equally spaced, namely $t_{i+1}=t_{i}+\Delta t$, the above equation becomes

$$
W_{i+1}=\left(W_{1}-C\right)+i a+c e^{-\alpha t_{i}}+\sum_{j=1}^{i} R_{j}
$$

where

$$
c=b\left(1-e^{\alpha \Delta t}\right)^{-1}
$$

and a, c, $\alpha$ are parameters to be estimated. It was decided to separate the nonlinear part of the above equation by a Fourier analysis. Hence the name Fourier model.

Input to 58 S consists of a case number, its associated weight data, and a weighting coefficient $\rho$, defined by $\rho^{n-1}=k, 0 \leq k \leq 1$. The parameter $k$ must be input to the program and is specified in columns 41-44 of the instruction card which is read by the Control Program 55S. This weighting coefficient allows the user the opportunity to weight later observations more heavily than earlier observations. If equal weighting is desired, use $\rho=\mathrm{k}=1$.

Output consists of a file of data as is described on the following page.


| FILEID | - label identifier |
| :---: | :---: |
| FILENO | - file number |
| DATE | $=$ date file was created (MMDDYY) |
| PROG | $=B C D$ name of program |
| LRS | $=$ size of logical records within the file |
| V | $=$ control word for SPACE |
| CASENO | $=$ case number (integer) |
| MONTH | $=$ month in which first data point was observed (integer) |
| YEAR | $=$ year of first observation (integer) |
| N | $=$ number of observations (integer) |
| P | $=$ number of predictions (integer) |
| NPROG | - code word |
| TITLE | - case title |
| TIMF. | - time points |
| WEIGHT | $=$ normalized weights |
| EST | - estimated percentages |
| CALC | - calculated percentages |
| ACTUAL | $=$ actual percentages |
| BUY | - nonrandom changes \#1 (buyoffs) |
| MEAN | - mean trend line |
| PCONF | $=+95 \%$ confidence limits |
| MCONF | - nonrandom changes \#2 (outliers) |
| UW2 | $=$ observed weights |
| PRED | $=$ prediction line |



```
$IBFTC FOURNR LIST,REF
 INTLGLR REELS
 INTLGER CASENO,P,PMUNTH,PYEAR,YEAR
 REAL MEAN,MCONF
 COMMON /ACCESS/ HC(1UU),WDCT,ID(12),PROG
 COMM(N /SYSTEM/ NTAPES,REELS(15),CNTRLS(15),FILES(15),LRS(15),
 1 POS(15),TRLPOS(15),RWCNT(15),UNITS(15)
 COMMON /PFILE/ NFYLE(4,300),NFY(4)
 COMMCN /PPOO/ ACTUAL(100), CALC (100), LST (100) , (UM (12),
 l LSQR (100), MEAN (100), MCONF (100), UW2 (100),
 2 MSQR (100), PCUNF (100), Sl (10U), SZ̈ (1Uu),
 3 TIME (100), WEIGHT(IUU) , DUY (IUU), TITLE(9),
 COMMON /SIXS/LEEP(2),SALP
 OIMENSION U2(5,13), AS(b), Fl(100), F2(100), F3(100),
 1 F4(100), DIF(100), U(100), UN(100), ©KALP(5),
 2 A(5), X(100), Q(5), E(13),
 DATA NPROG/3HFOR/
 EQUIVALENCE (COM(1),PMONTH), (COM(2),PYEAR), (COM(3),MONTH),
 (COM(4),YEAR), (COM(5),R1), (COM(6),R2),
 (COM(7),ASUBP), (COM(8),BSUBP), (CUN(9),COUDP),
 (COM(1U),NSUBP)
 DATA PIL/O202622077325/
 DO 71 J=1,13
 EJ=J
 Z2=.7 - (EJ-1.)* .05
 71 AL(J)=-ALOG(Z2)
 DO 10 I= 1,13
 DO 11 K=1,5
 EK=K
 PIEK=PIE*EK
 Pl = 1./(1.+ (PIEK/AL(I))**2)
 P2 = ((-1.)**K)*EXP(-AL(I))-1.
 BK(K,I)=(2./PIEK)*PI*P2
 Il CONTINUE
 10 CONTINUE
 DO lu2 I=1,13
 DO 102 K=1,5
102 Q2(K,1)= BK(K,1)/BK(1,I)
 DO 103 I=1,5
103 AS(I)=Q2(I,13)
 DO 1300 11=1,NTOT
 (ALL GETDAT(IPSWT,II,CASENO)
 6 IF(I .LT. 8, GO TO 1300
 NPLLSP=12*(PYLAR-YEAR)+PMONTH-MONTH+1
60 NPLUSI=N+1
 K85=TIME(N)
 P=NPLUSP-K85
 NPLUSP=N+P
 L=N-1
 V=L
```

```
.•
 RHO=SALP
 DO 117 I=1,N
 117U(I) = WEIGHT(I)
122 CONTINUE
 DO 4 I =1,5
 A(I)}=0\mathrm{ .
 4 CONTINUE
 DO 4l I=1,N
 X(I)=U(I)-((FLOAT(N-I))/V)*U(1)-((FLOAT(I-I))/(FLOAT(N-1)))*U(N)
 4 CONTINUE
 DO 61 K=1,5
 EK=K
 DO 5 I=2,L
 ARG=(EK*PIE*FLOAT(I-1))/V
 A(K)=A(K) + X(I)*SIN(ARG)
 5 CONTINUE
 A(K) = A(K)*(2./V)
 61 CONTINUE
 D=U(1.)-U(1)
 QO=A(1)/D
 DO 7 I = 1,5
 7 Q(I)=A(I)/A(1)
 DO 104 I=1,5
 IF(Q(I) .GE. O.) GO TO 1030
 A(I)=0.
 GO TO 104
1030 IF(G(I) .GT.AS(I)) A(I)=AS(I)*A(1)
104 CONTINUE
 IF((A(1)/0) .GE. .05) GO TO 1882
2224 CONT INUE
 DO 1U゙7 I= I,N
107 MEAN(1)=U(1) + D*(FLUAT(I-1)/FLOAT(N-1))
 CPRIME = 0.
 GO TO 18
2627 ALP=\DeltaL(K)/V
 GO TO 160
1882. CONTINUE
 DO 8 I= I,N
 EK=I-1
 Fl(I)=A(1)* SIN(PIE*(EK/V))
 F2(I)=F1(I)+A(2)*SIN(2.*PIE*(EK/V))
 F3(I)=F2(I)+A(3)*SIN(3.*PIE*(EK/V))
 F4(I)=F3(I)+A(4)*SIN(4.*PIE*(EK/VV))
 8 CONTINUE
 DO O I =1,N
 MEAN(I)=U(1) + D*(FLUAT(I-1)/FLOAT(N-1)) + F4(I)
 9 CONTINUE
 DO 1117 I = 1.13
1117C(I)=(-D)/(1.-EXP(-AL(I)))
 LPASS=0
 IFI D.LT.U..AND. A(I).LT.U. I GO TO 2<22
 DO 110 I=1,13
110(1I)=(-.8*U)/(1.-EXP(-AL(I)))
```

```
 LPASS=1
2222 CONTINUE
 DO 111 I=1,13
 AONE=0.
 ATWO=0.
 DO 112 K=1,5
 AONE=AONE +(OK(K,I)*C(I))**2
I:2 ATWO=ATWO + (EK(K,I)*((I)*A(K))
 E(I)= AONE - 2.*ATWO
111 CONTINUE
 EMIN=10.E+10
 DO 14 K=1,13
 IF(EMIN.LT.E(K)) GO TO 14
 I =K
 EMIN=E(K)
 14 CONTINUE
 ALP=AL(I)/V
 K=1
 IF(LPASS .EQ. l) GO TO 2228
 FACT=.8*U(l)
 IF((113) .UT. FACT) GU lU L<24
 DO 2225 K=1,13
 IF(C(K) .LE. FACI) GU TU. 2L26
2225 CONITINUE
2226 IF(I .LT. K) GO TO 2227
2228 IF\ I .EQ.K .OR. I .EQ. 13, GOTO 16U
 00 147 K=1,13
147 AM(K)=AL(K)/V
 ANUM=(E(I)-E(I-1))*(AM(I+1)-AM(I-1))**2
 1-(E(I+1)-E(I-1))*(AN(I)-AM(I-1))**2
 UNUMi=(AMn(I)-AMI(I-1))*(E(I+1)-E(!-1))
 1- - (Am(I + l)-AM(I-1))*(E(I)-E(I-1))
 ALP=-. 苂(ANUM/DIVL:-i)+AlF(I-1)
160 ANLM=0.
 DNUM=Ü.
 PLA=ALP*V
 DO 17 K=1,5
 EK=K
 PIEK=PIE*EK
 OKALP(K)=(2./P1EK)*(1./(1.+(PIEK/PLA)**2))*((-1.)**K*LXH(-HLA)
 l
 -1.1
 ANUM=ANUM + OKALP(K)*A(K)
 DNUM=DNUM + BKALP(K)**2
 17 CONTINUE
 CPRIME= ANUM/ONUM
 18 00 19 I=1,N
 !9 L(I)=U(I)-CPKINE*EXP(-ALP*FLUAT(I-1))
 DO 191 I=2,N
191 Y(I) =Z(I)-Z(I-1)
 RHO}=(ALOG(RHO))/
 RHO= EXP(RHO)
 ANUM=0.
 DNUM=0.
```

```
 DO 2U I=2,N
 ANUM=ANUM + Y(I)*RHO**(N-I)
 20 DNUM=DNUM + RHO**(N-I)
 AHAT: ANUM/UNUM
 SIGMA=O.
 DO 21 I=2,N
21 SIGMA=SIGMA + RHO**(N-I)*(Y(1)-AHAT)**2
 SIGMA = SQRT (SIGMA/FLOAT(N-2))
 BETA= (Z(N)+AHAT)/Z(N)
 LSET=0
 DO 22 K=NPLUSI,NPLUSP
 TIME(K)=TIME (K-1)+I.
 NT(K)=NT(K-1)+1
 IF(AHAT .LT. U.) GU TO 6.227
 MEAN(K)=L(N)+FLUAT(N-N)*AHAT + (HKIME*EXH(-ALH*FLUAI(N-1))
 GO TO 6529
 6 5 2 7 ~ I F (~ L S E T ~ . E U . ~ l ~) ~ G O ~ T O ~ 6 5 2 8 ~
 AMUTH=BETA**(K-N)
 IF(AMUTH .UT. (.,000Ul)) GU TO 6528
 LSET=1
 AMUTH=O.
6528 MEAN(K)=ANUTH * Z(N)+CPRIME*EXP(-ALP*FLUAT(K-1))
6529 PCONF(N)=MEAN(K)+1.64*SGRT(FLUAT(K-N)*SIUMA**2)
 22 CONTINUL
 NFY(3)=NFY(3) + 1
 NF3 = NFY(3)
 NF33=1'IGN(NF3,RELLS(3))
 NFILL=REELS(3)*10UU + NF33
 NFYLE(3,NF3) = CASENO
 DIFRC = UWZ(N) - MEAN(N)
 FLP = D
 DO 1216 Im=NPLUSI,NPLUSP
 FKN = IK - N
 LST(IW) = (CNUBP-LST(N)) * +KN / FLP + LST(N)
 CALC(In) = (LJUEP-CALC(iN)) % FAN/FLF + (CALC(iN)
 ACTUAL(IN)={ADUUP-ACIUAL(N)| * FMM/ +LH + AClUML(N)
 U(IW) = MtaN(IW)
 1216 UW\Sigma(IW)=U(IW) + UIFRC
 ID(7)=CASENO
 ID(8)=MONTH
 ID(9)=YEAR
 ID(IU)=N
 ID(1:)=P
 1D(12)=NPROG
 CALL ABOGTl(NFILE,I)
 (ALL AbOUTz(NFILE,TITLF,9)
 CALL AOUUT?(NFILE,TIME,VPLUOP)
 (ALL AUUUTZ (NFILE,U,INPlUSH)
 (ALL AuUUT2(ivfILE,L`l,ivpluar)
 CALL AUUUIz(ivt ILE,(ALL,ivPLU~P)
```



```
 (ALL AbOUT?(INFILE,UUY,N)
 (ALl ABUUTz(intilE,wfaid,NHLUJP)
```

Reference No.

```
CALL ABOUT2(NFILE,UN,N)
CALL ABUUT2 (NFILL,PCONF (NPLUSI),P)
CALL abOUTZ (NFILE, NiCUNF, iNPLUSP)
1217 CALL AbOUT2 (NFILE, UW2, NPLUSH)
1300 CONTINUE
CALL GOODE
END
```


## ASYMPTOTIC (LOGISTIC) EXPONENTIAL - 59S

Unlike the first two models developed, the Maximum Likelihood Linear Model and the Maximum Likelihood Nonlinear Model, the Asymptotic (Logistic) Exponential Model is a weighted least squares model. The two earlier models, as their name indicates, are maximum likelihood models. It should be noted that the difference between a maximum likelihood model and a weighted least squares model are small. When talking about the mean line these two models are identical. The weighting factors in the weighted least squares model cause this to be true.

The observations are fitted to a model of the form

$$
\overline{\mathrm{w}}_{\mathrm{i}}=\frac{\mathrm{a}}{1+\mathrm{be}^{-c t_{\mathrm{i}}}} \quad \mathrm{c}>0
$$

where $a$ and $b$ are parameters to be estimated and $c$ is restricted to positive values. The weighted least squares criteria used to estimate these parameters require that the function $S\left(a, b, c, Y_{i}\right)$ be minimized, where

$$
S=\sum_{i=1}^{n} \rho_{i}\left(W_{i}-\bar{W}_{i}\right)^{2}
$$

The parameter $\rho_{\mathrm{i}}$ is a weighting factor which is a function of the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages at time $t_{i}$ and a program maturity factor $\alpha$,

$$
\rho_{\mathbf{i}}=\alpha^{\mathrm{n}-\mathbf{i}}\left(\mathbf{E}_{\mathbf{i}}+\mathrm{R}_{1} \mathrm{C}_{\mathbf{i}}+\mathrm{R}_{2} \mathrm{~A}_{\mathbf{i}}\right)
$$

Proportionality factors, $R_{1}$ and $R_{2}$, are designed to give those observations having a higher estimated percentage less influence in shaping the trend line. To achieve this, the values for $R_{1}$ and $R_{2}$ must be selected in accordance with

$$
\mathrm{R}_{2} \geq \mathrm{R}_{1} \geq 1
$$

'he method employed is similar to that used in the Maximum Likelihood Nonlinear Model. A range of $c$ values is established, and for each $c$ in the range, initial estimates of $a$ and $b$ are made. An iterative scheme is employed to obtain corrections
$\Delta a_{j}$ and $\Delta b_{j}$ for a and $b$, respectively. When $\left|\Delta a_{j} / a\right|$ and $\left|\Delta b_{j} / b\right|$ are both less than $\epsilon=.001$, the iteration process is terminated. The weighted sum of squares of errors, S , is computed, and the program repeats the above process for the next value of c in the range. When all $c$ values have been exhausted, the minimum $S$ is determined, and the corresponding values of $\mathrm{a}, \mathrm{b}$, c are the desired parameters.

Certain restrictions are placed on the corrections $\Delta a_{j}$ and $\Delta b_{j}$. Maximum allowable values of the ratios $\left|\Delta a_{j} / a\right|$ and $\left|\Delta b_{j} / b\right|$ have been specified. If the computed correction exceeds the allowable maximum, the allowable maximum with the sign of the computed correction becomes the correction factor. If the convergence criterion $\left|\Delta a_{j} / a\right|<\epsilon$ and $\left|\Delta b_{j} / b\right|<\epsilon$ fails to be met within 100 iterations, the minimum $S$ computed to date will determine the parameters $\mathrm{a}, \mathrm{b}, \mathrm{c}$. As in the nonlinear model, c is restricted to values

$$
c=k(.001) \quad k=1,2, \ldots, 2000
$$

Input to 59 S consists of a case number, its associated Weight Data File, the program maturity factor $\alpha, 0<\alpha \leq 1$, and the program option. This input is specified on a data card which is read by the Control Program 55S. For a detailed description of this data card see program 55S.

Four program options are available to the user. Each of these options incorporates the effects of the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages on the prediction line. The approach was to allow the effect of $\mathrm{E} / \mathrm{C} / \mathrm{A}$ 's to be introduced in one fashion in the prediction range and to be introduced in an unrelated manner in the observation range. It turns out that the models for both ranges are functionally the same, the only difference being the parameter values in the different ranges. In the following, $\rho_{i}{ }^{\circ}$ refers to weighting factors in the observation range while $\rho_{\mathrm{i}}^{\mathrm{p}}$ refers to weighting factors in the prediction range, where

$$
\begin{aligned}
& \rho_{i}^{0}=\alpha^{n-i}\left(E_{i}+R_{1} C_{i}+R_{2} A_{i}\right) \\
& \rho_{i}^{p}=\left(R_{3} E_{i}+R_{4} C_{i}+R_{5} A_{i}\right)
\end{aligned}
$$

$E_{i}, C_{i}, A_{i}$ are $E / C / A$ percentages at time $t_{i}$ and $R_{i}(i=1,2,3,4,5)$ are proportionality factors designed to influence the shape of the trend line.

In the observation range, $\rho_{i}{ }^{\circ}$ is a function of $\alpha$ and the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages at time $\mathrm{t}_{\mathrm{i}}$. Thus, besides using the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages to weight the observations, the user may also weight them with the $\alpha$ factor. If no other weighting except the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages
is desired, choose $\alpha=1$. If it is desired to weight later observations more heavily than had been earlier observations, choose $0<\alpha<1$. In general, $\alpha$ should be chosen such that $.9 \leq \alpha \leq 1$. For $\alpha<.9$, the program maturity factor becomes dominant over the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ weighting and tends to discard all but the last 9 or 10 observations.

In the prediction range, the incorporation of the influence of the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages is accomplished by adjusting the original model, $\bar{W}_{\mathrm{i}}$, to obtain

$$
\bar{W}_{i}^{A}=\bar{W}_{i-1}^{A}+\rho_{i}^{p}\left(W_{i}-W_{i-1}\right)
$$

where the superscript A denotes an adjusted trend. The E/C/A values employed in the prediction range are obtained by linearly interpolating the $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages at the last observation to the assumed $\mathrm{E} / \mathrm{C} / \mathrm{A}$ percentages of $0 / 0 / 1$ at ship date.

In the model, $R_{1}=2, R_{2}=4, R_{3}=1, R_{4}=.5, R_{5}=.1$. The following options over the observation and prediction ranges are available to the user:

OPTION $1\left\{\begin{array}{l}\rho_{\mathrm{i}}{ }^{\circ}=1 \\ \rho_{\mathrm{i}}^{\mathrm{p}}=1\end{array}\right.$

OPTION $2 \begin{cases}\rho_{i}{ }^{\circ} & =1 \\ \rho_{i} & =f(E / C / A)\end{cases}$

OPTION $3\left\{\begin{array}{l}\rho_{i}^{\circ}=\mathrm{f}(\mathrm{E} / \mathrm{C} / \mathrm{A}, \alpha) \\ \rho_{\mathrm{i}}^{\mathrm{p}}=1\end{array}\right.$

OPTION $4\left\{\begin{array}{l}\rho_{i}{ }^{\circ}=\mathrm{f}(\mathrm{E} / \mathrm{C} / \mathrm{A}, \alpha) \\ \rho_{\mathrm{i}}^{\mathrm{p}}=\mathrm{f}(\mathrm{E} / \mathrm{C} / \mathrm{A})\end{array}\right.$

Jutput consists of a file of data as is described on the following page.


| FILEID | $=$ label identifier |
| :---: | :---: |
| FILENO | $=$ file number |
| DATE | $=$ date file was created (MMDDYY) |
| PROG | $=\mathrm{BCD}$ name of program |
| LRS | $=$ size of logical records within the file |
| V | $=$ control word for SPACE |
| CASENO | $=$ case number (integer) |
| MONTH | $=$ month in which first data point was observed (integer) |
| YEAR | $=$ year of first observation (integer) |
| N | $=$ number of observations (integer) |
| P | $=$ number of predictions (integer) |
| NPROG | $=$ code word |
| TITLE | $=$ case title |
| TIME | $=$ time points |
| WEIGHT | $=$ normalized weights |
| EST | $=$ estimated percentages |
| CALC | = caiculated percentages |
| ACTUAL | $=$ actual percentages |
| BUY | = nonrandom changes \#1 (buyoffs) |
| MEAN | $=$ mean trend line |
| PCONF | $=+95 \%$ confidence limits |
| MCONF | $=$ nonrandom changes \#2 (outliers) |
| UW2 | $=$ observed weights |
| PRED | $=$ prediction line |



```
$IEFTC LOGMOD LIST,REF
 INTEGER REELS
 INTEGER CASENO,P,PMONTH,PYEAR,YEAR
 DOUBLE PRECISION M22,M22I
 COMMON /ACCESS/ HC(100),WDCI,ID(12),PROG
 COMMON /SYSTEM/ NTAPES,REELO(15),CNTRLS(15),FILES(15),LRS(1b),
 1 POS(15),TRLPUS(15),RWCNT(15),UNITO(15)
 COMMON /PFILE/ NFYLE(4,300),NFY(4)
 COMMON /PPOU/ ACTUAL(10C), CALC (1UU), EST (1OU), (UMM (1<),
 1 LSQR (IUC), MEAN (IUU), imCUNF (IUu), UwL (IUu),
 2 MSUR (10C) , P(UNF (lUL), Sl (1UU) , a< (1Uu),
 j Time (100), NeIurt(luu), uuy (luu), TITle(9),
 4 N , NTOT
 COMMON /LCGIS/ KEEP(4),ALP
 OIMENSION (P(21),AP(21),BP(21),RHO(10U),M22(2,2),M22I(2,4),G(2)
 DIMENSION YOARA(1\cupU),S(20), 「OPI(6),W(10C),YOAR(1OU),ECT(1UO),
 IDEN(100)
 EQUIVALENCE (COM(1),PMONTH), (COM(2),PYEAK), (CUM(3),MUNTH),
 2
 3 (COM(7),ASUQP), (COM(8),GOUBP), (CUM(9),(SUOP),
 4 (COM(10),NSUBP)
 LATA TUM/1.,2.,4.,1.,.5,.1/
 UATA NPRCG /3HLOG/
 CALL TRAPCK
 DO 13U心 1l=1,NTOT
 CALL GETDAT(IPSWT,II,(ASENO)
 NPLUSI = N + 1
 NPLUSP = 12*(PYEAR - YEAR) + PMONTH - MUNTH + 1
 K85=TIME(N)
 P=NPLUSP-K85
 NPLUSP=N+P
 DO 4051 I 3=1,N
4\cup51 W(I3)=wEIGHT(I3)
 DO 408 J8=NPLUS1,NPLUSP
 EST(~8)= -EST(N)*FLUAT(J8-N)/FLUAT(P) + toT(N)
 CALC(J8)=-CALL(N)*FLUAT(J8-N)/FGUAT(P) + CALC(N)
4\cup8 ACTUAL(J8)=(1.-ALTUAL(N))*FLUNT(J8-N)/FLUAT(N) + ACTJAL(IV)
 DO 23 i=NPLUS1,NPLUSP
 23 TIME(I)=TIML(I-1)+1.
 DO 10000 J9=1,4
 IF(KEEP(J9) .EQ. O) GU TO 10000
 NPATH=KEEEP(J9)
 GO TC (410,411,412,413),NPATH
410 00 410U I=1,NPLUSP
4100 RHO(I)=1.
 GO 1O 414
411 DO 411u I =1,N
4110 RHO(I)=1.
 DO4111 I=NPLUSl,NPLUSP
 RHU(1)= (IUNI(4)*LUT(I)+TUM(5)*CALC(1)+TUM(6)*ACTUAL(1))/
 1 (1.+ACTUAL(I))
4111 CONTINUE
```



```
 RHO(I)=(ALP**(N-I))*(TUM(1)*LST(1)+TUNi(2)*CALC(1)+TUM(3)*ALIUAL
 1 (I))
4120 CONTINUE
 DO 412l I=NPLUS1,NPLUSP
4121 RHO(I)=1.
 GO TO 414
413 DO 4130 I=1,N
 RHO(1)=(ALP**(N-I))*(TOM(1)*LST(I)+TOM(2)*CALC(I)+TOM(3)*ACTUAL
 l
 (I))
4130 CONTINUE
 DO 4131 I=NPLUS1,NPLUSP
 RHO(1)=(TUM(4)*EST(I)+TUM(5)*CALC(I)+TUM(6)*ACTUAL(I))/
 1 (1.+ACTUAL(I))
4131 CONTINUE
414 CONTINUE
 KSWIT=0
 NSWIT=C
 Al=0.
 B1=0.
 Cl=0.
 O1=0.
 Fl=u.
 DO 6 1=1,N
 Al=A1+W(I) * RHO(I)
 Bl=Bl+TIME(I)*N(I) * RHO(I)
 Cl=Cl+TIME(I) * RHO(1)
 Fl=F1+RHO(I)
 O Ul=Ul+TINic(I)*TIME(I) * RHU(I)
 El=F1*D1-Cl**2
 ALFHA= (A1*U1-Cl*BI)/E1
 3ETA=(F1*B1-A1*E1)/El
 EN=N
 S1(1)=EN / 4.0
 Al = ALPHA + Sl(1) * BETA
 S2(1) = (3.U*EN) / 4.C
 El = ALPHH + S2(1) * EETA
 Sl(1).= ~.1 * S1(1)
 <2(1) = ..1 * S2(1)
 AP(1)=A1 + DP(1)*EXP(-S1(1))*A1
 UP(1)=(A1-il) / (EXP(-S2(1))*ロl - EXP(--1(1))*A1)
 CP(1)=.1
 CELC=CP(1)
 ATEST=し.
 KOUNT =20
 50 CONTINUE
 DC 15 I=1,2C
 DO 13 K=1,10u
 DO & [7 = 1,2
 Lu 8 J=1,<
 8 N22(17,J)=u.
 &.G(17)=v.
```

```
 DO 10 J=1,N
 ECT(J)=EXP(-CP(I)*TIME(J))
 DEN(J)=1.+BP(I)*ECT(J)
 YBAR(J)=AP(I)/DEN(J)
 M22(1,1)=, M22(1,1) +((YBAR(J)**2)*RHU(J))/AP(1)**2
 M22(1,2)=M22(1,2) - ((YBAR(J)**2)*KHU(J)*ECT(J))/(AP(1)*UCN(J))
 M22(2,2)=i,2<(2,2) + (RHU(J)*LCT(J)*LCI(J)*(YBAK(J)**2))/vCN(J)**2
 G(1)=G(1)+(KHU(J)*YEAR(J)*(w(J)-YGAK(J)))/ AP(I)
 G(2)=G(2) -(KHU(J)*(N(J)-YEAR(J))*AP(I)*ECT(J))/ULN(J)**2
 10 CONT:NUE
 M22(2,1)=M22(1,2)
 CALL DPMI(2,M22,M22I)
 CALL SLITET(3,JFK)
 GO TO(5000,111,JFK
11 CONTINUE
 DELA = M22I(1,1)*G(1)+M22I(1,2)*G(2)
 LELG = M22I(2,1)*G(1)+M22I(<,2)*G(2)
 IF(K.EQ. l) XONE=UELB
 Ql= AES(OこLA/AP(I))
 O2=ABS(DELB/BP(I))
 NFLAG=O
 IF! Q1 .LT. .OU1 .AND. Q2 .LT. .JCl, GO TU 12
 NFLAG=1
 IF(Q1 .LE. .5) GO TO 1l1
 DELA= SIGN(.j*AP(I),UELA)
Ijl IF(Q2 .LE. 1.2) GO TO 1222
 UELD=SIGN(1.2*GP(I),UELE)
 GO TO 12
1222 CONTINUE
 IF(K .EQ. 1) GO TO 12
 SELECT = XUNNE/DELG
 XONE=DELB
 IF(JELLCT .GT. U.) GO TU IL
 SELECT=ABO(~ELECT)
```



```
 XONE=DELB
 12 AP(1)=AP(1)+DELA
 BP(I)=BP(I)+DELB
 IFINFLAG .LQ.O , GU TO 14
 13 CONTINLE
 IF(ATEST .SG. I.) GO TO bOOO
 KCUNT=1-1
 IF(xOUNT .NE. U) Gu IO 2l
 WRITE(6,1491)
```



```
 go to luvou
 14 AP(I+1)=AP(1)
 BP(1+1)=BP(1)
 CP(1\cdot1)=CP(1)+DELC
 S(I)=0.
 DC 149 Jl=1,N
149 S(I)=S(1)+RHU(Jl)*(N(JI)-(AH(1)/(10+DP(I)*上XP(-CP(I)*TIML(Jl)))
 1)|**2
```

```
.. 15 CONTINUE
 21 CONTINUE
 SMIN=10.E+10
 DO 16 I=1,KOUNT
 IF(S(I) .GT. SMIN) GO TO 16
 K=I
 SMIN=S(I)
 16 CONTINUE
 A2=AP(K)
 BB=BP(K)
 CC=CP(K)
 ATEST=1.
 IF(KSWIT •LU. 1) GO TU LU
 K=K+1
 AP(1)=AP(K)
 BP(1)=BP(K)
 CP(1)=CP(K)
 DELC=-.01
 KSWIT=1
 KOUNT =20
 GO TC 50
 20 CONT:NUE
 IF(NSWIT .tG. l) GO TO bo00
 IF(CC.LE. .Oll) GO TO 4999
 K=K+1
 DELC=.001
4998 CONTINUE
 AP(1)=AP(K)
 EP(1)=BP(K)
 CP(1)=CP(K)
 NSWIT=1
 KOUNT=20
 GO TO 50
4999 CONTINUE
 K=K-1
 DELC=-.001
 SO TO 4998
5COO CONPINUE
 SO 22 I=1,NPLUSP
 22 YBAR(I) = A2/(1.+BU*EXP(-CC*TIME(I)))
 YBARA(N)=YRAR(N)
 0O 415 J5=i&PLUSI,NPLUSP
415 YBARA(J5)=YOARA(J5-1)+RHO(Jb)*(YBAR(J5)-YロAR(Jり-1))
 NFY(4)=NFY(4) + l
 NF4 = NFY(4)
 NF44=ISIGN(NF4,RELLS(4))
 NFILE=REELS(4)*1000 + NF44
 NFYLE(4,NF4) = CASENO
 OIFRC = Un2(N) - YEAR(N)
 UO 1216 1%=NPLUSI,NPLUSP
 W(IW) = YBAKA(I%)
1216UN2(IN) = \therefore(IN) + DIFRC
 IC(7)=CASENC
```

```
IO(8)= MONTH
ID(9)= YEAR
ID(10)=N
ID(11)=P
ID(12)=NPROG
CALL ABOUT1(NFILE,l)
CALL ABCUT2(NFILE,TITLE,9)
CALL ABOUT2(NFILE,TIME,NPLUSP)
CALL ABOUT2 (NFILE,W,NPLUSP)
CALL ABOUT2(NFILE,EST,NPLUSP)
CALL ABOUT2(NFILE,CALC,NPLUNP)
CALL AEOUT2(NFILE,ACTUAL,NPLUSP)
CALL ABUUT2(NFILE,BUY,N)
CALL AOUUT2 (NFILE,YOAR(I),N)
CALL ABUUT2 (NFILL,YOARA(NPLUSl),P)
CALL ABUUT2(NFILE,PCUNF,NPLUSP)
CALL AUOUT2(NFILE,MCUNF,NPLUSP)
1217 CALL ABUUT2 (NFILE, UW2, NPLUSP)
10000 CONTINUE
1300 CONTINUE
CALL GOODE
END
```


## OUTPUT PROGRAM - 60S (OUTPT)

This routine reads the binary output files that are generated by each of the four trending methods and produces printed tabular and printed plot output in a uniform format for each method.

No options are available; all output that is generated during trending is processed by this routine. An example appears on the following pages.

Control over this routine is maintained by the Control Program 55S.

＊ $000 \underset{\sim}{2} 00000000 \underset{\sim}{N} \underset{\sim}{N} 00000$

＊0000000000000000000 OTHER
ONRANDOM （ $\llcorner\mathrm{B}$ ）
 \＃\＃＊＊＊＊＊\＃\＃\＃\＃\＃\＃＊＊＊＊＊

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ロコロロロロコロコロココロコロコロロロロコロコ


 0000000000000000000000




Reference No. Issue Date 60.2 Supersedes 13 August 1965






Reference No. $\qquad$ Issue Date $\qquad$ 23 Dec 1965 Supersedes 13 August 1965
data files created by trending methods


```
$IbFTL OUTPUT LIST,REF
C*
C *** GENERAL UUTPUT RUUTiNE FUR ThE TRENU syuTtm
C*
 INTLGER Rells,CASENu,P,PMUNTH,PYLAR,YEAR
 REAL LSUR,MEAN,IVCONF,MSUR
C
 COMMON /GGDATE/OATE(2)
 COMMON /ACCESS/ HC(IUU),WLCT,ID(12),PRUO
```



```
 l
 COMiON /PFILE, NFYle(4,3CU),N+Y(4)
```



```
 l
 2 MSOR(1OU),P(UINF(ILU),01(1JU),0<(100),
```



```
 4 ~ N , N T O T
 COMMON /\T/ N21,01,D2,JIRUN
 COMMON /ZEt/ ZLINEl(6),LLINE2(6),LLINE3(6),LLINE4(6)
C
 DIMENSION XMUNTH(12),PNME(4)
 DIMENSION TNME(4,4),BLANK(7)
 UIMENSION pTAB(4),MASK(7)
 UIMLNSIUN UKIU(807),NOCALL(j),ULNM(1<),IULNY(1<),TAu(<4)
C
```



```
 2
```



```
C
```



```
 / 3HOEP,3HOCT, 3HNCV,3HLEC/
 LATA TNiNE /GHLINEAR,GH MUVLL,OH
 l GHNON-LI,GHNLAR N,GHULEL
 2 SHFUURIL,GHR MUUL,GHL
 2 SHFUURIL,GHR MUUL,GHL
 ,OH
 ,6H
 OH2
 3 UATA BLANK /4ZH
```



```
 UATM NSCMLL /1,N,-1,0,-1/
 UATA TAL /1.0,2.0.5.0,10.U,LU.0,ZD.U,bU.U.iUU.0,くUO.U,
 l 250.0,200.0,1000.0,2000.0,220v.0,2000.0,1,
 3 250000.0,500000.0.1000000.01
 dATA ARG /GHSAVTAP/
 DATA MASK /1,1,1,1,1,1,1/
c
 120=u
 00 gu lCx=1,4
 IF (KtгLi(ILN) etw. 0) Gu Iu guj
 IF (NFY(ICK) •LQ. U) GO TU guu
 PNO = PTAB(ICK)
```

```
 LOOP = NFY(ICK)
 DO 120 MM=1,4
 120 PNME(MM) = TNME(MM,ICK)
C
```

C
DO 600 MA $=1$, LOOP
LSKIP = 0
LINE $=0$
$N Z=M A$
$N Z=\operatorname{ISIGN}(N Z, R E E L S(I C K))$
$N Z=R E E L S(I C K) * 1000+N Z$
CALL READB1 (NZ,1)
NPLUSP $=I D(10)+I D(11)$
NPLUSI $=1 D(10)+1$
CALL READG2 (NZ, TITLE,9,HISIRY)
(ALL READO2 (NZ, TIME,NPLUงP,HISTRY)
CALL READLi 2 (NL,WEIGHT,NPLUOP,HIゝTRY)
CALL READL2 (NZ,EST,NPLUSP,MISTRY)
(ALL REAUL2 (NZ, CALC,NPLUSP,HIOIRY)
(ALL REAUU2 (NL,A(TUAL,NPLUUPgHIUIKY)
CALL REAUG2 (NZ,bUY,IU(1U),HIンlRY)
CALL READE2 (NZ,MLAN,NPLUSP,HIOTRY)
CALL READE2 (NZ, PCONF, NPLUSP,HISTRY)
CALL REAUD2 (NZ,MCONF, NPLUSH,HISTRY)
CALL READH2 (NZ,UW2,NPLUSP,HISTRY)
CALL ENDF (NL)
C
$K R A=I D(8)$
$I Y E R=I D(9)-1900$
(ALL TITEL (IU(7), MADK)
C
WRITE (6,9000)
LKASE $=1 D(7)$
LKASE = LKASE / 1000000
IF (LKASE .NE. U) GO TO 190
WRITE (6,9UU4) ZLINEI, DATE, LLINEZ, Pivivié, ZLINE3,IU(7),
1 DI,D2,PNO,ZLINE4,N21
GO TO 192
190 WRITE (6,9Uu2) ZLINE1, DATE, $\angle L I N L 2$, PNivil, LLINE3, IU (7),
1 D1,D2,PNO,ZLINE4,iv2l
192 WRITE (6,90U1)
WRITE (6,9003)
WRITE (6,9001)
C
220 DO $350 \mathrm{KP}=1$, NPLUSP
IF (KP .EQ. 1) GO TO 221
IF (TIME (KP) - TIME (KP-1) •EQ. 1.O) GO TO 221
$K T Y=T I M E(K P)-\operatorname{TIME}(K P-1)-0.5$
DO 1:22 ITY=1,KTY
LINE = LINE + 1

```
 IF (KRA .LE. 12) GO TO 1221
 KRA = 1
 IYER = IYER + I
1221 XMONZ = XMUNTH(KRA)
 WRITE (6,9055) XMONZ,IYER
 KRA = KRA + 1
1222 CONT INUE
 221 IUW2 = UW2(KP) + 0.5
 IEST = EST(KP)* 100.0 + 0.5
 ICAL = CALC(KP) * 100.0 + 0.5
 IACT = ACTUAL(KP)*100.0 + 0.5
 IWGT = WEIGHT(KP) +0.5
 IMENE = MEAN(KP) + 0.5
 IPCONF = PCONF(KP) +0.5
 IMCONF = MCONF(KP) + 0.5
 IF (BUY(KP)) 224,222,222
 222 IBUY = BUY(KP) + 0.5
 GO TO 225
 224 IBUY = BUY(KP) - 0.5
 225 TAG = ((UW2(NPLUSP) - UW2(KP)) / (FLUAT(NPLUSP-KP)))
 IF (TAG) 227,226,226
 226 IAG = TAG + 0.5
 GO TO 228
 227 IAG = TAG - 0.5
 228 CONTINUE
C
 IF (KRA .LE. 12) GO TO 230
 KRA=1
 IYER = IYER + I
 230 XMONZ = XMUNTH(KRA)
C
 240 IF (LSKIP .EQ. 1 •AND. KP .NE.NPLUSP) GO TO 350
 GO TO (246,25U,258,254),ICK
C
 246 IF (KF .GE. NPLUS1) GO TO 248
 WRITE (6,901U) XMUNL,IYER,IUW2,IEST,ICAL,IACT.
 1 IBUY,IMCONF,IWGT,IMENE,IAG
 GO TO 275
 248 WRITE (6,9U11) XMUNZ,IYER,IUW2,IEST,ICAL,IACT,
 l
 GO TO 275
C
 250 IF (KP .GE. NPLUSI) GO TO 252
 WRITE (6,9020) XMONZ,IYER,IUW2,IEST,ICAL,IACT,
 l IBUY,IMCONF,IWGT,IMENE,IAG
 GO TO 275
 252 WRITE (6,9U21) XMONZ,IYER,IUW2,IEST,ICAL,IACT,
 l
 GO TO 275
C
 254 IF (KP .GE. NPLUSI) GO TO 256
 WRITE (6,903U) XMONZ,IYER,IUW2,IEST,ICAL,IACT,
 l
 IBUY,IMCONF,IWGT,IMENE,IAG
```

```
 GO TO 275
 256 WRITE (6,9U31) XMUNZ,IYER,IUW2,IEST,ICAL,IACT,
 l
 GO TO 275
C
 258 IF (KP .GE. NPLUS1) GO TO 260
 WRITE (6,9U4\checkmark) XMONZ,IYER,IUW2,IEST,ICAL,IACT,
 1 IBUY,IMCONF,IWGT,IMENE,IAG
 GO TO 275
 260 WRITE (6,9041) XMUNZ,IYER,IUW2,IEST,ICAL,IACT,
 I
 IUW2,IMENE,IPCONF,IAG
C
 275 LINE = LINE + I
 IF (KP .NE. ID(10)) GO TO 276
 WRITE (6,9UU5)
 276 IF (LINE •LT. 4U) GO TO 350
 IF ((NPLUSP - KP) .LE. 6) UO TO 350
 WRITE (6,9006)
 LSKIP = 1
 350KRA = KRA + 1
C
C
 YMIN = 10.0E+10
 YMAX = 0.0
 DO 308 IPP=1,NPLUSP
 IF (MEAN(IPP). -LT. YMIN) YMIN = MLAN(IPP)
 IF (MEAN(IPP) \bulletGT• YMAXX) YMIAX = MLAN(IPH)
 IF (IPP .GT. N) GO TO 305
 IF (UW2(IPP) •GT, YMAX) YMAX = UW2(IPP)
 IF (UW2(IPP) \bulletLT, YMIN) YIVIN = UW2(IPP)
305 IF (ICK .EQ. 4) GO TO 308
 IF (IPP .LT.NPLUSI) GO TO 308
 IF (PCONF(IPP),GT, YMAX) YMAX = PCUNF(IPP)
308 CONTINUE
 DMIN = YMIN
 DMAX = YMAX
 DEL : (DMAX - DMIN) / 10.0
 DO 310 JACK=1,24
 IF (DEL •LE. TAD(JACK)) GU 「U.311
310 CONT INUE
311 INK = TAB(JACK)
 MIN = DMIN
 YMIN = (MIN / INK) * INK
 YMAX = YMIN + 1C.j * TAB(JACK)
 IYERE = ID(9) - 1900
 MYY = ID(8)
 DO 315 MY=1,12
 BLKM(MY) = XMUNTH(MYY)
 IBLKY(MY) = IYERE
 DO 314 KY=1,4
 MYY = MYY + 1
 IF (MYY &LE. 12) GO TO 314
 MYY = 1
```

$\qquad$

```
 IYERE = IYERE + I
 314 CONTINUE
 315 CONTINUE
 WRITE (6,9COU)
 IF (LKASE .NE. O) GO TO 400
 WRITE (6,9UU4) LLINE1,DATE,\angleLINE2,PNME,LLINE3,ID(7),
 1 D1,D2,PNO,ZLINE4,N21
 GO TO 402
 400 WRITE (6,9UUZ) ZLINE1,DATE,\angleLINE2,PNME,CLINE3,ID(7),
 1 D1,U2,PNO,ZLINE4,N21
 402 WRITE (6,9001)
 CALL PLOT1 (NSCALE,1U,5,11,8)
 CALL PLOT2 (GRIU,45.U,1.0,YMAX,YMIN)
 CALL PLOT3 (1H*,TIME(1),MEAN(1),NPLUSP)
 IF (ICK •EQ. 4) GO TO 425
 CALL PLUT3 (1H+,TIME(NPLUS1),PCUNF(NPLUS1),ID(11))
 425 CALL PLUT3 (1HX,TIME(I),UW2(I),IU(IO))
 CALL OMIT(I)
 CALL FPLOT4 141,41H WLI GHTI IN PUUNUつV
 WRITE (6,9U\zetaU) (BLKM(KK),IOLKY(KK),KK=1,12)
 WRITE (6,9051)
 600 CONTINUE
C
 900 CONTINUE
C
C
 CALL SPACE
C
```



```
9000 FORMAT (1H1,131(1H*))
9001 FORMAT (1X,131(1H*))
9UU2 FORMAT IIX,34H* PREDICTIUN AINALY\IS TLCHINIWUL * ,OAG, IX,IH*,
 ZUH CASE NUMULR * UATL ,GX,AÓ,AL,l&H * KEWUIKLU dUYUFF,
 6X,1H* / 3H*,29(1H*),3H * ,6AG,<H *,i 3x,1H*,<1X,1H*,1
 6X,7H LB * / э゙H * ;4,06,5x,,5H * ,GA6,2H *,3X,17,3X,
 13H* INPUT TAPE ,AG,A2,25H * LQUIVALEIVT J/C UR LIV*,
 19H * CUMPUTLK PRUUKAM,3X,A3,7X,3H* ,6AG,2H *,13X,
 17H* FILE STATUS NU. ,I4,12H* DEFICIT ,6X,7H LU * '
9004 FORMAT (1X,34H* PREDICTILIN ANALYSIS TECHNIUUE * ,GAG, 1X,1H*,
 2OH CASE NUMUER * UATL, ,6X,AG,A2,18H * REUUIREU LUYUFF,
 6X,1H* / 3H*,29(1H*),3H * ,646,2H *,13X,1H*,21X,1H*,1
 6X,7H LB * / 3H*,4A6,5X,3H * ,6AG,2HI*,3X,1HU,I6,3X,
 13H* INPUT TAPE,AG,AZ,25H * LQUIVALEMT د/E UR L/V* /
 19H * CUNPUTEK PRUUNAN,\X,Aj,7X,IH * ,6AG,2H *,13X,
 17H* FILE STMTUS NU.,I4.12H* UEFICIT ,6X,7H LU % ,
```



```
9006 FORMAT (3x,1H./ 3X,1H. / 33H FINAL PREUICTEU VALULS
 1 / 3X,1H.)
9008 FORMAT (// 13X,1GHCONTROL WEIGHT , 6X,5H LG ,5X,
 1 19HTRADE-UFF FACTOR ,6X,1ux,
 2 ~ 3 2 H I N T E R C E P T ~ D A T E ~ O F ~ P R E D I C T E U ~ L I N E ~ / , ~
 3 93X,19HWITH CONTROL WEIGMT,5X,5X,
 4 13X,16HREQUIRED GUYUFF,6X, 5H LD ,כX,
 b 19HEWUIVALENT ULFICIT ,6X,5H LB ,כX,
 6 39HPRUEAGILITY UF EXCLLUING CUNTKUL WEIUHI, 3X,bH PCl.)
9U10 FORMAT (1X,H3,IX,12,1X,1H*,18,bH * ,3(I3,2X),3H* ,
```



```
 2 3H * , 17,2H*)
9U11 FORMAT (1X,A3,1X,12,1X,1H*,I8,5H* * , 3(13,2X),3H* ,
 1 6X,3H *,1UX,1H* ,18,3H *,17X,2ri* ,17,3H** , 17,
 2 3H* , I7,2H*)
9002 FORMAT (1X,A3,1X,I2,1X,1H*,18,bH * , 3(13,2X),3H* ,
 1 IG,3H *,2X,I6,2X,1H* ,I8,3H *, 17X,2H* ,17,3H*:,
 2 3H* , I7,2H*)
```



```
 2 3H* , I7,2H*)
gl3u FORMAT (1X,H3,1X,12, ix,1H*,18,bH * ,3(I3,LX),3H* ,
 I IG,3H *,2X,16,2X,1H* ,18,3H**,17x,<H** , I7,3H** ,7x,
 2 3H * , I7,2H * 1
```



```
 2 3H** , 17,2H* !
9040 FORMAT (1X,43,1X,I2,1X,1H*,I8,5H * ,3(I 3,2X),3H**,
 1 IG,3H *,2X,16,2X,1H* ,18,3H**,17X,2H* , 17,3H** ,7X,
 2 3H * , 17,2H * 1
```



```
 i ll, % %in ,
C
9.50 FORIVAT (9x,12(1,3,1x,12,2x))
9U51 FORNIAT (4bX, <7HTI M E I N M U N I H O / 12X,
 1 21HX = OUSERVED WEIGHT ,lbX
 2 27H* = MLAN LSTIMHIEL ALIGHT , 15X,
 3 <3H + = CONFIUENCE LIMITS ,
9(55 FORMAT (1X,H3,1X,12,2H**,1UX,1п*,17X,1H*,3(10X,1H*),
 1 17X,1H*,3(9X,1H*))
 END
```


## HISTORY PLOT PROGRAM - 61 S (HIS)

This routine produces a printed plot of the historical weight observations. Input to 61 S consists of a case number and its associated weight data. This input is specified on a data card which is read by the Control Program 55S. For a detailed description of this data card see program 55 S .
*** LOר7d 1 yolsin **
Lhoijm Danajsat *x





```
$IBFTL HISTRY LIST,REF
C
C *** HIStURy plot roviine for the trlond system
C
 INTEGER REELS,WDCT
 INTEGER CASENO,TILT
 INTEGER CASNO
 INTEGER YEAR
 COMMUN /ALLESS/ H(IIUU),WUCT,ID(12),PRUG
 COMMON /GGUATE/DATE(Z)
 COMMON /SYOTEM/ NIAPES,KLELO(lり),CNTKLS(15),FILEO(lb),LKう(lo),
 l
 COMMON /PFILE/ NFYLE(4,3UU),NFY(4)
 COMMON /PPUG/ ACTUAL(IOU),(ALC(IUU),EST(IUU),CDM(1C),
 1 LSQR(100),MEAN(1OC),MCUNF(1U0),UWZ(1UU),
 2 MSQR(1U0),PCUNF(1OU),S1(1UU),S2(1U0),
 3 TIME(lU0),WEIGHT(1U0),BUY(1U0),TITLE(9),
 4 ~ N , N T O T
 COMMON /GLOCK/ NCASE (10), TTITLE(90), AAA (150), NAAMUM(10),
 l Toluck(30U), woluck(3uU), luluca(30u), Nivuiv (lu),
 2 CELOCK(3uU), ADLOCk(3uv), doluck(zuU)
 COMMON STT/ N2I,LI,U2,JIKUN
 COMMON /HHPI IUPT,JUPT,KUPT,IVPATH
 COMMON /ZLE/ ZLINLI(6),ZLINLZ(6),\angleLINE3(6),\angleLINL.4(6)
 OIMENSION URID (867),NSCALE(5)
 UINENSION XIVUNTH(12),PNIME(4),IAU(24),BLKM(12),IDLKY(12)
 DIMENSION MASK(7)
 LQUIVALENCE (COM(3),MONTH),(CUM(4),YEAK)
 DATA TAD /1.0,2.0,5.0,10.0.20.0,25.v.5U.v.100.0,200.v.<20.0,
 l 500.0.1000.0,2000.0,2500.0,5000.0,10000.0,20000.0,
 2 25000.0,50000.0,100000.0,200000.0,250000.0.
 500000.0,1000000.01
 DATA MASK/l,l,1,1,1,1,1/
```



```
 l shJUL,jHAUG,3HILH,gmUCT,3HNUV,3HULL/
 LATA PNVINL/GHHIISTOK,GHY PLUT,OH ,6HI /
 DATA PNO /3HGIS/
 UATA NSCALL /1,0,-1,0,-1/
 XSTART = 1.0
 XEND = 45.0
 DO 500 MUNO=1,NTOT
 (all GeTDAT(IPSWT,MUC,CASENU)
 call titel(caseno,mask)
 LKASE = CASENO / lUUUCOO
 CASNO=CASENO
 IF (IPSNT .tu. l2) GU TO 2lu
 YMIN = 10.0E+10
 YMAX = 0.0
 DO 150 IP =1,N
 IF (UW2(IP) .GT. YMAX) YMAX = UW2(IP)
 IF (UWZ(IP) <. YMIN) YMIN = UW2(IP)
150 CONT INUE
```

$\qquad$ 23 Dec 1965

```
 DMIN = YMIN
 DMAX = YMAX
 DEL = (DMAX - DMIN) / 10.0
 DO 2OU JO=1,24
 IF (ULL •LE. TAú(JO)) GO TU <ub
200 CONTINUE
205 INK: TAB(JU)
 MIN = DMIN
 YMIN = (MIN/INK)*INK
 YMAX = YMIN + 10.0 * TAB(JO)
 GO TO 212
210 CONTINUE
 YMIN = COM(11)
 YMAX = COM(12)
212 IYERE = YEAR - 19U0
 MY = MONTH
 DO 220 MI=1,12
 BLKM(MI) = XMUNTH(MP)
 IBLKY(MI) = IYERE
 DO 216 KI=1,4
 MY =MY + 1
 IF (MY .LE. 12) GO TO 216
 MY 口 I
 IYERE = IYERE + 1
 216 CONTINUE
220 CONTINUE
 WRITE (6,9UJU)
 IF (LKASE .NE. U) GU TO 230
 WRITE (6,9Uu4) ZLINEI,DATL,ZLINE2,PNME,LLINE3,CAONU,
 1 Ul,DZ゙,PNO,LLINE4,NZ1
 GO TO 234
.230 WRITE (6,guU2) ZLINLI,OATE,ZLINE2,PINME,ZLINE3,CAUNU,
 1 Ol,DL,PNO,ZLINE4,N2l
234 CONTINUE
 WRITE (6.9CC:)
 CALL PLOTI (NSCALE,IU,5,11,8)
 (ALL PLUTZ (URIL,XENU,XSTART, YNIAX,YMIN)
 CALL PLUT3 (1Hx,TIME(1),UN2(1),iv)
 CALL OVIIT (1)
 (ALL FPLUT4 (41,41H N E I un T I iv P J U iN L u),
 WRITE (6,9\cup1U) (BLKN(J),IBLNY(J),J=1,12)
 WRITE (6,9)11;
500 CONTINUE
 CALL GOOOL
C
C
9000 FORMAT (1H1,131(1H*))
9001 FORMAT (1X,131(1H*))
9002 FORMAT (1X,34H* PREDICTIUN miNALYSI= TLCHNIGUE * ,UAG, lX,1H*,
 2UH CASE NUMULR * LATL ,OX,AO,A<,IOH * KEWUINEU OUYUFF,
```




```
 13M* INPUT TAPE AO,AZ, LJH * LUUIVALLNI O/C UR L/V**/
```

```
 19H * CUMPUTER PROUKAM, 3X,A3,7X,3H * ,6A6,2H *,13X,
 17H*.FILE STATUS NU. ,I4,12H * DEFICIT .6X,7H LG *
OOO4 FORMAT 11X,34H* PREDICTION ANALYSIS TECHNIGUE * ,6AG, IX,IH*,
 2OH LASE NUMGLR * DATt ,6X,AG,A2,18H * REGUIREU dUYUFF,
 6X,1H* / 3H * ,29(1H*),3H * ,6A6,2H *,13X,1H*,21X,1H*,1
 6X,7H LB * / 3H * , 4A6,5X,3H*,6A6,2H*,3X,1HU,16,3X,
 13H* LNPUT TAPE.,AG,A2,\angleSH * EQUIVALEIVT J/C UR L/V* /
 19H * CUMPUTEK PRUUKAM,3X,A 3,7X,3H * ,6A6,2H *,13X,
 17H* FILE STATUS NU. ,I4,12H * DEFICIT ,6X,7H LB * I
9010 FORMAT (9X,12(A3,1X,12,2X))
9011 FORMAT (48X,27HT I M E I N MON T H S 112X,
 1 21HX = OLSERVED WEIGHT ,50X.2UH*** HISTURY PLUT *** ,
c
 END
```


## TITLING SUBROUTINE - 62S (TITEL)

This subroutine is available to each program that requires automatic title generation from the case number.

