X-721-势-162

NASA TM X-55 523

FIN

A COMPUTER PROGRAM FOR CALCULATING THE AERODYNAMIC CHARACTERISTICS OF FINS AT SUPERSONIC SPEEDS

APRIL 1966

NASA
foddard space flight center GREENBELT, MARYLAND

A COMPUTER PROGRAM FOR CALCULATING THE AERODYNAMIC CHARACTERISTICS OF FINS AT SUPERSONIC SPEEDS

James S. Barrowman
Spacecraft Integration and Sounding Rocket Division

April 1966

FIN

A COMPUTER PROGRAM FOR CALCULATING THE AERODYNAMIC CHARACTERISTICS OF FINS AT SUPERSONIC SPEEDS

James. S. Barrowman
Spacecraft Integration and Sounding Pocket Division

SUMMARY
By numerical solution of Busemann's Second Order Airfoil Theory and the spanwise summing of airfoil strips, FIN determines the pressure coefficient distributed over a given fin configuration moving at supersonic speeds. In determining the distribution, the program can include the effect of a fin-tip Mach cone.

From this basic calculation, FIN can determine as functions of angle of attack the lift coefficient, wave drag coefficient, pitching moment coefficient, and center-of-pressure location, and as a function of fin cant angle the rolling moment coefficient. FIN can also determine the lift coefficient slope, wave drag at zero angle of attack, pitching moment coefficient slope, rolling moment coefficlient slope, and center-of-pressure location at zero angle of attack as functions of Mach number.

Comparisons with windtunnel data show that predicted values using FIN output fall well within 10% of experiment results.

CONTENTS

Page
SUMMARY iii
LIST OF SYMBOLS vii
BACKGROUND 1
PROGRAM CAPABILITIES AND LIMITATIONS 1
AERODYNAMIC THEORY 2
CONFIGURATION AND GEOMETRY CONSIDERATIONS 8
FIN-TIP MACH CONE CORRECTION 12
PROGRAM USAGE 14
RESULTS AND CONCLUSIONS 17
APPENDIX A - PROGRAM LISTING OF FIN IN FORTRAN IV 25
APPENDIX B - SAMPLE CASE 31
REFERENCES 35

ILLUSTRATIONS

Figure Page
1 Fin Configurations 3
2 Mach Cone Correction Geometry 6
$3 \quad$ Fin and Airfoil Geometry 9
4 Airfoil Angles 11
5 Lift Coefficient as a Function of Angle of Attack, Aerobee 150A at Mach 3.01 19
6 Lift Coefficient Slope as a Function of Mach Number, Aerobee 150A 20
7 Lift Coefficient Slope as a Function of Mach Number, Aerobee 350 21
8 Center of Pressure from Nose as a Function of Mach Number, Aerobee 150A 22
$9 \quad$ Center of Pressure from Nose as a Function of Mach Number, Aerobee 350 23
B-1 Tomahawk Fin 32
B-2 Tomahawk Fin Input Listing 33

LIST OF SYMBOLS

A Referonce area
C Length of airfoil strip chord
$C_{D W} \quad$ Wave drag coefficient $=\frac{F_{d}}{q A}$
$C_{L} \quad$ Lift coefficient $=\frac{F_{1}}{q A}$
$\mathbf{C}_{\mathbf{L}_{a}} \quad \mathrm{dC}_{\mathbf{L}} / \mathrm{d} \alpha(a=0)$
$\mathrm{C}_{1} \quad$ Rolling moment coefficient $=\frac{\mathrm{Mr}}{\mathrm{qAL}}$
$C_{1 \delta} \quad \mathrm{dC}_{1} / \mathrm{d} \delta(\delta=0)$
$C_{m} \quad$ Pitching moment coefficient $=\frac{M p}{q A L}$
$\mathrm{C}_{\mathrm{m}_{a}} \quad \mathrm{dC}_{\mathrm{m}} / \mathrm{d} a(a=0)$
$C_{P_{i}} \quad$ Local pressure coefficient
C_{r} Length of root chord
$d_{i} \quad$ Component of 1_{i} parallel to the freestream
$d_{w} \quad$ Portion of d_{i} behind the fin-tip Mach cone
$F_{d} \quad$ Drag force (parallel to freestream)
$F_{1} \quad$ Lift force (normal to freestream)
K Interference factor
L Reference length
1_{L} Length of airfoil-strip leading-edge region chord
$1_{L_{r}} \quad$ Length of root airfoil leading-edge region chord
$1_{M} \quad$ Length of center region and of center-region chord
$1_{T} \quad$ Length of airfoil-strip trailing-edge region chord
${ }^{1} r_{r} \quad$ Length of root airfoil trailing-edge region chord

LIST OF SYMBOLS (Cont.)

$1_{w} \quad$ Distance between the leading edge and the intersection of the Mach cone with the airfoil strip
$1_{i} \quad$ Length of local region surface
M Freestream Mach number
$M_{p} \quad$ Pitching moment about the reference axis
$M_{r} \quad$ Rolling moment about the root chord
n Number of strips
$n_{i} \quad$ Component of 1_{i} normal to the freestream
$P_{i} \quad$ Local static pressure
$P_{\infty} \quad$ Ambient static pressure
$\mathrm{q}_{\infty} \quad$ Freestream dynamic pressure
$r_{i} \quad d_{w} / d_{i}$ ratio
S Semispan length
$\mathrm{X}_{\mathrm{L}} \quad$ Distance from the reference axis to the airfoil-strip leading edge in a stres.mwise direction
$\overline{\mathrm{X}} \quad$ Center-of-pressure coordinate measured from the reference axis
$\mathrm{x}_{\mathrm{P}_{\mathrm{i}}}$ Distance from the reference axis to the forward region boundary of a local region in a streamwise direction
$\overline{\mathrm{Y}} \quad$ Center-of-pressure coordinate measured from the root chord
$\Delta y \quad$ Width of airfoil strip
Angle of attack (degree)

LIST OF SYMBOLS (Cont.)

