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1/INTRODUCTION

This document constitutes one volume of a two-volume work dealing with the struc-

tural dynamics of space vehicle systems. The overall purpose is twofold, namely to
educate and to coordinate.

This volume considers dynamic loads encountered during the launch and exit phases.

The companion volume, Ref° 1.1, treats the problem of overall system integration, in-

cluding interface communication between contractors and integrating agency, methods

of defining contractual specifications, and logical treatment of dynamic interaction be-

tween major components (such as payload and booster) that are built by separate

organizations.

The work is addressed to graduate students in engineering and mechanics, as well

as practicing engineers and members of technical management. A sound education in

these fields is assumed although references are listed for background study. Specific

knowledge of missile technology is not required. The goal is to provide an overall

practical picture of the current state of the art rather than solutions, and to describe

current methods rather than proofs. A comprehensive bibliography is given from

which formal proofs can be obtained. Numeric examples are used to illustrate pro-

cedures and typical results, the Atlas/Centaur/Surveyor vehicle being used as a model.

Many unsolved problems still exist and empirical - often intuitive - approaches are

used. Comments and suggestions, based on practical judgement and experience, are

presented where possible.

This volume is divided into sections that have their own lists of symbols and

bibliographies. One section covers basic analytical tools common to all phases of

structural dynamic technology. While it offers nothing that does not already exist in

classical texts, it collects and summarizes those techniques applicable to the problem

at hand and presents them in a consistent, convenient form. Subsequent sections con-

centrate on individual problem areas such as ground wind loads, thrust buildup and

launcher induced loads, flight loads, etc. The central theme is on low-frequency

phenomena that include the first five or ten modes of the vehicle, but a brief outline

is included of methods of dealing with random loads, such as buffet, that become sig-

nificant at much higher frequencies in the spectrum.

An analytical obstacle in the past has been the numeric problems involved in

handling and solving the large number of equations required for adequate description

of the vehicle; however, the advent of electronic computers has made possible the

execution of routines involving vast amounts of data. Computer solutions have been

used in preparing the illustrative examples.
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Applied forces in many cases are still not described by firm criteria since data
from which such criteria could be obtained are still in the formative stage. Examples
include the vortex sheddingand gust spectra of groundwinds, the thrust buildup and
decay characteristics of individual rocket engines, and the wind profiles and gusts of
winds aloft. The first two require test data on the particular vehicle and engine,
while the criteria for winds aloft are obtainedfrom freely rising balloons, which yield
velocity profiles lacking in detail and must be supplementedby gust data obtainedfrom
aircraft experience.

The application of dynamic analysis to the design and testing of space vehicle

systems, especially the payload or spacecraft, is often grossly simplified, in the

conservative direction, causing unnecessary design penalties and test problems. A

typical example is the vibration test requirements for a payload or spacecraft which,

in the lower frequencies, quite often require input excitation equivalent to the maximum

response the article will see. This problem is caused by inadequate dynamic modeling

of the interfaces between stages built by different contractors, and also the uncertainty

as to exactly how the design or test data will be applied. The inaccuracies so intro-

duced are illustrated in Ref. 1.2 where the vibration testing of a simple model is con-

ducted using oversimplified criteria, as sometimes applied to spacecraft, and is then

duplicated by a more sophisticated simulation of what actually is expected to occur.

The many differences in results are often expressed in orders of magnitude rather

than in percentages.

The work presented herein strives for a better understanding and use of dynamic

analysis data by describing the forces to which a space vehicle system is exposed,

techniques to obtain responses, and application of results.

REFERENCES

1.1 W. H. Gayman and J. A. Garba, Dynamic Load Analyses of Space Vehicle Systems-

Launch and Exit Phase, JPL Technical Memorandum 33-286 (To be published).

1.2 W. H. Gayman, A Note on Boundary Condition Simulation in the Dynamic Testing

of Spacecraft Structures, JPL Technical Report No. 32-938, 15 April 1966.

1-4



2/ANALYTICAL TECHNIQUES

2-1





A

C

CN/0_

C
B

C
F

C
L

C V

D

E

F

G

H(cc)

I

J

K

KE

L

M

N

N
x

P

PE

Q

NOMENCLATURE

Area

Flexibility matrix

Normal force coefficient per angle of attack

Coulomb friction coefficient

Equivalent admittance for gimbal friction

Discharge coefficient of leakage bypass orifice

Viscous friction coefficient

Dynamic matrix

Young' s modulus

Force; load vector function (e. g., F(x))

Shear modulus

Complex frequency response

Area moment of inertia; mass moment of

inertia; unity matrix

Polar moment of inertia

Stiffness; autopilot gain; shear effectiveness
factor

Kinetic energy

Length; Laplace function

Mass matrix; moment

Number of samples or experiments

Axial force/unit circumferential length

Pressure; probability

Potential energy

Generalized force

ft 2

ft/lb or rad/ft-lb

1/rad

ft-lb

ft-lb-sec/rad

ft3/sec/4 lb/ft 2

ft-lb-sec/rad

2
see

lb/ft 2

lb; adjustable

lb/ft 2

adjustable

ft4; lb-sec2-ft;

N°D.

ft 4

ft-lb
lb/ft or ra---d-;

adjustable ; N.D.

ft-lb

ft; N.D.

lb-sec 2
_ ; ft-lb

ft

N.D°

lb/ff

lb/ft 2. N.D.

ft-lb

lb
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R

S

S
O

SR

T

U

V

W

zco )

a

b

d

f

h

i

J

k

m

n

P

q

r

s

t

U

NOMENCLATURE, Contd

Gas constant; radius

Shear

Static moment about fixed point

Reference area

Thrust; time; temperature

Assumed mode shape

Volume; velocity

Weight_ work

Complex impedance

Radius of tank

Minor semi-axis of elliptical tank bottom

Longitudinal flexibility matrix; element of

dynamic matrix

Function, e.g., f(x)

Thickness

Station index; complex number

Station index

Statistical index

Mode index; mass

Mode index; time index

Pressure

Dynamic pressure

Radial coordinate for cylindrical tank

Laplace operator

Time

Displacement; function describing a random

process

2-4

ft/° F; ff

lb

ft-lb

ft 2

lb; see; °F

it/it

ft 3 ; ft/sec

lb; ft-lb

lb/ft

ft

ft

rad
ft/lb or in.-1----_ ; sec2

adjustable

ft

N.D.

N.D.

N.D.

2
lb-sec

N.D.;
ft

N.D.

lb/ft 2

Ib/ft2

ft

N.D.

see

adjustable



U
X

V

_v

W
r

X

Y

z

A

Z

A

Y

6

E

e

k

V

,ff

P

NOMENCLATURE, Contd

Longitudinal displacement of a shell element

Volume

Weight; mode participation factor

Radial displacement of a shell element

Coordinate along neutral axis

Coordinate normal to neutral axis

Coordinate normal to neutral axis (slosh mass)

Increment

Summation

Velocity potential; complete mode shapes

Deflation matrix

Power density spectra; power spectra

Angle of attack

Adiabatic constant; mode participation factor;

shear slope of a mode

Engine gimbal angle; control system coordinate

Strain; iteration convergence criterion

Damping coefficient

Rotation displacement in xy plane

Eigenvalue

Vector to release translation of fixed point;

mean

Poisson's ratio

Normal mode coordinate

3. 1416

Density

ft

ft 3

lb; ft/ft

ft

ft

ft

ft

N.D.

N.D.

ft/sec ;ft/ft

N.D.

adjustable

rad

N.D.; ft; rad/ft

rad; adjustable

in./in. ; N.D.

N.D.

rad

2
sec

N.D. adjustable

N°D°

ft/ft

N.D.

lb-sec2-ft 2
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Stress; standard deviation; modal slopes

Vector to release rotation of fixed point;

autopilot filter value; time lag; period

Modal displacements

Rotation about x-axis

Autocorrelation function

Frequency

Generalized mass

Row matrix

Square matrix

Column matrix

Diagonal matrix

Second derivative with respect to time

First derivative with respect to time

d/ds; transpose

lb/in. 2; adjustable;

rad/ft

ftor N.D.; sec;

see; see

ft/ft

rad

adjusta_e

rad/sec

lb-sec 2

,, d2/ds 2

Proportional to

Conjugate of x

x* Conjugate transpose of x

Also,

A, T,R are transformation matrices

and

A,B,D,E,F,V,W,a,b,c,d,e,f,g,v,w,x,_, fl, 7are used as substitutionsfor

expressions and are defined in the textwhen so used.
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2/ANALYTICAL TECHNIQUES

This section provides the basic analysis methods used in the solution of structural

dynamics problems. It is the intention of this section to present these methods with-

out mathematical proofs and indicate, in only a general manner, their application to

problems. The proofs required are well covered in classical literature (Refs 2.1 to

2.4). Specific applications appear in later sections.

2.1 BASIC EQUATIONS OF MOTION

The solution of dynamics problems is approached by developing a set of governing

equations through consideration of the condition of dynamic equilibrium or of energy

relationships of the system under applied external forces. For an undamped system

the general form of these equations, in matrix notation, is

[M] _] + [K] [u} = IF} (2.1)

where [M] is a matrix of masses, [K] is a stiffness matrix, [u} and [U} are the dis-

placement and acceleration vectors, respectively, and IF} is a vector of external

forces.

A very useful characteristic of elastic systems is that they will respond or vibrate

in natural orthogonal modes. The total displacement of a system can then be expressed

as a summation of individual natural mode displacements. This is given by

(u} = _¢] _ (2.2)

where [_] is a matrix of mode shapes and _n is the time-dependent amplitude of mode

n. Substituting Eq. 2.2 into Eqo 2.1 yields

[M] [¢] {_} + [K] [¢] _} = IF} (2.3)

Premultiplying both sides of Eq. 2.3 by [_)] _ gives

[(_]' [M] [c_] [_'} + [_)]' [K] [_)] {_]} = [_)]' {F} (2.4)

The requirements of orthogonality and harmonic motion of the natural modes provide

the relationships

and

[(_]' [M] [(_] = ['_.J (2.5)

[_]' [K] [¢] = ["002.] _T_.] (2.6)
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Substituting Eqs 2.5 and 2.6 into Eq. 2.4, we obtain

+ = [m.] [¢3, {F} = [1_ ]-1 {Q } (2.7)

Eq. 2.7 is a set of n uncoupled equations in terms of _ n, °°n, the generalized mass

_n' and the generalized force Qn. The solutions of these equations identify the time-

dependent values of _n which are then used in Eq. 2.2 to give complete system re-

sponse. Detailed discussions, derivations, and proofs of the equations of motion,

orthogonality of natural modes, and normal mode theory are given in Refs 2.1 to 2.4.

The use of normal mode theory requires determination of these natural modes of

vibration. If harmonic motion is assumed and the applied forces are equal to zero,

then Eq. 2.1 can be written as

-o_ 2 [M] _u} + [K] {u} = 0 (2.8)

or

[u} = 002 [K] -1 [M] [u}

Each of these equations is in a form suitable for solutions to obtain the orthogonal

modes and their natural frequencies. Many numeric techniques have been developed

to obtain these characteristics and several are discussed in Section 2.3.

The above discussion presents the fundamental approach to structural dynamic re-

sponse analyses. The fact that the response of a linear structural system is adequately

described by superposition of its normal modes indicates the importance of normal

modes. The mathematical model used to represent the physical system, methods em-

ployed to obtain vehicle modes, and techniques achieving response solutions will now

be covered in detail.

2.2 MATHEMATICAL MODELS

The stages of a launch vehicle typically consist of cylindrical tanks (containing

propellants), with engines and other equipment attached at the aft end by means of some

support structure and with either another stage or a payload attached at the forward end.

The payload commonly (though not always) is supported by a truss or adapter and cov-

ered by a fairing. In this case the payload and fairing are each cantilevered from an

attaching ring on the launch vehicle and are not physically connected. The formation of

a mathematical model of such a launch vehicle requires care and a knowledge of the

structure because the accuracy of the analysis of the response of a vehicle to a force

depends largely on the correctness of the mathematical model. This section discusses

in detail the various aspects of modeling.

2.2.1 LATERAL MODEL OF A CYLINDRICAL LIQUID PROPELLANT VEHICLE.

In most instances, the lateral dynamic characteristics of a liquid rocket space vehicle
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system can be considered to be adequatelyrepresented by simple one-dimensional
beam theory. It is common practice, and certainly more convenient, to replace the
continuous structure by a lumped parameter idealization. In such an idealization, the
analyst concentrates on those aspects of the system which are felt to be dominant
(major masses, major structural elements, propellants). The discrete model is formed
by concentrating the distributed mass at selected points along the beam. Thesepoints
are ideally the centers of gravity of the distributed masses concentrated at the points.

Elastic properties are expressed in lumped fashion as a set of flexibility coeffi-
cients, Cij, or stiffness influence coefficients, Kij. Thesecoefficients have physical
significance in that Cij canbe considered as the deflection of point i due to a unit load
at j, and Kij as equatedto the force produced at point i dueto a unit deflection at point
j, if all coordinates other than j are temporarily restrained. (Flexibility and stiffness
influence coefficients are covered in more detail in Section 2.2.2. )

The mathematical description of this discrete model is a set of simultaneous and

linear ordinary differential equations. Such equations lend themselves readily to ma-

trix techniques and digital computer computation.

The one-dimensional beam representation is the simplest lateral model and may

not fulfill all necessary requirements for a specific problem. This can necessitate

recognition of nonstructural modes (sloshing), local response characteristics (engines),

or multiple load paths not accounted for in the simple beam analogy. A further

refinement of the model is then necessary.

2.2.1.1 Mass and Moment of Inertia. The distributed mass and moment of inertia

data must be lumped into discrete, point masses, the number of which determine the

degrees of freedom given to the model. The number of mass stations is influenced by

the number of bending modes to be calculated.

It has been found that for one-dimensional beam bending models the required num-

ber of mass stations should be approximately ten times the number corresponding to

the highest elastic bending mode to be calculated. For example, if three elastic bend-

ing modes are to be calculated, then approximately 30 mass stations are required to

represent adequately the bending dynamics of the third mode. This criterion has been

established empirically by calculating mode shape, frequency, and generalized mass

corresponding to the first three elastic bending modes for typical vehicle configurations

in which the number of mass stations used was successively increased from 18 to 40.

As expected, the accuracy increased as additional stations were utilized. However, it
was observed that no further significant increase in accuracy was achieved by using
more than 30 mass stations. Additional information regarding the number of mass

stations to use is given in Ref. 2.39.

For a more complex model (such as one with branched beams) the above general

rule may not be strictly applicable. For a branched system, the general rule may be

applied to the primary beam of the system, and masses lumped on the secondary

branches in about the same distribution. It must be emphasized that as the model
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diverges from the single beam concept, mass lumping rules becomeless applicable
,andmore reliance must be placed uponthe experience of the analyst.

Note that only rigid massesare to be included in this distribution; that is, only
those masseswhich can be considered to act as an integral part of the unrestrained
beam during its vibrations. It cannot be over-emphasized that items suchas pumps,
equipmentpods, etc., which are actually, or simulated to be, mountedelastically to
the main structure, may significantly alter the bendingcharacteristics of the higher
frequency modes.

Whether or not suchmasses are to be treated as integral to the beam or as sepa-
rate elastically attached masses dependsupon: 1} whether or not the frequencies of
the body modes to be computedare less thanor greater than the mount frequencies of
the discrete masses, and 2} whether or not these masses are great enoughto materially
affect the result.

Accurate representation of the distributed mass at discrete points would require
inclusion of the mass momentof inertia of the distributed mass at that point. With
liquid propellant, the effective momentof inertia is not easily determined. Fortu-
nately, these moments of inertia have only a small influence on the modal quantities
of the first two bendingmodes andcan be neglected, as shownin the work of Ref. 2.5.
A better representation could be obtainedby using more mass stations rather than
including moments of inertia.

Becauseof the small effect in the lower bendingmodes and the uncertainty of the
effective moment of inertia, it has beencommonpractice to neglect this term. Also,
this allows for muchmore efficient computation since this eliminates half the coordinates
in the solution of characteristic equations.

2.2.1.2 Sloshing Propellants. Spacevehicle system propellants constitute a large
percentage of the total system weight. Part of this propellant canbe considered as
rigid or distributed mass on the idealized beam while a smaller portion must be allowed
to slosh in the lateral model. This sloshing mass becomesmore important in later
flight times whenit becomesa sizeable proportion of total vehicle weight. If the fre-

quencies of the sloshing modes and the frequency of the first structural mode are widely

separated (ratio of 1:3 or greater} the effect of sloshing upon loads is small and in pre-

liminary work can safely be ignored. However, as the separation between the sloshing

frequencies and the structural frequency becomes small the effect of sloshing upon

loads may be significant.

Several methods have been developed to describe propellant sloshing modes and

frequencies. The general approach, as related to lateral models, is to derive the

hydrodynamic equations in a form suitable for a mechanical analogy. It can be shown

for a cylindrical tank that if: I) the tank walls are rigid, 2) the fluid is incompressible

and irrotational, and 3) only small disturbances are admitted, then pendulum or spring

mass analogies can be devised which will reproduce the characteristics of the fundamental
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mode of sloshing oscillation. Attaching the equivalent spring mass to the lateral model
is easily accomplishedand is therefore preferred over the pendulum. The secondand
higher sloshing modes are not generally considered becausethe magnitude of lateral
force contribution from these modes decreases rapidly with increasing order; further-
more, test experience indicates that a great deal of turbulent mixing occurs and that
damping effects are greater in higher modes.

