SOLAR MODULATION
OF GALACTIC COSMIC RAYS

GPO PRICE $__________

CFSTI PRICE(S) $__________

Hard copy (HC) $2.00

Microfiche (MF) $.50

MAY 1966

GODDARD SPACE FLIGHT CENTER
GREENBELT, MD.
SOLAR MODULATION OF GALACTIC COSMIC RAYS

by

V. K. Balasubrahmanyan, E. Boldt,

and

R. A. R. Palmeira

Goddard Space Flight Center
Greenbelt, Maryland
SOLAR MODULATION OF GALACTIC COSMIC RAYS

by

V. K. Balasubrahmanyan, E. Boldt,

and

R. A. R. Palmeira

Goddard Space Flight Center,
Greenbelt, Maryland

ABSTRACT

The modulation of galactic protons and He nuclei during the last solar cycle is analyzed according to Parker's theory. The mechanism of modulation remains essentially the same during several years of low solar activity (1961-1965). The modulation near solar maximum (1959) implies that the scale sizes of the magnetic inhomogeneities in the solar wind are reduced below the values at solar minimum. An adequate description at solar maximum would require further refinements of the theory. The proton to He nucleus ratio outside the solar system is shown to be consistent with a value = 6, in a kinetic-energy/nucleon representation for the interval 50 to 1000 Mev/nucleon.

1On leave from Tata Institute of Fundamental Research, Bombay, India.

2NAS-NASA Post-Doctoral Resident Research Associate, on leave from Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil. Present address: Southwest Center for Advanced Studies, Dallas, Texas.
INTRODUCTION

Since the discovery by Forbush [1954] of the inverse correlation of cosmic ray intensity with solar activity, many experimental and theoretical studies of the long term solar modulation effects on galactic cosmic radiation have been attempted. The present status of the subject has been presented in several recent reviews, [Webber, 1964; Quenby, 1964] as well as in some recent papers [Fichtel et al., 1965; Freier and Waddington, 1965; Nagashima et al., 1966]. In this paper we analyze the available energy spectrum data obtained during the last solar cycle to see how far they conform to the predictions of the theory of the cosmic ray modulation caused by the solar wind [Parker 1963]. It is considered pertinent to do this as recent satellite measurements [Bonnetti et al., 1963; Ness et al., 1964, 1966] have confirmed the existence of the solar wind, the solar origin of the interplanetary magnetic field and the convection of magnetic inhomogeneities of the right size to modulate galactic cosmic rays.

PARKER'S THEORY OF THE 11-YEAR SOLAR MODULATION

Parker [1963] has developed a theory of the 11-year cosmic-ray variation in which the cosmic ray density at the earth's orbit is determined by the steady state equilibrium between the inward diffusion of galactic cosmic rays and their outward convection by the solar wind. Assuming spherical symmetry Parker arrives at the following equation relating the cosmic ray density at the orbit of the earth $\mu_e(\beta)$ to the cosmic ray density outside the solar influence $\mu_\infty(\beta)$:
\[\mu_\alpha(\beta) = \mu_\alpha(\beta) \exp \left[- \int_{r_e}^\infty \frac{V(r)}{D(r, \beta)} \, dr \right] \]

(1)

where \(V(r) \) is the solar wind velocity and \(D(r, \beta) \) is the diffusion coefficient, and \(r_e \) the distance of the earth from the sun. In general \(D(r, \beta) \) is a function of the radial distance \(r \) and the particle velocity \(\beta v \) given by

\[D(r, \beta) = \beta c \lambda(r, \beta) \]

(2)

where \(\lambda(r, \beta) \) is the mean free path for the diffusion process. For an arbitrary distribution of the scale size characterizing the inhomogeneities in the magnetic field

\[\frac{1}{\lambda(r, \beta)} = \int_0^\infty \sigma(\ell, \beta) \rho(\ell, r) \, d\ell \]

(3)

where \(\sigma(\ell, \beta) \) is the effective cross-section for the scattering of a particle with velocity \(\beta c \) by an inhomogeneity in the magnetic field with a scale size \(\ell \), and \(\rho(\ell, r) \, d\ell \) is the spatial density of scattering centers with scale sizes between \(\ell \) and \(\ell + d\ell \), at a distance \(r \).