The subroutine breaks up the case number into four parts -

$$
(06\} 11\} 2\} 36) .
$$

Each part is used in a series of table lookups to generate one line of titling for tabular output. Upon return from the subroutine, the case title is stored in the labeled COMMON block / $\mathrm{ZEE} / \mathrm{Z} 1(6), \mathrm{Z} 2(6), \mathrm{Z} 3(6), \mathrm{Z4}(6)$ with one line of titling stored in each of the arrays $\mathrm{Z} 1, \mathrm{Z} 2, \mathrm{Z} 3, \mathrm{Z4}$.

Control over this routine is maintained by the calling program.

## Case Identification Number and Title List

The seven-digit number used to identify specific items for which weights are tabulated is also used to provide titles for computer printouts. These titles have been revised as of September 28, 1965, and are to be used for all titling until a further revision (now in preparation) is issued. The revised title list is as follows:

Reference No.

## Case Identification Number and Title List

| First Two Digits Class and Serial Number of Vehicles | 3rd and 4th Digits Stage or Module | 5th Digit Mission Phase and Time | 6th and 7th Digits Functional Code |
| :---: | :---: | :---: | :---: |
| ```51 = Saturn V Launch Vehicle SA-501 52 = Saturn V Launch Vehicle SA-502 53 = Saturn V Launch Vehicle SA-503 \(56=\) Saturn V Launch Vehicle SA-504 \& Subs \(54=\) Saturn V Launch Vehicle SA-504 \(55=\) Saturn V Launch Vehicle SA-505 \(\left.\begin{array}{l}57 \\ 69\end{array}\right\}\) etc.``` | $\begin{aligned} & 00= \text { Launch Vehicle } \\ & \text { Payload Capability } \\ & 10= \text { S-IC Stage Dry } \\ & 11=\text { S-IC Stage at } \\ & \text { Separation } \\ & 20= \text { S-IC/S-II Interstage } \\ & \text { at Ground Ignition } \\ & 22=\text { S-IC/S-II Interstage } \\ & \begin{array}{l} \text { Ground Ignition } \\ \\ \text { (2nd Vehicle) } \end{array} \\ & 30= \text { S-II Stage Dry } \\ & 31= \text { S-II Stage at } \\ & \text { Separation } \\ & 40= \text { S-II/S-IVB Interstage } \\ & \text { at Ground Ignition } \\ & 50= \text { S-IVB Stage Dry } \\ & 51=\text { S-IVB Stage at } \\ & \text { Separation } \\ & 60=\text { Instrument Unit } \\ & 61=\text { Instrument Unit } \\ & \text { at Ground Ignition } \end{aligned}$ | $\begin{aligned} & 0=\text { (Blank) } \\ & 1=\text { (Blank) } \\ & 2=\text { (Blank }) \\ & 3=\text { (Blank }) \\ & 4=\text { (Blank) } \\ & 5=\text { (Blank) } \\ & 6=\text { (Blank) } \\ & 7=\text { (Blank }) \\ & 8=\text { (Blank } \\ & 9=\text { (Blank) } \end{aligned}$ | $\left.\begin{array}{rl} 00= & \text { (Blank }) \\ 03= & \text { Structure-Stage } \\ 04= & \text { Propulsion System } \\ 06= & \text { Equipment and } \\ & \text { Instrumentation } \\ 07 & =\begin{array}{l} \text { Residual and Reserve } \end{array} \\ & \text { Propellant } \end{array}\right\} \begin{aligned} 08 & =\text { Aux. Propellant- } \\ & \text { Power Roll } \\ 09 & =\begin{array}{l} \text { Ullage Rocket } \\ \text { Propellant } \end{array} \end{aligned}$ |
|  | $\begin{aligned} 00 & =\text { Launch Vehicle } \\ & \text { Payload Capability } \\ 10 & =\text { S-IB Stage Dry } \\ 11 & =\text { S-IB Stage at } \\ & \text { Separation } \\ 20 & =\text { S-IB } / \text { S-IVB Interstage } \\ & \text { at Ground Ignition } \\ 50 & =\text { S-IVB Stage Dry } \\ 51 & =\text { S-IVB Stage at } \\ & \text { Separation } \\ 60 & =\text { Instrument Unit } \\ 61 & =\begin{array}{l} \text { Instrument Unit } \\ \\ \text { at Ground Ignition } \end{array} \end{aligned}$ | Same as alove | Same as above |

Reference No.

Case Identification Number and Title List (Cont.)

| First Two Digits <br> Class and Serial Number of Vehicles | 3rd and 4th Digits <br> Stage or Module | 5th Digit <br> Mission Phase and Time | 6th and 7th Digits <br> Functional Code |
| :---: | :---: | :---: | :---: |
| 71 = Block I Spacecraft <br> Mission 201 <br> 72 = Block I Spacecraft Mission 202 <br> 73 = Block I Spacecraft Mission 203 <br> 74 = Block I Spacecraft Mission 204 <br> 75 = Block I Spacecraft Mission 205 <br> 76 = Block I Spacecraft Mission 206 <br> 77 = Block II Spacecraft Mission 207 <br> $\left.\begin{array}{l}78 \\ 99\end{array}\right\} \quad$ etc. | ```\(00=\) Total Spacecraft \(10=\) LEM Ascent Inert 11 = LEM Ascent \(12=\) LEM Ascent Total \(20=\) LEM Descent Inert 21 = LEM Descent 22 = LEM Descent Total \(30=\) LEM Gross \(40=\) Spacecraft Adapter \(50=\) Service Module Dry 51 = Service Module Inert 52 = Service Module Gross 60 = Command Module Dry 61 = Command Module 62 = Command Module Gross 67 = Command Module Gross \(70=\) Launch Escape System 71 = Launch Escape System``` | $\begin{aligned} & 0=\text { (Blank) } \\ & 1=\text { At Liftoff } \\ & 2=\text { (Blank) } \\ & 3=\text { (Blank) } \\ & 4=\text { At Injection } \\ & 5=\text { At Injection } \\ & 6=\text { (Blank) } \\ & 7=\text { At Burnout } \\ & 8=\text { (Blank) } \\ & 9=\text { At Burnout } \end{aligned}$ | $\begin{aligned} & 00= \text { (Blank) } \\ & 01= \text { Crew Systems } \\ & 02= \text { Stabilization and } \\ & \text { Control } \\ & 03= \text { Structure } \\ & 04= \text { Propulsion System } \\ & 06= \text { Navigation and } \\ & \text { Guidance } \\ & 08= \text { Propellant-Useable } \\ & 11= \text { Earth Landing } \\ & \text { System } \\ & 13= \text { Ballast Installation } \\ & \text { Provisions } \\ & 14= \text { Propulsion System } \\ & \text { Jettison } \\ & 16= \text { Environmental } \\ & \text { Control System } \\ & 17= \text { Reaction Control } \\ & \text { (Useful Load) } \\ & 21= \text { Controls and } \\ & \text { Displays } \\ & 23= \text { CM Boost Protective } \\ & \text { Cover } \\ & 24= \text { Propulsion System } \\ & 67= \text { Settison Motor Skirt } \\ & 76= \text { Propellast } \\ & \text { System } \\ & 56= \text { (Useful Load) } \\ & 26= \text { Instrumentation } \\ & 27= \text { Electrical Power } \\ & \text { (Useful Load) } \\ & 31= \text { Scientific Equipment } \\ & \text { (Useful Load) } \\ & 34= \text { Propulsion System } \\ & 46= \text { Pitch Control } \\ & 36= \text { Electrical Power Sys } . \\ & 37= \text { Environmental Con- } \\ & \text { trol (Useful Loal } \end{aligned}$ |






```
 IF (MASK(1) .EQ. U .AND. MASK(2) .EQ. O) GO TO 275
 GO TO (256,258,260,262).ICOUE
 256 IF (JCUDE .tW. 5) SO TO 257
 IBEG = 1
 NNC = 18
 NND = 18
 GO TO }26
 257 IBEG = 25
 NNC = 12
 NND = 18
 GO TO 264
 258 IBEG = 7
 NNC = 24
 NND = 12
 GO TO 264
 260 IBEG = 13
 NNC = 18
 NND = 18
 GO TO 264
 262 IF (JCODE .EQ. 6) GO TO 263
 IBEG = 19
 NNC = 24
 NND = 12
 GO TO 264
 263 IBEG = 31
 NNC. = 12
 NND = 18
 264 00 265 MAM=1,6
 ZLINEI(MAN) = FTD(IBEG)
 265 IBEG = IBEG + 1
 CALL INUIFE (NNC,NNU,ZLINEI(5),IBC,LILCH)
 IF (IBLG .LU. 13 -OR. IBEG -tQ. 25) ZLINEI(6) = LILCH
c
C *** ROUTINE FOR THIRD ANU FOURTH DIGIT
 275 1A = 0
 (ALL FLIP (IA,IG,ITHREE)
 IF (ISAVE .LT. 2 .OR. ISAVE .UT. 6) GO TU <84
 IF (IA .LT. l .OR. IA .GT. 4) GU TO <8U
 KCODE = 2
 GO TO 286
 280 KCODE = 1
 GO TO 286
C
 284 KCODE = ?
 `86 CONTINJE
 IC = IA * 10
 IA = O
 (ALL FLIP (IA,IB,IFOUR)
 IC = IC + IA
```



```
 00 29\cup MMM=1,46
```

IF (IC •EQ. JTAB(MM)) GO TU 292
290 CONTINUE
GO TO 304
292 GO T( $(293,295,299)$, KCODE
293 IF (MC1(MM) •EQ. O) GO TO 304 INDEXI $=$ MCI $(M M)-1$
DO $294 \mathrm{MN}=1,6$
JNDEX = INDEXI + MN
294 ZLINE2(MN) = TFDI(JNDEX)
GO TO 304
295 IF (ICODE •EQ. 2) GO TO 297 IF (MC2(MM) •EQ. O) GO TO 304 INDEXI $=M(2(M M)-1$
DO $296 \mathrm{MN}=1,6$
JNDEX $=$ INDEXI $+M N$
296 ZLINE2(MN) $=$ TFD2(JNDEX) GO TO 304
297 IF (MC3(MM) •EQ. O) GO TO 304
INDEXI = $\operatorname{MiC3}(M M)-1$
DO $298 \mathrm{MN}=1,6$
JNDEX $=$ INDEXI $+M N$
298 ZLINE2(MN) = TFD3(JNUEX)
GO TO 304
299 IF (MC4(MM) •EQ. O) GO TO 304
INDEXI = MC4(MM) - 1
DO $300 \mathrm{MN}=1.6$
JNDEX $=$ INDEXI + MN
IF (MM.GT. 34) GO TO 301
ZLINE2(MV) = TFD4(JNDEX) GO TO 300
301 ZLINE2(AN) = TFO5(JINDEX)
300 CONTINUE
304 CONTINLE
$c$
C *** ROUTINE FOR FIFTH OIGIT $I A=0$
CALL FLID (IA,Ib,IFIVE)
IF (MASK(5) .EQ. O) GO TO 309
DO $305 \mathrm{MO}=1,10$
IF (IA .EQ. JTAB(MO)) GO TV 306
305 CONTINUE
306 IF (ICODE •LG. 1 .UR. ICODE •EW. 2) GO TU 3 U 9 If if CGimO; -LO U G GO TU 309 INDEXI = MC6(MO) - 1 DO $307 \mathrm{MP}=1,6$ JNDEX $=1$ NOEXI + MP
307 ZLINE3(MP) = FID(JNDEX)
$c$
$c$
$c$
$c$
C *** routine fur sixth and seveivth uigits
c
309 IA $=0$

```
 CALL FLIP (IA,Ib,ISIX)
 IE = IA * 10
 IA = O
 CALL FLIP (IA,Ib,ISEVEN)
 IE = IE + IA
c
 IF (MASK(6) .EQ. J .AND. MADK(7) .EQ. O) UO TO 5OO
 DO 310 MM=1,46
 IF (IE .EQ. JTAS(MM)) GO TU 312
 310 CONTINUE
 GO TO 500
 312 IF (ICNUL .lU. 3 .OR. ICONL .tu. 4) GO TU 32U
 IF (IE .UT. 9) GU TU 5UU
 315 IF (MC8(MM).EG. U) GO TO DOC
 INDEXI = MC8(MM) - 1
 DO 3:6 MN=1,6
 JNDEX = INDEXI + MN
 316 ZLINE4(MN) = SSDI(JNDEX)
 GO TO 500
C
 320 IF (IE .GT. 76) GO TO 500
 324 IF (IE .LE. 76) I2IP=3
 IF (IE •LE. 36) 12IP=2
 IF (IE .LE. 14) IZIP=1
 IF (MCg(NM) \bulletGQ. U) GO TO SOU
 INDEXI = MC9(MM) - 1
 DO 336 MN=1,6
 JNDEX = INDEXI + MN
 GO TO (332,333,334),IZIP
 332 ZLINE4(MN) = SSD2(JNDEX)
 GO TO 336
 ?33 ZLINE4(MNN)= SSD3(JNOLX)
 GO TO 336
c
 334 ZLINE4(MN) = SSO4(JNDEX)
 336 CONTINUE
c
C
 500 RETURN
 END
```

```
SIBFTC FLIP LIST,REF
 SUBROUTINE FLIP (I,J,K)
 IDIV = (10**(7-K))
 IC = J / IDIV
 J = MOD (J,IDIV)
 I = (I * 10) + IC
 RETURN
 END
```

```
$IBMAP INUIFE LIST,REF
 ENTRY INDIFE
INUIFE SAVE 1,2,4
 CLA* 3,4
 STU GOO
 STA SHFII
 CLA* 4,4
 STA SHFT2
 STA SHFT3-1
 ADO GOO
 STO GOO
 CLA =36
 SUBE GOO
 STA SHHT3
 ZAC
 LDQ* 5,4
SHFTl LGL **
 SLN SAVEA
 STQ SAVEM
 CLA* 6.4
 LRS 2
 AXT 6.l
 VDP CONST+6,1,6
 TIX #-1,l,l
 ROL 18
 CAL SAVEA
SHFT2 LGL **
 SLW GAVEA
 STQ GOO
 CAL GOO
 TZE ZOOM
 CRA =0006060606060
 TRA *+2
ZOCM CAL =H
 SLuj* 7.4
 CAL SAVEA
 LDQ SAVEM
 RQL **
SHFTE LGL **
 SLA: 2,4
ER RETURN INLIFE
GOU ESS l
SAl[A RSS: 1
SAIEM BSO 1
```



```
 ENS
```


## SUMMING PROGRAM - 63S (SUM)

The Summing Program performs a summation on the predicted weights of each functional system which comprise a given stage, module, spacecraft or launch vehicle. It is possible to sum any group of functional systems as long as every member of that group has a case number in which one or more of the leading digits are identical. That is, we could sum the predicted weights for all functional systems having the first four digits of 2211 (i.e., representing the Saturn IB Launch Vehicle SA-202, S-IB stage at separation) or we could sum the predicted weights for all functional systems having the first two digits of 22 (representing the Saturn IB Launch Vehicle SA-202), etc. It is assumed that the trend prediction programs have been executed and there is available as input, the four binary data files representing the linear, nonlinear, Fourier, and logistic modes.

## INPUT

For each stage, module, launch vehicle, or spacecraft to be summed, there is required the following set of cards:

## CARD A

To sum a typical group of cases, you need a general case number which is a 7-digit number and a mask number which is a number between 1 and 7. The mask number tells the program the number of digits to sum on. The remaining digits on the left ( 7 - mask number $=$ MN ) will be the first MN digits which all of the summed functional systems will have in common. For example, an extreme general case number of 0000000 with a mask number of 7 would sum all of the functional systems on the tape. A general case number of 5650100 with a mask number of 7 would sum all of the functional systems whose case number are greater than or equal to 5650100. A more practical example would be a general case number of 5650100 with a masknumber of 4 . This would sum all of the functional systems starting from 5650100 to, but not including, 5660000. Another example would be a general case number of 0640000 with a mask number of 3 . This would sum all of the functional systems starting from 0640000 to, but not including, 0641000 .

The mask number has a second purpose, which is to create a masking index for the Titel Program which will, in turn, generate a general title for the applicable summing run.

The first item of information on Card A is the general case number. The next item of information to be included on this card is an indication of which prediction mode (linear, nonlinear, Fourier, logistic) will be used in the majority of the functional systems to be summed. Thus, if some particular module is composed of six functional systems and it has been decided to use the nonlinear mode for summing in four of the six cases, then the nonlinear mode would be so indicated on this card. The following code is used to make the above indications:

1 Linear mode
2 Nonlinear mode
3 Fourier mode
4 Logistic mode

The summing program will sum the predicted weights from the last observed weight Jut to the shipping date weight. Thus, if some functional system is not current, the summed weights will be in error, since the program sums from the last observation and does no checking of dates. The third and fourth pieces of information appearing on Card A are the current date of the latest observation (e.g. , 9 1965).

The final piece of information is the mask number followed by an asterisk (*).

Thus, a typical Card A would appear as


CARD B
For each functional system that is not to be summed in the mode specified on Card A, a type-B card is required. Two options are available:
a. The user may specify a prediction mode other than the one specified on Card A. In this case, all that is required is the case number of the functional system, the desired mode to be summed, and the word TREND.

b. The user may specify that a line with constant slope be summed, rather than one of the four trend prediction lines. In this case, it is necessary to give the case number of the functional system, the desired weight at the last observation, and the desired slope of the line. The slope may be positive, negative, or zero.


NOTE
All numbers punched on the B -Card will be punched with decimal point.

## CARD C

If the word END is followed by an asterisk (punched in Columns 7-72), the card signifies the end of summing for the particular general case number specified on Card $A$.

## NOTE

1. Card A and Card C are required whenever a sum is desired. Card B is optional. If Card B is not present, all functional systems will be summed in the mode specified on Card A.
2. Each set of A, B, and C Cards must appear in ascending order by general case number.
3. The last data card in the summing deck contains the words END OF SUMS followed by an asterisk. When this card is encountered, control is returned to SPACE.

EXAMPLE OF A DATA DECK


OUTPUT
Output consists of a printed tab which contains the sums of the functional system for each stage or module. An example is given on the following page.

Reference No.



 - CASE

- 611903



```
$IBFTC SUMIING LIST,REF
 COMMON /GGDATE/DATE(2)
 COMMON /ZEE/ ZLINEI(6),ZLINE2(6),\angleLINE3(6),ZLINL4(6)
 COMMON /ACCESS/ HC(1OC),WDCT,ID(12),PROG
 COMMON /SYSTEM/ NTAPES,REELO(15),CNTRLS(15),FILES(15),LKO(1b),
 I
 COMMON /PFILE/ NFYLE(4,300),NFY(4)
 COMMON /PPOG/ ACTUAL(10J),CALC(1OUO),EST(1OU),COM(12),
1
2
3
4
 COMMON /STT/ N2I,DI,D2,JIRUN
 REAL MEAN
 INTEGER RELLS
 INTEGER WDCT
 INTEGER GENCAS,EXCASE,OLDTAP,XDCT,CA\ENO
 INTEGER DOM(3,25),MOM(3,25)
 EQUIVALENCE (TOM(1),GENCAU),(TOM(2),ITAPE),
l (TOM(3),MONTH) ,(TOM(4),MYLAR),(TUNI(5), IVIAOKINU)
 EQUIVALENCL (HC(1),IC1),(HC(2),IC2),(HC(3),IC3),(ric(4),IC4)
 EOUIVALENCE (DOM,BCM),(XOVM,MUM)
 LIMENSION TUM(5),WT(100),XUM(3,25),BUM(3,25),NF(4)
 OIMLNSIJN v.TA(lOU),NTC(lUU),vite(1OU),NTM(1UU)
 DIMENSION XIAUNTH(12),PNME(4)
 UINLNSION FMT(16),SKIPI(8),SKIP2(1U),FUMT(16),MA~N(7)
 UIMENSION TYPE(5),HLAD(18)
 DIVENSION IWAOS(8),NOLN(18),NCAL(%)
 UATA TYPE / 3HLIN,3HNLH,3HFUR,3HLUG,3HARU/
 DATA NCAX,NOLNK /4HCASE,6H,
```



```
l 48HE * EST CAL ACT *, l(IX,I7), 03X,1H*) /
 DATA SKIPl /4BH 111X, 2(1X, 311x, 411X, 5(1X, 611x, 711x, 8(1x,/
 DATA SKIP2 /48H 63x, 55x, 47x, 39x, 3lx, 23x, 1bx, 7x,,
1 6H ,6H 71X,/
 UATA XIVUlvTH/3HJAN,3HFEb, دHMAK,3HAPK,3HMIAY,3HJUN,3HJUL, دHAUU,
1 3HOEF,3HOCT,3HNOV,3HULC/
 UATA PNAME /24HSUMiviNǴ PRUGRAMi /
 DATA PNO /3H635/
```



```
I
 48HEU WEIUHTS HAVE bEEN UJEU TU KEPLALE THU心L UN,
2 12H RECORD. /
 DATA TREND/5HTREND/
 DATA IDNE /1/
 DATA END/3HEND/,NP/1,1,1,1/
 DATA OF/2HOF/,SUMS/4HSUMS/
 WRITE (6,9013)
 IFI WDCT .EQ. 0 , GOTO 1
 NFY(1)=IC1
 NFY(?)=1C2
```

```
 NFY(3)=IC3
 NFY(4)=IC4
C
 i CALL READH(TOM)
 IF(TOM(1) \bulletEQ\bulletENU •AND. TUM(2) \bulletEQ.UF •ANU. TUM(3) •EW\bullet SUMMS)
 1 CALL SPACE
 MYEAR = MOD(MYEAR,IOU)
 DO 60C I = 1,18
600 NBLN(I) = NBLNK
 DO 601 1 = 1,8
 NCAZ(I) = NBLNK
601 IWABS(I)=0
 DO 2 I = 1,100
 WT(I) = 0.
 WTA(I) = 0.
 WTC(I) = 0.
 WTE(I) = 0.
 WTM(I) = 0.
2 CONTINUE
 DO 250 I = 1,7
250 MASK(1) = 0
 DO 251 I = 1,16
251 FOMT(1)= FMT(I)
 DO 253 I = 1.3
 DO >54 J = 1,25
 DOM(j,J)=し
 XOM(I,J)=0.
254 CONTINUE
253 CONTINUE
 ICOUNT = U
 KK = 7 - MASKNO
 DO 3 I = 1,KK
 MASK(I) = l
3
 CONTINUE
 IF (GENCAS *NE. O) GO TO 4
 WRITE (6,10CO1)
10001 FORNAAT (1HO, \angleUX, 33HEKROR - GENLRAL CASE NUVVBEK = 0. 1
 CALL SPACE
4 K = MIASKNO
 CALL TITEL (ULiNCA`,MASK)
 CALL READH(XOM,IMAX)
 IMAX = IMAX/ 3 + 1
 IMIN = IMAX - 1
 IGEN = IMAX
 CALL SORT(XOM,IMIN,3,1)
 KGATE = \
41 KGATE = KGATE + 1
 EXCASE = XOM(1,KGATE)
 NTAPE = XOM(2,KGATE)
 IF (XOM(3,KGATE) \bulletEQ. TRLNU) XOM(3,KGATE) = 9999999.
 IF (XOM(I,KGATE) .EQ. ENU) EXCASE = 9999999
38 NZL= ISIGN(NP(ITAPE),REELS(ITAPE))
```

```
 IF(NP(ITAPE) \bulletGT. NFY(ITAPE)) GO TO 6
 NF= REELS(ITAPE)*1000 + NZL
 CALL READBI(NF,1)
 CASENO=ID(7)
 NTEST = CASENO - GENCAS
 IF(NTEST .UT.U. •AND.NTEST <. (1O**K)) GU TO 5
 IF(NTEST •UT•(10**K)) GO TO 9
 40 NP(ITAPE) = NP(ITAPE) + 1
 IF(NP(ITAPE).GT. N`Y(ITAPL)) GO TO 6
 NZL= ISIGN(NP(ITAPE),REELS(ITAPE))
 NF= REELS(ITAPE)*IOOO + NZL
 CALL READB1(NF,1)
 CASENO = IU(7)
 IF((ASENO -LT. GENCAS) GO TO 40
 4. IF(CASENO •LT. EXCASE) GO TO 10
 IF(CASENO .EQ. EXCASE) NH(ITAPE)=NP(ITAPE)+1
6 IF (XOM(3,KGATE) .EQ. 9999999.) GO TO }
 IF (XOM(1,KGATE) .LQ. ENU, UO TO 9
252 ICOUNT = ICOUNT + I
 DON(I,ICOUNT) = EXCASE
 BOM(2,ICOUNT) = XUM(2,KGATL)
 BOM(3,ICOUNT) = XUM(3,KGATc)
 IF (CASLNO .LQ. EXCASE) UO TU 208
 JTAPE = 0
202 JTAPE = JTAPE + 1
 IF (JTAPE •EQ. ITAPL) GU TU 2U2
 IF (JTAPE •GT. 4) GO TO 205
203 NZL = ISIGN(NP(JTAPE),REELS(JTAPE))
 IF (NP(JTAPE) .GT. NFY(JTAPE)) GU 10 2Ü2
 NF = REELS(JTAPE) * 10OO + NZL
 CALL REAOUL(NF,1)
 CASENO = ID(7)
 IF (CASLIVU - EXCASL) 204, 207, 2UZ
2l4 iNP(JTAPE) = NP(JTAPE) + 1
 GO TO 203
205 NPLUSP= ID(11)+1
 DO 206 I = 1,NPLUSP
 EST(1) = 1.
 CALC(I) = u.
 ACTUAL(I) = 0.
206 C.ONTINUE
 N=1
 GO TO 209
207 NP(JTAPE) = NP(JTAPE) + 1
208 NPLUSP = IO(10) + ID(11)
 NTIM = 2 * NPLUSP + 9
 N=ID(1U)
 CALL READE2 (NF,TIME,NTIM,HISTRY)
 CALL READB2 (NF,EST,NPLUSP,HISIRY)
 CALL READB2 (NF,CALC,NPLUSP,HISTRY)
 CALL READG2 (NF,ACTUAL,NPLUOP,HISTRY)
20?
 L=0
```

```
 DO 61 I=N,NPLUSP
 L = L + 1
 FEIGHT = XOMI(2,KGATE) + (FLOAT(L-1) * XUMI(3,NGATE))
 WT(L) = WT(L) + FEIGHT
 WTA(L) = NTA(L) + (FEIGHT * ACTUAL(I))
 WTC(L) = WTC(L) + (FEIGHT * CALC(I))
 WTE(L) = WTE(L) + (FEIGHT * EST(I))
 WTM(L) = WTM(L) + FEIGHT
61 CONTINUE
 XOM(2,KGATE)=5.
 GO TC 41
 69 NP(NTAPE) =NP(NTAPL)+1
 7 NZL= ISIGN(INH(NTAPE),RELLS(NTAPL))
 IF(NP(NTAFE) .GT• NFY(NTAPL)) GU TO 79
 NF= REELS(NTAPE)*1000 + NZL
 CALL READE1(NF,1)
 CASENO = ID(7)
 IF(CASENO .LT. EXCASE, GU TU 69
 IF(CASENO •EQ. EXCASL) GO TO 8
 79 WRITE(6,1OO1) EXCASE
 10O1 FORMAT(1HI,DXI2HCMS` NUNULR I8,1X2IHIS NUT UN TAFE. UNIIG)
 GO TO 41
 3 NP(NTAPE)=NP(NTAPL)+1
 NPLUSP=1D(1U)+IU(11)
 NTIM=2 * NPLUSP + 9
 N=ID(10)
 (ALL READE2 (NF,TINIL,iNTIM,gIISTRY)
 CALL READO2 (NF,EこT,NPLUSP,HIOIRY)
 CALL REAUL2(NF,(ALC,INPLUSP,HISTRY)
 CALL REAUE2 (NF,ALTUAL,NPLUOP,HISIRY)
 CALL READB2 (NF,EUY,N,HISTKY)
 (ALL READD2 (NF,MEAN,NPLUOP,HI OTRY)
 NTIM = NTIM - 9
 CALL READU2 (NF,MCONF,NTIN,HISTRY)
 CALL READO2 (NF,JN2,NPLUSP,HISTRY)
 L=O
 DO 81 I=N,NPLUSP
 L=L+1
 WT(L)=WT(L) + UN2(I)
 wTA(L) = wTA(L) + (UW2(I) * ACTUAL(I))
 WTC(L) = VTC(L) + (Un2(I) * CALC(I))
 WTE(L) = WTE(L) + (UW2(I) * EST(I))
 WTN(L) = WTM(L) + MEAN(I)
81 CONTINUE
 GO TO 41
 IF (EXCASE .NE. 9999999) GO TO 6
C
C
DO <60 I = 1,100
IF (WT(I) •EQ. U.) GO TO 261
260 CONTINUE
```

```
261
 ISTOPI = I - 1
 XOM(1,IMAX)=XOM(1,IGEN)
 XOM(2,IMAX) = ITAPE
 XOM(3,IMAX) = 9999999.
 XOM(1,IGEN) = END
 ISTOP2 = IGEN - 1
 CALL SORT(XOM,ISTOP2,3,1)
 DO 262 I = 1,1STOP2
 MOM(1,1)=XOM(1,I)
 IF (XOM(3,I).NE. 9999999.) XOM(2,I)=5.
 MOM(2,I) = XOM(2,I)
262 CONTINUE
 DO 264 I = 1,8
 IF (DOM(I,I) .EQ. O) GO TO 265
264 CONTINUE
265 ISTOP3 = I - 1
 WRITE (6,900U)
 LKASE = GENCAS
 LKASE = LKASE / 1000000
 IF (LKASE .NE. O , GO TO 266
 WRITE (6,GUU4) ZLINE1,DATE,LLINE2,PNME,ZLINE3,GENCAS,PNU,ZLINE4
 GO TC 267
266 WRITL (6,90U2) ZLINEI,DATE,ZLINE2,PNME,ZLINE3,GENCAS,PNU,ZLINE4
267 WRITE (6.9001)
 IF (ISTOP3 .LE. O) GO TO 269
 DO 268 I = 1,ISTOP3
268 NCAZ(I) = NCAX
 FOMT(13)= SKIP1(ISTOP3)
 FOMT(15) = SKIP2(ISTOP3)
 GO TO 270
269 FOMT(13)=SKIP2(9)
 FOMT(14) = SKIP2(9)
 FOMT(15) = SKIP2(10)
 WRITE(6,9003) (NBLN(I) sI= 1,9):(NBLN(I), I=10,18),(NBLN(I),I=1,8)
 WRITE(6,FOMT)
 GO TO 275
270 WRITE (6,9U\cup3.) (HEAD(I),I=1,9),(HEAD(I),I=10,18),(NCAZ(I),I=1,8)
 DO 274 I = 1,ISTOP3
274 CONTINUE
 WRITE (6,FOMT) (DOM(1,I),I=1,I\TOP3)
 WRITE (6,9001)
 MONTH = MONTH - I
 DO 350 I = 1,ISTOPI
 IF 1 I .GT.ISTOP2 , GO TO 351
 CASENO = MOM(1,I)
 LOCA = MOM(2,I)
351
 CONTINUE
 MONTH = MONTH + 1
 IF (MONTH .LE. 12) GO TO 352
```

35 $=$ CONTINUE
354 CONTINUE
IF ( I .GT. ISTOP2 ) GO TO 358
IF ( ISTOP3.EQ. O ) GO TO 750
WRITE (6,9032) CASENO,TYPE(LOCA), XMUNTH(MONTH),MYEAR, 1 NWT,NWTM,NEST,NCALC,NACT,(IWABS(J),J=1,ISTOP3)
GO TO 350
$10 \quad$ NPLUSP $=1 D(10)+$ ID(11)
IGEN = IGEN + 1
IF (IGEN.GT. 25) GO TO 220
XOM(1,IGEN) $=$ CASENO
XOM(2,IGEN) $=$ ITAPE
XOM(3,IGEN) $=9999999$.
220 CONTINUE
NTIM $=2 *$ NPLUSP +9
$N=10(10)$
CALL READB2 (NF,TIME,NTIM,HISTRY)
CALL READB2 (NF,EST,NPLUSP,HISTRY)
CALL READB2(NF, CALC,NPLUSP,HISTRY)
CALL READB2 (NF,ACTUAL,NPLUSP,HISTRY)
CALL READB2 (NF,BUY,N,HISTRY)
CALL READBZ (NF,MEAN,NPLUSP,HISTRY)


## DECISION RELEVANCY PROGRAM - 64 S (Criticality)

The Decision Relevancy Program compares current and predicted values for each launch vehicle, spacecraft, and the corresponding stages and modules with their respective control limits. The resulting ratios are weighted against predetermined rating scales to determine the criticality index. This index identifies any problems which may exist and emphasizes the degree of seriousness of each.

## INPUT

Raw data is entered on a special-purpose input form titled "Criticality Program Coding Form", a sample of which is attached. This form is designed so as to be very nearly self-explanatory. The columns which are to be utilized for input are grouped under a heading or title which indicates the specific type of information to be entered in those columns.

A separate input sheet is used for each mission. The vehicle for each mission consists of a spacecraft with its component modules and a launch vehicle with its component stages. To complete the input form for a typical mission, determine the stages and modules which comprise the vehicle for that mission. Refer to the listing at the bottom of the input form and determine the code for each component stage or module opposite the component name. Enter the code for every stage and module of the vehicle in numerical order in columns 9 and 10 of the input form, being sure that where two stages are listed opposite one code (for instance, the S-II Stage and S-II/S-IVB interstage are both listed opposite code 3) that the code is entered twice. Opposite the appropriate code in columns 9 and 10, enter the case number, the months to shipping, and the current control and predicted weights of every stage and module in the group of columns headed for these entries. On the line directly below the last stage or module, also in numerical order of code, list the code, the case number, the months to ship, and the current control and predicted values of the launch vehicle capability (code 13), and the spacecraft weight (code 14).

In the line directly below spacecraft weight, enter code 15 (for L/V-S/C interface) in columns 9 and 10 and the largest numerical value of "months to ship" appearing for any stage or module in columns 24 and 25 . Enter code 16 (for total mission) on the
next line in columns 9 and 10. Finally, on the next line below code 16, enter either the word RUN or END in columns 1, 2, and 3, depending on whether another mission is to be considered or the run is to be terminated.

Any coded line may be omitted from the above if it is not to be considered, without affecting the output of the others; however, the last line on any sheet should have the RUN or END entry in columns $1-3$. Any identification desired may be entered in columns 73 through 80 under the heading identification.

In addition to the above, further instructions are given on the input form itself.

One other card is needed in the input deck. This card will be the first card of the input data deck (ENTIRE RUN). The first 14 columns of this card are placed in the title format. The original intent was to include the month and year of the data run (example 1); however, it may be desirable to modify this for data distinction as shown in example 2.

Example 1: Example 2:

1-9 11-14
MONTH YEAR

1-14
MONTH YEAR RUN NO。X

Other modifications are possible as long as they stay within the first fourteen columns.

Reference No.
64. 0.2.

Issue Date 23 December 1965 Supersedes $\qquad$

＊＊＊＊＊CRITICALity uEtERMINATION photham＊＊＊＊＊

| compoivtint | SH ${ }_{\text {TO }}$ | $\begin{aligned} & \text { WEPORTED } \\ & \text { EJRRFNT } \end{aligned}$ | （UR CALC，） CUNTKUL | PIUUNDS | HA | $10$ | CONJ． | cude | TIME | FACIUR | TIME | WEIGrTED | COND． | over | ALL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAUNCH VFhlcle stafies |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ＊＊＊\＃\＃\＃\＃\＃\＃\＃\＃＊＊＊＊＊＊ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －CASF | ． | 2401100 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I．U． | 10 | 4.426 | 40\％ 5 | 4504 | 1.031 | 1．152 | 4 | 4 | 0，72 | 2 $0, \angle 8$ | 2.88 | 1．12 | 4.00 | 1.00 | $G$ |
| ＊CASE | ． | 2451400 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| S－IVB | 10 | 25390 | 26077 | 25．75\％ | 1.027 | 1.412 | 4 | 4 | 0.72 | ？ 0.46 | 2.88 | 1.12 | 4，00 | 1.40 | 6 |
| ＊CASE | ． | $2420100 \quad 241$ | 11200 |  |  |  |  |  |  |  |  |  |  |  |  |
| S－IB／Slim | 10 | 102723 | 1075u？ | 102567 | 1.047 | 1.448 | 4 | 4 | 0.72 | ，U．＜t | 2.88 | 1.12 | 4.00 | 1.10 | G |
| Spactcraft mounles |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ＊＊＊＊＊\＃\＃＊＊＊\＃\％＊＊＊＊＊ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\text { OCASE NO. } 741110 J$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Les | $8$ | $6200$ | 8200 | 8205 | 1.000 | 0.949 | 4 | 4 | 0.74 | 0.22 | 3，12 | 0.88 | 4，110 | 1.00 | $G$ |
| ＊CASE NO．$\quad 7401400$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{CM}$ | $8$ | 11080 | 11000 | 11301 | 0,993 | 0.908 | 4 | 3 | 0.75 | $0,<2$ | S． 12 | 0.66 | 3，78 | 0.95 | 6 |
| \＃CASt ivo． $745<400$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\operatorname{SM}$ | － | 20416 | 20400 | 20776 | 0.999 | 0.987 | 4 | 30 | 0.74 | $0 \cdot<2$ | 3.12 | 0.66 | 3.78 | 0.85 | 6 |
| －CASE |  | $7440400$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ADAHTEH | $4$ | $3505$ | 3910 | 3505 | 1.113 | 1.113 | 4 | 4 | 0.73 | 0.42 | 3.12 | U．88 | 4.00 | $1 \cdot 40$ | G |
| $\begin{aligned} & \text { OVEKALL MISSIUN } \\ & \text { \#\#\#\#\# O\#\#\#\#\#\# } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ＊CASE NO． 2400410 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| L／V CAPAK | $10$ | $35277$ | 35300 | 3ヶ8ちゃ | 1.028 | 1.416 | G | 6 | 0.72 | 0.48 | 2.88 | 1.12 | 4.00 | 1.40 | （3） |
| ＊CASE N |  | 7400400 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| S／C wit． | 8 | S勺001 | $3 ヶ 300$ | $5664 \%$ | 1,009 | 0.990 | G | NI： | 0.74 | 0.82 | 3.12 | 0.66 | 3.78 | 0.95 | $G$ |
| INTEKFACF | 1：1 |  |  |  | 1.036 | 1.006 | 4 | 4 | 0，12 | 0,28 | 2.88 | 1.12 | 4.00 | 1.00 | 4 |
| TOTAL |  |  |  |  |  |  |  |  |  |  | 6.88 | 2.90 | 11.78 | 0.98 | G |

Reference No.
64.1.1 .