$\beta \quad \sqrt{M^{2}-1}$
$\Gamma_{\mathrm{L}} \quad$ Leading-edge sweep angle
$\Gamma_{\mathrm{T}} \quad$ Trailing-edge sweep angle
Γ_{1}, Γ_{2} Region boundaries sweep angles
$\gamma \quad$ Ratio of specific heats for air $=1.4$
$\delta \quad$ Fin cant angle
$\zeta_{L} \quad$ Leading-edge wedge half-angle in the streamwise direction
$\zeta_{T} \quad$ Trailin $_{\mathbb{B}}$-edge wedge half-angie in the streamwise direction
$\eta \quad$ Inclination of a local surface to the freestream
$\mu \quad$ Mach cone semivertex angle

SUBSCRIPTS

B Body alone
$B(T) \quad$ Body in the presence of the tail
i Local region number
j Airfoil strip number
o Value at $a=0$
T Tail alone
$T(B) \quad$ Tail in the presence of the body

BLANK
 PAGE

A COMPUTER PROGRAM FOR CALCULATING THE AERODYNAMIC CHARACTERISTICS OF FINS AT SUPERSONIC SPEEDS

BACKGROUND

Calculating the aerodynamic characteristics of the fins of a sounding rocket is one of the basic steps in calculating the overall aerodynamics of a sounding rocket. Because sounding rockets fly at supersonic speeds for the greater portion of their flight, the regime at these speeds is of particular interest.

Methods previously used for calculating supersonic fin aerodynamics (references $1,2,3$, and 4) are lacking in accuracy and applicability because of the many assumptions and approximations inherent in using them to reach a closed form or nearly closed form solution.

By using a high-speed computer to numerically solve basic theoretical equations, one may obtain answers rapidly and as accurately as desired. The only restrictions to accuracy are the assumptions inherent in deriving the basic equations. The theory found to be most amenable to programming is Busemann's Second Order Supersonic Airfoil Theory as described in reference 1.

PROGRAM CAPABILITIES AND LIMITATIONS

Given a supersonic fin with chord plane symmetry, at a given Mach number, FIN computes as functions of angle of attack (α) the following:

- Lift coefficient, C_{L}
- Wave drag coefficient, $C_{D W}$
- Pitching moment coefficient, C_{m}
- Center-of-pressure coordinate measured from the reference axis, $\overline{\mathbf{X}}$
- Center-of-pressure coordinate measured from the root chord, $\overline{\mathbf{Y}}$

Since a as defined in the program is equivalent to the fin cant angle (δ) at a
$=0$, the rolling moment coefficient C_{1} is considered a function of δ.

FIN also computes as functions of Mach number the following:

- Lift coefficient slope, $\mathbf{C}_{\mathbf{L}_{\alpha}}$
- Wave drag at zero angle of attack, $C_{D w_{0}}$
- Pitching moment coefficient slope, $\mathrm{C}_{\mathrm{m}_{a}}$
- Rolling moment coefficient slope, $\mathrm{C}_{1_{\delta}}$
- Center-of-pressure coordinate measured from the reference axis at zero angle of attack, \bar{X}_{0}
- Center-of-pressure coordinate measured from the root chord at zero angle of attack, \bar{Y}_{0}

The range of α is from zero to $\alpha_{\text {max }}$, as determined by the user, in increments of 1 degree. The program allows for a maximum of 100 Mach number points, the user specifying the range and increment of the Mach number.

Since FIN has been designed for use with a four-finned vehicle, the output values of $\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{Dw}}, \mathrm{C}_{\mathrm{m}}, \mathrm{C}_{\mathrm{L}_{a}}, \mathrm{C}_{\mathrm{DW}}$, and $\mathrm{C}_{\mathrm{m}_{\alpha}}$ are for a pair of identical fins; the output values of C_{1} and $\mathrm{C}_{1_{j}}^{\alpha}$ are for two ${ }_{m_{a}}$ pairs of perpendicular fins. The values of $\bar{X}, \bar{Y}, \bar{X}_{o}$, and \bar{Y}_{o} apply only to a single typical fin.

Busemann's Second Order Airfoil Theory is applied subject to the restrictions outlined in reference 1, pages 192 to 241, with special attention t? Figures 10.3 and 10.28 . However, the use of the third-order terms in this program slightly enlarges the applicability shown in this reference. Busemana's theory is applied to small streamwise airfoil strips, and the strips are summed in a spanwise direction. In addition, the fin-tip Mach cone is accounted for by applying a correction factor to the necessary portion of each strip. This correction-factor technique was obtained from references 1 and 3. The fin-tip Mach cone correction may or may not be included at the user's discretion.

Figure 1 shows the types of fins to which FIN is applicable. These configurations cover all of the shapes normally used on sounding rockets and missiles. The program input pattern for each type is given in the section on usage. A listing of FIN in FORTRAN IV is given in Appendix A.

AERODYNAMIC THEORY

Busemann's Second Order Airfoil Theory has been applied to two-dimensional airfoil strips with the following assumptions:

Figure 1. Fin Configurations

- All parts of the airfoil surface are in supersonic flow and make small angles with the flow. This implies low angles of attack.
- The leading edge is sharp. The trailing edge must be sharp for a double wedge fin or a modified double wedge. For a single wedge and a modified single wedge, the effect of the blunt base is neglected.
- The shock waves are all attached.
- Each region of flow over the surface acts independently of the others.

The basic local pressure coefficient equation of the Busemann theory is a third-order series expansion:

$$
\begin{equation*}
\mathbf{C}_{\mathbf{P}_{i}}=\frac{\mathbf{P}_{\mathbf{i}}-\mathbf{P}_{\infty}}{\mathbf{q}_{\infty}}=\mathbf{K}_{1} \eta_{\mathrm{i}}+\mathbf{K}_{2} \eta_{\mathrm{i}}^{2}+\mathbf{K}_{3} \eta_{\mathrm{i}}^{3}-\mathbf{k}^{*} \eta_{\mathbf{L}}^{3} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{K}_{1}=\frac{2}{\beta} \tag{2a}\\
& \mathbf{K}_{2}=\frac{(\gamma+1) M^{4}-4 \beta^{2}}{4 \beta^{4}} \tag{2b}\\
& \mathbf{K}_{3}=\frac{(\gamma+1) M^{8}+\left(2 \gamma^{2}-7 \gamma-5\right) M^{6}+10(\gamma+1) M^{4}-12 M^{2}+8}{6 \beta^{7}} \tag{2c}
\end{align*}
$$

If the flow over the surface region inclined at η_{i} to the flow has been preceded by a single compressive shock wave anywhere upstream in the flow, the value of K^{*} is:

$$
\begin{equation*}
\mathbf{K}^{*}=\frac{(\gamma+1) M^{4}\left[(5-3 \gamma) M^{4}+4(\gamma-3) M^{2}+8\right]}{48} \tag{3}
\end{equation*}
$$

If the flow upstream of the region in question has contained only expansive shock-free flow, $K^{*}=0$. η_{L} is the inclination of the leading edge surface. Essentially, the first three terms of equation 1 represent the first-, second-, and third-order pressures on the surface region respectively. The K^{*} term is
the third-order irreversible pressure rise through the bow shock. The index, i, indicates the surface for which the pressure coefficient is being calculated.