We assume that \(\rho(\ell, r) \) is a separable function of \(\ell \) and \(r \):

\[\rho(\ell, r) = n(r) N(\ell) \]

(4)

where

\[\int_0^\infty N(\ell) \, d\ell = 1 \]
We then have

\[M(\beta) = \frac{\mu_e(\beta)}{\mu_0(\beta)} = \exp \left\{ -\frac{1}{\beta} \left[\int_0^{\infty} \sigma(\ell, \beta) N(\ell) \, d\ell \right] \cdot \left[\int_{r_e}^{\infty} \frac{3V(r) n(r)}{c} \, dr \right] \right\} \] \tag{5}

In order to compare this modulation function with the observations, we need to specify a scattering cross-section \(\sigma(\ell, \beta) \) and a distribution \(N(\ell) \) of the scale size of the inhomogeneities.

Parker [1963] adopted

\[\sigma(\ell, \beta) = \begin{cases} \ell^2 & \text{for } R \leq \ell \\ (\ell^4/R^2) & \text{for } R > \ell \end{cases} \tag{6a} \]

\[N(\ell) = \delta(\ell - \ell_0) \tag{6b} \]

where \(R \) is the radius of curvature of a particle in a magnetic field \(B \) assumed independent of \(r \):

\[R = \frac{pc}{ZeB} = \frac{A}{Z} m_0 c^2 \frac{\beta}{(1 - \beta^2)^{1/2}} \cdot \frac{1}{eB} \tag{8} \]

where \(A \) and \(Z \) are the particle mass and charge numbers respectively and \(m_0 \) is the proton rest mass.

With this choice of \(\sigma(\ell, \beta) \) and \(N(\ell) \) we can write

\[M(\beta) = \exp \left\{ -\frac{K}{\beta} \right\} \text{ for } \beta \leq \beta_0 \tag{9} \]
\[M(\beta) = \exp\left[-\frac{K}{\beta^3} \left(1 - \beta^2\right) \left(\frac{\ell_0}{R_0}\right)^2 \left(\frac{Z}{A}\right)^2\right] \text{ for } \beta > \beta_0 \quad (10) \]

where

\[
K = \ell_0^2 \int_{r_e}^{\infty} \frac{3V(r) n(r)}{c} \, dr \quad (11)
\]

\[R_0 = \frac{m_0 c^2}{eB} \quad (12) \]

and

\[
\beta_0 = \frac{(\ell_0 Z/R_0 A)}{\left[1 + (\ell_0 Z/R_0 A)^2\right]^{1/2}} \quad (13)
\]

In the appendix we write the modulation function \(M(\beta) \) for the more general case where the magnetic field \(B \) is a function of the radial distance \(r \) and \(N(\ell) \) is a general distribution function. The formula so obtained is presented for the limits \(\beta = 0 \) and \(\beta = 1 \), where the influence of the radial dependence of \(B \) and of the choice of the distribution \(N(\ell) \) is made more explicit.

EXPERIMENTAL DATA DURING THE PERIOD OF LOW SOLAR ACTIVITY

Figure 1 shows the Mt. Washington neutron monitor counting rate (courtesy of Dr. J. Lockwood, University of New Hampshire) and the sunspot number during the last solar cycle. The arrows indicate the times of balloon flights from which the balloon data used in this paper were
obtained. The hatched region shows the time of the coverage provided by the IMP-I, II and III, and OGO-I satellites.

Figure 2 shows the proton and helium nucleus energy spectra in a kinetic energy per nucleon representation. The helium nucleus flux was multiplied by 5. The curve labeled 1963 has the analytical form

\[N(E) \, dE = \frac{10^6 \times E^{1.5}}{(E + 500)^4} \, dE \]

(14)

when \(E \) is in Mev. Equation 14 was constructed to fit the experimental data shown, and to have the asymptotic form \(N(E) \propto E^{-2.5} \) at high energies [Balasubrahmanyan et al., 1965 b]. From this curve labeled 1963 we constructed the curve labeled 1965 by assuming that \(\Delta K_{1965} = K_{1965} - K_{1963} = -0.2 \). In a like manner we constructed the curve labeled 1961, for \(\Delta K_{1961} = +0.4 \).

