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ABSTRACT

Experimental and theoretical studies were made of the de-

crease in the degree of ionization of shock heated argon resulting

from radiative emission. Optical Interferometry used In conjunc-

tion with a rotating mirror camera provided a tlme history of the

mass and electron densities following strong shocks. After a short

electronic relaxation period the hot, highly luminous gas reached

local thermodynamic equilibrium. Then, loss of energy by radia-

tion led to cooling of the gas as evidenced by the decreasing

electron density. On the assumption that the dense plasma (lO 17

electrons per cc) passed through successive equilibrium states

upon cooling, the change in the temperature and in the number den-

sity of the electrons could be related by use of the Saha equa-

tion. The change In degree of ionization thus determined was com-

pared wlth calculated values_ assuming continuum emission by free-

free and free-bound transitions and emission from spectral lines.

Theory and experiment were In good agreement, for a realistic

choice of the parameters contained In the continuum theory. The

analysis indicated that line radiation losses could not be disre-

garded. Sizable loss resulted from lower lever bound-bound tran-

sltlons even though these lines experienced absorption. Various

radiation absorption models were investigated.

PRECEDING PAGE BLANK NOT FILMED.
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i. INTRODUCTION

This study is part of an extended series of investigations

being performed at Stanford University, _hich deal with the recom-

bination and radiation phenomena associated with thermal ioniza-

tion of argon gas. The ionization is induced by strong normal

shock _aves generated in a conventional combustion driven shock

tube. The experimental technique employed to study the effect of

recombination and radiation _henomena utilizes a Mach-Zehnder in-

terferometer, which monitors with time both the electron density

and the heavy particle density. This study _as undertaken in order

to obtain information on the effect of radiative behavior of shock

heated argon plasma flows.

As a strong shock propagates into quiescent argon, the gas

undergoes an extremely rapid increase in enthalpy. The statisti-

cal equilibrium is temporarily destroyed 3 and a finite relaxation

period exists before the gas species reach thermodynamic equilib-

rium. An interferometrlc study of the thermal equilibration of

shock heat argon by Wong (i) shoved that the gas reaches thermo-

dynamic equilibrium as predicted by the Saha equation. This

occurs after a short nonequilibrium electronic relaxation zone.

In the latter part of this equilibration process visible radiation

becomes apparent. As a consequence of this radiation loss, the

enthalpy of the gas is appreciably reduced, and the transient Saha

equilibrium state is altered.
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The first part of this research study deals with the radi-

ation losses, including both line and continuum emission, associ-

ated with the flow behind the incident shock wave outside the re-

laxation zone. By monitoring the electron density the effect of

the energy loss can be observed, and degree of ionization profiles

can be experimentally determined. Knowing the atomic constants for

the various radiative transitions, the total energy loss resulting

from radiative emission can be calculated. Thus comparison can

be made between the experimental results and the theoretical pre-

dictions.

The subject of radiation "cooling" has been considered by

several investigators in the last few years. Radiation cooling

seems to really be a misnomer since the gas temperature is a slowly

varying function of time.

Petschek et al. (2) first considered the radiative losses

associated with highly ionized argon. They assumed that the Kramers-

UnsOld formula for continuous emission described the radiation

energy loss. Spectrophotometry results showed good agreement with

theoretical results, using however an arbitrary set of values for

unknown parameters contained in the continuum theory.

Pomerantz (3) improved the calculations by removing certain

low degree of ionization approximations and by including the effect

of lowering of the ionization potential. However he likewise

assumed only continuum radiative losses. He did investigate the

influence of absorption for high gas pressures, unfortunately for

the case of a plane infinite shock.

2



Recently McChesneyand Ai-Attar (4) reconsidered the prob-

lem of continuum radiation from shock heated argon. Their results

are essentially the sameas Pomerantz's case of no absorption,

except for the use of Debyepolarization theory to account for

lowering of the ionization potential.

Sevastyaneko and Yakubov (5) first investigated theoret-

ically the heretofore neglected effect of line radiation. Their

results indicate that line radiation losses can be sizable. How-

ever, no side experiments were conducted and their results could

only be comparedwith the old Petschek et al. spectrophotometry

data.

Dronov et al. (6) studied experimentally the brightness

and energy distribution of krypton and xenon. Howeverthey assumed

only continuum emission and hence comparedtheir results with the

Kramers-Lhs_ld theory.

Alpher and White (7) measured relative intensities in the

visible continuum emitted by shock-ionized argon, krypton, and

xenon. The data seemedto correlate well with the Kramers-UnsSld

theory, thus indicating that free-bound electron transitions were

the primary source of the continuum radiation.

Rutowski and Bershader (8) measured radiative heat trans-

fer in the stagnation region of a blunt body in a high electron

density argon flow. Again they found the Kramers-Unsgld continuum

radiation loss explained their experimental results under a suit-

able choice of the parameter inherent in the continuum theory.
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One must note that the Kramers-Uns'61d theory strictly

applies only for hydrogenic atoms. Recent theoretical studies

(9, lO) indicate that this theory describes rather poorly the

actual emission for the complex noble gases.

Therefore it was felt that a thorough reexamination of the

mechanisms of radiation losses _as required along with experimental

results determined from a new diagnostic technique. By application

of a Mach-Zehnder interferometer in conjunction with a rotating

mirror camera, electron density profiles in the radiating flow re-

gion could be recorded. To compliment this technique, photometry

and spectroscopy were incorporated at times to monitor the flow.

These measurements gave an insight into the atomic phenomena of

radiation.

A second phase of this work dealt with an application of

the results of the first study. It was desired to produce as near

as possible a uniform sample of plasma in order that a steady

state, ionized, Prandtl-Meyer expansion could be experimentally

investigated. Such a resulting expansion flow hopefully would

give additional insight into the associated recombination phenom-

ena. Unfortunately adequate fringe shift could only be obtained

under severe nonsteady flow conditions. Interpretation of the

experimental data was difficult under such a nonsteady flow situ-

ation. This subject is discussed in detail in Appendix h.

The visible light emitted from a hot, highly ionized, shock

heated gas is due to emission from numerous radiative processes.



A rather laborious discussion is required before one can hope to

understand fully these various emission mechanisms. Therefore the

next section examines the atomic structure of a radiating argon

plasma and expressions for the smission resulting from first line

r_diation and then continuum radiation are derived. For optically

thin continuum radiation such an approach is usually unnecessary,

however since absorption of certain spectral lines is experienced

under the test conditions, for the present study such an approach

is essential. Also in this chapter the governing flow equations

are introduced.

Next, the experimental method and apparatus are discussed

in Chapter 3, while in Chapter 4 comparison is made between the ex-

perimental data and the theoretical predictions. Conclusions and

additional comments are presented in the last section.



2. RADIATION LOSSES

The radiation losses resulting in visible luminosity from

shock heated argon gas are essentially due to three emission pro-

cesses which occur simultaneouBly. These processes are:

l o Free-free transitions, or Bremsstrahlung radlation

+ +
A + e-_A + e + hv

A + e-_A + e + hv

2. Free-bound transitions, which involve radiative recom-

bination resulting in qBantization of the final energy

+
A + e _A(p) + hv

3. Bound-bound atomic transitions

A(p) _A(q) + hVpq (spontaneous emission)

A(p) + hv _ A(q) + hv + hvpq (stimulated emission)

The first two processes result in continuum radiation since they

involve free electrons, while the third process results in llne

radiation since both states are quantized.

Several possible approaches are available to estimate the

total emitted radiation loss, but all basically require a know-

edge of the number of emltterj the energy released through the pro-

cess, and the transition probabilities which express the chance that

such a transition occurs. The approach chosen for the present study

stresses the importance of absorption of energy, in which an under-

standing of the geometry of the luminous region is required.

6



This influence of absorption of energy presents the usual mathe-

matical difficulty in solving radiation gasdynamlcs problems.

2.1 General Radiation _heory

_ne theory of radiative transfer is based on the conserva-

tion of radiant energy. Consider a medium in which there is both

emission as well as absorption. The conservation equation relates

the rate of change in the specific intensity to the emission in

the element minus the energy absorbed. Mathematically the transfer

equation has the following form, (II)

I _t__ + _j B._ = p(jv, I K"

where I is the specific intensity along a certain direction in
v

which the quanta hv are propagated, Jv is the mass emission

coefficient, K' is the mass absorption coefficient _hich includes
v

induced emission, and _j are the direction cosines of the direc-

tion of propagation with respect to the positive coordinate axis.

If the time derivative term is neglected then a formal

solution for the transfer of radiation can be obtained. Near

thermal equilibrium Kirchhoff's law can be used to relate the

emission coefficient to the absorption coefficient using the

Planck blackbody distribution function, B • Under such quasi-
v

equilibrium conditions the form for the radiative transfer

equation becomes,

7



v = k'(B -
_J _j v v Iv)

in which the mass absorption coefficient is related to the volume

absorption coefficient k' by,
V

k' ' kv(l e-hv/kT)v =KvP =

where in the latter form the factor (i - e-hvi_T)I'" is the correc-

tion to k that results from induced emission. The absorption
V

coefficient must include the effects of bound-bound, bound-free,

and free-free transitions.

The solution for the specific intensity at r = 0 with a

boundary value of I (R) at r = a is, (ii)
V

R r

-f k'dr -f k'
v R v

l(r=0)=I(R)e o +f B k' e o dr
V _ V 12

0

where r is measured from the point in question in the direction

opposite to the direction of propagation of the radiation. The

dimensionless optical depth at frequency v can then be defined by,

r

"t (r) = f k' d_ .
V V

0

The question then arlses--how do the radiation effects

alter the equmtions of motion of a radiating gas? The continuity

equation is obviously unchanged. However since the radiation

8



flux transfers momentum and energy, the momentum and energy equa-

tions must be altered. For such a shock tube experiment the radi-

ation pressure is negligibly small compared to the gas pressure.

Therefore only the energy equation accounts for the r_diation phe-

nomena. Since a particle both emits and absorbs energy, the energy

equation takes the following form, (12)

d 2/2) _ ,0 _ (e + + div p u = - 4_ f k B dv + f y k' I d_ dv
v v

where the first term on the right hand side expresses the rate of

energy emitted by a volume element and the second term the rate of

energy absorbed by that element. Notice that the first term is

isotropic (a function of v and r), while the second term is a

function of direction. This nonisotropic character of I pre-
y

sents the mathematical difficulty in solving a shock tube flow prob-

lem. Pomerantz (3) has solved the absorption problem for a strat-

ified medium with a cross section which is infinite in extent.

