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TECHNICAL MEMORANDUM X-5347 5 

AN INITIAL CONCEPT OF A MANNED MARS EXCURSION 
VEHICLE FOR A TENOUS MARS ATMOSPHERE 

BY 

G. R. Woodcock 

George C. Marshall Space Flight Center 
Huntsville , Alabama 

ABSTRACT 

This report summarizes a preliminary investigation of the 
requirements and characteristics of a manned Mars landing vehicle to: 

1. Establish how much aerodynamic braking might be feasible 
with thin atmosphere; 

2. Determine if parachutes appear feasible and, i f  not, how 
can aerodynamic braking be phased into rocket braking for a landing; 

3 .  Establish a rough estimate of the total mass  of a Mars 
landing vehicle. 
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TECHNICAL MEMORANDUM X-53475 

AN INITIAL CONCEPT OF A MANNED MARS EXCURSION 
VEHILE FOR A TENOUS MARS ATMOSPXERE 

SUMMARY 

The following conclusions and recommendations were developed: 

1. An Apollo-shape entry and landing vehicle provides a 
reasonable solution to the problems of aerodynamic braking at Mars. 

2. Entry and landing on M a r s  should be accomplished by aero- 
dynamic braking with modest lift, followed by rocket braking. The 
mass  penalty for rocket braking is not great and this represents a much 
more  conservative approach than any  attempts to  use supersonic para- 
chutes o r  similar devices. 

3. Entry should be made from a Mars orbit. Whereas a 
satisfactory entry from parabolic or higher-energy conditions is theo- 
retically feasible, the entry corridor is very small and this entry mode 
would lead to undue risks. 

4. Fully loaded system mass fo r  a 4-man lander with ascent 
vehicle w i l l  be on the order  of 50 metric tons. 

5. Size of such a lander would probably be larger  than the 
diameter of the Saturn V launch vehicle; a hammer-head configuration 
would then be necessary to launch the lander to Earth orbit by means 
of the Saturn V. 

6 .  Performance available from cryogenic propellants is ex- 
tremely desirable for the ascent stage. 
attractive choice as a compromise between performance and cryogenics 
s to rag e p r o bl em s . 

Lox methane appears to be an 

7. An alternate configuration of the landing vehicle, without 
the ascent stage, could provide a reasonably effective cargo lander o r  
shelter system for extended Mars exploration. 



8. It is recommended that a more  detailed design study of this 
type of vehicle be carr ied out to confirm the design approach and the 
rough-order-of-magnitude weights. 

9. It is  recommended that a study be car r ied  out to ascertain 
the degree to which Mars entry simulations with this vehicle type could 
be carr ied out in an Earth atmosphere environment. This would be de- 
sirable to avoid the necessity of an unmanned tes t  at Mars. 

10. A simulation study is recommended to ascertain the de- 
gree to which a Mars entry and landing of the type discussed herein 
could be controlled by a human pilot. 

SECTION I. INTRODUCTION 

A manned landing on Mars w i l l  require a special purpose space 
vehicle designed and developed for this purpose. 
profile [ 11,  the Mars landing vehicle w i l l  be transported to Mars by an 
interplanetary space vehicle which w i l l  deliver the mission from Earth 
orbit to Mars orbit. 
(a) to land an exploration crew on the planet and at a later time return 
them to Mars orbit for rendezvous with the interplanetary vehicle, o r  
(b) to deliver exploratory cargo to the Mars surface, with no provision 
for reascent to  Mars orbit. Its function therefore is quite analogous to 
the lunar excursion module being developed for the Apollo program. 
However, orbital velocities at Mars a r e  substantially higher than at 
the moon, such that a M a r s  excursion module designed for entirely 
propulsive braking and landing would be very large and heavy. 
however, unlike the Moon, has  enough atmqsphere to provide some 
atmospheric braking. 

In a typical mission 

The function of the Mars landing vehicle w i l l  be 

M a r s ,  

Earlier studies of manned Mars  landing vehicles were gen- 
erally based on a nominal Mars  atmosphere model assuming roughly 
2 5  millibars of pressure at M a r s  surface and a scale height of 20 kilom- 
e t e r s  o r  more. With this atmosphere model, it appeared feasible to 
fly a l i f t ing entry which would bring the landing vehicle to a subsonic 
flight velocity a t  a nominal distance from Mars surface. 
parachutes were to be deployed for final letdown, with a very modest 
provision for  terminal rocket braking to reduce the impact velocity. 

At this point 
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. 
. 

In July of 1965, the Mariner 4 spacecraft executed a flyby of Mars 
during which an occultation experiment w a s  performed. 
from the Earth, the spacecraft flew behind the planet and its radio 
signal was occulted by the atmosphere, and then by the planet itself. 
Measurements made during this occultation provided new and more 
accurate information on the structure of Mars '  atmosphere. 
periment indicated the surface pressure to be only about 6 millibars and 
the scale height to be only 8 kilometers. 
m a d e  it desirable to take another look  at the requirements and charac- 
ter is t ics  of a manned Mars  landing vehicle, to establish, f i rs t ,  how 
much aerodynamic braking might be feasible with this thin atmosphere, 
secondly, do parachutes appear feasible (and if not, how can aerody- 
namic braking be phased into rocket braking for a landing), and thirdly, 
a rough estimate of the total mass  of such a Mars landing vehicle. 
These results a r e  needed for analyses of overall mission profiles for 
manned Mars exploratory missions. 

As viewed 

This ex- 

This new information has 

The purpose of this report is to record results of a preliminary 
investigation into these matters.  