Techniques for deriving the mechanical analogies for slosh and their limitations
are discussed in the literature (Refs 2.6 and 2.7).

2.2.1.3 Engine Representation. Thrust-vector control of liquid-propellant vehicles
is generally maintained by gimballing the rocket engines. Sincethe entire engine is
gimballed rather than just the thrust vector, this gimballing action will cause inertial
forces as well as thrust forces to act on the missile body. These inertial forces are
appreciable, and their lateral componentswill exceedthose of the thrust forces when
the engine is gimballed sinusoidally at a sufficiently high frequency. The thrust vector
displacement consists of two components: 1) the displacement contained within the
elastic mode (including the flexibility of the engine mounting andactuator structure)
while the servo positioning system is locked, and 2) the additional degree of rotational
freedom addedto represent the motion accompanyingthe action of the positioning servo.

The engine is incorporated into the lateral model by attaching a mass and moment
of inertia at the appropriate location on the one-dimensional beam. Sincethe engine
itself is quite rigid, the only elasticity normally considered is the mounting structure
and actuator system. This structure is generally complex and test dataare often re-
quired for proper simulation. Onesuch test would be a vibration test to determine the
resonant frequency of the engineon its mounts and use the results to obtain the equiva-
lent rotational spring connectingthe engine to the vehicle. This primary frequency is
often low enoughto fall within the range of the lower vehicle bendingfrequencies and as
a result could have a significant effect on bendingstability.

Other meansof obtaining thrust vector control are used andmay require engine
representation in the lateral model. Control concepts suchas movable nozzles or
stream deflection involve little or no additional mass motion and, therefore, only the
fixed enginerepresentation would havea significant effect on the lateral modes.

2.2.1.4 Branch Beams. Frequently, vehicle construction will be such that major

portions are cantilevered within another structure or are connected through different

load paths. Examples are: payloads enveloped by fairings, engine compartments of

upper stages suspended in the interstage adapter wells, or multi-engine vehicles

having independent load paths for each engine - such as a center engine supported on the

tank cone and peripheral engines mounted to the cylindrical structure of the vehicle.

Such conditions are illustrated in Fig. 2.1. Realistic representations of these

arrangements are required not only for true definition of gross vehicle response but
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Fig. 2.1.
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Example of Branched System

also to investigate possible interference between parts. These multiple paths can be

accounted for by appropriate branch beams from the major planar beam. So long as

the analysis is restrained to one dimensional motion, there is no significant added

complexity introduced by the branch beams since the compatibility relationships at the

junction points can be easily satisfied. Note the model in Fig. 2.1. Branch beams can

be attached in two ways: 1) by secondary beam elements, as is done for the payload

fairing and the upper stage engine structure, or 2) by concentrating elasticity in lateral

linear and angular springs, as is done for the external engines of the booster. The only

mathematical consideration in choosing which analogy is more appropriate is that the

beam element will influence more elements of the flexibility (or stiffness) matrix than

will springs, due to the off-diagonal cross-coupling terms.

Generally, these branch beam conditions are encountered with relatively small

masses and do not alter the gross vehicle modes significantly except that an additional

mode is accounted for where the two branches are out of phase but at nearly the same

frequency as the in-phase mode. When these branch beams involve engine displace-

ments, they can be significant for control and stability analyses. For other portions of

the vehicle they should be included to obtain proper load distribution and clearance

envelopes.

2.2.1.5 Local Structure Effects. One of the major difficulties encountered in de-

scribing a vehicle is the effect of local structures such as joints between the interstage

adapters and vehicle stages, trusses on which payload or engines are mounted, or play

in joints such as engine gimbal blocks when the engine is not under thrust. In the case

of an adapter joint, its stiffness may vary under compression or tension. Although
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these joints are usually in compression, it is possible during the period of maximum

aerodynamic loading for the combination of axial and bending loads to cause one side of

the cylinder to be in tension. Depending on the characteristics of the joint, this could

lead to a significant error in frequency and mode shape. The variation in stiffness of

the joint under these conditions is difficult to determine accurately by analysis and

usually test verification is necessary to determine the significance of this effect. Once

these values are obtained, they can be substituted in the model and used for the modal

calculations.

Similar problems can exist for the local structure supporting engines or payloads

since these structures are often redundant, carrying loads to a flexible shell. It is

possible to obtain these influence coefficients analytically, but a final check with test

results is advisable. The free play occasionally found in connections such as an upper

stage engine gimbal (when not under thrust) during first stage flight is random and diffi-

cult to represent. These can produce some low-frequency pendulum or inverted pen-

dulum modes of significance if the mass involved is appreciable. To determine such

effects some crude pendulum-spring mass analogies can be used to establish whether

or not further consideration is necessary.

The above are a few local effects to be examined in construction of the lateral

model. In general, joints that carry significant loads or components of sizeable mass

should be examined in some detail to establish the degree of representation required in

the lateral model.

2.2.1.6 Local Nonlinearities. If major nonlinearities exist, the system and its re-

sponse cannot be described correctly with conventional normal mode analysis techniques.

The effect of a separation joint possessing nonlinear bending stiffness was investigated

through the use of quasi-normal modes and a Rayleigh - Ritz analysis in the work of

Ref. 2.5. In the analysis, the assumed mode shapes are those of the vehicle having an

infinitely stiff separation joint plus one additional mode having a single concentrated

nonlinear rotational spring located at the separation point with the remainder of the

vehicle considered as rigid. The Lagrange equations produced simultaneous equations

in the normal mode coordinates with inertial coupling between the orthogonal elastic

modes and the nonlinear spring mode.

To the equations of motion developed with the above techniques were added the

control sensors, engine representation, and control system representation for a bend-

ing stability analysis. Because of the nonlinearities in both the vehicle structure and

the engine actuators the solution was obtained with an analog computer. The study

presents an approach for solving problems in structures with nonlinearities using models

modified to account for local peculiarities.

2.2.1.7 Temperature. The primary structure of space vehicle systems is subject to

temperature changes of hundreds of degrees varying from cryogenic levels to the ex-

tremes resulting from aerodynamic heating. This increase in temperature causes a
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reduction in the material moduli which in turn leads to a small reduction in frequencies
and altered mode shapes. For typical systems, temperature considerations are un-
important until after the period of maximum aerodynamic pressure and thenonly for
certain portions of the vehicle. Sincethe period of maximum heatingusually occurs
after the period of maximum disturbance and only affects parts of the structure, its
significance is greatly reduced. The heating of various portions of the vehicle can be
predicted within tolerances necessary for modal analyses to establish the resultant
variation in modal parameters.

2.2.1.8 Axial Load. Axial loads causedby longitudinal acceleration of several g's
during flight will cause a slight decrease in bendingmode frequency through two mecha-
nisms: 1) the effect of axial load onbeam vibration, and 2) the reduction in equivalent
skin on stringer-skin structure. The first effect can be represented analytically. The
secondcan be included after calculating or obtaining the equivalent skin from empirical
data. The total effect of axial loads is generally very small andin nearly all cases can
be ignored.

2.2.1.9 Solid Boosters. The solid propellant grain behavesas a visco-elastic solid.
This visco-elastic mass must be represented in somemanner whenthe elastic proper-
ties of the booster are calculated. The simplest and most straightforward methodof
accomplishing this is to consider the grain as an inert mass, rigidly attached to the
case. This method, while it has several shortcomings, is in wide use andhas been
found to yield satisfactory results.

The visco-elastic properties of the grain could beused to provide a more com-
prehensive analysis of the elastic motion. There are several analytical models which
adequatelydescribe the dynamic behavior of the visco-elastic solid (Refs 2.8 and 2.9).
However, it is generally felt that this area of analysis doesnot needto be considered
for loads analysis.

There are several reasons why the visco-elastic properties of the solid propellant

grain are not used in calculations of booster elastic properties. First, they are found

to be relatively unimportant for booster vehicles having a reasonable slenderness ratio.

The grain structure, in response to stress, exhibits a complicated behavior which can

be represented as instantaneous elasticity, delayed elasticity, and viscous flow. For

small stresses occurring for short times, the properties could be approximated by

considering only the range from 500 to 2000 psi at an ambient temperature of 70-80 ° F.

Thus, the contribution to the bending stiffness is quite small compared with that of the

vehicle shell, which is commonly referred to as the solid propellant rocket motor case.

A second consideration is the variable nature of the grain properties themselves.

The nature of the approximations which can be used for the model to represent the grain

would vary depending on the stress level within the grain, frequency of the application

of stress, and temperature. The modulus of elasticity is quite temperature-dependent,

exhibiting a change of roughly a factor of 10 for every 40 ° F of change in grain
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temperature. This property alone makes it cumbersome to describe adequately the
solid propellant grain motion. This difficulty in analysis, alongwith the relative un-
importance of the visco-elastic effects on lower modes, has prompted most analysts
to omit these effects from the model used to describe the lateral elastic motion of the
booster. Bending mode tests run by various motor manufacturers have indicated
that these omissions donot affect the adequacyof the calculations for lower modes.
The aboveshouldnot be taken to imply that the visco-elastic behavior of the solid pro-
pellant grain is not important in all problems. It doesbecomequite important under
certain conditions, particularly in the analysis of the longitudinal modes.

From this it follows that aspects important for the liquid cylindrical vehicle lat-
eral model are also to be considered for solid boosters. Propellant sloshing, of
course, doesnot exist. Becauseof the thicker tank walls of solid boosters, the effects
of adapter stiffness andjoints are more predominant in the lower frequency modes and
shouldbe carefully examined.

2.2.1.10 Weight and Stiffness Lumping. The weight and stiffness data are usually
generated in the form shownin Figs 2.2 and 2.3. From these continuous distributions
the analyst derives a lumped parameter idealization. While many idealizations are
possible the analyst can enhancethe accuracy of the model and simplify later work
which uses the modesby his judicious selection of lumping points.

The first step in the idealization is to select the points at which to "lump." These
will be referred to as panelpoints andthe beam betweenany two panel points as a seg-
ment. The number of panel points to use has been discussed in previous sections. The
consideration now is where to locate the panel points. The analyst bases his choice of
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Fig. 2.2. Typical Weight Distribution
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Fig. 2.3. Typical Stiffness Distribution

panel points on the following considerations (there may be additional considerations in

some instances):

a. Distances between panel points should have some degree of uniformity.

b. Important model points such as the intersection of branch beams and the engine

gimbal points are needed.

c. Points which may be required in later analyses (e. g., centers of pressure of local

"concentrated" aerodynamic loads, gyro locations, gimbal points, etc.).

d. Large concentrated masses should be represented at their center of gravity.

e° Better approximations of the stiffness data can be made by the appropriate choice

of panel points.

The first consideration applies to parts of the model represented as beams. The

total length of the beam can be divided by the number (or approximate number) of panel

points selected for the beam and the resulting length used as a guide for segment length.

It is emphasized that this length is a guide only and not an inflexible quantity. It is best

to avoid any unusually long or short segments compared with the majority of segments.

The reason for this recommendation is that the normal modes are, in a sense, an ap-

proximation of a curve by a series of straight lines. An unusually long segment may

not give a good "approximation," especially if a large amount of bending occurs within

the segment. Also, the combination of long and short segments could cause elements

of the stifflmss matrix to differ by three magnitudes, or more. This causes numeric

problems in matrix inversion.

The second consideration arises from launch vehicle construction and geometry.

Examples of panel point location dictated by vehicle geometry are connections of beams
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with branch beams, engines and sloshing propellants. There may be other items in
this category; inspection of the vehicle geometry will reveal them. The third consider-
ation is one that is easily overlooked but yet merits a great deal of attention from the
analyst. The modal deflections and slopes (andfrequently the modal shears and mo-
ments) are used in subsequentloads and stability analyses. In these analyses, data at
certain points are required as input and/or output. An example of required input data

is modal deflection and slope at gyro locations for use in stability analyses. An exam-

ple of required output data is moment and shear at critical stations from load analyses.

The analyst should ask himself, "To what use will the model and the modes be put and

how can this use be facilitated by the choice of panel points ?"

The weight of each segment or attached component should be distributed to main-

tain the center of gravity of that segment or component as well as overall center of

gravity. Deviation from this representation will decrease the accuracy of the model.

Stiffness data are generally input at the panel points describing the weight dis-

tribution. Additional points are used for accurate representation to indicate changes

in stiffness. These massless points are eliminated in generation of the stiffness matrix

as described in Section 2.2.2.

2.2.1.11 Stiffness and Flexibility Matrices. The primary purpose of the mathe-

matical model is to obtain a representation of the real system which can then be

represented in mathematical terms. The general approach to dynamic problems, as

given by Eqs 2.1 to 2.8, requires the formation of the mass, stiffness, and dynamic

matrices. Formation of Eq. 2.8 requires the mass matrix and the inverse of the stiff-

ness matrix. Since the inverse of the stiffness matrix is the flexibility matrix, one

may question a method of analysis beginning with the stiffness matrix when a flexibility

matrix can be derived directly. The main advantage of the stiffness approach is the

straightforward manner of deriving a coupled matrix which lends itself toward formula-

tion of computer logic capable of assembling a coupled stiffness matrix for very com-

plicated systems. Also, with high-speed, accurate computers available, the matrix

inversion can usually be accomplished efficiently and accurately. For certain specific

problems it may be desirable to develop the flexibility matrix.

In this section the approach (as presented in Ref. 2.10) for developing the stiff-

ness matrix for a lateral model will be given. The flexibility approach and a mass

coupling technique are also presented.

2.2.1.11.1 Free Element Stiffness Matrix. Bending and shear stiffnesses are identi-

fied at points along the structure, including all mass stations. The nature of the stiff-

ness distributions may justify stiffness definition at an intermediate point between mass

concentrations. Thus the model is formed from a series of connected massless beams,

with mass and inertia concentrations located at some or all the junctions of the beams.

While the stiffness of the vehicle may be distributed in a complex fashion, it may be

2-17



represented with acceptable accuracy by a series of straight line segments. This re-

sults in giving each beam segment a trapezoidal stiffness distribution.

In the approach to be outlined, the 4 x 4 stiffness matrix of each element of the

beam is first obtained by inverting the 4 x 4 flexibility matrix of this element. (The

X
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Fig. 2.4.
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Cantilever Beam in Bending

M 2

element stiffness matrices are developed

by this technique because it is easier

mathematically and more accurate. ) The

matrix is then coupled by constructing a

matrix composed of the individual 4 x 4

matrices. In this coupled matrix, the

terms for common points of adjacent ele-

ments are the sum of the terms for the in-

dividual matrices. With this matrix form,

restraints or boundary conditions are im-

posed which will represent the system to

be analyzed. The derivation of the stiff-

ness matrix is now given (see Fig. 2.4).

The bending rigidity, for a value of x, is

(E I)x =,EI 2'EI 1,E1I] (2.9)

The general equation of the elastic curve of a deflected beam is

d 2 M 2 + S2 (L-x)_2 - M

dx 2 E I (EI)x
(2.10)

dv
Integrating Eq. 2. 10 and substituting the boundary conditions _ = y = 0 at x = 0,

then Y2 and 0 2, the deflection and slope at x = L, are:

M2L lnl S L3[ ]Y2 = - _ - -- - ln(1 +8)
eft2 eft3 2

0 2

M 2 L S2 L 2

eft 2

}(2.11)
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where

e = (E I)2

EI
1

fl=EI 1
2

Substituting the series expansion of In (1 + fl) into Eq. 2.11 (valid for -1< _ _- 1),

2[ f12 ] S2L3
M2L 1 fl +-- _ +--

Y2 - e 2 3 4 "'" e

M2L I fl f12 ...] $2L2= i - -- + -- - +%2 e 2 3 e

1 _ + _2 1
-{-7 "Y - ""]

]1 _+_
_ _- ...]

By a similar procedure, the deflection due to shear at x = L is

s2L[ 2 ]y2 =T i_2+Y--_2 3 ''"

e = 0
2

(2.12)

(2.13)

where

g = (KAG)2

(KAG) 1
7 = 1

(KAG) 2

K is the shear effectiveness factor for the structure, i.e., that fraction of the cross-

sectional area which is carrying shear load. This can vary widely and depends on the

type of structure. Putting Eqs 2.12 and 2.13 into matrix form,

{y2}[cells2}
{}2 C21 C22 M2

(2.14)

where Cll, C12, C21, and C22, the elements of the flexibility matrix, are the coeffi-

cients of Eqs 2.12 and 2.13.
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3[L 1
-_. m ,

Cll e 3

_2
4 5 ... +-g 1--_+--g-...

L2[ 1C12 = C21 - e 2 fl+ f12 ]3 4 "'"

L[- 1 _ _ _2

C22 =e L -_+ 5

By inversion of Eq. 2.14,

ts2}B1[cc2122,1c121{y}, EKl{y2},
where

2

B = CllC22 - C12

(2.15)

and [ K ] is the stiffness matrix.

Considering a free element, with the same stiffness as the cantilever beam (as

shown in Fig. 2.5), the equilibrium equations are:

S1 + S2 = 0

+ S L+M 2 = 0M1 1

Also from Fig. 2.5,

Y* = Y2 - Yl - 81L

O*= 8 -O
2 1

Eq. 2.15 now becomes:

Is2
M 2

= 1[ C22

B [-C12 _c22_c12cl2-Lc2 l{y2}yl
01

(2.16)
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Y2

b
v

X

Fig. 2.5. Free Beam in Bending and Shear

Expanding this to include point 2 (by use of the equilibrium equations}:

S 2

S
1

M 2

MI.