This over simplified problem does not represent the actual shock

tube geometry. Other mathematically simplified models can be

chosen which approximate the actual problem without introducing

difficult computations.

At this time it is necessary to anticipate slow cooling

rates. Since the portions of the lt_ninous gas influence absorp-

tion only in the region near the point in question, it then seems

reasonable to assume as a first approximation that the luminous

9



gas is all at the same local equilibrium temperature and density,

determined at that point. Thus B and k' are functions of time.
v

For strong shocks the electronic relaxation zone is very short and its

effect on absorption will be neglected. Therefore the sample of highly

luminous gas is bounded between the "ionization" front and the "cold"

front. If one then assumes a finite gas volume within this sample of

radiative gas with uniform temperature and density, both B and k'
V v

are constants in the region for any given time. The sketch below

illustrates schematically this flow geometry.

ionizat ion

front

yxo 
cold

front

If also the boundary value at r = R is assumed zero, the

specific intensity at r = 0 reduces simply to,

-k 'R

I :B(l-e
V V

where the dependence on direction angle is limited to the expression

for R. For k'R >> I the gas sample is optically thick and I -_ B ,
V V v

while for k'R << 1 the gas sample is thin and I -_k'B R.
V V V P

For the case of axial symmetry the right hand side of the

energy equation then becomes,

lO



-k'R

J'k'B e v
V 0 v v

sin 8 dO dv =- Q

where the shape of the assumed absorption domain is described by

R = R(0). The symbol Q represents the total energy loss per unit

volume per unit time. As expected for the optically thin case

(x v -_ O) the expression for Q reduces to 4_ f k;BvdV. This is
V

simply the expression for the rate of energy emitted, since there

is no absorption. This expression can be used for the continuum

radiation loss, as it will be presently shown that such radiation

under the test conditions is indeed thin. This is not the case however

for line radiation.

2.2 Line Radiation

The energy loss per unit volume per unit time can be expressed

in closed form solutions for certain geometric shapes for a given

isolated llne. An expression for the absorption coefficient is re-

quired however.

The classical Lorentz electromagnetic theory result corrected

by quant_ theory yields for the absorption coefficient, (13)

e2Nf P/4_
k =_ 2

V m c )2 + (P/4_)
e (V-_ 0

where,

N = the number density of the excited atoms in the absorbing level

v = the frequency of the bound-bound transition
O

ll



f = the oscillator strength associated with the transition

P = the half width of the llne which has been broadened.

A line exhibiting only natural and collisional broadening

will be of this dispersion shape. However Doppler broadening may

also be significant, and it results in a Gaussian line profile.

The observed line shape is then Gaussian when this width is con-

siderably greater than the natural and collislonal broadening

widths. For an intermediate case, if it is assumed that the two

broadening mechanisms are statistically independent, the resulting

absorption shape has the form of a "folding" integral. For this

case where Doppler broadening is comparable to natural and colli-

sional broadening, the absorption coefficient must be represented

by, (14)

CO

a'/ dyk =k --

v o _ a '2 + (x' - y)2
--00

2(v-v )
X' = 0

YO

a' = _vN + _vc
Av

O

25
y =--

VO

At the line center where

2
e Nf

m
e l_O

v = v O, k v

o

has a simple form, namely

12



.2
k = k ea erfc(a') .
v O O

For radiating argon at the test conditions it will be shown shortly

that Doppler broadening is important only for resonance transi-

tions. All the remaining transitions are broadened mainly by colli-

sional (Stark) broadening. Since the resonance lines must be con-

sidered separately, let us presently assume that a dispersion pro-

file describes the Line shape. _klng the following substitutions,

-hvo/kT. 2_f (i- e )
A - mc

e

B = r/4_

the expression for the absorption coefficient (dispersion) becomes,

AB
k =

v (v - Vo )2 + B2

The optical depth for the llne center, then becomes,

where L is some characteristic length. Also for radiation re-

sulting from an isolated line,

B = B •

Y FO

13



In Appendix i expressions for the rate of energy loss per unit

volume Q are derived based on various geometries and the previously

mentioned assumptions. Here only the final expressions will be pre-

sented. Three basic radiation absorption models are considered:

i. Spherical volume model (R = constant)

h_2e2Nf

Q(%) : m c
e

-hVo/kT -_ Vo/2

B (I ) e Io(_ )
Vo - e Vo/2

where

-hVo/kT
= 4_e2Nf (i- e ) R

v° meC F

R is the effective radius of cross section of shock tube,

2. Finite circular cross section model (cylinder model)

Q(v o) = 2_2e2Nf B [ae "Kbx I (Kbx) + ae -Kbx' I (Kbx')
meC v° o o

-K'bR -KbR '
cr _X'

- _-- e Io(KbRcr) - _r- e cr lo(KbRcr )
cr cr

-KgR
-Kg(L/2) L _ e cr

+ 2fe Io(Kg 2) - R Io(KgRcr)
cr

(RL "KgRcr Io(KgRcr) ] (i - e
f /2) e_ -hVo/kT )

cr

where

L_e2Nf -hVo/kT )
K =-------- (i- e

meC P

14



(a,b)= (i,

(f,g)= (1,

V(' L/ )2 2R = 12 + x
or

R' = q/(L/2) 2 + x '2
or

!
X =h -x

h is distance between the ionization front and the cold front

L
is the radius of circular cross section

3. Infinite domain model

I

2_2e2Nf B [ae -K-bx I (K'bx) + ae -K'bx I (K'bx')](l-e-hv°/kT)
Q(Vo) = meC vO o o

where the parameters K, a, b, x' are defined in case 2. In

all three models I is the modified Bessel function of the
o

first kind of order zero.

These closed form solutions, even though based on over simplified

radiation models, exhibit the importance of absorption through optical

depth. (A comparison of these models will be presented in Chapter 4.)

The energy loss per unit volume per unit time for a given bound-bound

transition is proportional to the oscillator strength and the number of

excited atoms in the absorbing level. The uncertainty in the values

for oscillator strengths helps Justify the selection of the above radi-

ation absorption models. Appendix II briefly discusses the argon atom

spectra and includes an energy level diagram for argon I.

15



2.2.1 Optical Depth of Bound-Bound Transitions

Recall that the optical depth at v = vo is defined by

A
=m . L

v° B

where B is a measure of the broadening of the line, A is propor-

tional to the product of the number of absorbers and the oscillator

strength, and L is some characteristic length.

For a dense plasma most of the line broadening is caused by

Stark effects from electric microfields produced by electrons and ions

surrounding the emitting atoms. For atoms other than hydrogen (and

certain heli_n lines) it is the second order or quadratic Stark effect

which broadens the lines. In a neutral plasma the electric field is

rapidly changing direction and intensity. Therefore the electric field

may be considered using a probability distribution of the field.

Holtsmark first considered this problem by assuming the atom is influ-

enced by the electric field of the perturbers. Since the atom is in

motion, the field keeps changing magnitude which results in a broadening

and shift of the line. The quasi-statlc (Holtsmark) theory, which

accounts for broadening due to ions, considers only electrostatic

actions and neglects the effect of the motion of the ions. The contri-

bution of ion broadening to the half width is usually less than 20_

(15). The "impact" theory however assumes the radiating atom is in-

fluenced by the electric field of the perturber moving with a rapid

velocity. The impacts are then well separated in time and this semi-
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classlcal approach, which accounts for the electron contribution, re-

sults in a significant broadening of the llne. Such an impact approxi-

mation can be applied provided that the average interaction is indeed

weak. Assuming an interaction proportional to the reciprocal of the

fourth power of the interatc_Ic distance the expression for the half

width due to electron broadening becomes, (14)

s e

where V is the relative "impact" thermal velocity = (SkT/_) I/2

and, C4 is the quadratic Stark constant which must be determined

either by experiment or quantum mechanics. For hydrogenic atoms C4

can be expressed by, (14)

2_C 4 = 1.6 X lo'lT(nu/Z) 6
4 -1

cm sec ,

where n is the principal quantum number for the upper level.
u

For the resonance lines (any transition to the 3p 6 state) the

next most important source of broadening is self-broadening, or reso-

nance broadening, due to interaction with like atoms in the same quantum

state.

A third source of broadening, and usually second in importance,

is thermal Doppler broadening, due to the relative motion of the

radiating atoms and the observer. This thermal broadening leads to an

half wldth expression of, (16)
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FD = o .R. ].n 2
C

where w is the frequency and M is the atomic weight of the atom.
o

Recall however that Doppler broadening results in a Gaussian llne pro-

file 3 and not the previously assumed Lorentz or dispersion profile. If

the half width for thermal broadening is significant compared to the

pressure half wldthsj then the assumption of a dispersion profile is

invalid.

All other mechanisms are almost always negligible for relatively

dense plasmas at moderate temperatures. Thus natural line broadening

is always small compared to eolllsional# or pressure, broadening.

The half widths resulting from Stark, resonance, Doppler, and

natural broadening were calculated for selected resonance transitions,

and 3p54p - 3p54s and 3p53d - 3p54p transitions. For the latter

case the Stark effect constant is known (17), while in the former case

it must be estimated using the known value and the hydrogenic expression

for C 4 as a relative equation. Only for the resonance transitions

was Doppler broadening found to be a significant contributor to the

.
total llne half width. Recall that since A is directly proportional

to the number of absorbers 3 A is a maximum for the resonance transi-

tions. Since a Boltzmann distribution is assumed to exist, the number

density of the first excited state for argon is much smaller than the

ground state population for moderate temperatures. For higher levels

the population is even less. The half width term, B, has little effect

18



in determining the optical depth since A normally dominates over B.

In the table below selected transitions are shown with their correspond-

iD_ optical depth for typical test conditions (T = 12000_4, N = lO17cm -3,
e

L = 5.0 cm).

Transition Optical Depth

is 2 - lp ° 2.46 X 104

Is 4 - ip ° 0.62 × 104

2P 2 - ls 2 0.57

2P R - is 4 0.56

The resonance lines are indeed thick, while the 4p4s (and

3d4p) lines appear to have an optical depth of the order of unity.