These data suggest that in the energy range of the observations and at a time near minimum solar activity, the solar modulation is predominantly velocity dependent. Studying the time variation of the low energy He nucleus spectrum Fan et al., [1965a], and Gloeckler [1965], arrived at a similar conclusion, for energies up to 500 Mev/nucleon. The velocity \(\beta_0 \), at which the modulation function changes from pure velocity dependence to a mixture of velocity and rigidity dependence, is a function (equation 13) of \((l_0/R_0) \). The experimental data indicate that up to approximately 1 Bev/nucleon the modulation is only velocity dependent. From this we conclude that from 1961 through 1965 the scale size of the inhomogeneities was such that
(\ell_0/R_0) \geq 2. For \beta = 5 \gamma = 5 \times 10^{-5} \text{ gauss}, this conclusion leads to
\ell_0 \geq 10^{-2} \text{ AU.}

In addition to the low energy detectors, the satellites IMP-I, IMP-II, IMP-III and OGO-I carried GM counter telescopes of identical construction. When the telescopes were calibrated with the sea-level cosmic-ray muon flux the counting rates agreed within 1%. Details of these GM counter telescopes are given elsewhere \cite{Balasubrahmanyan1965}. There is no detectable instrumental drift among the detectors from these different satellites and the maximum difference in the absolute counting rate was less than 5%. This was easily corrected by using data from periods when two or more satellites overlapped in time. Figure 3 shows the cosmic ray omnidirectional intensity above 50 Mev measured by these GM counters from 1963 to 1965.

Using the differential energy spectrum measured in 1963, we have calculated for each \Delta K the expected ratio \(I_{1965}/I_{1963} \) of the integral intensity above 50 Mev in 1965 to the corresponding intensity in 1963. This calculated ratio is shown as a function of \Delta K in Figure 4. The value of this ratio obtained from the GM telescopes falls within the hatched horizontal band shown in the figure, and therefore we conclude that the value of \Delta K should be roughly between 0.18 and 0.20. This is consistent with the value 0.20 used to characterize the change in the low energy differential spectrum between 1963 and 1965.
EXPERIMENTAL DATA DURING A PERIOD OF HIGH SOLAR ACTIVITY

During the period of high solar activity, the only suitable proton and He nucleus differential energy spectrum measurements were made by Webber and McDonald [1964], and Freier and Waddington [1965]. The energy spectra of protons and He nuclei (multiplied by 5) are shown in Figure 5. Below about 1 bev/nucleon the He nucleus spectrum is distinct from the proton spectrum. This situation is different from that at solar minimum where the spectra are essentially similar in a kinetic energy per nucleon representation.

From Parker's theory of the 11-year solar modulation, with the choice of $\sigma(\ell)$ and $N(\ell)$ given by equations 6 and 7, we have seen that the modulation is described by two different functions (equations 9 and 10). Although equation 9 predicts a modulation which is the same for protons and He nuclei, equation 10 depicts a different modulation for these two components. Written in terms of the velocity as it is done in (10), the difference between the proton and He nucleus modulation lies in the factor $(Z/A)^2$ in the exponent. If the value of (ℓ_0/R_0) is sufficiently low (such that the transition energy corresponding to the velocity β_0 is of the order of 100 Mev/nucleon), then we could expect that above this energy the He nuclei will be modulated less than the protons. Therefore the He nucleus intensity (after multiplication by 5) would be above the proton intensity and in qualitative agreement with the experimental observation. From the condition that $\beta_0 \leq 0.45$ for He nuclei (corresponding to a kinetic energy/nucleon of 100 Mev) we found that in 1959 $(\ell_0/R_0) \leq 1$. For $B=5\gamma$ this implies $\ell_0 \leq 5 \times 10^{-3}$ AU.
Although this conclusion about the value of \(\ell_0 \) can be reached by considering only the split between the proton and He nucleus spectra, a detailed fit of these spectra for various values of K and \(\ell_0 / R_0 \) is not possible. In order to investigate whether the origin of this difficulty lies in the assumption that the magnetic inhomogeneities have a scale size characterized by a single value \(\ell_0 \) (equation 7), we have repeated the calculation using the following \(\sigma (\ell, \beta) \) and \(N(\ell) \):

\[
\sigma (\ell, \beta) = \frac{\ell^2}{1 + (R/\ell)^2} \tag{15}
\]

\[
N(\ell) = \frac{1}{(2\pi)^{1/2}} \ell_1 N \exp \left[-\frac{(\ell - \ell_0)^2}{2 \ell_1^2} \right] \tag{16}
\]