1

B

C22

-C22

-C12

L(o_2=0_2)
0_ 0_ (_0_20_) 02

(_0_20_2)(_0__,_)(0_,_0_2+'_02_)J_

(2.17)

where Cll, C12, and C22 remain as identified previously.

Locally significant components can gen-

erally be included in the model by attaching

a mass and/or moment of inertia at the ap-

propriate location by means of springs rep-

resenting the elasticity of the mounting

structure. The stiffness matrices of ele-

ments representing translational and rota-

tional springs of Fig. 2.6 can be written

directly as:

SI = [ KT

Is2 [-KT

-K T

K T

(2.18)

s. 1'.82# K R

KT I Yl _1 ,01

1

Fig. 2.6. Translational and

Rotational Springs
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I KR -K R ]
-K R K R

81

8 2

Coupled Unrestrained Stiffness Matrix.

(2.19)

The unrestrained stiffness matrix

is generated from each beam element, and a 2 × 2 stiffness matrix is generated from

each spring element. Consider a beam element. If an element is attached to a beam,

this element must either be another beam or a spring (Fig. 2.7). When two beam ele-

ments are connected to the same node, coupling with respect to both translation and

rotation occurs.

1l
0 0 0 0

1 2 3 2 3

(a) (b)

Fig. 2.7. Example of Attachments to a Beam Element

The stiffness matrix layout corresponding to Fig. 2.7a is given in Fig. 2.8. An

element in the matrix of Fig. 2.8 gives the magnitude of the shear Si or moment M i at

node i due to a unit deflection yj or slope Oj at node j. Notice that the two beam stiff-
ness matrices overlap at node 2, indicating node 2 feels theeffect of both beams. An

element in this portion of the matrix is obtained by adding the corresponding element

of the two individual stiffness matrices.

Y l 81 Y2 82 Y3 83

S 1

M 1

S 2

M 2

S 3

M 3

S = SHEAR

M = MOMENT

y = DEFLECTION

8 = SLOPE

Fig. 2.8. Stiffness Matrix Layout for Attachment of Two Beams
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The stiffness matrix layout corre-
spondingto Fig. 2.7b is given in Fig. 2.9.

The two stiffness matrices again overlap

at node 2, but this time at one element, s l
Coupling a beam with a spring only affects

one degree of freedom, for a spring can s 2

have but one degree of freedom. (If in-
stead of a translational spring connected M2

at node 2, a rotational spring were con-
S 3

nected, then coupling would be at element

M 2 , 02 • ) M 3

Yl Y2 92 Y3 03

2.2.1.11.3 Reducing the Stiffness Matrix.

The stiffness matrix as developed in the

preceding paragraphs may contain coordi-

nates which can be eliminated by considera-

tion of the restraints put on a system and

the application of boundary conditions to the system.

Fig. 2.9. Stiffness Matrix Layout for

Attachment of Beam with a

Spring

Together, the restraints and

boundary conditions can be considered to be in two classes. These are:

a. Nodes that have zero generalized displacements but may have nonzero generalized

forces.

b. Nodes that have zero generalized forces (no mass or moment of inertia) but may

have nonzero generalized displacements.

The equation [F_ = _K] [u} may be rearranged and partitioned as follows:

!
S

rI
M

• rJ

a

I
I

b' I
I

I

b

c

Ys

e
s

t mmm

Yr

0
. r •

(2.20)

where the Ss and M s are shears and moments, respectively, that have the nonzero dis-

placements and slopes y and e .The S and M are shears and moments, respectively,
s s r r

that have the zero displacements and slopes Yr and 0 r . If

S s

M
s

S r

M
r
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and

I®s}
Ys

0 s

Yr

0 r

then Eq. 2.20 becomes

I c ]
(2.21)

Eq. 2.21 is equivalent to the following two matrix equations.

and

If there are no boundary conditions associated with the load vector {Fs}, the ma-

trix [a] is the final stiffness matrix [K] and {_s} is the mode shapes [_}. If there

are also boundary conditions calling for zero generalized forces then matrix Eq. 2.22

is rearranged to become

FuI
F

t

! e
I

= !

I g
!

(2.24)

where the F u are the nonzero generalized forces that have the generalized displace-

ments _u, and the F t are the zero generalized forces that have the generalized

displacements ¢t'

Eq. 2.24 is equivalent to the two matrix equations,

Ed l,,ul+co l®tl--IF.I
and

Therefore,

]-1I®tl :-E_ Ee'_I'_uI (2.25)
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and

]-1= [e'-]]  " l*ul
/

[gj-l[e ' ]
\

In this case (the case of zero generalized forces) the matrix ( [d] - [e] ) is

the final stiffness matrix [K] and {_u] is a mode shape {_}.
/

2.2.1.11.4 Calculation of Free-Free Modes. The foregoing analysis was made for

a restrained system, one that is fixed at least in one place with respect to both rota-

tion and translation. In the analysis of a free-free system the structure must be re-

strained temporarily at one point. Otherwise, an external force or moment would

cause the whole system to move as a rigid body. The solution to the problem would

then be impossible. It can be shown that the eigenvalue problem reduces to the form:

Ec] [M] [¢] = ,_, [{¢} - {:P'}Yo- {r}0o] (2.27)

In Eq. 2.27 the term - {D}Yo releases the fixed point with respect to translation,

while the term - {r ] 0 o releases the fixed point with respect to rotation. By applying

the principles of linear and angular momentum to the system, Eq. 2.27 can be

expressed as a standard eigenvalue problem

r[c] [M] + ET] + [R]I [¢} = k {¢} (2.28)
i.. .I

where, as explained in the foregoing,

[R] {¢} = x[r}o o

and [ [C] [M] + IT] + [R]] is the final dynamic matrix.

[R ] is now given.

The derivation of IT] and

Referring to Eq. 2.27,

#i = 1.0 if point i has a translation degree of freedom

/_i = 0 ff point i has a pitching degree of freedom

7,

1
= the perpendicular distance from the pitch axis through point zero

(origin) to point i if point i has a translational degree of freedom

(positive if measured forward of point zero)

_'. = 1.0 if point i has a pitch degree of freedom
1
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Applying the conservation of linear momentumyields
I

moY o + (b_} [M] [_} = 0 (2.29)

where m o is the mass at the restrained point. The conservation of angular momentum
yields

I

I 0 + [r} [M] [_} = 0 (2.30)
O O

where Io is the moment of inertia at the restrained point.

Multiplying Eq. 2.27 by {/_}' [M] yields

(b_]'[M] {_} - Yo {D}'[M][#] - 0o(D]'[M](I"] = u_2(D}'[M][C][M][_]

Defining

I

[AJ = [D] [M] [C][M]

and substituting from Eq. 2.29,

' ' 2
-moY ° - yo[#} [M] [U] - Oo {_] [M]{r} = o_ LAJ(_]

The total mass is

I

M T = mo + (bL} [M](D}

and the static mass moment about a pitch axis through point zero is

I

S = [_} [M] (r}
O

Therefore

2

MTY ° + So0 ° = -u) [AJ [_} (2.31)

l

Multiplying Eq. 2.27 by (r } [M] yields

[r}'[M](_} - Yo[r}'[M][#} - 0 ° [r}'[M][r} = u_2(r]'[M][C][M][_}

Defining

I

LBJ : [r} [M] [C] [M]
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and substituting from Eq. 2.30,

-IoOo - Yo[r}'[M][_}
2

- 0 [r}'[M] ['r} = ea [BJ{_}
0

The mass moment of inertia of total structure about a pitch axis through point zero is

/

IT = I + [r} [M][T}O

Therefore

2
IT0o + SoYo = -_ [BJ {_} (2.32)

Solving Eq. 2.32 for 0 o gives

SoY0 + U_2 LB ] [¢ }
0 = - (2.33)

o IT

Substituting this in Eq. 2.31 and defining

W = IT M T - S2
O

gives

2[_ o ]Yo = _ LBJ-_ LAJ [¢}

Substituting this in Eq. 2.33 gives

Oo = ¢0 [AJ---_-LBJ {¢}

By satisfying

[T] [¢} = k[bt}y °

[_] [¢] -- x{r}o°

(2.34)

(2.35)
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it is seen that the T and R matrices are

[s ][T] = [p.} [BJ -_ LAj

FS MT ]
JR] = {r} [W LAJ - _LBJ

(2.36)

2.2.1.11.5 Flexibility Matrix. The inverted stiffness matrix is in reality the flexi-

bility matrix of the system; i.e., it expresses displacements in terms of forces:

= [C][F]

If the model is statically determinate, the development of the flexibility matrix directly

is much simpler than inverting the stiffness matrix. However, if the structure is in-

determinate, the calculation of the elements of the flexibility matrix becomes more

complex, rapidly becoming involved and tedious with increasing numbers of redundan-

cies. The element Cij of the flexibility matrix may be thought of as the deflection at
point i resulting from a unit load at point j. The principle of reciprocal relations will

force symmetry of the matrix, reducing the quantity of coefficients to be evaluated.

The flexibility matrix is formed by developing individual flexibility matrices for

each element in the system. They are considered as cantilevers.

CII C12

C C
21 22

(2.37)

Note that Yi and 0i are relative to the end considered fixed and Si" and _I i are the total

loads applied to the end considered free. Consequently, the total deflection value is

found by transforming Yi and 0i from relative coordinates to absolute coordinates:

Yi

= [T] (2.38)

The total applied loads, Si and M i, can be considered to be functions of the external

loads applied to each mass of the structure, expressed by the transformation

= [R]
Si

M i

(2.39)
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Thus the relationship betweentotal deflection (Yi and 8i) and the external loads applied

to each mass (Si and Mi) is developed by substituting the transformed values,

: [c]

m

[ 0 i

= IT] [C] JR]

S i

Mi

= _T] [C] JR]

Si

M i

IT] [C] [R] = [C- ] = coupled flexibility matrix (2.40)

For a redundant structure, the influence coefficients are not so readily attained

and use must be made of an appropriate static analysis such as virtual work or

CastiglianoVs theorem (Ref. 2.11).

2.2.1.11.6 Transformed Mass Matrix. Another alternative technique for forming

the dynamic matrix is to transform the coordinate system from the absolute to the re-

lative sense. The equations of motion formed previously consider the displacements

of the respective coordinates to be referenced to a fixed point, or neutral position.

The displacements may also be expressed relatively, or referenced to an adjacent

coordinate. Furthermore, the inherent relationship between the displacements in

absolute terms, y, and the displacements in relative terms, _, is readily expressed

by a simple transformation matrix:

[y} = [T] [Y}

The kinetic and potential energies of the system can then be written (in matrix notation)
in terms of relative coordinates as

2KE = _}'[T]'[M] (y}

2PE = {Y}'[C]-I {9}
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where C is the uncoupledflexibility matrix consisting of 2 x 2 matrices for cantilevered
elements. Using Lagrange's equation,

"_d (SK-"'_E/ + 5P"-_E+ 5W - 0 (2.41)
dt 5_i / 5y i 5y i

the equations of motion become

[T]'EM]_TJ_y] + _Cj-I{_] : 0 (2.42)

and the dynamic matrix is

I

[C] [TJ [M][TJ {_] = )_{_] (2.43)

This approach is very similar to the method in the previous section with the trans-

formation of coordinates coupling the mass matrix instead of the flexibility matrix.

Note that the modes {_] are in terms of relative coordinates and must be premultiplied

by the transform matrix IT] to obtain absolute vectors.

2.2.2 TORSIONAL MODEL OF A CYLINDRICAL LIQUID PROPELLANT VEHICLE.

The construction of torsional models follows the same principal ground rules estab-

lished for the lateral model. One difference is in the treatment of propellant for liquid

boosters. In the case of the liquid propellant vehicle vibrating in pure torsion, the pro-

pellant is virtually unexcited. Since the only stress condition is that of shear, the liquid

can participate only to the extent allowed by its viscosity. It is most probable that the

fluids in the vehicle tanks can be considered nonviscous, and therefore contribute

nothing to the moment of inertia. It is evident that under these conditions, the quantity

of propellant has no effect on the torsional vibration characteristics of the vehicle.

Hence these characteristics do not vary with time in flight.

The development of the stiffness and flexibility matrices are the same as given for

the lateral beam with the terms representing bending stiffness (EI) set equal to zero.

For terms representing shear stiffness, GJ replaces KAG.

2.2.3 LONGITUDINAL MODEL OF A CYLINDRICAL LIQUID PROPELLANT VEHICLE.

A longitudinal model is a close-coupled system and is similar to the torsional model.

In pure longitudinal cases, it is possible to represent the real system by a model of

masses connected by linear translational springs. The longitudinal case therefore re-

duces to the lateral case with only translational springs. Looking at the model from

another viewpoint, it is the same as the torsional model except that moment of inertia

is replaced by mass and rotational springs are replaced by translational springs.

The tacit assumption of available spring rates has been made in the above dis-

cussion. The development of spring rates is not as easy and straightforward in the
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longitudinal case. Further, two types of structure are considered, i.e., structures

not containing propellants and the propellant tanks. For the case of structures not con-

taining propellants the spring rate development is analogous to the torsional case with

the substitution of A = J and E = G in the stiffness terms. The development of

spring rates (and the model) for propellant tanks is covered in detail in Ref. 2.12.

The major portion of this development is given in the following discussion.

2.2.3.1 Fluid Equations for Elastic Tank. The analysis of a coupled elastic tank and

propellant mass, even for a highly simplified case, becomes a very complicated eigen-

value problem. Specifically, a solution must be obtained that satisfies the differential

equations for the liquid and the elastic shell, as well as appropriate boundary condi-

tions at the tank walls, the tank bottom, and the liquid free surface. A rigorous analy-

sis of this type is reported in Ref. 2.13. The results yield the natural frequencies for

the tank and propellant.

A second analysis of this type, using highly simplified shell equations, is reported

in Ref. 2.14. In this case, the natural frequencies and a forced vibration solution are

obtained for a cylindrical tank.

A number of other analyses have also been attempted for the coupled liquid and

elastic container. Most of these generate a great deal of mathematical analysis that

is of very little use in defining an analytical model for the tank. It is apparent, then,

that other more simplified techniques must be used. The continuous analysis can then

be used as a check on the dynamic characteristics of the simplified representation.

A major building block in the development of a longitudinal structural model is a

lumped parameter model for each propellant tank. In general, such tank models have

been restricted to a single (predominant) mode of the coupled elastic shell and propel-

lant mass. However, there is reason to believe that a single-mode model is not ade-

quate in all cases. Furthermore, the

development of a multimode model for the

propellant tank is feasible.

As a basis for developing a tank model,

first it is necessary to establish a set of

approximate equations for the shell and the

liquid. For example, consider the tank

shown in Fig. 2.10, filled to a height L with

a nonviscous, incompressible liquid, where

the axial acceleration of the base is _. If

it is assumed that the tank shell is thin, that

any effects of preloading can be neglected,

and that the loading is axially symmetric,

the following equations can be developed

(Ref. 2.14).

X

• 2

I
"x'

Fig. 2.10.

1
L

Cylindrical Tank and Liquid
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h3 d4w J
E r Eh v

+--W +--N = P

2 dx 4 2 r a x12(1-u ) a r=a

du 2
x I-_ v

- N --- w
dx Eh x a r

(2.44)

(2.45)

where

w = the radial displacement of a shell element
r

u = the longitudinal displacement of a shell element
x

N = the axial force/unit circumferential length
x

p = the liquid pressure

E = Young' s modulus

v = Poisson's ratio

a = the shell radius

h = the shell thickness

Eqs 2.44 and 2.45 are essentially the same as those defined for a cylindrical shell

(Ref. 2.15) and a static loading condition. If, in addition, the shell is very thin, the

d4w----Y-r term contributes very little to the gross deformation of the shell. Neglecting this
dx4

term, Eq. 2.44 becomes

a av N
w - Eh x

r Eh r--a

(2.46)

For a nonviscous, incompressible liquid, the fluid velocities are defined in terms

of a velocity potential _ by Laplace's equation, i.e.,

520 +- + + - 0-- 1 5_ 1 52_ 52_

2 r 5r 2 _b2 25r r 5 5x

(2.47)
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where

8_p dr
5r dt

1 5¢ _ rd_._
r 55 dt

5¢ dx

5x dt

When all forces applied to the fluid are axially symmetric, _ is not a function of the

coordinate _) and Eq. 2.47 reduces to

2
8 (_ i 8_ 82(Z)

2 r 8r 2
5r 8x

0 (2.48)

For small fluid velocities, the total fluid pressure is given by

P = p + _(x-L) (2.49)

Eqs 2.45, 2.46, 2.48, and 2.49 are used along with the appropriate boundary con-

ditions of the liquid surface, tank wall, and tank bottom to form the basis for the

analysis given in Ref. 2.14. In this analysis, the effects of shell inertia for a thin

shell are neglected in comparison to the liquid inertia, such that Eqs 2.45 and 2.46

also apply to the dynamic condition.