The pressure coefficient of equation 1 is applied to a typical airfoil region, including the fin-tip Mach cone, by dividing the region into two portions at the intersection of the airfoil strip and the Mach cone (Figure 2). A correction factor of $1 / 2$ is applied to the local pressure coefficient for the region within the Mach cone. The center of pressure of each portion is taken as the midpoint of the length of that portion. By this means, equations are obtained for the local lift $\left(F_{1}\right)$, $\operatorname{drag}\left(F_{d_{i}}\right)$, local center of pressure $\left(\bar{X}_{i}\right)$, and, hence, the local pitching moment $\left(M_{p_{i}}\right)$:

$$
\begin{gather*}
F_{1_{i}}=C_{P_{i}} d_{i}\left(1-\frac{r_{i}}{2}\right) \tag{4}\\
F_{d_{i}}=C_{P_{i}} n_{i}\left(1-\frac{r_{i}}{2}\right) \tag{5}\\
\overline{\mathbf{X}}_{i}=\frac{1 / 2 d_{i}\left[1-r_{i}+\frac{r_{i}}{2}+\frac{x_{P_{i}}}{1_{i}}\left(2-r_{i}\right)\right]}{1-\frac{r_{i}}{2}} \tag{6}\\
M_{P_{i}}=F_{i_{1}} \bar{X}_{i} \tag{7}
\end{gather*}
$$

The airfoil-strip lift $\left(F_{1_{j}}\right)$, drag ($F_{d_{j}}$), and pitching moment $\left(M_{P_{j}}\right)$ totals are then computed by summing the local characteristics.

$$
\begin{align*}
& F_{i_{j}}=\sum_{i=1}^{6} F_{i_{i}} \tag{8}\\
& F_{d_{j}}=\sum_{i=1}^{6} F_{d_{i}} \tag{9}\\
& M_{P_{j}}=\sum_{i=1}^{6} M_{P_{i}} \tag{10}
\end{align*}
$$

Figure 2. Mach Cone Correction Geometry

The strip rolling moment about the root chord is calculated from the airfoil lift and strip spanwise position, y :

$$
\begin{equation*}
M_{r_{j}}=y F_{1_{j}} \tag{11}
\end{equation*}
$$

The total characteristics over the entire fin are then computed by summing the airfoil-strip characteristics in a spanwise direction.

$$
\begin{align*}
& F_{1}=\sum_{j=1}^{n} F_{1_{j}} \tag{12}\\
& F_{d}=\sum_{j=1}^{n} F_{d_{j}} \tag{13}\\
& M_{p}=\sum_{j=1}^{n} M_{p_{j}} \tag{14}\\
& M_{r}=\sum_{j=1}^{n} M_{r_{j}} \tag{15}
\end{align*}
$$

The forces and moments computed in equations 4 through 15 are actually divided by the ambient dynamic pressure (q_{∞}) and strip width ($\Delta \mathrm{y}$). Thus, the associated coefficients are:

$$
\begin{array}{ll}
C_{L}=\frac{2 F_{1} \cdot \Delta y}{A} & (2 \mathrm{fins}) \\
C_{D W}=\frac{2 F_{d} \cdot \Delta y}{A} & (2 \mathrm{fins}) \\
C_{m}=\frac{2 M_{p} \cdot \Delta y}{A L} & (2 \mathrm{fins}) \\
C_{1}=\frac{4 M_{r} \cdot \Delta y}{A L} & (4 \mathrm{fins}) \tag{19}
\end{array}
$$

The center-of-pressure coordinates are calculated from the respective moments and the appropriate lift forces.

$$
\begin{align*}
& \overline{\mathrm{X}}=\frac{\mathrm{M}_{\mathrm{p}}}{\mathrm{~F}_{1} \cos \alpha} \tag{20}\\
& \overline{\mathrm{Y}}=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{~F}_{1}} \tag{21}
\end{align*}
$$

To obtain the linear slope coefficients near $\alpha=0$ at a given Mach number, the values of C_{L}, C_{m}, and C_{1} are calculated at $\alpha=1^{\circ}$ and are taken as the slope values $\mathrm{C}_{L_{\alpha}}, \mathrm{C}_{\mathrm{m}_{\alpha}}$, and $\mathrm{C}_{1 \delta}$ (all per degree). The slope values per radian are obtained by the proper conversion of radians to degrees. Thus:

$$
\begin{align*}
& \frac{C_{L_{a}}}{\text { rad. }}=\frac{180}{\pi}\left(\left.C_{\mathrm{L}}\right|_{a=1}\right) \tag{22}\\
& \frac{C_{m_{a}}}{\text { rad. }}=\frac{180}{\pi}\left(\left.C_{m}\right|_{a=1}\right) \tag{23}\\
& \frac{C_{1_{\delta}}}{\text { rad. }}=\frac{180}{\pi}\left(\left.C_{1}\right|_{\delta=1}\right) \tag{24}
\end{align*}
$$

The zero angle-of-attack values of $C_{D W}, \bar{X}$, and \bar{Y} are simply their respective values at $\alpha=0$.

CONFIGURATION AND GEOMETRY CONSIDERATIONS

The user indicates the shape of the fin configuration by specifying the root chord length $\left(C_{r}\right)$, root airfoil leading and trailing edge region chord lengths $\left(1_{L_{r}}\right.$ and $\left.1_{T_{r}}\right)$, leading and trailing edge sweep angles $\left(\Gamma_{L}\right.$ and $\left.\Gamma_{T}\right)$, region boundary sweep angles (Γ_{1} and Γ_{2}), and the fin semispan length $T_{\text {(}}$) (Figure 3). The program then computes the distance from the reference axis to the airfoilstrip leading edge in the streamwise direction (X_{L}), airfoil chord length (C), and the airfoil region chord lengths (1_{L} and 1_{T}) as functions of the spanwise coordinate of the airfoil strip.

$$
\begin{align*}
& X_{L}=y \tan \Gamma_{L} \cos a \tag{25}\\
& C=y\left(\tan \Gamma_{T}-\tan \Gamma_{L}\right)+C_{r} \tag{26}
\end{align*}
$$

Figure 3. Fin and Airfoil Geometry

$$
\begin{align*}
& 1_{L}=y\left(\tan \Gamma_{1}-\tan \Gamma_{L}\right)+1_{L_{T}} \tag{27}\\
& 1_{T}=y\left(\tan \Gamma_{T}-\tan \Gamma_{2}\right)+1_{T_{T}} \tag{28}
\end{align*}
$$