Issue Date
23 Dec 1965
Supersedes 13 August 1965
SEPTEMBER 19GS

|  | 40 |
| :---: | :---: |
| 00 | -scanixy |

CRITICA.
204 MISSIJN
2411200
2461100
2451401
2420100
7471100
7461400
8
0
N
~
7440400
2400400

| 0 |
| :--- |
| 0 |
| 0 |
| 0 |

- JOB DECK STRUCTURE - The Criticality Program is run as a separate job independent of SPACE. The job deck setup for processing the Criticality Program appears below:

CARD COLUMNS

\$ ID
\$ PAUSE CHARGE NO., NAME, PAY NO., UNIT NO., PROGRAM, MODE \$ OPEN \$ IBJOB CRITIC MAP, DLOGIC
\$ RELGAD I06, NAME = CRITIC, SRCH

## $\left\{\begin{array}{l} \\ \xi\end{array}\right.$

\$ IBSYS
\$ CLOSE
\$ IBSYS
(INPUT DATA DECK)

Reference No.
$\qquad$



```
 4,GUHLE (GROSS)
 5 .GUHLEM ASGENT STAGE
 6 .6UH LEN GROSS
 7 ,6OH
 ,6UHSPACECRAFT WEIGHT
C
C *** Table a is named tuble
c *** TABLE b IS NAMED TWdLE
C *** TABLE C IS NAMED TXELE
c *** Table u is namiel tvele
c *** Table t is named tablee anv tadltu
C %** BEGIN COMPUTATION
 READ (5,10000) MONTHI,MONTH2,YEAR
10000 FORMAT (AG,A4,A4)
 IONE = 1
 ITWO = 2
 24 CASN1 = 0
 CASN2 = 0
 CASN3 = 0
 DO 23 1I =1,17
 DO 22 JJ=1,17
 TABLE(II,JJ) = 0.0
 22 CONTINUE
 23 CONTINUE
 25 READ (5,10UU) AUX,NANE,CASNU,NUU,CURR,CONT,PREU
 LOOP = O
C
 IF (AUX .EQ. RUN) GU TO 2UO
 IF (AUX .EQ. END) GO TO 2UO
 CONTI = CONT
 TABLE(1,NAME) = NAME
 TABLE(2,NAME) = MU
 IF (NAME .NE. INAME) GO TO 55
 IF (IAME .NE. 3) GO TO 42
 CASNI = CASNO
 GO TO 46
 4 2 ~ I F ~ (N A M E ~ . N E . ~ 4) ~ G O ~ T O ~ 4 4 ,
 CASN2 = CASNO
 GO TO 46
 4 4 ~ I F ~ (N A N M E ~ . N E . ~ 5) ~ G O ~ T O ~ 5 5 ~
 CASN3 = CASNO
 46 CONTINUE
 TABLE(3,NAME) = TAOLL(3,NAML) + CUKK
 TABLE(4,NAIVE) = TABLEL(4,NAMLE) + CUNT
 TAGLE(5,NAME) = TAULE(5,NAML) + PKEU
 CURR = TABLE(3,NAME)
 CONT = TAGLE(4,NAME)
 PRED = TAGLE(5,NAME)
 CONTI = CONT
 LOOP = 1
```

```
..
c
 IF (NAME .NE. 13) GO TO 7O
 TEMP = CONT
 CONT = CURR
 CURR = TEMP
 TEMP = CONTI
 CONTI = PRED
 PRED = TEMP
 70 1F (NAME .NE. 15) GU TO 75
 TABLE(6,15) = TAuLE(3,13) / TAOLL(3,14)
 TABLE(7,15)= TAOLE(5,13)/TAOLE(5,14)
 GO TO 80
C
 75 IF ICURR .EO. U.O .OR. CUNT .EW. O.0.OR. PREU .EU. O.O) GU IU 111
 TABLE(6,NAME) = CONi / CURR
 TABLE(7,NAME) = CONTI/ PREO
C
 80 J = 6
 95 DO 100 I=1,7
 IF (NAME .EQ. 13) GO TO 96
 IF (NAME .EQ. 14) GO TO 96
 GO TO 97
```



```
 1 (I+1)) GO TO 1כ5
 GO TO 100
 97 IF (NAME .NE. 15) GO TO O8
 IF (TABLE(J,ivamE) ,GT. TXBLLE(I) .ANu. TABLE(J,ivaML) .lt. TXBLE
 I (I+1)) GO TO 105
 GOTO 100
```



```
 l (I+1)) GO TO 1U5
 1OO CONTINUE
lO5 CONTINJE
 IMO = (1 + 1)/2
 NXASP(J-5,NAME) = NELNK
 IF (MOO(I,2) .EW. U) NXASP(J-5,NAML) = NAST(4)
 TABLE (j+2,NMML) = IMO
 IF (J •EQ. 7) GO TO 110
 J=7
 GO TO 95
C
 110 CONTINUE
 111 IF (1O .EQ. 0) MO = 1
 TADLE(10,NAML) = TABLLE(mu)
 Table(ll,Naime) = Tableg(mo)
 112 ICELE = TAOLL(I,NAVE) + U.5
 IF (ICELE.NE. 16) GO TO 140
```

```
 TABLE(12,NAME) = TABLE(12,NAME-3) + TABLE(12,NAME-2) + TABLE
 1 (12,NAME-1)
 TABLE(13,NAME) = TABLL(13,NAML-3) + TADLE(13,NAML-2) + TAOLE
 1 (13,NAME-1)
 TABLE(14,NAME) = TABLE(14,NAML-3) + TAuLE(14,NAML-2) + TAOLL
 1 (14,NAME-1)
 TABLE(15,NAML) = TABLL(14,NAME) / 12.0
 GO TO 145
c
 140 IF (MO.EQ. O) GO TO 160
 TABLE(12,NAME) = TABLE(8,NAME) * TABLE(10,NAML)
 TABLE(13,NANL) = TABLE(9,NANE) * TABLE(11,NAME)
 TABLE(14,NAME) = TABLE(12,NAME) + TABLE(13,NAME)
 TABLE(15,NAMEE) = TABLE(14,NAME) / 40. N
 145 DO 15C L=1.7
```



```
 1 TVOLE(L+1)) GO TO 155
 150 CONTINUE
155 IMMO = L
 IMNO = NBLNK
 IF (MOD(IMMO,21 .EQ. U) IMNU = NAST(4)
 IMMO = (IMMO + 1 1 / 2
 TABLE(16,NAME)=(L+1) / 2.
 160 CONTINUE
 IF (LOOP .EQ. I) GO TO 25
 TABLE(17,NAME) = CASNO
 GO TO 25
C
 200 DO 215 LOZ=1,5
 IF (TABLE(17,LUL) .EU. U.U) GU TU Elb
 IB = TABLL(17,LOZ) + 0.5
 GO TO 217
 215 CONTINUE
 2171A = 0
 CALL FLIP (IA,IB,IONE)
 IRC = IA * 100
 IA = O
 CALL FLIP (IA,IB,ITNO)
 IRC = IRC + IA
 IF (NAML .EU. 2) GO TO 45U
C
*** routine forr full uutfut
 WRITE (6,1\cupU4) IRC,MCNTHI, MUNTHZ,YLAK
 WRITE (6,1ししう)
 WRITE (6,lUll)
 DO 300 K=1,16
 ICBLE = TABLE(1,K) + 0.5
 If (ICELE .EQ. O) GO TC 290
 IABLE = TAOLE(2,K) + ..5
 JABLE = TADLLE(3,K) + U.5
 KABLE = TABLE(4,K) + v.5
 LABLE = TASLC(5,K) + U.5
```

```
 IBBLE = TABLE(8,K) + U.5
 JBBLE = TABLE (9,K) + 0.5
 246 NUT = TABLE(16,K)
 KBBLE = KTUB(NUT)
 NED = JNDEX(K)
 NOM = JNDEX(K+1) - &
 CASNO = TABLE(17,K) + 0.5
C
 KINU = 1 BUTH CASNU mivo Cábivu havg 7 vivilis
 = 2 CASNU MAS 6 UIUITS. CAsINU MAS }7\mathrm{ UIUITO
 = 3 CAONO HAS 7 UlUITS. LADINU HAS 0 UlUllo
 = 4 BUlH CASNU ANU CASNU HAVE 6 UIGllO
 KAZNO = CASNO/1000000
 IF (ICbLE .tQ. 3 .ANU. CASNI .NE. U) GU TU 249
 GO TO 250
 249 CASNU = CASN1
 GO TO 255
 250 IF (ICBLE .LG. 4 •ANU. CASNL •IVE. O) GU TU 2bl
 GO TO 252
 251 CASNU = CASN2
 GO TO 255
252 IF (ICOLE .clu. 5 .Aivu. Cásivs.NL. U) Gu Tu <b3
 GO T.O }25
253 CASNU = CASN3
 GO TO 255
254 IF (ICBLE .LQ. 15 .OR. ICDLE .LW. 16) GO TU 256
 IF (KAZNO.EG. U) GO TO 1254
 WRITE (6,1C03) CASNO
 GO TO 256
1254 WRITE (6,1OL2) CASNO
 GO TO 256
 255 KIND = 1
 IF (I AZNO .LU. U) KINO = NINU + I
 KAZNO = CASNU/10OUJOO
 IF (KAZNO - EW. U) NINL = NINU + 2
 GO TO (1255,12j6,1257,125%),KINU
1255 WRITE (6,1UUミ) (ASNO.(ASNU
 GO TO 256
1256 WRITE (6,10C1) CASNO,CASNU
 GO TO 256
1257 W'RITt (6,1CU7) (ASNO,CASNU
 GO TO 256
1258 WRITE (G,1UUZ) (AUNO,CASNU
 256 CONTINUE
 IF IICult .t.e 13 - UK. IColc •Lu. 14) uU Tu 26j
```



```
 WRITE (6,IU~O) (NEM(10),IL=NELgNUM),IAOLE,JAULE,NALLL,LAELE,
 1 TALLE(6,K),1AULL(7,N),ILULLONXAON(I,N),ULLLL,
 2 NXASP(2,R),(TA゙DLE(IX,N),IX=1U,15),NLULL,bMNU
 GO TO 290
 258 IF (ICBLE .EQ. 16) GO TO 262
```



```
 l
 IOULL,NXASP(I,N),JDULL,NXAUF(2,K),(|ABLE(IX,K),
 2
 I X=10,15),INMO,IMNO
 GO TO 290
 262 WRITE (6,IU28) (NLM(IB), IB=NED,IVGM),(IADLE(IX,K),IX=12,15), KBOLE,
 I
 IMNO
 GO TO 290
 265 IBBLI = NBLNK
 JGGLE = NBLNK
 DO 270 MAWL=1,4
 IBCD = TABLE(8,K) + 0.5
 JBCD = TADLE(9,K) + 0.5
 IF (IUCU .NL. MAW) GO TO 207
 IGGLL = KTUE(MAW)
 267 IF (JUCD .NL. MAW) GO TU <1O
 JGGLE = KTUU(NAW)
 270 CONTINUE
```



```
 1
 290 IF (K .EQ. 5) GO TO 294
 GO TO 295
 294 WRITE (S,lO12)
 295 IF (K .LQ. l<) GO TU 298
 GO TO 300
 298 WRITE (6,l心13)
 300 CONTINUE
C
C *** ROUTINE FOR CUNDENSEL OUTPJ:
 450 IF (NANE .EQ. 1) GO TO 775
 WRITE (6,lUU4) IRC,M(MINTHI, MUNTHz,YEAK
 WRITE (6,1UN9)
 WRITE (6,lUll)
 DC }750\quadMA=1,1
 ICBLE = TAbLE(1,MA) + U.5
 IF (ICbLE .EG. J) GU TO 7ly
 LUM= INDEX(IMA)
 LUN = LUN + 5
 NIE = TALLL(16,NA) + _.5
 DO 495 IR=1,4
 475 NOE(IR) = NBLNK
 NOB(NIU) = NAST(NIG)
 If IICblE elu. 3 .ANu. Casivl .Ne. u) Gu Tl jug
 GO TO 510
 509 CASNU = CASN1
 GO Tr 518
 2lu IF (lCule .iv. 4..AIVu. CAJM& .NE. u) Gu tu jll
 GO TO 512
 511 CASNL = CASNNE
 GOTO 518
```



```
 GO TO 514
 513 CASNU = CASN3
```

```
 GO TO 518
 514 CONTINUE
 518 CASNO = TABLE(17,MA) + 0.5
 IF (ICOLE •EW• 3 •OR. ICOLE •EW. 4 •UK. ICBLE •EW• %) GU IU OIU
 IF (ICDLE •EU. 15 0OR. ICDLL EU. 16) GO TU 620
 WRITE (6,IU2\zeta) (NAM(MIG),MIG=LUM,LUIV), (ASNU, (NUB(NH),M,H=1,4)
 GO TO 625
 610 WRITE (6,1U'15) (NAM(MG),MG=LUN,LUN), (ASNO,CASNU,(NOB(MH),MHE1,4)
 GO TO 625
 620 WRITE (6,1C26) (NAM(MG),MG=LUM,LUN),(NOB(NH),MH=1,4)
 625 CONTINUE
 715 IF (MA .EQ. 5) GO TO 724
 GO TO 725
 724 WRITE (6,1012)
 725 IF (MA EEQ. 12) GO TO 740
 GO TO 750
 740 WRITE (6,1013)
 750 CONTINUE
 775 IF (/UX .EQ. RUN) GO TO 24
 CALL EXIT
C
1000 FORMAT (A 3,I7,3X,I7,3X,I2,3(3X,F7.0))
 1001 FORMAT (4X,9H*CASE NO. ,3X,1HO,16,3X,17)
 1002 FORMAT (4X,9H*CASE NO. ,2(3X,1HU,I6))
 1003 FORMAT (4X,9H*CASE NO. ,2(3X,I7))
 1UO4 FORMAT (1HI,46H***** CRITICALITY UETERWINATIUN PRUUKKAM ******
 1 1OX,I3,8H MISSION,2OX,AG,2A4)
```



```
 1 3X,9HR A T S U,5X,1OHCUNL. CUUE, 3X,IIHTIML FACTUK,3X,
 2 19HTIME WEIGHTEU CUND..4X,7HUVEKALL /
 3 IX,9HCOMPUNENT, 2X,4HSHIP,3X,7HCURRLINT,3X,7HCUNTKUL
 ,3X,7HPREUICT,2X,5HCUKK., 2X,5HPKËU., 2X,5HCUKK., 2X,
 5HPREU., 2X,5HCURR., 2X,5HPRED., 2X,5HCURR., <X,5HPREU.,4X,
 3HSUM,2X,5HRATIO,2X,5HCOND. /)
1OC6 FORMAT (1X,A3,A6,3X,I2,1X,3(3X,I7),2(1X,F6,3),2(2X,14,A1),
 1 6(2X,F5,2),2X,A3,A1 /)
 1007 FORMAT (4X,9H*CASE NO. ,3X,I7,3X,1HO,16)
 IUOG FORMAT IIHU,IUX,22HCUNDENSLU KATING TABLE/// 14X,9HCUMPUINENT,
 1 24X,IIHCASE NUMBLR,I9X,1IHK A T I N G // 68X,8HCRITICAL,
 2 2LH --WEAKNESS-- GUUU/78X,19HMAJUR MINUR SHAPE//,
 1O11 FORMAT (22H LAUNCH VEHICLE STAUES/ 22H *********************//)
 1U12 FORMAT (/ 2UH SPACECRAFT MUDULES / 2UH ****************** /)
 1013 FORMAT (/ IÓri OVERALL MISSION / 16H *************** /)
 IUl5 FORMAT (1X,6A6,6X,2(I7,6X),A6,4X,A 3,4X,H3,5X,A1 /)
1024 FORMAT (1X,A3,A6,3X,I2,1X,3(3X,I7),2(1X,F6,3),2(4X,A2,A1),
 1 6(2X,F5,2),2X,A3,A1 /)
 1025 FORMAT (1X,6A6,6X,I7,19X,A6,4X,A3,4X,A3,5X,A1 /)
 1026 FORMAT (1X,6A6,32X,A6,4X,A S,4X,A 3,5X,A1 /)
1027 FORMAT (1X,A 3,AG,3X,I2,31X,2(1X,F6,3),2(2X,I4,A1),6(2X,F5,2),2X,
 1
 I2,A1 /)
 1028 FORMAT (IX,A3,A6,78X,4(1X,F6.2),2X,A3,A1 /)
 END
```


## OVERALL COST ESTIMATION - $65 S$

This program calculates the overall cost required to accomplish a given buyoff and is based on the following assumptions:

## ASSUMPTIONS

1. Only overall costs on the stage and module levels were considered. An analysis based on the functional-systems level will be performed in the future as a refinement of this analysis.
2. A ten percent redesign yield was assumed, i. e., 1000 pounds of inert weight must be redesigned and refabricated, where required, in order to obtain a 100 -pound weight reduction.
3. R\&D dollars vary exponentially with weight reduction, i.e., the first 100 pounds of weight reduction costs less than the next 100 pounds, etc. The exponential equation used is

$$
\mathrm{D}=\mathrm{a} W^{\mathrm{b}}
$$

where:

$$
\begin{aligned}
\mathrm{D}= & \text { required } \mathrm{R} \mathrm{\& D} \text { dollars } \\
\mathrm{W}= & \text { weight reduction required } \\
\mathrm{a}, \mathrm{~b}= & \text { constants derived for each stage/module from the available } \\
& \text { cost data. }
\end{aligned}
$$

4. Production costs for a change are equal to the dollars spent to date on the affected portion of the vehicle. The affected portion of the vehicle is the 1000 pounds, for example, which is being redesigned in order to obtain a 100 -pound weight reduction.
5. R\&D costs are assigned to the first vehicle for which a required buyoff occurs, even though the effects will be realized on subsequent vehicles. For example, if a 100 -pound buyoff is required for the S-IC-501 and a 300 -pound buyoff is required for the S-IC-502, the S-IC-501 will be charged with the cost of the first 100 -pound buyoff while the S-IC-502 will be charged with only a 200 -pound buyoff. The costs are determined by first calculating the cost of the 100 -pound buyoff using the equation in assumption 3. This cost of the buyoff is charged to the S-IC-501. Using the same equation, the cost of a 300 -pound buyoff is
calculated. The cost of the 200 -pound buyoff assigned to the S-IC-502 is determined by subtracting the cost of the 100-pound buyoff from the cost of the 300 -pound buyoff. This type of calculation is required since we are assuming an exponential cost distribution.
6. The predicted schedule slip is equal to the absolute buyoff cost divided by the current spending rate of the given stage/module. The absolute cost is the cost of a given buyoff, not considering the cumulative effects of previous buyoffs. In the previous example, the cost of the 300 -pound buyoff is the absolute cost for the S-IC-502. It is this cost that is divided by the spending rate in order to obtain the desired schedule slip.

## COMPUTER PROGRAM

Based on the above assumptions, a computer program was developed to perform the required calculations. Referring to the computer output sheet columns (see Reference Number 65.3), counting from the left, the program requires the following data and performs the following calculation:

1. Stage/module.
2. Total buyoff required, in pounds (obtained from prediction analysis).
3. Cumulative required weight reduction (column 2 minus the greatest previous number in column 2 , if negative, enter zero).
4. a (input constant for each stage/module, taken as the production cost per pound).
5. b (input constant, i.e., the exponent, for each stage/module, which is the slope of the Cost versus Weight Reduction line, when it is plotted on log-log graph paper).
6. Total required $R \& D$ dollars, in millions, (coiumn 2 raised to the column 5 power and then multiplied by column 4, i.e., $D=a W^{b}$ from assumption 3).
7. Cumulative R\&D dollars, in millions, (column 6 minus the greatest previous number in column 6, if negative, enter zero).
8. Number of production months (the number of months that a given stage/module has been in the production phase. This data is obtained from the SARP charts).
9. Production dollars/pound-vehicle-month (the production cost of one pound of a given stage/module for one month).
10. Percent yield (this is the percent weight reduction obtainable from a given redesign, assumed to be ten percent for this study).
11. Production weight requiring redesign, in pounds, ( 100 divided by column 10 and then multiplied by column 2).
12. Required production dollars in millions, (column 8 times column 9 times column 11).
13. Total cost (gross), in millions, (column 6 plus column 12).
14. Total cumulative cost, in millions, (column 7 plus column 12).
15. Tradeoff factor in dollars/pound (column 13 divided by column 2).
16. Current spending rate in dollars/month.
17. Schedule slip in months (column 13 divided by column 16).

JOB DECK STRUCTURE - The Cost Program is run as a separate job independent of SPACE. The job deck setup for processing the Cost Program appears below:

## CARD COLUMNS



Reference No.
SAMPLE CASE OF OUTPUT SHEET
OVERALL COST ESTIMATION - SATURN V LAUNCH VEHICLE

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| \% |  |  |  |  |  |
| * |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |




```
$IBFTC 65S LIST,RFF
C COMMON DEFINITIONS
C
C DIMENSIONS
 DIMENSION IHEDI (12)
 DIMFNSION INPUT (11),FINPUT (7),FOPUT(8),INPUS(4)
C EQUATE THE FOLLOWING
 EQUIVALENCE (INPUT(5),FINPUT(1))
c
 5003 FORMAT (12A6)
 AKARN = 100.
 AKON =.000001
 AKORN = 1000000.
C AT 100 READ A CARD
C COLUMNS 1 THRU 24, BCD
C COLUMNS 25 THRU 66, FLOATING POINT, FIELD WIDTH 6, DEC. PLACES 2
100 READ (5,1C01) INPUT
1001 FORMAT (4A6,2F8.2,F8.3,4F8.2)
C DATA STATFMENT
 DATA IEND, IPAGE, INODAT,IMASK,IDEL,INODEL
 l /3HEND,4HPAGE,6HNO DAT,O777777nnOnOn,3HDEL,6HNO DEL/
C AT llO, DID CARD CONTAIN END
110 IF (INPUT(1).FQ.IEND) GO TO 20N1
C AT 120, DID CARD CONTAIN PAGF
120 IF (INPUT(1).EG.IPAGE) GO TO 125
C AT 122 IS NAME IN SAME CATEGORY AS PREVIOUS
122 IX = AND(INPUT(I),IMASK)
 IF (IX.EQ.IPREVN) GO TO 130
 WRITE (6,1007)
1007 FORMAT (15X)
 ILCNT = ILCNT -1
 FPREVI = C.O
 FPREV5 = 0.0
C AT 130; DO COLUMNS 19 THRU 25 STATE NO DATA
130 IF (INPUT(4).EQ.INONAT) GO TO 3ON
C AT 150, IS (1) GREATER THAN PREVIOUS (1)
150 IF (FINPUT(1).GT.FPREVI) GO TO 160
C AT 18J, SFT (2) OR FOPIJT(1) = 0
180 FCPUT (1) = 0.0
C LT 190, CALCULATE (5) = (3)X(1)**(4)
190 FOPUT(2) = AKON*FINPUT(2)*FINPUT(1)**FINPUT(3)
 GO TO 200
C AT l25 SET PREVIOUS VALUES TO ZERO
125 FPREV1 = O.C
 FPREV5 = 0.0
 INPUS(2) = INPUT(2)
 INPUS(3) =INPUT(3)
 INPUS(4) = INPUT(4)
 GO TO 3?0
C A: 160 (2) =(1) - PREVIOUS(1)
160 FOPUT(1)= FINPUT(1)-FPREVI
C AT 170, SET PREVIOUS(1) = THIS (1)
170 FPREVI = FINPUTI1)
 GO TO 190
```

```
C FNO FLOW CHART, PAGF I
C
C AT 2?0, IS (5) GREATER THAN PREVIOUS (5)
2!G IF (FOPUT(2).GT.FPRFV5) GO TO 220
C AT 210, SET(6)=0.0
210 FOPUT(3)=0.0
 GO TO 236
= AT 220, (6) = (5)-PRFVTOUS(5)
22% FOP('T(3) = FOPUT (2) -FPREVS
C AT 23^,SFT PRFVIOIC(5)= THTC ONE(5)
220 FPRFVF = FOPIIT(2.)
C AT 236 CALCILATF (1^),(11).(12),(13),(15)
236 FOPUT(4) = AKARN*FINPUT(1)/FINPUT(6)
 FOPUT(5) = AKON*FINPUT(4)*FINPUT(5)*FOPUT(4)
 FOPUT(6) = FCPUTT(2)+FOPUT(5)
 FOPUT (7) - FOPIIT(3) +FOPIIT(5)
 FOPUT(8) = FOP!!T(6)/F[!NP!TT(7)
C END MAIN CALC!ILATION BLOCK
C AT 24>, IS (15) LESS THAN n.n
242 IF (FOP!IT(?).LT.n.O) COTO 26n
C AT 25r, IS (15) 「OUAL TO r.^
25n IF (FODIIT(&).rO.n.0) %0 TO 25م
C AT 27R, STT FMCNT = 1
つフの EMCNT = 1.^
C AT 278, IS (1n, GRFATER THAN FMCNT
278 IF(FOPUT(8).RT.FMCNT) OO TO 284
C AT 200, SET(1:)=FMCNT
2OC FOPUT(&) = F:MAT
295 FTRADE = A人目N*OR!T(6)/FINPUT(1)
 GO TO 31
C AT 284, INCREASE FMCNT
284 FMCNT = F\becauseCNT + 1.?
 ~\cap TO 2?Q
CAT PGC,CRT (1a)= =.n
260 FOPUT(8)=N.C
 6O TO ?OL
c
C END FLOW CHART, PAGF 2
C
C BEGIN FLON CHART, PAGE 3
C AT 300 PRINT LINE, ALL PARAMETERS BLANK
300 WRITE (6.1002) INPUT(1),INPUT(2)
10\cap2 FORMAT (1X,2A6)
 GO TO 320
C AT 310 PRINT LINE WITH ALL PARAMETERS
310 WRITE (6,1\capO3) INPUT(1),INPUT(2),FINPUT(1),FOPUT(1),FINF!JT(2),
 IFINPUT(3),FOPUT(2),FOPUT(3),FINPUT(4),FINPUT(5),FINPUT(6),FOPUT(4)
 2,FOPUT(5),FOPUT(6),FOPUT(7),
 3FTRADE, FINPUT(7),FOPUT(8)
1003 FORMAT (IX,IAG,1A2, F7.O,F7.O , F6.0, F6.3,1X,F8.1,
 11X,F8.1,1X,F6.0,1X,F7.0,1X,F5.O,2X,F7.O,1X,F7.1,1X,F7.1,F9.1,
 2 FG.1,1X,F7.1,1X,F6.0)
C AT 320, REDUCE LINE COUNT
320 ILCNT = ILCNT -1
```

- C AT 330 TEST LINE COUNT

330 IF TILCNT.LT.OI GO TO 370
GO TO 380
370 WRITE $(6,5007)$ IHED 1
5007 FORMAT (1HI,30X,12A6)
WRITE (6,1004) INPUS(2),INPUS(3),INPUS(4)
 SPENDING SLIP / 6 IX 131H B.O. WT. MILLIONS MILLI TONS MONTHS MO• REDESIGNMILLIONS MILL. COST (\$/LB) 8 RATE (MO.)/10X,11H(LBS) RED,54X,5H(LBS),20X, 8HMILLIONS, 91nx, वHMILL./MO./18X,5H(LBS)/)
373 WRITE (6.1005)
1004 FORMAT ( $47 X$, 3OHREQUIRED BUYOFF COST SUMMARY , 3A6/1)
377 ILCNT $=50$
C"AT 380 , MOVE NAME TO PREVIOU'S CELL
38 U IPREVN = AND(INPUT(1),IMASK)
GO TO 100
C AT 2001, RESTORE PAGE AND EXIT
2001 WRITE (G,1~C6)
1006 FORMAT (1H!)
CALL EXTT
STOP
END

## UPDATE PROGRAM - 66S

This program reads a set of data cards and performs an update on the Weight Data File (WDF). The update may consist of:
a. Additions of entire new cases to the Weight Data File.
b. Addition of new data points.
c. Corrections to previously submitted erroneous points.

Input cards for each of the three types are described as follows:

## NEW CASE ADDITIONS

The addition of entire new cases consists of the following set of cards:

## Card 1

Word 1 - The word RESTO punched in columns 1-5
Word 2 - Month in which the system is to be shipped (integer)
Word 3 - Year in which the system is to be shipped (integer)
Word 4 - Month in which first data point was observed (integer)
Word 5 - Year in which first data point was observed (integer)
Word 6 - Parameter $r_{1}$ (floating point)
Word 7 - Parameter $r_{2}$ (floating point)
Word 8 - Actual percentage of weight at shipping date (floating point)
Word 9 - Calculated percentage of weight at shipping date (floating point)
Word 10 - Estimated percentage of weight at shipping date (floating point)
Word 11 - The word ITERAT
Word 12 - Minimum weight value to be plotted (floating point)
Word 13 - Maximum weight value to be plotted (floating point)
Word 14 - *
NOTE - Words 2-14 must be punched in columns 7-72 inclusive with at least one blank space between words. Words 12-13 are optional and may be omitted from the card.

## Card 2

Columns 1-7 Case number
Columns 19-72 Case title

## Cards 3 through n-1

Word 1 - Time, $t_{i}$, in months (integer), measured relative to words 4 and 5 on Card 1 above
Word 2 - Observed weight $W_{i}$ in pounds (floating point)
Word 3 - Estimated fraction of observed weight ( $0 \leq e_{i} \leq 1$ )
Word 4 - Calculated fraction of observed weight ( $0 \leq c_{i} \leq 1$ )
Word 5 - Actual fraction of observed weight ( $0 \leq \mathrm{a}_{\mathrm{i}} \leq 1$ )
Word 6 - Nonrandom change for this month
Word 7 - *
NOTE - Words 2-7 must appear in columns 7-72 inclusive with at least one blank space between words.

## Card n

The word END must appear in columns 7-9 and an * in column 12.

## NEW POINT ADDITIONS

A new data point is defined as a series of values which update a given functional system from the previous month to the present month. These values appear on a data card with the following format:

Word 1 - Case number of the system to be updated
Word 2 - Observed weight (floating point)
Word 3 - Estimated percentage of observed weight (floating point)
Word 4 - Calculated percentage of observed weight (floating point)
Word 5 - Actual percentage of observed weight (floating point)
Word 6 - Nonrandom change
Word 7 - *.
NOTE - As above, words 1-7 must appear in columns 7-72 inclusive with at least one blank space between words.

## ERRONEOUS POINT CORRECTIONS

To correct previously submitted erroneous data points, the following corrections are permitted:
a. Corrections to the shipping date

Word 1 - S in column 1
Word 2 - Case number of the functional system which is to be changed
Word 3 - New month in which system is to be shipped (integer)

Word 4 - New year in which system is to be shipped (integer) Word 5-*

NOTE - Words 2-5 must appear in columns 7-72 inclusive with at least one blank space between words.
b. Corrections to the plotting scale factors

Word 1 - P in column 1
Word 2 - Case number of system which is to be corrected
Word 3 - New minimum scale factor
Word 4 - New maximum scale factor
Word 5-*
NOTE - Words 2-4 must appear in columns 7-72 inclusive with at least one blank space between words.
c. Corrections to the ECA percentages at shipping date

Word 1 - ECA in columns 1-3
Word 2 - Actual percentage of weight at shipping date (floating point)
Word 3 - Calculated percentage of weight at shipping date (floating point)
Word 4 - Estimated percentage of weight at shipping date (floating point)
Word 5 - The word ITERAT
Word 6 - *
NOTE - Words 2-6 must appear in columns 7-72 inclusive with at least one blank space between words.
d. Corrections to the nonrandom change of some past data point Word 1 - Case number of functional system which is to be changed
Word 2 - Corrected nonrandom change
Word 3 - Month in which the change applies
Word 4 - Year in which the change applies
Word 5-*
NOTE - Words 1-5 must appear in columns 7-72 inclusive with at least one blank space between words.
e. Correction of a past observed data point

Word 1 - Case number of the functional system which is to be changed
Word 2 - Weight
Word 3 - Estimated percentage of weight
Word 4-Calculated percentage of weight
Word 5 - Actual percentage of weight
Word 6 - Nonrandom change

Word 7 - Month to which the correction applies
Word 8 - Year to which the correction applies
Word 9 - *
NOTE - Words 1-9 must appear in columns 7-72 inclusive with at least one blank space between words.
f. Corrections to the entire set of control parameters (A card change)

Word 1 - Month in which the system is to be shipped (integer)
Word 2 - Year in which the system is to be shipped (integer)
Word 3 - Month in which the first data point was observed (integer)
Word 4 - Year in which the first data point was observed (integer)
Word 5 - Parameter $r_{1}$ (floating point)
Word 6 - Parameter $r_{2}$ (floating point)
Word 7 - Actual percentage of weight at shipping date (floating point)
Word 8 - Calculated percentage of weight at shipping date (floating point)
Word 9 - Estimated percentage of weight at shipping date (floating point)
Word 10 - The word ITERAT
Word 11 - Minimum weight value to be plotted (floating point)
Word 12 - Maximum weight value to be plotted (floating point)
Word 13 - *
NOTE - Words 1-13 must be punched in columns 7-72 inclusive with at least one blank space between words. Words 11 and 12 are optional and may be omitted.

## METHOD OF UPDATING INPUT

So that the Weight Data File can be updated, it is necessary to mount the WDF on U04. The output file must be mounted on U03. The order of the input deck must be set up in one of two ways.

## No New Cases

If no new cases are to be added the cards should be prepared as follows:

## Card 1

Word 1 - The current month which is being added to the WDF (JAN, FEB, MAR, ......)
Word 2 - The current year (integer)
Word 3 - The word PRINT
Word 4 - *

## Cards 2 through (K-1)

All additions or corrections as described in the preceding paragraphs. These cards may appear in any order.

## Card K

Word 1 - The word END
Word 2 - The word OF
Word 3 - The word UPDATE
Word 4 - *
NOTE - Words 1-4 on both cards 1 and card K must be punched in columns 7-72 inclusive with at least one blank space between words.

## New Cases

If there are one or more new cases to be added, the new cases must appear as the first data cards in the update deck. They must be manually sorted by case number and appear in ascending order. Following the END card of the last case to be added, must appear the following card:

Word 1 - END
Word 2 - OF
Word 3 - ADDS
Word 4 - *
NOTE - Words 1-4 must appear in columns 7-72 inclusive with at least one blank space between words.

Thereafter the input deck follows the format given under No New Cases.

## METHOD OF UPDATING OUTPUT

Output consists of the updated Weight Data File together with a computer printout of this file. The format of the Weight Data File is presented on the following page. A copy of the computer printout is presented following the file format.

JOB DECK STRUCTURE - The Update Program is run as a separate job independent of SPACE. The job deck setup for processing the system Update Program appears below:

## CARD COLUMNS



EXAMPLE OF INPUT DATA DECK

CARD COLUMNS

| RESTO | $\begin{array}{llll}9 & 1967 & 61965\end{array}$ |  |  |  | 5. 1 |  |  | CERAT |  | * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5650103 | TEST CASE |  |  |  |  |  |  |  |  |  |
|  | 1 | 12673. | . 52 | . 44 | . 04 | 0. | * |  |  |  |
|  | 2 | 13411. | . 48 | . 40 | . 12 | 0. | * |  |  |  |
|  | 3 | 13505. | . 48 | . 40 | . 12 | 10. | * |  |  |  |
|  | END | * |  |  |  |  |  |  |  |  |
|  | END OF ADDS * |  |  |  |  |  |  |  |  |  |
|  | AUG 1965 PRINT * |  |  |  |  |  |  |  |  |  |
| S | 0662501 | 18 | 1967 | * |  |  |  |  |  |  |
|  | 0652703 | 5400 |  | . 53 | . 43 | . 04 | 6 | 1965 |  | * |
|  | END OF UPDATE |  |  | * |  |  |  |  |  |  |

$\qquad$


STATUS $=$| a number associated with each |
| :--- |
| weight data file (integer) |

DATE $1=$ MM/DD/
DATE 2
$\qquad$
FILE STATUS MO 15 DATE 07/14/65

RESTO $1.1967129642 .0005 .000 \quad 1.000$ 0.008 0.000 ITERAI

DATE NEIGHT EST CAL ACT OUYOFF

| JAN 64 | 288 | 92 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| FEB 64 | 300 | 32 | 68 | 0 | 0 |
| MAR 64 | 299 | 20 | 80 | 0 | 0 |
| APR 64 | 319 | 21 | 79 | 0 | 0 |
| MAY 64 | 310 | 21 | 79 | 0 | 0 |
| JUN 64 | 315 | 21 | 79 | 0 | 0 |
| JUL 64 | 324 | 40 | 60 | 0 | 0 |
| AUG 64 | 327 | 40 | 60 | 0 | 0 |
| SEP 64 | 364 | 40 | 60 | 0 | 0 |
| OCF 64 | 373 | 40 | 60 | 0 | -10 |
| NOV 64 | 240 | 70 | 30 | 0 | 125 |
| DEC 64 | 243 | 70 | 30 | 0 | 0 |
| JAN 65 | 238 | 70 | 30 | 0 | 0 |
| TEB 65 | 293 | 100 | 0 | 0 | -33 |
| MAR 65 | 294 | 100 | 0 | 0 | -1 |
| APR 65 | 295 | 100 | 0 | 0 | 0 |
| MAY 65 | 300 | 100 | 0 | 0 | 0 |
| JUN 65 | 296 | 100 | 0 | 0 | 0 |



```
- 'BEICMAIN LIST,REF
 REAL INPUT
 INTEGER CASENO,TILT,CASE
 INTEGER STATNO,WDCT,OLDST,STATUS,YEAR
 COMMON /GGDATE/DATE(2)
 DIMENSION DATE2(2),YAT(12),B(100),X(15)
 DIMENSION AA(2G),BB(9),_CC(6),CINP(10000)
 DIMENSION TIME(100),WEIGHT(100), EST(100), CALC(100), ACTUAL(100)
 DIMENSION U(3),AOUT(3),CH(2)
 DTMENSION NINP(1MONN)
 DIMENSION AAA(20),BBB121,CCC(6),IT(1OC),NW(IONL,EE(100),CA(100),
 IAC(1ON),RY(]NC)
 DIMENSION DHOT(3)
 DIMENSION BLK(12)
 EQUIVALENCE (DMOT(2),KMOT)
 EQUIVALENCE゙ (LLTIM,CCC(1))
 EQUIVALENCE (AA(3),MONTH):(AA(4),YEAR)
 EQUIVALENCE (KTIME,CC(1)),(CINP,NINP)
 DATA END,UF, UNPUT,UPDAIF/3HEND,2HOF,5HINPUI,GHUPDATE/, EILE/4HFILE/
 DATA TILT/4HTILT/
 DATA S.ECA,P/1HS.3HECA.1HP,
 DATA CH /6H CHANG,IHE/,ACARD/GHA CARD/,CCARD/GHC CARD/
 DAIA U /GHMONTHL,GHY !PDA,2HIE/,BOFF/GHBUYOFF/
 DATA ELK/4HJAN, 4HFEB, 4HNAR, 4HAPR, 4HMAY, 4HJUN, 4HJUL, 4HA!JG,
 1.4HSEP,4HOCI ,4HNOV,4HDEC,
 DATA ACחS/4UADDS/
 DATA PRINT/5HPRINT/
 DATA AST/IH饼
c
 READ(1) OLDST,DATF2
 STATNO = OLDSI + + 1
 HRITE(2) STATNO,DATF
 WRITE(3) STATNO,DATE
 KSWIT=0
 NN=O
 L=2
 CALL READH(AAA,NAA,WHOAAI
 IF(NAA .NE. 3) GU TO 7990
 DMOT (1) =AAA (1)
 DMOT (2)=AAA(2)
 L =1
 GO TO 825
 792 NN=0.
 CALL RFADH(AAA,NAA,WHOAA)
 IF(AAA(1).EQ.END.AND.AAA(2).EQ.OF.ANÜ.AAA(3).EQ.ADLS)GO TU 805
 7990 READ(5,798) CASE,BBE
 798 FORMAT(I7,11XCAG)
 80% CALL READH(CCC,NCC,WHOC)
 IF(NCC .EQ. 1.ANO. CCC(1).EQ. END) GO TO 801
 NN=NN+1
 TT(NN)=LLTIM
```

$\qquad$




```
 CALC(IP)=CALC(NPQINT)
 ACTUAL(IP)=ACTUAL(NPOINT)
 B(IP) =E(NPOINT)
 NPOINT=NPOINT + 1
 IFI NPOINT LE.N L GO IO 80
 N=IP
 81 NA =WDCT
 LL=J+1
 DO 82 I 3=1,NA
 LLI=LL+I3
 82 AA(I3)=CINP(LLI)
 GO TO 3l
 880. AA (1) =CINP(J+2)
 AA(2)=CINP(J+3)
 GO TO 31
 891 AA(NA)=CINP(J+3)
 \DeltaA(NA-1)=CTNP(1+2)
 GO TO 31
 882 AA(7) = CINP(N+2)
 AA(8)= CINP(J+3)
 AA(9)=CINP(I+4)
 AA(10)=CINP(J+5)
 GO TO 31
 C
 155 WRITF(3) CASENO,NA,N,WHOA, (AAML,I = ,NA , BB, (TIME(I),I=1,N),(WFIGH
 1T(I),I=1,N),(EST(I),I=I,N),(CALC(I),I=1,N),(ACTUAL(I),I=I,N),(B(I)
 2,I=1,NI
 END FILE 3
 REWIND 1
 REWIND }
 REWIND 3
 LINES=0
 WRITE(6,788) STATNO,DATE
```



```
 1 H A N G E S/L
 242\times15HFILE STATUS NO I 2,4\times6HDATE 2A6///
 35\times42HCASE NUMBER DESCRIPILON OF CHANGE//L
 DO 83 İ=I,IMAX
 I=15*(12-1)
 WDCT=NINP(J+15)
 IFI WDCI.EQ. 2 ,AND.CINP1 +1441.EQ. S I GO IO 86
 IF(WDCT .EQ. 2 .AND. (INP(J+14) .EQ.P) GO TO 86
```



```
 IF(WDCT - EQ. 3 1 GO TO 85
 IF(WDCT.EQ. 5, GOTO 84
 IF(WDCT.EQ. 7) GO TO 87
 IEI WDCI EQ.6.OR.WDCT.EW.10.OR. WDCT.EQ.12 1 GO TO 86
 WRITE(6,787) NINP(J+1)
 787 FQRMAT (5\times17, 2\times17HHEACER CARD ERROR//1
 GO TO 83
 84 AOUT(1)=U(1)
 AOUT(2)=U(2)
 AOUT(3) =U(3)
 GO TO 88
 85 AOUT(1)=BOFF
```

```
 850 AOUI(2)=CH(1)
 AOUT(3)=CH(2)
 GO TO }8
 86 AOUT(1)=ACARD
 G0 IO 85O
 87 AOUT(1)=CCARD
 GO TO 850
 88 WRITE(6,786) NINP(J+1), AO!IT
 786 FORMAT(SXI7.14X3^6)
 LINES=LINES+1
 IF(LINES .LE. 5*) , GC IO 83
 LINES=C
 WRITEI6.788) STAINQ.DATE
 83 CONTINUE
 READ(3) STATNO,DATE
 92 READ(3) CASENO,NA,N,WHOA,(AA(I),I=1,NA),BB,(TIME(I),I=1,N),(WEIGH
 IT(I),I=1,N),(ESIUI), I=1,N),(CALC(I),I=1,N),(ACTUAL(I),I=1,N),(B(I)
 2,I=1,N)
 IEL_CASFNO .FQ. HHT, GOIO 93
 IF(NA .FN. 12, GO TO 94
 :RIIE(6,785) STAINQ,DATE,WHOA,(AA(I),I=1,NA)
 785 FORNAT(1H1,41\times15HFILE GTATUS NO I 2,4XGHDATE 2AG///1XAG,2XI2,2XI4,
 12XI2,2XI4,5(1XF7.ड),2XA6/14
 GO TO 96
 94 WRIIL(6.784) SIATNO.NATL,NHOQ(AO(L),I=1,NA)
 784 FORIIAT(1H1,41X15HFILE STATUS NC 12,4XGHL゙ATE 2AG//11XAG,2XI2,2XI4,
 12XI2.2XI4,5!1XF7.3).2XAG.2XF8.C.2XFG.C//1
 -6 !RITE(6,783) GASENO,BE
 783 EORMA1(1XI7.11X9AG//)
 WRITF(6,2n!)
 FORLAIC/6x3GHDAIE WEIGHIESI CAL ACT BUYOFF//1
 NFAR=YFAR-17nn
 NP=MONTII-I
 DO 91 J=1,N
 IF(J .EQ. 1) GO TO 7239
 IF((TIME(J) -TIME(J-1)) EU. 1.) GO T0 7239
 K3=TIME(J) -TIME (J-1) -. 5
 DO 724C [4=1,K3
 NP=NP+1
 IF (NP.LE. 12) GO TO 724n
 NP=1
 NEAR=NEAR+1
 7240 WRITE(6,7241) BLK(NP),NEAR
 7241 FORMAT(5XA4,12)
 7239 NP =NP +1
 IF(NP.LL. 12) GO TO 7238
 NP=1
 NEAR =NEAR +1
 7238 NN=NEIGHT (J)+.b
 NEST=(EST(J)+.005)*100.
 NCALC= (CALC(J)+.U05)*102.
 NACT=(ACTUAL(J)+.0C5)*100.
 NE=E(\jmath)
 WRITE(6,782) BLK(NP),NEAR,NW,NEST,NCALC,NACT,NB
 782 FORMAT (5XA4,I2,1X17,2XI 3,2XI3,2XI3,1XI51
```


## SUBROUTINE GETDAT - 67S

This subroutine is available to each of the four trending programs and the History Plot Program. Its function is to move data from one storage location to another prior to the actual operations which are performed on the data. The subroutine is also responsible for calling the Normalization Routine 68 S .

Control over this routine is maintained by the calling program.


```
SIGFIC GETDAT LIST,REF
 SUBROUTINE GETDAT(IPSWT,II,NCAS)
 COMM(N /BLOCK/ NCASE (10), TTITLE(gU), AAA (150), NANUM(IU),
 TBLOCK(30U), WBLOCK(300), EBLOCK(300), NIMUV (1U)
 2 COLOCK(300), ADLOCK(300), DOLCCK(300)
 COMMON /PPOU/ ACTUAL(100), CALC (100), EST (100), (UM (12),
 1 LSQR (100), MEAN (100), MCONNF (10U), UWL (1UU),
 MSQR (100), PCONF (100), Sl (luU), SL (LUU),
 time (100), wtluHT(luU), buy (1UU), IITle(9),
 N , NTOT
 COMMON /HHP/ IUPT,JUPT,KUYT,NPATH
 NCAS=NCASE(I1)
 N=NNUM(11)
 IPSWT=NANUM(II)
 KI=15*(I1-1)
 DO 1001 I2=1,IPSWT
 K1=K1+1
 INO1 COM(12)=AAA(K1)
 Kl=9*(I 1-1)
 vo 1003 I 2=1,9
 Kl=Kl +1
 1003 TITLE(I2)=TTITLE(K1)
 Kl=30*(I 1-1)
 DO 1CO5 12=1,N
 K1=K1+1
 TIME(I2)=TBLOCK(K1)
 WEIGHT(12)=WBLOCK(K1)
 EST(I2)=EBLOCK(K1)
 CALC(12)=CBLOCK(K1)
 ACTUAL(12)=ABLOCK(K1)
 1005 BUY(12)=BELOCK(K1)
 CALL NORMI2 (KOPT)
 RETURN
 END
```


## NORMALIZATION SUBROUTINE - 68S (NORM12)

Normalization is the process of removing the effects of nonrandom changes from the data prior to trend prediction. Nonrandom weight changes are those changes not mathematically a part of normal weight growth. Two types of nonrandom weight changes are recognized by the subroutine:
a. Nonrandom changes No. 1 - These changes are, in general, buyoffs or transfer of weight between functional systems.
b. Nonrandom changes No. 2 - These changes consist of gross error eliminations or rejection of monthly changes which exceed preset criteria. The term outlier will characterize these changes.

## NORMALIZATION USING NONRANDOM CHANGES NO, 1

We have $n$ data points, or observations, $U_{1}, U_{2}, \ldots, U_{n}$. These points are normalized by applying all nonrandom changes, $r_{i}$, which are furnished as input, in the following manner. If $r_{i}$ is the amount of change associated with the $i$-th observation $U_{i}$, then

$$
\mathrm{V}_{\mathrm{k}}=\mathrm{U}_{\mathrm{k}}-\sum_{\mathrm{i}=\overrightarrow{\mathrm{k}+1}}^{\mathrm{n}} \mathrm{r}_{\mathrm{i}}, \quad \mathrm{k}=1,2, \ldots, \mathrm{n}
$$

represents the data normalized with nonrandom changes. Of course, if $r_{i}=\hat{0}$ for all $i$, then no normalization takes place and $V_{i}=U_{i}$. It should be noted that a nonrandom change is by definition positive if the weight was forced down. Consequently, a positive nonrandom change results in subtraction of weight while a negative nonrandom change results in addition of weight.

## NORMALIZATION OF OUTLIERS

The points $V_{i}$ undergo a second normalization if this option is specified in the input. The average monthly increment, $\overline{\mathrm{V}}$,

$$
\bar{v}=\frac{v_{n}-v_{1}}{n-1}
$$

is computed with the standard deviation

$$
\sigma_{v}=\sqrt{\frac{\sum_{i=2}^{n}\left[\left(V_{i}-v_{i-1}\right)-\bar{V}\right]^{2}}{n-2}}
$$

Each monthly increment, $V_{i}-V_{i-1}$, is compared with the average $\bar{V}$. If it deviates from the average by more than $\pm 2 \sigma_{v}$, it is assumed that the particular increment was not completely random. A nonrandom change, $r_{i}^{\prime}$, is therefore postulated and is:

$$
r_{i}^{\prime}=\left\{\begin{array}{l}
-\left(v_{i}-v_{i-1}-\overline{\mathrm{V}}\right) \text { if }\left(\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{i}-1}-\overline{\mathrm{V}}\right) \geq 2 \sigma_{\mathrm{v}} \\
-\left(\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{i}-1}-\overline{\mathrm{v}}\right) \text { if }\left(\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{i}-1}-\overline{\mathrm{v}}\right) \leq 2 \sigma_{\mathrm{v}} \\
0 \text { otherwise }
\end{array}\right.
$$

Normalization then is completely analogous to that above, namely

$$
w_{k}=v_{k}-\sum_{i=k+1}^{n} r_{i}^{\prime}, \quad k=1,2, \ldots, n
$$

The subroutine allows four options:
Option 0 - No normalization of data is performed.
Option 1 - Removal of nonrandom changes No. 1 only.
Option 2 - Removal of nonrandom changes No. 2 only.
Option 3 - Removal of nonrandom changes No. 1 followed by removal of nonrandom changes No. 2.