SECTION 11. SELECTION O F  ATMOSPHERE MODEL 

The Mariner IV occultation experiment provided both the 
motivation for the investigation described in this report  and the atmos- 
phere model which was used. 
formed by observing the fade-out of radio signals f rom the Mariner IV 
space probe a s  i t  passed behind the planet Mars [ 21. This radio signal 
was phase-locked with a ground transmitter and receiver. Conse- 
quently it was possible to observe, as  well a s  fade-out in intensity, the 
total relative phase shift of the signal passing through the atmosphere 
a s  it faded out. Based on plausible assumptions of the constituents of 
the M a r s  atmosphere, it w a s  then possible from these data to deter- 
mine the density scale height of the atmosphere a s  well a s  the atmos- 
phere density a t  the surface a t  the instant of final fade-out, when the 
solid body of the planet became interposed between the transmitter and 
receiver. Atmosphere models could then be constructed, based on 
this density scale height and again assumptions regarding the constitu- 
ency of the Mars atmosphere. 

The Mariner IV experiment was per- 
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The measured scale height was small  compared to what had 
been expected: i. e. about 8 kilometers. With the strength of Mars '  
gravity field, this requires assumption of an atmosphere which is both 
very cold and of relatively high molecular weight. 
in this study was based on a value of indicated surface density f rom the 
Mariner measurements, 0.019 kilograms per  cubic meter ,  and on an 
assumed mean molecular weight of 40 for  the atmosphere. Mean at- 
mospheric temperature could then be calculated from the measured 
scale height, the assumed molecular weight and the known surface 
gravity strength. Whereas later work with the Mariner IV data may 
provide improved knowledge of the atmosphere structure,  very little 
was available to the writer at the time of conduct of this study. 
quently some speculation w a s  employed and it w a s  assumed that above 
approximately 30 kilometers altitude, the atmosphere temperature in- 
creased due to heating by the solar wind. 
atmosphere has relatively little effect on the analysis since the bulk of 
the braking as well as the terminal velocity occur in the atmosphere 
below 50 km. 

The atmosphere used 

Conse- 

In fact, structure of the upper 

Surface pressure  of the atmosphere model used w a s  calculated 
to be 5.69 millibars. A tabulation of the atmosphere model i s  given in 
Table 1. 
ly  speculative; they have essentially no effect on the entry simulation; 
but it was necessary to provide atmosphere data for the table-lookup 
computer routine over the range of flight altitudes to be investigated. 
Consequently, the atmosphere table was extended to 1000 kilometers 
altitude. 

Values for the atmosphere above 100 kilometers a r e  extreme- 

Since the analysis was conducted, there  have come to the 

Density versus  geometric alti- 
wr i te r ' s  attention several  atmosphere models proposed by JPL based 
on the Mariner IV measurements [ 31. 
tude for two of these models, as well a s  for the model used in this 
study, a r e  shown in Figure 1 .  

4 
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TABLE 1 .  ATMOSPHERE MODEL 

Temperature, S p e d  of Sound, Alt i tude ,  Density, 
Xeters KGICu. Meter Deg. K HetersISecond 

0.0 1 . 9 ~ 1 0 - ~  143 196 

5 . 0 ~ 1 0 ~  1.02x10-2 143 196 

1 . 0 ~ 1 0 ~  2 . 9 2 ~ 1 0 - ~  143 196 

2.0xt0‘ 8.3 7x10 143 196 

3 . 0 ~ 1 0 ~  2 . 4 ~ 1 0 ‘ ~  14 3 196 

4 . 0 ~ 1 0 ~  6.86~10” 143 196 

7 . 5 ~ 1 0 ~  2 . 3 3 ~ 1 0 - ~  197 230 
1 . 0 ~ 1 0 ~  4 . 4 ~  2 68 269 

1 . 5 ~ 1 0 ~  3 . 6 1 ~ 1 0 - ~  358 310 

2 .oX105 2 . 9 6 ~ 1 0 ‘ ~  350 310 

3 . 0 ~ 1 0 ~  1 . 9 8 ~ 1 0 - ~ ~  358 310 

h . 0 ~ 1 0 ~  ? . 3 2 ~ 1 0 - ~ ~  358 310 

5 .oX1o5 6 . i B ~ i O - l ~  3ja 310 

6 . 0 ~ 1 0 ~  3 . 1 4 ~ 1 0 - ~ ’  56 0 310 
;.ox105 2 . 2 6 ~ 1 0 - ’ ~  i15 310 

8 .oX1o5 3.53xlO-” 890 310 

9 .  Ox lo5 8 . 3 3 ~ 1 0 - ~ ~  1250 310 
1 .ox106 3 . 0 6 ~  1 O-20 iaoo 310 
l.lxlO6 1 . 1 3 ~ 1 0 ’ ~ ~  1800 310 

1.2x106 3 . 7 1 ~  1800 310 

1. 3x106 1 . 3 5 ~ 1 0 ‘ ~ ~  1800 3 10 

-6 

5 . 0 ~ 1 0 ~  2 . 2 6 ~ 1 0 - ~  161 208 

I 

- 1 0  -5 0 
LOCARITWM OF DENSITY IN KC PER CU METER 

FIGURE 1 .  MARS ATMOSPHERE MODELS 
5 



SECT ION 111. CONFIGURATION CONSIDERATION 

Early designs of Mars landing vehicles [ 41 were based on an 

In the early 1950's 
assumed M a r s  atmosphere with a surface pressure  of roughly 85 mili- 
bars  and a scale height of roughly 15 kilometers. 
very little work had been done on entry physics o r  on the various blunted 
ballistic and lifting shapes which a r e  now common knowledge. 
quently these early designs were winged gliders which were assumed to 
land horizontally like aircraft. 
detail under a NASA contract, employed a lifting body shape similar to 
the M-2 shape but w a s  also based on an atmosphere model more dense 
than that derived f r o m  the Mariner IV experiment; a surface pressure  of 
roughly 25 milibars w a s  assumed as a lower limit. The terminal glide 
w a s  subsonic and parachutes were deployed to accomplish the final let- 
down. 
landed tail first ,  using retro rockets for final braking. 
was contained within the lander such that with the vehicle vertically po- 
sitioned, the ascent stage w a s  ready for launch. 