The width of the airfoil strip is determined from the number of strips (n) desired by the user.

$$
\begin{equation*}
\Delta y=\frac{S}{n} \tag{29}
\end{equation*}
$$

The airfoil strip crossection is assumed to be symmetrical about the chord line. The most general crossection configuration is the modified double wedge (Figure 1a). The other three types (Figures 1b, 1c, and 1d) are special cases of this basic shape. Figure 4 shows in detail the general crossection, which has six separate flow regions. As can be seen in this figure, the surface region lengths are determined by specifying the leading- and trailing-edge wedge half angles in the streamwise direction, ζ_{L} and ζ_{T}.

$$
\begin{align*}
& 1_{1}=1_{4}=\frac{1_{L}}{\cos \zeta_{L}} \tag{30}\\
& 1_{3}=1_{6}=\frac{1_{T}}{\cos \zeta_{T}} \tag{31}\\
& 1_{2}=1_{5}=C-1_{L}-1_{T} \tag{32}
\end{align*}
$$

The program computes the local-surface inclination angles $\left(\eta_{\mathrm{i}}\right)$ as functions of a :

$$
\begin{align*}
& \eta_{1}=\zeta_{L}-a \tag{33a}\\
& \eta_{2}=-a \\
& \eta_{3}=-\zeta_{\mathbf{T}}-a \tag{33c}\\
& \eta_{4}=\zeta_{L}+a \tag{33d}
\end{align*}
$$

Figure 4. Airfoil Angles

$$
\begin{align*}
& \eta_{5}=a \tag{33e}\\
& \eta_{\mathbf{6}}=-\ddot{u}_{\mathbf{T}}+\alpha \tag{33f}
\end{align*}
$$

From these, the streamwise and normal components of the region lengths are calculated.

$$
\begin{align*}
& d_{i}=1_{i} \cos \eta_{i} \quad(i=1 \rightarrow 6) \tag{34}\\
& n_{i}=1_{i} \sin \eta_{i} \quad(i=1 \rightarrow 6)
\end{align*}
$$

The distance of the forward local-region boundaries from the reference axis are then determined as:

$$
\begin{align*}
& x_{P_{1}}=x_{P 4}=x_{L} \tag{35a}\\
& x_{P_{2}}=x_{L}+d_{1} \tag{35b}\\
& x_{P 3}=x_{L}+d_{1}+d_{2} \tag{35c}\\
& x_{P 5}=x_{L}+d_{4} \tag{35d}\\
& x_{P 6}=x_{L}+d_{4}+d_{5} \tag{35e}
\end{align*}
$$

FIN-TIP MACH CONE CORRECTION
The Mach-cone angle (μ) is a direct function of the Mach number.

$$
\begin{equation*}
\mu=\operatorname{Arctan}\left(\frac{1}{\beta}\right)=\operatorname{Arcsin}\left(\frac{1}{M}\right) \tag{36}
\end{equation*}
$$

For an airfoil strip at a spanwise distance y, the intersection of the strip and the Mach cone is a distance 1_{w} from the leading edge.

$$
\begin{equation*}
1_{W}=(S-y) \tan \Gamma_{L}+\tan (90-\mu) \tag{37}
\end{equation*}
$$

But, by trigenometric identities and the use of equation 37, this may be reduced to:

$$
\begin{equation*}
\mathbf{1}_{w}=(S-y)\left(\tan \Gamma_{L}+\beta\right) \tag{38}
\end{equation*}
$$

If 1_{w} is greater than or equal to the chord length, there is, of course, no actual intersection and no correction is necessary. If 1_{w} is such that

$$
C>1_{W} \geq C-1_{T}
$$

then the ratio of the portion of 1_{T} falling behind the Mach cone to 1_{T} is:

$$
\begin{equation*}
r_{3}=r_{6}=\frac{C-1_{w}}{1_{r}} \tag{39}
\end{equation*}
$$

Also,

$$
\begin{equation*}
r_{1}=r_{2}=r_{4}=r_{5}=0 \tag{40}
\end{equation*}
$$

If 1_{W} is such that

$$
C-1_{T}>1_{W} \geq 1_{L}
$$

then the corresponding ratio for the middle regions is

$$
\begin{equation*}
r_{2}=r_{5}=\frac{C-1_{T}-1_{w}}{1_{M}} \tag{41}
\end{equation*}
$$

Also,

$$
\begin{equation*}
r_{3}-r_{6}=1 \tag{42a}
\end{equation*}
$$

and,

$$
\begin{equation*}
r_{1}=r_{4}=0 \tag{42b}
\end{equation*}
$$

If 1_{w} is such that

$$
C-1_{T}-1_{M}>1_{w} \geq 0
$$

then the ratio for the leading edge regions is

$$
\begin{equation*}
r_{1}=r_{4}=\frac{1_{L}-1_{1}}{1_{L}} \tag{43}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\mathbf{r}_{2}=\mathbf{r}_{3}=\mathbf{r}_{5}=\mathbf{r}_{6}=1.0 \tag{44}
\end{equation*}
$$

These ratios are the values used in equations 4,5, and 6 for calculating the local lift, drag, and center of pressure. In these equations, the pressure coefficient in the portion behind the Mach cone is taken as half the value of the C_{P} calculated by equation 1 .

PROGRAM USAGE

The input data required by FIN are:
M。 Initial Mach number
\therefore M Mach number increment
$\mathrm{M}_{\text {max }} \quad$ Maximum Mach number
$:_{\text {max }} \quad$ Maximum angle of attack
A Reference area
L Reference length
$C_{r} \quad$ Root chord length
S Fin semispan
$1_{L_{r}} \quad$ Root airfoil leading-edge region chord length
${ }^{1}{ }_{\mathrm{T}}$, Root airfoil trailing-edge region chord length
Leading-edge sweep angle

Region boundary sweep angles
in the streamwise direction

Number of strips desired
$\mathrm{k}=0$
Compute with fin tip Mach cone correction
$=1$
Compute without Mach cone correction
Lengths and areas must be input in any consistant units. Angles are all input in degrees.