These transitions therefore experience absorption, and one of the pre-

viously discussed radiation absorption models must be applied. Only

for the case of optically thin transitions is the energy loss independent

of optical depth. It must be remembered that optical depth is a func-

tion of temperature and electron and heavy particle number densities.

2.2.2 Determination of Oscillator Strengths

Recall that the spherical model yields,

loss per unit volume,

for the rate of energy

/2
Q(v o) = _4_2e2 B N L fLu(1 - e ) e Wo Io(TVo/2) .

m c Poe
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Now assuming a Boltzmann distribution of excited states, given by

NL gL -EoL/kT

N go

where gL and go are the statistical weights of the excited level

and ground state respectively, and using the Planck distribution

function,

2hV3_ehVo/kT i_ -IB =_
VO C

a more useful expression for the rate of energy loss per unit volume

for an isolated line can be written,

8_2e2h 3 _ "Eou/kT -'_Vo/2Q(v O ) = m c v0 N e e I (T /2)
a --_ofLu o v°e

The other radiation models yield similar results only more complicated

in the terms containing optical depth.

In the above equation the oscillator strength, or f number, is

usually unknown. The problem then reduces to the determination of the

oscillator strengths. For argon I a few f numbers are known from ex-

periments, but generally they must be determined from theoretical studies

(Coulomb approximations, Hartree-Fock calculations, or variational calcu-

lations.)

In a manner similar to the case for optical depth, the argon I

spectrum can be subdivided into several regimes depending upon how the

oscillator strengths are determined. The regimes chosen more or less

2O



coincide with the optical depth regions; the measured values correspond-

ing to the lower level transitions, while the Coulomb approximation

values corresponding to the immediate and upper optically thin tran-

sitions. For the extreme upper levels a hydrogen model is selected

for which an exact expression for the hydrogen oscillator strength

exists.

Regime I. Experimental Values

There are thirty possible multiplet transitions from the 3p54p

level to the Bp5_s level. The absolute transition probabilities for

twenty-three of these lines have been experimentally measured (18,19,

20). The discrepancies between the measurements are within the range

of error + 20-30%. These near infra-red lines are ideal for experi-

mental investigation, because they are free from interference of neigh-

boring lines and because they represent the strongest lines in the series.

The product of the degeneracy of the lower level and the oscillator

strength for these 4p-_s transitions are shown in Table i.

The 3p55p - Sp54s transitions result in lines in the visible

spectrum. These transitions represent lines of the second term of the

series, and hence these lines are weaker but nevertheless represent

important radiation loss sources. Table 2 lists the gf values for the

5p4s multiplet transition obtained from measurements (17).
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3p5_

TABLE 1

- 3p54s Transitions

transition

2pl - Is2

2P2

2P 3

2P 4

2P 5

2P 6

2P 7

2P8

2Plo

wavelength

@

75O3.87 A

8264.52

8408.2i

8521.44

gL fLU

0.364

0.476

1.055

0.345

2_

2P 4

2P 7

2Plo

- is 3
7724.2

7948.18

8668

0.52

0.417

0.14
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TABLEi Cont.

transition

2pI - is 4

$2

epS

_4

ep5

ep6

ep7

ep8

_lO

wavelength

7272.94

7383.98

7471

7514.65

8006.16

81o3.69

8424.65

9658

gL fLU

O.384

0.354

0.12

0.3o6

0.240

O. 792

1.oe8

0.12

ep3

ep4

2P6

ep7

ep8

ePlo

- is 5
6965.43

7067

7147

7635. ll

7723.7

8014.79

8115.31

9123

O.116

0.20

0.05

0.884

0.I0

O.384

1.533

0.35
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TABLE 2

3p55p - 3p54s Transitions

transition

3Pl - is2

3P2

3P3

3P4

3P5

3P6

3P7

3P8

3Pl o

wavelength

@

4259.4 A

4335.4

4333.6

4345.2

gL fLU

•oo98

.oo28

.0065

•0021

3P2 - is3

3P4

3P7

3Plo

4181.9 .0034
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TABLE 2 Cont.

transition

3p I - is 4

3P2

3P 3

3P4

3P5

3P6

3P 7

3p8

3Plo

wavelength

4e66.3

4eTe .e

4300. I

gL fLU

.0o60

•0o38

.oo58

.oo47

3p2 - Is 5

3P 3

3P4

3P 6

3P 7

3P8

3P9

3Plo

t.•.

.0142

.0015

.0143

.0006
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Regime II. Coulomb Approximation

Except for the above mentioned transitions, experimentally

measured transition probabilities are scarce indeed. Therefore a

theoretical method must be employed to determine the missing f num-

bers. In this regime the Bates and Dmmgaard (21) method has been

selected. (Hartree-Fock calculations have been performed for the 4s2p

resonance lines of argon, (22).) One might suspect that this method

would be unsatisfactory for such a complex atom. However the rather

scanty comparison data suggest that even for such systems the method

yields useful and in some cases precise values (21).

This method was used to determine the line strength and oscil-

lator strength for the multiplet transitions from the 4p, 5P levels to

the 4s level; the 5s, 6s, 3d, 4d, 5d levels to the 4p level; and the

4d level to the 5P level. The values for the product of the degeneracy

of the lower level and the f number are listed in the chart below.

Transition gl f

3p54p - 3p54s 11.4

5p - 4s o.2

5s - 4p 3.4

6s - 4p 0_3

3d - 4p 27.8

4d - 4p 1.5

5d - 4p 0.13

4d - 5P 44.0

Appendix 3 discusses the application of this method to the determination

of argon I oscillator strengths.
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RegimeIII. Hydrogen Model

The previous method could not be applied to the transitions

between upper argon energy levels due to the enormous number of such

levels present. It was therefore decided to use the hydrogen model to

calculate the total loss contribution from the upper levels• The use

of the results for hydrogen has a sound basis if, for given argon levels,

the term energy and the principal quantum number n are related by

Rydberg' s elementary formula. However corrections for different

multiplicity and differences in excitation energies for argon and

hydrogen levels must be considered (5). For hydrogen,

R

E n = - -_ •

n

For an energy of approximately - 2 ev all argon transitions can be

considered to be hydrogenlc.

For an optically thin transition the rate of energy loss per

unit volume for a given isolated line is equal to the product of the

number of the emitters, the energy associated with the transition, and

the transition probability, A,

E , =hv , N ,A ,
nn nn n nn

Let E (m) represent the energy loss of lines produced by transitions
n

from levels n' > m to a fixed level n,
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N

() n
E m 7,= E ,

n n':m n n

and let the energy loss of the lines formed by transitions to levels

for which n > k be designated by,
m

n n

E(k) : E _ En'n
n=k' n '=n+l

where k is the lowest principal quantum number for which the hydro-

genic model is valid, and n is the maximum value of the principal

N

quantum number. For a dense plasma n cannot approach infinity due

to electrostatic effects which terminate the series. The Debye polari-

zation theory (23) is used to determine the maximum principal quantum

number corresponding to a lowering of the ionization potential. For a

plasma of approximately lO 17 electrons cm -3 this theory leads to a value

of n of about ten.

Now assume these extreme upper levels are sufficiently close

together so that the double su_nation can be replaced by two integrals

(i.e., assume a continuous distribution of energy levels), (24)

n
E (k) / / E dn dn'

n=k n'=n+l n n

For the hydrogen atom the oscillator strength, or f number,

is known from quantum mechanics. This relation is, (25)

26 i <i 1 ) -3 1
f 'n- _ --2- n---_, 3 ,3n 3-F_ 2n n n n

gBB
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where gBB is the Gaunt correction factor for bound-bound transitions.

It usually differs little from unity (26).

Using this expression to determine the corresponding transi-

tion probability, and assuming a Boltzmann distribution of excited

states, the form of En'n becomes,

256_e2hR3Z6 e- fB e_/n '2 I

E 'n = c_3_ nBn ,3 gBh na
n 3-_ m e

where

R

=hk_TT

Then after performing the double integration E(k) reduces simply to,

E(k)_-Q(k)

2_e_m3z 6
Y .

m

3 ]/_ meC3
- e-_[_ e_n_%B _- (e_/k2- )-

Now applying the correction for multiplicity and difference in excita-

tion levels Q(k) becomes,

_e-0QCk) = C2 Na gBB I_" _ (eS/k2. e_/_2) - 2 - ~2
k n

-(<uA>- <uE>)/kT
×Te

where
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C2 =

256_e2hR3Z 6

3 "_ meC3

N = number of argon atoms
a

y = the multiplicity factor (6 for argon)

gBB = the average bound-bound Gaunt factor

(UA) = most probable excitation energy for argon

(UH) = most probable excitation energy for hydrogen

The above formula expresses the total energy loss per unit volume per

unit time for the extreme upper level transitions in an argon plasma.

2.3 ContlnuumRadiation

Radiative recombination and Bremsstrahlung are the main

processes which determine the continuum emission from a moderate

temperature, radiating plasma. The theory for continuum radiation from

such a plasma was first formulated by UnsOld (27). He extended the

hydrogenic atomic absorption coefficient for photoionization to complex,

nonhydrogenic atoms by introducing a correction factor which accounted

for the "effective" nuclear charge of the atomic core. Despite obvious

limitations this theory seems to describe reasonably well the continuum

emission for argon under certain values of the unknown parameters in-

herent in the theory (2,7,8).
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For radiative recombination (free-bound transitions) the corre-

sponding atomic absorption coefficient for photolonization from a

principal quantum level n of a hydrogenlc atom is, (25)

52_2e6R Z4

y i
3%/_ ch3 nSv---_ gBF

where g_F is the bound-free Gaunt correction factor. A result ob-

talned by Milne relates the above absorption coefficient to the corre-

spondlng photolonization cross section by

2c2v 2 ge e g0i

2 h2ePn v 2gn

where the g's represent the degeneracies of the free electron, ground

state ion, and excited atom at energy level n. Knowing the absorption

coefficient is then equivalent to knowing the photolonization cross

section.

The energy emitted per unit time per unit volume in the fre-

quency range between v and v + dv and the velocity range between

v and v + dv is,

hv N i Ne f(v,T) v %n dv dv

where f(v,T) is the usual Maxwellian distribution function.