The user must specify which option he desires on the trend prediction card which is read by the Control Program 55S. For a detailed description of this data card see program 55S.


```
$IBFTC NORMI2 LIST,REF
 SUBROUTINE NORM12 (IARG)
 REAL MCONF
 COMMON /PPOU/ ACTUAL(100), CALC (100), EJT (100), (UM (12),
 1 LSQR (100), MLAN (100), MCONF (100), UW2 (100),
 2 MSQR (100), P(UNF (100), Sl (100), S< (100),
 time (100), WelGHT(luU), ouy (luU), TITle(9),
 N , NTOT
 COMMON /HHP/ IOPT,JOPT,KOPT,NPATH
 DIMENSION TH(100),WH(100),EH(100),CH(100),AH(100),DH(100),
 1 NAST(100),NT(100),DIF(100)
C
 IF (NPATH .NE. 4) GO TO 1001
 DO 3493 I=1,N
 TH(I)=TIME(I)
 WH(I) = WEIGHT(I)
 EH(I)=EST(I)
 CH(I)=CALC(I)
 AH(I)=ACTUAL(I)
3493 BH(I)=BUY(I)
 NT(1)=1
 K4=1
 DO 3494 I=2,N
 IF((TH(I)- TH(I-1)) .EQ. 1.) GO TO 105
 K3= TH(1)- TH(I-1)-.5
 XWZ= (WH(1)-WH(I-1))/FLOAT(K3+1)
 DO 3495 13=1,K3
 K4=K4+1
 TIME(K4)=TIME(K4-1)+1.
 NT(K4)=TH(I)
 BUY(K4)=U.
3495 WEIGHT(K4) = WEIGHT(K4-1) + XWZ
 105 K4=K4+1
 TIME(K4)=TIME(K4-1)+1.
 NT(K4)=TH(I)
 WEIGHT(K4) a WH(I)
 EST(K4)=EH(1)
 CALC(K4)=CH(I)
 ACTUAL(K4)=AH(I)
 3494 BUY(K4)=BH(I)
 N=K4
 1001 CONT INUE
 DO 1C04 MEM=1,N
 MCONF(MEM) = U.U
 1004 UW2(MEM) = WEIGHT(MEM)
C
C IF IARG IS 1, PERFORM NORMALIZATIUN NO. I UNLY
C IF IARG IS 2, PERFORIM NURMALIZATIUN NU. }2\mathrm{ UNLY
C IF IARG IS 3, PERFORM NORMALILATILIV NO. 1 AND 2
C IARG IS 1 OR 3, NURMALIZATION NU. 1 IS REUUIREU
 IF (IARU.LE.C) GO TO 5901
 IF (IARG.GT.3) GO TO 5901
```

```
 IF (IARG.EQ.2) GO TO 5801
 DO 1007 I2=2,N
 IF(BUY(I2) &EQ. O.) GO TO 1007
 122=12-1
 DO 1006 13=1,122
 ICO6 WEIGHT(I 3)=WEIGHT(I3)-BUY(12)
 1007 CONTINUE
 IF (IARG.NE.3) GO TO 59Ul
C TO REACH 5801, IARG MUST BE 2 OK 3
C AT 5801, BEGIN NURMALIZATION NU. 2
 501 CONTINUE
 SUM=0.
 L = N - 1
 V = L
 DO 118 I=1,L
 DIF(I) = WEIGHT(I+1) - WEIGHT(I)
 118 SUM=SUM + DIF(I)
 SUM=SUM/V
 SI GMA =0.
 DO 119 l=1,L
 119 SICMA=SIGMA + (DIF(I)-SUM)**2
 SIGMA = SQRT(SIGMA/FLOAT(N-2))
 TWOSIG=2.*SIGMA
 DO 120 I=1,L
 DDIF=DIF(I)-SUM
 IF(DDIF .GE. (-TWOSIG) .ANU. UDIF .LE. TWOSIG) GO TO 12U
 MCONF(I+1) = -DDIF
 DO 1:1 j=1,I
 121 WEIGHT(J) = WEIGHT(J) + DIF(I) - SUM
 120 CONTINUE
 122 CONTINUE
5 9 0 1 ~ R E T U R N
 END
```


## DOUBLE PRECISION MATRIX INVERTER - 69S (DPMI)

DPMI is a double precision floating point matrix inversion subroutine employing the Gaussian elimination method with partial pivoting. The calling sequence is:

## CALL DPMI (N, A, AI)

where $\quad \mathrm{N}$ is a location containing the number of rows (columns) in the matrix to be inverted (address integer).

A is the first location of a block coataining the matrix to be inverted.

AI is the first location of a block of at least $4 N^{2}$ locations. Upon return, the inverse will be stored in the first $2 \mathrm{~N}^{2}$ locations of this block.

| DPMI | ENTRY | DPMI |
| :---: | :---: | :---: |
|  | SAVE | 1,4 |
|  | CLA | 3,4 |
|  | STA | NAME + 3 |
|  | CLA | 4,4 |
|  | STA | NAME +4 |
|  | CLA | 5,4 |
|  | STA | NAME +5 |
| NAME | CALL | DPMI1(**,**,**,DET) |
|  | CLA | 1.4 |
|  | PDX | , 1 |
|  | TXL | RTRN,1,3 |
|  | CLA | 6,4 |
|  | PAC | . 4 |
|  | CLA | DET |
|  | STO | 0.4 |
|  | CLA | DET+1 |
|  | STO | 1,4 |
| $\begin{aligned} & \text { RTRN } \\ & \text { DET } \end{aligned}$ | RETURN | DPMI |
|  | BSS | 2 |
|  | EXTERN | DPMI 1 |
|  | END |  |


| ФibFTC DPMIl LIST,REF |  |
| :---: | :---: |
| CDPMI | - - SUBRQUTINE DPMI - - - |
| $C$ |  |
| C | double precision matrix inverter |
| C |  |
| c | THIS IS THE SUBROUTINE DMII BY M. J. SULLIVAN MOUIFIEO OY AM ULSUN |
| C |  |
| C | EMPLOYS OLD SUBROUTINE DMII |
| C | UPMI ACCEPTS DOUBLE PRECISIUN INPUT MATKIX, COMPUTES IN DUUULE |
| C | PRECISION AND PROUUCES DOUULE PERCISIUN INVERSE MATRIX |
| C | FLOATING INPUT OUTPUT AND COMPUTATIONS |
| $c$ | Storage is from higher locations to lower lucations with high |
| C | ORDER WORDS IN A BLOCK SEPARATE FROM THE LOW ORDER WORDS AS IN |
| c | FORTRAN II |
| $\zeta$ | MAXIMUM SIZE MATRIX IS 50 BY 50 |
| c | SENSF LIGHT 3 IS TURNED ON FOR SINGULAR MATRIX OR FUR OVERFLOW |
| $c$ | REQUARES ©LOCK OF ERASABLE STORAGE THE SIZE OF THE INVERSE 日LOCK |
| $c$ | (2*N**2) IMMEDIATELY BELOW THE INVERSE BLOCK |
| c | determinant of input matrix available |
| c |  |
| c | CALLING SĖQUENCE CALL DPMI(NSIZE,FINPUT,FUUTPUT,FULIERM) |
| C |  |
|  | SUBROUTINE DPMII(N,FINPUT,A,DETA) <br> DOUBLE PRECISION FINPUT, DETA , A , ELMAX , HOLD |
|  | DOUBLE PRECISION HOLDR , DET |
|  | DIMENSION FINPUT(1), DETA(1) |
|  | UIMENSION A(1), ELMAX(1),HOLD(1), HOLDR(1), DET(1), 1COL(25), 1ROW(25) |
|  | DATA HOLDBP/O113400000000/ |
|  | CALL SLITET(3,KOOF) GO TO (1.1),KOOF |
| 1 | $M \mathrm{~N}=\mathrm{N}$ |
|  | $M M=M N-1$ |
|  | $N 2=M N * M N$ |
|  | $M N 2=M N+M N$ |
|  | $J F K=N 2+N 2$ |
|  | $J G K=N 2+N 2$ |
| $c$ |  |
| C | (ARRANGE HI-LO ELEMENTS OF INPUT MATRIX FOR COMPUTATIONAL EASE) |
| 2 | DO $3 \mathrm{I}=1, \mathrm{~N} 2$ |
|  | $\mathrm{K}=\mathrm{N} 2+1$ |
|  | A(I) =FINPUT(I) |
| 3 | $A(K)=0$. |
|  | ASSIGN 11 TO ITRA |
| CC | GAUSSIAN ELIMINATIUN SCHEME |
| CC | ---- TRIANGULAR SYSTEMi ---- |
| 4 | DO $32 \mathrm{I}=1, \mathrm{MM}$ |
|  | $\mathrm{IC}=\mathrm{I}-1$ |
|  | $I J K=1 C * M N$ |
|  | $L=1 J K+1$ |
| c | PIVITOL CHOICE = MAX, ELEMENT OF SUB-MATRIX = A(M,K) |
| 5 | ELMAX $=0$. |
|  | $\mathrm{ICOL}(\mathrm{I})=\mathrm{I}$ |

6 DO $10 \quad M=1, M N$
$J=L+M-1$
DO $9 \mathrm{~K}=\mathrm{I}, \mathrm{MN}$
HOLD $=A B S(A(J))$
IFI ELMAX-HOLDIB,9,9
ELMAX $=$ HOLD
$\operatorname{ICOL}(I)=K$
IROW(I)=M
$J=J+M N$
10 CONTINUE
GO TO ITRA, (11, 14)
$C$
$C$
$C$ ELIMINATE AS NOISE ALL $A(I, J)$ DEYOND U-P RANGE OF MAXIMUM $A(I, J)$
$11 \quad H O L D R=E L M A X * H O L D B P$
$0013 \mathrm{~J}=\mathrm{L}, \mathrm{N} 2$
IF ( ABS ( A(J)I-HOLDR )12,13,13
12 A(J) $=0$ 。
13 CONTINUE
DET=ELMAX
ASSIGN 14 TO ITRA
GO TO 16
(ADSF (DET) UF MATKIX = PRUUUCT UF PIVITUL VALULO)
14 IF (ELMAX-HOLDR) 63,15,15
15 DET = DET*ELMAX
16 CALL OVERFL(KOOOFX)
GO TC (17,17,17),KOCOFX
17 IF(ICOL(I)-I) $18,20,18$
$18 K=M N *(I C O L(1)-1)$
DO $19 \mathrm{~J}=1, \mathrm{MN}$
$M=I J K+J$
$H O L D=A(M)$
$A(M)=A(K+1)$
$A(K+1)=$ HOLD
$K=K+1$
IF(IROW(I)-1) 21,23,21
(INTERChainge I Th and mith kuws of a and ol.
$K=I J K+I R O W(I)$
$M=L$
$I C=M N+I C$
UO $22 \mathrm{~J}=\mathrm{I}, \mathrm{IC}$
$H O L D=A(K)$
$A(K)=A(M)$
$A(M)=H O L D$
$K=K+M N$
$M=M+M N$
OIVIDE I TH ROW OF A AINU o bY A(I,I)
22
$\begin{array}{ll}C & I A=N 2+L\end{array}$
$A(I A)=1$.
$I C=L+M N$
$I A=N ?+I J K+M N$
HOLDEA(L)
DO $25 \mathrm{~J}=\mathrm{IC}, I A, M N$
IF(A(J)) $24,25,24$
A(J)=A(J)/HOLD
CALL OVERFL (KOOOFX)
GO TO $(63,26,26)$, KOOOFX
(REDUCTION OF A ANO B TO TRIANGULAR FORM)
26
DO $31 \mathrm{~J}=\mathrm{I}, \mathrm{MM}$
$\mathrm{L}=\mathrm{L}+1$
HOLD=A(L)
IF(HOLD) 27,31,27
$I B=I C$
$I A=I C+(J-I)$
DO $30 \mathrm{~K}=1$, MN
IF(A(IB)) $28,29,28$
$A(I A+1)=A(I A+1)-A(I B) * H O L D$
28
29
30
$I A=I A+M N$
$I B=I B+M N$
31 CONTINUE
CALL OVERFL (KOOOFX)
GO TO $163,32,321, K 000 F X$
32 CONTINUE
$L=J G K$
$J G K=J K G-1$
$J G K=J K G$
$J=N 2+M N$
$A(L)=1$.
HOLD=A(N2)
IF ( ABS (HOLD)-HOLDR)63,33,33
DET = DET*HOLD
CALL OVERFL(KUOOFX)
GO TO $(34,34,34), K 000 F X$
DO $35 I=J, L, M N$
A(I) $=A(I) / H O L D$
CALL OVERFL (KOOOFX)
GO TO $(63,36,36), K 000 F X$

```
(REDUCTION GF A TU UNITY-MAIRIX, YIELUIING (O) = PckMUTEU INVEKSE)
```

DO 41 I =1, MM
$L=M N-I$
$I J K=L$
$K=L+1$
DO $40 \quad M=1$, IJK
$0039 \mathrm{~J}=1$, MN
$I C=M N *(J-1)$
$I A=M N *(K-1)+L$
IF( A(IA) 137,40,37
$I B=N 2+(I C+h)$
$I C=N 2+(I C+K)$

38
39
40
CONTINUE
(ALL OVERFL (KOOOFX)
GO TO (63,42,42), KOOOFX
C
C(UNSCRANIOLE RUWS, CULS. UF PERMUTEL MATRIX,(D) TU YIELU A-INVERSE)
C -ROWS-
$42 \quad I C=N 2-M M$
DO $48 \mathrm{I}=1$, MM
$L=M N-I$
IF(ICOL(L)-L) 43,45,43
43
I $A=N_{2}+L$
$1 B=N 2+I C O L(L)$
DO $44 \mathrm{~J}=1, \mathrm{MN}$
HOLD=A(IA)
$A(I A)=A(I B)$
$A(I B)=H O L D$
$I A=I A+M N$
$44 \quad I B=I B+M N$
$M=-M$
45 IF(IROW(L)-L) $46,48,46$
C -COLUMNS-
$46 \quad I A=I C+M N * L$
$I B=I C+M N * I R O W(L)$
DO $47 \mathrm{~J}=1$, MN
$H O L D=A(\mid A)$
$A(I A)=A(I B)$
$A(I B)=H O L D$
$\mathrm{I} A=I A+1$
$47 \quad 1 B=I B+1$
$M=-M$
48 CONTINUE
IF (M) 49,50,50
4c. $D E T=-D E T$
50 DO $53 \mathrm{I}=1, \mathrm{~N} 2$
$J=N 2+1$
$53 \quad A(I)=A(J)$
$C$
$C$
$c$
56
ELMAX $=0$.
DO $58 \mathrm{I}=1, \mathrm{~N} 2$
HOLD=ABS(A(I))
IF (HOLD-ELMAX) $58,58,57$
57 ELMAX=HOLD
58 CONTINUE
HOLDR $=$ HOLDBP*ELMAX
DO $60 \quad \mathrm{I}=\mathrm{I}, \mathrm{N} 2$
IF( ABS( A(I) ) - HOLDR ) $59,60,60$
$J=N 2+I$
$A(I)=0$. CONT INUE DETA=DET RETURN

ERRORS - (OVERFLOW OR INPUT MATRIX IS SINGULAR) -- INVERSE = INPUT
CALL SLITE (3)
GO TO 61
END

## PROBABLE ERROR PROGRAM - 70S (RSS)

This program extracts the probable error from each functional system where probable error is defined as the difference between the +95 percent confidence limits and the mean line. These probable errors for the functional systems are then summed in a root sum square fashion to obtain the probable error for the stages or module. These numbers are then used with appropriate trade-off factors to compute a probable error for the total spacecraft or launch vehicle.

The program uses the results of the Fourier model in its computations, and the binary tape containing the Fourier output must be premounted. The following pages give examples of an input deck and typical program output.

## SAMPLE OF RSS INPUT DECK

CARD COLUMNS


NOTE
The last card in the deck is END RSS. Upon encountering this card, the program will pass control back to SPACE.

Reference No. 70.2

Issue Date 23 December 1965
Supersedes $\qquad$

| MISSIUN | 207 |  | 503 |  | 506 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SHIP DATE | $3 / 1967$ |  | 5/1967 |  | 8/1967 |  |
| $611^{9} 19$ | 287.11 | 82433,78 | 302,64 | 91593.09 | 324,55 | 105352,06 |
| 611412 | 29:15 | 849144 | 319,72 | 943, 82 | 32,95 | 1085,39 |
| 611903 | 218.69 | 47825.04 | 230.52 | 53136193 | 247,20 | 61110977 |
| 611904 | 1.04 .23 | 10864,69 | 109.87 | 12¢71,88 | 117.82 | 13888,67 |
| 611900 | 47.41 | 2247.31 | 49,97 | 2491, U1 | 53,59 | 2871,56 |
| 011910 | 94,48 | 89:46,46 | 99,59 | 9910,29 | 106180 | 11406:04 |
| 611921 | $2^{8,59}$ | 817,42 | 30114 | 904,24 | 32,32 | 1044,48 |
| 611426 | 125:85 | 15838113 | 132.86 | 17597:92 | 142126 | 20237161 |
| 611936 | 150,94 | 22743.12 | 159,11 | 25214,57 | 170,62 | 29111:76 |
| 611940 | 64:48 | 4127,80 | 67,97 | 4614,78 | 72,89 | 5312,75 |
| 611950 | 30,11 | 946.40 | 31,73 | 100711 | 34:03 | 1158,17 |
| - - - - - |  |  |  |  |  | 8.1.5. |
| 444!50 |  |  | 466,63 |  | 502,55 |  |


| MISSIUN | 207 | 503 | 506 |
| :---: | :---: | :---: | :---: |
| SHIP DATE | $3 / 1967$ | $5 / 1967$ | $8 / 2967$ |
| 640303 | $435.64 \quad 190655.51$ | 461,26 211839,44 | 493,57243615,39 |
| 640530 | 38,44 14!7!86 | 4U:52 1®4世:47 | 43,40 1888,38 |
|  |  |  | M, M; S, VALUES |
|  | 4 S8,33 | 462.04 | 475,48 |

Reference No.
Issue Date 23 December 1965 Supersedes New

| MISSION | 207 | 503 | 506 |
| :---: | :---: | :---: | :---: |
| SHIP DATE | 3/1967 | 5/1967 | 81196 |
| 651503 | 299,82 89893.57 | 316,04 91882,73 | 338,92 114864,02 |
| 651504 | 6,2,14 374715,36 | 645,25 416350,41 | 691,96 478808199 |
| 851516 | 244,26 59660!83 | 257,47 66285.81 | 276180 |
| 659517 | $0,00 \quad 0,00$ | $0,00 \quad 0,00$ | 0,000 |
| 651526 | 62:27 3677,29 | 65,64 4308,10 | 70,39 6051,32 |
| 651527 | $0,00 \quad 0,00$ | 0,00 $\quad 0,00$ | $0,00 \quad 0,00$ |
| 651536 | 142.80 20590.83 | 150,52 22650,48 | 161,42 26051,95 |
| 659537 | 90,24 8143,03 | 95,12 9047,81 | 102,00 10104199 |
| $\begin{aligned} & 651596 \\ & 651547 \end{aligned}$ | 161,61 453,92 206039,03 | 470,36 $478,4729020.92$ | 162,69 33376106 |
| 651556 | 79,75 6359,67 | 84,06 ${ }^{\text {7060,38 }}$ | 90,15 8126,25 |


|  |  |
| :---: | :---: |


| MISSION | 207 | 503 506 |  |
| :---: | :---: | :---: | :---: |
| SHIP DATE | 3/1967 | 5/9967 | $0 / 1967$ |
| $\begin{aligned} & 611900 \\ & 640500 \\ & 651500 \end{aligned}$ | $\begin{array}{ll}1,00 & 444,58 \\ 1,00 & 438,33 \\ 1,00 & 891,74\end{array}$ | 3,03 148,06 <br> 1,00 462,04 <br> 2,82 2647,44 | $\begin{array}{lc} 5,04 & 2988,26 \\ 1,00 & 495,48 \\ \hline 2,08 & 802,28 \end{array}$ |
|  |  |  | Remis. VALUES |
|  | 1088,57 | 3034,64 | 3520,45 |

\$IBFTC REPORT LIST,REF
C THIS ROUTINE WILL GENERATE RUUT MEAN SQUARE REPORTS FUR STRUGIURAL
C DATA.
C ALL SUBROUTINL COMMUNICATION WILL BE THROUGH THE ('A') ARRAY.
$C$ THE FIRST 50 WURUS UF THE AA, ARKAY WILL OE RESERVEU FUR CUINSIANTS INTEGER REELS INTEGER WDCT
COMMON /ACCESS/ HC(IUU),WDCT,IU(12),PROU
COMMON /SYゝTEM/ NTAPES,KEELゝ(15), CNTRLS(1b),FILEb(1b),LRS(1b),
1
COMMON /PFILE/ NFYLE(4,30U),NFY(4)
COMMON /PPOG/ ACTUAL(100),CALC(100),EST(100),COM(12),
1
LSQR(160), MEAN(100), MCONF (100), UW2(100),
MSQR(100), PCONF (100),S1(100),521100),
TIME(100), WEIGHT(I00), BUY(100),TITLE(9),
$\begin{array}{ll}3 & \text { TIMEI1 } \\ 4 & \text { N,NTOT }\end{array}$
SOMMON /STT/ N21,D1,D2,JIRUN
COMMON /ALL / A(3UCO)
EQUIVALENCE ( $A, K$ )
EQUIVALENCE (OLOCK(1,1),A(100U))
EQUIVALENCE (A(1),WORU(1))
EQUIVALENCE (ICASE(1),A(1OU))
EQUIVALENCE (WEIGH(1),A(300))
EQUIVALLNCE (IMISNO(1),K(50)) ,(IMUNTH(1),K(6U)),(IYEAR(I),K(7U))
1 , (KRDATE(1),K(80))
EQUIVALENGE (K(3U),MDATE), (K(31),NUM(AS), (K(32), IEO)
EQUIVALENCE (K(2U),NTAPE1), (K(21), NTAPE2), (K(22),NTAPE3),
1 (K(23),NTAPE4), (K(24),NTAPL5), (K(25),NTAPE6)
EQUIVALENCE (NCASE(1), A(200)),
EQUIVALENCE (K(33),IXI)
EQUIVALENCE (K(34),MASK)
EQUIVALENCE (K(qu),KFLAG)
EQUIVALENCE (A(40),RMT(1))
EQUIVALENCE (A(5UU), SCF(1,1)), (A(25UU), RiMS (1,1))
EQUIVALENCE (HC(1).IC1)
DIMENSION SCF(8U,6),RMS(80,6)
DIMENSION RMT(10)
DIMENSION NCASE(1)
DIMEI SION K(1),WEIGH(100,2)
DIMENSION BLOCK (100,15),WORD(10)
UIMLNSION KKDATE(1),IMISNO(1),ICASE(1),IMONTH(1), IYEAR(1)
UATA WORU / GH N.A. , GHTILT ,6H ,OH , GH ,
$16 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{H}, 6 \mathrm{H} \quad, 6 \mathrm{H}$
DATA NILT / 4HTILT /
C NOW, LET US START TU WORK.........
$N P=0$
IFI WDCT .EQ. U , GO TO 1
$\operatorname{NFY}(3)=1 C 1$
1 CALL PROCES
DO $48 \mathrm{~J}=1$, NUMCAS
DO $48 \quad I=1$, MDATE
$48 \operatorname{RMS}(\mathrm{~J}, \mathrm{I})=0 \cdot 0$

```
 KFLAG=1
C THE (A(IUUU)TH) WORU STARTS THE THE INPUT BUFFER
 IXI=1
 20 NP=NP+1
 IF (NP.GT.NFY(3)) GO TO 220
 NX=ISIGN(NP,REELS(3))
 NF=REELS(3)*1000 + NX
 CALL READE1(NF,1)
 NOCASE=ID(7)
 21 IF(NOCASE .LT. ICASE(IXI)) GO TU 20
C RECORU FUUNO....INUW GO TU WORK
 IF(NUCASL .LT. (ICASE(IXI) + MASK)) GU TU 49
C PRINT ERROR COMMENT
 IXI=1XI+1
 GO TO 20
C CUDE FOUNU.....NOW LETS DECIDE ON A DATE
 49 IEQ=0
 50 IEQ=IEQ+1
 N71=ID(10)
 N=1D(11)
 NMONTH=ID(8)
 NYEAR=ID(9)-1900
 CO 1112 I71=1,N71
 NMONTH=NMONTH + 1
 IFI NMUNTH .LE. 12) GO TO l112
 NMONTH=1
 NYEAR=NYEAR + 1
 1112 CONTINUE
 NPLUSP= 1D(10)+ID(11)
 NUMER =5*NPLUSP + 2*ID(10) + 9
 CALL READO2(NF,ACTUAL,NUMER,HIOT)
 (ALL READE2(NF,WEIGH(I,I),N,HIST)
 CALL READU2(NF,ACTUAL,ID(1U),HIST)
 CALL READUZ(NF,NEIUH(1,2),N,HIOT)
 NCASE(IEG)=NUCASE
 KEY=(NYEAR -GU)*12+NMONTH
 KEND=KEY+N
 10T=1
 55 IF(NRDATE(IUT).GE.NEY) GO 10 bu
 IXX=ICT*2-1
 BLOCK(IEQ,IXX)=WORD(1)
 BLCCK(IEQ,IXX+1)=NORD(1)
 IDT=IDT+1
 GO TO 55
 6O CONTINUE
C Cumpute Thl currect INuExes for the curRtct uates
 UC 21V I=IDT,MDATE
 KLYSS=KRDATE (I)-KEY+1
 J=[*2-1
 IF(KEYS .GT. N) GO TO 2U5
 BLOCK(IEQ,J)=ABS(WEIUH(KEYJ,1)-WEIGH(KEYS,2))
 BLOCI(IEQ,J+I)=8LOCK(IEQ,J)**2
 RMMS(IXI,I)=RMMS(IXI,I)+BLOCK(ILG,J+1)
```

```
 GO TO 210
 205 BLOCK(IEQ,J)=WORD(1)
 BLOCK(IEQ,J+1)=WORD(1)
 210 CONTINUL
 NP=NP+1
 IFI NP .GT. NFY(3) .AND. IXI .EQ.NUMCAS), GO TU 214
 IF(NP.GT. NFY(3), GO TO 220
 NX= ISIGN(NP,REELS(3))
 NF= REELS(3)*1000 + NX
 CALL READ31(NF,1)
 NOCASE=ID(7)
 IF(NOCASE .LT. (ICASE(IXI) + MASK)) GO TO 50
 214 DC 215 I=1,MDATE
 215 RMS(IXI,I)=\ORT(RMS(IXI,I))
 CALL PRINT
 IXI=IXI+1
 IF(IXI •LE. NUMCAS) GO TO <1
C LETS SUMMARIZE THE REPORT
 KFLAG=2
 DO 245 I=1,MDATE
 245 RMT(I)=0.0
 DO 250 I=1,NUMCAS
 DO 25C J=1,MDATE
 RMS(I,J)=RMS(I,J)*SCF(I,J)
 250 RMT(.)=RMT(J)+RMS(I,J)**2
 DO 260 I=I,MDATE
 260 RMT(I)=SURT(RMT(I))
 CALL PRINT
 GO TO 1
 220 CONTINUE
C SINCE THERE IO AN ERRUR, let uS PRUCEEU TU THE NEXT CAse
 GO TO l
 END
```

```
$IGFTL PRUCLS LI\T,REF
 GUBROUTINE PROCES
 COMMON /ALL / A(3ULO)
 EQUIVALENCE (A,K)
 EQUIVALENCE (OLOCK(1,1),A(100U))
 EQUIVALENCE (A(1),WORU(1))
 EQUIVALENCE (ICASE(l),A(100))
 EQUIVALENCE (%EIGH(1),A(300))
 EQUIVALLNCE (IMISNO(1),K(5U)),(IMUNTH(1),K(6U)),(IYEAR(1),K(70))
 1 ,(KRDATE(1),K(8U))
 tGUIVALLiNCE (K(3J),MDATE), (K(31),NUMCAS), (K(32) , IEG)
 LQUIVALLINCE (K(2U),NIAPLl), (K(2l), NIAPE2), (N(\angleL),NAPE3),
 l (K(23),NTAPL4), (K(24),NTAPEb), (K(25),NTAPE6)
 EQU:VALENCE (IDATA(1),DATA(1), A(lUUl))
 EQUIVALENCE (K(34),MASK)
 LQUIVALENCE (K(33),IXI)
 LQUIVALENCE (A(4U),RMT(1))
 EQUIVALENCE (K(9U),KFLAG)
 EQUIVALENCE (A(5UU),SCF(1,1)),(A(2500),RMS(1,1))
 JIMENSION SCF(80,6),RMS(80,6)
 DIMENSION RMT(10)
 DIMENSIUN K(1),WEIGH(1,1)
 DIMENSION ELOCK (100,15),WORD(10)
 UIMENSIUN KKUATE(1),IMISNU(1),ICASE(1), IVMUNIH(1), IYLAK(l)
 DIMENSION CARDID(IO)
 UINCNSIUN UATA(5U),IUATA(5U)
 UATA KFV/GHFACTOR /
 UATA CAROIU /GHMIOION , GHPARIO ,GHMASK ,GH ,OH,
 16H ,6H ,6H ,GHENDCSE,6H /
 UAIA ENU/3HENU/,ROS/3HRJS/
 C RESTORE COUNTERS
 MASK=100
 NFLAG =0
 NuMCAS=0
 MDATE=0
E
 1 Call Rthíh (UATA,iNuN,XCARU)
```



```
 OO 5 l=1,lu
 IF(XCARL •LW.CARJID(I))GO TV g
 5 CONTINUE
c PRINT ERROR MESSAGE
 GO TO l
 9 GO TO (1v,20,3v,40,50,60,70,80,90,100),I
 10 MDATE=NLM/3
 DO 11 1=1,NUATE
 J=(I-1)**3+1
C Slure lati aivu MIOSION NUMOLK
 IMONTH(I) =ILATA(J+1)
 IYEAR(1) = IUATA(J+2)
```

```
 IMISNO(I)=IDATA(J)
 11 KRDATE(I)=IUATA(J+1)+(IDATA(J+2)-60)*12
 GO TO l
 20 NUMCAS =NUMCAS+1
 ICASE(NUMCAO)=1DATA(1)
 IF(NUMCAS .NE. 2) GO TO 23
 MFLAG=1
 22 MASKED=MASK*1U
 ICAS =ICAS'(2)/MASKED
 ICAS:ICAS*MASKED
 IF(ICASE(2).NE.ICAS) GO TO 23
 MASK=MASKED
 GO TO 22
 23 IF(IDATA(3) •LQ.KFV) GO TO 24
 SCF(NUMCAS,1)=-1.U
 IDATA(3) =0
 GO TO l
 24 DO 26 I=1.6
 26 \CF(NUMCAつ,1)= DATA(I+3)
 go TO l
 30 CONTINUE
 MASK=1DATA(1)
 MFLAG=1
 GO TO 1
 40 CONTINUE
 GO TO l
 50 CONT INUE
 GO TO l
 60 CONTINUE
 GO TO l
 7O CONTINUE
 GO TO I
 8O CONTINUE
 GO TO 1
 90 IFIMFLAG .EQ. 1) GO TO 999
 SINCE NOT ENOUGH INFO HAS OELN GIVLIN, SKIP THIU CAst ANU WRITL
C ERROR COMMENT
100 GO TO 1
 999 RETURN
 END
```

```
$IEFTC PRINT LIゝT,REF
 SUBROUTINE FRINT
 COMMON/ALL/ / A(3000)
 EQUIVALENCE (A,K)
 EQUIVALENCE (A(1),WORU(1))
 EQUIVALENCE (BLOCK(1,1),A(1000))
 EQUIVALENCE (ICASE'(1),A(100))
 EQUIVALENCE (WELIGH(1),A(300))
 LQUIVALENCE (IMISNO(1),K(5U)),(IMUNTH(1),K(6U)),(IYEAR(I),K(7U))
 1 ,(KRDATE(1),K(8U))
 EQUIVALEINCE (K(3U),MLATE), (K(31),NUMCAS), (K(32), ILW)
 LQUIVALLNCL (K(2U),IVTAPLI), (K(21),NIAPE2), (X(22),NTAPL3),
 l (K(23),NTAPL4), (K(24),NTAPL5), (K(25),NTAPE6)
 EOUIVALENCE (NCASE(1): A(2UO))
 EQUIVALENCE {K(33),IXI)
 EQUIVALE゙NCE (A(5UU),SCF(1,1)),(A(2500),RMS(1,1))
 EQUIVALENCE (A(40),RMT(1))
 EGUIVALENCE (K(90),KFLAG)
 DIMENSION SCF(8U,6),RMS(80,6)
 DIMENSION RMT(10)
 UIMEISION NCASE(1)
 UIMENSIUN K(1),WEIGH(1,1)
 DIMENSIUN SLOCK (1UU,15),WORU(10)
 LIMENSIUN KKLATE(1), IMISNO(1),ICASL(1),IMUNIH(1),IYEAK(1)
C THIS ROUTINE PRINTS THE REPORT
 WRITE (6.1U4)
 104 FCRMAT (IHI)
 WRITE (6,1UO) (IMISNO(I),I=1,MDATE)
 100 FORNIAT (//3X,7HNISSION, 1UX, I4, 5(16X,I4))
 WRITE(6.103)
 103 FORMAT (/)
 WRITE (O,l\cup1)(,IMONTH(I),IYEAR(1)),I=1, (1UATE)
```



```
 WRITE(6,1\cup3)
 WRITE(0:lU3)
 UU TU (1.2UU,3CU),KFLAG
 1 MDATED=MDATE*2
 DO IU KK=1,IEQ
 WRITL (O,lU2) NCASE(KK),(DLUCK(KN,I),I=1,MILATED)
 102 FORMAT (2X,I7,2X,12F1U.2)
 10 CONTINUE
 WRITL (6,IU5) (RMS(IXI,I),I=1,MUATE)
 105 FORMAT(// 64X,14HR.M.S. VALUES // 11X.6F2U.2)
 GO TO 999
 200 CONTINUE
 DO 21-KK=1,NUMCAS
```



```
 WRITL (b,IU5) (RMT(1),1=1,MUATE)
 WRITE (6,lU4)
 300 CCNTINUE
 S99 RETLRN
 ENO
```

```
\$IBFTC BDATA LIST,REF
 BLOCK DATA
 COMMON/ALL / A (3000)
 EQUIVALENCE \((A, K)\)
 DIMENSION K (3000)
 DATA \(K(20), K(21), K(22), K(23), K(24), K(25) / 1,2,3,4,5,6 /\)
 END
```

$\qquad$

## PLOTTING SUBROUTINE - 71S (UMPLOT)

## GENERAL DESCRIPTION

UMPLOT is an acronym for University of Michigan Plotting Routine. The philosophy used in writing the routine was to treat a region of core storage (subsequently, called the image region or simply the image) much as a piece of graph paper when plotting data manually.

First, the image region is blanked out, and a grid, formed of I's and -'s (with +'s at the intersection points), is placed in the image region. Given the numerical limits of the abscissa and ordinate, (i.e., the maximum and minimum values of the two variables, say $x$ and $y$ ), the routine can place any specified BCD plotting character at the appropriate position in the image for a given pair of data values ( $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ).

Each point ( $\mathrm{X}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ) is plotted individually and independently of any preceding point. In other words, the data need not be presorted. Any number of points ( $x_{i}, y_{i}$ ) with any corresponding BCD plotting characters can be placed in the image. A character falling on a previously plotted character will replace that character. Thus, only the last one plotted of two coincident data points appears in the final image. Points falling outside the grid limits (not in the image region) are ignored.

When all desired points have been placed in the region, the image is copied onto the specified decimal output tape for subsequent off-line (or simulated off-line) printing or punching. Any number of duplicate copies of the graph can be produced.

The subroutine has four main entries which perform the following functions:

## PLOT 1

This entry to the subroutine sets up the grid spacing and the total width and length of the graph image. It also determines the location of the decimal points and the multiplying factors (powers of 10) for values of the ordinate and abscissa to be printed at the grid lines.

## PLOT 2

This entry to the subroutine prepares the grid, examines the maximum and minimum values of the abscissa and ordinate, and establishes internally a formula for computing the location in the image region corresponding to the point $\left(x_{i}, y_{i}\right)$.

## PLOT 3

This entry to the subroutine places a specified BCD plotting character in the appropriate position(s) corresponding to the given value(s) of ( $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$ ).

## PLOT 4

PLOT 4 (or FPLOT 4) entry writes the image of the completed graph on the output tape for subsequent printing off-line. A label for the ordinate is printed vertically (one character per line) at the left edge of the page. Values of the abscissa and ordinate are printed at the grid lines outside the bottom and left edges of the graph.

## FORTRAN CALLING SEQUENCES

| Call | PLOT 1 | (NSCALE, NHL, NSBH, NVL, NSBV) |
| :--- | :--- | :--- |
| Call | PLOT 2 | (IMAGE, XMAX, XMIN, YMAX, YMIN) |
| Call PLOT 3 | (BCD, X, Y, NDATA) |  |
| Call FPLOT 4 | (NCHAR, nHABCDEF. . . .) |  |

## DESCRIPTION OF ARGUMENTS

## NSCALE

This is a vector (array) in the user's program having one or five locations. If the user wishes to use the standard scale factors and decimal point positions (see below), NSCALE should equal zero. To alter the standard factors, NSCALE must be any nonzero quantity. In this case, the NSCALE array must have five locations containing the following information:

FORTRAN Location
NSCALE (1)
NSCALE (2)

NSCALE (3)

Contents
Any nonzero value

J

## Function

Alter standard factors.
Printed values of the ordinate (y) are 10.P.I times the actual values. Printed values of the ordinate (y) have $J$ digits following the decimal point (J.LE.8).

FORTRAN Location
NSCALE (4)
NSCALE (5)

Contents
K

M

## Function

Printed values of the abscissa ( x ) are 10.P.K times the actual values.

Printed values of the abscissa ( $\mathbf{x}$ ) have M digits following the decimal point (M. LE.9).

## STANDARD SCALE FACTORS

When NSCALE is zero, the standard scale factors are used. The effective values of I, J, K, and M are $0,3,0$, and 3 , respectively. The actual values are printed with three decimal places.

NHL
NSBH
NVL
NSBV

The number of horizontal grid lines in the graph image. The number of spaces between horizontal grid lines. The number of vertical grid lines in the graph image. The number of spaces between vertical grid lines.

NOTE
In keeping with standard notation for graph paper, (e.g., $10 \times 10$ to the inch) NHL and NVL are really one less than the actual number of lines. It is not customary to consider the axes when counting lines in the grid.

IMAGE An array (vector), dimensioned in the user's program consisting of N sequential locations not used between execution of PLOT 2 and PLOT 4, where

$$
\begin{aligned}
& \mathrm{N}=\mathrm{P}^{*}\left(\mathrm{NSBH}^{*} \mathrm{NHL}+1\right) \\
& \mathrm{P}=\left(\mathrm{NSBV}^{*} \mathrm{NVL}+1\right) / 6, \text { rounded up to the } \\
& \text { nearest integer }
\end{aligned}
$$

XMAX
XMIN
YMAX
YMIN
BCD

X

The value of the abscissa at the rightmost grid line. The value of the abscissa at the leftmost grid line. The value of the ordinate at the uppermost grid line. The value of the ordinate at the lowermost grid line. The BCD (Hollerith) plotting character, and may be any legitimate left-adjusted BCD character (letter, digit, blank, or special character * , . +etc.).

A single location (or array name) containing the $x$ coordinate(s) of the point(s), $\left(x_{i}, y_{i}\right)$.

Y

NDATA

NCHAR

LABEL

A single location (or array name) containing the y coordinate(s) of the point(s), $\left(x_{i}, y_{i}\right)$.
The number of data points ( $x_{i}, y_{i}$ ) associated with the arrays $x$ and $y$. With NDATA equal to 1 , a single point will be plotted for a single execution of PLOT 3. With NDATA equal to $Q, Q$ points ( $x_{i}, y_{i}$ ) taken in sequence from vectors of length $Q$ starting at $x$ and $y$ are plotted for a single execution of PLOT 3. The number of BCD (Hollerith) characters (including blanks) in the label array (vector).
The name of an array (vector) which contains the string of BCD characters to be printed at the left edge of the output page, i.e., a label for the ordinate of the graph.

## LABELING THE ORDINATE - USE OF FPLOT 4

The string of characters for the ordinate label appears directly in the calling sequence as the second argument (Hollerith). The n preceding the H (specifying the Hollerith string) should be the same as the value of NCHAR.

## RESTRICTIONS ON ARGUMENTS

| NHL | .GT. | 0 |
| :--- | :--- | ---: |
| NSBH | .GT. | 0 |
| NVL | .GT. | 0 |
| NSBV | .GT. | 0 |
| (NSBV*NVL) | .LE. | 101 |
| XMAX | .GT. | XMIN |
| YMAX | .GT. | YMIN |

BCD

Must be a left-adjusted legitimate BCD (Hollerith) character, i.e., $1 \mathrm{H}-, 1 \mathrm{H}^{*}$, 1HA, 1 H 1 , etc. (FORTRAN)

## MODES OF ARGUMENTS

Those arguments which deal directly with data values (XMAX, XMIN, YMAX, YMIN, $\mathrm{X}, \mathrm{Y})$ must be in floating point mode.

Reference No. $\qquad$
Issue Date
23 Dec 1965
Supersedes
Those arguments which deal with the arrangement of the image and the scale factors (NSCALE, NHL, NSBH, NVL, NSBV, NCHAR) and the number of data points can be:
a. Floating Point
b. FORTRAN type integers

The routine automatically determines which mode is being used for each argument.

LABEL and BCD must contain Hollerith information only.

| $\begin{aligned} & \text { \$ I BMAP } \\ & * \end{aligned}$ | UMPLOT | PLOTI |
| :---: | :---: | :---: |
|  | ENTRY | PLOTl |
|  | ENTRY | Plot2 |
|  | ENTRY | Plot 3 |
|  | ENTRY | PLOT4 |
|  | ENTRY | FPLOT4 |
|  | ENTRY | OMIT |
|  | PZE | 0 |
|  | PZE | 0 |
| A 4 | DEC | 6 |
| PLOTI | SAVE | 1,2,4 |
|  | Cla | 3,4 |
|  | STA | A141 |
|  | STA | Al44 |
|  | STZ | A1723 |
|  | CLA | A1657 |
|  | Sto | A1725 |
|  | CLA* | 4,4 |
|  | TSX | A1072,2 |
|  | TZE | A 63 |
|  | STO | Al 655 |
|  | CLA* | 5,4 |
|  | TSX | A1072,2 |
|  | TZE | A 63 |
|  | STO | A1666 |
|  | LDQ | A 1666 |
|  | MPY | A 1655 |
|  | STQ | A1633 |
|  | CLA* | 6.4 |
|  | TSX | A1072,2 |
|  | TZE | A6 3 |
|  | STO | A1656 |
|  | CLA* | 7,4 |
|  | TSX | A1072,2 |
|  | TZE | A63 |
|  | STO | A 1667 |
|  | LDQ | A 1667 |
|  | MPY | A 1656 |
|  | STQ | A 1703 |
|  | LLS | 35 |
|  | ADD | A 1657 |
|  | STO | A 1704 |
|  | SUB | A 1622 |
|  | TMI | A 71 |
| A6 3 | CLA | A 1607 |
|  | Sto | A1723 |
|  | AXT | -*-1.4 |
|  | TRA | A 223 |
|  | PZE | A1600, , 1 |
| A 70 | MTH | A413 |
| A 71 | CLA | A 1704 |


|  | TSX | A1067,2 |
| :---: | :---: | :---: |
|  | FDP | A1673 |
|  | STQ | A1701 |
|  | CLA | A1701 |
|  | FAD | A1647 |
|  | TSX | All02,2 |
|  | STO | A 1716 |
|  | LDQ | A1716 |
|  | MPY | A 1672 |
|  | STQ | A 1705 |
|  | LXA | A1716,2 |
|  | CLA | A 1705 |
|  | SUE | A 1704 |
|  | PAX | , 1 |
|  | CLA | A 1576.1 |
|  | Sto | A1567,2 |
|  | LDQ | A1513 |
|  | STQ | Albl3,2 |
|  | TIX | A116,2,1 |
|  | MTH | A 122 |
| A 116 | CLA | A 1576 |
| A117 | Sto | A 1567,2 |
|  | STQ | Al513,2 |
|  | TIX | A117,2,1 |
| Al 22 | STZ | A 1623 |
| Al23 | TSX | Al123,4 |
|  | PTH | A 1624 |
|  | PTH | A 1623 |
|  | PTH | A 1512 |
|  | TSX | A1123,4 |
|  | PTH | A1625 |
|  | PTH | A 1623 |
|  | PTH | A 1566 |
|  | CLA | A 1623 |
|  | ADD | A 1667 |
|  | Sto | A 1623 |
|  | SUB | A 1704 |
|  | TZE | A 123 |
|  | TMI | A123 |
| A141 | CLA | * * |
|  | tze | Al 50 |
|  | AXT | -1,4 |
| A144 | CLA | , 4 |
|  | TSX | Al073,2 |
|  | SXA | XY,4 |
|  | LAC | $X Y, 2$ |
|  | STO | Al 620.2 |
|  | TXI | * $+1,4,-1$ |
|  | TXH | A $144,4,-5$ |
| A 150 | CLA | A 1616 |
|  | TZË | Al5 |
|  | TPL | Albs |


|  | CLS | A 1657 |
| :---: | :---: | :---: |
| $\begin{aligned} & A 154 \\ & \text { A155 } \end{aligned}$ | TXL | A160,,20 |
|  | STO | XZ |
|  | CLA | A 1577 |
|  | CAS | $\times 2$ |
|  | TRA | A161 |
|  | TRA | * +1 |
| $\begin{aligned} & \text { A160 } \\ & \text { A161 } \end{aligned}$ | STO | A 1616 |
|  | CLA | A 1614 |
|  | SUB | A1702 |
|  | TPL | *-1 |
|  | ADD | A 1702 |
|  | TZE | A170 |
|  | TPL | A 170 |
|  | CLS | A 1657 |
| Al 70 | STO | A1614 |
|  | CLA | A 1667 |
|  | suo | Al6 67 |
|  | STO | A 1621 |
|  | CAS | A 1614 |
|  | TRA | A 200 |
|  | TRA | * +1 |
|  | SUB | A 1657 |
|  | Sto | A 1614 |
| A 200 | CLA | A1711 |
|  | ADO | A 1614 |
|  | STO | A 1620 |
|  | CLA | A 1665 |
|  | sui | A 1704 |
|  | Sus | A 1620 |
|  | TPL | A 211 |
|  | ADO | A 1620 |
|  | Sto | A1620 |
| A 211 | CLA | A 1620 |
|  | CAS | A 1614 |
|  | TRA | A 216 |
|  | TRA | * +1 |
|  | SUE | A 1657 |
|  | STO | A 1614 |
| A216 | ZAC |  |
|  | RETURN | PLCT1 |
| A 223 | SXA | LOAD4,4 |
|  | STO | = H'SAVEAC |
|  | CLA | 1,4 |
|  | ORA | =030000000)000 |
|  | STO | $Y 1$ |
|  | CALL | JOBOU(Y1-1) |
| LOAD4 | AXI | * ${ }^{\text {, }} 4$ |
|  | CLA | =HSAVEAC |
|  | TRA | 2,4 |
| PLCT2 | save | 1,2,4 |
|  | CLA | A 507 |


|  | CCM |  |
| :---: | :---: | :---: |
|  | STU | A 1065 |
|  | STZ | A1725 |
|  | CLA | A 1723 |
|  | TZE | A 243 |
|  | CLA | A 1610 |
|  | RETI'RN | Plot2 |
| A243 | LDQ | A1633 |
|  | MPY | A1716 |
|  | STQ | S1 |
|  | CLA | A 1716 |
|  | SSP |  |
|  | ADO | S 1 |
|  | SUB | A 1634 |
|  | STO | 53 |
|  | CLA | 3,4 |
|  | SSP |  |
|  | ADD | 53 |
|  | STA | A 341 |
|  | STA | A 367 |
|  | STA | A 530 |
|  | STA | A 744 |
|  | STZ | A1724 |
|  | CLA* | 4,4 |
|  | TSX | A1056,2 |
|  | STO | A 1727 |
|  | CLA* | 5,4 |
|  | TSX | A1056.2 |
|  | STC | A 1730 |
|  | CLA* | 6,4 |
|  | TSX | A 1056,2 |
|  | STO | Al731 |
|  | CLA* | 7,4 |
|  | TSX | A 1056.2 |
|  | Sto | Al 732 |
|  | CLS | A1730 |
|  | FAD | A 1727 |
|  | TMI | A411 |
|  | Sto | A 1674 |
|  | CLS | A1732 |
|  | FAD | A1731 |
|  | TMI | A411 |
|  | Sto | A 1675 |
|  | CLA | A1633 |
|  | TSX | A1067,2 |
|  | FDP | A 1675 |
|  | STU | A. 714 |
|  | CLA | A1703 |
|  | TSX | A1067,2 |
|  | FUP | A1674 |
|  | STG | A1715 |
|  | CLA | A 1656 |


|  | TSX | A 1067.2 |
| :---: | :---: | :---: |
|  | STO | A 1701 |
|  | CLA | A 1674 |
|  | FDP | A1701 |
|  | STQ | A1567 |
|  | CLA | A1655 |
|  | TSX | Al067,2 |
|  | STO | Al701. |
|  | CLA | Al 675 |
|  | FDP | A1701 |
|  | STQ | A 1570 |
|  | STI | A1623 |
|  | STZ | A1545 |
| A333 | STLL | A1630 |
| A334 | CLA | A1630 |
|  | PAX | , 2 |
|  | ADD | Al623 |
|  | PAX | , 4 |
|  | CLA | A1566.2 |
| A341 | STO | , 4 |
|  | CLA | A1630 |
|  | ADD | A1657 |
|  | STO | A1630 |
|  | sud | A1716 |
|  | TNZ | A 334 |
|  | Cla | A1623 |
|  | ADU | A1716 |
|  | Sto | A 1623 |
|  | CLA | A1655 |
|  | SUB | A 1545 |
|  | tze | A4161 |
|  | CLA | A1657 |
|  | Sto | A1701 |
|  | sub | Al 666 |
|  | TZE | A40 |
| A3tl | STZ | A 1630 |
| 4 262 | CLA | A1630 |
|  | PAX | , 2 |
|  | AUL | A 1623 |
|  | PAX | , 4 |
|  | CLA | A1512,2 |
| A 367 | Sto | - 4 |
|  | CLA | A 1630 |
|  | ADO | A 1657 |
|  | Sto | A1630 |
|  | Sus | A1716 |
|  | TNZ | A 362 |
|  | CLA | A 1623 |
|  | ADO | A 1716 |
|  | STO | A 1023 |
|  | CLA | A1701 |
|  | ald | A 1657 |


|  | STO | A 1701 |
| :---: | :---: | :---: |
|  | SUB | A 1666 |
|  | TNZ | A 361 |
| A 405 | CLA | A1545 |
|  | ADD | A 1657 |
|  | STO | A 1545 |
|  | TXL | A 333,,19 |
| A411 | CLA | A 1610 |
|  | STO | A1724 |
| A4:3 | AXT | -*-1,4 |
|  | TRA | A223 |
|  | PZE | A1717, 4 |
| A 416 | TXL | * $+1,0$ ** |
|  | RETURN | PLOT2 |
| A4161 | ZAC |  |
|  | RETURN | PLOT 2 |
| A 417 | AXT | -*-1,4 |
|  | TRA | A 223 |
|  | PZE | A 1602,.3 |
|  | TXL | A 416,0 , |
| PLOT3 | SAVE | 1,2,4 |
|  | STz | A 1606 |
|  | CLA | 3,4 |
|  | STA | A 526 |
|  | CLA | 4,4 |
|  | ADD* | 6,4 |
|  | SUB | Al 634 |
|  | STA | A 500 |
|  | CLA | 5.4 |
|  | ADD* | 6,4 |
|  | SUE | A 1634 |
|  | STA | A 460 |
|  | CLA | A 1723 |
|  | ORA | A 1724 |
|  | tze | A442 |
|  | CLA | A 1611 |
|  | RETURN | PLOT 3 |
| A 442 | ORA | A 1725 |
|  | TZE | A 446 |
|  | Cla | A 1611 |
|  | TXI | A417,4,1 |
| A446 | CLA* | 6,4 |
|  | TSX | A1072,2 |
|  | TNZ | A 455 |
|  | CLS | A 1611 |
|  | RETURN | PLOT3 |
| A455 | STO | A 1654 |
|  | STZ | A 1630 |
| A457 | LXA | A1630,1 |
| A460 | CLS | , 1 |
|  | TSX | Al056.2 |
|  | FAD | A1731 |


|  | LRS | 35 |
| :---: | :---: | :---: |
|  | FMP | A 1714 |
|  | TPL | A 470 |
|  | FSB | A 1645 |
|  | MTH | A 471 |
| A 470 | FAD | A 1645 |
| A 471 | TSX | A1102,2 |
|  | STO | A1623 |
|  | TZE | A500 |
|  | TMI | A 532 |
|  | SUB | A1633 |
|  | TZE | A 500 |
|  | TPL | A532 |
| A 500 | CLA | , 1 |
|  | TSX | A1056,2 |
|  | FSB | A 1730 |
|  | LRS | 35 |
|  | FMP | A1715 |
|  | TPL | A 510 |
|  | FSB | A 1645 |
| A567 | TXL | A511,, PLOT3 |
| A $5: 0$ | FAU | A1645 |
| A 511 | TSX | All02,2 |
|  | Sto | A 1545 |
|  | TZE | A 520 |
|  | TMI | A 532 |
|  | SUB | A1703 |
|  | TZE | A 520 |
|  | TPL | A 532 |
| A 520 | LDQ | A 1705 |
|  | MPY | A 1623 |
|  | LLS | 35 |
|  | ADD | A 1345 |
|  | STO | A1631 |
|  | TSX | A1123,4 |
| A526 | PTH | 0 |
|  | PTH | A1631 |
| A 530 | OCT | 377777000000 |
| A531 | TXL | A534, , 4 |
| A 532 | CLS | A 1611 |
|  | STO | A 1606 |
| 4534 | CLA | A 1630 |
|  | ADU | A 1657 |
|  | STO | A 1630 |
|  | SUb | A 1654 |
|  | TNZ | A 457 |
|  | CLA | A 1606 |
|  | RETURN | HLUT3 |
| rPLOT4 | SAVE | 1,2,4 |
|  | CLA | A 530 |
|  | TXL | A547,0, |
| PLOT4 | CLA | A 1660 |


| Aこ47 | STD | A 713 |
| :---: | :---: | :---: |
|  | CLA | A 1723 |
|  | ORA | A 1724 |
|  | TZE | A 560 |
|  | CLA | A 1612 |
|  | RETURN | FPLOT4 |
| A 560 | ORA | A 1725 |
|  | tze | A 564 |
|  | CLA | A 1612 |
|  | T入I | A417,4,3 |
| A 564 | CLA | 4,4 |
|  | STA | A601 |
|  | STA | A 714 |
|  | CLA* | 3,4 |
|  | TSX | A 1072,2 |
|  | ADD | A1657 |
|  | PAX | , 4 |
|  | SXD | Al212,4 |
|  | STD | Al 440 |
|  | LXA | A1672,1 |
|  | $5 \times 0$ | A416,1 |
| A601 | LDQ | ** |
|  | STQ | A 1632 |
|  | CLA | A 1617 |
|  | Sto | A 1653 |
|  | CLA | A 1616 |
|  | STO | A 1651 |
|  | CLA | A 1633 |
|  | STO | A 1605 |
|  | CAL | A1626 |
|  | ANA | A 1627 |
|  | TZE | A 617 |
|  | CLA | A 1633 |
|  | SUB | A 1657 |
|  | Sto | A 1605 |
| A617 | STZ | A 1623 |
|  | LXA | A1623,2 |
| A621 | CLA | Al 605 |
|  | SUB | A 1623 |
|  | TMI | A 763 |
|  | SUB | A 1634 |
|  | LXA | A1634,4 |
|  | TPL | A632 |
|  | ADD | A 1634 |
|  | ADD | Al 657 |
|  | PAX | , 4 |
| A632 | SXD | Al066,4 |
|  | Sx0 | A 70,2 |
| A634 | CLA | Albl4 |
|  | Sto | A 1542 |
|  | CLA | A 1513 |
|  | STO | A 1541 |