In order to further simplify the development of a lumped parameter model, the

velocity potential term in Eq. 2.49 is usually neglected; i.e., the following approxima-
tion is made:

P -=" px (L-x) (2.50)

Eqs 2.45, 2.46, and 2.50 are then used to develop the tank model. This neglects

all contributions due to the liquid velocities, as defined by the velocity potential _, and

the liquid-free surface waves.

Eqs 2.45, 2.46, and 2.50 can also be used as a basis for developing a multimode

tank model by dividing the tank into two or more sections. This approach can account

for the higher tank modes as well as variations in tank geometry and skin thickness.
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2.2.3.2 Model for Cylindrical Tanks with Large Ullage Volume. The propellant tank
most commonly encountered is usually an internally pressurized circular cylinder with
a rounded bottom. In manycases, the bottom is approximately elliptical in shapeand
can be either concaveupward or downward.

In this section, a basic single-mode tank model is developedfor the caseof a
large tank ullage volume where the pressure essentially remains constant. This model
is then modified to accountfor the individual effects of stringer reinforcement anda
buckled skin with stringer reinforcement.

2.2.3.2.1 Basic Single Mass Model. The
tank shownin Fig. 2.11 is partially filled
with an incompressible liquid to a depth L
and the tank ullage is pressurized with a gas
to someconstant pressure. The tank is an
elastic circular cylinder with a radius a and
a constant thickness h. The tank bottom, al-
so elastic, has an elliptical shape, where
the major semi-axis is a and the minor semi-
axis is b. The bottom canbe either concave
upward or downward. In addition, it is assum-
ed that all loading on the tank and liquid is
axisymmetric.

Fig. 2.11. Partially Filled Tank For anaxial acceleration of x, the
liquid pressure acting uponthe wetted por-

tion of the tank is given by Eq. 2.50. Hoopstresses are produced in the tank skin due
to this pressure. These stresses result in radial andlongitudinal displacements for
each element of the tank with respect to the bottom. The radial displacement, which
is proportional to the pressure, is shownin Fig. 2.12a.

'x" Nx Nx

l _ II_

n _ I

(a) _)

Fig. 2.12. Tank Strains
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When the tank is assembled with a vehicle, an acceleration of the masses above

the tank results in a longitudinal force acting on the top of the tank. This force pro-

duces an additional axial stress in the tank skin and displaces the tank and the liquid

center of gravity.

A flexibility matrix can be developed relating displacements at the top and center

of gravity of the tank to a force at the top and an effective "liquid inertia force" acting

at the center of gravity of the liquid when the bottom of the tank is fixed as shown in

Fig. 2.12. A stiffness matrix and a corresponding model for the tank can then be

developed. This approach yields the same single-mass tank model as that obtained in
Refs 2.14 and 2.16.

The equivalent single-mass model is

indicated in Fig. 2.13. Nodes 1 and 2 of

the lumped parameter model are used to

signify, respectively, the tank top and the

liquid center of gravity. The displacements

of these points relative to the tank bottom

(i.e., relative to x = 0 in Fig. 2.11) are

denoted by x 1 and x 2. The force acting at

the top of the tank is F 1 and the effective

force acting at the center of gravity is F 2.

The force F 2 represents the total inertia

force of the fluid due to the acceleration _,

i.e.,

r" 1

Xl t K 1

x2 _--2 M

!( 2

_ K3

Fig. 2.13. Equivalent Tank Model

F 2 = VDx = Mx (2.51)

where V, p, x, and M are the tank volume, fluid mass density, fluid acceleration,

the fluid mass, respectively. The liquid volume V for the cylindrical tank with an

elliptical bottom is given by

and

where

2
V = ?ra LD

D = 1
2 b

3 L

(2.52)

(2.53)

Therefore

F 2 LDpx

F
2

Px - 2
?ra LD

(2.54)

(2.55)
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It shouldbe noted that whenthe bulkheadin Fig. 2.11 is inverted (the dashedline), b
takes on a negative value but the aboveexpressions remain valid.

The relationship betweendisplacements and the liquid inertia force are developed
first. The longitudinal andcircumferential stresses and strains in the thin tank skin
due to the fluid pressure, p, are (to a close approximation) given by

= 0
X

pa
a -

y h

upa

x Eh

pa

y Eh

(2.56)

where _x and Cry are the tank longitudinal and hoop stresses, Cx and _y are the longi-
tudinal and hoop strains, I) is Poisson's ratio, and E is Young's modulus. Positive

stresses are defined to be compressive in the longitudinal direction and tensile in the

hoop direction; positive displacements of the tank top and liquid center of gravity are

downward.

The longitudinal displacement of the tank at the liquid surface due to the fluid pres-

sure, p, is

L

x12 = f (xdX (2.57)
0

where Cx is given by Eq. 2.56. Thus, substituting Eq. 2.50 into 2.56,

"" L2_Lvapx (L- x)dx va
x12 = / Eh = 2Eh

O

Substituting in the expression for px from Eq. 2.55 yields

(2.58)

vLF
2

x12 = 2?rDEha

The tank wall radial displacement w r due to p (Eq. 2.50) is given by

2 2
pa pa (L - x)

w = aE =--=
r y Eh Eh

(2.59)

(2.60)
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The displacement of the center of gravity due to wr and the tank bottom stiffness is
then approximated by

L 2 F1 rL/2 F2 3 px a 2

x_2_ = _ J] 2_aw dx + _ = + _ (2.61)r K 4 DEh K
rra D o B B

where K B is the tank lower bulkhead stiffness (the appropriate values for K B are de-
.o

fined parametrically later). Substituting Eq. 2.55 for px into Eq. 2.51 yields

3LF F
2 2

- + -- (2.62)
x22 4 _"a D2 E h KB

Considering an axial load acting on the tank, as shown in Fig. 2.12 b, F 1 is an axial

load in the tank skin resulting in a load per unit circumferential length of the tank skin

given by

F
1

N - (2.63)
x 2_a

The stresses and strains in the tank due to F 1 are

F1/O" z -_

x 2yah

(7 = 0
Y

¢ = _ FI i

x 2?raEh

_F 1
E -

y 2_raEh

while the displacements of the tank top and center of gravity due to F 1 are

L LF

/ 1Xll = _ dx =x
O

L vLF
L f 2 1 1

x21 =_- J 2_'a E dx • -- =y V 2_'aDEh
O

(2.64)

(2.65)

(2.66)
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The axial stiffness of the tank skin is

2?raEh
K - (2.67)

L

Then the relationships between forces and displacements from Eqs 2.59, 2.62, 2.65,

and 2.66 are

X
ii 1

d _ _

ii F 1 K

X
12 v

d12 .... F DK
2

X
21 v

d21 .... F DK
1

X
22 3 1

d22 F2 2 D 2 K KB

(2.68)

or, in matrix notation,

[dlld12
x 2 d21 d22

= [d] IFI (2.69)

The [d] matrix in Eq. 2.68 can be inverted to obtain a stiffness matrix for the tank.

The springs of the equivalent model for the tank can be obtained from this matrix.

FromEq. 2.68, F 1 and F 2 are

2 D 2 K 2
3K +

K
B 2t;DK

= x 1 - D2 x 2 (2.70)F1 2 D 2 K 2 K
3- 2V 2 +_ 3- 2a) 2 +

K B K B

-2u DK 2D2K

= 2 D 2 K Xl + D 2 K x2 (2.71)F2 3- 2_ + 2 _ 3- 2v 2+ 2

K B K B
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or, in matrix notation,

{::}IKll

K21

K
12

K
22

Therefore,

K
ii

3K +2D 2 KA

K B

2 2 K
3-2v +2D --

K B

K = K
12 21

-2yDK

3- 2v 2 2D 2 K

K22

2 D2K

2 2 K
3-2t_ +2D

K
B

(2.72)

(2.73)

The springs of the equivalent tank model shown in Fig. 2.13, determined from the

coefficients of the stiffness matrix (as indicated in Ref. 2.17), are

K -- -K
1 12

K2 = K22 + K12

K3 = KII + KI2

(2.74)

Thus,

K
1

K 2

2vDK

3 - 2y 2 + 2D 2--_-K

K B

2D(D - y)K

3 - 2_ 2 D 2 K+2
K

B

(2.75)
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K 3

3 - 2VD + 2D

3_2v2 2 K+2D m

K B

K (2.75)

(Contd)

2.2.3.2.2 Spring Rate for Elliptical Tank Bottom. In Ref. 2.18, spring constants

are presented for ellipsoidal tank bottoms, as determined from an analysis using

linear membrane theory. Graphs from which the spring constants can be obtained

are reproduced here.

Consider, once again, the tank shown in Fig. 2.11. From Ref. 2.18 the tank

bottom spring rate is given by:

K B = E h B

2
2rr(3e- 2f)

[ 2 19 H(f, _)- 2eG(f, v)+e F(f, v)

(2.76)

where

E = Young's modulus

h B = bulkhead thickness

a = radius of cylinder

b = bulkhead semiminor axis

L = height of liquid in cylindrical portion of tank

e = L/a

f = b/a

u = Poisson's ratio

The functions H (f, v), G (f, v), and F (f, v) are given in Figs 2.14, 2.15, and 2.16.

These functions are derived in Ref. 2.18.

When the tank bottom is inverted as indicated by the dashed lines in Fig. 2.11 the

expression for the spring rate becomes

2

K' = Eh 27r(3e+ 2f) (2.77)

B B 9 H(f, y) + 2eG(f, y) +e F(f, v)
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2.2.3.2.3 Tankwith Stringers and Buckled

Skin. A model cylinder with skin and

stringer construction is shown in Fig. 2.17.

If the stringers have negligible radial stiff-

ness and the skin is unbuckled and can dis-

1.0

0.g

v =

0

place longitudinally and radially, the tank

models described in the preceding sub-

sections can be combined in parallel with

a spring K s, where

K _ (AE) stringers
s L

A0.8 I/4 •

" o., .J':

0.6 --

is the total axial stiffness of the stringers

in the cross-section.

When the skin is partially buckled in the

axial direction, the axial stiffness of the

tank skin is

I ,2 9,

0.5
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f

Variation of H (f,u) with

Depth-to-Radius Ratio

for Various Values of

Poisson's Ratio

Fig. 2.16.
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and the flexibility coefficient dll in Eq. 2.68 becomes

1

dll = +K
KBu s

(2.80)

The center-of-gravity displacement due to the axial load FBu carried by the buckled

skin is then (neglecting the bulkhead and liquid compressibility effects)

UFBu

x21 K
(2.81)

where K is the axial spring constant for the skin when unbuckled, Eq. 2.67.

portion of the load carried by the buckled skin is given by

KBu F 1

FBu = +K
KBu s

That

(2.82)

where F 1 is the total axial load carried by the skin and stringers. Then

and

vK F

Bu 1 (2.83)

x21 = K(KBu + Ks}

x21 v KBu

d21 = Z = K(KBu+Ks)
(2.84)

The center-of-gravity displacement due to acceleration of the liquid in the tank is still

(neglecting bulkhead and compressibility effects)

3
d22 = -_- (2.85)
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Consequently, the flexibility matrix becomes

[dJ

1 Y KBu

+K K +
KBu s (KBu Ks)

vK
Bu

K (KBu + Ks)

3

2K

(2.86)

After inverting the [dJ matrix and solving for the spring rates, the values for the

model in Fig. 2.18 are

K_*

K**
2

K**
3

_

2VKBu

2
2 2 KBu

K (KBu + Ks)

2K- 2v KBu

2 2

2 _ KBu
3-

K (KBu + Ks)

(3 - 2v) K + 3K
Bu s

2 t_2 K 2
Bu

3-

K (KBu + Ks)

K?,

(2.87) ME

K2**,

-7

Fig. 2.18.

K3$$

** SEE TEXT

///.

Skin- Stringer

Model with

Buckled Skin

2.2.3.3 Model for Cylindrical Tank with Small Ullage Volume. When the tank ullage

volume is small, any longitudinal oscillation of the structure can produce a correspond-

ing oscillation of significant magnitude in the ullage pressure. This can be the result

of a longitudinal force transient such as thrust buildup or launcher release.

The change in ullage pressure is due to a change in ullage volume and ullage gas

weight (if a pressure regulator is involved). In this section, a single-mode tank model

is developed for such a case. The effect of gas compressibility is included in the model

spring rates while the pressure change associated with a change in gas weight is used

as the forcing function for the tank.

In order to formulate an analytical representation for the perturbation changes in

the tank ullage, the following assumptions are made.
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a. The gas, or mixture of gases, in the tank ullage behaves in a quasi-static manner.

b. The gas process is adiabatic.

c. The perturbation variables are small.

The equation of state for a gas (or a mixture of gases) at low pressure is given to a

close approximation by the equation below:

PV = WR T (2.88)
m

where P is pressure, V is volume, W is weight, T is temperature, and R m is the gas
constant for the mixture. In a strict sense, Eq. 2.88 applies to a condition of thermo-

dynamic equilibrium. It also applies (approximately) for a perturbation condition when

the changes in these variables are slow enough, and small enough, such that the gas is

at all times close to thermodynamic equilibrium. The gas is then said to behave in a

quasi- static manner.

For an additional relationship between the variables in the tank ullage, it is con-

venient to assume that the process is adiabatic. In such case,

:Ym- 1/

T _ _ 7m/ (2.89)

where 7m is the adiabatic exponent for the gas. In general, a polytropic exponent

would be used for Eq. 2.89. However, in the frequency range of interest it can be as-

sumed that there is little chance for heat transfer to the gas so that the polytropic

exponent is close to the adiabatic value.

Eqs 2.88 and 2.89 can now be combined to form the following equation:

P = const. V m (2.90)

A given tank may contain a mixture of gases. The total weight is then given by

= + W 2 + .... (2.91)W W 1
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and the effective gas constant, R m, is defined by

W R +W R2+.1 1 2 ""
R = (2.92)m W

where R 1, R 2, etc., are the gas constants for the individual gases.

For small perturbations during flight, the change in tank pressure is defined by

the first terms of a Taylor's series, where the partial derivatives are evaluated at

the steady-state (or equilibrium) condition, i.e.,

AP- 5P] 5P]aw + 7 (2.9a)
S.S. S.S.

where AW is the change in ullage gas weight and AV the change in ullage volume.

For the steady-state condition,

<WR )Ym: const. _m (2.94)

V

The partial derivatives in Eq. 2.93 can be evaluated by using Eq. 2.94 to define the

proportionality constant, so that

W

A p = Pa Kw--s - KvV (2.95)

where s is the Laplace operator, and

7 9R
m gK =

W
WR

m

m
K -

v

where Rg is the gas constant for the pressurizing gas and where w = AW, v _- AV,

the bars denote steady-state quantities.

(2.96)

and
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Fig. 2.19 shows a thin skin, cylindrical tank shell with an elliptical bulkhead for

the bottom. The top of the tank is assumed to be rigid and the tank is nearly filled

with liquid. Forces F 1 acting on the top of the tank, an effective inertia force F 2
/

acting at the liquid center of gravity, and an ullage pressure change Pa acting in the
/

ullage space are also shown. The pressure change Pa represents only that portion of

the total pressure change in the ullage that can be attributed to a change in gas weight.

The compressibility effect, due to a change in ullage volume, is included in the model
/

spring rates. Therefore, from Eq. 2.95, Pa is defined by

SPa' : Kw _ (2.97)

or

/

Pa Pa + Kv v (2.98)

SMALL

ULLAGE

VOLUME

2

LIQUID CG

FLEXIBLE BULKHEAD

WITH STIFFNESS KB_

Fig. 2.19. Tank with Small Ullage Volume
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If the displacements of the tank top and liquid center of gravity are x 1 and x2, and
the changein ullage volume is v , then the relationship between forces, pressure, dis-a
placement, and change in ullage volume is given by the matrix equations

X
1

X
2

V
a

m

dll d12 dlv

21 d22 d2v

d-v i dv 2 dw

F 1

F 2

I

Pa

= Ed3 IFI (2.99)

or

x
1

x 2

V

a

1

where C =E

d
11

d21

dvl

m

d2 I I --
vl I d2v dvl I C dr1

dll C +d I d21 C +d I
vv I vv I C +dvv

..... .J .J _

dlv %2 I d 2 II 2v I C dv2

d12 C +d I d22 C +d I C +dVV I W W

t
I

C d lv I C d2v I C d wI
C+d [C+d I C+d

w I w j w

F
1

F 2

I

Pa

is the compliance of the gas in the ullage volume, and

d12

d
22

d
v2

d
lv

d
2v

d
W

= [d]

(2. 100)
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DK
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I

I 2y a2 (1 _2)
I

DK

I
2

-I---

K

[ DK
\

I
I

I
J 2

?/a

[ +--
k

I
I 2 rr2 a4( 5- 2v)

] K

[ 2 4

I +K--2-a
I KB

(2. 101)

The compliance C could be defined to include flexibility of the tank upper bulkhead.

As the ullage volume increases, C becomes infinite and the model reduces to the basic

tank model.

The [27 matrix can be inverted to obtain a stiffness matrix:

[_]-1 = [K]

-- u

Kll K12 Klv

K21 K22 K2v

K 1 K 2 K VV

(2,102)

A tank model where the ullage gas compressibility is included in the spring rates

and where the applied forces are due to Pa is shown in Fig. 2.20.
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The tank spring rates, defined in terms

of the stiffness matrix, are

1 = -K12 _

I¢2 = K22 +

F31 K21

Fig. 2.20. Tank Model for Small I_ + -
Ullage Volume 3 = Kll K12

Klv K2v

K
VV

K2v Kv i + K22v

K
VV

2
÷

Klv K2v Klv

K
W

(2. 103)

2.2.3.4 Multimode Models. In most analyses of current vehicles, the structural

representations used have been based upon the tank model shown in Fig. 2.13. This

model provides an approximation for the first (predominant) mode of the coupled pro-

pellant and elastic tank. However, it is known that higher modes exist in the tank and

a limited number of these may have a significant energy content, compared to the first,

and they do provide a resonant condition at discrete higher frequencies. This is shown
in Ref. 2.14.