Conse- 

A la ter  concept, [ 51 investigated in some 

These parachutes rotated the vehicle in pitch attitude so that it 
The ascent stage 

Entry simulations (to be discussed in  the following sections), 
based on a nominal Mariner IV atmosphere model with 6 millibars sur -  
face pressure and on reasonable weights and dimensions for a manned 
M a r s  excursion vehicle, indicate that the terminal glide is supersonic; 
consequently parachute braking appears questionable. A conservative 
design approach would therefore require that all terminal braking be 
accomplished by retro rockets. With rocket braking, i f  a lifting body 
shape of the type described were to be used, two alternatives present 
themselves: 

a. Use the retro rocket system to perform deceleration to 
zero relative velocity and then perform a final vertical descent to land- 
ing in a horizontal attitude, o r ,  

b. A pitch maneuver to turn the vehicle.tai1 first, combined 
with deceleration, in order to make a tail first landing. 

The f i r s t  alternative would require either an unusual ascent 
stage configuration, o r  erection of the ascent stage after landing, in 
order  to be prepared for launch. 
maneuvering as well as presuambly multiple rocket thrust chamber 

The second alternative requires 
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arrangements, which in the wri ter ' s  opinion a r e  undesirable under the 
circumstances of a first manned landing on Mars. 

Fo r  this reason it was deemed desirable to investigate alternate 
A semi-ballistic shape simi- 

If such 
vehicle shapes to accomplish the 'landing. 
l a r  to the Apollo command module was chosen for investigation. 
a shape could provide suitable aerodynamic braking, it would appear to 
have several  advantages: 

a. General aerodynamic characteristics well understood for 
an Earth-type atmosphere, and, because of the simple geometry, read- 
ily obtainable for other atmospheric characteristics. 

b. Relatively high volumetric efficiency. 

c. Assuming a landing with the blunt end downward, a rela- 
tively low center of gravity and wide footprint. 

d. Geometry amenable to a relatively simple arrangement of 
deceleration and letdown thrust  chambers, also not requiring unusual 
maneuvering to attain a landing attitude. 

e. Geometry amenable to packaging of an ascent stage with 
conventional configuration. 

The choice of an Apollo shape then appeared appropriate, 
provided that a lift to drag ratio on the order of 0.4 would be sufficient 
for  accomplishing aerodynamic entry and deceleration. 

SECTION IV. MARS ENTRY SIMULATION: METHOD OF ANALYSIS 

The key to definition of this initial concept was mathematical 
simulation of Mars entry trajectories to establish (a) how much aero- 
dynamic braking could be obtained from the Mars atmosphere, and 
(b) how much aerodynamic l i f t  i s  needed to make the most of aerody- 
namic braking. The latter questionis, of course, pertinent to the 
choice of configuration for the lander. 

7 



The model chosen for the simulations was two-dimensional, 
with a non rotating planet but including variation of gravity force with 
altitude. The previously-described atmosphere model was employed. 
Gravity, l i f t ,  and drag were the only forces  assumed acting on the 
vehicle, with the resulting force equations in polar - co-ordinates: 

F - -L s i n y -  D c o s  y ( 2 )  8 -  

L / D  and C were fixed at  initial values for each case,  a 
D reasonable assumption since subsonic speeds did not occur. 

These were converted to rectangular co-ordinates for inte- 
gration according to the standard convention sketched at  the right: 
therefor e, Y 

x = r cos Q ( 3 )  

y = r sin B (4) 

F = F cos Q - F sin 8 ( 5) 

F = F sin Q + F cos Q ( 6 )  

X 

X r Q 

Y r 9 

Integration was carr ied out by Newton's divided difference formula [ 61, 
This amounts to fitting a cubic polynomial to four SUC- 

cessive points of the parameter to be integrated, and then integrating 
the polynomial approximation. 

. third order.:: 

Newton' s Divided Difference Equation for interpolation to third 
order  i s  given by: 

f(x) 7z f ( x o ) +  ( x - x o )  f (xoJxl )+  ( x - x o ) ( x - x l )  f ( x o > x l  J x 2 )  

+ (x-xo )(x-xl ) ( x - x 2 )  f ( x o  J J x2 > x 3 )  ( 7 )  

( 8 )  where: f(x0 x2 9 x 3 )  = [ f(x0 j x1 J x2) - f(x1 J xz Y x , ) ] / ( x O  -xg) 

.I. -1. 

One should not assume that a higher order  i s  automatically better. 
the simulations conducted here ,  parameters  to be integrated varied 
slowly and smoothly with time, and third order was quite satisfactory. 
Third order fi ts  can be, however, intractable (worse than first  order) ,  
for  example, for  parameters  which tend to vary stepwise. 

8 
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f 

f 0  

f I 

f Z  

f 3  

Integration were, in essence: 
b 

v = v  + J F x h  dt 
X xa 

a 

b 
v : v  dt 

a Y 

b 

b 
Y = y , +  j V  dt 

Y a 

Conversion back to polar co-ordinates was then made: 



- V cos 0 - V sin 0 
X v0 - Y 

v = v cos0  + V sin 8 
r X Y 

Interpolation of the atmosphere table also employed the third-order 
Newton's divided difference method. 
form prior to interpolation; i. e. q. = In p.. 

was then converted back to density, and drag found from D = C S p  V2/2. 

Density was put in logarithmic 
The interpolated result 

1 1 

D 
Computations were performed by a simple For t ran  IV digital 

program for the IBM 7094. Initial conditions of altitude, velocity, path 
angle, mass, drag coefficient, L / D  etc. were entered and the program 
performed the integrations either (a) 10, 000 t imes,  or (b) until zero 
altitude was reached. 
second; this wassswitched by the program to a smaller value, usually 
0 . 2  seconds, when drag exceeded 1 percent of the weight of the vehicle. 
Accuracy of the integration routine was checked by simulating an ellipti- 
cal  descent from a circular orbit a t  1000-km altitude. 
orbit was covered before drag became appreciable. 
course,  has a readily obtained closed form solution, which was used a s  
a check. After 1/3 of an orbit, altitude e r r o r  was less  than 3 km, and 
velocity e r ro r  less  than 1 m/sec;  this was deemed adequate for the 
purposes at  hand. 