Reference No.

|  | PXD | 128,0 |
| :---: | :---: | :---: |
|  | LDQ | A 1623 |
|  | DVP | A 1666 |
|  | STQ | A 1631 |
|  | TNZ | A 667 |
|  | CAL | A1626 |
|  | ANA | A 1713 |
|  | TNZ | A667 |
|  | CLA | A 1631 |
|  | TSX | Al067,2 |
|  | LRS | 35 |
|  | FMP | Al 570 |
|  | STO | Al701 |
|  | CLA | A1731 |
|  | FSb | A1701 |
|  | STO | A1471 |
|  | CLA | A1713 |
|  | STO | A1545 |
|  | CLA | A 1650 |
|  | sto | A1652 |
|  | SXD | A762,4 |
|  | TSX | A1156,4 |
|  | LXD | A 762,4 |
| A667 | CLA | Al 542 |
|  | STO | A1541,4 |
|  | CLA | A1541 |
|  | STO | A1540,4 |
|  | CLA | A1623 |
|  | ADD | A1657 |
|  | STO | A1623 |
|  | TIX | A634,4,1 |
|  | LXD | A 1066,4 |
| A 700 | SXD | A 762,4 |
|  | LXD | A1212,4 |
|  | CAL | A1676 |
|  | TNX | A 717,4,1 |
|  | LXD | A1440,2 |
|  | LXC | A416.1 |
|  | LDQ | A 1632 |
|  | LGL | 6 |
|  | ALS | 24 |
|  | TIX | A $715,1,1$ |
|  | LXA | A 1672,1 |
| A713 | TXI | * $+1,2$ ** |
| 1 |  |  |
| A1441 | LXD | A1316,4 |
|  | TRA | 1.4 |
| A1443 | LOQ | A1607 |
|  | STQ | A 1662 |
|  | PAX | , 4 |
|  | TXH | A1451,4,0 |
|  | CLA | A1607 |

Reference No.


| A1545 | P2E | 0 |
| :---: | :---: | :---: |
|  | BCI | 1, ----+ |
|  | BCI | 1,+----- |
|  | BCI | 1,------ |
|  | BCI | 1,--+--- |
|  | BCI | 1,------ |
|  | BCI | 1,----+- |
|  | BCI | 1,+----- |
|  | BCI | 1,------ |
|  | BCI | 1,--+--- |
|  | BCI | 1,----- |
|  | BCI | 1,----+- |
|  | BCI | 1,+----- |
|  | $B C I$ | 1,------ |
|  | BCI | 1,--+--- |
|  | BCI | 1,------ |
|  | BCI | 1,----+ |
| A 1566 | BCI | 1,+----- |
| A1567 | PZE | 0 |
| A 1570 | PZE | 0 |
| A1571 | BCI | 1,- |
|  | BCI | 1,-- |
|  | BCI | 1,--- |
|  | BCI | 1,---- |
|  | BCI | 1,----- |
| A 1576 | BCI | 1,------ |
| Al 577 | OCT | 10 |
| 11600 | BCI | 1.0PLOT 1 |
|  | BCI | 1,OPLOT 2 |
| Alc02 | BCI | 1, ONO PR |
|  | BCI | 1,EVIOUS |
|  | BCI | 1. PLOT 2 |
| A 1605 | PZE | 0 |
| 11606 | PZE | 0 |
| A1607 | OCT | 201400000000 |
| A1610 | BCI | 1,+D0000 |
| +1611 | BCI | 1, +F0000 |
| Al 612 | BCI | 1, +10000 |
| A1613 | BCI | 1,+N0000 |
| +1614 | OCT | 3 |
| A1615 | PZE | 0 |
| Al 616 | OCT | 3 |
| A1617 | P2E | 0 |
| A1620 | OCT | 16 |
| A1621 | OCT | 11 |
| A1622 | BCI | 1,00001P |
| A1623 | PZE | 0 |
| A1624 | BCI | 1.1 |
| $\lambda 1625$ | BCI | 1, + |
| A 1626 | PZE | 0 |
| A1627 | OCT | 4 |
| . 11630 | PZE | 0 |


| A1631 | PZE | 0 |
| :---: | :---: | :---: |
| Al 632 | PZE | 0 |
| Alc3 3 | BCI | 1,000005 |
| Al 634 | OCT | 1 |
| A1635 | OCT | 777777777 |
|  | OCT | 777777777700 |
|  | OCT | 777777770077 |
|  | OCT | 777777007777 |
|  | OCT | 777700777777 |
|  | OCT | 770077777777 |
| A1643 | OCT | 7777777777 |
| A1644 | OCT | 770000000000 |
| +1645 | BCI | 1, +40000 |
| A1646 | BCI | 1,00000N |
| A1647 | OCT | 200772702436 |
| A1650 | OCT | 11 |
| A1651 | PZE | 0 |
| Al 652 | PZE | 0 |
| A1653 | PZE | 0 |
| A1654 | PZE | 0 |
| A1655 | OCT | 5 |
| d1656 | OCT | 12 |
| A1657 | OCT | 1 |
| Al 660 | OCT | 1000000 |
| $\lambda 1661$ | PZE | 0 |
| A 1662 | P2E | 0 |
| A1663 | BCI | 1 , |
|  | OCT | 606060606072 |
| A 1665 | BCI | 1,00001Y |
| A1666 | OCT | 12 |
| $\lambda 1667$ | OCT | 12 |
| A1670 | PZE | 0 |
| Al671 | PZE | 0 |
| +1672 | OCT | 6 |
| A1673 | OCT | 203600000000 |
| Al 674 | PZE | 0 |
| +1675 | PZE | 0 |
| Al 676 | TCOA | ** |
| A 1677 | PZE | 0 |
| +1700 | PZE | 0 |
| Al701 | P2E | 0 |
| Al:02 | OCT | 12 |
| +1703 | BCI | 1.00001 M |
| Al704 | BCI | 1,00001N |
| A 1705 | BCI | 1,000010 |
| 11706 | OCT | 3 |
| A1707 | OCT | 134ち37657770 |
| A 1710 | OCT | 233575360400 |
| AI711 | OCT | 14 |
| Al712 | BCI | 1,000000 |
| A1713 | OCT | 2 |
| 11714 | PZE | 0 |

Reference No.

| A 1715 | PZE | 0 |
| :---: | :---: | :---: |
| A1716 | BCI | 1,00000A |
| A1717 | BCI | 1,OPLOT2 |
|  | BCI | 1, IMPRO |
|  | BCI | l,PER AR |
|  | BCI | 1,GUMENT |
| Al723 | PZE | 0 |
| Al7 74 | PZE | 0 |
| Al725 | OCT | 1 |
|  | PZE | 0 |
| A 1727 | PZE | 0 |
| A 1730 | PZE | 0 |
| A1731 | PZE | 0 |
| Al 732 | PZE | 0 |
| A1;33 | PZE | 0 |
| Al\%34 | PZE | 0 |
| A1735 | BSS | 1 |
|  | BSS | 29 |
| A1773 | PZE | 0 |
| Al774 | PZE | 0 |
|  | EXTERN | JOBOU |
|  | END |  |
| A 714 | LDQ | , 2 |
| A 715 | SXD | A1440,2 |
|  | SXD | A 416.1 |
| A 717 | SXD | A1212,4 |
|  | LXD | A 762,4 |
|  | SLW | S4 |
|  | ORA | A1541,4 |
|  | SLW | Al541,4 |
|  | CAL | S4 |
|  | STO | A1632 |
|  | TIX | A $700,4,1$ |
|  | SXA | A1773, |
|  | LXD | A1066,4 |
|  | LXD | A 70,2 |
| 1727 | CLA | A1541,4 |
|  | SXA | A1774,4 |
|  | LXA | A1773,4 |
|  | STO | Al735,4 |
|  | TXI | * +1,4,-1 |
|  | SXA | A1773,4 |
|  | LXA | A1774,4 |
|  | CLA | Al 540,4 |
|  | SXA | Al774,4 |
|  | LXA | A1773,4 |
|  | STO | A1735,4 |
|  | TXI | * $+1,4,-1$ |
|  | LXA | A 1716.1 |
| A 744 | CLA | , 2 |
|  | Sto | A1735,4 |
|  | TXI | *+1,4,-1 |


|  | TXI | * $+1,2,1$ |
| :---: | :---: | :---: |
|  | TIX | A744,1,1 |
|  | PXA | . 4 |
|  | PAC | , 4 |
|  | SXD | A 756,4 |
|  | AXT | -*-1,4 |
|  | TRA | A 223 |
| A756 | PZE | A1735 |
|  | SXA | A1773,0 |
|  | LXA | A1774,4 |
|  | TIX | A727,4,1 |
| A762 | MTH | A621 |
| +763 | CAL | A1626 |
|  | ANA | A 1657 |
|  | TNZ | A1054 |
|  | LXD | Al54,4 |
|  | CLA | A1513 |
|  | STO | A1543,4 |
|  | TIX | *-1,4,1 |
|  | CLA | A1657 |
|  | STO | A1545 |
|  | LDQ | A1713 |
|  | CLA | A 1614 |
|  | TZE | Al001 |
|  | TPL | Al001 |
|  | STQ | A 1545 |
| Alcol | CLA | A 1730 |
|  | Sto | A1471 |
|  | CLA | A 1615 |
|  | STO | A 1653 |
|  | CLA | A 1620 |
|  | Sto | A 1652 |
|  | CLA | A 1614 |
|  | STO | A 1651 |
|  | TSX | Al156,4 |
|  | CLA | A 1657 |
|  | Sto | A 1623 |
| Al014 | CLA | A 1623 |
|  | TSX | Al067,2 |
|  | LRS | 35 |
|  | FMP | A 1567 |
|  | FAD | A 1730 |
|  | Sto | A 1471 |
|  | CLA | A 1545 |
|  | ADD | A 1657 |
|  | STO | A 1545 |
|  | CLA | A 1621 |
|  | Sto | A 1652 |
|  | TSX | A1156.4 |
|  | CLA | A 1623 |
|  | ADD | A1657 |
|  | STO | A1623 |


|  | SUB | A1656 |
| :---: | :---: | :---: |
|  | TZE | Al 014 |
|  | TMI | A1 014 |
|  | AXT | -*-1,4 |
|  | TRA | A 223 |
|  | PZE | A1513, 1 |
|  | AXT | 20,2 |
|  | LXD | A1734,1 |
|  | AXT | , 4 |
| . 11044 | CLA | A 1542,1 |
|  | STO | A1735,4 |
|  | TXI | *.+1,4, -1 |
|  | TXI | *+1,1,1 |
|  | TIX | A1044,2,1 |
|  | AXT | -*-1,4 |
|  | TRA | A 223 |
|  | P2E | A1735, 20 |
| A1054 | RETURN | FPLOT4 |
| +1056 | TZE | 1,2 |
|  | STO | A1701 |
|  | SSP |  |
|  | SUB | A1635 |
|  | TMI | A1065 |
|  | CLA | A1701 |
|  | TRA | 1.2 |
| A1065 | TXL | A532,2,** |
| A 1066 | MTH | A 411 |
| . 1067 | ORA | A 1544 |
|  | FAD | A1544 |
|  | TRA | 1,2 |
| 11072 | SSP |  |
| A1073 | LRS | 33 |
|  | inz | A1101 |
|  | LLS | 15 |
|  | TNZ | 1,2 |
|  | LLS | 18 |
|  | TRA | 1,2 |
| A1101 | LLS | 33 |
| A1102 | UFA | A 1544 |
|  | LRS | 27 |
|  | ZAC |  |
|  | LLS | 27 |
|  | TRA | 1,2 |
| OMIT | SAVE | 1,2,4 |
|  | CLA* | 3,4 |
|  | SXA | A1114,2 |
|  | TSX | A1073,2 |
| A1114 | AXT | . 2 |
|  | TMI | A 1120 |
|  | SLW | S 5 |
|  | ORA | A 1626 |
|  | SL'N | A 1626 |

55
CAL OMIT
COM

| SLW | S6 |
| :--- | :--- |
| ANA | A 1626 |

SLW A1626
CAL 56
RETURN OMIT
CLA 1,4
STA A1147
CLA 2,4
STA $\quad *+1$
LDQ **
STQ Al677
ZAC
DVP Al672
STQ Al700
LXA Al700.2
1il35 MPY Al672
STQ Al700
CLA Al677
SUB Al700
PAX 1
CLA 3.4
STA Al146
STA All54
CAL Al643.1
+1146 ANA $\quad 2$
Al147 CAL **
ANA Al644
TNX Al154,1, し
ARS 6
TIX *-1,1,1
Al154 ORA ,2
SLW* *-1
TRA 4,4
All56 SXD Al316,4
CLA A1653
SSP
SUB A1646
TMI All65
CLA Al607
A1164 TXI A.1167,,-4096
All65 CLA A1653
TSX Al443,2
A1167 STO A1701
TOV *+1
LDQ Al701
SUB All64
STO S7
CLA Al471

SSP ADD TOV SUB TPL A1177 LDQ +1200 FMP STO SSP CAS Al707 TRA Al2U6 TRA STZ Al 206 SUB TPL CLA ADD Al212 MTH 11213 CLA ADD A1215 SUB TPL Al227 ADD Al652 LDQ A1652 STQ Al701 STO Al652 CLA A1701 ADD Al545 SUB Al652 STO Al545 11227 CLA A1652 TZE Al441 SUB Al651 SUB Al713 TSX Al443,2 STO Al661 CLA A1513 STO Al671 CLA A1733 TPL A1245 SSP STO Al733 CLA Al571 STO Al671
Al245 LDQ A1607 CLS Al651 TPL Al252 TSX Al443,2 LRS 35 $\begin{array}{lll}\text { Al252 FMP Al645 } \\ & \text { FAD A1733 }\end{array}$ STO A1733

|  | CLA | A 1657 |
| :---: | :---: | :---: |
|  | STO | A 1515 |
|  | CLA | A 1652 |
|  | STO | A 1670 |
| A1261 | SUB | A 1651 |
|  | SUB | A1657 |
|  | TNZ | A1317 |
|  | CLA | A1663 |
|  | STO | A1543 |
|  | CLA | A1515 |
|  | TZE | Al315 |
|  | CLA | A1670 |
|  | suid | A1652 |
|  | TPL | A1315 |
|  | CLA | A 1545 |
|  | sub | A 1657 |
|  | STO | A 1701 |
|  | TSX | A1123,4 |
|  | PTH | A1672 |
|  | PTH | A1701 |
|  | PTH | A 1542 |
|  | CLA | A 1670 |
|  | ADD | A 1657 |
|  | SUB | A 1652 |
|  | TPL | A1315 |
|  | CLA | A 1545 |
|  | sub | A1713 |
|  | STO | Al701 |
|  | TSX | Al123,4 |
| Al312 | PTH | A1671 |
| . 1313 | PTH | A1701 |
| Al314 | PTH | A 1542 |
| A1315 | STZ | A1515 |
| .1316 | MTH | A1413 |
| A1317 | CLA | A 1661 |
|  | STO | A 1662 |
|  | CLA | A1733 |
|  | FDP | A 1661 |
|  | STQ | A1701 |
|  | CLA | A 1701 |
|  | SUB | A 1710 |
|  | TMI | A 1350 |
| 13327 | LDQ | A 1662 |
|  | FMP | A 1710 |
|  | STO | A 1662 |
|  | CLA | A 1701 |
|  | FDP | A1710 |
|  | STQ | A1701 |
|  | CLA | A1710 |
|  | CAS | A 1701 |
|  | tra | A 1340 |
|  | TKA | *+1 |


|  | MTH | A1327 |
| :---: | :---: | :---: |
| A 1340 | CLS | Al701 |
|  | TSX | A1102,2 |
|  | TSX | A1067,2 |
|  | LRS | 35 |
|  | FMP | A 1662 |
|  | FAD | A1733 |
|  | STO | A1733 |
|  | MTH | A 1317 |
| +1-50 | CLA | A 1701 |
|  | TSX | A1072,2 |
|  | STO | Al 543 |
|  | TSX | A1067,2 |
|  | LRS | 35 |
|  | FMP | A 1661 |
|  | CHS |  |
|  | FAD | A1733 |
|  | Sto | A1733 |
|  | CLA | A1661 |
|  | FDP | A1613 |
|  | STQ | A1661 |
|  | CLA | A1650 |
|  | SUB | A1543 |
|  | TPL | A1374 |
|  | STZ | A1515 |
|  | ZAC |  |
|  | LDQ | A1543 |
|  | DVP | A 1702 |
|  | STO | A1543 |
| A1374 | CLA | A1515 |
|  | TzE | A1413 |
|  | CLA | A 1543 |
|  | TZE | . 41422 |
|  | CLA | A1670 |
|  | SUB | A1652 |
|  | TPL | A 1412 |
|  | CLA | A1545 |
|  | SUB | A 1657 |
|  | STO | A1701 |
|  | TSX | A1123.4 |
|  | PTH | A1671 |
|  | PTH | A 1701 |
|  | PTH | A 1542 |
| A1412 | STZ | Al 1515 |
| A1413 | LDQ | A 1543 |
|  | RQL | 30 |
|  | STO | A1701 |
| A $1+16$ | TSX | A1123.4 |
|  | PTH | A 1701 |
|  | PTH | A1545 |
|  | PTH | A 1542 |
| 11422 | CLA | A1545 |


|  | ADD | A 1657 |
| :---: | :---: | :---: |
|  | Sto | Al 545 |
|  | CLS | A 1657 |
|  | ADD | A 1670 |
|  | STC | A1670 |
|  | TPL | A1261 |
|  | CLA | A 1515 |
|  | tze | Al441 |
|  | CLA | A 1545 |
|  | SUB | A1657 |
|  | Sto | A1545 |
|  | STz | A 1701 |
|  | STZ | A 1515 |
| A1440 | MTH | A1416 |
|  | PXD | 128,0 |
|  | LDQ | A1623 |
|  | DVP | A1666 |
|  | STQ | A1631 |
|  | TNZ | A667 |
|  | CAL | A1626 |
|  | ANA | A1713 |
|  | TNZ | A667 |
|  | CLA | A1631 |
|  | TSX | A 1067.2 |
|  | LRS | 35 |
|  | FMP | A 1570 |
|  | Sto | A1701 |
|  | CLA | A1731 |
|  | FSB | A1701 |
|  | Sto | A1471 |
|  | CLA | A1713 |
|  | Sto | A1545 |
|  | CLA | A1650 |
|  | Sto | A 1652 |
|  | SxD | A 762,4 |
|  | TSX | Al156,4 |
|  | LXD | A 762,4 |
| A667 | CLA | A 1542 |
|  | Sto | A1541,4 |
|  | CLA | A1541 |
|  | Sto | Al540,4 |
|  | CLA | A1623 |
|  | ADD | A 1657 |
|  | STC | Al 623 |
|  | Tix | A634,4,1 |
|  | Lxu | Al066,4 |
| A 700 | SXD | A 762,4 |
|  | LxD | A1212,4 |
|  | CAL | A1676 |
|  | TNX | A $717.4,1$ |
|  | LXD | Al440,2 |
|  | LXD | A416,1 |


|  | LDQ | A 1032 |
| :---: | :---: | :---: |
|  | LGL | 6 |
|  | ALS | 24 |
|  | TIX | A715,1,1 |
|  | LXA | A1672,1 |
| A713 | TXI | * $+1,2, * *$ |
| 1 |  |  |
| A1441 | LXD | A1316,4 |
|  | TRA | 1,4 |
| A1443 | LDQ | A 1607 |
|  | STQ | Al662 |
|  | FAX | , 4 |
|  | TXH | A14bl, 4, |
|  | CLA | A1607 |
|  | TRA | 1.2 |
| A1451 | TMI | A1457 |
| A1452 | LDG | A1662 |
|  | FMP | A1613 |
|  | Sto | A 1662 |
|  | TIX | A1492,4.1 |
|  | TRA | 1,2 |
| A1457 | CLA | Al 062 |
|  | FDP | A1613 |
|  | STQ | A1062 |
|  | TIX | A1457,4,1 |
|  | CLA | A1662 |
|  | TRA | 1, |
|  | OCT | 77777 |
| TEAP | PZE | - |
|  | PZE | 1 |
| Y 1 | BSS | 1 |
| 57 | PZE |  |
| St | PZE |  |
| 55 | PZE |  |
| 54 | P2L |  |
| 53 | PZE |  |
| 51 | PZE |  |
| $x z$ | PZL |  |
| $x y$ | PZE |  |

## APPENDIX

REFERENCE MANUAL
(SPACE)

## REFERENCE MANUAL

## SUBSYSTEM PROCESSOR FOR THE APOLLO COMPUTING EFFORT

(SPACE)

1 February 1965

Prepared by:
Robert G. Hansen
Apollo Support Department
General Electric Company
Daytona Beach, Florida

# SUBSYSTEM PROCESSOR FOR THE APOLLO COMPUTING EFFORT <br> REFERENCE MANUAL <br> TABLE OF CONTENTS 

Paragraph Page
SECTION I - GENERAL INFORMATION
I.I INTRODUCTION TO THE MONITOR ..... 1-1-01
1.2 HISTORY AND DEVELOPMENT ..... 1-2-01
SECTION 2 - PROGRAMMER'S MANUAL
2.1 WRITING A PROGRAM ..... 2-1-01
2.2 DEBUGGING FACILITIES ..... 2-2-01
2.3 RELATED PROGRAMMER INFORMATION ..... 2-3-01
SECTION 3 - USER'S MANUAL
3.1 PREPARING THE REELS CARD SERIES ..... 3-1-01
3.2 CREATING THE LIBRARY ..... 3-2-01
$3 \cdot 3$ THE TYPEWRITER LISTING ..... 3-3-01
3.4 RELATED USER INFORMATION ..... 3-4-01
SECTION 4 - RELATED SUBROUTINES
4.1 GENERALIZED SORTING ..... 4-1-01
4.2 BCD OUTPUT VIA GGOUT ..... 4-2-01
4.3 UTILITY ROUTINES ..... 4-3-01

## SECTION 1

## gENERAL INFORMATION

## TABLE OF CONTENTS

| Paragraph | Page |  |
| :--- | :--- | ---: |
| 1.1 | INTRODUCTION TO THE MONITOR | $1-1-01$ |
| 1.2 | HISTORY AND DEVELOPMENT | $1-2-01$ |

## SECTION I

## GENERAL INFORMATION

### 1.1 INTRODUCTION TO THE MONITOR

SPACE is an executive, or administrative, program operating as a subset of the 7040/7044 IBJOB Processor Monitor (/47040-SV-811). The framework of SPACE is centered around a collection of seven versatile I/O subroutines. By using these subroutines, the programmer can disassociate himself completely from problems such as the 'physical' aspects of retrieving or creating externally stored data, blocking/unblocking logical records, file positioning, synchronized CPU/channel overlap, and the differences in the characteristics of recording devices. Thus, he is permitted to concentrate on his primary task--the internal processing of data.

A basic requirement of any executive monitor is to automate the running of a series of data-processing programs by calling these programs from a library tape as they are needed. This requirement necessitates the SPACE user to create his own library by employing the chain feature of IBLDR. The only requisite conditions imposed upon the link structure of this library is that SPACE be the main link, with the subsidiary programs acting as dependent links. One such dependent link is a post-execution file utility processor which must be included in the library. It may, for all purposes, be considered as a part of the monitor, only in core when needed.

Enhanced by these facilities, the objectives of the monitor may be outlined, as follows:
a. To maintain semi-compatibility with programs written for the now defunct DSDPS (Defense Systems Data Processing System).
b. To create, if possible, up to 999 files of data on a given I/O device, with the ability to randomly access any of these files.
c. To enable 'data-sharing' capabilities whereby files of output data from any program(s) can serve as input data to any later program(s), either within the same job or not.
d. To provide a framework around which systems of dataprocessing programs can be developed. Once data is available in the standard SPACE file format, the whole range of previously written programs is available to process it.

### 1.2 HISTORY AND DEVELOPMENT

The history of data processing in ASD began in July of 1963 with the installation of an IBM 7094. Mr. E. E. Johnson's engineering programming group assumed the task of writing sufficient programs which, using the Monte Carlo simulation technique, enabled the calculation of the probability of success for various flight regimes of the Apollo Mission. The effort was dubbed SOAR Ill (Simulation of Apollo Reliability) and, headed by H. N. Lerman, grew into a complex system of approximately thirty functionally dependent programs. The apparent need of a monitoring system forced the use of DSOPS to provide a tape library of SOAR programs, and to handle communications between these programs. Although the operating philosophy of DSDPS was no less than excellent, it left much to be desired in other respects. The most stringent shortcomings were threefold--(a) programs had to be assembled in absolute mode and rely upon fixed absolute locations, thus virtually inhibiting interface capabilities with relocatable subroutine libraries, assemble-and-go facilities, compiler languages ${ }^{\prime}$, etc., (b) the monitor itself had to be adopted to IBSYS and maintained by the installation, thus causing the implementation of new version software releases to be indeed 'painful', and (c) DSDPS was not suitably designed for reliability data-processing applications.

This led to the advent of SPACE, written by R. G. Hansen in the early fall of 1964, operating as a subset of 7090/7094 IBJOB under IBSYS. The new monitor was accepted with enthusiasm by most ASD programming personnel and immediate action was taken to begin converting all active DSDPS programs in the SOAR series.

Soon after the completion of 7090/7094 SPACE, a decision was made to replace the 7094 with a 7044 . The structural differences in software design of the two computers necessitated a complete rewrite of the monitor. The 7040/7044 version of SPACE is a highly flexible system and features increased capabilities over the 7090/7094 version, at a reduction of core storage requirements.

[^4]
## SECTION 2

PROGRAMMER'S MANUAL
table of contents

| Paragraph |  | Page |
| :--- | :--- | ---: |
| 2.1 | WRITING A PROGRAM | $2-1-01$ |
| 2.1 .1 | THE SPACE COMMUNICATION NUCLEUS | $2-1-01$ |
| 2.1 .2 | JOB DECK ORGANIZATION | $2-1-02$ |
| 2.1 .3 | INTER-PROGRAM COMMUNICATION BY DATA FILES | $2-1-04$ |
| 2.1 .4 | FORMAT OF THE STANDARD DATA FILE | $2-1-05$ |
| 2.1 .5 | THE FILE-PROCESS ING SUBROUTINES | $2-1-06$ |
| 2.1 .6 | PERMISSIBLE SEQUENCES OF FILE OPERATIONS | $2-1-11$ |
| 2.1 .7 | FILE PROCESSING ERROR DIAGNOSTICS | $2-1-12$ |
| 2.1 .8 | THE SYSTEM REEL/FILE TABLES | $2-1-15$ |
| 2.1 .9 | THE BCD OUTPUT EDITOR | $2-1-17$ |
| 2.1 .10 | RETURNING TO THE MONITOR | $2-1-18$ |
| 2.1 .11 | A PROGRAMMING EXAMPLE | $2-1-19$ |
| 2.2 | DEBUGGING FACILITIES | $2-2-01$ |
| 2.2 .1 | THE DUMP PROGRAM | $2-2-01$ |
| 2.2 .2 | THE POST-EXECUTION FILE UTİiLITY PROCESSOR | $2-2-02$ |
| 2.2 .3 | ABSOLUTE BINARY PATCHING | $2-2-03$ |
| 2.2 .4 | US ING THE LOGIC AND MEMORY MAP | $2-2-05$ |
| 2.3 | RELATED PROGRAMMER INFORMATION | $2-3-01$ |

## SECTION 2

## PROGRAMMER'S MANUAL

### 2.1 WRITING A PROGRAM

The following paragraphs describe the organization and operating philosophy of the monitor. Although some of the material presented here is user oriented, it is included to provide a clear understanding of SPACE programming procedures.
2.1.1 THE SPACE COMMUNICATION NUCLEUS

Two individual named common blocks contained within SPACE provide all necessary communications between the monitor and the executing programs. The control section names of these blocks are 'ACCESS' and 'SYSTEM'. Individual FORTRAN coded programs must contain either, or both, of the following COMMON statements in order to reference these areas:

COMMON/ACCESS/HC(100),WDCT, ID(12), PROG
COMMON/SYSTEM/NTAPES, REELS(15), CNTRLS(15),FILES(15),LRS(15), POS(15), TRLPOS(15),RWCNT(15),UNITS (15)

Individual MAP coded programs must contain either, or both, of the following code sequences:

| Sequence 1: | HC | BSS | 100 |
| :--- | :--- | :--- | :--- |
|  | WDCT | BSS | 1 |
|  | ID | BSS | 12 |
|  | PROG | BSS | 1 |
|  | ACCESS | CONTRL | HC,* |


| Sequence 2: | NTAPES | BSS | 1 |
| :--- | :--- | :--- | :--- |
|  | REELS | BSS | 15 |
|  | CNTRLS | BSS | 15 |
|  | FILES | BSS | 15 |
|  | LRS | BSS | 15 |
|  | POS | BSS | 15 |
|  | TRLPOS | BSS | 15 |
|  | RWCNT | BSS | 15 |
|  | UNITS | BSS | 15 |
|  | SYSTEM | CONTRL | NTAPES ,* |

These blocks are maintained by the monitor and reflect information related to the current program in execution, and also an up-to-date history of status information pertaining to I/O file activity within the entire job.

### 2.1.2 JOB DECK ORGANIZATION

The job deck for a SPACE application consists of all data cards up to, but not including, the \$IBSYS card. Consider a data card series as a group of one or more cards, the last of which contains an asterisk (*) in columns 7-72, inclusive. Individual cards comprising the series, including the terminal (*) card, may contain data items (subsequently referred to as 'words') punched in these columns in accordance with the following rules:
a. A given word will be classified as and converted to a $B C D$, integer, or floating point quantity, as characterized by the appearance of a letter, the absence of a decimal point, and the appearance of a decimal point, respectively.
b. Words are separated from one another by one or more intervening blank card columns.
c. A word cannot be continued from one card to the next.

The job deck must always begin with a card series describing information such as each reel of magnetic tape which will be needed for the job, the device to which the reel should be assigned, and, among other things, the file numbers of certain files which are to be
processed by the post-execution file utility program. This special program, in addition to performing all housekeeping functions at the end of the job, can dump selected records from generated files in a variety of formats, and can also copy a given file from one device to another. Card columns $1-5$ of the first card in this series must contain the identification word 'REELS'.

The remainder of the job deck consists of program control cards interspersed with data cards. The program control cards comprise a series and are read by the monitor. Columns $1-6$ of the first card in such a series must contain the name of the next program which is to be loaded and executed. The name must be left-adjusted and must be identical to the name given the dependent link to which the program belongs; i.e., the name appearing in columns 8-13 of the $\$ \mathrm{LINK}$ card. When the program control card series is read by the monitor, the following actions are taken:
a. The program (link) is located in the library and loaded into core storage.
b. The name of the program is placed in location PROG.
c. Program control parameters which were read from the series are placed into the $H C$ block, and the number of such parameters read is placed in the address portion of location WOCT.
d. Control is given to the program via a TRA instruction.

Data cards to be read by the program may follow the control card series; however, caution must be exercised to avoid accidental reading of the next program's control cards in the job deck. This implies that the program must have a means of recognizing the end of its associated data. If, for some reason, a program fails to read all of its data before returning to the monitor, the job deck will be searched until the next control card series is found, or a card with a dollar sign ( $\$$ ) in column one is encountered, which automatically terminates the job.

Thus, any of the programs in the SPACE library may be run in any order, as many times as desired.

### 2.1.3 INTER-PROGRAM COMMUNICATION BY DATA FILES

Central to the design of SPACE is a collection of seven versatile binary I/O subroutines. These subroutines enable programs to read or write up to fifteen files of data, simultaneously. The basic unit of information within such a file is termed a logical record. Several logical records grouped together constitute a block, or physical record on the recording medium, and all such blocks grouped together constitute the data file itself. Every data file has a unique number associated with it, termed the file number, and programs communicate with the files by these numbers alone. The uniqueness is effected by specifying the reel number ( ${ }^{1}$ ) upon which the file resides, together with the position ( $P$ ) of the file relative to load point. The file number is then expressed as an integer of the form, l000R+P. For example, the file number 387002 reflects the second file of data contained on reel 387 .

The discussion so far has implied the use of tape reels which have been assigned to a particular individual for his exclusive use. The reels must, of course, be mounted at the beginning of his job and must be terminally removed to prevent possible destruction by subsequent jobs. This philosophy is an excellent one provided that all data files which were created in the job were of a permanent nature; i.e., files which would subsequently be used for input at a later date. Many applications, however, require the use of mediary, or scratch files. These files are to be used only within the job and need not be saved. Since only one file per reel can be in an active state at any one time, it follows if at some point a requirement exists to read or write several mediary files simultaneously, an appropriate number of reels would have to be mounted at the outset of the job to accommodate these files. This time consuming and costly procedure can be alleviated by specifying the reel(s) as mediary in the tape assignment card series. A mediary reel number consists of a negative integer, the magnitude of which is less than 32,768 . This number serves only as a reference when specifying file numbers; hence, the choice of such

[^5]is left to the discretion of the user'. The term 'reel' takes on a different connotation when referring to mediary reels. In this case, the 'reel' may be sequential tracks of disk or drum storage, or a reel of magnetic tape. From the programmer's and user's point of view, however, all of the devices may be treated as magnetic tape. A mediary reel, then, consists of an available device upon which data files can be recorded and read only by the programs used within a given job. Unless otherwise specified, the monitor will attempt to assign these reels to devices which are in ready status, thus eliminating the need of manual intervention to mount and remove tapes.

### 2.1.4 FORMAT OF THE STANDARD DATA FILE

The standard SPACE data file consists of a twelve-word identification record followed by any number of data blocks, the last block of which is followed by an end of file mark. The content of the identification record is as follows:

Word 1 - A label identifier, consisting of the BCD word 'FILEID'.

Word 2 - The file number of the file.
Word 3 - The date upon which the file was created, formated in BCD as MMDDYY.
Word 4 - The BCD name of the program which created the file.
Word 5 - An integer, right adjusted, indicating the size of logical records within the file.
Word 6 - The address of this word contains a count of all physical records constituting the previous data file. It is used by the I/O routines for file positioning purposes.

Words 7-12 of the identification record are available for use by the programmer, should he elect to place additional information about the file into the label. The contents of these six words are never altered or disturbed in any way by the file processing routines, except when a file is opened for reading.

[^6]Physical data records, or blocks, within the file are 257 words in length, with the exception of the last such block, which may be less than 257 words. Two dummy words are provided at the beginning of each block to prevent it from being noise (containing less than three words) and, in addition, a word is appended to the end of the block which serves internal validity checking purposes. Before the block is written, its sequence number is placed in the address of this word. A check sum is then formed by computing a logical sum of the entire data in the block. The left and right halves of this sum are added together, and the resultant 'folded' check sum is placed in the left half of the word. Whenever the block is read, a folded check sum is computed and compared against the left half of the last word in the block. In addition, the current block sequence count is compared against the address of this word. An unequal compare, in either case, is considered an unrecoverable error condition. These words are handled internally by the processing routines only and will never, under any circumstances, be transmitted to the user as data.

As mentioned earlier, the last data block in a file is followed by an end of file mark. An additional file mark is placed at the end of all usable files on the reel which serves as a trailer label for the reel. If the trailer label is encountered by the processing routines while attempting to position at a file upwards on the reel, and positioning requirements have not yet been satisfied at the point of encounterment, an unrecoverable error condition occurs and the user is informed of his attempt to access a nonexistent file.

### 2.1.5 THE FILE-PROCESSING SUBROUTINES

Seven subroutines enable SPACE programs to handle data files by file number alone. With these facilities, programs can read, write, skip, and backspace logical records, or write an end of file mark simply by calling the appropriate routine. The following definitions apply to CALL prologue arguments which must be supplied to the various subroutines when they are used:
$\left.\begin{array}{rl}\text { F }= & \text { A location containing the file number of the } \\ & \text { file which is to be acted upon. }\end{array} \quad \begin{array}{rl}\text { LRS }= & \text { A location containing the size, or length, of } \\ & \text { logical records within the file, in terms of } \\ & \text { words. It must be a positive, right-adjusted } \\ & \text { integer less than } 255 .\end{array}\right\}$

### 2.1.5.1 SUBROUTINE READBI

Before data can be read from a given file, the file must have been previously activated, or opened, by calling READBI as follows:

CALL READBI (F,LRS)
When this call is executed, the following events take place:
a. If any file is currently active on the reel specified by $F$, it is closed by calling ENDF.
b. The reel is positioned to the data file specified by $F$, and the identification record of the file is read into locations 10 through ID+11.
c. Call arguments $F$ and LRS are compared with $C(1 D+1)$ and $C(I D+4)$, respectively, to verify positioning success. The label identifier contained in C(ID) is additionally verified.
d. All housekeeping functions are performed to permit subsequent use of READB2 for reading the file.

It is conceivable that the LRS specification of a given file will not be known when it is desired to open the file with READBI. Although such a situation should be avoided, the file may be opened by setting the $C(L R S)$ to zero before calling READBI. At return, the $C(10+4)$ can be inspected to determine the LRS of the file.

### 2.1.5.2 SUBROUTINE READB?

This subroutine is used to read any number of logical records from a file which has previously been activated by READBI. Linkage to READB2 is as follows:

CALL READB2 (F, FWA, NREC,HISTRY)
When this call is executed, READB2 will begin reading the next NREC logical records from file $F$, each of size LRS, into the transmission area specified by FWA. The first such record will be transmitted to locations FWA through FWA+LRS-1, the second to locations FWA+LRS through FWA+2*LRS-1, etc., until NREC logical records have been transmitted, or the end of file is encountered, whichever occurs first. At the end of the operation, READB2 will place a right-adjusted integer into location HISTRY which reflects the total number of words transmitted by the request. Furthermore, if the end of file was encountered before NREC logical records were transmitted, the sign of location HISTRY will be set negative and the file will become inactive. It cannot be referenced again until it is opened by READBI (or ABOUTI).

### 2.1.5.3 SUBROUTINE ABOUTI

Before data can be written in a given file, the file must have been previously activated, or opened, by calling ABOUTI as follows:

CALL ABOUTI (F,LRS)
when this call is executed, the following events take place:
a. If any file is currently active on the reel specified by $F$, it is closed by calling ENDF.
b. The reel is positioned as specified by $F$.
c. The first six words of the 10 block are prepared and the identification record is written from locations 10 through $10+11$.
d. All housekeeping functions are performed to permit subsequent use of ABOUT2 for writing the file.
Note that words 7-12 of the identification record are reserved for use by the programmer. If he elects to use any of these words, he must prepare them in the 10 block prior to calling ABOUTI.

### 2.1.5.4 SUBROUTINE ABOUT?

This subroutine is used when it is desired to write logical records in a file which has previously been activated by ABOUTI. Linkage to ABOUT2 is as follows:
CALL ABOUT2(F,FWA,NREC)

When this call is executed, ABOUT2 will write NREC logical records into file $F$, each of size LRS, from the transmission area specified by FWA. Thus, a total of NREC*LRS contiguous words will be transmitted to the file from locations FWA through FWA+NREC*LRS-1.

### 2.1.5.5 SUBROUTINE SKIPR

In some applications, it may be necessary to start processing a file at some logical record other than the first, or perhaps only every $n{ }^{\text {th }}$ record of the file is to be processed. In either case, the SKIPR routine can be employed to pass over, or ignore, the unwanted records. Linkage must be as follows:

> CALL SKIPR(F,NREC,HISTRY)

The call to SKIPR causes the next NREC logical records contained in file $F$ to be skipped over, unless the end of file is encountered before the request is satisfied. In either case, SKIPR will place a count of the number of words skipped into location HISTRY. Furthermore, if the operation was ended due to encountering the end of file, the sign of location HISTRY will be set negative. The file will not, however, be made inactive. This is an important distinction between READB2 and SKIPR. For example, if it is desired to start processing at the last logical record in a file and work backwards, the following subroutines would be used in the prescribed order:

READBI To activate the file.
SKIPR Until the end of file is reached.
BSPR
READB2
BSPR
READB2
To backspace one logical record.
To obtain the last record.
To backspace two logical records.
To obtain the next-to-last record. etc.

A check must, of course, be made after each call to BSPR to determine if the beginning of file has been reached.

### 2.1.5.6 SUBROUTINE BSPR

This subroutine is used to backspace over logical records in a file which has been previously activated by READBI. Linkage is as follows:

## CALL BSPR(F,NREC,HISTRY)

This call results in backspacing over NREC logical records in file $F$ which have already been processed by READB2 or SKIPR, unless the beginning of the file is encountered before the BSPR request is satisfied. In either case, the BSPR subroutine will place a count of the number of words backspaced into location HISTRY. If the operation was ended due to encountering the beginning of file, the sign of location HISTRY will be set negative, and a subsequent call to READB2 or SKIPR will begin processing with the first logical record of the file.

### 2.1.5.7 SUBROUTINE ENDF

This subroutine is used to close, or inactivate, a given file. Subsequent references cannot be made to the file until it is re-opened by READBI or ABOUTI. Linkage is as follows:

## CALL ENDF(F)

If file $F$ is being written, data in the current buffer used by the file is written out, and followed by a file mark. Note that this may result in writing a physical data record less than 257 words, as the buffer may only be partially filled when ENDF is called. If file $F$ is being read, ENDF will cause it to become inactive. If the file is already inactive, the call is ignored.

The monitor automatically calls ENDF between programs for any files which are active. In addition, ENDF will be called by subroutines READBI and ABOUTI if any file is currently active on the reel they are to use. Hence, it is frequently unnecessary for the programmer to
employ ENDF. Exceptional circumstances might include:
a. The case in which there would otherwise be more files active than buffers to accommodate them. A file which is active requires the exclusive use of two buffers. When a file becomes inactive, its buffers are returned to a 'pool' so that they may be used by some other file. This pool is located near the top of core storage and normally contains twice as many buffers as there are reels for the job. If after loading a program, however, the monitor discovers that it extends into the pool, an appropriate number of buffers will be inhibited, or made unavailable for use by active files within that program. Hence, very large programs should call ENDF for files which remain unnecessarily active to free the buffers for other activity; e.g., all output files, and partially read input files.
b. When the number of buffers to be assigned to the pool has been specified in the REELS card series, and is less than the standard number.