This implies one of two conditions. Either the higher tank modes are unimportant

and their omission does not affect the overall structural modes, or certain structural

modes are inaccurate because of this omission. The actual condition, of course, de-

pends upon many factors such as the type of structure, the propellant level, etc.

There has been very little opportunity to determine the accuracy of predicted ve-

hicle modes using current models. It is believed that, in most cases, the first mode

predictions are adequate and that any errors are incurred in the higher modes. This

should be particularly true when the propellant mass is large and represents a major
part of the vehicle mass.

It is desirable to further explore the importance or contribution of the higher tank

modes by developing a multimode tank model and using it in the structural representa-

tion for the vehicle. The initial results obtained by using this approach are discussed
in this subsection.

A discrete model for higher tank modes can be developed in a manner similar to

that used for the single-mass representation. Consider again the cylindrical tank with

an elliptical bulkhead as shown in Fig. 2.21. Assume, for the present, that the bulk-

head is inelastic (rigid) and that the liquid is incompressible.
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Two-Element Tank

Let the tank and propellant be divided

into two elements. A point on the tank at

the liquid surface, the center of gravity of

the upper element, and the center of gravity

of the lower element are denoted by Sta-

tions 4, 3, and 2, respectively. The pro-

pellant heights are L 1 and L 2 while the tank

wall thicknesses are h 1 and h 2.

The procedure used to develop a two-

mass model is exactly the same as that used

for the single-mass model. This procedure

can be expanded to any number of elements.

The following quantity is similar to

that from Eq. 2.53.

2 b

DI= 1-_ _--
1

(2. 104)

while the axial rates at the two tank elements are given by

2_r aEh 1

K1 L 1

2 _r a Eh 2

K 2 = L2

(2. 105)

Next, consider the individual effects of an axial acceleration x on the two fluid

elements. The resulting radial deflections of the tank are shown in Fig. 2.22a and b

along with the corresponding inertial forces F 2 and F 3 acting at the two fluid center-of-

gravity locations. Finally, an external force F 4 is considered at the top of the tank.

This produces the radial tank deflection shown in Fig. 2.22c. The individual axial and

radial deflections of the shell can be evaluated using the shell equations. This leads to

the following influence coefficients.
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Fig. 2.22. Assumed Forces on Two-Element Tank

d32

d22

d42

d23

d33

d43

d24

x32 2

F 2 D 1 K 1

x
22 3

2
F2 2 D 1 K 1

x
42 v

F 2 D 1 K 1

x23 2

F 3 D 1 K 1

x33 4 3

F 3 K 1 2 K 2

x43 2 v V

F 3 K 1 K 2

x24 V

F 4 D 1 K 1

(2.106)
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x34 2v Y

d34 - F4 - K1+K--2

x44 K 1 + K 2

d44 = =
F 4 K 1 K 2

(2.106

Contd)

The influence matrix is then given by

[d]

d22

= d32

d42

d23 d24

d33 d34

d d
43 44

g

- 3 i 2 I v

4D 12K1 Ii DI KI Ii DI KI

I
[

2 I __4 + 3___ I 2v v

iD1 K1 I K1 2 K 2 tl K1 K2

I I K 1 + K 2
v I 2.__p+ V I

1 K1 I K1 K2 I K1 K2 _

(2.107)

L

where for L 1 = L 2 = _- , Eqs 2. 104 and 2. 105 become

4?raEh 1

K1 = L

4rtaEh 2

K2 = L

4b

D1 = _-3-Z

(2.108)

For a particular tank, the coefficients of the [d] matrix can be evaluated. The [d]

matrix can then be inverted to obtain a stiffness matrix. Fig. 2.23 shows a model which

would correspond to the stiffness matrix given by
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Fig. 2.23. Two-Mass Tank Model

[d]
-1

m

K22 K23 K24

K32 K33 K34

K42 K43 K44_

(2. 109)

where the model spring stiffnesses are related to the stiffness matrix by

I_23 = -K23

I_24 = -K24

I_34 = -K34

(2. 110)

I_12 = K22 +K23 +K24

I_13 = K32 +K33 +K34

I_14 = K42 +K43 +K44

This model can be generalized for many degrees of freedom by writing general expres-

sions for the influence coefficients of a multimass model. Also, the effects of a flexible

tank bottom and liquid compressibility can be included in the process.
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2.2.4 ADDING COMPONENTS USING MODE SYNTHESIS. Frequently itis desirable

to make a parameter study to determine the effecton vehicle response resulting from

changes in the characteristics of a specific area or component, e.g., a sloshing mass

or engine system. Rather than make several analyses of the system, changing but a

fraction of the parameters each time, the vibration characteristics of the system ex-

cluding the specific varying parameter may be calculated, and then modified by coupling

the parameter back in through the mode synthesis technique (discussed in Refs 2.19 and

2.20).

The mode synthesis approach may result in a loss of accuracy. The analysis that

considers the most information about the system will be the most accurate. The use

of many modes in the mode synthesis technique will give theoretically more accurate

results than using a minimum number of modes. This aspect is one which must be

handled by discretion born of experience. As an example, in calculating the bending

modes with sloshing propellants, three alternatives are available (all motions are

relative to the undeformed axis of the beam):

a. Include the sloshing mass as an attached spring-mass to the beam in the modes

calculation.

b. Assume the sloshing mass is included in the "rigid" propellants for modes cal-

culation. The sloshing is then included through mode synthesis by adding the

single spring-mass mode and subtracting the sloshing mass effects from the bend-

ing modes. This requires both inertial and elastic coupling in the synthesis.

c. Assume the sloshing mass can be eliminated in the "rigid'fpropellants for modes

calculations. The sloshing is then included through mode synthesis by adding the

simple spring mass mode. This requires only elastic coupling in the synthesis.

These alternatives are listed in order of accuracy of end results following the gen-

eral rule stated previously. There are many examples where there would be little if

any degradation of accuracy. As an example, consider a vehicle with first bending

frequency of 5 cps and first slosh frequency of 1 cps. The sloshing is then essentially

uncoupled from the elastic modes. If the slosh frequency were 4 cps, then consider-

able coupling is possible.

Although sloshing was used as an example, the same is true for any representa-

tion of this type, i.e., engines, payloads, sloshing propellants, any large component,

or a specific parameter under investigation.

2.2.5 LATERAL-TORSIONAL-LONGITUDINAL COUPLING. The typical axisym-

metric-cylindrical space vehicle is analyzed as if lateral, torsional, and longitudinal

motion are not coupled. Actually, these vehicles are not completely symmetric and a

possible coupling mechanism, however slight, can always be found. The importance

of this coupling can vary greatly from vehicle to vehicle and even if it is known to exist

from flight or experimental data, the coupling mechanism is difficult to identify. These
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coupling problems often occur when the modal frequencies of two modes, say, one

lateral and one torsional, are very close together. Then a very small coupling mech-

anism, such as center-of-gravity offset from the supposed line of symmetry, can

result in coupled motion.

A comparison of the frequencies of the modes in the three directions should be

made to determine the existence of modes of nearly equal frequency. If such a condi-

tion exists, it is necessary to examine the condition under which this may cause a

significant problem. As an example, if excitation of a bending mode by an atmospheric

disturbance occurred, could this cause excitation of a critical torsional mode at this

same frequency? In most instances of coupling of this type, a periodic forcing function

is necessary to transmit the energy from one direction to another.

Cylindrical vehicles with unsymmetric upper stages or payloads of large mass can

cause coupling in the various directions in the low-frequency modes. The model and

analysis then become complicated and approach that of the clustered boosters. Re-

presentation of this configuration requires detailed description in the unsymmetric

stages and an analysis as described later for clustered boosters. Preliminary work

would indicate the degree of sophistication to be used for adequate representation for

loads analysis.

2.2.6 CLUSTERED BOOSTERS. One method for obtaining the higher thrust required

for large payloads is to attach rocket engines or motors to a central core; for liquid

boosters a peripheral ring of propellant tanks is attached to a center tank and the

engines are supported on truss members connecting the tanks; for solid boosters, the

motors are attached to a central solid or liquid booster. These clustered tank designs

destroy axial symmetry and quite often planes of symmetry. Such configurations re-

sult in a more complicated lateral model where a number of cylindrical tanks are

coupled by their elastic connections and must be allowed freedom in several directions

for adequate description of vehicle modes (see Fig. 2.24).

For preliminary design it is sufficient to choose approximate planes of symmetry

and analyze the vehicle for bending modes in pitch and yaw planes using branch beams

connected to the central core by translational and rotational springs. Simplified tor-

sional and longitudinal models will also suffice at this stage. These simple models

can be used to identify possible problem areas (such as relative modal frequencies)

and provide design criteria for the connections between tanks.

A complete analysis (or carefully conducted test) should be undertaken to describe

all the primary modes of the clustered vehicle. This analysis would provide transla-

tion and rotation in two mutually perpendicular planes; torsion and longitudinal motion.

The model of the tanks for translation and rotation in each of the two planes would be

very similar to that discussed for the cylindrical booster. Provision must be made to

account for the motion of the outer tanks in these two directions due to the torsional

displacement of the center tank and the elastic connections. It is also possible that
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longitudinal motion will couple with lateral

and torsional displacement. As an example,

consider a cluster arrangement where the

connection at the bottom provides moment,

shear, and axial restraints while the con-

nection at the top provides only shear res-

traint. Then it is possible to find a mode

where the external tanks are bending, caus-

ing moments and deflections at the connection

to the center core which will result in longi-

tudinal motion of the core. The significance

of these types of modes can be ascertained

only from the analysis (or test) and can vary

greatly from vehicle to vehicle.

The torsional properties in the model

can be represented by the torsional stiff-

ness and roll inertia of each tank. The

tanks must then be connected by the elastic

properties of the truss. The complete model

for the clustered booster then consists of the

axial load, shear, bending moment, and

torque. The top connection transmits only
shear. Because of the nature of the con-

nections, it can be seen that yaw bending

and longitudinal coupling can occur. Pitch

bending and torsion represent another pos-

sible coupling mechanism. Storey in Ref.

2.21 develops the coupled flexibility mat-

rices for these two conditions. This method

encountered difficulty in that the number of

stations required for adequate representation

of the system with the required transfor-

mations exceeded computer capacity.

The final Titan IIIC analysis presented

in Ref. 2.22 utilizes the mode synthesis ap-

proach. The longitudinal, torsional, and

pitch and yaw bending modes are determined

for each tank and are then coupled by the

elasticity of the connecting elements. The

influence coefficients for these trusses were

obtained experimentally. A comparison of

analytical and i/5-scale experimental re-

sults is given in Ref. 2.23.
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The Saturn I vehicle consists of a center LO 2 tank with eight peripheral tanks for

alternating LO 2 and RP-1. These tanks are connected at top and bottom by trusses

providing axial, shear, and torsion restraint in both planes at the bottom plus moment

restraint in the tangential planes. The top connection provides similar restraint ex-

cept for the fuel tanks which do not transmit axial load. The trusses are not symmetric

with respect to planes of symmetry of the tanks, but this effect is small so that planes

of symmetry as defined by the tanks do not introduce large errors.

Milner (Ref. 2.24} establishes theoretically the uncoupling of pitch, yaw, and

torsion modes for a symmetrical clustered booster and investigates the effect of minor

asymmetry. Results of this study indicate that the effect of such coupling on natural

frequencies is minor; mode shapes are not presented.

Lianis (Ref. 2.25) develops a matrix solution of the dynamics problem of a four-

tank booster without center core. The flexibility matrix of the whole unit, with appro-

priate beam end fixity, is derived. This flexibility matrix together with a suitable

mass matrix is used to derive equations of free vibration in matrix form. The tanks

are assumed to be similar, but the solution can be modified accordingly for the case

of nonsimilar tanks and for other tank configurations. The formulation is general so

as to furnish any complex mode of vibration. Simple modes, however, can be obtained

as particular cases of the general problem.

2.2.7 CORRECTING MODEL BASED ON TEST RESULTS. The final evaluation of

analytical techniques is a comparison with experimental data. Perfect comparisons

are indeed exceptions, since both the analytical model and experimental model are ap-

proximations to some extent. The analytical approximations have been discussed. The

major experimental approximations are centered around suspension system effects and

vehicle modifications required to accommodate the suspension system. No general rule

can be made to obtain better agreement between test and analysis. Careful examination

of the data and the structure will probably indicate several areas where the representa-

tion is inadequate or does not define the test specimen. Possible causes of differences

are:

a. Effects of suspension system on test environment.

b. Stiffness of joints or trusses.

c. Assumed planes of symmetry are incorrect.

d. Effect of large components such as engines.

e. Experimental modes may be impure, i.e., not orthogonal.

f. Effects of moment of inertia.

g. Nonlinearity.
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The work of Ref. 2.26 presents a method for obtaining the flexibility matrix from

experimental mode data. The procedure orthogonalizes the experimental modes, using

an analytical mass distribution, and then derives the flexibility matrix of the structure.

This method can be useful if complete and accurate experimental data are obtained for

a system difficult to model. It can also be used to locate possible discrepancies be-

tween analytical and experimental results.

2.2.8 DAMPING EFFECTS. Dissipative (damping) forces exist in the vibrating

structure as'a result of material strain hysteresis and coulomb friction in structural

joints. The nature of these damping effects is obscure and does not lend itself to

analysis other than an approximate empirical treatment, by which the gross effect of

these scattered dissipative mechanisms is represented as equivalent viscous damping,

added to each mode as appropriate. The damping is thus assumed to produce no cou-

pling between modes. While this mechanization is not entirely realistic, it is justified

by two observations: First, the actual damping is very low and is found by test to pro-

duce little coupling. Thus, nearly pure normal modes of a system may be excited and

the system observed to decay almost harmonically. The indication given is that ve-

locity-dependent coupling is very small. Secondly, if an attempt is made to show a

velocity-dependent coupling, the coefficient would have to be determined experimentally.

Since the direct damping coefficient is itself difficult enough to measure it is clear that

the accuracy of a study cannot be increased by the introduction of still more suspect

data. The structural damping force is a function of the deflection of the generalized

coordinate of the mode but in phase with the velocity of the generalized coordinate of

that mode. To treat this damping as viscous damping requires that the mode oscillate

in a quasi-harmonic manner. This damping force may then be expressed as a damping

factor, _, where 2_n_ n _n is the internal damping force of the nth mode per unit

generalized mass.

Fluid propellant damping forces result from the dissipative nature of a viscous

fluid undergoing shear. Although there are some approximate methods for calculating

damping forces, these forces are most commonly arrived at by testing the actual tank,

in the case of small missiles, and a model tank in the case of large missiles. These

forces may be represented as a propellant damping factor, _n' in the expression

2_nU_n _n which is the damping force per unit sloshing mass and _n is the lateral ve-

locity of the nth sloshing mass.

Aerodynamic damping forces result from lateral velocity of the vehicle which

causes, for any particular point on the vehicle, a small angle of attack. The aero-

dynamic force associated with this angle of attack opposes the lateral motion, thereby

dissipating energy. The.aerodynamic damping forces are easily calculated and are,

of course, a function of _n" Aerodynamic damping on launch vehicles is often not im-

portant for dynamic load analyses; however, for some configurations, e.g., hammer-

head payloads and winged payloads, it may need to be considered.
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2.3 DERIVATION OF NORMAL MODES

2.3.1 SOLUTIONS FOR CHARACTERISTICS. Formulation of the equations of motion

of dynamic systems results in a linear differential equation for the continuous exact

solution or a series of differential equations for the approximate solutions. For lateral

vibration usually only the lower modes are of any significance and therefore the approxi-

mate solutions are of practical importance. Two methods are used to describe the sys-

tem in these approximate solutions: 1) the system is divided into a finite number of

segments connected by massless stiffness, and 2) the system is described in terms of

assumed functions. Solving for the characteristics of the resulting equations can be

categorized into three groups. These are: 1) energy methods, 2) solving the differ-

ential equations, and 3) solving the integral equation. The equations may be written

in general matrix form as follows,

2
- 0_ EM7 [u} + [K7 [u] = 0 (diferential equation) (2.111)

2 -1 0j2_u_ = a_ EK7 [M_ _u] = _D7 [u_ (integral equation) (2.112)

The categorizations of the above matrix equations as differential and integral

equations, respectively, follow the practice of Bisplinghoff et.al, in Ref. 2.4.

The most general solution of Eq. 2. 111 involves expansion of the determinant and

solving the polynomial equation. This procedure is adequate for simple systems and

up to four degrees of freedom can be solved easily. Methods for higher order systems

have been developed in Refs 2.27 and 2.28. However, since often only the lower modes

are important some approximate methods have been developed which obtain these modes

and frequencies with sufficient accuracy.