The usual time interval of integration was 1 

About 1 / 3  of an 
Such a path, of 

SECTION V. RESULTS OF SIMULATIONS 

The principal simulation effort was devoted to simulation of 
very shallow entries from Mars orbit at a 1000-kilometer orbit altitude. 
A Mars  mission based on high-thrust interplanetary propulsion would 
presumably enter into such an orbit pr ior  to descent of the Mars su r -  
face excursion vehicle. Some effort also was expended on simulation 
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of entries f rom parabolic conditions. 
had two principal objectives; f i r s t ,  to determine what lift-to-drag ratio 
range would be required to realize effective use of the atmosphere for 
aerodynamic braking, and second, to obtain an estimate of the speed at  
which it would be necessary to switch to re t ro  rocket braking. Initial 
efforts car r ied  the simulation from 1000-kilometer altitude, immediate- 
ly following the entry re t ro  impulse, to Mars surface, with no l i f t ;  i. e. 
ballistic entry. 
starting point for subsequent runs which was just pr ior  to f i rs t  notice- 
able effects of the atmosphere; this served to reduce computer run time. 
Simulations were run for a constant drag coefficient of 0.9 and lift-to- 
drag ratios ranging from 0 to 0 . 4 .  Other vehicle characteristics were 
a s  tabulated on Figure 3. 
varying entry angles, to determine the sensitivity of terminal conditions 
to the entry angle. 

The entry-from-orbit simulations 

Examination of this simulation allowed choice of a 

Following this,  simulations were run for 

Initial Altitude: 3 4 3 . 4  km 
Initial Velocity: 3461 m/sec. 
Initial Path Angle: -0.12 radians 

+ 
Entry Path Shown to Scale 
( 1  inch = 1000 km) 

FIGURE 2. RESULTS O F  MARS ENTRY SIMULATION 
NON-LIFTING ENTRY 
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100 

r 
3 
I2 
0 
3 

so 

0 

Initial Altitude 
Initial Velocity 
Initial Path Angle 
Aerodynamic 

Reference Area 
Drag Coefficient 

Vehicle Mass 
L / D  

343.4 km' 
3461 m/sec. 
-0.12 radians 
142.87 m2 

0 . 9  
0.0  
52000 kg. 

7 

0 2000 4000 

FLIGHT VELOCITY, METERS/$EC 

FIGURE 3 .  RESULTS OF MARS ENTRY SIMULATION 
NON- LIFTING ENTRY 
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IS0 c I n i t i a l  
I n i t i a l  
I n i t i a l  

A 1  t it ude 
Velocity 
Path Angle 

343.4 
3461 
-0.12 - 

Aerodynamic 

Drag Coeff ic ient  0.9 
L/D 0.4 
Vehicle Xass 52000 €g. 

Reference Area 142.87 m2 

1 0 0  

f 
d 
3 
k 
5 

50 

0 I . . .  

0 .goo0 4- 
fL16HT VELOCITY, METERS/SEC 

FIGURE 4. RESULTS OF MARS ENTRY SIMULATION 
LIFTING ENTRY 
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. 

+ 

I n i t i a l  Altitude 343.4 km 
In i t ia l  Velocity 4830 mlsec. 
In i t ia l  Path Angle -0.30 radians 

FIGURE 6. RESULTS OF MARS ENTRY SIMULATION: 
PARABOLIC LIFT-MODULATED ENTRY 
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\SO 

\o 0 

50 

0 

I n i t i a l  Alt i tude 343.4 km 
I n i t i a l  Velocity 4830 m/sec. 
I n i t i a l  Path Angle - 0 . 3 0  m/sec 
Aerodynamic Reference Area 142.87 m2 
Drag coe f f i c i ent  0 . 9  
L/D 0 ;  0 . 4  
Vehicle mass 

- 

I n i t i a t i o n  
of L i f t  

FIGURE 7 .  RESULTS OF MARS ENTRY SIMULATION: 
PARABOLIC ENTRY WITH LIFT MODULATION 
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Principal results of the simulations a r e  shown on Figures 2 
Figures 2 and 3 show real space and phase space plots of through 7. 

the ballistic entry from orbit. 
0.4 L/D entry. 
nal conditions for three representative lift-to-drag ratios. 
6 and 7 show real  space and phase space plots of the simulated para- 
bolic entry. This entry takes place at zero lift-to-drag ratio until 
velocity is slowed down to 2.7 kilometers per  second, at  which point 
l i f t  is modulated to 0.4 lift-to-drag ratio until terminal conditions. 
Other simulation attempts from parabolic conditions indicated that the 
entry corridor for these conditions is very narrow; probably only a few 
kilometers in height. 
utilized was such that an accurate estimate of the corridor height could 
not be obtained. 
appendix. 

Figure 4 shows a phase space plot of a 
Figure 5 illustrates the effect of entry angle on termi- 

Figures 

The nature of the rudimentry simulation technique 

An example of an entry simulation is given in the 

The following principal conclusions were drawn from this 
analysis : 

1. 
with Apollo shapes, is adequate to provide effective braking for Mars 
entry from an orbit. 

A lift-to-drag ratio on the order of 0.4, such a s  available 

2. Terminal conditions for the vehicle analyzed were such 
that 500 meters  per second could be considered a reasonable velocity 
a t  which to initiate re t ro  rocket braking. 

3. Terminal conditions were supersonic, about Mach 2, thus 
making very questionable the feasibility of utilizing parachutes o r  
similar devices for aerodynamic braking. 

4. Modest lift-to-drag ratios a r e  very effective in reducing 
the sensitivity of terminal conditions to entry angle. 

5. The entry corridor for entry from.parabolic conditions is 
very narrow and would require sophisticated guidance techniques. 
conclusion would be even more true fo r  the case of utilization of Mars' 
atmosphere for arr ival  braking from hyperbolic conditions. 