The total emission in the interval dv is found by summing the

above equation over all n with v kept constant. This procedure

leads to the following expression,
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(_)
£
pn

where

64e 6 _3/2

3V_ #/2 kll2 c3
e

Z2 Ni N 2hR Z2 -hv/kT
e _ e

Vq kT

x _ _z 2
n=n0 n--_ exp n2kT

no _.>(Rz2/,,)1/2 .

The above formula expresses the total emission per unit volume per unit

t_me for free-bound, hydrogenic transitions.

The Bremsstrahlung radiation (free-free transitions) emission

can be similarly determined by using the corresponding free-free atomic

absorption coefficient and Kirchhoff's law,

(v) 64e 6 _3/2 Z2 Ni Ne -hu/kT --
- e

_PP 3#g ,,,312k_/2 c3 _#
e

The total continuum radiation emission per unit volume per unit

frequency is the sum of the two terms, or

c = c (v) + e (v)
v pn pp

64e6 _3/2 Z2 Ni Ne e-hV/kT[_ + 2hR Z2[ _F _' ey°° hR Z2/n2kT ]
3 3/_ m3/2e kl/2 c3 _/T kT no n 3
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where _ and _ are the average free-free and the average bound-

free Gaunt factors respectively. A plot of the normalized emission

as a function of frequency Is shownIn Fig. i. (The normalizing constant

is taken to be

64e6 _3/2

3_ ,,,_/2k:L/%3
.)

Notice the appearance of absorption edges which characterize the hydro-

genlc atom.

At thls stage in the derivation It is customary to replace the

summation In the free-bound term by an integration above a minimum

value of n. Thls assumption physically implies that there exists a

continuous distribution of upper levels. This tecbmlque yields,

n n2kT -- 2hR Z2
c y

hE Z 2

n2kT
C

whe re

nc: (Rz2/_g>i/2.

If the free-free and free-bound Gaunt factors are then assumed

to be near unity, the expression for the total continuum loss per unit

volume per unit frequency reduces to,
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C V =

_e 6 _/2 Z2 Hi He

3_g m3e/2kI/2c3

6J_e6 ,,J/2

"e J
z2 Hi He -h(_-Vg)l_T

e

j v < v
- g

, V>Vg

where v is the critical cut-off frequency. Referring to Fig. i
g

again we see that this simplification eliminates the absorption edges

except for the expected exponential decay from the last level.

For nonh_rogenlc atoms Z is formally replaced by the

"effective" core charge, Zeff, where the latter parameter is related

by the h_rogenic expression,

En, _ =- RyZe2ff/n2 •

Zef f depends strongly on both n and _ and approaches unity for

large values of n and _.

Unsb_d (28), Vitense (29) and others maintained that Zef f

could be calculated using the ground state energy. Other authors (30)

have calculated Zef f from average energy values based on a group of

lower excited levels, and then assume Zef f approached the true value

of Z as the frequency decreases. Maecker and Peters (31) proposed

that,

In mmmmry, most recent authors have chosen Zef f = I, but usually

with some reservation. Hopefully Zef f can be determined from the

present experiment, at least on a consistent basis.
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The cut-off frequency is related to the minimum value of the

principal quantum number n by,
C

Vg:RZ2nn/n2
y ell

Petschek et al. (2), Pomerantz (3), and McChesney and AI-Attar (4)

have chosen hwg equal 6 ev. In obtaining this value it is assumed

less then _ kT (approx. 2 ev) tothat electron capture wlth energy

the first excited state is fairly frequent. However since Wg is mathe-

matically linked to nc, the maximum value possible for argon is 4.2 ev.

Calculations by Lagar'kov and Yakubov (32) of the photoionlzation cross

sections fr_n the first excited state (4s) in argon indicate that radi-

ative recombination to this level is very unlikely. Therefore it seems

reasonable that the cut-off frequency must correspond to hvg _<2.85 ev,

i.e., the 4p level (Pl0).

Recently Biberman and Norman (9) have calculated the emission

coefficient for argon without resorting to the UnsSld theory and hence

the questionable Ze2ff. They believe that the UnsSld formula applied

to complex atoms has neither theoretical nor experimental Justification.

Using the quantum defect method of Seaton and Burgess with approxima-

tions, their final expression differs from the UnsSld result only in

that Z2 is replaced by a parameter _(v), which depends strongly
elf

on frequency and possibly on temperature. Zeta can be less than

unity, while Z2eff is equal or greater than one. Schl_ter (lO)

reconsidered the problem and eliminated certain small energy assump-

tions which the former authors ignored. Both Biberman and Norman
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and Schl_ter's zeta parameter for argon are shown in Fig. 1. The

Schl_ter result seems to retain absorption edges roughly correspond-

ing to the 3d and 4p levels.

Since the form of the emission coefficient is the same whether

the Uns_id result or the quantum defect result is used, only the

interpretation of Z2
elf must be recognized. Therefore the expression

for _ will be written in terms of Z2
v eff even though it can al_o

be Interpretated as the average zeta function, _.

If local thermodynamic equilibrium is assumed to exist at

every point in the gas, then Kirchhaff' s law holds, and

= B K' = _ c /0
J_ _ _

Then using the previous expressions for the emission coefficient, the

optical depth for free-free and free-bound transitions can be calculated

by,

where

T =Lk'

V v

k' = K'0 = _ cv/B

and L is a characteristic length. Figure 2 shows a plot of the optical

depth as a function of wavelength for test conditions using L = 2._ cm

(the radius of the shock tube). Notice that the optical depth is much

less than one except for very low wavelengths which correspond to radi-

ative recombination to the ground state. Since such a transition is

unlikely, the continuum radiation can be assumed optically thin.
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The energy loss per unit volume per unit time for such con-

tinuum radiation can be written as,

0o

QCc) = / c dv
0 v

=./" e dr+ f _ dv
0 v v v

g

6he 6 _3/2 _e

5-¢z _e/2k ]/2 c3 _N
Z2 (Vg + kTeff -h-)

where Z2 represent the unknown atomic parameters contained
eff and Vg

in the continuum theory.

2.4 Total Radiant Energy Loss

The total energy loss per unit volume per unit time is the

sum of the line radiation from atomic bound-bound transitions plus the

continuum radiation from free-free and free-bound transitions. Thus,

where

Q(_, _, _, x): Z Q(Vo) + Q(c) (l)

Q(VO) = Q(494s) + Q(3d4p) + Q(_s2_) + Q(5194s) + Q(6s4p) + Q(Ss4p)

+ Q(4d4p) + Q(Sd_]_) + Q(4dDp) + Q(ul_per levels).

The first three terms above depend upon optical depth, or x. Bound-

bound line radiation from the argon ion was not found to contribute

significantly to the total radiation loss.
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2.5 Governing Equations

Consider the problem of highly ionized flow behind a moving

shock. Assuming no shock attenuation, this flow can be represented

as steady, one-dimenslonal, constant area flow in shock coordinates.

For Invlscld flow the conservation of energy can be expressed by,

e (h + u2/2) = - Q(%, Na, x)_u (2)

where Q is the previously determined rate of radiant energy loss

per unit volume. The gas enthalpy then is,

h = _ (1 + _)RT + O_e + R_(1-_) _T (ln zel_A" + R_ _8 (ln ziel)

for the atoms, ions, and electrons in equilibrium at the same trans-

latlonal temperature where e

is the degree of ionization.

be written as

el

ZA, i = _" gn exp(-_n/kT)
n

is the ionization temperature and G

The electronic partition function can

The above summation formally extends over all the available energy

levels. However this leads to the fundamental problem of its di=

2
vergence since the degeneracy is proportional to n . This series

must therefore be terminated. Numerous cutoff procedures have been

suggested which are based on nearest neighbor models or electrostatic

effects. The latter effect manifests itself in the form of two related
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corrections, that of lowering of the lonlzatlon potential as well as

partition function cutoff. Recall that in the previous section the

Debye polarization term was selected to account for the lowering of

the ionization potential. Assuming a cutoff based on such a lowering

for temperatures below 14000°K the upper energy levels play an unim-

portant role, and the partition functions for argon atom and argon

ion can be approximated by their ground state degeneracies, namely,

el
z = 1
a

ziel = 4 + 2 exp(-2062/T)

Since the argon ion has two ground states both must be included in the

partition function. Then for such a temperature range the gas enthalpy

reduces simply to,

h = 5 (i + (_)RT + od_e

since the derivatives of the log of the partition function are essen-

tially zero. It is important to remember that the upper states are

indeed assumed to play an active role in radiation losses, but due to

the cutoff of the partition function and the temperature range their

contribution to the enthalpy is negligible.

If the collisional rate processes dGminate over the radiative

processes, then local thermodynamic equilibrium can be expected to

exist. One must only consider equilibration between the ground state
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and the first excited state. If these populations are indeed governed

by a Boltzmann distribution based on the electron temperature, then the

remaining upper levels likewise exist in equilibrium. The radiative

population rate between the first excited state of argon (4s) and the

ground state is given by,

dNa _r = A(2,1) N(2)
d-K- ad

if the transition is assumed optically thin. This assumption is un-

likely but results in the maximum rate. Near equilibrium the population

of the first excited level can be expressed as,

where E
ex

perature.

N(2) = g(2) Na exp(-Eex/Te)

is the excitation temperature and T is the electron tem-
e

Then the rate becomes,

dNa _r = A(2,1) g(2) N exp(-Eex/T e)dt ad a

The collisional population rate near equilibrium is practically equal

to the collisional excitation rate to the first excited state. Using

the excitation rate constant developed by Petschek and Byron (33) from

inelastic cross section data for electron-atom collisions, the colli-

sional rate is given by

a =

d-_- coll _ Ne Na
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where 3 -1
kI : 3.78 X 10 -16 T_/2e e-Eex/Te (2 + Eex/Te) cm sec .

Assume the criteria for the existence of equilibrium is,

> lOd-c
dt- o11 ad

Then solving for N using the two rate expressions yields,
e

> i.I x 1024/(2 + EeJTe) T 5/2Ne e "

For an argon plasma at T = 12000@K, an electron density of
e

N e > 6 × l016 cm-3 is required for the radiative rate to be negli-

gible compared to the collisional rate. Since under these test con-

ditlons the resonance lines are strongly reabsorbed the above criteria

can be somewhat relaxed, and thus a slight decrease in the electron

density is permissible to guarantee the existence of complete local

thermal equilibrium.