2.3.1.1 Matrix Iteration (Stodola and Vianello Method). The matrix iteration technique

is essentially the Stodola and Vianello method in matrix form. The integral equation is

2 -1
[u] = 0¢ [K7 [M_ [u} (2. 113)

It can be seen that o_2 [M_ [Un_ 1] is the load associated with an assumed mode shape,

[Un_ 1] , vibrating at a frequency _ The deflection resulting from this load or the next

approximation of the mode shape is obtained by premultiplication by the influence co-

efficients, or the inverse of the stiffness matrix. Since ¢c2 is a constant it can be as-

sumed to be unity and the equation becomes

[u n] = [K] -1 [M] [Un_l ] (2. 114)

where [ _ _ is a vector normalized on its largest element. Successive iterations of Eq.

2.114 continue until [_ } has converged, i.e., every element in [Un] satisfies
n
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} -{an_ 1}II

The frequency of the mode is then

2 1

U
ni

(2. 115)

where Uni is the largest element of the unnormalized vector [Un}. Proof of conver-
gence is given in Ref. 2.27.

For most practical problems it is necessary to obtain more than the first normal

mode. This is accomplished by applying the condition of orthogonality as a means of

purifying the assumed higher modes of lower mode components. The orthogonality

condition requires that

{_1 }' [M] [_2} = 0 (2.116)

Therefore, modification of the dynamic matrix to satisfy this condition will allow ex-

traction of the next mode. This is expressed in matrix form as:

_D 2] = [D 1] [[I] - [A]] (2.117)

where [I] is a unity matrix and [A] is a matrix of zero's except for the row (or rows)

imposing the orthogonality. This row is composed of the elements u i m i normalized on
its largest element. This element locates the characteristic row and the row matrix is

a good approximation of the characteristic row. As an example,

Lu: mj = LUll m u m m 3 m4 j1 1 21 2 u31 u41

If u31 m 3 is the largest element, then
m

0

0

U m

II 1CA] =
u31 m 3

0

0 0 0

0 0 0

u21 m2 u41 m4
1

u31 m3 u31 m3

0 0 0 _2

(2. 118)

Once [A] is obtained then D 2 can be formed and iterations proceed to determine the

next mode and frequency.
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For improved accuracy and subsequent deflation of the D matrix it is recommended

that iterations be performed on the row matrix, Lu_ M], by post-multiplication by the

dynamic matrix. This removes errors in roundoff in the preceding fundamental mode

and provides a more accurate characteristic. Thus,

Lu_M] [D] = Lu1M]

where ['-] indicates normalization on its largest element. Lu_ M] is then normalized

on its largest element and placed in the [A] matrix. If the characteristic row is found

by this method, the deflated dynamic matrix for successive modes can then be obtained

by

[D 3] = [D 2][[z]-EA2] ]

If the deflated matrix is obtained only from the conditions of orthogonality, then

[Dn] = [D1] [[I] - [An] ] (2.119)

where [A n] satisfies orthogonality between first and n, second and n, ---, and n-1 and
n modes.

An alternate method for deflating the matrix is given in Ref. 2.28 and is particularly

useful in application with automatic computers. This deflation method gives

1

[D 2] = [D 1] -'t_'{u 1] Lul] [M]

coI

(2. 120)

where {Ul] is the column of elements of the first mode normalized so that [Ul] [M] {u 1]

= 1. For each succeeding mode the matrix is modified by subtracting the triple matrix

product for the preceding mode from the preceding modified dynamic matrix.

[Dn] = [Dn_l]- {Un_l] [Un_ 1] [M] (2.121)

2.3.1.2 Holzer-Myklestad Method. The Holzer-Myklestad method is extremely suit-

able for obtaining solution of the differential equations of beams represented as con-

centrated masses connected by massless stiffness elements. A principal advantage of

this method is that each mode is obtained independently and therefore all modes are as

accurate as represented by the system analyzed.

The technique proposed by Holzer was originally developed for torsional systems.

It is equally applicable to any close-coupled system, i.e., represented as a spring-

mass system. A frequency is assumed and one element of the mode shape vector is
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taken as unity. Through equilibrium equations, the other elements of the vector are

calculated. There will be one additional equilibrium equation left after the last ele-

ment of the mode shape vector is evaluated, which will be satisfied only if the assumed

frequency is correct. Successive frequency trials are made until the proper value is

obtained. The process is facilitated by plotting net unbalanced force on the final mass

against frequency. At the natural frequency of the system, the curve of net force

passes through zero.

In reality, the Myklestad method is the Holzer method extended to include far-

coupled systems, i.e., beam systems. The slope and deflection at one end of a beam

segment are expressible in terms of the slope and deflection at the other end, the loads

at the other end and the flexibility of the beam segment. The boundary conditions at

one end of the beam give an initial set of values. Two of the four conditions will be un-

known. One is set to unity and the interior values axe determined in terms of the re-

maining unknown.

As an illustration, consider the beam segment in Fig. 2.25.

forces at the right end can be expressed as:

2
S 2 = S1 - o_ m 2 Y2

= +S L
M2 M1 1

= + + Le 1Y2 Yl +CllS 1 C12M 1

= +C S 1 +02 O 1 21 C22 M1

The deflections and

(2. 122)

Fig. 2.25.

Sl

I-

X

Free-Body Diagram of Vibrating Beam Segment
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The quantities Cll, C12, C21, and C22 are the flexibility influence coefficients of
Eq. 2.14. If the left end of the beam segment is the end of the total beam, two of the
four variables at that end canbe determined from the end conditions for a free end.
M1 is zero and S1 is equal to the inertia force m1 _2 Yl" Of the two remaining con-
ditions, one is assigned a value of unity and analysis is carried out in terms of the
other. For the free end, Yl is assigned a unity value (making S1 = m I _c2). The four

variables at point two may be evaluated as."

2
= + L81Y2 1 + m 1 ¢c C ll

2

e2 = OI +m 1_c C21

2
M2 = ml_c L

2 + Lel]S 2 = m l_c2 - m 2 ¢c2 Ii +m I ¢o CII

If an arbitrary value for _ is assigned, each of the four variables at point two

reduces to an expression involving a constant and a coefficient times e 1.

The variables at the next point on the beam may be expressed in terms of those

just obtained by using Eq. 2. 122 and will also be in linear terms of e I . The evaluations

may thus be propagated across the beam, with the ultimate result that the four vari-

ables at the far end of the beam are expressed as linear functions of e I .

From the end conditions at this point, the va]ues of two of these variables will be

known. One of these known quantities is used to evaluate 81 , which is then substituted

into the expression for the second known variable. For the correct value of ¢c2, the

expression will produce the known value; otherwise, an error term or residual will be

obtained. Several trial values of w2 are made, repeating the propagation process each

time. If the resultant residuals are plotted against _2, the extraction of the proper

values of ¢c2 is facilitated by extrapolation of the curve. The natural frequencies occur

where the curve crosses the axis. Higher frequencies are obtained independently, thus

are independent of any inaccuracies which may exist in calculated lower modes.

2.3.1.3 Energy Methods. Lord Rayleigh's method of evaluating the fundamental fre-

quency of a system is based on the principle of conservation of energy. At the maximum

deformation of the system vibrating in this fundamental frequency, all the energy of the

system is in a potential energy form E =7 _ EI(d2y_ 2dx_ But at the instant the sys-
\dx2/ /"

tem passes through the equilibrium position, its energy is entirely in kinetic form (KE

_-_ m} 2 dx). If energy is conserved, the maximums of those two values may be equat-

ed. A deflection shape is assumed and for harmonic motion, y = U sin at, and hence,
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= _}U cos o_t

(2. 123)

and thus

02 --

mU2 dx

dx

(2. 124)

It can be shown that close approximations to the fundamental frequency are ob-

tained even if the assumed deflection shape is not very close to the true shape.

The Rayleigh method was generalized by Ritz to give more accurate values for the

frequencies as well as to give estimates for several mode frequencies at one time.

Basically, Ritz suggested that the assumed deflection curve be expressed as the sum

of several functions in the form

y = _f (X)_n (2. 125)n

The more functions and constants introduced the more accurate the value of the funda-

mental frequency. Also, if n functions are introduced then estimates on the first n

mode frequencies will be obtained. Having expressed the assumed deflection curve in

terms of n functions f (x), the kinetic and potential energies (omitting shear and mo-

ments of inertia) are expressed as

2 KE = /m (x) _2 (x, t)dx (2. 126)

/ _bX2
2 PE = (x)\ d x2/ dx

(2. 127)

Substituting Eq. 2. 125 into Eqs 2. 126 and 2. 127,

n n

i=1 j=l miJ
i J

n n

2 PE = _ _ Kij_i_j (2. 129)
i=1 j=l
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where

and

mi jm[fi(x)l[ j'x)l

K1j = fEI d2 d2(x)l I 'x)l

Substituting Eqs 2. 128 and 2. 129 into Lagrange's equation gives the differential equation,

n n

m.._i+ _ K.._.
j=l lJ j=l lJ 1

= 0 (2. 130)

I

Putting as a solution, _j = { sin u_t,

n

(% 2 _)_
j=l

= 0 (2. 131)

or a set of algebraic equations equal in number to the number of unknown coefficients.

The determinental equation for the set will yield frequencies for the first n modes of

vibration and eigenvectors which when multiplied by the assumed functions give ap-

proximate mode shapes.

The result gives good accuracy in frequency but poor agreement with mode shape.

Using the mode shape obtained as a second approximation improves frequency accuracy

and greatly improves mode shape.

Also, expressing the strain energy in terms of inertial loading rather than the as-

sumed deflections increases the flexibility of this method in that shear deformation and

moments of inertia are then easily included.

2.3.1.4 Jacobi and Givens Method. The Jacobi method solves Eq. 2.112 by diagonal-

izing the dynamic matrix, [D_, by means of orthogonal transformations. The new dia-

gonals contain the eigenvalues, and the orthogonal transformations used in diagonalization

contain the eigenvectors. Bodewig (Ref. 2.27) explains the method as follows. First,

it is assumed the matrix is symmetric. Eq. 2. 112 can be expressed in the form,

[D_ [u] = IV]
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u is subjected to the orthogonal transformation [A] and

[u} = [hi {w}

Then, to preserve symmetry, the system is multiplied by [A] _

[A] _ [D] [hi {w} = [A] _ _v}

Making the substitutions

[B] = [hi _ [D] [hi

Ix} = [hi' Iv}

then

[B] Iv} = {:x}

To eliminate the coefficients d12 and d21 (the first off-diagonal terms of [D]) put

[A] =
I

:i

where [T] is a two-rowed orthogonal transformation. By choosing

[T]

[sin c_ -cos

one also gets [T]' = [T] and [A]' = [A],

Then

[B] = -i- [D] _-

:iJ I

or, when in [D] a top left corner matrix [D2] of order 2 is detached,

[D]
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with [C] = [C]'. But then

[B] = _'TID2T T_I
= [B]'

Thus [B] differs from [A] only in the first two rows and columns and

2
bll = dllCOS _ +d12 sin2_ +d22 sin 2

b12 = (dll-d22) sins cos_-dl2 (cos 2_-sin20t) = b 21

2 2 2
b22 = dll sin _-d12 sin 2_ +d22 cos ot

Now, for _ arbitrary,

b + b = d + d
11 22 11 22

and b = 0 if
12

1
--tan 2_ =
2

d
12

dll - d22

Then

1

bll = _(dll +d12) +

1
b22 = _-(dll + d22) -

where

dll - d22 t 2 d2F = _ + 12
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The sign of _ dependson the quadrant of 20_and follows from

d - d22 d12
J-F-F = 11 =

2 cos 2_ sin 2_

The above procedure has altered the first two rows and columns. The procedure is

repeated on succeeding pairs of rows and columns for the entire matrix. The matrix

is operated on in this manner until it is sufficiently diagonalized.

Jacobi worked out his method originally to speed up convergence of iteration pro-

blems. It was later that its usefulness in eigenvalue problems was realized. Bodewig

expounds in more detail on the application of Jacobi's method to eigenvalue problems

and its usefulness.

The Givens method has the general form of Jacobi's method, i.e., making off-

diagonal terms small compared to diagonal terms by means of orthogonal transfor-

mations. Givens uses a transformation that makes all off--diagonal terms except the

upper and lower parallel of the diagonal equal to zero. Solutions for eigenvalues and

eigenvectors are then effected. Bodewig (Ref. 2.27, p. 336-340) gives details of the

Givens method.

2.3.2 MODAL QUANTITIES. Solutions to the characteristic equations give either the

squares or the reciprocals of the squares of the circular frequencies and also the mode

shapes of the restrained system. The linear frequencies of vibration are obtained from

the circular frequencies. If each mode shape [_}n is considered to be the nth column

of a matrix [_] of all the mode shapes, then [_] _ [M] [_] is an orthogonality check of

the mode shapes. The diagonal element ([_]'[MJ[_n,_ is called the generalized mass

of the system for mode n. In this discussion the vector [_} was stated to be the mode

shape of the structural system. For a restrained system, (_} is relative to the re-

strained point(s) and is, therefore, the final mode shape. For a free-free system, [¢_}

is relative to the temporarily restrained point (which has translation, Yo, and rotation,

0o) ; hence the effect of Yo and eo must be included to obtain the final mode shape.

The slope of a node of a beam as computed by the foregoing is the slope due to

beam bending, i.e., the slope of the elastic axis. To obtain the total slope, the shear-

ing slope of the beam must be added to the slope due to beam bending. This is done by

defining

[(Y}= [0} + [y} (2.132)

where

{y}= [cs] {r }
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Having obtainedthe modal response, the yahicle response (i.e., displacement, ac-
celeration, force, moment, etc.) canbe calculated. The two steps, obtaining modal
response andthen vehicle response, will be discussed separately.

2.4.1 MODAL RESPONSE. While Eq. 2. 135is easily written the actual numeric
solution is often more difficult to obtain. If the forcing function is a simple analytical
function the solution is easier; however, the forcing function is often presented to the
analyst in graphical form and probably requires an elaborate analytical function which
may be unwieldy. Three methods of obtaining a solution will be discussed. While
these are not necessarily the only methods, they are the most widely used today.

2.4.1.1 Numeric Integration. The most common method of solving Eq. 2. 135is to
simply mechanize it oneither a digital or analog computer. Standardnumeric inte-
gration techniques are employed whenusing the digital computer. As an example, the
Adams four-point formula will be shown. The integration interval is defined as At and
a subscript n is equal to t/At. The Adams four-point formula is

+At I55_ -59 _ +37_ -9_ ] (2.136)_n+l = _n 2-'4 n n-1 n-2 n-3

_n+l is obtained by the same equation. Eq. 2. 135 is then used to obtain "'_n+l. However,

Eq. 2. 136 cannot be used until n=4. This necessitates special starting formulas. At

n=l, three approximations to _ 1 and _1 are made. After each approximation, _" 1 is ob-

tained by Eq. 2. 135. The first approximation is

_(1) = { +At_
1 o o

_(1) = _ +At _"
1 o o

The second approximation is

_(2) =_ + +
1 o -_ 1 o

The third approximation is

I 1 _i

2-70



{a}

{s}

[F} =

[Cs]=

= total slopes of a beam element

= bending slopes of a beam element

= shearing slopes of a beam element

internal forces on a beam element

shear flexibility matrix

The matrix [C s] is a diagonal matrix whose elements are 1/KAG at the nodes of a
beam element.

The various load quantities (shear, bending moment, torque, force) associated

with each mode are often required in dynamic loads analyses. The generalized forces

of a restrained system are obtained from either Eq. 2.22 or Eq. 2.26, depending upon

whether or not there are any zero generalized force boundary conditions. Another

approach for obtaining the generalized forces is to represent these forces in terms of

the inertial loading under vibration.

2 (2.133)
{F}n =-O_n [M]{_}n

Either Eq. 2.22, 2.26, or 2.133 is used to define the generalized forces. The load

quantities are then obtained by classical summation methods.

Another approach for derivation of load quantities considers each stiffness element

(beam or spring) individually. In this approach the load quantities are obtained by

multiplying the stiffness matrix of the element by the relative translation and/or rota-

tion between the ends of the element. For example, the shear and bending moment of
a beam element are

where

{st
[K] = stiffness matrix

= relative translation between the two ends

= relative rotation between the two ends

(2.134)

For a free-free system the same approaches are employed; however, the mode

shape must be the final mode shape.

2.4 RESPONSE TO TIME-VARYING FORCES

The determination of the response of a launch vehicle to a time-varying force

first requires the solving of Eq. 2.7, which, with damping included, becomes

+2_n_n _ + a'2_n = ]_-1 Qn (t)'n n n (2.135)

2-69



1 o _1 71

At n=2, two approximations are used.

2 _1 -1

The second approximation is

At n=3,

]+3_ o

The first approximation is

2 *i _-_ 5 +8 -72 *i o

_(_ = i(_ +_t[_ _.(_+__.(___.]2 *1 12 _2 _1 o

two approximations are used. The first approximation is

(31 (2)+ At [23_(2 ) 16_(3)+ 5_ ]) :_2 i-_ _2 - -1 o

3 2 _t -2 {1 + _ }'o

The second approximation is

(2) +_t [9 }.(1) + 19 }'(2)-5 }'(3) +_'o]

From n=4 on, Eq. 2. 136 is used.

The Adams method is one of many available for numeric solution. The various

methods have specific as well as general application. Before incorporating a method,

stability and accuracy of that method must be examined for the particular application.