This 

Based on these simulations and the resulting conclusions, an 
Apollo-shape entry vehicle was selected fo r  this initial concept investi- 
gation. 
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SECTION VI. ASCENT VEHICLE 

The ascent stage of the Mars  lander was required to fly f rom 
Mars '  surface to a 1000-km altitude orbit, carrying a crew of four 
astronauts. 
in Table 2 below: 

A velocity budget for this maneuver was assigned as given 

TABLE 2. MARS ASCENT VELOCITY BUDGET 

Element 

I m p u l s i v e  requi rement  

Drag l o s s  

R o t a t i o n a l  g a i n  

G r a v i t y  l o s s  

Rend e zvou s 

Launch window 

P l a n e  change 

F l i g h t  performance reserve  

T o t a l  

Payload was assumed t o  c o n s i s t  of t h e  f o l l o w i n g  e lements :  

1. C r e w  of f o u r  

2 ,  Ascent  c a b i n  p r e s s u r e  v e s s e l  and forward s k i r t  s t r u c t u r e  

3 .  A i r l o c k  and a c c e s s  h a t c h  

4. Environmental  c o n t r o l  and l i f e  s u p p o r t  sys tem 

5 .  Communications 

6 .  Guidance and equipment n a v i g a t i o n  

7 .  S c i e n t i f i c  p a y l o a d  

(TOTAL) 

V ,  k m l s e c ,  

3 . 9  

0 . 1  

- 0 . 1  

0 . 6  

0 . 1  

0.1 

0.15 

0.15 

5 . 0  

400 k g .  

1000 kg . 
100 kg .  

600 kg.  

100 kg .  

100 kg .  

400 kg.  

2700 kg .  

The propulsion system was assumed to employ liquid oxygen and meth- 
ane a s  propellants. 
mise between the desire  for high performance and the desire to avoid 
severe problems with cryogenic storage. 

This choice was viewed a s  an acceptable compro- 

Since liquid oxygen and 
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methane have overlapping liquid ranges, a single thermal insulation en- 
velope could be employed with an uninsulated common bulkhead between 
the propellants. 

Engines were assumed to be RL-10's wi th  a 60:l a rea  ratio, 
modified for lox-methane operation. 
provide engine-out capability. 
effective exhaust velocity). 
newtons of thrust, providing 1 342 000 newtons with two engines operating. 

Three engines were employed to 
Predicted Isp was 356 sec (3500 m/sec 

Each engine w a s  assumed to deliver 67,000 

Table 3 gives a rough-order-of-magnitude weight breakdown 
for the vehicle. 

TABLE 3. WEIGHT BREAKDOWN 
Engines  (3)  600 k g .  

Tankage 900 k g .  

I n s u  lat  i o n  400 k g .  

P r e s s u r i z a t i o n  sys tem 

Feed sys t em 

T h r u s t  s t r u c  t u r  e 

A f t  s k i r t  

A s t  I- i o n i c  s 

R e s i d u a l s  

(pay  1 oad) 

Cu to f f  mass 

Impu l se  P r o p e l l a n t  

L i f t o f f  mass 

Allowance f o r  p r o p e l l a n t  b o i l o f f  

Landed m a s s  

400 k g .  

100 k g .  

300 k g .  

200 k g .  

100 k g .  

400 k g .  

2 700 kg . 
6100 kg . 

19300 kg . 
25400 k g  . 

1900 kg . 
2 7300 k g  . 

- 

Ullage volume of 10 percent was assumed, based on landed propellant 
mass.  
ing tank volumes were: 15.7 cubic meters  fo r  liquid oxygen and 12.73 
cubic meters  for  methane. 
selected, resulting in an ascent stage configuration a s  shown in Figure 
8. 

Propellant mixture ratio (O/F) was assumed to be 4.16; result- 

A tank internal diameter of 3 meters  was 

Detailed design sketches were not developed. 
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4-MAN CABIN 

AIR LOCK/HATCH 

SUP E R- I N SU L AT ION 

GAS (HELIUM) 

THRUST STRUCTURE 

7 n F- ENGINES: 3-6O:l RL-IO’S 
MODIFIED FOR 
CH4. 

FIGURE 8. MARS EXCURSION VEHICLE ASCENT STAGE 

SECTION VII. DESCENT VEHICLE 

A s  previously discussed, an Apollo shape was selected for the 
descent vehicle. This vehicle i s  required to protect the ascent vehicle 
during landing, to provide for i ts  launch when required, and to provide 
shelter fo r  the four astronauts during a short duration surface stay. 
In addition, there i s  the obvious requirement of executing the landing. 

2 0  



Figure 9 shows the general arrangement of the descent vehicle 
with the ascent stage a s  its payload, positioned so that it wi l l  be ready 
for launch after the descent stage has landed. Storable propellants were 
assumed for  the landing stage, because the relatively small Av required 
did not strongly favor cryogenics, and the tank geometry chosen was not 
a s  amenable to super-insulation as were the tanks for the ascent-stage. 

FIGURE 9. MARS EXCURSION MODULE CONCEPT 
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Configurations for the landing propellant tanks and the surface 
operations shelter pressure  vessel  were chosen such that without signi- 
ficant changes in configuration design concept, these elements could be 
located a s  required to t r i m  the lander for the desired L / D  (presumably 

toroidal segments, the tanks being of circular c r o s s  section, and the 
shelter nearly rectangular. 

* 0.4). The surface operations shelter and the propellant tanks were 

Four landing engines,each of 100 ,000  newtons thrust, were 
assumed. Specific impulse was estimated as 320 sec. These estimates 
lead to a weight statement a s  given in Table 4. 