Thus for a dense plasma as in the present experiments where the

electron density is of the order of lO 17, it is safe to assume the gas

remains in successive equilibrium states upon cooling. This means that

the previously assumed Boltzmann distribution of excited states exists

in the radiation loss region. Recent experiments performed in mercury

gas verify this ass_ptlon (34). The Justification of the assumption

of local thermodynamic equilibrium allows one to use the Saha equation

instead of the awkward and sometimes questionable rate equation. The

Saha equation relates the equilibrium degree of ionization to the

43



local pressure and temperature by,

i - G 2 = 7 zel P
a

exp(- [e - Ae]/T) (5)

The three remaining equations which are needed to fully describe

the flow field are the conservation of mass, the conservation of momentum,

and the equation of state for a partially ionized gas. They have the

usual form in shock coordinates,

where

pu = o1% (4)

e
P + pu2 : P1 + PlUl (5)

P : (1 + a)pRT (6)

N
e

(z=
N +N
e a

In the momentum equation above the radiation pressure term is neglected.

The set of five governing equations (2), (3), (4), (5), and (6)

plus the expression for the rate of energy loss per unit volume is

solved numerically on an IBM 7090 computer. The solution gives the flow

variables as a function of laboratory time relative to the end of the

equilibrium region behind the incident shock.
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3. _ METHOD

3.1 Application of Interferometry to the Study of Radiation and

Re cumblnat ion Phenumena

where

Alpher and White (35) first investigated the feasibility of us-

ing interferom_try as a diagnostic tool for determining the electron

density through measurements of optical refractivity. A Mach-Zehnder

interferometer is suitable for such optical refractivity measurements.

For a partially ionized gas composed of ground state atoms,

ions, and free electrons, the refractive index becumes, (I)

n = ! + 2_(a N i + a°N ) -a

--the pmsm frequen =

= the impressed frequency = 2_v

+

a = polarizability of the ion

O
a = polarizability of the atnm (ground state)

Ni = number density of ions

N a = number density of atoms (ground state )

N = number density of free electrons.
e

This expression is valid when the collision frequency is much less

than the impressed frequency, (Vc/m) << I, and when the number density

of the excited atoms is small compared to the ground state atom number

density.
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The change in the refractive index between two regions (1 and

2) for a homogeneous optical path length is related to the dimension-

less shift in Interferometrlc fringes by, (1)

n2 - __ = _IT,

where,

L = the optical path length (width of shock tube)

= the impressed wavelength

5 = the dimensionless fringe shift.

If Nt represents the number density of the ground state atoms

directly behind the incident shock where the degree of ionization is

zero, the number densities of the atoms, ions, and electrons at any

point become respectively,

and,

a = _t (Z - _)

_i = Nt_

N e = NtG

N = Nt(1 + (_) = total number density .

Then the refractive index for each of the two regions can be written as,

n2 - I =2,_p 2 ao_2 + (l- °_2) "_'e _ °_2

n1 - 1 = 2_01 a (_I + a°(l - (_I) - -- -- C_l
m e 2_c
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Then the expression for the dimensionless fringe shift becomes,

where

and

(nA - i) 0 = the reduced refractive index of argon evaluated at

standard temperature and pressure (TO, PO )

o 2_Po

+

a__ = O.67 (36)
o

a

Table 3 lists (na - l)0 as a function of impressed wavelength

in the visible spectrum for ground state argon.

For the atoms and ions the fringe shift is inversely proportional

to the impressed wavelength, while for the electrons the shift is dl-

rectly proportional. The latter effect is due to the index of refrac-

tion for free electrons being less than unity. Partial and total

fringe shifts are shown in Fig. 3 for the equilibrium conditions corre-

sponding to the end of the relaxation zone as a function of incident

Math number for an initial pressure of 9 mm Hg. and an impressed wave-

O

length of D890 A. Notice that the electron partial fringe shift pre-

dominates for strong shocks. Thus the sensitivity of the interfero-

metric method depends on the Mach number, or really the electron density,
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TABLE 3

Refractivities of Argon

A(A) (nA - i)0 X l04 Reference

4109 2.869 H

4280 2.866 H

4358 2.864 H

4801 2.838 L-B

4917 2.841 H

5087 2.831 L-B

5110 2.841 H

5210 2.828 L-B

5220 2.838 H

5460 2.837 H

5461 2.835 H

5462 2.823 L-B

5677 2.825 H

•5700 2.830 H

5770 2.831 E

5771 2.817 L-B

5783 2.825 L-B

5792 2.817 L-B

5876 2.827 H

5983 2.820 H

6&,40 2.809 L-B

6560 2.820 H

6564 2.814 H

6760 2.778 L-B

Hall, J.G., "Shock Tubes", Part II, UTIA Review No. 12 Landolt-

Bornstein, Springer-Verlag, V. II, Part 8, 1962.
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N = i016 cm -3 is considered the minimum electron density for which
e

this technique is applicable. Measurements result in an uncertainty

of approximately 0.1 fringes. This corresponds to an experimental

accuracy of several percent for electron densities of the order of

i017 cm-3.

3.2 Experimental APparatus

A conventional combustion drive shock tube was used to generate

the dense argon plasma (Fig. 4). The two inch square, twenty five feet

long, driven section was extruded from aluminum stock. A stainless

steel driver section with an internal diameter of three inches and

three quarter inch walls permitted combustion drive. A combustible

m_xture of oxygen, hydrogen, and helium was ignited by a spark ignition

system, which utilized regular motorcycle spark plugs. Prescribed

aluminum diaphragms separated the combustion driver from the driven

section. The depth of the scribe and the initial upstream loading

pressure (lO0 to 400 psi) determined the resulting shock speed. A

mercury diffusion pump vacuum system evacuated the driven section to

a prefilling pressure of approximately lO -5 mm Hg., as recorded by

an ionization gauge. Initial pressures ranged between two and ten

mmHg. of regent grade Linde argon. Heating tapes were utilized

periodically to outgas the system, while acetone and alcohol cleaning

agents were used frequently to cleanse the interior shock tube walls.

A dump tank, separated from the test section by a thin prescribed
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aluminum diaphragm, prevented the formation of a reflected shock wave.

Testing time resulted in the order of lO0 microseconds, although only

twenty microseconds were usually utilized for interferometric testing.

A schematic drawing of the shock tube facility and the associated in-

strumentation is shown in Fig. 5.

Three barium tltanate pressure transducers mounted flush to

the interior wall of the test section served as measuring stations.

Signals from these transducers were recorded on a dual beam oscillo-

scope. Figure 6 illustrates the technique employed and shows a typical

oscillogram. Transducer 1 triggered the oscilloscope and the other

auxiliary equipment such as the time delay unit and light source. The

time interval between stations 2 and 3 yielded the shock speed. The

initial temperature was recorded by a mercury thermometer placed in

contact with the exterior wall near the test section. The resulting

error in Mach number was of the order of AM/M = 0.03 when transducer

1 was used as a third measuring station. The corresponding error in

gas temperature was of the order of AT/T = 0.02. Thus there was no

noticeable shock attenuation between the three measuring stations.

A Wallace and Tierman 0-50 mm Hg. vacuum gauge, calibrated by

a McLeod mercury manometer, measured the initial pressure Pl" Errors

in the pressure reading were estimated to be of the order of,

0.06 < Zipl/Pl < 0.0_

for the 2 mm Hg. to i0 mm Hg. test range.

The Mach-Zehnder interferometer is shown in Fig. 7 while a

schematic drawing of the interferometric system is shown in Fig. 8.
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This Interferometer was on loan through the courtesy of the Lockheed

Missiles and Space CompanyResearchLaboratory. Since the field size

diameter was greater than two inches, the whole flow could be observed.

The test section housed two 2.75 inch diameter optical quality windows

with a matching pair located in the compensating section of the inter-

ferometer. The 0.75 inch borosilicate crown glass windows were ground

flat to 1/_ wavelength and parallel to 0.0005 inches.

An exploding wire was used as a high intensity light source.

This setup resulted in approximately twenty microseconds of near con-

tinuum light. The system was triggered by a spark gap initiated by

break downfrom a thyratron unit. This setup yielded a consistent

time delay of less than three microseconds.

The time resolved interferograms were recorded on a rotating

mirror camera, which utilized a hexagonal stainless steel mirror with

faces ground flat to 1/2 wavelength (Fig. 9). The mirror, driven by

an air turbine motor, swept an image of a vertical slit of 0.002 inches

at a writing speed of approximately 2.5 mmper microsecond. This photo-

graphic technique resulted in a time resolution of less than 0.2 micro-

seconds. For certain tests (as explained in Appendix 4) "snap shot"

interferogrsms were desired. For these tests a Kerr Cell unit was in-

corporated as an electronic shutter. Such a system was required since

radiating argon tended to overexpose the Polaroid film. For these ex-

periments a two microsecond exposure time _as selected.

Since fringe shifts were required at two wavelengths, the flow

field was normally split u_ing two interference filters. The filters
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o o

chosen were 4900 A and 5890 A, each having a band width of approxl-

o

mately 90 A. These filters were located at the image plane of the

test section. Greatest sensitivity was obtained wlth the widest spread

in difference in wavelength. The two wavelengths selected had the

advantage that they were isolated from strong lines of argon I while

they retained a relatively large spread in wavelength.

T_me integrated spectrograms were recorded on a Hilger quartz
o

prism spectroscope, using Kodak F-1 photographic plates (2500 A to

o

6800 A). The continuum emission from the radiating argon gas was

recorded on a filtered photomultlpller system.
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4. EXPERIMENTAL RESULTS AND DISC_SION OF RADIATION LOSSES

4.1 Examples of Data and Early Conclusions

Rotating mirror camera interferograms of the flow behind the

incident shock wave were obtained for the following test conditions:

Ms Pl (msHg) Tl (°K)

19.3 2 298.0

16.3 3 296.0

17.8 3 296.0

18.0 3 296.5

14.9 5 296.0

15.6 5 293.8

15.7 5 296.0

16.3 5 296.0

13.05 lO 296.0

From measurements of the fringe shifts at two wavelengths a

time history of both the electron density and heavy particle density

wag experimentally determined. Figures ii, 12, and 13 show inter-

ferogr_ns for three of the above test conditions. Each interferogram

exhibits the same flow characteristics, namely, at the shock front

the fringes are shifted upwards due to the sudden increase in heavy

particle density. This initial shift agrees with the predicted value

when only the translational modes of the gas are considered. Notice

that the initial Jump in fringes is greater for the shorter wavelength,
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since the partial fringe shift for the heavy particles is inversely pro-

portional to wavelength. The subsequent production of electrons, first

through atom-atom inelastic collisions and then electron-atom inelastic

collisions, causes the fringes in both wavelengths to shift downwards,

thereby indicating the index of refraction is controlled predominately

by the free electrons. The maximum negative fringe shift agrees with

the value predicted using the Saha equation. _is result has been pre-

viously observed by several investigators (1, 35). For strong shock

conditions the Saha equilibrium state corresponds to a transient con-

dition however, as the fringes in both wavelengths then begin to slope

UlSWmrds. This upwards shift in fringes with time indicates the presence

of a loss mechanism. In the earlier photometric studies (2,6,7,8) this

loss was attributed to free-free and free-bound continuum emission.