Four input cards are required for each run. The input data are arranged in the order shown on the indicated card and the cards must be in the indicated order:

- Card 1: Any 72 Hollerith characters for run identification
- Card 2: $M_{0}, \Delta M_{M}, M_{\text {max }}, a_{\text {max }}, A, L, C_{r}, S$
$-\quad \operatorname{Card} 3: 1_{L_{r}}, 1_{T_{r}}, \Gamma_{L}, \Gamma_{1}, \Gamma_{2}, \Gamma_{T}, \zeta_{L}, \zeta_{T}$
- Card 4: n, k

Any number of four-card sets may be input.
Cards 2 and 3 contain eight fields each having ten spaces. Variables may be placed anywhere in their respective field, but each value on cards 2 and 3 contain a decimal point. Card 4 contains two fields each having three spaces. The values on card 4 do not contain a decimal point; however, the number must always end in the third space in the field.

Appendix B shows a typical set of inputs.
The user may exercise a number of calculation options by proper definition of certain input parameters. If $M_{0}=0$, then the program sets:

$$
\begin{equation*}
M_{0}=\mu_{0}^{2}+1 \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{0}=\frac{\mathbf{C}_{\mathbf{r}}}{\mathbf{S}}-\tan \Gamma_{L} \tag{46}
\end{equation*}
$$

However, if $\mu_{0} \leq 0$, the program sets $M_{0}=1$. This option provides the minimum allowable Mach number for the given configuration. If $a_{\text {max }}=1$, the program
outputs only the values of $\mathrm{C}_{\mathrm{L}_{\alpha}}, \mathrm{C}_{\mathrm{D} w_{o}}, \mathrm{C}_{\mathrm{m}_{3}}, \mathrm{C}_{\mathrm{I}_{\delta}}, \overline{\mathrm{X}}$, and $\overline{\mathrm{Y}}$ as functions of Mach number. As indicated in the input list, the fin-tip Mach cone may or may not be included by setting k equal to zero or one respectively.

For a modified double wedge fin, the input values are simply those for the particular configuration. For the special cases of the modified double wedge, however, the configuration data must be input according to the following relations:

Double Wedge
$\Gamma_{\mathrm{J}}=$ input value
$\Gamma_{1}=$ input value
$\Gamma_{2}=\Gamma_{1}$
$\Gamma_{\mathrm{T}}=$ input value
$C_{r}=$ input value
$1_{L_{r}}=$ input value
$1_{T_{r}}=C_{r}-1_{L_{r}}$
$\zeta_{\mathrm{L}}=$ input value
$\zeta_{\mathrm{T}}=$ input value

Modified Single Wedge

$$
\begin{array}{ll}
\Gamma_{\mathrm{L}}=\text { input value } & \mathrm{C}_{\mathrm{r}}=\text { input value } \\
\Gamma_{1}=\text { input value } & 1_{L_{\mathrm{F}}}=\text { input value } \\
\Gamma_{2}=\Gamma_{\mathrm{T}} & 1_{\mathrm{T}_{\mathrm{F}}}=0 \\
\Gamma_{\mathrm{T}}=\text { input value } & \zeta_{\mathrm{L}}=\text { input value } \\
& \zeta_{\mathrm{T}}=0
\end{array}
$$

Single Wedge

$$
\begin{aligned}
& \Gamma_{\mathrm{L}}=\text { input value } \\
& \Gamma_{i}=\Gamma_{T} \\
& \Gamma_{2}=\Gamma_{T} \\
& { }^{\mathrm{F}} \mathrm{~T} \text { = input value } \\
& C_{r} \text { = input value } \\
& L_{L_{r}}=C_{r} \\
& { }^{1} T_{r}=0 \\
& \zeta_{L}=\text { input value } \\
& { }^{Y} \mathbf{T}=0
\end{aligned}
$$

RESULTS AND CONCLUSIONS

To date, FIN has been applied to the fins of the Aerobee 150A, Aerobee 350, and Tomahawk sounding rockets. Of these, only the first two have enough reliaable windtunnel data to allow meaningful comparison (references 5 and 6). Unfortunately, the data for these vehicles did not include enough parameters to allow a comparison of all the calculated characteristics. However, since all the characteristics stem from the same basic C_{p} distribution, it is reasonable to infer the degree of accuracy, to a first approximation, of all the calculated quantities from the comparison of a few key characteristies. The characteristics that were compared to windtunnel data are $C_{L}, C_{L_{a}}$, and \bar{X}_{o}. The comparison calculations are not included in FiN.

Both the Aerobee 150A and Aerobee 350 data contained total vehicle and body-alone data for $\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{L}_{a}}$, and $\overline{\mathrm{X}}_{\mathrm{o}}$. By combining the windtunnel body-alone data with $F \mathbb{N}$ tail data, total vehicle values may be calculated for comparison with the total vehicle windtunnel data. The total vehicle parameters are obtained from the contributions of separate portions of the vehicle.

$$
\begin{aligned}
& C_{L}=\left(C_{L}\right)_{B}+\left(C_{L}\right)_{B(T)}+\left(C_{L}\right)_{T(B)} \\
& \mathbf{C}_{\mathbf{L}_{\mu}}=\left(\mathbf{C}_{\mathbf{L}_{\alpha}}\right)_{\mathbf{B}}+\left(\mathbf{C}_{\mathbf{L}_{\alpha}}\right)_{\mathbf{B (T)}}+\left(\mathbf{C}_{\mathbf{L}_{\alpha}}\right)_{\mathbf{T}(B)} \\
& \bar{X}_{o}=\frac{\left(\mathbf{C}_{\mathbf{L}_{\alpha}}\right)_{\mathbf{E}}\left(\bar{X}_{o}\right)_{\mathbf{B}}+\left(\mathbf{C}_{\mathbf{L}_{\alpha}}\right)_{\mathbf{B}(\mathbf{T})}\left(\bar{X}_{o}\right)_{\mathbf{B}(\mathbf{T})}+\left(\mathrm{C}_{\mathbf{L}_{\alpha}}\right)_{\mathbf{T}(\mathbf{B})}\left(\bar{X}_{o}\right)_{\mathbf{T}(\mathbf{B})}}{\mathbf{C}_{\mathbf{L}_{\alpha}}}
\end{aligned}
$$

The contributions of the body in the presence of the tail, $\left(C_{L}\right)_{B(T)},\left(C_{L_{a}}\right)_{B(T)}$ and $\left(\bar{X}_{o}\right)_{B(T)}$, are determined by the method of reference 2 , using charts 4 b and 14 b . The contributions of the tail in the presence of the body, $\left(\mathrm{C}_{\mathrm{L}}\right)_{\mathrm{T}(\mathrm{B})}$, $\left(C_{L_{a}}\right)_{T(B)}$, and $\left(\bar{X}_{o}\right)_{T(B)}$, are calculated from the FIN values $\left(C_{L}\right)_{T},\left(C_{L_{a}}\right)_{T}$, and $\left(\bar{X}_{o}\right)_{T}$ by applying the tail-body interference factor technique from reference 2 .