TABLE 4. WEIGHT BREAKDOWN FOR LANDING VEHICLE 

Landed payload ( a s c e n t  v e h i c l e )  

Ou te r  c o n i c a l  s h e l l  

I n t  e r n a  1 S t r u c t u r e  

C r e w  c a b i n ,  i n c l u d i n g  a i r l o c k  

L i f e  Support  and environmenta 1 c o n t r o l  

Heat s h i e l d  s k i n  and i n s u l a t i o n  

Ab l a t  o r  

Reac t ion  c o n t r o l  sys tem 

Landing eng ines  

Tankage and Feed system 

A s t r i o n i c s  

Prope  1 l a n t  Res idua  1 s 

TOTAL INERTS 

Less  a b l a t o r  and forward s h e l l  (dropped a t  l a n d i n g  
engine  i g n i t i o n )  

LANDED WEIGHT 

Imp u 1 s e p r op e 1 l a  n t  

TOTAL MASS AT ABLATOR JETTISON 

A b l a t o r  and forward s h e l l  

TOTAL ENTRY MASS 

2 2  

2 7,300 kg . 
3,000 kg .  

4 , 8 0 0  kg .  

1 ,000  kg .  

840 kg .  

1 , 6 0 0  kg .  

4 , 0 0 0  kg .  

500 k g .  

800 kg .  

1 ,200  kg .  

100 kg .  

300 kg .  

45 ,440  kg . 

4 , 5 0 0  kg .  

40 ,940  kg . 
10 , 700 kg . 
51,640 kg .  

4 ,500  kg.  

56, 140 kg. 



The landing sequence begins in  Mars  orbit ,  where a propulsive 

(Retro rockets were  not sized and the i r  
impulse is required to initiate entry. 
s tage during entry and landing. 
weight is not included in any of the weight statements).  
an  artists' concept of an ear ly  phase of entry. 
tion continues until the vehicle has slowed to about 500 meters / sec .  
(F igure  11) .  
shield and the upper fairing a r e  jettisoned 
and landing occur under rncket pswer;  '100 seconds of hover t ime a r e  
provided (F igures  1 3  and 14). 
fairing jettisoned, the pilot can see the ground through a window in  the 
ascent  stage cabin, 
cent stages can be ignited and f l o w n  back to M a r s  orbit. Upon landing, 
the crew leaves the ascent vehicle to live in the surface operations 
shelter.  
ascent  stage and depart  fo r  Mars  orbit  

The crew a r e  housed in the ascent  

Figure 10 shows 
Aerodynamic decelera-  

Landing engines a r e  ignited; a t  this time the ablation heat 
(Figure 12) .  Final letdown 

During the final descent, with the upper 

,41so, in the event an  abort  is necessary,  the a s -  

When surface operations a r e  complete, the crew re turn  to the 
(Figure 15). 

FIGURE 10.  MARS EXCURSION MODULE LANDING SEQUENCE: 
ARTIST'S CONCEPT 
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FIGURE 1 1 .  MARS EXCURSION MODULE LANDING SEQUENCE:  
A R T I S T ' S  C O N C E P T  

F I G U R E  12. MARS EXCURSION MODULE LANDING SEQUENCE:  
ARTIST 'S  C O N C E P T  
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F I G U R E  13.  MARS EXCURSION MODULE LANDING SEQUENCE:  
A R T I S T ' S  C O N C E P T  

F I G U R E  14. MARS EXCURSION MODULE LANDING SEQUENCE:  
ARTIST'S  C O N C E P T  

25 



F I G U R E  15. MARS EXCURSION MODULE LAUNCH F R O M  MARS 
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SECTION VIII. LOGISTICS AND MANNED SHELTER APPLICATIONS 

The Mars landing vehicle as discussed so far  in this report 
would be applicable to an early manned Mars landing mission (e, g. an 
initial landing). 
mission support capability in order  to make possible significant scien- 
tific exploration of the planet. 
tended Mars surface exploration mission, essentially the same inter-  
planetary transfer flight systems a s  would be used for  an initial landing, 
but with an altered mission mode to  provide for a la rger  crew and ex- 
tended stay time. Since the 
landed payload delivered by the Mars lander (the 27-ton ascent vehicle) 
is quite substantial, it is appropriate to consider modifications of the 
landing vehicle wherein the ascent vehicle would be replaced by a mis- 
sion logistics payload; o r  by an internal modification of the landing ve- 
hicle to convert it to a long-duration crew shelter, complete with en- 
vironmental control and life support systems and necessary expendables. 
This section of this report w i l l  describe some concepts for such utili- 
zation of the landing vehicle. 

Later manned landings would require a more extensive 

It appears feasible to use, for an ex- 

This has been discussed elsewhere [ 1 ,7 ] .  

EXPENDABLES STORAGE 
FOR MOBILE LAB. 

NLOADING RAMP 

DESCENT PROPELLANT 

DESCENT ENGINES - LANDING LEG 

FIGURE 16. MARS EXCURSION MODULE: LOGISTICS LANDER 
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Structural modifications to the landing vehicle to outfit it as a 
logistics lander w i l l  depend on the nature of the payload to be delivered. 
In general, it is likely that fairly extensive internal structural  rnodifi- 
cations w i l l  be required, since it is unlikely that a logistics payload w i l l  
f i t  conveniently into the space normally allocated to the ascent vehicle. 
Figure 16 is  a conceptual sketch of a logistics ca r r i e r  version in the 
landed configuration. This particular concept delivers a long-range 
surface mobility vehicle, plus expendables and spares  for  the vehicle. 
It may be expected that structural modifications to the landing vehicle, 
as  implied by Figure 16,  w i l l  reduce the landed payload to roughly 22 
to 2 4  metric tons. 

PRESSURIZED 
SHELL FOR 
SHIRT- SL E EVE 

DI R E CT-CO ND EN 

MAINTENANCE a 
REPAIR 

ISING 

FIGURE 1 7 .  MARS EXCRUSION MODULE: NUCLEAR 
POWER MODULE 
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It is very likely that an extended-stay manned exploration mis- 
sion at Mars will require a reactor power system to supply the electric 
power required for base operations. 
regard also be required to serve as  a landable nuclear power module. 
Figure 17 shows a rough conceptual sketch of this application. Internal 
structural  modifications to the lander a r e  similar to those required for  
conversion to a shelter. It is assumed that the shelter pressure vessel  
would be used to provide a shirt-sleeve atmosphere around the reactor 
and equipment. 
in the event of an accident. 