Visible radiation resulting from some radiative process is observed

on the interferograms starting near the end of the relaxation zone.

First assuming a continuum loss emission the set of governing

equations was solved numerically for the degree of ionization as a

function of laboratory time. Figure 15 shows a comparison of the ex-

perimental data with the continuum theory for the M s = 16.3, pl = 5 mm Hg

test. Note that zero time corresponds to the end of the relaxation

zone (trela x ~ 3 microseconds). First observe that such radiation

losses result in an appreciable reduction in the degree of ionization

and hence the gas enthalpy. Two theoretical curves corresponding to

two different values of the parameter Z2
eff are shown on this figure.

For the continu_ parameter equal to 2.72 there appears to be good
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agreement between theory and experiment. The double pointed arrow in-

dicates the experimental uncertainty, assuming an error of 0.1 fringes.

Since the main source of continuum radiation from a one ev

plasma is radiative recombination to the upper excited levels, and

since these upper levels of argon are close to being hydrogenic, that

is they follow the Rydberg formula, one must conclude that, if the con-

tinuum theory applies for radiating argon, the value for the effective

nuclear charge parameter should be closer to unity than to 2.72. Recall

that the average value of the zeta function of Biberman and Norman and

of SchlUter is well below 2.72.

The possible importance of llne radiation is also indicated by

the presence of strong 5p4s spectral lines on the time integrated

spectrograms. A typical spectrogram is shown in Fig. 14. All of the

recorded spectral lines are identified as argon I transitions. The lack

of impurity lines could be attributed to the relatively large f number

of the spectroscope and to the limited spectral range of the photo-

graphic plates (F-l). The use of regent grade argon and the low

initial evacuation pressure resulted in an impurity level estimated to

be less than twenty parts per million.

Hence the presence of strong spectral lines and the unusually

large value of Z2 necessary to correlate the data with the continuum
eff

theory suggest the fact that line radiation might be a significant con-

tributor to the total energy loss.
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_.2 Inclusion of Line Radiation

In section 2.4 an expression for the total radiant energy loss

per unit volume per unit time for both continuum and llne radiation was

presented. Ten terms, three of which considered possible absorption,

accounted for the contribution by line radiation. _he resonance lines

(4s2P) under test condition- were optically thick, while the 4p4s

and Sd4p transitions were neither thick nor thin since their optical

depth was approximately one. In order to accurately estimate the loss

of these lines absorption had to be considered by using the previously

derived radiation absorption models (section 2.2). For the M = 16.3,
s

Pl = 5 mm Hg test conditions the set of governing equations was numer-

Ically solved yielding the fraction of radiant energy loss from the

_p_s transitions as a function of laboratory time for the three absorp-

tion models--a sphere of constant radius, an infinite domain, and a

finite domain of circular cross section. These three absorption models

are illustrated in the sketch on page 65.

Figure 16 shows a plot of the resulting relative loss for such

transitions normalized by the total energy loss including continuum and

all possible line radiation. Since the sample of radiating gas is

bounded on one boundary by the "ionization" front for all radiation

models except the first, the sphere of constant radius, maximum loss

occurs at this ionization" front. _Lls is because at such a boundary

the characteristic length which determines the optical depth is zero

in shock coordinates, and the radiation appears optically thin. For

these test conditions the contribution of energy loss from the 4p4s
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lines to the total energy loss is approximately 30%. As the point in

question, x0, increases in shock coordinate distance, the loss from

these lines decreases. As expected minimum loss corresponds to the

infinite domain model, since an imaginary infinite gas extent is

assumed. Likewise the spherical model results in the maximum loss,

since absorption is possible only within a sphere whose radius approxi-

mates the effective radius of the cross section of the shock tube.

These two models represent the two limiting cases, while the finite

circular cross section model most closely approximates the actual shock

tube geometry. In this case the radiating gas is bounded between the

"ionization" front and the "cold" front. The theoretical curve for this

absorption model lles between the two limiting cases as shown in Fig.

16. Since the constant radius spherical model always assumes an

imaginary radiating gas volume even at t = O, this absorption model

fails to demonstrate the characteristic rapid change in optical depth

and results in a nearly uniform loss dependence with time.

Recall that anticipation of slow cooling rates constituted the

fundamental assumption in deriving the absorption models of Chapter 2.

Figure 17 shows a plot of temperature as a function of laboratory time

for two test conditions. The local temperature is normalized by the

Saha equilibrium value corresponding to t = O. Notice that in both

cases the temperature ratio is a slowly varying function of timej the

maximum decrease being less than 5% of the initial value after ten

microseconds. This result helps Justify the selection of a local

constant temperature model.
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In Figures 18, 19, 20 and 21 degree of ionization is shown as

a function of laboratory time for fcuz- tests where the circles represent

experimentally determined values. Zero time again corresponds to the

end of the electronic relaxation zone. In Figure 18 three theoretical

absorption model curves representing the infinite domain, the finite

circular cross section domain, and the constant radius spherical domain

are shown. Under the assumed set of continu_n theory p_eters fair

agreement is found between the experiment and the theory for all three

models. Only for longer testing times would the choice of the model

become critical. It is important to remember however that some absorp-

tion model must be incorporated, for considering the _p4s and 3d4p lines

as optically thin results in unusually large losses. Thus for the

limited range of optical depth encountered (x < l) the spherical
_o

model sufficiently accounts for the absorption effects. Simplification

then results in the numerical solution since the expression for the

rate of the energy loss per unit time, Q, is no longer a function of

distance, x 0 .

The critical cutoff frequency is chosen to correspond to

hv = 2.85 ev. This value refers to a transition from the ionization
g

and _ are related; the smaller
limit to the 4p(Pl0) level. Vg eff

Vg the closer _eff approaches unity. For all nine tests good agree-

ment is found to exist for a value of the effective nuclear charge of

1.5. The Biberman and Norman, and SchlUter average zeta function has

a value close to 1.5 for hv = 2.85 ev. Therefore a consistent and
g

realistic set of continuum theory parameters results.
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Figures 22 and 2B show the distribution of the fraction of

radiant energy loss as a function of time for two tests with the same

Mach number but different initial pressures. Notice that the contri-

bution to the total loss is approximately equal for both continuum

emission by free-bound radiative recombination and line radiation. The

_p4s and 3d_p transitions represent the main line sources even though

they experience absorption. (For this analysis the choice of the

absorption model is critical_) Also notice that the accumulative

effect of the remaining spectral lines cannot be neglected, as they

represent approximately 20% of the total loss.

For a given shock Mach number the higher the initial pressure

the larger the absolute continuum emission and the larger the relative

continuum loss contribution. The former statement is valid since the

higher pressure results in a larger electron density, while the latter

statement is also valid since the higher pressure results in optically

thicker 4p4s and 3d4P transitions. In Figures 18 and 19 the first re-

sult is demonstrated by noting the slope of the experimental curves

of degree of ionizatlon_ while the second result is shown by Figures

and 23.

The Debye polarization theory used to terminate the upper

excited level led to a maximum principal quantuum number n of

approximately 10. Figures 22 and 23 show that the energy loss result-

ing from these hydrogenic levels is approximately ten percent of the

total loss. The actual value for the maximum principal quantum number

is inconsequential, for letting n approach infinity results in an
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increased loss by these levels of only several additional percent.

loss from the intermediate level transitions of argon I, determined

using the Bates and I_rd approach (referred to as "other lines"

in Figures 22, 23) also represents approximately ten percent of the

total loss.
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FIGURE 11 ROTATING MIRROR CAMERA I"I?ERFEROCTRAM 
(M = 16.5, p1 = 5 IUU Hg, T1 = 296.0"~) 

1 

I 

FIGURE 12 ROTATING MIRROR CAME% INTEmEROGW4 
(M = 16.3 = 3 mm Hg, T1 = 296.O"K) ' p1 
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FIGURE 13 ROTATINC NIRROR CAMERA INTERFEROGRAM 
(M = 18.0 , p1 = 3 mm Hg, TI = 296.5"K) 

FIGURE 14 TIME lXTi3GRATED SPECTROGRAM 
(Kodak F-1 Photographic Plates) 
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5. St_d_YANDC0_L_IO_

Radiation losses associated with the flow behind strong normal

shock waves in argon have been studied experimentally using as a diag-

nostic tool an optical Mach-Zehnder interferometer. By measuring the

shift in fringes resulting from a change in the refractive index of

the medium, a time history of both the electron and mass densities was

recorded. The evidenced decreasing electron density indicated an energy

loss mechanism occurring in the flow region outside of the electronic

relaxation zone behind the incident shock wave. The experimental study

was supplemented by a detailed analysis on the possible loss mechanisms.

Theory and experiment were in good agreement.

The analysis indicated that the predominate single loss mechanism

was continuum emission resulting from radiative recombination and

Bremsstrahlung radiation. However line radiation losses were not

negligible. Sizeable loss resulted from bound-bound transitions in argon

between the lower excited levels, specifically the 4p4s and 3d4p transi-

tions even though under test conditions these lines experienced absorp-

tion. Various absorption models were considered in order to estimate

the energy loss by such transitions. Equally important was the

accumulated energy loss resulting from highly excited level bound-bound

transitions in argon. Bound-bound line radiation from the argon ion

was not found to contribute significantly to the total energy loss.

A consistent and realistic set of continuum theory parameters resulted

when the theoretical analysis was correlated with the experimental data.
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The values for these parameters agreed with the estimated quantum

mechanical results of Biberman and Norman (9) and of Schl_ter (10).