### 2.1.6 PERMISSIBLE SEQUENCES OF FILE OPERATIONS

Certain combinations of reading and writing files on a given reel are illegal. In the table that follows, $R_{c}$ implies that the current (or last) use of the reel was for input from file $C, R_{p}$ implies that the next use of the reel is to be for input from a previous file, i.e., one physically preceding file $C$, and $R_{s}$ implies that the next use of the reel is to be input from a subsequent file; i.e., one physically following file $C$. Similar definitions apply to $W_{C}, W_{p}$ and $W_{S}$ for output files.

| OPERATION | POSSIBLE | REMARKS |
| :---: | :---: | :---: |
| $R_{c} R_{p}$ | Yes | Always permissible. |
| $\mathrm{R}_{\mathrm{c}} \mathrm{R}_{\mathrm{s}}$ | Yes | Provided file S exists. |
| $R_{c} \mathrm{R}_{\mathrm{c}}$ | Yes | Always permissible. |
| $\mathrm{R}_{\mathrm{c}} \mathrm{W}_{\mathrm{p}}$ | Yes | All files following $\mathbf{P}$ will become nonexistent. |
| $\mathrm{R}_{\mathrm{c}} \mathrm{W}_{5}$ | Yes | Provided that a file immediately preceding file $S$ exists. |
| $\mathrm{R}_{\mathrm{c}} \mathrm{W}_{\mathrm{c}}$ | Yes | Always permissible. |
| $W_{c} R_{p}$ | Yes | Always permissible. |
| $W_{c} \mathrm{R}_{s}$ | No | When file $C$ is written, it is considered as the last file currently contained on the reel. |
| $W_{c} R_{c}$ | Yes | Always permissible. |
| $W_{c} W_{p}$ | Yes | All files following $P$ will become nonexistent. |
| $W_{c} W_{s}$ | Yes | Only if file $S$ immediately follows file $C$. |
| $W_{c} W_{C}$ | Yes | Always permissible. |

### 2.1.7 FILE PROCESS ING ERROR DIAGNOSTICS

When any of the file processing routines are called upon, several checks are made to insure that the requested operation is legal. If for any reason an error condition is indicated, an appropriate diagnostic is given, accompanied with a terminal dump of the program area. The diagnostic will always include the name of the subroutine called, the absolute octal location of the CALL, and also its internal formula number (IFN), providing one exists.

The error comments, together with the conditions which cause the error are given below. Asterisks denote a quantity which will be supplied.

### 2.1.7.1 CALL SPECIFIES IMPROPER NUMBER OF PARAMETERS.

The number of parameters, or arguments, supplied to subroutines READBI, READB2, ABOUTI, ABOUT2, SKIPR, BSPR and ENDF must be 2, 4, 2, 3, 3,3 and 1 , respectively.

### 2.1.7.2 CALL REFERENCES INACTIVE OR NONEXISTENT FILE ******.

This diagnostic is given whenever (a) the reel number $R$, or the position $P$ implied by the file number is zero, (b) $R$ is not specified in the REELS card series, or (c) the file was inactive when a call was made to READB2, ABOUT2, SKIPR, or BSPR.
2.1.7.3 FILE ****** CANNOT BE OPENED DUE TO INSUFFICIENT BUFFERS.

Subroutine READBI (or ABOUTI) has discovered that there are not two buffers available for opening the given file.
2.1.7.4 CALL INDICATES LRS $=$ F $^{* * *}$ FOR FILE ${ }^{* * * * * * . ~}$

The LRS specification given to subroutines READBI or ABOUTI is greater than 254 , or zero if the CALL was to ABOUTI.
2.1.7.5 LRS IN FILE ID $=* * *$.

This is appended to the above diagnostic if READBI discovers that the LRS specification given in the call differs with the LRS contained in the identification record of the file.

### 2.1.7.6 CALL REFERENCES FILE PROTECTED REEL ******.

The reel upon which ABOUT is to open a file has been logically file protected and hence, cannot be written on.

### 2.1.7.7 FILE ****** IS NONEXISTENT, OR CANNOT BE ACCESSED DUE TO POSITIONING FAILURE.

While positioning from one file to another, READBI and ABOUTI verify the identification records of all files passed over by checking the label identifier and the length of the record. Furthermore, READBI will verify the file number in the identification record of the desired file by comparing it with the file number given in the CALL. A discrepancy in these compares will result in the above diagnostic and may be due to encountering the reel trailer label while positioning forward, or perhaps by a program still in the debug phase which has accidently moved the recording medium.

Before the actual positioning begins, certain criteria are inspected to determine the existency of the file. Existency can always be predetermined if (a) any file has been previously written on the reel within the job, or (b) the reel is mediary, or (c) the NOLABEL option was specified in the REELS card series for the reel.

### 2.1.7.8 CALL SPECIFIES ILLEGAL TRANSMISSION AREA.

Whenever a call is made to READB2 or ABOUT2, the transmission area into which data is to be read or from which data is to be written is checked. The first word address (FWA) of this area must not be less than the origin of the first dependent link within the job, and FWA+NREC*LRS must not be greater than S.SEND (normally 32767 ).

### 2.1.7.9 FILE ****** IS IN ****** STATUS.

Either a call has been made to ABOUT2 for a file which is currently being read, or a call has been made to READB2, SKIPR, or BSPR for a file which is being written.

### 2.1.7.10 EOT DETECTED ON REEL

The physical end of the recording medium has been detected by ABOUTI, ABOUT2, or ENDF.

### 2.1.7.11 AN IOBS ERROR (CODE **) HAS OCCURRED ON REEL *****.

An error has been detected by the Input-Output Buffering System on the specified reel. The various error codes are as follows:

1 = Block sequence number error.
$2=$ Check sum error.
3 = Both block sequence and check sum errors.
4 = An unrecoverable read error.
5 = An attempt to write on an unopened output file.
$6=$ Buffer overflow (writing).
7 = Buffer overflow (reading).
8 = Unexpected mode change.
9 = An unrecoverable write error.
$10=$ Incomplete word read.

### 2.1.8 THE SYSTEM REEL/FILE TABLES

As mentioned in section 2.1.1, part of the SPACE communication nucleus consists of a named common block termed 'SYSTEM'. This block contains tables of information used by the file processing routines. Individual programs may also use any of this information, however, they must never alter it in any way. An entry within any of the eight tables bears a one-to-one correspondence with an entry in any other table; e.g., REELS(4) and LRS(4) are related. The format of an entry within each of the tables follow:

NTAPES - An address integer reflecting the total number of reels specified in the 'REELS' card series. Note that this also represents the number of entries contained in each of the eight tables.
REELS - Each entry contains the reel number of a reel being used in the job.

CNTRLS - Each entry reflects the options which were exercised for the reel in the 'REELS' card series, as follows:

```
bit S = 1, if the reel is logically file
 protected.
bit 1 = l, if a reel header label had to
 be created for the reel.
 bit 2 = 1, if mounting was deferred.
 bit 3 = 1, if unit assignment was made by
 an IxxR specification.
 bits 4-17 = The intersystem reservation code
 associated with the unit, or zero.
 bits 18-20= The index (1, 2, etc.) of the
 channel requested for the reel,
 or zero.
 bits 21-35 = The first word address of the 1OBS
 file control block assigned to the
 reel.
```

FILES - Contains the file number of the file currently active on the associated reel. If a file is not active on the reel, this entry will be zero.
LRS - Reflects the logical record size of the last file which was opened by READBI or ABOUTI.
POS - Contains the position $P$ implied by the file number of the last file opened by READBI or ABOUTl. If an end of file was encountered by READB2, or written by ENDF, the sign of the entry is set negative.
TRLPOS - Reflects the position $\mathbf{P}$ implied by the file number of the last file which was written on the associated reel. If no files have been written on the reel within the job, the entry contains zero.
RWCNT - The decrement contains a count of all files opened by ABOUTI, and the address contains a count of all files opened by READBI.
UNITS - Contains the symbolic units table entry of the device to which the reel was assigned.

### 2.1.9 THE BCD OUTPUT EDITOR

In addition to the file processing subroutines contained in SPACE, the programmer has access to a flexible BCD output routine which is used by the monitor. With this routine, a given line can optionally be edited, typed, and/or written on S.SOUl. The editing process consists of eliminating superfluous blank characters from the given prototype line image; i.e., if two or more contiguous blanks appear in the prototype, all but one will be eliminated. The prototype itself will not be changed. The entry point to the subroutine is a control section termed 'OEDIT'. Note that it can only be accessed by MAP coded programs. Linkage is as follows:

| TSX | OEDIT,4 |
| :--- | :--- |
| PFX | PROTYP,SPCING,N |
| (RETURN) |  |

```
where---PROTYP \(=\) The FWA of the prototype line image
 SPCING = O for single space,
 1 for page restore, or
 2 for double space
 (Note - SPCING is ignored for type requests)
 \(\mathrm{N} \quad=\) The number of words in the prototype line image.
 PFX = Output options, as follows:
```

    PZE - Type with edit.
    PON - Type without edit.
    PTW - S.SOUl and type with edit.
    PTH - S.SOUl and type without edit.
    MZE - Edit only (at return, the AC contains
                    PZE NEWFWA, ,NEWN).
    MON - No operation performed.
    MTW - S.SOUl with edit.
    MTH - S.SOUl without edit.
    The use of 'OEDIT' is best shown by the following example. An integer of from 1-5 digits is to be converted to BCD, left adjusted with trailing blanks, and stored in line image 'PROTYP'. The line is then to be edited and written on S.SOUl w/page restore.


Suppose the number had been 29. If the line had been written without editing, it would have appeared as:
bNETWORKbCONTAINSb29bbbbCOMPONENTS.

The above use of OEDIT, however, would produce:
bNE TWORKbCONTAINSb29bCOMPONENTS.

The following restrictions and conventions apply to the use of OEDIT:
a. If the argument, $N$, is greater than 22 , it will be reduced to 22.
b. If N is zero, the call is ignored.
c. The same prototype line may be used repeatedly. It is never altered or changed by OEDIT.
d. The entire subroutine requires 91 locations.
2.1.10 RETURNING TO THE MONITOR

When a given program has finished processing, it must return control to the monitor so that the next program, if any, can be loaded and executed. This must be accomplished via the following CALL:

CALL SPACE

When this call is executed, the monitor will read the next program control card series in the job deck, if any, and take actions as prescribed in paragraph 2.1.2.

In many instances, however, some sequences of program executions are fixed. For example, a very large program may be split into two or more smaller programs, which must be executed successively. To eliminate the need of preparing a control card series for each of these programs, a 'direct chain' technique may be employed. This enables a given program to dictate the next program to be executed, as follows:

## CALL SPACE (PROGRM)

'PROGRM' is the location of a word containing the BCD name of the next program in line for execution. When the direct chain technique is used, the monitor will not read the next control card series, nor will it disturb the information contained in the HC block or location WDCT. Machine registers including the AC, MQ, XRI, XR2, and XR4 are always saved when the monitor receives control, and are restored prior to giving control to the next program. Thus, when using the direct chain, a program could pass control parameters to the next program through any of these registers. Note that an unrecoverable error will result if the monitor cannot find the requested program in the library.

### 2.1.11 A PROGRAMMING EXAMPLE

The following program could be used to delete specified logical records from a given input file; i.e., create a new file reflecting the deletions. To use it, the program control card series must be prepared as follows:

Columns 1-3 of first card $=992$ (program name)
Word $1=$ File number of input file.
Word $2=$ File number of output file.
Word $3=$ Record number of first record to be deleted.
Word $4=$ Record number of second record to be deleted.

Word $N=$ Record number of $(N-2)^{\text {th }}$ record to be deleted, followed by an asterisk (*).

For example, if the 3 rd, 17 th and 80 th records of file 91006 were to be deleted, and the desired output file number was 478001 , then the series would look like this:
$992 \quad 91006 \quad 478001 \quad 3 \quad 17 \quad 80$ *
Our program must not assume that the record numbers are given in an ascending order. Therefore, they must be sorted before the editing process begins.
\$LINK 992
\$IBFTC 992

SPACE EDITING PROGRAM - $2 / 18 / 65$ COMMON/ACCESS/HC(100),WDCT, ID(12), PROG INTEGER HC, WDCT DIMENS ION BUFFER (254)
CALL SORT (HC (3), WDCT-2,1,1)
CALL READBI (HC (1),0)
CALL ABOUTI (HC (2), ID(5))
$\mathrm{I}=0$
$J=3$
CALL READB2(HC(1), BUFFER(I), 1,EOF)
IF (EOF . NE. O.) GO TO I
$\mathrm{I}=\mathrm{I}-\mathrm{J}+3$
WRITE $(6,100)$ HC(2),I
FORMAT (19HO99Z OUTPUT FILE IS,I9,
\$14H, AND CONTAINS, I6,9H RECORDS.)
CALL SPACE
$1=1+1$
IF(I .NE. HC(J)) CALL ABOUT2(HC(2), BUFFER(1),I)
IF (I .EQ. HC(J)) J=J+1
GO TO 2
END
\$ENTRY

### 2.2 DEBUGGING FACILITIES

### 2.2.1 THE DUMP PROGRAM

The dump is one of the most effective tools which can be used for programming entomology; i.e., locating bugs, or errors, within a program. The SPACE dump program differs from other programs in the sense that it is part of the monitor itself; however, it may be treated and used as any other program.

The control card series for the dump program must be prepared as follows:

Columns 1-4 of first card = DUMP
$\begin{array}{llll}\text { Words } & 1-3: & A_{1} & B_{1} \\ F_{1}\end{array}$
Words 4-6: $\begin{array}{llll}A_{2} & B_{2} & F_{2}\end{array}$

Words ( $N-2$ ) $-N: \quad A^{N} \quad{ }^{B_{N}} \quad \frac{F_{N}}{3} \quad$ followed by an asterisk (*).

The parameters $A_{i}$ and $B_{i}$ represent decimal limits of areas to be dumped, inclusive. The relative ordering of these limits is immaterial, and either $A_{i}$ or $B_{i}$ may represent the upper or lower limit. The parameter $F_{i}$ is an integer indicating the dump format desired, as follows:

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{i}}=0, \text { dump in octal (single line) } \\
& \mathbf{F}_{\mathbf{i}}=1, \text { dump as floating point decimal (single line) } \\
& \mathbf{F}_{\mathbf{i}}=2, \text { dump as integer (single line) } \\
& \mathbf{F}_{\mathbf{i}}=3, \text { dump in octal with mnemonics (double line) }
\end{aligned}
$$

The direct chain technique may also be employed to use the dump program, as follows:

CALL SPACE (4HDUMP, $A_{1}, B_{1}, F_{1} \ldots, A_{N}, B_{N}, F_{N}$ )

Parameters $A_{i}, B_{i}$ and $F_{i}$ have the same definitions as before, except that $A_{i}$ and $B_{i}$ may be variable names; e.g.,

CALL $\operatorname{SPACE}(4$ HDUMP, $\operatorname{ARRAY}(1), \operatorname{ARRAY}(50), 2)$

If no parameters are supplied to the dump program in the DUMP control card series (or the calling sequence of a direct chain), then standard parameters will be assumed, as follows:

$$
\begin{aligned}
& A_{1}=S \cdot S L O C / 8 * 8 \\
& B_{1}=S \cdot \text { SEND } \\
& F_{1}=0
\end{aligned}
$$

Following execution of the dump program, the monitor will resume by reading the next program control card series, if any. Note that panel information ( $A C, M Q$, etc.) will be given for each group of three parameters; however, only that given for the first group will reflect the status of the registers when the dump program was called.

## THE POST-EXECUTION FILE UTILITY PROCESSOR

As mentioned in the introduction, the utility processor is a program residing in the library which may be considered as part of the monitor, only in core when needed. It is executed at the end of every job and performs the file utility requests specified in the REELS card series, provides statistics related to the job, and handles ail terminal housekeeping functions.

The file utility operations which may be performed are two-fold and are as follows:
a. Dumping selected logical records within any given file(s) onto S.SOUl, formatted in octal, floating point decimal, integer, or BCD.
b. Copying any given file onto another file. It is possible to move a file to another position on the same reel, provided that some other non-file protected reel is being used in the job. A file may also be copied to a reel which is logically file protected.

Any request to perform a utility operation on a nonexistent file, or one which cannot be accessed will be identified and otherwise ignored. It will never be treated as an error.

When all file utility operations have been completed, the following information will be provided:
a. The reel number of each reel used in the job.
b. The symbolic and physical device to which each reel was assigned.
$c$. Both the number of files read and the number of files written on each reel during the job.
d. The position of the trailer label on each reel. Note that this reflects the number of useable files now contained on the reel.
e. A tabular listing indicating the name and order of all programs currently residing in the library.

The program name of the post-execution file utility processor is 'UTLITY'. In the event a program finds itself hopelessly lost, to the point where further execution should be abandoned, the following CALL should be executed:

## CALL SPACE(6HUTLITY)

A program control card series is not required at the end of the job deck to execute the utility processor--it will automatically be called by the monitor.

### 2.2.3 ABSOLUTE BINARY PATCHING

In order to debug a new program, the programmer must create his own library tape, incorporating his program, by employing the COPY feature of IBJOB. To eliminate the need of recreating the library each time a new bug is found, the programmer can make executiontime binary patches to the appropriate program(s). This is accomplished by prefixing the letter $X$ to the program name in the control card series and following the series with binary cards, punched in standard
absolute column binary format. The last such card must be the transfer card and is identified by having a word count of zero. If the transfer address is non-zero, this address will be used as the entry point to the program; if it is zero, the standard entry point will be used. A checksum is computed and verified for each card unless (a) the ignore-checksum bit in column one is punched, or (b) the checksum on the card is zero. If the computed checksum does not agree with the card checksum, a warning message will be typed stating the load address of the offending card. The condition will otherwise be ignored.

An attempt to load a binary card below the origin of the first dependent link will be considered an error and will cause execution to be terminated. This is also true if a word count is given which exceeds $22 / 10$, or if a BCD card is encountered before the transfer card.

To employ the patching facility, the programmer must, of course, know the absolute location(s) into which the patch is to be placed. By exercising the MAP or LDGIC option on the $\$ I B J O B$ control card at copy time, he can determine the origin, or relocation factor, of the deck or subroutine which he wishes to patch. The absolute location of the patch can then be determined by adding this relocation factor to the relative location given in the assembly listing. Note that a technique of reserving a block of, say 50 cells in a program for future patching purposes deserves some merit.

When the monitor reads a program control card series which indicates the presence of binary cards, the following actions take place:
a. If the specified program is in the library, it is loaded into core storage.
b. The binary cards are processed.
c. Control is given to the program.

By employing the LOGIC or MAP option on the \$IBJOB control card when creating a library, the programmer is provided with facilities for determining the absolute origin and extent of each deck or subroutine contained therein. The logic option specifies a detailed storage-allocation map, while the MAP option specifies a non-detailed storage-allocation map. If the MAP option is used, in addition with the LOGIC option, the former results only in producing redundant information.

Inspecting the logic map of the main link (SPACE), the programmer can find the absolute origin of each file processing routine. Whenever one of these subroutines is called, the location plus one of the call is stored in the address of the appropriate location referenced in the logic map. Thus, in the event of an unexpected stop or error condition (accompanied with a dump) these locations act as pointers to the last call executed for each of the routines. The monitor always initializes these locations between programs.

The logic and memory maps which follow reflect a library configuration with SPACE as the main link, and four dependent links, each constituting one of the programs 13I, I2I, $61 I$ and UTLITY. It should be noted that the utility program is the last link in the sample library. If this were not the case, it might have to be passed over several times in the course of accessing the other programs, thus causing an unnecessary waste of tape passing time.

```
SPACE LIGRARY - VER. 2, MGD. 1 IRLDR -- JGB SPACE
```

LCGICMAP

FGR MAIN LINK

|  | REAL SEC | SECTION | - S.SLOC |  | ASSIGNED | ABSOL |  | RIGIN | 12253. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DECK | - SPC | - assigned absglute |  |  | GRIGIN 123 | 352 |  | USTED | LENGTH IS | 4427. |
|  | VIRTUAL | UAL SECTION | - S. BSR |  | REFERS 10 | DECK |  | 此 ', | locatign | 00172. |
|  | virtual | UAL SECTION | - S.CLSE' |  | REFERS 10 | DECK |  | NUC ', | locatign | 60170. |
|  | virtual | Ual section | -S.FBIN' | - | REFERS TO | DECK |  | NSYFB', | location | 12261. |
|  | VIRTUAL | UAL SECTION | 'S.FBOU' |  | REFERS 10 | DECK | - ${ }^{\text {OUS }}$ | SSYFB', | location | 12304. |
|  | virtual | UAL SECTIGN | -S.FBPP' |  | REFERS TO | DECK. |  | SYFB', | location | 12327. |
|  | virtual | Ual section | - S.GETR' |  | REFERS TO | DECK | -I8 | SNUC •, | locatign | 0C164. |
|  | virtual | UAL SECTIGN | 'S.GETL' |  | REFERS 10 | DECK | - I B | BNUC •, | locatign | 00163. |
|  | virtual | ual section | - S.I gep' |  | REFERS TO | DECK |  | BNUC ', | location | 00157. |
|  | virtual | UAL SECTION | - S. JNAM' |  | REFERS TO | DECK | -IB | BNUC ', | location | 00311. |
|  | virtual | UAL SECTION | -S.JXIT' |  | REFERS TO | DECK |  | Stx $\quad$, | location | 17040. |
|  | virtual. | UAL SECTION | 'S.GPEN* |  | REFERS 10 | DECK | - I | BNUC ', | location | 00161. |
|  | virtual. | UAL SECTION | - S.PUTP' |  | REFERS TO | DECK |  | BNUC ', | location | colth. |
|  | virtual | UAL SECTION | 'S.PUTL' |  | REFERS TO | DECK |  | NUC •, | locatign | 00165. |
|  | virtunl | UAL SECTION | 'S.SAVE' |  | REFERS TO | DECK | -I | ANUC ', | locatign | 00250. |
|  | virtual | UAL SECTION | 'S.SCCR' |  | REFERS TO | DECK |  | BNUC '., | location | 00143. |
|  | virtual | UAL SECTIGN | -S.SCCI' |  | REFERS TO | DECK | - I B | BNUC •, | locatign | 00266. |
|  | virtual | UAL SECTION | - S. SDAT' | - | REFERS TO | DECK | -I | NUUC •, | location | CC213. |
|  | VIRTUAL | UAL SECTION | ${ }^{\prime}$ S.SENE' |  | REFERS TO | DECK |  | NNUC •, | location | 77777. |
|  | VIRTUAL | UAL SECTION | ${ }^{-}$S. SLCR' |  | REFERS TO | DECK | 'IB | BNUC ', | location | CC135. |
|  | virtual | UAL SECTION | 'S.SLOC' |  | ASSIGNED A | Absalu |  | ORIGIN | 12253. |  |
|  | VIRTUAL | UAL SECTION | -S.SLTC' |  | REFERS TO | DECK |  | BNUC ', | location | $0 C 210$. |
|  | virtual | UAL SECTION | -S.SU00' | - | REFERS TO | DECK | -I | BNUC ', | location | 00337. |
|  | VIRTUAL | UAL SECTION | 'S.SUnI' |  | REFERS TO | DECK |  | NUC ', | locatiga | 0C207. |
|  | VIRTUAL | ual section | -S.xACT' |  | REFERS $T$ O | DECK |  | ANUC ', | location | 00145. |
|  | VIRTUAL | ual section | 'S.xEVA' |  | REFERS $T 0$ | DECK | -I | ANUC ', | location | cols |
|  | virtual | ual section | 'S.XDVD' |  | REFERS 10 | DECK |  | BNUC ', | location | OC154. |
|  | VIRTUAL | ual section | 'S.xuva' |  | REFERS TO | CECK |  | BNUC •, | location | 00151. |
|  | VIRTUAL | UAL SECTION | 'S.XPRT' |  | REFERS TO | UECK |  | ENUC •, | location | 00147. |
|  | VIRTUAL | UAL SECTION | 'S.XPSE' |  | REFERS TO | DECK |  | NUC ', | location | OCL50. |
|  | VIRTUAL | UAL SECTION | 'S.XSNS' | - | REFERS $T 0$ | DECK | - İ | Sivic ! | locatign | $0 \mathrm{C3C0}$. |
|  | virtual | Ual SECTION | - poump - |  | REFERS TO | DECK |  |  | location | 20731. |
|  | VIRTUAL | IAL SECTION | 'REAChP' |  | REFERS 10 | DECK |  | DH44 ', | location | 22606. |
|  | VIRTUAL | UAL SECTION | - SCAV |  | REFERS TO | DECK |  | DH44 ', | location | 23100. |
|  | REAL SEC | SECTION | - SIGNCN' |  | ASSIGNED | $\triangle B S O L U$ |  | ORIGIN | 12352. |  |
|  | REAL SEC | SECTIGN | - SPACE |  | ASSIGNED | ABSOLU |  | ORIGIN | 13533. |  |
|  | REAL SEC | SECTION | - Readel' |  | ASSIGNED | ABSOLU |  | ORIGIN | 14242. |  |
|  | REAL SEC | SECTION | - READB2' |  | ASSIGNED | ABSOLU |  | ORIGIN | 14246. |  |
|  | REAL SEC | SECTION | 'AbOUT1' |  | ASSIGNED | ARSOLU |  | ORIGIN | 14252. |  |
|  | REAL SEC | SECTION | 'aboutz' |  | $\triangle$ SSIGNED | ABSOLU |  | ORIGIN | 14256. |  |
|  | RFAL SEC | SECTIGN | - SKIPR |  | ASSIGNED | ABSOLU |  | ORIGIN | 14262. |  |
|  | REAL SEC | SECTION | - BSPR |  | ASSIGNED | $A B S O L U$ |  | ORIGIN | 14266. |  |
|  | RFAL SEC | SECTIGN | - ENDF |  | ASSIGNED | ABSOLU |  | ORIGIN | 14272. |  |
|  | REAL SEC | SECTION | - GEDIT ${ }^{\text {- }}$ |  | ASSIGNED | ABSOLU | UTE | GRIGIN | 15344. |  |
|  | REAL SEC | SECTIGN | - SYSTEM' |  | ASSIGNED | ABSOLU |  | ORIGIN | 16476. |  |
|  | REAL SFC | SFCTION | - ACCESS ${ }^{\circ}$ |  | ASSIGNED | ABSOLU |  | ORIGIN | 16617. |  |

DECK •DSSCAN' ASSIGNED ABSOLUTE GRIGIN 17001. ADJUSTED LENGTH IS CCO37. VIRTUAL SECTION SCAN. - REFERS TO DECK •RDH44 •, LOCATIGN 23100.

$$
\begin{array}{ll}
\text { VIRTUAL SECTION } & \text { S.SLCC' - ASSIGNED ABSOLUTE ORIGIN } 12253 . \\
\text { RFAL SECTION } & \text { OSSCAN' - ASSIGNED ABSOLUTE ORIGIN } 17007 .
\end{array}
$$

DECK •IRNUC • ASSIGNED ABSCLITE ORIGIN OOOOO. ARSOLUTF DECK. RFAL SECTIGN 'S.SUTL" - ASSIGNED ABSOLUTF ORIGIN 00032. RFAL SECTION -S.SLCR' - $\triangle$ SSIGNED ABSOLUTE GRIGIN 00135. RFAL SECTION 'S.SRPT' - ASSIGNED ABSOLUTE ORIGIN 00136. REAL SECTION RFAL SECTITN REAL SFCTIGIN RFAL SECTIGN REAL SECTIIN REAL SECTION RTAL SECTION REAL SECTION RFAL SECTION RFAL SECTION RFAL SECTION REAL SECTIGN RFAL SECTIGN RFAL SECTIGN RFAL SECTIGN RFAL SECTION RTAL SECTION RFAL SECTION RFAL SECTION RFAL SECTION RFAL SECTION REAL SECTION REAL SECTITN REAL SECTIUN REAL SECTION REAL SECTIGN REAL SECTIGN REAL SFCTION RFAL SECTIGN REAL SFCTION REAL SECTION REAL SECTION RFAL SECTIGN REAL SECTION REAL SECTION REAL SECTIGN REAL SECTIGN RFAL SECTION REAL SECTION REAL SICTIION REAL SECTION REAL SECTION RFAL SECTION REAL SECTION RTAL SECTIGN REAL SFCTION RFAL SECTION RFAL SECTIGN 'S.SCIS• - ASSIGNED ABSGLUTE GRIGIN OO2I6.

| AL | SECTION | S.SOEX' | ASSIGNEO | absolute | ORIGIN | 00217. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RFAL | SECTION | S.UCBL' | ASSIGNED | ABSOLUTE | ORIGIN | 00220. |
| RFAL | SECTION | S.SCUR' | ASSIGNED | ABSOLUTE | ORIGIN | 00 |
| REAL | SECTION | S.SFAZ' | - ASSIGNED | ABSOLUTE | ORIGIN | 00222. |
| REAL | SECTION | S.SSWI' | ASSIGNED | ABSOLUTE | ORIGIN | 00223. |
| REAL | SECTION | 'S.SFLG' | - ASSIGNED | ABSOLUTE | ORIGIN | 00224. |
| REAL | SECTION | 'S.SAVE' | ASSIGNED | ABSOLUTE | GRIGIN | 00250. |
| REAL | SECTION | S.SCLI' | ASSIGNED | ABSOLUTE | ORIGIN | 00266. |
| REAL | SECTION | 'S.Pr,CT' | ASSIGNED | ABSOLUTE | ORIGIN |  |
| RFAL | SECTION | 'S.SHCR' | - ASSIGNED | ABSOLUTE | ORIGIN | 00270. |
| REAL | SECTIGN | 'S.SSCH' | - ASSIGNED | absolute | ORIGIN | 002 |
| REAL | SECTION | 'S.SSAS' | - ASSIGNED | ABSOLUTE | OR | 002 |
| REAL | SECTION | 'S.XTCT' | - ASSIGNED | ABSOLUTE | ORIGIN | 00277. |
| REAL | SFCTION | S. XSNS' | - $\triangle$ SSIGNED | ABSOLUTE | ORIGIN | 00300. |
| REAL | SECTIUN | 'S.XLTP' | - ASSIGNED | absolute | ORIGIN | 00302. |
| REAL | SECTION | , S. XSCH' | - ASSIGNED | ABSOLUTE | ORIGIN | 003 |
| RFAL | SECIIOV | S.XTPS' | - ASSIGNED | absolute | ORIGIN | 00 |
| REAL | SECTION | 'S.xCPS' | - ASSIGNED | ABSOLUTE | ORIGIN | 00305. |
| REAL | SFCTION | 'S.NAPT' | - ASSIGNFD | arsolute | ORIGIN | 00306. |
| REAL | SECTIUN | 'S.SFBL' | ASSIGNED | ABSOLUTE | Grigin | 00307. |
| REAL | SFCTION | 'S.jnam. | ASSIGNED | ABSOLUTE | ORIGI | 00 |
| RFAL | SECTIUN | 's.laun | assigned | A8SOLUTE | ORIGIN | 00 |
| REAL | SFCTION | 's.ound | - ASSIGNED | absolure | ORIGIN | 00313. |
| RFAL | SFCTION | 's.ldun' | ASSIGNED | ABSOLUTE | ORIGIN | 00 |
| REAL | SECTIGN | 'S.EDUN' | ASSIGNEO | ABSOLUTE | ORIGIN | 00 |
| REAL | SECTIUN | 'S.Srus' | ASSIGNEO | ABSOLUTE | ar | 0 |
| REAL | SECTION | 'S.SPRP' | - ASSIGNED | Absolute | OR | CO |
| REAL | SFCTION | 'S.SYCV' | ASSIGNED | Absulute | ORIGIN | 00320. |
| RE | SECTION | 'S.SYCW' | - ASSIGNED | ABSOLUTE | ORIGIN | 00321. |
| R | SECTION | 's.sycx. | ASSIGNED | absolute | ORIGIN | 00322. |
| L | SECTION | 'S.SYCY' | A | ARSOLUTE | GR | 00 |
| REAL | SECTION | 'S.SYCZ' | ASSIGNED | ARSOLUTE | ORIGIN | 00 |
| REAL | SECTION | 'S.SYFS' | ASSIGNEO | ABSOLUTE | GRIGIN | 00325 |
| REAL | SECTION | - S.SLEI' | - ASSIGNED | ABSOLUTE | GRIGIN | 00326. |
| REAL | SECTION | '5.5L82' | - ASSIGNED | absolute | GRIGIN | 00327. |
| REAL | SECTION | 'S.SIN1' | ASSIGNED | ABSOLUTE | ORIGIN | 00330. |
| RFAL | SECTION | 'S.SIN2' | ASSIG | ABSOLUTE | GRIGIN | 00 |
| REAL | SECTION | -s.soul' | ASSIGNED | AbSOLUTE | arigin | 00332. |
| RFAL | SECTION | 's.sou2' | ASSIGNED | ABSOLUIE | ORIGIN | 003 |
| REAL | SECTIUN | 'S.SPP1' | - ASSIGNED | absolute | ORIGIN | 00334. |
| Rral | SECTION | 'S.SPP2' | - ASSIGNED | absolute | GRIGIN | 003 |
| REAL | SECTION | - S. SCK1' | ASSIGNED | ABSOLUTE | ORIGIN | 0033 |
| REAL | SECTIGN | 's.suon' | - ASSIGNED | absolute | ORIGIN | 003 |
| RFAL | SFCTION | - S.suol' | ASSIGNEO | ABSOLUTE | ORIGIN | 00340. |
| REAL | SECTION | 's.su02' | ASSIGNED | arsolute | ORIGIN | 00341. |
| REAL | SECTION | 'S.su03' | - ASSIGNED | ABSOLUTE | GRIGIN | 00342. |
| RFAL | SECTION | 'S.SU04* | - ASSIGNED | ABSOLUTE | ORIGIN | 00343. |
| REAL | SECTION | - S. Su0 ${ }^{\circ}$ | ASSIGNED | absolute | GRIGIN | 00344. |
| RFAL | SECTION | 'S.SU06' | ASSIGNED | ABSOLUTE | ORIGIN | 00345. |
| RFAL | SECTION | - S.SU07' | ASSIGNED | absolute | arigin | 00346. |
| REAL | SECTION | - S. Su08' | ASSIGNED | absolute | ORIGIN | 00347. |
| REAL | section | 'S.suog' | - ASSIGNED | ABSOLUTE | ORIGIN | 00350. |
| R[AL | section | - S.sulo' | - ASSIGNED | ABSOLUTE | Grigin | 00351. |
| REAL | SECTION | 'S.sul1' | ASSIGNED | $\triangle B S G L U T E$ | ORIGIN | 00352. |
| REAL | SECTION | 'S.SU12' | ASSIGNED | absolute | ORIGIN | 00353. |

```
SPACE L.IRRARY - VER. 2, MOC.1 IBLDR - JOR SPACE
```

RFAL SECTION RFAL SECTION RFAL SFCTION real section RFAL STCTIJN REAL SECTION RFAL SECTION REAL SECTION REAL SECTION RFAL SECTION REAL SECTION REAL SECTION REAL SECTIGV RFAL SECTIOV RFAL SECTION REAL SFCTION REAL SECTION REAL SECTION RFAL SECTION REAL SECTION RFAL SECTIUN REAL SECTIUV qEAL SECTION RTAL SECTION REAL SECTION RTAL SECTION REAL SECTIUN REAL SECTION REAL SECTIG'N RFAL SECTION REAL SECTION
'S.SU13' - ASSIGNEO ARSGLUTE GRIGIN 00354. -S.SU14' - ASSIGNED ABSOLUTE ORIGIN $00355^{\circ}$ 'S.SUI5' - ASSIGNED ABSOLUTE GRIGIN 00356. 'S.SUl6' - ASSIGNEO ARSOLUTE ORIGIN 00357. 'S.SUTT' - ASSIGNED ABSOLUTE ORIGIN 00360. "S.UCET" - ASSIGNED ABSOLUTE GRIGIN 00600. 'S.SCBT' - ASSIGNED ABSOLUTE GRIGIN 00760. 'S.SDNA' - ASSIGNED ARSULUTE GRIGIN 01643. - ifgmp - assigned absolute origin 01653. -S.SORG' - ASSIGNED ABSGLUTE GRIGIN 03000. 'S.LSOI' - ASSIGNED ARSOLUTE GRIGIN 06401. 'S.LRSI' - ASSIGNED ABSOLUTE GRIGIN 06433. 'S.LRS2' - ASSIGNED ARSOLUTE ORIGIN 06440. 'S.LRS3' - ASSIGVED ABSOLUTE ORIGIN 06441. 'S.LFEI' - $\triangle S S I G N E D$ ARSOLUTE GRIGIN 06445. 'S.LFEZ' - ASSIGNED ABSOLUTE GRIGIN 06452. 'S.LFXT' - ASSIGNED ABSOLUTE GRIGIN 06500. 'S.LVII' - ASSIGNED ABSOLUTE GRIGIN 06514. 'S.LWO3' - ASSISNED ABSOLUTE GRIGIN 06573. 'S.LRH4' - ASSIGNED ARSOLUTE GRIGIN 06661. 'S.LST4' - ASSIGNFD ABSOLUTE GRIGIN 07050. 'S.LVRR' - ASSITNED ABSOLUTE GRIGIN 07343. -S.LERR' - ASSIGNFD AbSOLUTE gRIGIN 07405. 'S.SPID' - ASSIGNED ABSOLUTE GRIGIN 10000. 'S.SPZC' - ASSIGNED ARSOLUTE GRIGIN 10000. 'S.LVLN' - ASSIGNED ABSOLUTE GRIGIN 10000. 'S.LXRS' - ASSIGNED ARSULUTF GRIGIN $10044^{\circ}$ 'S.SLNCI - ASSIGNED ABSOLUTE GRIGIN 10074. 'S.BDNP - ASSIGNED ABSGLUTE GRIGIN 12126. -S.SSAC' - ASSIGNED ABSOLUTE ORIGIN 12253. 'S.SEAD' - ASSIGNED ABSOLUTE GRIGIN 77777.

```
DECK 'INSYFR' ASSIGNED ARSOLUTE GRIGIN 00000. ADJUSTED LENGTH IS CCOCO. FILE 'S.FRIN' - ASSIGNED ABSOLUTE GRIGIN 12261.
DECK ' CUSYFR' ASSIGNEC ABSCLUTE URIGIN 00000. ADJUSTED LENGTH IS CCOCO. FILE -S.FROUl' - ASSIGNED ABSOLUTE ORIGIN 12304.
DECK P POSTX ' ASSIGNED ABSCLUTE GRIGIN 17040. ADJUSTED LENGTH IS OC112. VIRTUAL SECTIGN'S.SRET' - REFERS TO DECK 'IRNUC ', LOCATION 00141. VIRTUAL SECTION •S.SCUR' - REFERS TG DECK 'IENUC ', LOCATION OC221. VIRTUAL SECTIGN 'S.SLOC' - \(\triangle S S I G N E D\) ABSOLUTE GRIGIN 12253. VIRTUAL SECTION S.CLSE: - REFERS TG DECK.IRNUC ', LOCATION OCI70. VIRTUAL SECTIGN 'S.SCCR' - REFERS TO DECK 'IGNUC ', LOCATION 00143. VIRTUAL SECTION 'S.SINI' - REFERS TO DECK •IBNUC •, LOCATION OC330. VIRTUAL SECTION 'S.SSWI' - REFERS TO DECK 'IBNUC ', LOCATION 00223. VIRTUAL SECTION 'S.SOUI' - REFERS TO DECK 'IBNUC ', LOCATION OC332. VIRTUAL SECTION 'S.SICR' - REFERS TG DECK 'IRNUC •, LOCATION 00144. VIRTUAL SECTIGN 'S.SPPI' - REFERS TO DECK 'IRNUC ', LOCATION OC334. REAL SECTIGN 'S.JXIT' - ASSIGNED ARSOLUTE ORIGIN 17040.
DECK 'PPSYFB' ASSIGNED ARSCLUTE ORIGIN 00000. ADJUSTED LENGTH IS CCOCO. FILE S.FBPPI - ASSIGNED ABSOLUTE GRIGIN 12327.
DECK 'fO5 ' ASSIGNED ABSCLUTE GRIGIN 17152. ADJUSTED LENGTH IS CCOCI.
```

```
 SPACE LIBRARY - VER. 2, MOC. 1 IBLDR - JOB SPACE
 VIRTUAL SECTION 'S.FRIN* - REFERS TO DECK 'INSYFB', LOCATION 12261.
 REAL SFCTION PFILOS.' - ASSIGNED ABSOLUTE ORIGIN 17152.
DECK * FOG * ASSIGNED \triangleBSOLUTE GRIGIN 17153. ADJUSTED LENGTH IS 0000L.
 VIRTUAL SECTION 'S.FACU' - REFERS TO DECK 'OUSYFB', LOCATIBN 12304.
 REAL SECTION 'FILOG.' - ASSIGNED ABSOLUTE GRIGIN 17153.
DECK IIOS A ASSIGNED ARSOLUTE ORIGIN 17154. ADJUSTED LENGTH IS CO276.
 VIRTUAL SECTION 'FEXFM." - REFERS TO DECK 'XEM ', LOCATIGN 20473.
 VIRTUAL SECTIGN EEXIT - REFERS TG DECK 'XIT *, LOCATIGN 20700.
 VIRTUAL SECTION 'S.FROU' - REFERS TO DECK IOUSYFB', LOCATION 12304.
 VIRTUAL SECTION S.SINI' - REFERS TG DECK 'IBNUC ', LOCATIGN 00330.
 VIRTUAL SECTION 'S.SPRP' - REFERS TO DECK "IRNUC ', LOCATION 00317.
 VIRTUAL SECTIGN S.SCCI: - REFERS TG DLCK IIRNUC: LOCATIGN 00266.
 VIRTUAL SECTION'S.PUTL' - REFERS TO DECK 'IBNUC ', LOCATION 00165.
 VIRTUAL SECTIGN 'S.SCCR' - REFERS TO DECK 'IBNUC: LOCATION 0O143.
 VIRTUAL SECTIGN 'S.CLSE' - REFERS TG DECK 'IRNUC ", LOCATION 00170.
 VIRTUAL SECTIGN 'S.GPEN' - REFERS TG DECK IIRNUC ', LOCATION OOIG1.
 VIRTUAL SECTION 'S.SPPI' - REFERS TO DECK 'IBNIIC ', LOCATION 00334.
 VIRTUAL SECTION'S.PLGC' - REFERS TO DECK IIRNUC * LOCATION 00167.
 VIRTUAL SECTIGN 'S.SOUI' - REFERS TG DECK 'IBNUC *, LOCATION OC332.
 VIRTUAL SECTIGN 'S.SAVE' - REFERS TG DECK IIBNUC * LGCATIGN 0025O.
 RYAL SECTION 'IOSUP." - ASSIGNED ABSOLUIE ORIGIN 17154.
 REAL SECTIGN 'CKEND." - ASSIGNED ABSOLUTE ORIGIN 17257.
 REAL SECTIGN 'SYSOU.' - ASSIGNED ARSOLUTE ORIGIN 17301.
 REAL SECTION 'SYSCK.' - ASSIGNED ABSOLUTE ORIGIN 17334.
 REAL SFCTION 'RERRX." - ASSIGNED ABSOLUTE ORIGIN 17372.
 RSAL SFCTIGN 'REGFX.' - ASSIGNED ABSOLUTE ORIGIN 174O2.
 REAL SECTIUN 'REGRX.' - ASSIGNED ARSOLUTE GRIGIN 17410.
 RIAL SECTIGN 'IOCEL.' - ASSIGNEO ABSOLUTE GRIGIN 17430.
DECK 'RWO - ASSIGNED ABSOLUTE ORIGIN 17452. ADJUSTED LENGTH IS 00531.
 VIRTUAL SECTION •ERLOC.' - REFERS TO DECK 'XEM v, LOCATION 20472.
 VIRTUAL SECTION 'IOSUP.' - REFERS TO DECK 'IOS , LOCATION 17154.
 VIRTUAL SECTION :CKENC.' - REFERSTO DECK 'IOS *, LOCATION 17257.
 VIRTUAL SECTION 'FEXEM.' - REFERS TO DECK 'XEM *, LOCATION 20473.
 VIRTUAL SECTIGN •IGCEL.' - REFERS TO DECK IIOS • LOCATION 17430.
 VIRTUAL SECTION 'S.GETL' - REFERS TO DECK 'IBNUC ', LOCATION OCIG3.
 VIRTUAL SECTION •S.PUTL' - REFERS TO DECK IIRNUC ', LOCATION 00IG5.
 VIRTUAL SECTION SS.GETR' - REFERS TO DECK IIBNUC ', LOCATION OCIG4.
 VIRTUAL SECTION •S.PLOC' - REFERS TO DECK 'IBNUC ', LOCATION OCIG7.
 VIRTUAL SECTION S.OPEN' - REFERS TO DECK 'IBNUC ', LOCATION OCIGI.
 RTAL SECTIION "TSHIO.' - ASSIGNED ABSOLUTE ORIGIN 17452.
 REAL SECTION 'STHIO.' - ASSIGNED ABSOLUTE ORIGIN 17472.
 RFAL SECTION •IOHCM.' - ASSIGNED ABSOLUTE ORIGIN 17537.
 REAL SECTION 'HDLIC." - ASSIGNEO ABSOLUTE GRIGIN 17570.
 REAL SECTIGN 'HNLIO.' - ASSIGNED ABSOLUTE GRIGIN 1.7573.
 REAL SECTION PHCT. . - ASSIGNED ABSOLUTE GRIGIN 17614.
 RFAL SCCTION 'IOHCT.' - ASSIGNED ABSOLUTE ORIGIN 17615.
 REAL SECIIGN IICHLP.' - ASSIGNED ABSOLUTE GRIGIN 17625.
 REAL SFCTION 'IOHRP.' - ASSIGNED ABSOLUTE GRIGIN 17646.
 REAL SECTIGN IIOHEF.' - ASSIGNED ABSOLUTE ORIGIN 17665.
 RFAL SECTIGN 'IOHSF.' - ASSIGNEO ABSOLUTE ORIGIN 17677.
 RFAL SFCTIGN IIOHIO.' - ASSIGNED ABSOLUTE GRIGIN 17702.
 REAL SECTIGN !SC. . - ASSIGNED ABSOLUTE GRIGIN 20021.
```

```
SPACE LIBRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE
\begin{tabular}{|c|c|c|c|c|c|}
\hline al section & - CCA. & ASSIGNED & ABSOLUTE & ORIGIN & 2002 \\
\hline REAL SECTION & - CCO. & ASSIGNED & AbSolute & ORIGIN & 20031. \\
\hline REAL SFCTION & - RUl. & ASSIGNED & ABSOLUTE & GrIGIN & 20037. \\
\hline RFAL SECTIGN & - Bu4. & ASSIGNED & AbSOLUTE & ORIGIN & 20044. \\
\hline RFAL SECTION & - Bll 0. & ASSIGNED & ABSOLUTE & ORIGIN & 20047. \\
\hline RFAL SECTIGN & - P!j22. & ASSIGNED & \(\triangle B S O L U T E\) & ORIGIN & 20053. \\
\hline REAL SECTION & - DE60. & ASSIGNEO & absolute & GRIGIN & 20077. \\
\hline real section & - de70. & ASSIGNED & ABSOLUTE & ORIGIN & 20100. \\
\hline REAL SECTION & - XC. & ASSIGNED & AbSOLUTE & GRIGIN & 20110. \\
\hline RFAL SECTIGN & - FILIC. & ASSIGNED & ABSOLUTE & ORIGIN & 20141. \\
\hline RFAL SECTION & - RINIO.' & ASSIGNED & ABSOLUTE & ORIGIN & 20144 \\
\hline RFAL SECTIJN & 'GETCH.' & ASSIGNED & ABSOLUTE & ORIGIN & 20151. \\
\hline RFAL SECTION & 'GETC3.' & MSSIGNED & AbsGlute & GRIGIN & 20152. \\
\hline REAL SECTIJN & - GETC. & ASSIGNED & Absolute & ORIGIN & 20163. \\
\hline REAL SECTION & - CVCFL & ASSIGNEI & ABSOLUTE & ORIGIN & 2016 \\
\hline
\end{tabular}
DECK 'ACV , ASSIGNED ABSCLJTE GRIGIN 20203. ADJUSTED LENGTH IS OCO30.
 VIRTUAL SECTION BUI. ' - REFERS TG DECK PRWD ', LOCATION 20037.
 VIRTUAL SECTION 'RUIO.' - REFERS TO DECK 'RWD ', LOCATION 20047.
 VIRTUAL SECTION 'CCA. ' - REFERS TO DECK 'RHD ', LOCATION 2CO27.
 VIRTUAL SECTION 'GETCH.' - REFERS TG DECK 'RWD ', LOCATION 20151.
 VIRTUAL SECTION PHCT. ' - REFERS TO DECK 'RWD ', LOCATION 17614.
 VIRTUAL SECTION 'SC. " - REFERS TO DECK 'RWD ', LOCATION 20021.
 VIRTUAL SECTION *XC. ' - REFERS TO DECK 'RWD ', LOCATIGN 20110.
 VIRTUNL SECTION 'CVCEL.' - REFERS TO DECK 'RWD *, LOCATION 20165.
 VIRTUAL SECTION 'ICHCM.' - REFERS TO OECK 'RWO * LOCATION 17537.
 VIRTUAL SECTION 'IGCEL.' - REFERS TO DECK 'IOS •, LOCATION 17430.
 REAL SECtION 'IOHAC.' - ASSIGNED ABSOLUTE ORIGIN 20203.
DECK 'XCV ' ASSIGNED ABSCLUTE GRIGIN 20233. ADJUSTED LENGTH IS CCOIG.
 VIRTUAL SECTIGN 'CCQ. ' - REFERS TO DECK 'RWD ', LOCATION 20031.
 VIRTUAL SECTION 'GETCH.' - REFERS TO DECK 'RWD ', LOCATION 20151.
 VIRTUAL SECTION 'HCT. , - REFERS TO OECK 'RWD ध, LOCATION 17614.
 VIRTUAL SECTION 'SC. ' - REFERS TO DECK 'RWD ', LOCATION 20021.
 VIRTUAL SECTION 'XC. ' - REFERS TO DECK.'RWD *, LOCATION 20110.
 VIRTUAL SECTION 'IOHCT.' - REFERS TO DECK 'RWO •, LOCATION 17615.
 VIRTUAL SECTION 'IGCEL:' - REFERS TO DECK 'IOS ध, LOCATION 17430.
 VIRTUAL SECTION 'CVCEL.' - REFERS TO DECK 'RWD ', LOCATION 20165.
 REAL SECTIGN 'IOHXC.' - ASSIGNED ARSOLUTE ORIGIN 20233.
DECK PFPT ' ASSIGNEC ABSOLUTE ORIGIN 20251. ADJUSTED LENGTH IS CC216.
 VIRTUAL SECTION 'SYSOU.' - REFERS TO DECK 'IOS ', LOCATION 17301.
 VIRTUAL SECTION 'ERLGC.' - REFERS TO DECK 'XEM ', LGCATIGN 20472.
 VIRTUAL SECTIGN 'FEXEM.' - REFERS TO DECK 'XEM , LOCATION 20473.
 VIRTUAL SECTION 'EXIT ' - REFERS TO DECK 'XIT ध, LOCATION 20700.
 VIRTUAL SECTION 'S.XOVA' - REFERS TO DECK 'IBNUC ', LOCATION 00151.
 VIRTUAL SECTION 'S.SDAT' - REFERS TO DECK 'IBNUC ', LOCATIGN 00213.
 VIRTUAL SECTION 'S.SCCR' - REFERS TO DECK 'IBNUC ', LOCATIGN 00143.
 REAL SECTION 'SETFP.' - ASSIGNED ABSOLUTE ORIGIN 20251.
 REAL SECTIUN 'GGDATI' - ASSIGNED ABSOLUTE ORIGIN 20300.
 REAL SECTIGN 'GGDATE' - ASSIGNED ABSOLUTE GRIGIN 20301.
 REAL SFCTIGN 'GVERF.' - ASSIGNED ABSOLUTE ORIGIN 20453.
DECK •XEM - ASSIGNED ABSCLUTE GRIGIN 20467. ADJUSTED LENGTH IS CC211. VIRTUAL SECTION 'SYSOU.' - REFERS TO DECK 'IOS •, LOCATION 17301.
```