Equation 15 provides a continuous analytical expression for \(\sigma (\ell, \beta) \), and in the limits of \(R \ll \ell \) and \(R \gg \ell \) it tends to the values given by equations 6a and 6b. Equation 16 represents a normalized gaussian distribution for \(N(\ell) \) with a most probable value \(\ell_0 \) and a variance \(\ell_1^2 \). The normalization of \(N(\ell) \) requires that

\[
N_1 = \frac{1}{2} \left[1 + \text{erf} \left(\frac{\ell_0}{\ell_1 \sqrt{2}} \right) \right] \tag{17}
\]

With this choice of \(\sigma(\ell, \beta) \) and \(N(\ell) \) we arrive at essentially the same results and conclusions reached from the simpler choice represented by (6) and (7). This is true for both periods of low and high solar activity.
PROTON TO HE NUCLEUS RATIO

We have used the forms of $\sigma(\ell, \beta)$ and $N(\ell)$ depicted by equations 15 and 16 to investigate the proton to He nucleus ratio as a function of energy throughout the solar cycle. With this choice, the modulation function can be written as

$$M(\beta) = \exp \left[-\frac{K'}{\beta} g(\beta, a, \xi, \eta) \right]$$ (18)

where

$$K' = \frac{K}{(2\pi)^{1/2} N_1 \eta}$$ (19)

$$g(\beta, a, \xi, \eta) = \int_{0}^{\infty} x^4 \left[x^2 + (a \xi \gamma \beta)^2 \right]^{-1} \exp \left[-\frac{(x-1)^2}{2 \eta^2} \right] dx$$ (20)

$$a = \frac{A}{Z}, \; \xi = \frac{R_0}{\ell_0}, \; \eta = \frac{\ell_1}{\ell_0} \; \text{and} \; \gamma = (1 - \beta^2)^{-1/2}$$

The proton to He nucleus ratio $R_{pa}(r_e)$ at the earth's orbit for the same kinetic energy/nucleon can then be written as a function of the velocity of the particle:

$$R_{pa}(r_e) = R_{pa}(\infty) \exp \left[-\frac{K'}{\beta} (g_p - g_\alpha) \right]$$ (21)

where

$$g_p = g(\beta, 1, \xi, \eta), \; g_\alpha = g(\beta, 2, \xi, \eta)$$

and $R_{pa}(\infty)$ is the corresponding ratio outside the solar system.
The expressions \(g_p \) and \(g_\alpha \) were integrated numerically from 10 Mev/nucleon to 10 bev/nucleon for different values of the parameter \(\xi \). The parameter \(\eta \) was taken as 0.67.

Figure 6 presents the ratio \(\left[R_{pa} (r_e) / R_{pa} (\infty) \right] \) as a function of the kinetic energy/nucleon for different values of \(K_L \) and \(1 / \xi \) \((= \ell_0 / R_0)\).

\(K_L \) is defined by

\[
K_L = K' \ g(\beta = 0)
\]

(22)

With this definition

\[
M(\beta) = \exp \left(-K_L / \beta \right)
\]

(23)

for any \(\xi \).

The measured values of \(R_{pa} (r_e) \) for 1961, 1963 and 1965 yield values for \((R_{pa} (r_e) / \tilde{R}_{pa} (\infty)) \) all within the hatched area between curves A and C (Figure 6) providing we chose \(R_{pa} (\infty) = 6 \). Figure 6 shows that, for the choice \(R_{pa} (r_e) = 6 \), all the 1959 values for \(R_{pa} (r_e) / R_{pa} (\infty) \) fall well outside the hatched area.

We conclude that the data on the proton to He nucleus ratio from 1959 through 1965, in the kinetic energy/nucleon interval of \(\sim 50 \) Mev to \(\sim 1 \) bev, are consistent with a constant proton to He nucleus ratio of 6 outside the solar system. From Figure 6 we also note that the 1961-1965
data are consistent with \((\ell_0/R_0) \geq 2\), and the 1959 with \((\ell_0/R_0) \leq 1\).

Although the proton to He nucleus ratio during 1959 can be fitted with several different combinations of \(K_L\) and \((\ell_0/R_0)\) (see Figure 6), the actual proton spectrum generated with any of these combinations fails to agree with the experimental spectrum. In this connection it is of interest to note that energy losses in the expanding solar wind (neglected in the treatment presented in this paper) may be important [Parker, 1965]. For large values of \(K\), characteristic of solar maximum, the actual intensity decrease could be much larger than that predicted by the simple theory. As the experimental data are too scarce, it has not been possible to draw any reliable conclusion regarding the role of energy losses in the modulation mechanism during the high solar activity period.