$$
\begin{align*}
& \left(C_{L}\right)_{T(B)}=K_{T(B)}\left(C_{L}\right)_{T} \tag{47}\\
& \left(C_{L_{\alpha}}\right)_{T(B)}=K_{T(B)}\left(C_{L_{\alpha}}\right)_{T} \\
& \left(\bar{X}_{o}\right)_{T(B)}=\left(\bar{X}_{o}\right)_{T}
\end{align*}
$$

where $\mathrm{K}_{\mathrm{T}(\mathrm{B})}$ is the interference factor given by equation 14 and chart 1 of reference 2. Since this factor is valid only near $\alpha=0$, equation 47 is valid only for small angles of attack. Figure 5 shows C_{L} vs. a for the Aerobee 150A at Mach 3.01. Figures 6 and 7 show $C_{L_{a}}$ vs. M for the Aerobee 150A and Aerobee 350 respectively. Figures 8 and 9 show the respective curves of \bar{X}_{o} vs. M.

As the figures show, the values calculated using FIN output are well within 10% of all the windtunnel values at low angles of attack between Mach 2 and 7. This represents adequate prediction for use in first-look trajectory analyses or for determining requirements for windtunnel tests on a new or proposed sounding rocket vehicle.

Figure 5. Lift Coefficient as a Function of Angle of Attack, Aerobee 150A at Mach 3.01

Figure 6. Lift Coefficient Slope as a Function of Mach Number, Aerobee 150A

Figure 7. Lift Coefficient Slope as a Function of Mach Number, Aerobee 350

MACH NUMBER

Figure 8. Center of Pressure from Nose as a Function of Mach Number, Aerobee 150A

Figure 9. Center of Pressure from Nose as a Function of Mach Number, Aerobee 350

APPENDIX A

PROGRAM LISTING
 OF FIN IN
 FORTRAN IV

```
$JOB 1091P003 405J SNOW BARROWMAN
$EXECUTE IBJOB
$IBJOB GO,SOURCE,NOMAP
$IBFTC FIN M94,XR7,DECK
C FIN
C CALCULATION OF,
CL X ALPHA
CM X ALPHA
CL X DELTA (ROLLING MOMENT COEFF.)
CDW X ALPHA
CENTER OF PRESSURE X ALPHA
LIFT CURVE SLOPE
PITCHING MUMENT CURVE SLOPE
RULLING MOMENT CURVE SLOPE
WAVE DRAG CURVE SlOPE
OF A THREE DIMENSIONAL FIN. PROGRAM USES BUSEMANNS SECOND ORDER
    THEORY WITH THE THIRD ORDER TERMS RETAINED. TWO DIMENSIONAL VALUES
    ARE CALCULATED ALONG STREAMWISE STRIPS AND ARE THEN SUMMED IN A
    SPANWISE DIRECTION. THE EFFECT OF THE FIN TIP MACH CONE IS
    CONSIDERED BY DECREASING THE LOCAL PRESSURE COEFFICIENT BY A
    FACTOR OF 1/2 WHEN THE POINT IS WITHIN THE MACH CONE.
        GOOD FOR WEDGE, DOUBLE WEDGE, OR MODIFIED DOUBLE WEDGE AIRFOILS
    WITH SYMMETRY ABOUT THE CHORD LINE.
    DIMENSION ETA(6),ETAR(6),CDO(100),CLA(100),TLAM(4),LAM(4),N(6)
    DIMENSION XF(6),CLD(100),CMA(100),CPXX(100),CPSS(100)
    DIMENSIUN PL(6),O(6),R(6),FL(6),FD(6),TITLE(12),M(100)
    REAL M,N,LAM,LW,MU,K1,K2,K3,LL,LT,LIFT,MMAX,MSQ,LAR,MU
    REAL LLR,LTR,MO,MMOMT,LMOM
    DTR=3.1415927/180.0
    REAO (5,2) (TITLE(I),I=1,12)
    FORMAT (12AG)
    READ (5,3) MO,OELM,MMAX,AMAX,AREA,REFL,CR,SPAN
    READ (5,3) LLR,LTR,(LAM(I),I=1,4),ZETAL,ZETAT
    FORMAT (8E10.4)
    READ (5,4) NS,I2
    FORMAT (2I3)
    WRITE (6,5)
    FORMAT (1H1)
    WRITE (6,2) (TITLE(I),I=1,12)
C FIN- ANGLE VALUES
    DO 6 I=1,4
    LAR=LAM(I)*DTR
    TLAM(I)=SIN(LAR)/COS(LAR)
    ZETALR=ZETAL*DTR
    ZETATR=ZETAT*DTR
    CZL=COS(ZETALR)
    CZT=COS(ZETATR)
    WRITE (6,7) ZETAL,ZETAT
    FORMAT (11HO ZETA L = F6.3,5H DEG.,5X,9HZETA T = FG.3,5H DEG.)
    WRITE (6,8) AREA,REFL,NS
    FORMAT (13HO AREF = F8.2,9H LREF = F8.3,11H STRIPS = (3)
C STRIPWTDTH
            XNS=NS
            DS=SPAN/XNS
            XNS=2.*US/AREA
C INITIAL MACH NUMBER
            J=1
            IF"(MO.NE.O.) GOTO1O
            CMU=CR/SPAN-TLAM(1)
            IF (CMU.LE.O.) GOTOG
            M(J)=SQRT(CMU*CMU+1.)
```