Loss of energy by radiative processes led to an appreciable

reduction in the gas enthalpy. In order to perform a meaningful inter-

ferometric study on a partially ionized expansion flow a uniform up-

stream electron density of the order of lO 17 cm -3 was required. Severe

radiation losses encountered behind such strong shocks resulted in non-

steady upstream flow. Under such conditions a parallel analytical

investigation was unfeasible. Thin problem is discussed in Appendix _.
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APPENDIX 1

RADIATION ABSORPTION MODEIS

Consider a finite volume of radiating gas of constant density

and temperature. Introduce x as the distance measured from the shock

front in shock coordinates, e as the direction angle (colatitude) an

intensity ray makes with the x axis, and _ as the azimuthal angle.

For the case of axial symmetry,

d_ = sin e d@ d_ .

This condition exists along the center line of the shock tube. In

general the rate of energy loss per unit volume is given by,

• +

Q=Q +Q"

_/2 -k'R(e)
= 2_ f f k' B e v sin @ de dv

V
0 v

+_ I fk'B e v
IT/2 _ V V

sin 6 d_ dv .

Assume the isolated llne can be represented by a dispersion type

profile,

k !

V

AB

(_- Vo)2+ B2

where,
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* e2Nf -hVo/kT
A =--(i- e )

m c
e

Under these assumptions closed form solutions for Q can be obtained

for several geometric gas domains.

I. Spherical volume model (R = constant)

In this case R corresponds to the effective radius of the

cross section of the shock tube. Since R is independent of direction

angle for this case,

Q=4_/k'B
V

=4_B :L AB
Vo (v- Vo)2 +B2 exp " (v- Vo)2+B 2

d v.

Introducing, (v - v ) = B tan u,
O

Q 4_2 B A* e-A*R/2B *
= 10(A R/2B)

_O

-hvo/kT -'rVo/2_2_Nf B (i e ) e
_C _0

where,

* -hVo/kT
A R 4_e2Nf (1 e ) R I

vo B meCP

and 10(v /2) is the modified Bessel function of the first kind
_O
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of order zero. Values for this special function are tabulated in

"Table of Functions" of Jahnke-Emde.

Two limiting cases based on optical depth exist:

i) Optically thin, T _0
V
0

4.2e2 -h o/kT
Q(v o) _'--B Nf(1- e ) (1- x /2)

m c v voe o

ii) Optically thick, x -_
_0

-_ /2
V o

Here e Io(_vo/2) _ (_Vo

)-1/2

4_ 3/2 e2 -hVo/kT 1

Q(v O) -_ B Nf (1- e ) ....m c v
e o _

0

Figure 24 shows the dependence of Q(v o) on optical depth for the

exact solution and the two limiting case solutions.

,

For Q+,

Finite circular cross section model

Since R = R(e), Q+ and Q" must be calculated separately.

R = x sec e for 0 < e < e
-- -- cr

L
=: csc e e < e <_/2

2 cr -- --

ecr = tan-l(2)

L
- = radius of shock tube
2
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then,

8

+ (0/cr -k'x sec e
Q = 2_ f sin e e v de +

V

_/2 _Lk' ese e

Of sin e e 2 v de)Bvk_dl,

er

2_ I (M + N) B k' dr.
v V

V

Letting z = sec e yields

-k 'xz
1 v

M= I -_e dz-
1 z

-k 'xz
1 v

f -_ e az
Z Z
cr

4<v2) 2 +x

+

where 3 •

7/(/2) 2, -R = L + x2
cr

A
= exponential integral of order two

A I I -cz
= -_ e

1 z

dz

Also letting u = csc e yields,

du

i u_fJu_-l

-k' L
v2

e

er

/
u
cr
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where,

u2 - i

+
Finally the expression for Q reduces to,

-CU
e

Q = 2_ B E2(k'x) - --E 2 -
vo v Rcr cr

0

A similar approach can be used to evaluate Q'. For the region of gas,

R' = 4(L/2)2 + x,2
cr

X' =h- X

h = distance from ionization front to cold front.

Then,

Q = Q + Q- = 2_ B x) + x ) - --

Vo v0_ Rcr

x' L- _X- E2(k'vRcr) + 2F( k')
cr v

-_ F(k_Rcr ) - _ F(k_Rcr)] k' dv
Rcr cr v

Using the so-called "exponential approximation" the expo-

nential integral is replaced by a purely exponential function of the

form,

-bci %

E2_c ) = a e

where the constants are a matter of choice. Two such sets of values

are, (ll) 80



For smsll c,

!
= (I, 32)

F(c) :l- c_-
2

while for large u, F reduces to the fo_ of the E 3 integral. It

seems reasonable that F(c) can likewise be approximated by a simple

exponential of the fo_,

F(c) = f e-gc

where

yield,

Cr,g)= C_,5/4).

Using these exponential expressions Q can be integrated to

P

| -Kbx '

Q(Vo) = 2_2e2Nf B [ae "Kbx I0(Kbx ) + ae I0(Kbx' )meC vO

-KbR ax' -KbR'

. axR e cr lo(KbRcr ) -_x- e cr 10(KbRcr )
cr cr

L

-_ g ( _L r(n/2lR-_r _o(_r )+ 2f e I0.Kg _) - e
cr

' .hVo/k T

- fRL--_ e-KgR_r Io(KgR_r) (i - e )

cr

where,

* -hVo/kT
A 2_e2Nf (i- e )

K=_ = me-----T--
e

81



3. Infinite domainmodel

This case is a special case of the finite circular cross

section model where L/2x _ . The previous expression reduces to,

Q(vo) 2_2e2Nf B a I0(Kbx) + e I0(K'bx')](l - e
= [e-Kbx -Kbx' -h Vo/kT

meC vO

where,

* -hv °K A 2_ e2Nf /kT
=2-_: met (i- e )

e

Comparison of absorption models under typical conditions:

R = L/2 = 2.5 cm

x = 2.5 cm (fixed)

h/L = 20

T = k'R
V
O

Q/4_B A*
V
O

(thin)

sphere

cylinder

infinite

=i
V
O

1.0

0.646

O. 514

0. 299

T = i0
V
O

1.0

o.18e

O. IS9

0.084
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FIGURE 24 NORMALIZED RADIATION LOSS FOR SPHERICAL MODEL AS A FUNCTION

OF OPTICAL DEPTH
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APPENDIX 2

ARGON I ENERGY LEVELS

Argon is unfortunately an example of a complex spectrum (in

place of series of singlet, doublet, and triplet energy levels there

are multiple levels composed of four, five, ... regularly spaced levels).

For argon the multiplicities of the levels are all odd--singlets, trip-

lets, quintets, and septets.

Most complex spectra studied follow the Land4 interval rule

and thus reveal LS-coupling. Argon however along with the other rare

gases reveal fairly good JJ-coupling (37). By Jj-coupling we assume

there is considerable interaction between each li and the si belong-

ing to it, and not strong interaction of the _i with one another and

the si with one another as in usual LS-coupling. Such coupling can

be written symbolically as,

J : (Jl J2 JB "")

The core configuration for argon is 3p 5, i.e., the ion of argon,

while the normal 1S 0 state is given by the completed subshells of

electrons only, the last of which is 3p6. For such a configuration

of electrons the value of J for the core is,

J=
c 2'2
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Or, the ground state of the argon ion is,

2PI/2, 2PB/2

Using Hund's rule the lowest is the 2P3/2. (The degeneracy of the

ground state of the ion is thus 4 + 2 = 6.)

The JJ-coupling is then between the core (jc) and the optical

electron (J). One can build up the energy level diagram for argon

(argon I) by simply placing the optical electron in the desired shell

and observing the interaction with the core.

Example.

Consider the first excited state (one of the

is raised to a 4s shell). The J of the 4s

= 0. Then,

3p 6 electrons

1
orbit is T since

J:Jc + j'""' IJc- Jl

So_

2pl i i/2 : J = (_ + 3) and

2p3 3 112 : J : ( + _) _d

Therefore there are four levels of the

i i
(_ - _) = 0

( -_) =i

3p54s,

3pS(2Pl/2)4s(J=l)

3p5(2PI/2 )4s(J=O)

3p5 (2P3/2) 4s (J=l)

3p5(2P3/2)4s( J--2)
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The old Paschennotation would have labeled these levels as is2, is 3,

is 4, is 5.

In a similar manner it can be shownthat there are lO levels

for the second excited state (3p54p) and 12 levels for the third

excited state (3p53d).

As in I_-coupllng certain selection rules must be obeyed for

JJ-coupling. Theseare

Z_J= O, + I

Z_=O, +i

(0 to 0 excluded)

Figure 25 on the next page shows the energy levels of the lower

states for argon I. (Drawn from Ref. 38.) Note that there are two

possible transitions from the first excited state (3p54s) to the

ground state (3p6) and thirty transitions from the second (3p54p)

to the first excited state (3p54s). The selection rules allow only

these transitions. In general there are 30 principal series of spectrum

lines and 30 sharp series of lines.

86



,m R

--m--

m D

UIt

0

a.

ro

I'-:

W

LO _ rO o,I u

I I
I
I

I I I
, I I
i I !
I
i I I

I I
II
II
I!
il
II
II

,nl_I

I I I I

i,o
Io
I-

N

I-

I_o

I I
I I
i I
I I
I I
I i

I I
t I
I 1

I I
7 I !
e ilo

_" ,_ioloi
x O_

go

I
I

I

Q..

1-

Io
l-

ic

i-
!o

!-

-- 0
I

0_

>_
0

I

i

aD

k-I

-o

0J

r.,.b

87



APPENDIX 3

APPLICATION OF THE BATES AND DAMGAARD METHOD TO THE

DETERMINATION OF ARGON I OSCILLATOR STRENGTHS

S by,

The oscillator strength f is related to the line strength

8_m c

e

f = S 3he2gLA

where _ is the wavelength of the radiation absorbed or emitted and

gL is the statistical weight of the lower level concerned in the

transition. Now it can be shown (21) that

2
S = _(m) _($)

where _(m) is a factor depending on the particular multiplet of the

transition array, _(1) is a factor depending on the particular line

of the multiplet, and 2 is defined by

@o
2 1

- (f RL r R dr) 2

o u

_> being the greater of the two azimuthal quantum numbers involved

in the transition.