SPACE LIBRARY - VER. 2, MOD. 1 IBLDR -- JOB SPACE


| CK | ROH44 | ASSIGNED | D ARSClute | E ORIGIN 2257 | 2572. | ADJU | USTED | Length is | C1440. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VIRTUAL | SECTION | 'filo ${ }^{\text {a }}$ | - REFERS TO | DECK | - for | 5 ', | location | 17152. |
|  | VIRTUAL | SECTION | 'FIL06.' | REFERS 10 | DECK | - F06 |  | location | 17153. |
|  | virtual | SECTION | 'filic.' | - REFERS ${ }^{\text {To }}$ | DECK | -RWD |  | location | 20141. |
|  | virtual | SECTIGN | 'hNLIO.' | - REFERS TO | DECK | -RWD |  | location | 17573. |
|  | virtual | SECTIGN | 'IOHAC.' | REFERS 10 | DECK | - $A C V$ | v | location | 20203. |
|  | virtual | section | 'IUHEF.' | REFERS TO | DECK | -RWD | D $\cdot$, | location | 17665. |
|  | VIRTUAL | SECTION | 'IOHIO.' | REFERS TO | DECK | - RWD | D $\cdot$, | location | 17702. |
|  | VIRTUAL | SECTION | 'Iorxc. | REFERS TO | DECK | - XCV | $v \quad \cdot$, | location | 20233. |
|  | VIRTUAL | SECTION | 'RTNİO.' | RETERS TO | DECK | -RWD |  | location | 20144. |
|  | VIRTUAL | SECTION | 'SETFP.' | REFERS $T O$ | DECK | - FPT | T | ligation | 20251. |
|  | virtual | section | 'sthio.' | REFERS TO | DECK | -RWD | D $\quad$, | location | 17472. |
|  | virtual | SECTIGN | 'tshio.' | REFERS TO | DECK | -RWD | D ', | location | 17452. |
|  | VIRTUAL | SECTION | 'S.SLOC' | ASSIGNED | ABSOLU | UTE | ORIGIN | 12253. |  |
|  | VIRTUAL | SECTION | 'S.Jxit' | REFERS TO | DECK | - POS | STX ${ }^{\text {, }}$ | locatian | 17040. |
|  | VIRTUAL | SECTION | 'S.SCCR' | REFERS TO | DECK | - IAN |  | location | col43. |
|  | REAL SEC | CTION | - Readh ${ }^{\text {a }}$ | ASSIGNED | ABSOLU |  | ORIGIN | 22572. |  |
|  | REAL SEC | CTION | ' READHR' | ASSIGNED | ABSOLU |  | ORIGIN | 22601. |  |
|  | REAL SEC | CTION | 'READHP' | ASSIGNED | ABSOLU |  | ORIGIN | 22606. |  |
|  | REAL SEC | CTION | - BCD | ASSIGNED | ABSOLU |  | ORIGIN | 22760. |  |
|  | REAL SEC | CTION | - BCDT | ASSIGNED | ABSOLU |  | ORIGIN | 22767. |  |
|  | RFAL SEC | CTION | - BCDP | ASSIGNED | ABSOLU |  | ORIGIN | 22775. |  |
|  | RFAL SEC | CTION | - SCAN | ASSIGNED | ABSOLU |  | Grigin | 23100. |  |
|  | RFAL SEC | CTION | - rchree. | - ASSIGNED A | ABSOLU |  | GRIGIN | 24214. |  |

```
 SPACE LIBRARY - VER. 2, MOD. 1
```

FOR MAIN LINK

```


SPACE LIGRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE

MEMGRYMAP
BF LINK NUMBER 1.(13 I) ORIGIN OF THIS LINK AT DECK 113I.
```

SYSTEM, INCLUDING IOCS 00000 THRU 12252
NLMBER OF FILES - NONE
ORJECT PROGRAM 12352 THRU 64004
1. DECK SPC * 12352
2. DECK 'DSSCAN' 17001
3. SUBK 'INSYFB' 00000
4. SURR 'OUSYFR' 00000
5. SUBR •POSTX. 17040
6. SUBR 'PPSYFB' 00000
7. SURR 'FO5 , 17152
8. SURR 'FOG ' 17153
9. SURR 'IGS . 17154
10. SUBR 'RWC - }1745
11. SUBR 'ACV ' 20203
12. SURR 'XCV . }2023
13. SURR 'FPT ' 20251
14. SUPR PEN . . 20467
15. SURR 'XIT ' 20700
16. SURR •DMP , 20702
17. SUBR •ROH44 ' }2257
18. DECK 1131 . . 24232
1* - INSERTIGNS or deletions made IN This deCKI
INPUT - OUTPUT BUFFERS 76157 THRU 77776
UNUSED CORE
64005 THRU 76147

```

SPACE LIBRARY - VER. 2, MOC. 1 IBLOR -- JOB SPACE

LOGICMAP
```

    FOR DECKS OF LINK NUMBER 2.1 12I,
    RFAL SECTION 'S.SLOC' - ASSIGNED ABSOLUTE ORIGIN 12253.
    DECK '12I ' ASSIGNED ARSOLUTE ORIGIN 24232. ADJUSTED LENGTH IS 34271.
VIRTUAL SECTION 'BCD - - REFERS TO DECK 'RCH44 ', LOCATION }22760
VIRTUAL SECTICN 'STGR ' - REFERS TG DECK 'STOR ', LOCATIGN 60531.
VIRTUAL SECTION 'ATHRUZ' - REFERS TG DECK 'ATHRUZ', LOCATION 61265.
VIRTUAL SECTION 'FILO3.', - REFERS TO DECK 'FTCO3 ', LOCATION 60576.
VIRTUAL SECTION 'UNSIFT' - REFERS TG DECK 'UNSIFT', LOCATIGN 6CS6I.
VIRTUAL SECTION 'OSSCAN' - REFERS TG DECK 'DSSCAN', LOCATION 17007.
VIRTUAL SECTION 'SPACE - - REFERS TO DECK 'SPC ', LOCATION 13533.
VIRTUAL SECTIGN 'ABOUTI' - REFERSTG DECK 'SPC ", LOCATIGN 14252.
VIRTUAL SECTIGN 'ABOUT2' - REFERS TO DECK 'SPC ', LGCATION 14256.
VIRTUAL SECTION POOL - - REFERS TO DCCK PGOGL •, LOCATION 61307.
VIRTUAL SECTION 'SKIPR ' - REFERS TG DECK 'SPC ', LOCATION 14262.
VIRTUAL SECTION 'FILOG.', - REFERS TG DECK 'FOG ', LOCATION 17153.
VIRTUAL SECTIGN 'REACBI', - REFERS TO DECK 'SPC ', LOCATIGN 14242.
VIRTUAL SECTION 'ENJFF - - REFERS TG DECK 'SPC •, LOCATION 14272.
VIRTUAL SECTION 'REACE2', - REFERS TO DECK 'SPC ', LOCATIGN 14246.
VIRTUAL SECTION 'HOLOCT' - REFERS TO DECK 'HLCT ', LOCATION 61330.
VIRTUAL SECTIGN "HNLIC." - REFERS TO DECK 'RWD ', LOCATION 17573.
VIRTUAL SECTIGN 'FILIC.' - REFERS TO DECK 'RWD ', LOCATION 20141.
VIRTUAL SECTION 'STHIO.' - REFERS TO DECK 'RWD ', LOCATIGN 17472.
VIRTUAL SECTION PIOHEF.' - REFERS TO DECK 'RWD ', LGCATION 17665.
VIRTUAL SECTIGN IIGHIO.: - REFERS TO DECK 'RWD :, LOCATION 17702.
VIRTUAL SECTION IIOHHC.' - REFERS TO DECK 'HCV ", LOCATION SO577.
VIRTUAL SECTION IIOHXC.' - REFERS TO DECK 'XCV ', LOCATIGN 20233.
VIRTUAL SECTIGN !IGHAC.' - REFERS TO DECK IACV ', LOCATION 20203.
VIRTUAL SECTION 'IOHIC.' - REFERS TO DECK 'ICV ', LOCATION 6O716.
VIRTUAL SECTION 'IOHRP.' - REFERS TO DECK PRWD •, LOCATION 17646.
VIRIUAL SECTION 'IGHIP.' - REFERS TO DECK 'RWD ', LOCATION 17625.
VIRTUAL SECTION EERROU.' - REFERS TO DECK :OENM •, LOCATIGN 20470.
VIRTUAL SECTION 'S.JXIT' - REFERS TO DECK 'POSTX ', LOCATION 17040.
VIRTUAL SECTION SETFP.' - REFERS TO DECK 'FPT ', LOCATION 2O251.
REAL SECTIGN 'ACCESS' - DELETED. REFERS TO DECK 'SPC ', LOCATION 16617.
DECK 'STOR ' ASSIGNED ABSCLUTE ORIGIN 60523. ADJUSTED LENGTH IS CGO3O.
VIRTUAL SECTION 'S.SLOC' - ASSIGNEO ABSOLUTE ORIGIN 12253.
RFAL SECTIGN 'SIGR - - ASSIGNED ABSOLUTE ORIGIN 60531.
DECK PUNSIFT' ASSIGNED ABSELUTE GRIGIN 60553. AOJUSTEO LENGTH IS CCC23.
VIRTUAL SECTION 'S.SLOC' - ASSIGNED ABSOLUTE ORIGIN 12253.
REAL SECTION 'UNSIFT' - ASSIGNED ABSOLUTE ORIGIN 60561.
DECK 'FTCO3 ' ASSIGNEO ABSOLUTE GRIGIN 60576. ADJUSTEO LENGTH IS CCOOL.
VIRTUAL SECTION 'S.FBCU' - REFERS TO DECK 'GUSYFB', LOCATION 12304.
REAL SECTION 'FILO3.' - ASSIGNED ABSOLUTE ORIGIN 60576.
DEC *HCV ' ASSIGNED ABSOLUTE GRIGIN 60577. ADJUSTEO LENGTH IS CC1I7.
VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK IIOS ', LOCATION 17430.
VIRTUAL SECTION 'CVCEL.' - REFERS TO DECK IRWD ', LOCATION 20165.
VIRTUAL SECTION PRUI. ' - REFERS TO DECK 'RWD ', LOCATION 20037.

```
```

SOACE LIGRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE
VIRTUAL SECTION 'BU22. ' - REFERS TO DECK 'RWD ', LOCATION 20053.
VIRTUAL SECTION 'SC. * - REFERS TO DECK 'RWD *, LOCATION 2002l.
VIRTUAL SECTION 'GETCH.' - REFERS TO DECK 'RWD ', LOCATION 2CI51.
REAL SECTION 'IOHHC.' - ASSIGNED ABSOLUTE GRIGIN 60577.
DECK -ICV - ASSIGNED ABSOLUTE GRIGIN 60716. ADJUSTED LENGTH IS 00020.
VIRTUAL SECTIGN 'CCO. , - REFERS TO DECK 'RWD ध, LOCATION 20031.
VIRTUAL SECTION 'SC. ' - REFERS TO DECK 'RWD •, LOCATION 20021.
VIRTUAL SECTION 'AST. ' - REFERS TO DECK 'INTJ ', LOCATION 61106.
VIRTUAL SECTION 'IC2. . - REFERS TO DECK 'INTJ ', LOCATION 61057.
VIRTUAL SECTION 'ICIO.' - REFERS TO DECK 'INTJ ', LOCATION 61073.
VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IOS ', LOCATION 17430.
VIRTUAL SECTION 'IOHCM.' - REFERS TO DECK 'RWD ', LOCATION 17537.
VIRTUAL SECTION 'IOHCT.' - REFERS TG DECK 'RWD ', LOCATION 17615.
VIRTUAL SECTION 'IOHDR.' - REFERS TO DECK 'INTJ •, LOCATION 61126.
REAL SECTION 'IOHIC.' - ASSIGNED ABSOLUTE ORIGIN 60716.
REAL SECTIGN 'IGHIT.' - ASSIGNED ABSOLUTE ORIGIN 60722.
DEFV 'INTJ ' ASSIGNEO AHSOLUTE GRIGIN 60736. ADJUSTED LENGTH IS 00321.
VIRTUAL SECTION 'CVCEL.' - REFERS TO DECK 'RWD •, LOCATIGN 20165.
VIRTUAL SECTION 'RUI. ' - REFERS TO DECK 'RWD ', LOCATION 20037.
VIRTUAL SECTION "RU4. : - REFERS TO DECK PRWD : LOCATIGN 20044.
VIRTUAL SECTION 'CCQ. ' - REFERS TO DECK 'RWD ', LOCATION 20031.
VIRTUAL SECTION 'DEGO. : - REFERS TO DECK PRWD * LOCATIGN 20077.
VIRTUAL SECTION 'DE7O. ' - REFERS TO DECK 'RWD ', LOCATION 20100.
VIRTUAL SECTIGN 'XC. "- REFERS TO DECK PRWD ", LOCATIGN 20I10.
VIRTUAL SECTION 'FEXEN.' - REFERS TO DECK 'XEM ', LOCATION 20473.
VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IOS •, LOCATION 17430.
VIRTUAL SECTION 'OETCH.' - REFERS TO DECK 'RWD ', LOCATIGN 20151.
REAL SECTION 'J. - - ASSIGNEO ABSOLUTE ORIGIN 60747.
RFAL SECTION 'ICZ. ' - ASSIGNED ABSOLUTE ORIGIN 61057.
RCAL SECTIJN IICIO.' - ASSIGNEG ABSOLUTE GRIGIN 61073.
RCAL SECTION 'AST. ' - ASSIGNED ABSOLUTE GRIGIN 61106.
RFAL SECTIGN 'ASTI." - ASSIGNED ABSOLUTE GRIGIN 61107.
REAL SFCTIOV 'DE3O. ' - ASSIGNED ABSOLUTE GRIGIN 61113.
REAL SECTION 'IOHDB.' - ASSIGNED ABSOLUTE ORIGIN 61126.
REAL SECTION 'DBCI.' - ASSIGNED ABSOLUTE ORIGIN 61140.
RFAL SECTION 'DECS. '- ASSIGNED ABSOLUTE ORIGIN 61160.
REAL SECTION 'ANACH.' - ASSIGNED ABSOLUTE GRIGIN 61207.
REAL SECTION 'SGI. ' - ASSIGNED ABSOLUTE GRIGIN 61226.
RFAL SECTION 'DECEL.' - ASSIGNED ABSOLUTE ORIGIN 61250.
DECK •ATHRUZ' ASSIGNED ABSOLUTE GRIGIN 61257. ADJUSTEO LENGTH IS CCO22. VIRTUAL SECTIGN 'S.SLCC' - ASSIGNED ABSOLUTE GRIGIN 12253. REAL SECTION 'ATHRUZ' - ASSIGNED ABSOLUTE ORIGIN 61265.
DECK •OOGL • ASSIGNED ABSCLUTE GRIGIN 61301. ADJUSTED LENGTH IS CCO21. VIRTUAL SECTION 'S.SLOC' - ASSIGNED ABSOLUTE ORIGIN 12253. RFAL SECTION •ROOL - - ASSIGNED ABSOLUTE GRIGIN 61307.
DESK 'HLCT • ASSIGNED ABSCLUTE GRIGIN 61322. ADJUSTED LENGTH IS CCO47. VIRTUAL SECTION 'S.SLOC' - ASSIGNED ABSOLUTE ORIGIN 12253. REAL SECTION HOLOCT - ASSIGNED ABSOLUTE ORIGIN 61330.

```
```

        SPACE LIBRARY - VER. 2, MOD. 1 IBLDR -- JOB SPACE
            MEMJRYMAP
            OF LINK NUMBER 2,1 12I 1
                GRIGIN GF THIS LINK AT DECK 112I .
    SYSTEM, INCLUOING IOCS 00000 THRU 12252
Nimber of files - none
OBJECT PROGRAM

```

```

(* - Insertigns or deletigns made in this ceck)
INPUT - GUTPUT BUFFERS 76:57 THRU }7777
UNUSED CORE 61371 THRU }7614

```
```

SPACE LIRRARY - VER. 2, MOD. 1 IBLDR -- JOB SPACE

```
\(L\) CGIC MAP
 FOR DECKS GF LINK NUNAER 3,1 61I)
REAL SECTIGN •S.SLCC' - ASSIGNED ARSOLUTE ORIGIN 12253.
DECK ' 11 - ASSIGNED \(\triangle B S C L U T E\) ORIGIN 24232. ADJUSTED LENGTH IS 22275.
VIRTUAL SECTION BCD - REFERS TG DECK PRCH44 •LOCATION 22760.
VIRTUAL SECTION 'DELETE' - REFERS TO DECK 'DELETE', LOCATIGN 47243.
VIRTUAL SECTION SORTCI' - REFERS TO DECK SORTCI', LOCATION 46535.
VIRTUAL SECTION 'ATHRUZ' - REFERS TO DECK 'ATHRUZ', LOCATION 51327.
VIRTUAL SECTIGN 'FILENO' - REFERS TG DECK 'FILENO', LOCATIGN 47015.
VIRTUAL SECTION 'OSSCAN' - REFERS TG DECK 'DSSCAN', LOCATIGN 17007.
VIRTUAL SECTIGIN ALLINI' - REFERS TO DECK 'ALLINI', LOCATION 46704.
VIRTUAL SECTION 'CNVRT' - REFERS TO DECK 'CNVRT ' LOCATION 47064.
VIRTUAL SECTION 'SPACE - REFERS TO DECK •SPC •LOCAIION 13533.
VIRTUAL SECTION 'ARCUTI - REFERS TG OECK ISPC • LOCATION 14252.
VIRTUAL SECTION 'ARIUJ2' - REFEKS TO DECK 'SPC ', LGCATIGN 14256.
VIRTUAL SECTION ROOL - REFERS TG DECK BGOL •, LOCATION 51351.
VIRTUAL SECTION 'EXP * - REFERS TO DECK "XPN • LOCATION 51072.
VIRTUAL SECTICN 'GSMRGE' - REFERS TU DECK 'GSMRGE', LOCATIGN 47332.
VIRTUAL SECTION 'SKIPR - REFERS TO DECK 'SPC \(\quad\) LOCATION 14262.
VIRTUAL SECTION 'FILOG.' - REFERS TG DECK •FOG •, LOCATION 17153.
VIRTUAL SECTION PREADBI' - REFERS TG DECK SSPC • LOCATION 14242.
VIRTUAL SECTION ENOF - - REFERS TO DECK 'SPC \(\quad\), LOCATION 14272.
VIRTUAL SECTION 'REACE2' - REFERS TO DECK 'SPC ' LOCATIGN 14246.
VIRTUAL SECTIGN 'COMPAR' - REFERS TO DECK 'CGMPAR', LOCATIGN 46626.
VIRTUAL SECTION HULCCT' - REFERS TG DECK HLCT * LOCATION 51372.
VIRTUAL SECTION '.EXP2.' - REFERS TO DECK *XP2 *, LOCATIGN 50735.
VIRTUAL SECTION . EXD3.. - REFERS TO DECK •XP3 *,LOCATIGN 51020.
VIRTUAL SECTION 'HNLIO." - REFERSTG DECK 'RWD 1 LOCATION 17573.
VIRTUAL SECTICN 'FILIC.' - REFERS TO DECK PRWD ! LOCATION 20141.
VIRTUAL SECTIGN SLOIC.' - REFERS TO DECK 'SLO \(\because L O C A T I O N ~ 50703 . ~\)
VIRTUAL SECTION 'STHIO.' - REFERS TO DECK IRWD •, LOCATION 17472.
VIRTUAL SECTION •IJHEF.' - REFERS TO DECK •RWD \(\because\) LOCATIGN 17665.
VIRTUAL SECTIGN IOHIC.' - REFERS TG DECK IRWD \(\because\) LOCATIGN 17702.
VIRTUAL SECTIGN •IOHHC.' - REFERS TO DECK IHCV \(\because\) LOCATIGN 47636.
VIRTUAL SECTION •IOHXC.' - REFERS TO DECK IXCV • LOCATION 20233.
VIRTUAL SECTIGN IIBHAC.' - REFERS TO DECK 'ACV •, LGCATIGN 20203.
VIRTUAL SECTI3N 'IOHIC.' - REFERS TG DECK IICV * LOCATION 47755.
VIRTUAL SECTIUN IOHFC. - REFERS TG DECK •FCV \(\because\) LOCATION 47545.
VIRTUAL SECTION 'IOHEC.' - REFERS TO DECK •ECV ', LOCATION 47344.
VIRTUAL SECTION IOHSF. - REFERS TO DECK IRWD • LOCATION 17677.
VIRTUAL SECTION "IOHRP.' - REFERS TO DECK •RWD \(\quad\) LOCATION 17646.
VIRTUAL SECTION IOHLP. - REFERS TO DECK •RWD : LOCAIION 17625.
VIRTUAL SECTION •ERROU.' - REFERS TO DECK •XEM * LOCATION 20470.
VIRTUAL SECTIGN 'S.JXIT' - REFERS TO DECK PPOSTX • LOCATION 17040.
VIRTUAL SECTIGN SETFP. - REFERS TO DECK •FPT • LGCATIGN 20251.
REAL SECTIGN , ACCESS' - DELETED. REFERS TO DECK ISPC U, LUCATION 16617.
REAL SECTION -ARKAYS' - ASSITNEO ARSOLUTE ORIGIN 35013.
REAL SECTION 'CONSNT' - ASSIGNED ABSOLUTE ORIGIN 46476.
 VIRTUAL SECTION S.SLOC' - ASSIGNED ABSOLUTE GRIGIN 12253. RIAL SECTION 'SORTCI' - ASSIGNED ABSGLUTE GRIGIN 46535.
```

    SPACE LIBRARY - VER. 2, MUD. 1 IBLDR - JOB SPACE
    DECK 'COMPAR' ASSIGNED \triangleBSOIUTF ORIGIN 46620. ADJUSTED LENGTH IS OOO56.
VIRTUAL SECTION 'S.SLOC* - ASSIGNED ABSGLUTE ORIGIN 12253.
REAL SECTION 'COMPAR' - ASSIGNED ABSGLUTE ORIGIN 46626.
DECK 'ALLINI' ASSIGNED \triangleBSOLUTE ORIGIN 46676. ADJUSTED LENGTH IS COIII.
VIRTUAL SECTION'S.SLOC' - ASSIGNED ABSOLUTE ORIGIN 12253.
RFAL SECTION 'ALLINI' - ASSIGNED ABSOLUTE GRIGIN 46704.
DECK 'FILENO" ASSIGNED ABSOLUTE ORIGIN 47007. ADJUSTED LENGTH IS 00047.
VIRTUAL SECTION'S.SLOC' - ASSIGNED ABSOLUTE GRIGIN I2253.
REAL SECTION 'FILENC" - ASSIGNED ABSOLUTE GRIGIN 47015.
DECK 'CNVRT ' ASSIGNED ARSOLUTE ORIGIN 47056. ADJUSTED LENGTH IS COI57.
VIRTUAL SECTION 'S.SLCC' - ASSIGNED ABSOLUTE GRIGIN 12253.
REAL SECTIGN 'CNVRT* - ASSIGNED ABSOLUTE GRIGIN 47064.
DECK 'DELETE' ASSIGNEC ARSOLUTE ORIGIN 47235. ADJUSTED LENGTH IS GOO67.
VIRTUAL SECTION 'S.SLCC' - ASSIGNED ABSOLUTE GRIGIN 12253.
REAL SECTIGN *DELETE* - ASSIGNED ARSOLUTE ORIGIN 47243.
DELK GSMRGE* ASSIGNEO NRSOLUTE GRIGIN 47324. ADJUSTED LENGTH IS COC2O.
VIRTUAL SECTION 'S.SLCC' - ASSIGNFD ABSOLUTE ORIGIN 12253.
REAL SFCTIGN GGMRGE. - ASSIGNED ABSOLUTE GRIGIN 47332.
DECK 'ECV * ASSIGNED ABSCLUTE ORIGIN 47344. ADJUSTED LENGTH IS GC2OL.
VIRTUAL SECTIGN 'AST. - REFERS TO DECK *INTJ*, LOCATION 50145.
VIRTUAL SECTION 'DE3O.' - REFERS TO DECK 'INTJ ', LOCATION 50152.
VIRTUAL SECTION 'ICIO." - REFERS TO DECK !INTJ !, LOCATION 50I32.
VIRTUAL SECTION 'J. - - REFERS TG DECK 'INTJ ', LOCATION 50006.
VIRTUAL SECTIGN PRU4. - REFERS TG DECK IRWD , LOCATIGN 20044.
VIRTUAL SECTION 'RU22. ' - REFERS TG DECK 'RWD ', LOCATION 2CO53.
VIRTUAL SECTION CCQ. - REFERS TO DECK 'RWD ! LOCATION 20031.
VIRTUAL SECTION 'DESO.' - REFERS TO DECK 'RWD *, LOCATIUN 20077.
VIRTUAL SECTION DETO. - KEFERS TG DECK 'RWD ', LOCATION 2OICO.
VIRTUAL SECTION 'SC. - - REFERS TG DECK 'RWD ', LOCATIGNA 2002I.
VIRTUAL SECTION OCC. - REFERS TO DECK 'RWD ', LOCATION 2O110.
VIRTUAL SECTION 'FFCIO.' - REFERS TO DECK 'FFC *, LOCATIGN 50316.
VIRTUAL SECTION 'FFCI2.' - REFERS TO DECK 'FFC !, LOCATION 5C325.
VIRTUAL SECTION 'FFC24.' - REFERS TO DECK 'FFC ', LOCATION 50346.
VIRTUAL SECTIGN *FLTSW.' - REFERS TO DECK *FFC '. LOCATION 5C512.
VIRTUAL SECTION PFFC3O.' - REFERS TO DECK 'FFC %, LOCATION 50466.
VIRTUAL SECTIGN'DE41.' - REFERS TO DECK IFFC ', LOCATION 5C471.
VIRTUAL SECTION 'DE44. - REFERS TO DECK 'FFC % LOCATION 505CO.
VIRTUAL SECTION 'CVCEL.' - REFERS TG DECK 'RWD *, LOCATION 20165.
VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IOS *, LOCATION 17430.
VIRTUAL SECTION 'IOHCM." - REFERS TO DECK IRWD *, LOCATION 17537.
VIRTUAL SECTION 'DECEL.' - REFERS TO DECK IINTJ !, LOCATION 50307.
RFAL SECTION 'IOHEC." - ASSIGNED ABSOLUTE ORIGIN 47344.
REAL SECTION "IOHET." - ASSIGNED ABSOLUTE ORIGIN 47350.
REAL SECTIGN 'UCI. ' - ASSIGNED ABSOLUTE ORIGIN 47355.
RFAL SECTIGN 'DE. . - ASSIGNED ABSOLUTE ORIGIN 47373.
REAL SECTION 'FFCQ.* - ASSIGNED ABSOLUTE ORIGIN 47476.
RFAL SECTIGN 'FFC21.' - ASSIGNED ABSOLUTE GRIGIN 47544.
DECK *FCV * ASSIGNED ABSOLUTE OKIGIN 47545. ADJUSTED LENGTH IS CCOTL.

```

SOACE LIBRARY - VER. 2, MOD. 1 IBLDR --JOB SPACE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & 'FLTSW. & S 10 & DECK & F & ON & 50512 \\
\hline irtual section & - Bu 22 & REFERS TO & DECK & -RWD & - location & 200 \\
\hline virtual section & - CCO. & REFERS TO & DECK & - RWD & location & 200 \\
\hline virtual section & - SC. & REFERS TO & DECK & -RWD & location & 2002 \\
\hline VIrtual section & - XC. & REFERS TO & DECK & -RWO & - location & 201 \\
\hline virtual section & 'ASTl. & REFERS TO & DECK & -INTJ & ', location & 50 \\
\hline virtual section & - DE & REFERS T O & DECK & - FFC & , location & 5047 \\
\hline virtual section & - DE44. & REFERS TO & DECK & - FFC & - location & 50500 \\
\hline VIRTUAL SECTION & 'FFCl0 & REFERS TO & DECK & - FFC & ', location & 50316 \\
\hline virtual section & - FFC24 & REFERS TO & DECK & - FFC & ', LOCATION & 50346 \\
\hline virtual section & - ICHCN & REFERS TO & DECK & -RWD & - location & 17537 \\
\hline virtual section & - IOCE & REFERS TO & DECK & -10s & - Location & 17 \\
\hline VIRTUAL SECTION & 'CVCEL & - REFERS TO & DECK & - RWD & - Location & 201 \\
\hline virtual section & - DECEL & - REFERS 10 & DECK & 'INTJ & -, location & 501 \\
\hline REAL SECTION & - 10 OH & ASSIGNED & ABSOL & & IN 47545. & \\
\hline RIAL SECTIGN & & ASSIGNED & ABSO & UE & IN 47546. & \\
\hline rfal section & - FG & ASSIGNED & \(A B\) & & 47630 & \\
\hline
\end{tabular}

DECK •HCV • ASSIGNED ARSCLUTE GRIGIN 47630. ADJUSTED LENGTH IS CCIIT. VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IOS •, LOCATION 17430. VIRTUAL SECTIGN •CVCEL.' - REFERS TG DECK 'RWD •, LOCATION 20165. VIRTUAL SECTION •BUI. ' - REFERS TO DECK 'RWD ', LOCATION 20037. VIRTUAL SECTION •BU22. - REFERS TO DECK 'RWD •, LOCATION 20053. VIRTUAL SECTION 'SC. ' - REFERS TO DECK 'RWD ', LOCATION 20021. VIRTUAL SECTION •GETCH.' - REFERS TO DECK 'RWO • LOCATION 20151. REAL SECTION 'IGHHC.' - ASSIGNEO ABSOLUTE GRIGIN 47636.

DECK 'ICV ' ASSIGNED ARSOLUTE GRIGIN 47755. ADJUSTED LENGTH IS CCO20. VIRTUAL SECTION •CCQ. - REFERS TO DECK •RWO •, LOCATION 20031. VIRTUAL SECTION •SC. ' - REFERS TG DECK •RWD •, LOCATION 20021. VIRTUAL SECTIGN 'AST. ' - REFERS TO DECK 'INTJ ', LOCATION 50145. VIRTUAL SECTION •IC2. ' - REFERS TG DECK •INTJ •, LOCATIGN 50116. VIRTUAL SECTION 'ICIO.' - REFERS TO DECK 'INTJ ', LOCATION 50132. VIRTUAL SECTIGN 'ICCEL.' - REFERS TO DECK IIOS •, LOCATION 17430. VIRTUAL SECTIGN 'IOHCM.' - REFERS TO DECK •RWD •, LOCATIUN 17537. VIRTUAL SECTIGN 'IGHCT.' - REFERS TG DECK •RWD •, LOCATIGN 17615. VIRTUAL SECTION 'IOHDB.' - REFERS TO OECK 'INTJ ', LOCATION 50165. REAL SECTIGN 'IGHIC.' - ASSIGNED ABSOLUTE ORIGIN 47755. RFAL SECTION 'IOHIT.' - ASSIGNED ABSOLUTE GRIGIN 47761.

DECK 'INTJ • ASSIGNED ABSOLUTE ORIGIN 47775. ADJUSTED LENGTH IS CO321. VIRTUAL SECTION 'CVCEL.' - REFERS TO DECK •RWD ', LOCATION 20165. VIRTUAL SECTION 'BUI. \(\quad\) - REFERS TO DECK •RWD •, LOCATIGN 20037. VIRTUAL SECTION 'BU4. ' - REFERS TO DECK •RWD ', LOCATIGN \(20044^{\circ}\) VIRTUAL SECTIGN 'CCQ. - REFERS TO DECK •RWD •, LOCATION 20031. VIRTUAL SECTION 'DEGO. " - REFERS TO DECK 'RWD ', LOCATIGN 20077. VIRTUAL SECTION DETO. - REFERS TO DECK 'RWD ', LOCATION 20100. VIRTUAL SECTION 'XC. " - REFERS TO DECK 'RWD ', LOCATIGN 20110. VIRTUAL SECTION 'FEXEN.' - REFERS TO DECK •XEM •, LOCATION 20473. VIRTUAL SECTION •IOCEL.' - REFERS TO DECK 'IOS \(\because\), LOCATIGN 17430. VIRTUAL SECTION 'GETCH.' - REFERS TO DECK 'RWD •, LOCATION 20151. RIAL SECTION •J. - ASSIGNED ABSOLUTE GRIGIN 50006. PEAL SECTION •IC2. - ASSIGNED ABSOLUTE ORIGIN 50116. REAL SECTION 'ICIO. - ASSIGNED ABSOLUTE GRIGIN 50132. REAL SECTION 'AST. - ASSIGNED ABSOLUTE ORIGIN 50145.
```

    SPACE LIBRARY - VER. 2, MOD. 1 IBLDR -- JOB SPACE
    REAL SECTIGN *ASTI.* - ASSIGNED ARSOLUTE ORIGIN 50146.
    REAL SECTIUN 'DE30.* - ASSIGNED ABSOLUTE GRIGIN 50152.
    REAL SECTIGN "IGHDB.' - ASSIGNED ARSOLUTE ORIGIN 50165.
    REAL SECTION *OBCI.* - ASSIGNED ABSOLUTE GRIGIN 50177.
    REAL SECTION 'DBC5." - ASSIGNED ABSOLUTE ORIGIN 50217.
    REAL SECTION 'ANACH.' - ASSIGNED ABSOLUTE ORIGIN 50246.
    REAL SECTION 'SGI. " - ASSIGNED ABSOLUTE ORIGIN 50265.
    REAL SECTION *DECEL." - ASSIGNED ABSOLUTE ORIGIN 50307.
    DECK 'FFC ' ASSIGNED ABSOLUTE ORIGIN 50316. ADJUSTED LENGTH IS CC365.
VIRTUAL SECTIGN'ICIO.' - REFERS TO DECK 'INTJ ', LOCATION 50132.
VIRTUAL SECTION 'RU22.* - REFERS TO DECK 'RWD ', LOCATION 2CO53.
VIRTUAL SECTION 'DEGO. - REFERS TO DECK IRWD * LOCATION 2CO77.
VIRTUAL SECTIGN 'DETO.: - REFERS TO DECK 'RWD ', LOCATION 20100.
VIRTUAL SECTION 'IC2. * - REFERS TO DECK IINTJ * LOCATION 50116.
VIRTUAL SECTIGN 'J. " REFERS TO DECK 'INTJ ', LOCATION 50006.
VIRTUAL SECTION 'DECEL.' - REFERS TO DECK 'INTJ *, LOCATION 503O7.
VIRTUAL SECTIGN IGCEL.' - REFERS TO DECK 'IOS , LOCATION 17430.
VIRTUAL SECTIGN !IOHCT.' - REFERS TO DECK 'RWD *, LOCATIGN 17615.
VIRTUAL SECTION 'IOHDB." - REFERS TO DECK IINTJ ', LOCATION 50165.
RFAL SFCTION 'FFCIO.' - ASSIGNED AHSOLUTE ORIGIN 50316.
RFAL SECTIGN 'FFCIL.' - ASSIGNED ABSOLUTE GRIGIN 50322.
RFAL SECTION 'FFC12.' - ASSIGNED ABSOLUTE ORIGIN 50325.
REAL SECTION 'FFC23.' - ASSIGNED ABSOLUTE GRIGIN 50344.
REAL SFCTION 'FFC24." - ASSIGNED ARSOLUTE ORIGIN 50346.
RFAL SECTION 'FFC30." - ASSIGNED ARSOLUTE GRIGIN 50466.
REAL SFCTION 'OE41.' - ASSIGNED ARSOLUTE ORIGIN 50471.
REAL SECTION 'DE44.* - ASSIGNED ABSOLUTE GRIGIN 50500.
RFAL SECTIUN 'FLTSW.' - ASSIGNED ARSOLUTE ORIGIN 50512.
REAL SFCTIGN 'RDE. . - ASSIGNED ABSOLUTE GRIGIN 50537.
RFAL SECTIGN 'CMC. ' - ASSIGNED ABSOLUTE GRIGIN 50606.
RFAL SECTIGN 'IOHPW.' - ASSIGNEO ABSOLUTE ORIGIN 50621.
UEGK : SLG - ASSIGNFD ABSCLUTE GRIGIN 50703. ADJUSTED LENGTH IS OOC25.
VIRTUAL SECTION 'ERLOC.' - REFERS TG OECK 'XEM ' LOCATION 20472.
VIRTUAL SECTIGN 'IOCEL." - REFERS TO DECK 'IOS * LOCATION 17430.
RFAL SECTIGN 'SLOIO." - ASSIGNEO ABSGLUTE GRIGIN 50703.
DECK 'XP2 ' ASSIGNED ABSOLUTE ORIGIN 50730. ADJUSTED LENGTH IS C0067.
VIRTUAL SECTION 'FEXEM.' - REFERS TO DECK 'XEM *, LOCATION 20473.
VIRTUAL SECTION 'ERLOC." - REFERS TO DECK 'XEM * LOCATION 20472.
REAL SECTION *.EXP2.' - ASSIGNED ABSOLUTE ORIGIN 50735.
DECK 'XP3 ' ASSIGNED ABSOLUTE ORIGIN 51017. ADJUSTED LENGTH IS OOO51.
VIRTUAL SECTIGN 'FEXEN.' - REFERS TO DECK 'XEM ! LGCATIGN 20473.
VIRTUAL SECTIGN 'ERLOC.' - REFERS TO DECK 'XEM * LOCATIGN 20472.
VIRTUAL SECTIGN ALGG - REFERS TG DECK 'LOG * LOCATIGN 51177.
VIRTUAL SECTION 'EXP ' - REFERS TO OECK 'XPN * LOCATION 5LOT2.
REAL SECTION '.EXP3.' - ASSIGNED ABSOLUTE GRIGIN 51020.
DECK 'XPN * ASSIGNED ABSOLUTE GRIGIN 51070. ADJUSTED LENGTH IS CCIC3.
VIRTUAL SECTION 'FEXEM.' - REFERS TO DECK 'XEM ध LOCATION 20473.
VIRTUAL SECTIGN 'ERLGC.' - REFERS TO DEGK *XEM * LOCATION 20472.
REAL SECTIGN 'FXP - ASSIGNED ABSOLUTE ORIGIN 51072.

```

SDACE LIBRARY - VER. 2, MOD. 1 IBLDR -- JOB SPACE

DECK •LGG • ASSIGNED ABSOLUTE GRIGIN 51173. ADJUSTED LENGTH IS COI26. VIRTUAL SECTION 'FEXEM.' - REFERS TO DECK •XEM •, LOCATION 20473. VIRTUAL SECTION 'ERLOC.' - REFERS TO DECK 'XEM •, LOCATION 20472. REAL SECTIGN 'ALOGIO' - ASSIGNED ABSOLUTE ORIGIN 51173. REAL SECTION 'ALOG - ASSIGNED ABSOLUTE ORIGIN 51177.

DECK 'ATHRUZ' ASSIGNED ABSCLUTE GRIGIN 51321. ADJUSTED LENGTH IS OCO22. VIRTUAL SECTION 'S.SLOC' - ASSIGNED ABSOLUTE GRIGIN 12253. REAL SECTION 'ATHRUZ' - ASSIGNED ABSOLUTE ORIGIN 51327.

DECK PROOL - ASSIGNED ABSOLUTE ORIGIN 51343. ADJUSTED LENGTH IS OOG21. VIRTUAL SECTION 'S.SLCC' - ASSIGNED ABSOLUTE ORIGIN 12253. REAL SECTION •RCOL - ASSIGNED ABSOLUTE ORIGIN 51351.

DECK •HLCT • ASSIGNED ABSOLUTE ORIGIN 51364. ADJUSTED LENGTH IS COO47. VIRTUAL SECTION 'S.SLOC' - ASSIGNED ABSOLUTE ORIGIN 12253. REAL SECTIUN 'HCLOCT' - ASSIGNED ABSOLUTE GRIGIN 51372.
```

        SPACE LIBRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE
            MEMORYMAP
            GF LINK NUMBER 3,1 61! )
                ORIGIN OF THIS LINK AT DECK 'GII
    | SYSTEM, INCLUDING IOCS | 00000 THRU 12252 |
| ---: | ---: |
| NLMBER OF FILES - NONF |  |
| OBJECT PROGRAN | 12352 THRU 51432 |

    1. DECK 'SPC • 12352
    2. DECK 'DSSCAN' 17001
    3. SURR 'INSYFB' 00000
    4. SUPR 'OUSYFB' 00000
    5. SURR 'POSTX . 17040
    6. SURR 'PPSYFB' 00000
    7. SUPR 4FOS
    9. SURR •FO6
    9. SUBR -IOS
    10. SUBR •RWC
11. SUBR •ACV
12. SURR * XCV
13. SUBR •FPT
14. SUPR 'XFN
15. SUBR -XIT , 20700
16. SURR •DMP ' 20702
17. SUBR •ROH44 . }2257
18. DECK ©OlI ' - 24232
19. DECK 'SORTC1' 46527
20. DECK 'CGNPAR' 46620
21. DECK 'ALLINI' 46676
22. DECK 'FILENO' - 47007
23. DECK ©CNVRT . . 47056
24. DECK 'DELETE' 47235
25. DECK 'GSMRGE' 47324
26. SURR 'ECV , 47344
27. SUBR •FCV ! 47545
28. SUBR •HCV ! 47636
29. SURR 'ICV ! 47755
30. SUBR |INTJ ! 47775
31. SURR •FFC ! 50316
32. SUBR •SLC . 50703
33. SUBR 'XP2 ' 50730
34. SURR 'XP3 , 51017
35. SUBR 'XPN - 51070
36. SURR 'LOG ' 51173
37. SURR 'ATHRUZ' 51321
38. SURR 'BOCL . 51343
39. SURR •HLCT - 51364

-     - insertigns cr deletions made in this deck)

```

\section*{SPACE LIBRARY - VER. 2, MOD. 1}
\begin{tabular}{rrr}
IRLDR & JOR SPACE \\
76157 & THRU 77776 \\
51433 & THRU 76147
\end{tabular}
```

SPACE I.IBRARY - VER. 2, MOC. 1

```
IBLOR -- JOB SPACE
LOGICMAP
FOR DECKS OF LINK NUNBER 4, (UTLITY)
RFAL SECTION 'S.SLCC' - ASSIGNED ABSOLUTE GRIGIN 12253.
DECK UTL • ASSIGNED ABSOLUTE GRIGIN 24232. ADJUSTED LENGTH IS 02347. VIRTUAL SECTIGN S.JNAM: - REFERS TO DECK IBNUC * LOCATION 00311. VIRTUAL SECTION 'S.SOAT' - REFERS TO DECK IIBNUC • LOCATIGN 00213. VIRTUAL SECTION 'S.SLTC' - REFERS TO DECK IIBNUC * LOCATIGN OC210. VIRTUAL SECTION S.XDVA' - REFERS TO DECK IIBNUC •LOCATIGN 00153. VIRTUAL SECTION 'FILIC.' - REFERS TO DECK •RWD * LOCATIGN 20141. VIRTUAL SECTION PFILOG." - REFERS TO DECK FFO6 * LOCATION 17153. VIRTUAL SECTIGN 'HNLIO.' - REFERS TO DECK •RWD :LGCATIGN 17573. VIRTUAL SECTION SLOIO.: - REFERS TG DECK ISLO •LOCATION \(3 C 127\). VIRTUAL SECTION STHIO.' - REFERS TO DECK •RWD * LOCATION 17472. VIRTUAL SECTIGN IIGHAC. - REFERS TO DECK :ACV * LOCATIGN 20203. VIRTUAL SECTIJN •IOHFC.' - REFERS TO DECK IECV • LOCATIGN 26601. VIRTUAL SECTIGN •IOHEF.' - REFERS TG DECK IRWD * LOCATIGN 17665. VIRTUAL SECTION I IOHHC.' - REFERS TO DECK 'HCV * LOCATIGN 27002. VIRTUAL SECTION I IGHIC.' - REFERS TO DECK 'ICV VIRTUAL SECTION•IOHIO.' - REFERS TO DECK 'RWD VIRTUAL SECTION 'ICHLP.' - REFERS TG DECK 'RWD VIRTUAL SECTION •IOHOC." - REFERS TO DECK •OCV VIRTUAL SECTION IIOHRP.' - REFERS TO DECK •RWD VIRTUAL SECTION IOHXC." - REFERS TO DECK •XCV VIRTUAL SECTION 'ABOUTI' - REFERS TO DECK 'SPC VIRTUAL SECTION 'ABOUT2" - REFERS TO DECK 'SPC VIRTUAL SECTION 'ENDF - REFERS TO DECK 'SPC VIRTUAL SECTION GEDIT - REFERS TO DECK SPC VIRTUAL SECTIGN •REAUBI' - REFERS TO DECK ISPC VIRTUAL SECTION 'REACE2' - REFERS TO DECK 'SPC VIRTUAL SECTION •SIGNON' - REFERS TO DECK ISPC VIRTUAL SECTION SPACE - REFERS TO DECK 'SPC
 REAL SECTION 'SYSTEM' - DELETED. REFERS TO DECK ISPC •, LGCATIGA 16476.
16617.
 VIRTUAL SECTION 'AST. - REFERS TO DECK IINTJ • LOCATION 27370. VIRTUAL SECTION 'DE30. - REFERS TO DECK •INTJ * LOCATIGN 27375. VIRTUAL SECTION 'ICIO. - REFERS TO DECK IINTJ • LOCATIGN 27355. VIRTUAL SECTION•J. - REFERS TO DECK IINTJ • LOCATIGN 27231. VIRTUAL SECTION •RU4. - REFERS TO DECK •RWD * LGCATIGN 20044. VIRTUAL SECTIGN BU22. - REFERS TO DECK •RWD • LOCATION 20053. VIRTUAL SECTION CCQ. - REFERS TO DECK •RWD * LOCATIGN 20031. VIRTUAL SECTIGN DEGO. - REFERS TO DECK •RWD •LOCATIGN 20077. VIRTUAL SECTIGN 'DE7O. - REFERS TG DECK •RWD \(\quad\) LGCATIGN 20100. VIRTUAL SECTION•SC. - REFERS TO DECK •RWD •LOCATIGN 20021. VIRTUAL SECTION •XC. - REFERS TO DECK •RWD * LOCATION 20110. VIRTUAL SECTION 'FFCIO.' - REFERS TO DECK •FFC \(\because L O C A T I G N ~ 27541 . ~\) VIRTUAL SECTIGN PFFCI2." - REFERS TO DECK •FFC : LGCATIGN 27550. VIRTUAL SECTION 'FFC24." - REFERS TO DECK •FFC * LGCATION 27572. VIRTUAL SECTION 'FLTSW." - REFERS TO DECK 'FFC ' LOCATION 27736. VIRTUAL SECTION •FFC30." - REFERS TO DECK *FFC :LGCATIGN 27712. VIRTUAL SECTION DE41. - REFERS TO DECK •FFC • LOCATION 27715.

SPACE LIBRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AL SECTIJN & '0E44. & REFERS TO & DECK 'F & FFC & ION & 277 \\
\hline virtual section & - CVCEL & - REFERS TO & DECK 'R & RWD • & location & 20165 \\
\hline virtual section & -IOCEL.' & - REFERS TO & DECK 'I & IOS \(\quad\) & location & 17430 \\
\hline virtual section & - IOHCM & - REFERS TO & DECK 'R & RWD ', & location & 17537. \\
\hline virtual section & - DECEL & REFERS TO & DECK 'I & INTJ ', & location & 27532. \\
\hline real section & - IOHEC & ASSIGNED & ABSOLUTE & E ORIGIN & 26601. & \\
\hline REAL SECTION & - I OHE & ASSIGNED & ABSOLUTE & E GRIGIN & 26605. & \\
\hline REAL SECTION & - OC1. & ASSIGNED & ARSOLUTE & E ORIGIN & 26612. & \\
\hline REAL SECTION & - DE. & ASSIGNED & ABSOLUTE & E ORIGIN & 26630. & \\
\hline RFAL SECTIGN & - FFCP. & ASSIGNED & ABSOLUTE & E GRIGIN & 26733. & \\
\hline REAL SECTIGN & - FFC & AN & ABS & OR I & 2700 & \\
\hline
\end{tabular}

DECK •HCV • \(\triangle S S I G N E D ~ A B S O L U T E\) GRIGIN 27002. ADJUSTED LENGTH IS 00117. VIRTUAL SECTION •IOCEL.' - REFERS IO DECK 'IOS •, LOCATION 17430. VIRTUAL SECTION 'CVCEL.' - REFERS TO DECK 'RKD \(\cdot\) LOCATION 20165. VIRTUAL SECTION •RUI. - - REFERS TO DECK 'RWO \(\quad\) LGCATION 20037. VIRTUAL SECTION •RU22. \(\quad\) - REFERS TO DECK •RWD \(\because\) LGCATION 20053. VIRTUAL SECTIGN 'SC. - REFERSTO DECK PRWO \(\quad\) LOCATIGN 20021. VIRTUAL SECTION 'GETCH.' - REFERS TO DECK 'RWO •, LOCATION 20151. REAL SECTION 'IOHHC.' - ASSIGNED ABSOLUTE GRIGIN 27002.

DECK 'ICV - ASSIGNED ABSOLUTE ORIGIN 27121. ADJUSTED LENGTH IS COO20. VIRTUAL SECTION 'CCG. - REFERS TO DECK 'RWD ध, LOCATIGN 20031. VIRTUAL SECTION SC. - REFERS TO DECK •RWD, LOCATIGN 20021. VIRTUAL SECTION 'AST. ' - REFERS TO DECK 'INTJ ', LOCATION 27370. VIRTUAL SECTION •IC2. ' - REFERS TO DECK •INTJ ', LOCATION 27341. VIRTUAL SECTION 'ICIO. - REFERS TO DECK 'INTJ \(\because\) LOCATION 27355. VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IGS ', LOCATION 17430. VIRTUAL SECTION 'IOHCM.' - REFERS TO DECK 'RWD ', LOCATION 17537. VIRTUAL SECTIGN 'IOHCT.' - REFERS TO DECK 'RWD ', LOCATION 17615. VIRTUAL SECTION 'I OHDB.' - REFERS TO DECK 'INTJ ', LOCATION 27410. REAL SECTION 'IOHIC." - ASSIGNED ABSOLUTE ORIGIN 27121. RFAL SECTION 'IOHIT.' - ASSIGNED ABSOLUTE ORIGIN 27125.
 VIRTUAL SECTION BBU1. - REFERS TO DECK 'RWO *, LOCATIGN VIRTUAL SECTION 'HCT. - REFERS TO DECK 'RWD \(\cdot\), LOCATION 17614. VIRTUAL SECTION 'SC. - REFERS TO DECK 'RWD \(\quad\) LOCATION 20021. VIRTUAL SECTION 'XC. - - REFERS TO DECK 'RWD ', LOCATION 20110. VIRTUAL SECTION 'CVCEL.' - REFERS TO DECK 'RWD \(\because\) LOCATIGN 20165. VIRTUAL SECTIGN 'FEXEM.' - REFERS TO DECK 'XEM ', LOCATION 20473. VIRTUAL SECTION •IOCEL.' - REFERS TO DECK IIOS • LOCATION 17430. VIRTUAL SECTION 'ICHCN.' - REFERS TO DECK 'RWO \(\because\) LOCATION 17537.

DECK •INTJ • ASSIGNED ABSOLUTE GRIGIN 27220. ADJUSTED LENGTH IS CC321. VIRTUAL SECTION "CVCEL." - REFERS TO DECK •RWD •, LOCATION 20165. VIRTUAL SECTION 'GU1. - REFERS TO DECK •RWD •, LOCATION 20037. VIRTUAL SECTION 'BU4. \(\cdot\) - REFERS TO DECK 'RWO \(\cdot\), LOCATION 20044. VIRTUAL SECTION CCCO. - REFERS TO DECK 'RWD •, LOCATION 20031. VIRTUAL SECTIGN 'DEGO. : - REFERS TO DECK 'RWD • LOCATIGN 20077.