PROTON AND HE NUCLEUS RIGIDITY SPECTRA

Figures 7a, 7b, 7c and 7d show the proton and He nucleus (multiplied by 7.2) rigidity spectra during 1965, 1963, 1961 and 1959, respectively. During 1959 the proton and He nucleus spectra may be represented by the same curve, whereas during 1961, 1963 and 1965 there is a considerable split between these two components at low rigidities. This shows that during 1959 the modulation was essentially rigidity dependent down to about 600 MeV, indicating a small value of \((\ell_0/R_0)\) near solar maximum. On the other hand, during 1961, 1963 and 1965 any rigidity dependent modulation could occur only for rigidities \(\geq 2\) Bev, which indicates the large value of \((\ell_0/R_0)\) near solar minimum.

McCracken and Rao [1966], analyzing the average cosmic-ray solar diurnal anisotropy obtained by means of neutron monitor data,
arive at the conclusion that the size and frequency of occurrence of
the small scale irregularities in the interplanetary field did not change
appreciably during the last solar cycle. We feel that this conclusion is
not necessarily in contradiction with the views presented in this paper
since the primary energies involved are different. In addition, the
balloon and satellite data on which our conclusions are based refer to
differential energy measurements, whereas the neutron monitor data
reflect the integrated effect on particles with energy above \(\sim 1 \) bev.

Since \((r_0/R_0) \) changed by a factor of more than 2 from 1959 to the
years near solar minimum (1961-1965), it is important to relate this
cosmic ray observation to direct solar observations. In this connection
we note that Babcock [1959] has observed that, during the middle of
1957, the polarity of the magnetic field near the south heliographic
pole was reversed and that the field near the north pole was not seen
to reverse until the end of 1958. There was a period of over a year when
both the poles had the same polarity. Also, there was a six month period
in 1957 when there was zero effective field. This unstable situation
probably indicates a high overall turbulence giving rise to magnetic
inhomogeneities with a wide range of scale sizes, including small values.

The evidence presented by Hewish [1958] on the basis of scattering
of radio waves from the Crab Nebula when it is occulted by the solar
corona also tends to show that the general scattering increases near the
solar maximum. Though these inhomogeneities may be on a different
scale, it is likely that the spectrum of turbulence tends to include a large
number of smaller scale sizes.
CONCLUSIONS

1. During the period when the solar activity is low, in the interval 20 Mev/nucleon to 1 bev/nucleon, protons and He nuclei are modulated in a velocity dependent manner in reasonable accord with Parker's theory. The intensities during 1965 and 1961 are related to the intensity during 1963 by $I_{1965} = I_{1963} \times \exp(0.2/\beta)$ and $I_{1961} = I_{1963} \times \exp(-0.4/\beta)$.

2. The parameter (ℓ_0/R_0) characterizing the magnetic turbulence during the solar minimum years 1961 - 1965 is equal to or greater than 2. During the period of high solar activity (1959) the existing data suggest that (ℓ_0/R_0) is less than 1.

3. The proton and He nucleus energy spectra near solar maximum derived from Parker's solar wind modulation theory, with a reasonable choice of parameters, cannot be made to fit the experimental observations. This suggests that energy losses in the expanding solar wind may be important near solar maximum.

4. By an examination of the data in the interval 20 to 1000 Mev/nucleon for the years 1961, 1963 and 1965, it is concluded that the proton to He nucleus intensity ratio $R_{pa}(\infty)$ outside the solar system is approximately 6. This value is in close agreement with the universal abundance of these two elements. If this ratio increases at higher energies, as some measurements seem to indicate [Webber 1964], then there is a possibility that the proton and He nucleus spectra at the source are no
longer similar at higher energies. It is likely that a study of this ratio as a function of energy could give information on the mechanism of escape of these particles from the source regions.