Goldberg (39) states that in a transition array such as

k , , . _k n" _"n _ n _ n the sum of the absolute strengths of all
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_k n'the multiplet originating from or ending in a term of n _'

is equal to,

g_(_'+ i)(2_'+ 3)

' ')(2_ l)g_(_ , _

for 2" = _' + i

for _" = _' - i

As noted by Rohrlich (40) when j-j coupling is important (as in argon I)

comparison of theoretical expressions of particular lines of the multi-

plet with observed values is not in general possible. However for the

sum of all the multlplet line of a given transition this technique

should give useful values. For argon the degeneracy of the _' level

is related to that of hydrogen by

!

where

state degeneracy of the argon ion.)

Hence the expression for the line strength

lines associated with a certain transition is,

Y equals 6 for the argon atom. (The six is due to the ground

=_m(2_' + z)(_'+ I)(2_ + 3)
s <__(2_'+ i)(_')(2_'- _)

S due to all the

for _" = _' + i

for _" = _' - 1 .

And the expression for the rate of energy lost per unit volume in terms

of the line strength S for an optically thin transition becomes simply,

4h 4 4 Na -Eou/kT

Q(vUL) - 3c32e 2 vUL g_ e
e
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The Bates and Dsmgaard method is based on the fact that in

calculating the transition integrals (f _ r RU dr) 2 it is permissible
0

to neglect the departure of the potential of an atom from its asymptotic

Coulomb form. This enables one to derive a general analytical expres-

sion for the transition integral.

In the standard central field model the radial wave functions

RL and RU satisfy the differential equation,

d2R + _2V _(_ + i) )
dr2 - 'r2 - c R = 0

where V is the potential and c is the energy eigenvalue. The

potential V is replaced by its asymptotic Coulomb form C/r, where

C is the excess charge on the nucleus when the optical electron is

removed. In this technique the energy elgenvalues are forced to their

correct values by introducing an effective principal quantum number

whlchmay be a non-lnteger.
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APPENDIX 4

APPLICATION OF RADIATION LOSSES TO THE PRO_

OF EXPANDING FLOW

Since the Prandtl-Meyer flow is one of the most important

problems studied in non-reacting ideal gas flow, the investigation

of the reacting, partially ionized flow problem seems equally essen-

tial in understanding high temperature gas dynamics. One is especially

interested in the state of the gas as it passes through the expansion

fan. Since the flow time of a particle increases with radial distance

from the expansion corner, the flow passes from a frozen state near

the corner to an equilibrium state very far from the corner. The

partially ionized "Prandtl-Meyer" flow hopefully provides a means of

producing steady state non-equillbrium flo_ suitable for laboratory

experiments.

Extensive theoretical studies have been made of nonequilibrium

expansion flow of ionizing monatomic gases around a corner. This prob-

lem is considerably more difficult than the classical Prandtl-Meyer

flow, because of the nonlinear coupling between the chemical reaction

and the flow variables. The limiting cases of thermal equilibrium

and frozen flow are exceptions.

As in the classical Prandtl-Meyer flow of a non-reacting gas,

no characteristic length is contained explicitly in the solution for

equilibrium chemical reaction. This implies that the flow variables
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are constant along any radial line drawn from the expansion corner. For

a two-dlmenslonal, steady, irrotational, Inviscid, non-heat conducting,

non-radlatlng ionized flow the following equations describe such a flow,

mass:
due dp = 0

Put + P_e- + ue d-_

momentum e direction :
r

U0(uOUr)T e-h-'E =o

due l ___
momentum e e direction: UrU8 + ue _6- + -p de = 0

energy :
dh i dp = 0
de 0 de

state: p = p(z + oc) RT

(2_m) _/2 2 el
e zl (kT) 5/2 -_B/T

e
a

All flow quantities depend only on the angle e (see Fig. 26). Since

the motion is irrotatlonal and steady, entropy must be constant through-

out the flow field for a flow of constant stagnation enthalpy. Intro-

ducing the equilibrium speed of sound for ionized flow, (41)

2 y*a = (i+_1_
e

2

* 2 _(1-_)+ o,(1-$) (_ + _)
"r = (2-o,)(1-_) 3(1_) +_ (_ + _)2

2-(:Z
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and using the fact of constant entropy, the problem can be solved n_mer-

ically for the flow variables. Such a numerical solution program was

written where the inputs are the upstream velocity, degree of ioniza-

tion, equilibrium temperature, and pressure.

Figure 2 7 is a plot of expected fringe shift through an equi-

librium expansion as a function of Mach number for an initial pressure

of 3 mm Hg of argon, assuming the upstream flow (state 2) is at the

thermal equilibrium state predicted from shock relations using the

Saha equation. Notice that a fringe shift of the order of unity is

expected for strong shocks. These fringe shifts are adequate enough

to encourage interferometric investigation.

The other limiting case of flow with chemical reaction is

"frozen" flow. In "frozen" flow the degree of ionization remains con-

stant throughout the expansion. Thls problem is identical to the

classical Prandtl--Meyer solution where the isentroplc index Is 5/3

for a monatomic gas.

For non-equilibrium flow the Saha equation is replaced by a

rate equation. A knowledge of the mechanisms for ionization and re-

combination is now required. Most authors utilize the Pets_hek and

Byron (33) ionization rate equation based on the assumption that the

ionization rate is the same as the rate of excitation to the first ex-

cited state. Experimental studies of Wong (1) using optical interfero-

metry essentially verify this ionization rate expression. Recombination

is due to radiative recombination and three-body (and collisional de-

excitation) recombination. Bray and Wilson (_) assume that radiative
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recombination can be neglected with respect to three-body recombina-

tion for dense plasmas.

Three methods of attack have been used in attempting to solve

this difficult problem--linearized solutions, power series expanslons_

and method of characteristics. The logical first step is to try solu-

tions for special llnearized cases since most difficulty stems from

the nonlinear coupling. Clarke (43) used Laplace transforms while

Ryhming (44) tried Green's functions. Napolitano's (45) method essen-

tially consists of expanding all flow variables in terms of non-dlmen-

sional distance. Cleaver (46) and Appleton (47) utilized the method

of characteristics for the solution of an ideal dissociating gas.

Glass and Takano (41) solved the steady non-equilibrium expansion flow

of ionized argon around a corner by the characteristics method. They

used the previously mentioned rate equation assuming the atom and

electron temperatures were identically equal. Kramer (48) assumed

Te _ TA using the Petschek and Byron energy balance equation to re-

late the two temperatures. Wierum (49) was able to solve the problem

approximately, assuming the pressure distribution along a streamline

and the shape of a streamline in a non-equilibrium Prandtl-Meyer flow

were identical to the equilibrium values with the same initial con-

dition.

Unfortunately experimental efforts have not been so fruitful.

Glass and Kawada (50) first investigated the feasibility of using

optical interferometry to study a partially ionized Prandtl-Meyer

flow. This problem was a logical extension of Wong's (1) work on the

thermal equilibration of a shock heated plasma.
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Initial "snap shot" interferograms were recorded of the flow

expanding about a fifteen degree corner. Since the gas itself was

radiating for such strong incident shocks, a Kerr Cell system (as

explained in Chapter 3) was incorporated to limit the exposure time

on the recording film. For such an expansion near equilibrium flow

was anticipated. A typical interferogram utilizing vertical fringes

is shown in Fig. 28. The resulting fringe shift through the expansion

fan was less than the predicted value based on equilibrium (Saha) up-

stream conditions for both limiting cases of frozen and equilibrium

flow. From these preliminary tests it was concluded that Saha con-

ditions could not exist upstream. Thus extensive investigation of

the radiation losses associated with the flow behind the incident

shock was conducted (Chapters 2, 4).

Using the results of Chapter 4 theoretical predictions were

made of the fringe shift through a fifteen degree expansion. The re-

sults were somewhat discouraging. Adequate fringe shift could only

be expected for flow immediately behind the "ionization" front, where

unfortunately the flow was nonsteady. Quasi-steady flow, reached after

several microseconds after passage of the incident shock, resulted in

insufficient fringe shift for interferometric studies. Therefore this

phase of the research appeared at first to be disappointing. Several

conclusions could however be drawn from such an experimental investi-

gation.

The "snap shot" interferograms yielded useful information about

the flow near the first Mach angle. The sensitivity in detecting

gradients in electron density using interferometry was Z_ < 0.5 degrees.
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The angle of the first Mach line lead to a direct measurement of the

upstream flow Mach number, _. Hence the local speed of sound was

determined from a knowledge of the upstream flow velocity. The results

are shown in Fig. 30 where upstream flow Mach number, _, is plotted as

a function of incident shock Mach number, M . In all cases the experl-
S

mental points lie on the local equilibrium speed of sound curve. The

points even obeyed the transient curves, constructed from the radia-

tion loss numerical solution of Chapter 2. Thus an independent check

was made on the flow quantities behind the incident shock through this

experimental measurement of the first Mach angle.

Since "snap shot" interferometric techniques proved unfeasible

for studying the state of the ionized gas through the expansion, rota-

ting mirror camera interferograms were attempted. Figure 29 shows a

@

typical interferogram for M = 18.0, Pl = 3 mm Hg, and k = 5890 A.

(The sllt was positioned as shown in Fig. 31.) Under such a configura-

tion a time history of the fringe shift was recorded. The reduced

interferograms yielded fringe shifts throughout the expansion. In

Fig. B1 data points are shown for conditions corresponding to e

less than the first Mach angle and e greater than the final Mach

angle assuming equilibrium flow. In the former case good agreement

was found when the data points were compared to the theoretical solu-

tion for flow behind the incident shock. In the latter case fair

agreement was found when the data points were compared to the steady

state equilibrium expansion solution using time dependent initial

conditions determined from the radiation loss program. Thus the flow
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appeared to remain in near equilibrium throughout the expansion under

these test conditions. Other tests at different initial pressures

and shock Mach numbers also indicated the same result.

In conclusion results from an optical Interferometric study

of a partially ionized expansion flow seem _nconclusive_ since adequate

fringe shift can only be obtained under strong incident shocks in a

flow region where the upstream flow is nonsteady. The extreme com-

plexity of solving such a nonsteady, radiating, reacting expansion

flow prevents in general parallel analytical study.
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FIGURE 26 PRANDTL-MEYER EXPANSION
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FIGURE 28 SNAP SHOT INTERFEROGW 
(M = 18.6, p1 = 3 Hg) 
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