 GO TO 12
 \(M(j)=1.0\)
    ```
    GO TO 12
    M(J)=MO
    GO TO 12
C MACH NUMBEK
11 J=J+1
    M(J)=M(J-1)+DELM
    IF (M(J).GT.MMAX) GOTO43
    MSQ=M(J)*M(J)
    BETA=SORT(MSU-1.)
    DEM=-2.*MSG+4./3.
    DEN=1./bETA**7
    Kl=2./BETA
    K2=(1.2*MSQ**2-2.*BETA**2)/BETA**4
    K3=1.4*MSQ**4-(10.88/6.) #MSQ** 3+4.*MSQ*MSQ+DEM)*DEN
    B3=1.04*MSQ**4-. 32*MSQ**3+.4*MSQ*MSO) *DEN
\therefore MACH ANGLE
    CMU = (TLAM(1)+BETA)
    MU=SPAN#CMU
    IF (AMAX.EQ.1.) GOTO16
    WRITE (6,13)
    13 FORMAT (1HO)
    WRITE (6,14) M(J)
14 FORMAT (5HOM = FO.3)
    WRITE (6,15)
    15 FORMAT 158H ALPHA CL CM CLM CDW CPX
    C CL VJ. alPHa CURVE
    16 NAMAX = AMAX +1.
    LO 42 K=1,NAMAX
    ALPHA=K-1
    ALPHAR=ALPHA*DTR
    TLIFT=0.
    TDKAG=0.
    TMMOM=0.
    TLMUM=0.
    S=-DS
    17 S=S+DS
    C=S*(TLAM(4)-TLAM(1))+CR
    LL=S*(TLAM(2)-TLAM(1))+LLK
    LT=S%(TLAM(4)-TLAM(3))+LTR
    SL=LL/C}/
    ST=LT/C2T
    SM=C-LL-LT
    XL=S*TLAM'(1)*COS(ALPHAR)
    ETA(1)=ZETAL-ALPHA
    ETA(2)=-ALPHA
    ETA(3)=-ZETAT-ALPHA
    ETA(4)=2ETAL+ALPHA
    ETA(5)=ALPHA
    ETA(6)=-2ETAT+ALPHA
    DO 18 I=1,6
18 ETAR(I)=ETA(I)#DTR
    D(1)=SL#COS(ETAR(1))
    D(2)=SM*COS(ETAR(2))
    D(3)=ST*COS(ETAR(3))
    D(4)=SL*COS(ETAR(4))
    D(5)=SM*COS(ETAR(5))
    D(6)=ST*COS(ETAR(6))
    N(1)=SL*SIN(ETAR(1))
    N(2)=SM*SIN(ETAR(2))
    N(3)EST*SIN(ETAR(3))
    N(4)=SL*SIN(ETAR(4))
    N(5)=SM*SIN(ETAR(5))
    N(6)=ST#SIN(ETAR(6))
    DO 21 1=1,6
    SAVE=K1*ETAR(1)+K2*ETAR(I)**2+K3*ETAR(|)**3
```

```
    IF (I.GE.4) GOTO20
    IF (ETAR(1).GT.0.0) GOTOI9
    R(I)=SAVE
    GO TO 21
    R(1)=SAVE-83*ETAR(1)**3
    GO TO 21
    R(1)=SAVE-B3*ETAR(4)**3
    CONTINUE
    IF (12.NE.0) GOTO28
    FIN TIP MACH CUNE CORRECTION
    LW=MU-S*CMU
    IF (LW.GE.C) GOTO26
    SL=C-LT
    JF (LW.GE.SL) GOTO24
    IF (LW.GE.LL) GOTO23
    PL(1)=|LL-LW)/LL
    PL(4)=PL(1)
    DU 22 J=2,3
    PL(I+3)=1.
    PL(1)=1.
    GO TO 30
    PL(2)=(C-LT-LW)/SM
    PL(5)=PL(2)
    PL(3)=1.
    PL(6)=PL(3)
    PL(1)=0.
    PL(4)=0.
    GO 10 30
    PL(3)=(C-LW)/LT
    PL(6)=PL(3)
    DO 25 1=1,2
    PL(1)=0.
    PL(I+3)=0.
    GO TO 30
    DO 27 I=1,6
    PLII)=0.
    GO TO 30
    DO <4 I=1,6
    PL(I)=0.0
    STRIP COEFFICIENTS
    DO 31 1=1,3
    FL(I)=-K(I)*D(I)*(1.-.5*P((I))
    DO 32 1=4,6
    FL(1)=R(1)*D(1)*(1.-.5*PL(1))
    OO 33 1=1,6
    FD(1)=R(1)*N(1)*(1.-.5*PL(1))
    DO 34 1=1,4,3
    XP(I)=XL
    DO 35 I=2,5,3
    XP(I)=XL+D(1-1)
    DO 36 I=3,6,3
    XP(I)=XL+D(I-1)+D(I-2)
    MMOMT =0.
    DO 37 1=1,6
    CW=.5*D(I)*(1.-PLII)+.5*PL(1)**2+XP(1)*(2.-PLII))/D(I))/(1.-.5*PLI
    11)!
    MMOMT =MMOMT-CH*FLIII
    LIFT=0.0
    DRAG=0.0
    O0 38 l=1,6
    LIFT=LIFT+FL(I)
    DRAG=DRAG+FO(I)
    LMOM=S*LIFT
    TLIFT=TLIFT+LIFT
    TDRAG=TUKAG+DRAG
    TMMOM = TMMOM+MMOMT
```