ACKNOWLEDGMENTS

We thank Dr. F. B. McDonald for his encouragement and criticism and Dr. J. Lockwood for making available to us the Mt. Washington neutron monitor data.
APPENDIX

In deriving Formula 5 of the text we have assumed that the magnetic field B could be considered constant, equal to some effective value B_{eff}. Let us see now how this formula changes if we relax this restriction and let B be a function of the radial distance $B(r)$. Then, for any distribution of the scale size of the inhomogeneities $N(\ell)$ we have for the modulation function

$$M(\beta) = \exp \left\{ -\frac{1}{\beta} \left[\int_{r_e}^{\infty} \frac{3V(r)n(r)}{c} \left(\int_{0}^{\infty} \sigma(\ell, \beta, r) N(\ell) d\ell \right) dr \right] \right\} \quad (A1)$$

where the cross section $\sigma(\ell, \beta, r)$ now depends also on the radial distance r through its dependence on the magnetic field $B(r)$.

In order to see in more detail what influence $B(r)$ and $N(\ell)$ will have on $M(\beta)$ let us assume that

$$\sigma(\ell, \beta, r) = \ell^2 \text{ when } \beta \rightarrow 0 \quad (A2)$$

and

$$\sigma(\ell, \beta, r) = (\ell^4/R^2) \text{ when } \beta \rightarrow 1 \quad (A3)$$

in agreement with (6a) and (6b). Then we obtain

$$\int_{0}^{\infty} \sigma(\ell, \beta, r) N(\ell) d\ell = \int_{0}^{\infty} \ell^2 N(\ell) d\ell \equiv <\ell^2> \text{ when } \beta \rightarrow 0 \quad (A4)$$
\[
\int_0^\infty \sigma(\ell, \beta, r) N(\ell) \, d\ell = \frac{1}{R^2} \int_0^\infty \ell^4 N(\ell) \, d\ell \equiv \frac{1}{R^2} < \ell^4 > \quad \text{when } \beta \rightarrow 1 \quad (A5)
\]

and thus

\[
M(\beta) = \exp \left[-\frac{1}{\beta} < \ell^2 > \int_{r_e}^\infty \frac{3V(r) \, n(r)}{c} \, dr \right] \quad (A6)
\]

\[
M(\beta) = \exp \left\{ -\frac{(1-\beta^2)}{\beta^3} \cdot \left(\frac{Z}{A} \right)^2 \cdot < \ell^4 > \cdot \int_{r_e}^\infty \frac{3V(r)}{c} \cdot \left[\frac{B(r)}{B_e} \right]^2 n(r) \, dr \right\} \quad (A7)
\]

where now \(R_0 = m c^2 / e B_e \) and \(B_e = B(r_e) \).

From this, we can see the effect that \(N(\ell) \) and \(B(r) \) have on the low- and high-energy approximation formulas for \(M(\beta) \) (equations A6 and A7). The effect of choosing different forms for the distribution function \(N(\ell) \) is felt through the different values that \(< \ell^2 > \) and \(< \ell^4 > \) will have in the low- and high-energy approximations. The choice of the function \(B(r) \) will not affect (A6) but introduce a variation in (A7) through the term

\[
\int_{r_e}^\infty \frac{3V(r)}{c} \cdot \left[\frac{B(r)}{B_e} \right]^2 n(r) \, dr
\]

where different values for \(B(r) \) will result in different values for this integral.
If we now specify

\[N(\ell) = \frac{1}{(2\pi)^{1/2} \ell_1 N_1} \exp \left[-\frac{(\ell - \ell_0)^2}{2 \ell_1^2} \right] \]

then

\[M(\beta) = \exp \left[-\frac{1}{\beta} \cdot \frac{\ell_0^2}{2} (1 + \eta^2 + b\eta) \int_{r_e}^{\infty} \frac{3V(r) n(r)}{c} \mathrm{d}r \right] \]

\[= \exp \left[-\frac{K(1 + \eta^2 + b\eta)}{\beta} \right] \quad (A8) \]

and

\[M(\beta) = \exp \left\{ -\frac{(1-\beta^2)}{\beta^3} \cdot \frac{(Z/A)^2 \left(\frac{\ell_0}{R_0} \right)^2 \ell_0^2}{2} \left[1 + 6\eta^2 + 3\eta^4 + b(\eta + 5\eta^3) \right] \right\} \]

\[\cdot \int_{r_e}^{\infty} \frac{3V(r)}{c} \left(\frac{B(r)}{B_e} \right)^2 n(r) \mathrm{d}r \right\} \]

\[= \exp \left\{ -\frac{(1-\beta^2)}{\beta^3} \cdot \frac{(Z/A)^2 \left(\frac{\ell_0}{R_0} \right)^2 K_1}{2} \left[1 + 6\eta^2 + 3\eta^4 + b(\eta + 5\eta^3) \right] \right\} \quad (A9) \]