The landing vehicle would in this 

It would also serve to limit radioactive contamination 

DECONTAM. 

FIGURE 18. MARS EXCURSION MODULE: EXTENDED-STAY 
SHELTER 



As previously noted, the lander must also serve a s  a shelter 
system for the exploration crew. Figure 18 is a preliminary concept 
of such a shelter version, indicating the feasibility of converting most 
of the upper section of the lander to a pressure  vessel  housing a three- 
deck shelter and laboratory module, adequate for extended-duration 
housing of a crew of 5 to 6 men. 
weight statement for such a shelter version, designed to house a crew 
of 5 for a 500-day stay on the M a r s  surface. 
life support system weights a r e  based on a study of such systems for 
lunar surface applications (which a r e  directly comparable) [ 81. The 
weight statement indicates the feasibility of such a self-contained 
shelter, including all life support and environmental control expendables, 
for a 500 day period. 
vided by an external power module such as previously noted. 

Table 6 is a rough-order-of-magnitude 

Environmental control and 

Electrical power required is assumed to be pro- 

It has been implicitly assumed in the foregoing discussions that 
the standard version of this Mars excursion vehicle concept (incorpo- 
rating the ascent stage) would be landed on Mars in a piloted mode, 
whereas the logistics and shelter versions would be landed in  an un- 
manned mode. Differences in astrionics systems a r e  thereby implied. 

TABLE 6. PAYLOAD BREAKDOWN FOR SHELTER VERSION 
OF MARS LANDER 

A d d e d  I n t e r n a l  S t r u c t u r e  
( I n c l u d e s  " F u r n i t u r e " ,  e t c . )  

5000 kg .  

L i f e  S u p p o r t  & E n v i r o n m e n t a l  C o n t r o l  S u b s y s t e m s  

C o m m u n i c a t i o n s  & C o n t r o l  S u b s y s t e m s  

4000 kg .  

1000  kg. 

f o r  5 - m a n  c r e w :  k g / d a y  

W a t e r  6 

Food 7 

M e t a b o l i c  02 5 

R e p r e s s u r i z a t i o n  A l l o w a n c e  0.5 

L o c k a g e s  (5  p e r  day ,  
80% air r e c o v e r y )  1 . 7  

L e a k a g e  1 .0  
2 T k g / d a y  

T o t a l  E x p e n d a b l e s  f o r  500 d a y s  

R e s e r v e  

L a b  e q u i p m e n t  & s c i e n t i f i c  p a y l o a d  

T O T A L  L A N D E D P A Y L O A D  

10,600 kp. 

4000 kg. 

2700 kg. 

2 7 ,  300 kg.  
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APPENDIX 

EXAMPLE OF COMPUTER ENTRY SIMULATION RESULTS 

The following pages a r e  computer output for one of the entry 
simulations performed for this study. SI units were used a s  follows: 

Masses - Kilograms 

Forces  - newtons 

Lengths - meters  

Angles - radians 

Atmosphere density - kg per cubic meter 

Load factor - Earth g ' s  

The data shown represent every 20th step in the numerical 
integration. 
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eEGxri CASE 5 

INPUT DATA 

I N I T I A L  ALl ITUOE 343383.0000 

INITIAL vELecxrv  = 3461.0370 

- I N I T I A L  PATH ANGLE = -0.1600 

L BVER 0 = c .4000 

AERROYNAHIC REFERENCE AREA = 142. e700 

DRAG CBEFFICIENT = 0.9000 

SURFACE 4TW. OENSITV = 0.0190 

SURFACE ATP. TEMPERATURE = 143.0000 

I N I T I A L  MASS = 5 2 0 0 0 ~ 0 0 0 @  

MARS SURFLCE GRAVITY = 3.7317 

THE OAT4 TE FELLBW ARE ARRANGE0 I N  BLBCKS A S  NRTEO 

ELAPSED T I P €  w u c x  rv L I F 1  
DELTA TIME PATH ANGLE L/D 
TBTAL LAbD F I C T 0 R  AERBDYNAMlC 0 ATM0SPHERE OENSlTV 

ALTITUDE 
RANGE 4NGLE 

DRAG 
MACH 110. 

20.0000 
20 .0000  

O.O@OC 

3570.8827 
-0.1601 

o.nooo 

0.0012 332363.0938 
0.4000 C.0184 
0.0003 

0.0030 
11.1948 

40.0000 
2C..OOOO 

0 .  ooo', 

3480.1362 
-0.1593 
0.0000 

O.OG21 321372.1250 
0.4000 0.G369 
0.c000 

0.0052 
11.2266 

._ - -  - 
60.000( 3490.5938 0.0036 310411.0C00 
20. oooc -0.1584 (1.4003 0.0555 
0.ooou 0.0031 0.cooo 

0.3091 
11 -2584 

0.0663 299483,6250 
20.0000 -0.1574 0.4053 C.0743 

- _  8G.pOO0 - _. 3500-4520 __ __ _ _  - 
o.aooo O.O@Ol o.coo0 

c .a 158 
11 -2902 

100. 00O'J 3519.3069 F.O110 288594.1563 
20.0000 _ _ _  -0.1564 - _ _  0.4000 . C.0931 

0.0005 0*0002 0.0000 . 