```
            TLMOM=TLMOM+LMOM
            IF (S.LT.SPAN) GOTO17
C TOTAL COEFFICIENTS
            CL=TLIFT*XNS
            CD=TDRAG*XNS
            CM=TMMOM*XNS/REFL
            CLM=2.*TLMOM*XNS/REFL
            CPX=TMMUM/ (TLIFT*COS(ALPHAR))
            CPS=TLMUM/TLIFT
            IF (K.EU.1) CDO(J)=CD
            IF (K.EW.2) GOTO39
            GO TO 40
C LIFT CURVE SLOPE
39 CLA(J)=CL/DTR
            CLU(J)=CLM/DTR
            CMA(J)=CM/DTR
            CPXX(J)=CPX
            CPSS(J)=CPS
            IF (AMAX.EQ.1.) GOTO42
            WRITE (6,41) ALPHA,CL,CM,CLM,CD,CPX,CPS
            FORMAT (1H F9.3,4F8.4,2F9.3)
            CONTINUE
            gO TU 11
            J=J-1
            IF (AMAX.EQ.1.) GOTO45
            WRITE (6,44)
            FORMAT (63H1 M CLA/RAD. CMA/RAD. CLD/RAD. CDW CPX
            1 (PS)
            GO TO 47
            WRITE (6,46)
            FORMAT 163HO M CLA/RAD. CMA/RAD. CLO/RAD. CDW CPX
    1 CPS)
            WRITE (6,48) (M(1),CLA(I),CMA(I),CLD(1),CDO(I),CPXX(I),CPSS(1),I=1
    1,J)
48 FORMAT (1H F7.3,F9.3,2F10.4,3F9.4)
    GO TO 1
    END
```


APPENDIX B

SAMPLE CASE

Figure B-1 shows the Tomahawk sounding rocket fin. For this run, the input data were chosen as follows.

| M | $=3.0$ |
| :---: | :---: |
| $\Delta \mathrm{M}$ | $=1.0$ |
| $M_{\text {max }}$ | $=7.0$ |
| $a_{\text {max }}$ | $=5.0$ degrees |
| A | $=63.6$ in. ${ }^{2}$ |
| L | $=9.0 \mathrm{in}$. |
| C_{r} | $=21.9 \mathrm{in}$. |
| S | $=13.8 \mathrm{in}$. |
| $1_{L r}$ | $=3.76 \mathrm{in}$. |
| ${ }^{1} \mathrm{~T}_{\mathrm{r}}$ | $=0 . \mathrm{in}$. |
| $\Gamma_{\mathbf{L}}$ | $=45$ degrees |
| Γ_{1} | $=38.23$ degrees |
| Γ_{2} | $=0$. degrees |
| $\Gamma_{\mathbf{T}}$ | = 0. degrees |
| ζ_{L} | $=2.475$ degrees |
| $\zeta_{\mathbf{T}}$ | $=0$. degrees |
| n | $=300$ |
| k | $=1$ |

Figure B-2 shows a listing of the input cards.

$\stackrel{\circ}{\dot{\circ} \circ}$
$a n$
\vdots
\cdots
N
\therefore
Figure B-2. Tomahawk Fin Input Listing
$\begin{array}{llll} & \text { TOMAHAWK FIN INPUTS } \\ 3 . & 1 . & 7 . & 5 . \\ 3.76 & 0.0 & 45 . & 38.23\end{array}$
63.6
0.0

2

The output resulting from these inputs is shown below.

TOMAHAWK FIN INPUTS
$\begin{aligned} \text { ZETAL } & =2.475 \text { OEG. ZETAT }=0 . \quad \text { DEG. } \\ \text { AREF } & =63.60 \quad \text { LREF }=9.000 \quad \text { STRIPS }=300\end{aligned}$

| $\mathrm{M}=3.000$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALPHA | CL | CM | CLP | CDH | CPX | CPS |
| 0. | 0.0000 | -0.0000 | 0.0000 | 0.0029 | -7.695 | 5.834 |
| 1.000 | 0.1655 | -0.2519 | 0.2147 | 0.0058 | -13.702 | 5.839 |
| 2.000 | 0.3313 | -0.5040 | 0.4298 | 0.0146 | -13.702 | 5.839 |
| 3.000 | 0.4976 | -0.7566 | 0.6457 | 0.0293 | -13.702 | 5.839 |
| 4.000 | 0.6648 | -1.0098 | 0.8627 | 0.0499 | -13.703 | 5.839 |
| 5.000 | 0.8332 | -1.2638 | 1.0812 | 0.0767 | -13.703 | 5.839 |

| $A=5.000$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALPHA | CL | Ci.il | CLí | COW | CPX | CPS |
| 0 . | 0.0000 | -0.0000 | 0.0000 | 0.0017 | -6.606 | 5.268 |
| 1.000 | 0.0972 | -0.1466 | 0.1258 | 0.0035 | -13.579 | 5.832 |
| 2.000 | 0.1950 | -0. 2940 | 0.2527 | 0.0087 | -13.580 | 5.832 |
| 3.000 | 0.2941 | -0.4431 | 0.3811 | 0.0175 | -13.581 | 5.832 |
| 4.000 | 0.3951 | -0.5949 | C. 5121 | 0.0300 | -13.583 | 5.832 |
| 5.000 | 0.4987 | -0.7500 | 0.6464 | 0.0463 | -13.586 | 5.833 |

| $m=6.000$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AlPha | CL | C. 4 | CLiA | CDin | CPX | CPS |
| 0 。 | 0.0000 | -0.0000 | 0.0000 | 0.0015 | -7.423 | 5.767 |
| 1.000 | 0.0812 | -0.1219 | 0.1051 | 0.0029 | -13.515 | 5.828 |
| $\angle .000$ | 0.1631 | -0.2449 | 0.2113 | 0.0073 | -13.516 | 5.828 |
| 3.000 | 0.2407 | -1. 3701 | 0.3196 | 0.0148 | -13.519 | 5.829 |
| 4.000 | 0.3328 | -0.4960 | 0.4310 | 0.0254 | -13.523 | 5.829 |
| 5.000 | 0.4221 | -0.6320 | 0.5468 | 0.0394 | -13.529 | 5.829 |

| 7.000 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALPHA | Cl | Cii | Clim | CDW | | CPX | CPS |
| 0 。 | 0.6000 | -0.0000 | 0.0000 | 0.0013 | | 7.159 | 5.629 |
| 1.000 | 0.0649 | -0.1045 | 0.0905 | 0.0026 | | 3.449 | 5.824 |
| 2.000 | 0.1408 | -0.2104 | 0.1823 | 0.0064 | | . 452 | 5.825 |
| 3.000 | U. <137 | -0.3191 | 0.2766 | 0.0129 | | 3.457 | 5.825 |
| 4.000 | 0.2844 | -0.4319 | 0.3747 | 0.0222 | | 3.464 | 5.825 |
| 5.000 | 0.3691 | -0.5505 | 0.4779 | 0.0346 | | 3.472 | 5.826 |
| 1.1 | CLA/KAD. | CMA/KAO. | CLD/R | AD. | CiJH | CPX | CP |
| 3.000 | 4.482 | -14.4327 | 12.30 | | 0.0029 | -13.7018 | $5.831 / 2$ |
| 4.000 | 6.952 | -10.5806 | 4.05 | | . 0021 | -13.6413 | 5.8396 |
| E.006 | 5.267 | -8. 3480 | 7.21 | | 0.0017 | -13.5786 | 5.03% |
| 6.000 | 4.651 | -6.9623 | 6.02 | | 0.0015 | -13.5145 | 5.8\%\%\% |
| 7.000 | 4.007 | -5.9866 | 5.18 | | 0.0013 | -13.4494 | 3.4644 |

REFERENCES

1. Hilton, W. F.: High Speed Aerodynamics. Longmans, Green and Co. New York. 1951.
2. Pitts, W. C.; Nielsen, J. N.; and Kaattari, G. E.: Lift and Center of Pressure of Wind-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds. NACA Report 1307. 1959.
3. Shapiro, A. H.: The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. II. Ronald Press. New York. 1954.
4. Harmon, S. M.; and Jeffreys, I.: Theoretical Lift and Damping in Roll of Thin Wings with Arbitrary Sweep and Taper at Supersonic Speeds Supersonic Leading and Trailing Edges. NACA TN 2114. May 1950.
5. Thomas, E. S.: Windtunnel Tests of the Aerobee 150A. Aerojet General Corp. 1960.
6. Mc Nerney, J. D.: Aerobee 350 Windtunnel Test Analysis. Space General Corp. January 1963.