2.4.1.2 Laplace Transforms. The Laplace transformation can be used to obtain a

mathematical solution. This assumes that the forcing function can be expressed

analytically and that the required transforms exist. Rigorous treatment of the Laplace
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transformation is given in many textbooks. Refs 2.29 and 2.30 derive anddiscuss
Laplace transforms at length.

The Laplace transformation associates with a given function F(t) a second function

f(s) according to the relation

CO

-stf(s) = L IF(t)} = e F(t) dt

0

(2.137)

The inverse transformation is

F(t) = L-1 [f(s)} (2.138)

and simply means that F(t) is a function whose Laplace transform is f(s). A property

of the Laplace transformation which contributes greatly to its success in handling dif-

ferential equations is that the transform of the derivative can be expressed in terms

of the transform of the function itself, i.e.,

L[F'(t)_ = s L{F(t)} - F (0)

2
L[F_I(t)] = s L{F(t)} -s F (0)- F'(0)

An example will now be worked out using Laplace transforms.

in Fig. 2.26 will be used and F(t) as shown in Fig. 2.27.

(2.139)

The system shown

The differential equation is

M_(t) +Kx(t) = F(t)

F (t)

F

T
t

Fig. 2.26. Spring Mass System Fig. 2.27. Force Time History

If the initial conditions are x (0) = 0 and x (0) = 0 the equation in the transform x(s) is

M s 2x(s) +Kx (s) = f(s) (2.140)
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where f(s) is the transform of F(t).
canbe written

2
The natural frequency is o_ and K = M 0¢ so it

x(s) = f(s)
M (s 2 + o_2)

Considering the time period 0 g t _ T then

A
f(s) -

S

(2. 141)

and

x(s)
A

Ms (s 2 + ¢o2)

Now

111 jlL = _ (1 - cos o_t)
s (s 2 + o_2) cc

and it follows that

A

x(t) = -_ (1 - cos u_t) (2. 142)

If the response for the time period t > T is desired the solution with nonzero initial

conditions is needed. With the initial conditions of x(T) and _(T) Eq. 2. 140 becomes

[s_ 1M x(s)- sx(t) -_(T) +Kx(s) = f(s)

and Eq. 2. 141 becomes

s 2 +o_ s 2 +o_ s 2 +¢c

However, f(s) = 0 so the inverse transform is

x(t) = x(T) cos ¢c (t - T) + _(T___)sin u)(t - T)
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and from Eq. 2. 142,

2A . 2 coT
x(T) - sinK 2

wA
_(T) - sin u_T

K

An advantage of this type of solution is that the numeric solution for any time t can

be made without first making numeric solutions at other times. The main disadvantage

is that, as the forcing function becomes more difficult to express analytically, the

mathematics becomes increasingly complicated. Also, more terms appear in the

solution which increases the numeric solution time.

2.4.1.3 Duhamel's Integral. It is shown in Ref. 2.31, p. 11, that a solution to Eq.

2. 135 is

{(T) = e-_T[_(0)cos_T +1_ (0)+_(0))sin_T]

T
1 1 -_(T-t)

+-- f -_ Q (t) e

0

sin _ (T-t) dt (2. 143)

where

_2 = c02 _ (2

The integral in this equation is known in mathematic literature as Duhamel's in-

tegral and represents a particular solution of Eq. 2. 135. Since terms in brackets in

Eq. 2. 143 represent the solution for the free vibrations due to initial displacement and/

or velocity, it is clear that the Duhamel integral represents that portion of the motion

resulting from externally applied force. The problem remains, of course, of per-

forming the integration. For simple forcing functions, closed form solutions may be

easily obtained. However, when the forcing function is not easily described analytically,

the analyst usually resorts to numeric or graphic techniques.

To illustrate the use of Duhamel's integral the problem previously solved by Laplace

transforms in Section 2.4.1.2 will be used. Again referring to Fig. 2.26 and, assum-

ing zero initial conditions and zero damping, the solution is

T

x,T) sA-_ sin co (T - t) dt
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Expanding the sine function

x(T)

T
A

- Ma_/ (sin

0

a_ T cos o_t - cos cc T sin cot) dt

Evaluating the integral and simplifying,

A

x(T) =_ (1-coso_T)

This checks with the solution obtained by using Laplace transforms.

2.4.2 VEHICLE RESPONSE. In the design and stress analysis of launch vehicles cer-

tain loads are required. In addition, the displacements of certain parts of the structure

are needed. The loads usually required (where applicable) are acceleration, bending

moment, shear, torque and force. These are calculated using mode displacement or

mode acceleration methods, modal quantities, and modal response. Some loads, such

as aerodynamic loads, increase due to displacement. This amplification of applied loads

is discussed in detail in Section 5 and is not considered here.

2.4.2.1 Mode Displacement Method. The deflection of a structure under load is the

summation of the deflection of each of its normal modes. Similarly, the loading or

stress in the structure is the summation of the load or stress in each of its normal

modes. Thus

k

= _ CinChYi
n = 1

k

M. = _ M. _n (2.144)1 in
n=l

k

s.=Zs
1 in n

n=l

In this method the rigid body loads and vibratory loads are obtained as a function

of the normal mode displacement. The advantages of the mode displacement method

are: 1) ability to handle steady-state and elastic response loads for redundant

structures, and 2) simplicity of computation. The first advantage is readily

apparent after examination of the mode acceleration method for redundant structures.

The mode displacement method can handle redundant structures as easily as nonre-

dundant structures. The second advantage is seen by Eq. 2. 144. Once the modal mo-

ments and shears have been calculated (a one-time operation) the computations are

quite simple. The disadvantage of the modal displacement method is a determination
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of accuracy. Theoretically, all the modes are required to obtain correct shears and

moments. However, the summations of Eq. 2. 144 are actually summations of series

of which only the lower {frequency) modes significantly affect the total. The problem

is, then, to determine the number of terms (modes} needed for accurate results.

This is usually determined by trial and error.

2.4.2.2 Mode Acceleration Method. An alternate method of determining loads would

be separate calculation of the rigid body and vibratory loads. In this method the

vehicle is first treated as a rigid structure and shears and moments are determined

from the applied forces, external and inertial, on the vehicle in equilibrium. The

vibratory loads are then obtained from the inertial loads due to the acceleration of

the modes. The total loads would be

k M.

M :x 2 n
i n= 1 o_

n

k S
S. = S - E in

1 RB _ n

i n=l w n

(2.145)

The advantage of the mode acceleration method is high accuracy with few modes.

In this method the loads due to the rigid body response are calculated separately from

elastic response; hence their contribution (which is highly significant) is explicit. How-

ever, in the mode displacement method the loads due to rigid body response are im-

plicit in the loads due to elastic mode response. Since the load contribution of each

mode is much less for the mode acceleration method, far fewer modes are needed for

accurate results. The disadvantage of the mode acceleration method is the additional

computation required to obtain the rigid body loads, particularly with redundant struc-

tures. However, with present day computer capability this is not a serious problem.

The desirable feature of convergence with a small number of modes is often of more

importance than the computation time required for the rigid body loads.

2.5 RESPONSE TO TIME-VARYING FORCES WITH A CONTROL SYSTEM INCLUDED

The previous section discussed the response to time-varying forces for the case

where no attempt was made to control the vehicle as it responded. The solution will

now be expanded to show the inclusion of a control system.

2.5.1 GENERAL SOLUTION. The control system for a launch vehicle {typically re-

ferred to as the autopilot) usually controls the vehicle attitude with respect to some

frame of reference. While the position in space is all-important, other means (guid-

ance) are used to determine where the vehicle is and the proper maneuver to correct
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the position. This results in commands to the autopilot to alter the vehicle attitude

and thus (assuming powered flight) to change its position in space. The autopilot must

also maintain the desired attitude and correct any errors due to external or internal

disturbances. Thus the autopilot has two functions: 1) to maintain vehicle stability

and attitude, and 2) perform the steering maneuvers prescribed by guidance.

The autopilot is usually described in block diagram form. The vehicle attitude

with respect to some axis is defined as 0, the control system coordinate as 5, and the

guidance command as 0 c. The general form of the autopilot is shown in Fig. 2.28.

The solution for the forced vibration response as given by Eq. 2. 135 is expanded to

include the control system. In matrix form this is

' I

li'] +f-i-t l+[-i--ll:I =I--i--t-1 l_t)l
(2.146)

The upper left partitions are the coeffi-

cients of the equations for vehicle dy-

namics. The upper right partitions re-

present the effect of the control system

upon the vehicle and the lower left parti-

tions represent the vehicle input to the

control system. The lower right parti-

tions are the coefficients of the control

system dynamic equations. While the

discussion has been about a fairly specific

situation, i.e., launch vehicle with auto-

pilot and in powered flight, Fig. 2.28 and

VEHICLE [ O.
DYNAMICS

CONTROL SYSTEM
DYNAMICS

Fig. 2.28. General Autopilot Block

Diagram

Eq. 2. 146 are general forms applicable to any situation of a vehicle with a control sys-

tem. Once Eq. 2. 146 is set up the solution proceeds as discussed in Section 2.4.

2.5.2 EXAMPLE SOLUTION. To illustrate the above solution the case of a launch

vehicle subjected to a gust will now be solved. A schematic of the vehicle model is

shown in Fig. 2.29.

2.5.2.1 Derivation of Equations of Motion. The dynamic response is obtained by the

superposition of the rigid body and elastic responses. Use is made of rotating Eulerian

axes which coincide with the axes of the vehicle at any instant. Figure 2.30 shows the

position of the axes at times t and t + At. A time-slice analysis is used, i.e., mass

and trajectory parameters are considered constant.
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Fig. 2.29. Gust Response Vehicle Model

Yt+At

Fig. 2.30. Rotating Eulerian Axes

a&
_F = ma = nv-- =x x At

At-.0[ At ]
In= [_' +0_]m_' m

_F = ma = m_-
y y At

lim [Ay' AE}_I
Ate0 t At +"_='l

m = [_' +ex] m

_M
lira A_

At-. 0 At

Ge

81
(2. 147)
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In matrix form, the elastic motion of the vehicle is

MU +KU = F (x,t) (2. 148)

By substituting the transformation U = _ into Eq. 2. 148 and pre-multiplying by the
transpose of_, we have

• ' M _) _" + _' K_ = _' F (x,t) or

_" + [_' M(_] -1 [_' K_]_ = [_' M_-l_F(x,t) (2.149)

It can be shown that [_ M _J-1 [_ K _] = ¢c2, the natural frequencies (diagonal mat-

rix) and E_ _ M_] =_, the generalized masses (diagonal matrix) of the system. With

these substitutions and the addition of damping, Eq. 2. 149 becomes

_" +2_0z_ +a) 2_ = _-1_, F(x,t) (2. 150)

2.5.2.2 Derivation of Force Equations.

a. Aerodynamic forces.

b. Engine thrust forces.

c. Engine inertia due to engine gimballing.

d. Sloshing forces and moments.

e. Engine hydraulic actuator force.

f. Engine gimbal friction.

The following is a derivation of the gen-

eralized forces. These generalized forces

are derived from work principles. The der-

ivation of these forces is done in indicial

notation, rather than matrix notation, be-

cause it is easier to show the derivation of

the terms from each source of energy. The

work done by the aerodynamic forces (see

Fig. 2.31) is

d W = ._ dy i (A.L.)i
1

The forces acting on the system are:
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dW
= qSR_d[ yl+i (xi-_) e+_mcm_m]

(2.151)

where ff is the center of gravity on the x axis. The generalized forces are:

+_ +z _ {n
dy_ = qSRi_ N/0_ i

dW -x CN/t_ i+t_ +_ a. _n
d e - qSR i_ xi gi n 1

d_m - qSR • i gi n i

where

(X'v') ]
i _n

(_i = - + -

The work done by the thrust force of the booster engines (see Fig. 2.32) is

dW
= FBdY

(2.152)

(2.153)

The generalized forces are

dW

dy _

dW

de

dW

m

d_

n _n__]_[_ _

_ n _n_6_](xr

- TB aEB xT
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Fig. 2.32. Engine Thrust Forces

For the generalized forces due to the sustainer engine, substitute subscript S for B in
I

the above equations. Since the sustainer engine is not gimballed, 6 S = O.

For purposes of autopilot control, the motion of the engine is comprised of two

functions. The first, _n a_B _n, represents the motion of the engine associated with

the modes of vibration when the control system is locked. The other, 6 e, repre-

sents the gimballing control with respect to these modes° For analysis, the system is

assumed to have a perfect actuator and is later compensated for its structural elastic-

ity, bypass orifice characteristics, etc. The work done by engine inertia is

dW = -mEB[(y" +VS)+(XEB -x) 0" +_n CEBn _'n

xd[y' +(x -x)O+E m _m 6']EB m CEB + LEB

m

-IEBIg+Gn nO'EB%'n- 6"']dlS+_O'EB{m-6 '1

+ LEB 6"']

[ (x) ]m= -m (y' +Ve) + __ }. +G n _'n+ 6 SEB
d {m EB EB n CEB LEB

n mn aEB (;EB
(2. 155)

All the terms except 6" can be placed on the left side of the equations and according to

the orthogonality principle, the n _ m terms will cancel and the n = m terms will be-

come part of the generalized mass. This generalized force then becomes
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dw m
d_m B°'EB -mEB

LEB CEB

dW [ • n _.n+d-"_ = -mEB LEB ( _' +V0) + (XEB -x) 0"+_ CEB LEB
n

nB n (fEB -

(2. 156)

Moving the 6"' terms to the left side of the equation results in

IR6" + ..... mEB LEB[ (y'+V_)+{xEB-_) _ +_nn _EB _'n]

+-['_ +_ n _'n]IEB n ffEB
(2. 157)

where

= +
IR B mEB LEB

Although the actuator is described by a linear equation in this program, the system is

nonlinear. Linearization of the 6', 6 ' , and 6 c coefficients is discussed in Section

2.5.2.3.

The sloshing analogy used is the spring-mass analogy. The slosh loads consist

of a lateral force applied at the spring attach point, and a moment applied at the equiv-

alent tank bottom (Fig. 2.33).

9

x*0

Fig. 2.33. Slosh Loads
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The work doneby the slosh forces is

dW = EF dy s
S S

= EK z d[ECm_ m
s s s [m s

dW m

-EK z Cs
d_ m s s s

dW
dO - EK z (x s -_)

S S S

dW
, -EK z

dy s s s

+y' + (x s

(2. 158)

The work done by the slosh moments is

._.
dW =E xm

S S

z +M
S S Zsl omsm+°1

'2
dW -E xm

d_ m s s

z +M
S S mS S

dw s[XmzdO s s s s

(2. 159)

The pressure PL developed by the actuator times the actuator piston area supplies the

force to gimbal the engine. The work done on the engine (see Fig. 2.34) is

dW = (PLAR) dS'

dW PL AR 160)---7 = (2.
d6

d W _ dW _ dW

d_m dO dyT = 0

because 6 ' is measured relative to the

vehicle.

L A = FO:CE

Fig. 2.34. Engine and Actuator Model
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Gimbal friction results from the relative velocity betweenthe engine and vehicle.
The relative motion (Fig. 2.35) is

_ [_n(aEB - Or:T){n - 6nl

The work doneis

_n a*r ! dW = -CF _EB d 0EB

_n a:s}n_b '_/ _ =-CF[_(aEB-axnT)_n-6 ']

Fig. 2.35. Engine Displacement ffxTEB - 6 (2.16I)

The generalized forces are

dW

d6'

dW

d_ m

(2.162)

2.5.2.3 Derivation of Autopilot Equations. The autopilot system consists of a for-

ward loop, an engine actuator, and a feedback loop. The forward loop contains a

simple lead/lag filter, a quadratic lag filter, an integral path, and a proportional path.

The engine actuator is represented by a linear second order system. The feedback

loop employs a displacement gyro and a second order rate gyro.