0.0274 
11.322P 

120.000C 
20. OOOG 

0.0005 

3520.1548 
-0.1553 

0.0004 

0.0190 271746.6075 
0.4000 0.1121 
0.0000 

0.0474 
11.3538 

3529.9919 
-0.1542 
0.0006 

0.0328 
0.5coo 
0.0000 

140.0000 
20.0000 
0.OOOF 

2b6945.3750 
0.1311 

0.0019 
11.3855 



160.0000 
20.003t 

0.ooo'J 

3539.8140 
-0.1533 
0.0011 

0.0565 256194.4375 
0.4003 0.1503 
0.0000 

0.1412 
11.4172 

_- 
180. PO00 
20.0000 
0.0000 

0.0970 245498.281 3 
0.4000 0.1696 
0.0000 

3549.617 1 
-9.1518 
0.0019 

0.2426 
11.4488 

200.GOOU 
20.000G 
0.0003 

3559.3969 
-0.1595 
0.0032 

0.1662 234861.2813 
0.400~1 0.1890 
O.O00!l 

0.4155 
11.4804 

0.21137 224287.6250 220.0000 3569.1492 
- 20.000J - .. -0.1492 0.4COJ 0.t086 

n.oooc 0.~55 0 .  uooi 

0.1093 
11.5118 

240.0000 
20.0000 

. .  0.0000 

3578.8695 
-0.1478 
0.0094 

0.4827 213781.9063 
0.4000 0.2282 
0. OOOIJ 

1.2067 
11.5432 

260.000r 
20. ooor) 

0.00 0 2 

3588.5531 
-C.1463 
0.0159 

3598.1953 
-0.1448 
0.0269 

0.8182 
0.4~03 
0. coo0 

203348.5938 2.0454 
0.2480 11.5144 

. .  

1.3812 1929Y2.1250 
0.4000 0.2678 
C.CCO0 

2 80.3001' 
20.0003 
0.000u 

3.4531 
11.5579 

300. OOOv 
20.0000 
0.0000 

3607.791 3 
-0.1433 
0 . ~ 5 1  

2.3220 182717.1563 
0.4000 0.2878 
0.0000 

5.8050 
11.5362 

320.3000 _ _ _  - 3617.3356 __ . _ _  - 3.8865 172528.2188 9.7162 
20.0000 -0.1417 0.4009 0.3079 11.5460 

0.000C 0.0009 0.0756 

16.1877 
1 1  5982 

340.0000 3626.R226 6.4751 162430.1250 
0.3281 2@.(iC03- - - .-0.140~ __ 0.'*00Q ___  _._. 

0.i)OOO 0.1259 o.coo3 

360.(11)0( 3636.2462 10.7356 152427.4375 26.8389 
20.000cr -0.1383 0.4003 0.3485 11.6995 

.- O.OO@l.- 0.2987 .__ . 0.0000 

380. C 000 
20 .ooou 
0.0001 

3645.5992 
-0.1365 
0.3336 

17.1606 142525.0625 
0.4GOO 0.3689 
0.oooo 

42 -90 16 
11.8795 

400.0000 
20 .oooc 
0.0001 

3654. R739 
-0,1347 
0.5284 

67.9426 
0.4000 0.3895 12.1352 
0.0000 

27.1770 132727.5Y30 

. -  

3664.0602 
-0.1328 
0.8469 

43.5573 123040.0938 
0.4000 0.4101 
0.0000 

100.8932 
12.4686 

420.0009 
20. OOOQ 

O.DOP2 

440.0000 -_ - 
20.0000 
0.0004 

3673.1446 - 
-0.1359. 
1.3856 

71.2669 - 

0.000~ 
o.4ooo 

113467.3750 
0.4309 

178.1673 
12.8917 

460.0QOO 
20.0300 
0.0006 

3682.1061 

2.3329 
-0.1289 . -. 

119.9898 104014.4688 299.9745 
0.4003 0.4518 13.4200 
0. a m 0  
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480.00@@ 
20.0000 __ 0.0011 - 

3690 -9 102 2U8.4090 
-0.1269 0.4000 

4.352C - - -. 0.0003 .- 

94686.7188 
0.4728 

5 2 1 . ~ 2 2 6  
14.1528 

5C0.0000 
20.0003 

0.002c 
- _  _. . - 

520.0C70 
2C.000n 

O.CO38 

3699.4949 
-0.1248 

7,3494 

378.0612 
0.4005 
0.0000 

_ -  

725.930 I 
0.4000 
0.0009 

85489.7503 
0 4940 

945.0029 
15.5419 

3707.7327 
-0- 1226 
14.1140 

16429.9063 
0-5152 

1814.8252 
15.9596 

____ - -  
3709.6265 869.4653 

-0.1212 0 4000 
16.9047 0.0080 

- - ..- 
524; 7999 

4.000@ 
0.0946 

2173 -6632 
16,1750 

74276.4688 
0.5203 

528.7999 .-- 

4.0000 
0.0n53 

3711.1723 - _ _  . 10C2.8735 72488 -4375 
0.5246 

2507.1838 
16.3016 -0.1207 

19 . 498 6 
0.4000 
0.0903 

532.7998 
. -  4.DOOC1 . - 

0.0061 

3712.6855 
-0.1293 _ _  - 
22.5503 

1159. A340 
0.400J 
0.0000 

70706.3438 
0.5289 

2899.5851 
1 6 -4246 

536.7998 
4.0000 
0.0071 

3714. A611 
-0.1198 
26,1495 

1344. Q51U 
0.4POO 
@.000il - 

68930.2813 
0.5331 

3362.3775 
16.5448 

540.7997 
4,0000 
O.OFR3 

3715,5928 
-0.1193 
30.4044 

1563.7962 
0.4003 
O.OQO0 

67160.4375 
0.5374 

3909 -4904 
160 6628 

545.7996 
4.0000 
0.0096 

3716.9735 

35.4466 
-0.1189 

1823.1391 
0.4300 
0.0000 

65396.8750 
0.5417 

455 7 . 825 3 
16,7796 

5461.7996 
4.0000 
0.5113 

371 8.2946 

41.4358 
- 0 . 1 1 ~ 4  

2 131.1748 
0.4tOJ 
0 . 0 ~ 0 0  

63639.6875 
0.5460 

5327.9370 
16 8959 

552.7995 
4 .  G O 0 3  
0,3132 

3719,5453 
-9.1179 
48.5668 

2 4 9 7 , 9 4 4 0 .  
0.4003 
0.0000 

61889.0313 
0.5503 

6244,8602 
17.0127 

556.7995 
_ _ _  . 4.000C - 

0.0155 

3720.7133 2935.8363 
-0.1174 .- - - 0.4000 
57,0767 0.0000 

60145.1563 
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