```

    SPACE LIBRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE
    VIRTUAL SECTIGN 'FEXFM.' - REFERS TO DECK 'XEM ', LOCATIGN 20473.
    VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK IIOS •, LOCATION 17430.
    VIRTUAL SECTION 'GETCH.' - REFERS TO DECK 'RWD ', LOCATION 20151.
    REAL SFCTIGN •J. - - ASSIGNED ABSOLUTE GRIGIN 27231.
    REAL SECTION •IC2. - - ASSIGNED ABSOLUTE GRIGIN 27341.
    REAL SECTION 'ICIO. - ASSIGNED ABSOLUTE GRIGIN 27355.
    REAL SECTIGN AST. - - ASSIGNED ABSOLUTE ORIGIN 27370.
    REAL SECTION 'AST1. - - ASSIGNED ABSOLUTE GRIGIN 27371.
    REAL SECTION 'DE3O." - ASSIGNED ABSOLUTE GRIGIN 27375.
    REAL SECTION 'IOHDE.' - ASSIGNED ABSOLUTE ORIGIN 27410.
    REAL SECTION 'OBC1.' - ASSIGNED ABSOLUTE GRIGIN 27422.
    REAL SECTION DDBC5. - ASSIGNED ABSOLUTE GRIGIN 27442.
    REAL SECTION 'ANACH.' - ASSIGNED ABSOLUTE GRIGIN 27471.
    REAL SECTION 'SG1. - - ASSIGNED ABSOLUTE ORIGIN 27510.
    REAL SECTION DDECEL.' - ASSIGNED ABSOLUTE ORIGIN 27532.
    DECK
. ASSIGNED ABSOLUTE GRIGIN 2754l. ADJUSTED LENGTH IS
VIRTUAL SECTION 'ICIO.* - REFERS TG DECK IINTJ ', LOCATIGN
VIRTUAL SECTION'BU22." - REFERS TG DECK 'RWD !, LOCATIGN
VIRTUAL SECTION 'DEGO. - REFERS TO DECK 'RWD ', LOCATION
R - - REFERS TG DECK 'RWD ', LOCATION
VIRTUAL SECTION 'DETO. ' - REFERS TO DECK 'RWO ', LOCATIGN 20100.
VIRTUAL SECTION IICZ. * - REFERS TO DECK IINTJ •, LOCATION 27341.
VIRTUAL SECTION 'J. , - REFERS TO DECK 'INTJ ', LOCATION 27231.
VIRTUAL SECTION 'DECEL.' - REFERS TO DECK 'INTS ', LOCATIGN 27532.
VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IOS ', LOCATION 17430.
VIRTUAL SECTION 'IOHCT.' - REFERS TO DECK 'RWD ', LOCATION 17615.
VIRTUAL SECTION 'IOHOB.' - REFERS TO DECK 'INTS ', LOCATION 27410.
REAL SECTION 'FFCIO.' - ASSIGNED ABSOLUTE GRIGIN 27541.
REAL SECTION 'FFCII.' - ASSIGNED ABSOLUTE GRIGIN 27545.
RFAL SECTION GFFCI2.' - ASSIGNED ABSOLUTE ORIGIN 27550.
REAL SECTION 'FFC23.' - ASSIGNED ABSOLUTE GRIGIN 27570.
REAL SECTION *FFC24.' - ASSIGNED ABSOLUTE ORIGIN 27572.
REAL SECTION 'FFC30.' - ASSIGNED ABSOLUTE ORIGIN 27712.
RFAL SECTION - OE41:. - ASSIGNED ABSOLUTE ORIGIN 27715.
RFAL SECTION 'OE44. - - ASSIGNED ABSÕLUTE GRIGIN 27724.
REAL SECTION 'FLTSW.' - ASSIGNED ABSOLUTE ORIGIN 27736.
REAL SECTION - BCE. - - ASSIGNED ABSOLUTE ORIGIN 27763.
REAL SECTION -CMC. - - ASSIGNED ABSOLUTE GRIGIN 30032.
RFAL SECTION *IOHPW.' - ASSIGNED ABSOLUTE GRIGIN 30045.
DECK 'SLG ' ASSIGNED ABSOLUTE GRIGIN 30127. ADJUSTED LENGTH IS CCO25.
VIRTUAL SECTICN 'ERLOC.' - REFERS TO DECK 'XEM ', LOCATION 20472.
VIRTUAL SECTION 'IOCEL.' - REFERS TO DECK 'IOS ', LOCATION 17430.
REAL SECTION 'SLOIC.' - ASSIGNED ABSOLUTE ORIGIN 30127.

```
```

SPACE LIRRARY - VER. 2, MOC. 1 IBLDR -- JOB SPACE

```

\author{
MEMORYMAP
}

OF LINK NUMBER 4,1 UTLITY) ORIGIN OF THIS LINK AT DECK 'UTL •
```

SYSTEM, INCLUDING IOCS OOOCO THRU 12252
number of files - none
BBJECT PROGRAM 12352 THRU 30153

```

```

(* - INSERTIONS OR DELETIONS MADE IN thIS DECK)

| INPUT - OUTPUT BUFFERS | 76157 THRU 77776 |
| :--- | :--- |
| UNUSED CORE | 30154 THRU $\mathbf{7 6 1 4 7}$ |

```

\section*{GBJECT PRGGRAM IS BEING ENTERED INTG STGRAGE.}
```

SPACE - VER. 2. MOD. l HAS CGNTROL

```
SPACE - VER. 2. MOD. l HAS CGNTROL
 REELS R 91 B DEFER F 91001 LIST F 91002 LIST F 91003 LIST
 R -3 F -3001 LIST F -3002 LIST
 REEL -4 C FILE -4001 LIST
 R -5 F -5001 COPYTO 91004 LIST F -5002 COPYTO 91005 LIST
 F 91001 COPYTO -5003 F-5001 COPYTO 910CE F 91004 LISTI 4
```

a. The monitor itself occupies approximately $2325 / 10$ locations of core storage; however, it overlays more than the first quarter of itself with the following:

1. Post-execution file utility operations table.
2. IOCS file control blocks.
3. IOCS buffer pool list.
4. Buffers.

Depending upon the storage required by items 1-3, one or two buffers will occupy this area. Remaining buffers, if needed, will be constructed in upper core. Note that the number of such buffers which can be used for a given program is a function of its size; i.e., if the program is very large, some buffers may have to be released to serve as program area. The pool will, however, be restored to its original state for the next program, unless a similar situation exists. In every case, the upper memory break contained in the address portion of S.SLOC +3 is adjusted by the monitor to reflect buffer residence. This adjustment is made for each program when it is loaded.
b. The READH subroutine is used by the monitor for BCD input and hence, must be included in the main link.
c. Although the library must be prepared in chain link format, the chain subroutine in IBLIB is not used for loading links. Unless referenced by some program, it will never be in core.
d. Two stringent requirements are imposed upon the main link. First, it must contain the definitions of all lOCS files used in the entire library, and second, it must contain the definition of the largest block of blark common. Thus, if any programs require the use of non-SPACE files, the appropriate \$FILE cards must be included in the main link when the library is created. The DEFER or READY mounting option should be specified for all such files. Use of blank common can usually be avoided by employing named common; however, the user
may elect to include a deck in the main link specifying the largest definition. For example:
$1 \quad 8 \quad 16$
\$IBMAP DEFINE CONTRL // USE // BSS 500 END
e. Variable unit designations should never be used in FORTRAN I/O statements, as all logical units defined in the loU table will be considered unavailable to the monitor.

## SECTION 3

USER'S MANUAL

## TABLE OF CONTENTS

Paragraph Page
3.1 PREPARING THE REELS CARD SERIES ..... 3-1-01
3.1 .1 CATEGORY KEYWORDS ..... 3-1-013.1 .23.1 .33.1 .43.1 .53.1 .6
OPTIONS PERTAINING TO INDIVIDUAL REELS ..... 3-1-02
ORDER OF UNIT ASSIGNMENT ..... 3-1-04
POST-EXECUTION FILE UTILITY OPTIONS ..... 3-1-05
SERIES PREPARATION EXAMPLES ..... 3-1-06
ASSOCIATED ERROR DIAGNOSTICS ..... 3-1-07
3.2
3.2 ..... 3-2-01
CREATING THE LIBRARY3.2.13.2 .23-2-01PLANNING THE LINK STRUCTURE3-2-02
3.3 THE TYPEWRITER LISTING ..... 3-3-01
3.4 RELATED USER INFORMATION 3.4 ..... 3-4-01

## SECTION 3

USER'S MANUAL

### 3.1 PREPARING THE REELS CARD SERIES

Every reel, permanent or mediary, to be used in a given job must be specified in the REELS card series. In addition, all files which are to take part in post-execution utility operations must be identified in the series. The user should familiarize himself with the organization of the job deck as prescribed in section 2.1.2 of this manual.

### 3.1.1 CATEGORY KEYWORDS

Information appearing in the REELS card series must be in the form of groups, of which there are three possible categories. The beginning of each group is identified by a keyword classifying the group and ends when either the keyword of the next group or the end of the series is encountered. The category keywords are as follows:
a. REEL - This keyword indicates the beginning of a group of information related to some reel which is to be used for the job. It must always be followed immediately with a positive permanent, or negative mediary reel number. Options pertaining to the reel may follow the reel number in any order.
b. FILE - This keyword indicates the beginning of a group of information related to some file which is to be processed by the post-execution utility program. The keyword must always be followed immediately with the file number of the file which is to be referenced. Either, or both, of the two utility options may follow the reference file number in any order.
c. BUFFERS - If it is used, this keyword must be immediately followed with a single integer which establishes the number of buffers to be assigned for the job. If this keyword is omitted, or if the specification is zero, two buffers will be assigned for each reel (unless two or more reels share the same physical device by virtue of the DEFER option).

To permit economy in punching, the keywords REEL, FILE, and BUFFERS may be punched as $R, F$, and BUF, respectively.

### 3.1.2 OPTIONS PERTAINING TO INDIVIDUAL REELS

In some instances, it is necessary to supply additional information related to a certain reel, or the user may elect to exercise one or more options available for the reel. This information must be part of the $R$ group to which it applies and can follow the reel number in any order. The various options/specifications recognized include:
a. The unit to which the reel is to be assigned, as follows:

Uxx $\quad=$ The reel is to be assigned to the symbolic utility unit, S.SUxx.

Iyy $\quad=$ The reel is to be assigned to a unit having the intersystem reservation code yy.

IyyR = Same as Iyy, except that after the assignment is made, the unit's reservation code is to be canceled (set to 00 ).
$U x x$ Iyy $=$ Same as $U x x$, except that the reservation code $y y$ ( $\leq 20$ ) is to be assigned to the symbolic unit specified by Uxx. Note that these are two separate words.

B $\quad=$ The reel should be assigned to any tape drive on channel $B$.

C $\quad=$ The reel should be assigned to any tape drive on channel $C$.
b. The specification, NOLABEL, which indicates that a reel header label does not exist, and hence must be created. Unless NOLABEL has been specified for a given permanent reel, the monitor will attempt to read and verify its label to insure that the correct reel has been mounted. If the label cannot be read, or cannot be identified, the condition will be treated as an error and will terminate execution. The NOLABEL specification is not required for mediary reels and should'only be employed with the first SPACE application of a permanent reel.
c. The FP option may be exercised for permanent reels which are to be logically file protected by the monitor. With this option in effect, the associated reel cannot be written upon. An exception occurs when a utility operation requests a file to be copied onto the reel. In this case, and this case only, the file protect option is ignored.
d. The DEFER option may be used for a reel which will not be needed until later in the job, or perhaps will not be needed at all. When this option is employed, the operator mounting message is deferred until a file on the reel is opened by READBI or ABOUT1. Observe that this supplies the user with the ability to assign two or more reels to the same physical unit. With such an application, the monitor will unload the reel currently mounted and request the deferred reel to be mounted in its place. The removed reel will then be placed in a deferred status, even though the DEFER option was not exercised with it. The user must, therefore, be aware of the order in which files will be used on reels sharing the same unit. Consider, for example, reels $A$ and $B$ which have both been assigned to the same unit by virtue of the DEFER option for reel B. If files on these reels starting with $A$, were referenced in an alternate fashion, the operator would be in continuous state of repeating the following four steps:

1. Remove $A$
2. Mount B
3. Remove $B$
4. Mount $A$

### 3.1.3 ORDER OF UNIT ASS IGNMENT

The monitor will consider a device available and hence, permit assignment only if the following requirements are met:
a. The device is symbolically attached.
b. Its reservation code is 00, except for Iyy or IyyR specifications.
c. It is either a tape transport on channel B or C, or disk/drum storage accessed sequentially in full track with addresses mode.

When more than one technique of unit assignment has been specified for reels appearing in the REELS card series, the order of assignment is as follows:

1. All Uxx specifications are processed first.
2. All Uxx Iyy, Iyy, and IyyR specifications are processed second.
3. All reels having a channel preference are assigned next. If an available unit cannot be found on the desired channel, the channel preference will be ignored and the reel placed in the next category.
4. All reels which do not have an assignment specification are assigned units last. When making such assignments, the monitor will attempt to satisfy as many of the following criteria as possible:
a. Disk/drum utility units for mediary reels.
b. Tape transports in ready status for all mediary reels which cannot be assigned disk/drum.
c. Tape transports not in ready status for all permanent reels.

### 3.1.4 POST-EXECUTION FILE UTILITY OPTIONS

The user may elect to employ either or both of the two utility options for a given file. These options must be part of the $F$ group to which they apply, and can follow the reference file number in any order.
a. The LISTx option is used to dump selected logical records from the reference file onto S.SOUl in the format prescribed by the character $x$ appended to the word. The significance of this character is as follows:

```
x = blank or 8-List in octal.
x = I - List as integer.
X F F - List as floating point decimal
 in the format }\pmX.XXXXXXE\pmYY.
x = B - List as BCD.
```

The LISTx option may assume any one of the following forms:

$$
\begin{aligned}
& \text { 1. LISTx - All records in the reference } \\
& \text { 2. Lile are to be listed. }
\end{aligned}
$$

Note that option (1) is a single word, while options (2) and (3) constitute two words.
b. The COPYTO option provides a means by which the reference file can be copied to another file. The word, COPYTO, must always be followed by the file number of the file to which the copy is desired. With the exception of the file number, the contents of the identification record of the new file will remain the same as that of the reference file. The user will always be notified of the success or failure of a requested copy.

NOTE: Utility operations are performed in the order which they are given in the REELS card series. Hence, the user must plan the sequence of activities to be performed.

### 3.1.5 SERIES PREPARATION EXAMPLES

Example 1:

| Col. 1-5 | Col. 7-72 |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REELS | R | 91 | NOLABEL | F | 91001 | LIST | F | 91002 | LIST |
|  | $R$ | -1 | R | -2 | B | FILE | -1004 | COPYTO | 91003 |
|  | LISTF | 20 | $*$ |  |  |  |  |  |  |

In the example above, a total of three reels have been specified. Reel 91 is permanent and does not have a label. Two files on this reel, 91001 and 91002 should be fully listed in octal at the end of the job. Two mediary reels having reference numbers -1 and -2 are also required in the job. If possible, reel -2 should be assigned to a tape unit on channel B. At the end of the job, file -l004 is to be copied to file 91003 and the first twenty logical records of file -1004 are to be listed in floating point decimal.

Example 2:


This example illustrates the use of six reels. Three of these are mediary and have reference numbers $-5,-10$ and -15 . The remaining three reels are permanent and bear identification numbers 478, 1396 and 673. Assuming the configuration of the system consists of only five symbolic utility units, reels 478 and 1396 have been
assigned to the same device (S.SUO4) by virtue of the DEFER option for reel 478. This reel is not needed during processing; however, a file which will be created during the job must be saved on the reel. Hence, when the utility processor opens file 478001 for the requested copy, reel 1396 will be unloaded and reel 478 mounted in its place. The appearance of the NOLABEL specification for reel 478 indicates that it must be labeled when it is mounted. Reel 67\% is to be assigned to a symbolic unit having the intersystem reservation code 16 and, as soon as the assignment is made, the reservation code is to be cancelled. At the end of the job, logical records $50-100$ of file - 10002 are to be listed in octal and the file is to be copied to file 478001 .

### 3.1.6 ASSOCIATED ERROR DIAGNOSTICS <br> The following errors can occur while processing the REELS card series. Each will have the effect of terminating execution without calling the DUMP program.

### 3.1.6.1 'REELS' CARD MISSING, OR IMPROPERLY PUNCHED. <br> The monitor has not found the BCD word REELS punched in columns l-5 of the first card in the series.

3.1.6.2 UNRECOGNIZED OPTION ON 'REELS' CARD -- WORD ** $=* * * * * *$

A word has been punched in the series which the monitor cannot recognize.
3.1.6.3 FILE INFO ON 'REELS' CARD EXCEEDS CAPACITY OF ALLOTTED STORAGE BY *** ENTRIES.

The table into which the post-execution file utility operation requests are placed has overflowed. This table is initially constructed in the area occupied by the first dependent link, and later moved to overlay code which is no longer needed at the origin of the monitor. This overlay area constitutes approximately $230 / 10$ cells and can accommodate many utility requests. Within the table, three entries
are required for each $f$ group specifying both utility operations, and two entries are required for each $F$ group specifying only one operation. The number given in the diagnostic reflects the amount of excess in terms of cells.

### 3.1.6.4 TOO MANY REELS SPECIFIED - LIMIT is 15.

More than fifteen $R$ groups have been specified in the series. This limit is nominal and may be changed according to user requirements.

### 3.1.6.5 SYMBOLIC UNIT S.SU** REQUESTED FOR REEL ***** IS UNAVAILABLE.

A Uxx specification has been given for the reel; however, the monitor has discovered that the requested symbolic unit is not available. The fact that it is unavailable may be attributed to either of the following conditions:
a. The unit is not symbolically attached.
b. Its reservation code is not 00 .

### 3.1.6.6 RESERVATION CODE ** (REEL *****) IS NONEX ISTENT.

An Iyy or IyyR specification has been given for the reel; however, a unit with a matching reservation code was not found.

### 3.1.6.7 UNIT ASSIGNMENT CANNOT BE MADE FOR REEL *****

When the monitor has allegedly finished processing the REELS card series, a verification of all unit assignments is made. This diagnostic indicates that the given reel could not be assigned to a unit, or the assignment would otherwise be illegal. The condition was probably caused by one of the following:
a. Sufficient utility devices were not available to accommodate all of the reels.
b. A utility device other than magnetic tape on channel B or C was specified (or implied) for the given permanent reel.
c. A utility device other than magnetic tape on channel B or C, or disk/drum storage which is not accessed sequentially in full track w/addresses was specified (or implied) for the given mediary reel.

### 3.1.6.8 REELS $* * * * *$ AND $* * * * *$ HAVE DUPLICATE UNIT ASS IGNMENT SPECIFICATIONS.

The two reels were assigned by the user to the same physical device; however, the DEFER option was not specified for either one.

### 3.2.1 PLANNING THE LINK STRUCTURE

A considerable amount of tape spacing time can be saved by planning the link structure of the library in an efficient manner, as prescribed by the following:
a. A program which is executed via a direct chain from another program should immediately follow the latter in the library.
b. Subroutines common to two or more programs should be included in the main link along with the monitor. This otherwise prevents the same routine(s) from being loaded with each program in the course of execution.
c. The post-execution file utility processor should always be the last link in the library. Otherwise, it might have to be passed over several times in the course of accessing the other programs, thus causing an unnecessary waste of tape passing time.

In general, a certain amount of finesse is needed to create an efficient library. The user should be aware of the frequency and order in which programs will normally be executed, and try to plan the library so that a minimum of tape passing time is needed to access the programs.

### 3.2.2 LIBRARY PREPARATION EXAMPLES

In the examples which follow, the library will be created on reel 527 and will contain programs 712,812 and 91Z, in addition to the required utility processor, UTLITY. Normally, program 712 will be executed via a direct chain from 912, after which 812 will be executed. The structure of the library, therefore, should be as follows:
Main link $=$ SPACE
1st dependent link $=912$
2nd dependent link $=712$
3rd dependent link $=812$
4 th dependent link $=$ UTLITY

Assume that the decks comprising the main link and the four dependent links above exist in binary, FORTRAN source, binary, MAP symbolic and binary, respectively.

Example 1: Create the library, but do not execute.


## Card functions for example l:

1. Define job.
2. Pause, after directing operator to mount reel 527 on the physical unit (tape transport) assigned S.SUOL.
3. Define processor application, name of such, and options which are to be applied.
4. Must immediately follow the \$IBJOB card and specifies the name of the main link. For purposes of convention and identification, this name should always be SPACE.
5. Specifies loader application and name of deck.
6. Constitutes the binary deck of SPACE.
7. Signifies end of deck SPC. Should the user elect to place any subroutine decks in the main link, they should be inserted between cards 7 and 8 .
8. Signifies end of main link.
9. Defines beginning of first dependent link. The link name beginning in column 8 is that which must be used in columns $1-6$ in the program control card series, or the CALL argument in the case of a direct chain. Note that it may be the same as the deck name appearing on any processor control card.
10. Specifies a FORTRAN compilation for deck 91Z. Note that the LIST and REF options have been exercised to obtain a MAP listing and cross reference index. This is necessary, should the programmer or user desire to make an executiontime binary patch in the program.
11. Constitutes the entire FORTRAN source deck for program 912. If 912 requires subroutine decks, these decks should immediately follow. They will become part of the first dependent link and will be loaded along with 912 at execution time.
12. Signifies end of first dependent link.
13. Defines beginning of second dependent link.

14-16. Entire binary deck of program 7lz.
17. Signifies end of second dependent link.
27. Signifies end of all links. Since a symbolic unit specification (UO4) was given for the COPY option, reel 527 will be unloaded.
28. Return control to IBSYS.

Example 2: An application using the library.


Card functions for example 2:

1. Define job.
2. Pause for operator to mount library tape.
3. Define processor application. The NOSOURCE option should always be specified to expedite pre-processing.
4. Request reload program.

5-6. Constitutes the REELS card series.
7. Program control card requesting execution of program 91Z. Note that four control parameters are being supplied to the program.
8. Data cards which will be read by 912 . The program must have some means of recognizing the last card it is to read.
9. Program control card requesting execution of the dump program with standard parameters. Note that program 712 was the last program executed up to this point, due to the direct chain from $91 Z$.
10. Program control card requesting execution of program 81Z. One control parameter must be supplied to the program.
11. Program control card requesting execution of the dump program. The area of core storage from decimal locations 10428 through 10498 will be dumped in integer format.
12. Signifies end of job deck and indicates that SPACE is to return to IBJOB, after which control will be given to IBSYS.
13. Unloads reel 527 to prevent destruction by subsequent jobs.
14. Card is redundant; however, must be included at the end of every job.

Example 3: Create the library and test it:


Card functions for example 3:

1. Define job.
2. Pause for operator to mount reel 527.
3. Define processor application. Note that a reservation code is assigned to the unit to prevent the reel from being unloaded at the end of the first application.
4. Define next processor application.
5. Request reload program.
6. Cancel reservation code and remove reel 527.
7. Required at end of job.

The purpose of the typewriter listing is to provide the operator with a list of mounting instructions, and the user with a record of all programs executed. Use of the typewriter is a relatively expensive operation, and an effort has been made to minimize its us eage.

The monitor always identifies itself at the outset of an application by typing the following message:

SPACE - VER. $x$, MOD. y HAS CONTROL
Appropriate version and mod levels will be supplied to the message. Following this, a list of mounting instructions, if applicable, will be issued to the operator, followed by a halt. For example:

READY REEL 91 ON B4.
READY REEL 1395 ON C3.
OPER. ACTION PAUSE
The remainder of the typewriter listing will consist of the order and name of each program as it is executed, interspersed with error or unusual condition diagnostics, if any. The last two examples given in section 3.2 .2 might have produced the following:

1. 912
2. 712
3. DUMP
4. 812
5. DUMP
6. UTLITY
a. The monitor will not issue mounting instructions for a reel which is assigned to a unit via an Iyy (R) or Uxx Iyy option, unless the given unit is not in ready status.
b. Permanent reels will always be unloaded at the end of the job, except those which have been assigned to units via the Iyy or Uxx Iyy option. All other reels will be rewound.
c. The reel header label created or verified by the monitor for every reel used in a job consists of a five word physical record, as follows:

Word 1 - SPACE (BCD)
Word 2 - Reel number (integer)
Word 3 - Creation date (BCD, MMDDYY)
Word 4 - Job name on \$CHAIN card (BCD)
Word 5 - A checksum of words 1-4.
Only words 1,2 and 5 are verified when a label is read.
d. All labels and data files are in high density binary mode.
e. If an interval timer is available (and operative), the monitor will indicate the total number of both green and red light seconds which have expired in the job before returning to IBJOB.
f. The REELS card series is always written on S.SOUl in card image form.
g. The user should always specify a SPACE application on the machine request card.
h. To permit adaptability according to user requirements, the following specifications exist as assembly parameters and may readily be changed, should the need arise. The nominal assignment in the distributed version appears to the right of the associated specification:

1. Buffer size 257
2. Length of HC block 100
3. Length of reel header labels 5
4. Length of file labels 12
5. Max. number of reels permitted 15
6. Single or double buffering Double
7. Block sequence checking Yes
8. Block check sum verification Yes

## SECTION 4

## reLated subroutines

## TABLE OF CONTENTS

| Paragraph |  | Page |
| :--- | :---: | ---: |
| 4.1 | GENERALIZED SORTING | $4-1-01$ |
| 4.1 .1 | THE INTERNAL SORT ROUTINE | $4-1-01$ |
| 4.1 .2 | FILE SORTING WITH GSMRGE | $4-1-04$ |
| 4.2 | BCD OUTPUT VIA GGOUT | $4-2-01$ |
| 4.2 .1 | CONVERSION SPECIFICATIONS | $4-2-01$ |
| 4.2 .2 | PSEUDO-OPERATION DESCRIPTIONS | $4-2-03$ |
| 4.3 | UTILITY ROUTINES | $4-3-01$ |
| 4.3 .1 | FILE NUMBER ACQUISITION WITH GETF | $4-3-01$ |
| 4.3 .2 | OBTAINING THE CURRENT DATE | $4-3-01$ |

## SECTION 4

## RELATED SUBROUTINES

### 4.1 GENERALIZED SORTING

Two flexible subroutines are available for the SPACE programmer enabling him to sort either an internal block of logical records, or a given data file. The sorting process, in both cases, consists of arranging the logical records in an ascending ordered sequence, with respect to a certain word (or words) within each of the records. These words constitute the 'sort keys', and the order in which they are specified establishes how the records are to be sorted. The first sort key given is termed the major key. Sort keys following the major key, if any, are termed the first minor key, second minor key, etc. Whenever two records are compared during the sorting process, the major key in one record is compared with the major key in the other record to determine which record is the smallest. Should the major keys compare equal, the first minor keys, if specified, are compared. This process continues through the minor keys until either an unequal compare occurs, or no more keys remain for comparison.

Each of the routines has the ability of comparing individual keys via an arithmetic compare (CLA-CAS), or a logical compare (CAL-LAS). No provision has been made for specifying collating sequences, nor preserving the sequence of presorted strings. If sequence preservation is necessary, the programmer can append a record sequence word to each logical record and specify this word as the last minor sort key.

### 4.1.1 THE INTERNAL SORT ROUTINE

The internal sort routine may be employed to sort a given block of contiguous logical records. Linkage must be as follows:

CALL SORT (FWA, NREC, LRS , KEYI, KEY2 $\cdots$, KEYN)
where, $F W A=$ The first word address of the block of records to be sorted.

NREC $=$ The address of a location containing the number of records in the block.

LRS $=$ The address of a location containing the logical record size; i.e., the length, in words, of each record.

KEYI = The address of a location containing the relative position of the major sort key; e.g., if the sixth word of each record is to be the major key, then $C(K E Y I)=6$.

KEY2 $=$ The address of a location containing the relative position of the first minor sort key.

KEYN $=$ The address of a location containing the relative position of the $(N-1)^{\text {th }}$ minor sort key.

The following restrictions/conventions apply to the use of the internal sort routine:
a. Parameters NREC, LRS and KEYI through KEYN must be expressed as right-adjusted integers.
b. The sign of each individual key specified establishes the type of compare to be used for the key. If the sign is plus, a CLA-CAS instruction combination will be used; if minus, a CAL-LAS combination will be used. Any number of keys may be specified.
c. No validity checks are made on the arguments given to the routine.
d. The most time consuming sort application will occur when all records are presorted in reverse order with respect only to the last minor key. For such an application, the exact number of machine instructions (1) required to sort the block is given by the following equation:

$$
1=\frac{1}{2}(\text { NREC }-1)\{\text { NREC }[6(\text { LRS })+14(\text { NKEYS })+3]+20\}+38
$$

This equation also holds for the special cases in which NREC $=0$, or NREC $=1$.
e. The entire routine occupies 73 decimal locations.
f. The sorting technique employed is depicted by the following flow chart. Here, $R_{j}$ represents the $j$ th record of the block.


With many sorting applications, the logical records constitute a data file on an external recording medium. By employing the following subroutine, the data file can be sorted, thus creating a new file reflecting the logical records in ordered sequence. Linkage must be as follows:

CALL GSMRGE(IFILE,OFILE,KEYI,KEY2, $\cdots$, KEYN)
where, IFILE $=$ The address of a location containing the file number of the file to be sorted (input file).

$$
\begin{aligned}
& \text { OFILE }= \text { The address of a location containing } \\
& \text { either the desired file number of the } \\
& \text { sorted file to be created by GSMRGE } \\
& \text { (output file), or zero if the user has } \\
& \text { no preference concerning the output file } \\
& \text { number. In the latter case, GSMRGE will } \\
& \text { store the output file number in location } \\
& \text { OFILE before returning to the caller. }
\end{aligned}
$$

The sort keys, KEYI through KEYN, are defined and must be used in the same manner as with the internal sort routine.

The technique which is employed to sort a given file consists of four logical phases--each phase performing a specific function of the sorting operation. A brief description of the four phases, in order of execution, follows:

Phase 1: The Edit Phase.
The edit phase is primarily devoted towards analyzing and verifying call arguments, defining record storage areas for subsequent phases, and compiling a calling sequence to the internal sort routine for use by phase two. The input file is opened during this phase, and an available work file (WORKI)
is selected to accommodate the first sorted string which will be developed in phase two. If OFILE has been specified, and, if it is not on the same reel as IFILE, it will be chosen as WORKI.

## Phase 2: The Internal Sort Phase.

The function of the internal sort phase is to develop strings of sorted records read from the input file, and place these strings alternately on two output work files. The second such work file (WORK2) will not be located until the need for it becomes apparent; i.e., when the second string is developed. If only one string is generated during this phase, control passes to phase four.

## Phase 3: The Merge Phase.

The function of the merge phase is to elongate the strings produced by phase two via a second order of merge until only one string exists, which constitutes the sorted file. To accomplish this, the record storage area defined during the edit phase is divided into two read buffers, and each of these buffers are filled with records read from files WORKI and WORK2, respectively. An output work file (WORK3) is located to accommodate the first elongated string developed during the first merge pass. A fourth work file (WORK4) will be located when the need for it becomes apparent; i.e., if a second elongated string is developed. The merge process begins by comparing the first record in one buffer with the first record in the other buffer. The lowest of the two records is then written in file WORK3. From this point on, the process continues by comparing the next unused record of one buffer with the next unused record of the other buffer. The lowest of these two records is then compared with the last record which was written, and, if the former is higher than the latter, it is added to the file. Whenever one of the buffers is emptied, it is refilled from the appropriate input file. Eventually, stepdowns will occur in both buffers; i.e., a point will be reached where the last record added to the output file is higher than either of the records compared in the two buffers. At this time, the current output file is suspended, and the process resumes using the other output file. Thus, the elongated strings will be alternately written on the two output files, and, the length of any such string will be at least twice that of any string read from either of the input files. The end of the merge pass occurs when both input files have been emptied. If only one output file was used during the pass, control passes to phase four; otherwise, input and output files are switched and the next merge pass is started.

Phase 4: The Posting Phase
The posting phase is executed when a single string has been developed on an output file. If the user did not indicate a preference of output files, the file number of this file is placed in location OFILE, and control is returned to the calling program. If an output file preference was indicated, a file copy, if necessary, is performed to produce the sorted output on the specified file.

### 4.1.2.1 RELATED INFORMATION

a. The record storage area defined in the edit phase consists of all locations between the upper and lower memory breaks, these of which are contained in the address of S.SLOC +3 and decrement of S.SLOC+4, respectively.
b. The search for available working files always begins with the first entry in the REELS Table. A given reel will be judged available only if the following criteria are satisfied:

1. No file is currently active on the reel.
2. The reel is not logically file protected.
3. The reel is not currently in a deferred state.
4. The position of the trailer label is known. Note that the position of the trailer will be known if (a) the reel is mediary, or (b) any file has previously been written on the reel during the job, or (c) the NOLABEL option was exercised in the REELS card series.

When an available reel is found, the file number of the work file is computed by multiplying the reel number by 1000 and adding one plus the corresponding entry in the TRLPOS table. Thus, no data file can ever be inadvertently destroyed by GSMRGE.
c. All files used by the subroutine, including the final output file, are closed before returning to the calling program.
d. The entire subroutine occupies 597 storage locations. Virtual control sections include READBI, READB2, ABOUTI, ABOUT2, ENDF, OEDIT, SPACE, SORT, S.SLOC and S.XOVA.

### 4.1.2.2 ASSOCIATED ERROR DIAGNOSTICS

If an error is detected by the subroutine, an appropriate diagnostic will be written on S.SOUl, followed with a direct chain to the dump program. The diagnostic will always include the BCD name of the program currently in execution, the absolute octal location of the call to GSMRGE, and its associated internal formula number (IFN), if one exists. The error comments, together with the condition(s) which can cause the error are as follows:

1. NO SORT KEYS.

At least one sort key must be supplied to the routine.

## 2. BAD SORT KEY SPECIFIED.

The magnitude of a given sort key either exceeds the LRS of the file, or is zero.
3. INSUFFICIENT INTERNAL SORT AREA.

The record storage area defined during the edit phase is not large enough to accommodate at least three logical records.
4. INSUFFICIENT MERGE TAPES.

An available work file cannot be located. Note that this condition could occur in any of the first three phases.

This is a highly flexible, interpretive output subroutine, controlled by the programmer via pseudo-operations placed in the calling sequence. It will write a given line on S.SOUl and/or type it, convert floating point to fixed- or floating-point decimal numbers, fixedpoint binary numbers to decimal, any 36 -bit word to octal; and will print words already set in memory in binary-coded decimal form. Note that the routine can only be accessed via a TSX linkage and hence, is applicable only with MAP coded programs or subroutines.

### 4.2.1 CONVERSION SPECIFICATIONS

Use of the GGOUT subroutine will involve at least three instructions, the first of which is the entry instruction, followed by one of the conversion pseudo-instructions listed in Table 4-1, followed by a line-spacing instruction (PON or MON). These pseudo-operations will accomplish the appropriate conversion and store the word in the line image.

Table 4-1

GGOUT Pseudo-Operations

| Code | Comment | Explanation |
| :--- | :--- | :--- |
| PZE | Plus Zero | Binary-to-Octal (Logical) Conversion. |
| MZE | Minus Zero | Integer-to-Integer Conversion. |
| PON | Plus One | S.SOUI Line-Spacing Instruction. |
| MON | Minus One | Indicator for a type request. |
| PTW | Plus Two | Fixed-to-Fixed Conversion. |
| MTW | Minus Two | Floating-to-Floating Conversion. |
| PTH | Plus Three | BCD-to-BCD Conversion. |
| MTH | Minus Three | Floating-to-Fixed Conversion. |

Note that in Table 4-2, the symbols D, PPP; and NN appear in the decrement. PPP, which appears in all the decrements, denotes the end print-wheel position and thus determines the column of the last symbol of a word. NN, used only with the PTH operation, indicates the number of BCD words (six characters each) to be printed, starting with the one in the address $K$. The normal range of PPP is 001 to 132, hence the range of $N N$ is 01 to 22 . Normally, then, the largest possible decrement is 22132. The $D$ in the decrement indicates the number of decimal places to be used in the output, and has the range of 0 to 8 . If, however, $D$, or $N N$ is used, the PPP must always consist of a three-digit number (e.g., if $D D$ is 8 , and PPP is 15 , then DDPPP must be 8015).

The tag, shown, in Table 4-2, may be used to modify the address of the conversion instructions. The tag may be a 0 , 1 , or 2. If a $l$ or 2 is used, the modified address will be $K$ minus the contents of the corresponding index register.

Table 4-2

Pseudo-Operation Instructions

| Code | Address | Tag | Decrement |
| :--- | :---: | :---: | :--- |
| PZE | $K$ | $T$ | PPP |
| MZE | $K$ | $T$ | PPP |
| PTW | $K$ | $I$ | DPPP |
| MTW | $K$ | $T$ | DPPP |
| PTH | $K$ | $T$ | NNPPP |
| MTH | $K$ | $T$ | DPPP |

## ".2.2 PSEUDO-OPERATION DESCRIPTIONS

A brief description of each of the pseudo-operations associated with the GGOUT subroutine is presented here. Because address modification is permitted with the conversion operations, the effective address will be shown as $L$.

### 4.2.2.1 THE PTH PSEUDO-OPERATION

This instruction is used to write or type, from left to right, BCD words located in address positions $L$ to $L+N N$. The last character of word $N N$ is printed in print position PPP. In most cases, this character will be a blank space, since BCI listings usually do not contain exactly six characters in the last word. Also, 22 words may be printed with one PTH instruction, even though only ten can be entered into memory with a single BCI instruction.

If just the print position is stated (i.e., $N N$ is omitted from the decrement), the word occupying position $L$ will be printed with its last character in position PPP. However, if NN is correctly indicated, but PPP is not big enough to contain NN words, the PPP will automatically be increased to print the line in the first $N N+1$ word location.

Greater speed may be achieved using the PTH conversion by employing multiples of 6 for PPP, since a 6 -character word is transferred to the image as a whole. If PPP/6 leaves a remainder the transfer proceeds character-by-character.

### 4.2.2.2 THE MTH PSEUDO-OPERATION

This instruction converts the floating binary number in location $L$ to a $D$-place fixed decimal number, where $0 \leq D \leq 8$. For $D=0$, a rounded integer without the decimal point is the output. For a negative number, the minus sign is printed to the right of the number; this position is determined by the print-wheel position. Any number ( $N$ ), where $N \geq 2^{35}$, can be converted to a floating-point decimal number by MTH.

## THE PTW PSEUDO-OPERATION

This operation converts a fixed-point binary number to a D-place fixed decimal number, where $0 \leq D \leq 8$. The location of the binary point is indicated in the address portion of a PZE instruction, which must follow the PTW. If the binary point is outside the 0 to 35 range, the program will go to the next pseudo-operation. The binary point in the PZE address is determined by counting from the left-hand end of the word in location $L$.

### 4.2.2.4 THE MTW PSEUDO-OPERATION

This operation converts the binary, floating number of location $L$ to a $D$-place decimal number, where $1 \leq 0 \leq 8$. The answer format is:
where the positive signs and leading zero of $Y Y$, if any, are actually indicated by a blank space. A floating-point number whose binary exponent is zero is printed out as an integer by MZE.

### 4.2.2.5 THE PZE PSEUDO-OPERATION

This instruction converts the logical word in location $L$ to a 12-digit octal number with no sign. A one-space separation is inserted between digits 6 and 7 .

This conversion is accomplished by inserting three binary zeros before each set of three binary digits of the number in location $L$, thus transforming any three binary bits to the appropriate octal number expressed in BCD code. The PTH operation is used internally by PZE to transfer this information to the output.

### 4.2.2.6 THE MZE PSEUDO-OPERATION

This operation converts the contents of location $L$ to a decimal integer with no decimal point. The sign is located immediately to the right of the integer.

This operation is a line-spacing instruction for writing on s.soul.

The address portion of the instruction may be used for regular spacing, double spacing, or to restore a page before printing by specifying an address of 0,3 , or 1 , respectively. If the address of a PON is -1 , GGOUT will not alter the first character in the line to be put on tape.

### 4.2.2.8 THE MON PSEUDO-OPERATION

This operation indicates that the line image is to be typed. The decrement, tag and address of this pseudo-operation are ignored. A line may be written on S.SOUl and typed by following the PON with a MON.
4.3 UTILITY ROUTINES

### 4.3.1 FILE NUMBER ACQUISITION WITH GETF

In many instances, a program will require the use of one or more working files for temporary use. To eliminate the need of depending upon fixed file numbers, the programmer can employ GETF to locate an available working file. The criteria used to judge availability is identical to that described in part b of paragraph 4.1.2.1. Linkage must be as follows:

## call getf(availf)

The argument, AVAILF, is the location into which GETF will store the file number. Note that a reel with an active file on it will be judged unavailable by GETF; hence, several working files could be located at one time with the following sequence:

```
CALL GETF(WORK1)
CALL ABOUTI(WORKI,LRSI)
CALL GETF(WORK2)
CALL ABOUTI(WORK2,LRS2)
CALL GETF(WORK3)
```

If GETF is unable to locate a working file, the condition will be treated as an error and a diagnosiic will be given indicating the current file activity status of all reels. Execution of the calling program will then be terminated by returning to the monitor.

### 4.3.2 OBTAINING THE CURRENT DATE

A subroutine is available to the SPACE programmer enabling him to obtain the current date (including the day of the week) for page headings, etc. Linkage to the routine must be as follows:

CALL MTWTF (ARRAY (1))

The argument, ARRAY, is the location of the first word of a five cell array into which the BCD date is to be stored by MTWTF. The date format will be as follows:

$$
\begin{aligned}
& \operatorname{ARRAY}(1)=W E D N E S \\
& \operatorname{ARRAY}(2)=D A Y b A P \\
& \operatorname{ARRAY}(3)=R 1 L b 7, \\
& \operatorname{ARRAY}(4)=b 1965 \mathrm{~b} \\
& \operatorname{ARRAY}(5)=b \mathrm{~b}) \\
& =\mathrm{b} b \mathrm{~b}
\end{aligned}
$$


[^0]:    Form 4 - Part I

[^1]:    Format 4

[^2]:    86401
    175832
    346592
    608944
    692336
    880560
    973060
    1065492
    $\underline{w}_{i} \mathrm{t}_{\mathrm{i}}$

[^3]:    *WDF is Weight Data File.

[^4]:    A means was found by which DSDPS could utilize the FORTRAN Il language; however, the resultant programs ran quite inefficiently.

[^5]:    The reel number is an integer code assigned to a reel when it enters an installation. This number appears on the outer surface of the reel for visual identification.

[^6]:    Some programs depend upon fixed mediary file numbers. The user should consult program descriptions to determine which mediary reel numbers, if any, must be supplied in the tape assignment card series for the job.