where

\[b = \frac{1}{(2\pi)^{1/2} N_1 \exp (1/2 \eta^2)} \quad , \quad \eta = \frac{\ell_1}{\ell_0} \]

\[K = \ell_0^2 \int_{r_e}^{\infty} \frac{3V(r) n(r)}{c} \mathrm{d}r \quad , \quad K_1 = \ell_0^2 \int_{r_e}^{\infty} \frac{3V(r)}{c} \cdot \left[\frac{B(r)}{B_e} \right]^2 n(r) \mathrm{d}r \]
If in addition $B(r) = \text{constant} = B_e$, then $K_1 = K$ and equations A8 and A9 would agree with the low- and high-energy limits of (19) given in the text.

On the other hand if

$$N(\ell) = \delta(\ell - \ell_0)$$

then

$$M(\beta) = \exp \left(-\frac{K}{\beta} \right) \quad (A10)$$

$$M(\beta) = \exp \left[-\frac{(1-\beta^2)}{\beta^3} \left(\frac{Z}{A} \right)^2 \left(\frac{\ell_0}{R_0} \right)^2 K_1 \right] \quad (A11)$$

And again if $B(r) = \text{constant} = B_e$, then $K = K_1$ and equations A10 and A11 agree with (9) and (10) of this paper.
REFERENCES

FIGURE CAPTIONS

Fig. 1. Sunspot number and Mt. Washington neutron monitor rate during solar cycle 19. The arrows indicate the times of balloon flights from which the data used in this paper were obtained. The hatched region shows the time of satellite coverage.

Fig. 2. Proton and He nucleus (x5) energy spectra measured by balloons and satellites during 1961, 1963, and 1965. The 1961 data are from Fichtel et al. [1965], Bryant et al. [1962], and Meyer and Vogt [1963]. The 1963 data are from the following sources: McDonald and Ludwig [1964], Fan et al. [1965a], and Balasubrahmanyan and McDonald [1964]. The 1965 data are from Balasubrahmanyan et al. [1965c]. The lowest energy He nucleus data point exhibited for 1965 might have a contribution associated with long-lived solar streams [Fan et al, 1965b].

Fig. 3. The total integral intensity of cosmic rays above 50 Mev as measured by GM counters on IMP-I, II, III and OGO-I satellites.

Fig. 4. The ratio I_{1965}/I_{1963} of the 1965 to the 1963 total cosmic ray integral intensity above 50 Mev as a function of the increment ΔK in the parameter K of the solar wind modulation theory. The experimentally observed ratio I_{1965}/I_{1963} falls within the hatched area.
Fig. 5. The proton and He nucleus (x5) energy spectrum during 1959. The data are from Webber and McDonald [1964], and Freier and Waddington [1965]. The smooth curve that fits the 1963 data is shown for comparison.

Fig. 6. The relative proton to He nucleus ratio inside the solar system as a function of the kinetic energy per nucleon according to the solar wind modulation theory, and with the choice of the distribution of the scale size of the magnetic inhomogeneities given in the text. See also the text for the definition of the parameters K_L and ℓ_0/R_0.

Fig. 7a. The proton and He nucleus (x7.2) rigidity spectra during 1965. The data are the same as in Figure 2.

Fig. 7b. The proton and He nucleus (x7.2) rigidity spectra during 1963. The data are the same as in Figure 2.

Fig. 7c. The proton and He nucleus (x7.2) rigidity spectrum during 1961. The data are the same as in Figure 2.

Fig. 7d. The proton and He nucleus (x7.2) rigidity spectrum during 1959. The data are the same as in Figure 5.
PARTICLES/M^2-SEC-STER-(MEV/NUCLEON)

10^{-3}

10^{-2}

10^{-1}

10^0

10^1

10^2

10^3

10^4

KINETIC ENERGY IN MEV/NUCLEON

1963

PROTONS (1959)

He x 5 (1959)
PROTONS
\(\frac{\text{He}}{x \times 7.2} \)

1963

\[\frac{\text{PARTICLES/M}^2\text{-SEC}}{\text{STER-MV}} \]

\[\text{RIGIDITY (MV)} \]
1959

PROTONS

\[\frac{\text{Particles}}{\text{m}^2 \cdot \text{sec} \cdot \text{ster} \cdot \text{MV}} \]

RIGIDITY (MV)