The differential equations from the block diagram, Fig. 2.36, are

a. Rate gyro, e G

b. Position gyro, OD

8D = e+_O.D _n
n

c. Error signal, e
E

e = eG + eD
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2
2_cOJc s ÷ a¥

KRW G s

2
s2* 2_G_GS+_ G

VEHICLE

f(_ ,e) [RESPONSE J--

2
w T

+ 2 (T _,'T

d. Feedback signal, OF

el

Fig. 2.36. Autopilot Block Diagram

fG

rlead0 +e¢ = rlag0F +eF

Engine actuator command signal, 5
C

2 [ 20F5" +2_ a_ 5 +w 6 = -i A Ccc
C C C C C C + KI _c2c _ eF dt]

Engine actuator response, 5 *. The engine actuator equation for engines-in-the-

modes model is

n n / n2 2 _ 2 KE _ axTB (r5' +2 _T _'r _ + _T 5' = ¢_T 6c U_T n - EB

- ( ( - .) ooCF n gEn n _n_ 1 _ mEB LE BCEB_ IEB
IR _n axTB-aE IR n

LEB mEB
(2. 163)
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where

%
K E -

KD+K H

57.3 CF

2

_cN

(AR)2 q_L

1.11 h CL

_/K 2_CT = C °2N

2 _T COT
C -

T 2oo T

Since the above terms are frequency and amplitude dependent, they have been linearized

to the frequency of the gust, i e., _ = 2_t/_" _, and to a large engine amplitude, say
- - " gust

= 1.0 degree. C F and PL are calculated as follows:

4 CB 2 C B rgus t
CF = Cv + - - Cv _

_'_6 _t2_

27r6

I_L = CF ARt
gust

(2. 164)

2.5.2.4 Complete Equations. The complete equations, assembled from Sections

2.5.2.1, 2.5.2.2, and 2.5.2.3, are given by Eq. 2.165. These can be put in the form

of Eq. 2. 146 and solved. The forcing function in this case is the angle of attack in-

duced by the gust, t_g.
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th
m Elastic Mode

_m,,m ;ml_m{_n,.0,]_'m + 2_m¢C +w -m m EB CxTB _EB

m[_nn lI _ - m]_',+ TES CxTS (rES _n _ mEB LEB _EB - IEB (_EB

q

+_ +Eft. +E m z
i i gi n * s s

+M
s s

s s s s EB -axT n aEB-axTB _n

Rotation

-[mEB LEB(XEB-X)-IEB]6" +qSRi _ [(CN/0t)i((_i+_g i

n")<x, Ix+_ _. { - +_ m
n * s s

z +M
s s ZsJ s s

Tr ansi ati on

,1 / T E n
+ V8 M T TB °'EB S n- aES - mEB LEB

Sloshing

s

+qSRI_ +_ +_a. _ +_ K z
i N/¢_ i gi n 1 s s s

2
+0_ z =-

+ 2_s u_ s s s s (y' + V{9) + (xs -.x) 0 +_n ¢n _.n]s

(2. 165)
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Engine Output

+mEBLEB' '+[mE LEB(xEB-
Engine Command

2 [ 20F5"c +2_c02c _c +O_c5c = KA ¢Cc

Rate Gyro

[ ]eG 2 2 n+ w G + 0 G = KR_ G e+_O'G _n_'G 2_G COG n

Position Gyro

OD = O+_aD _n
n

(2.165

Contd)

2.6 RANDOM RESPONSE

The analysis presented here is from the field of endeavor referred to as generalized

harmonic analysis. This subject is treated in many texts and articles. Crandall (Ref.

2.32) gives a comprehensive bibliography of the material published prior to 1959. Refs

2.33 through 2.38 are a partial list of the more recent material. Lee (Ref. 2.33) gives

a complete discussion of the general theory of harmonic analysis. The monograph by

Crandall and Mark (Ref. 2.34) covers the subject as applied to mechanical systems.

The subject is also often covered in texts or handbooks on control and/or servomechanisms,

The fundamental difference between deterministic analyses and those involving

random variables is that instantaneous values are no longer meaningful. When a sys-

tem is being excited by randomly varying forces, it follows that its response will also

vary in a random manner. Consequently, a statistical description of the excitation is

required in which expected values of response replace the usual instantaneous time

values. The analysis is quite complicated in its general form. As a result, certain

assumptions are made which, although not strictly true, are required to permit analysis.
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These assumptions are that the excitation is an ergodic process and that its amplitude
has a normal or Gaussiandistribution. The first assumption merely states that the
time average of the excitation is equal to the statistical average and dependentonly
uponwhere it is measured. The secondassumption of normal distribution is one often
madeto aid in interpreting the results and as a requirement for application of some
statistical techniques. A brief review of the analysis follows; the reader is directed
to various references for proofs andderivations.

Consider a random process described by the time function uk (t), where the sub-
script k is used to denote one experiment in a large number of identical experiments of
the same random process. The statistical or "ensemble average" is defined as

N1
u (tl) =--_ k___luk(tl)

(2. 166)

which is also called the mean. The u k (tl) is the value of the k th ensemble member at

an arbitrary time t 1. The amplitude probability density of u may also be determined

at time t 1. If the amplitude probability density of the ensemble is independent of time

t 1, then the process is said to be stationary.

More often than not, the data available for analysis consist of a few samples, rather

than a large number, and the ensemble average is not meaningful. The averaging may

be carried out in time in this case, rather than across the small ensemble. The time,

or temporal, average of an ensemble member is

limit 1 f t +TO

{_k (t) = T -_ _ _-_ J u k (t) dt (2. 167)

t -T
O

w

If the process is stationary, then uk(t ) is independent of t o. If the amplitude probability
density of the ensemble member is the same as that of the ensemble, then the process

is also said to be ergodic and u k (tl) = u k (t). Thus, an ergodic process is, by defin-

ition, stationary, but a stationary process is not necessarily ergodic. It can be seen

that by making the ergodic assumption the analysis can be performed over the ensemble

or over an ensemble member with equal validity. It will be understood that the re-

mainder of the discussion covers only ergodic random processes.

A statistical quantity of considerable importance is known as the autocorrelation

function and is defined as

T

limit 1 -_T_kk (r) = T -_ co 2-T u k (t) u k (t + "r) dt (2. 168)
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which represents multiplying the value of the function at a time t by its value at a time

_" later, integrating the result, and averaging. It can be seen that the autocorrelation

function is independent of t and is a function of the time lag _" only. For zero lag time,

Eq. 2. 169 reduces to the mean-square value,

limit 1 f T 2
_bkk (0) = U2k(t) = W-_ _ _-_j u k(t) dt (2. 169)

-T

Another useful quantity related to the correlation function by means of the Fourier

Transform is the power density spectrum, defined as

_ 1 /_ -ioJr_kk (02) 2_r _bkk (_') e dr (2. 170)

and the inverse relationship,

_kk if) = f _kk(Cc) e i02r dw
--CD

(2.171)

This relationship is known as the Wiener Theorem of autocorrelation, or Wiener-

Khinchin Theorem (see Ref. 2.33, Chapter 2). If we now set T = 0, Eq. 2. 171 becomes

GO

2 / _kk_bkk (0) = u k(t) = (o_)dcc (2". 172)

or the mean-square value.

A useful relationship, proved in Ref. 2.32 (p. 333), between the response and

excitation power spectra for any linear system is

_out in
(02) = Hk (02) Hk (02)¢_kk (02)kk

or

(2.173)

_out 2 in
kk (02) = [ Hkk ( 02)[ _kk (02)

where H (02) is the complex frequency response and I_ (co) is the conjugate. H (02) is a

general expression for the relationship between input and output and must be defined in

detail for specific cases. For example, the displacement response spectrum of a linear

single-degree-of-freedom system to an ergodic random force spectrum is (Ref. 2.34,

p. 73 - 75)
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_in
_out (co) = (co) (2.174)

_2[( u2 -¢c2) 2 +4_2 W2n¢c2]

where wn is the system's natural frequency, m its mass, and _ the damping ratio. It

is easily seen that the denominator is the absolute value of the square of the complex

impedance, Z (w), and that

IH (cc)12 = 1 (2.175)

[z

The general case for the response of a multidegree-of-freedom system is discussed

next.

It is now necessary to consider another property of the excitation, the continuity

of its distribution in space. If the random force f (x, t) can be separated such that

F (x, t) = g (x) f (t), then the field is homogeneous. This means that when there is a

change in force at x i, there is a simultaneous proportional change at xj. This is
analogous to the stationary property in time. If the spatial distribution is not deter-

minable, then the field is inhomogeneous and its is necessary to determine the statis-

tical relation of happenings between all points on the system under consideration.

The required statistical properties for inhomogeneous fields are the crosscor-

relations and cross-power density spectra. The crosscorrelation function _)ij (T)
between a random process occurring at point i in space and a different random process

occurring at point j in space is defined as

limit 1 jfT T_ij (r) = W-+ _ _ ui(t)uj (t+T) dt (2.176)
m

which represents taking the value of the function at point i at time t, multiplying by the

value of the function at point j at a time r later, integrating the result, and averaging.

Applying the Wiener-Khinchin Theorem,

_ 1 /o_ -iwT<_ij(co) 2rr _ij (7")e dT (2.177)

The cross-power density spectrum (i _ j) is, in general, a complex quantity, of which

the real part is referred to as the co-spectrum and the imaginary part is called the

quadrature spectrum. The inverse transform relations between the crosscorrelation

and cross-power spectra are
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co

- i/_ij_ij (oo) 2 rr_

-i_T
if) e d 1" (2. 178)

co

f_ iccTaij (r) : ij (co) e
w_

d _c (2.179)

Taking all combinations of ij for the system under study, a matrix of cross-power

density spectra can be formed. This matrix, [_ij],. is of a Hermitian form which

contains real terms (power spectra) on the diagonal and complex terms (cross-power

spectra) on the off diagonals. It can be shown (Ref. 2.33, p. 74) that

$ij (r) = Sji (-'r) (2. 180)

so that from Eq. 2. 179,

_ji (w) = _'*'1] (u_) (2. 181)

where the asterisk indicates the conjugate transpose of_ij (_c). Consequently, the

matrix E_ij _ is symmetric in the real parts and skew symmetric in the imaginary
parts. Eq. 2. 173 is now written in the more general form,

_out _)in I_jij (w) = H.I (w) ij (w) (w) (2. 182)

which gives the response spectrum at point i due to an excitation at point j. It is

obvious that the cross-power density spectrum of the response must be derived for all

points in the system.

Botman (Ref. 2.36) has derived the integral and matrix forms for the response of

a mechanical system to an inhomogeneous field. Since the integral form is only ap-

plicable to systems for which all_ij (w) are known analytically, and this is not the
usual case, only the matrix form is presented here.

Assuming that the excitation is homogeneous in the interval x i - _ to x i + E, the
response power spectra matrix for a lumped parameter system is given by

[_iTt(w)] = [_n][Tnt[¢iJ(_ [7jm ] [_m]
(2. 183)

The Z n and Z m are the complex impedance and transpose, and the _ni and Vjm are the
mode participation factors, given by
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nl

xi+ 1 - x. 1

X.
1 - xi-I

xj+ 1 - x.j

TJ m = / 2

X° --

J Xj_l

2

(x) dx
n

Cm (x) dx

(2. 184)

where the ¢(x) are the normalized mode shapes.

By equating

Eq. 2. 183 is rewritten as

[(_icjut (w_ = [t_ni (02] [_)ii_ (02_ [Hjm (02)] (2. 185)

This equation is the matrix extension of the simple relation (Eq. 2. 173) between the

input spectra, the system impedance, and the response spectra.

A representative plot of the response spectrum for point i due to an excitation

spectrum at point j is shown in Fig. 2.37.

¢'4

i l 1 1
_) O0 50 O0

1 2 3 4

¢o (rps)

a. Response Spectrum

l-i

._ _:_

_(rps)

b. Input Spectrum

Fig. 2.37. Response and Input Spectra
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It will be found that the peaks in the response spectrum correspond to system natural
frequencies. The quantity

2
of _out

(t) = Wn_P.. (o_) dce (2.187)
uij U

represents the contribution of all frequencies less than 0¢n to the mean-square response.

By extension, the mean-square response at point i to excitation at all points on the

system is

u 2 u 2 (t)
i (t) = _ ij

(2.188)

Theoretically the integration would have to be extended to infinity to obtain the

mean-square response, but for practical cases the contribution of the power spectrum

to the mean-square value becomes negligible at higher frequencies. For lightly damp-

ed systems, the energy content of the power spectrum is concentrated mainly about the

natural frequencies and falls off sharply to very low magnitudes between them.

The matrix multiplication of Eq. 2. 182 is required for a considerable number of

frequencies to obtain a smooth curve such as shown in Fig. 2.37 for each point. Con-

sequently, it would probably be best not to use a constant interval for the w's but

rather a small interval near resonant frequencies and a considerably larger one be-

tween them.

The above discussion has presented the general form for the solution of mean-

square response. In practice, further assumptions are often made which can greatly

simplify the solution. Ref. 2.37 contains an excellent example of this. In this case

the damping is small so the impedance will undergo a large change near the resonant

frequency ¢Cn; and if the variation in the power density spectrum is of lesser extent in
this vicinity, then the mean-square response can be approximated by

Din( w 2 ¢2"2" _r °_n) n n

u (t) = 2--_-_ _2 3n o3
n n

(2. 189)

where w n is the mode participation of the load and is given by

W
n

L _)in (°°n' xi ) Cn (xi) dx

0

L

f Din (o_a, xi) dx
0
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It now remains to attach statistical significance to the mean-square response. The
assumption of a normal (or Gaussian)probability distribution is quite reasonable for a
random function. The normal probability density function is given by

f (x) = exp - _<x< _ (2. 190)

r 2_ 2

where r is the random variable, x is the range of the variable, # is the mean, and (_2

is the variance. The mean and variance are given by

= x (t) (2. 191)

2 2 m
= x (t) - x (t) (2. 192)

(See Eqs 2. 167, 2. 168, and 2. 188). The cumulative distribution is given by

fY 1 [-(x _)21
P (y) = _ exp (2.193)

r __o 2_ 2

which states that the probability of r being equal to or less than y is Pr(Y)"
sub stitution

If the

is made in Eqs 2. 190 and 2. 193, the density function and cumulative distributions are

normalized, which is the form usually found in tables.

If the excitation has zero mean, then so will the response. In this case, the

variance is

2 2
_. = u. (t)

1 1

The standard deviation of the response is the square root of the mean-square

response, or

ei = (t) (2. 194)

Eqs 2. 190 and 2. 191 can now be used to establish the response corresponding to the

desired probability. For a particular case, data may indicate another probability
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distribution to be more applicable. In that event the expressions for the appropriate
distribution are used in place of Eqs 2. 190and 2. 191. Discussion and information on
probability canbe found in anyhandbookor textbook on the subject.
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A

C

C
C
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D

D(x)

K

L
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I
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M
n

Pr ( )

R
e

S

SD(f)

SL(f)

SDL(f)

V
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Damping

NOMENCLATURE

Critical damping

Aerodynamic drag coefficient for gusts

Vortex shedding coefficient

(see Eq. 3.15)

Reference diameter

Diameter

Coefficient, defined in text

Vehicle length, support to tip

Generalized mass for the nth natural mode

of the vehicle

Generalized mass of the fluid media,

defined as DD 3

Modal bending moment of the first natural

mode of the model

Bending moment at model base

Probability of the statement ( ) being true

Reynolds number, VDp/D

Strouhal number, fD/V

Power density spectrum of the gust velocity

in the drag direction

Power density spectrum of the gust velocity

in the lift direction

Cross-power density spectrum for the gusts

Wind speed

ft 2

lb-sec

ft

lb-sec

ft

ND

ND

ft

ft

adjustable

ft

slugs

slugs

in.-Ib

ft

in. -lb

ft

N.D.

N. D.

N, D,

(ft/sec) 2

cps

(ft/sec) 2

cps

(ft/sec) 2

cps

if/see
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e

V01)

V

2
V

V R

V_7

n

a

f

h

h R

q

U

x

Uniform wind speed equivalent to a non-uniform

profile wind (see Eq. 3.13)

Wind profile (see Eq. 3.1)

Mean wind speed

Mean-square wind speed (see Eqs 3.9

and 3.11)

Mean (or average) wind speed at the reference

height

Mode participation of the load for the nth mode

J_L 12 D V2(x) _n (x) D(x) dx

2 0V2(x) D(x) dx

Ratio of the standard deviation of the random

drag load to the standard deviation of the

random lift load, (YDT/(_LT

g I

Distance between vortices in the Von Karman

Vortex Street

Frequency

Height above ground

Reference height

Gust wave length, VR/f

Dynamic pressure

Displacement

Coordinate along neutral axis

Power density spectra of the square of the

gust velocity (see Eqs 3.10 and 3.12)

ft/sec

ft/sec

ft/sec

(ft/sec) 2

ft/sec

No D,

No Do

ft

cps

ft

ft

ft

lb/ft 2

ft

ft

4
(ft/sec) /cps

CD

E L

Expectation value of the random drag response

Expectation value of the random lift response

ft

ft
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Dummy frequency variable
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in the drag direction
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Standard deviation of the random drag response

Standard deviation of the random lift response
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Normalized displacement of the n mode

Frequency

SUBSCRIPTS

Drag

Equivalent
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Maximum or "3-sigma" value

Mode index
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Steady state
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Vortex shedding

First mode
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3/ GROUNDWIND INDUCEDLOADS

3.1 STATEMENT OF THE PROBLEM

Loads imposed on an erected space vehicle in the launch ready condition ordinari-
ly establish the strength requirements for the aft portion of the vehicle and for its
supporting structure. Contributors to the total load include such factors was weight,
thrust, wind, umbilical line tension, and center-of-gravity offset effects. The de-
termination of most of these loads is straightforward; however, the winds, with their
gustiness and vortex sheddingeffects, require special treatment for response.

The purpose of this section is to discuss the various aspectsof the loads induced
by groundwinds and to present a method of calculating the loads. These loads, when
combined into a resultant or total load, may then be employed either for designpur-
poses or for establishing the maximum wind velocity to which the vehicle canbe safe-
ly exposed.

Fig. 3.1 illustrates the type of vehicle configuration being discussed andthe
principal factors of the problem. An elastic multistage vehicle is shownon its flexi-

OSCILLATORY LIFT

MAXIMUM RESULTANT

STEADYD _R_

OSCILLATORY DRAG "

VORTEX

SHEDD_G

(INDUCED

TURBULENCE)

_J/ STEADY LIFT

UMBILICAL TOWER

/

ATMOSPHERIC

TURBULENCE

UMBILICAL

BOOMS

FLEX_LE

SUPPORT

STRUCTURE

MEAN WIND

SPEED PROFILE

N

MEAN WIND DIRECTION

Fig. 3.1. Factors Contributing to Prelaunch Wind Loads
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blc support structure, with umbilical lines connectedfrom the umbilical tower. The
wind velocity is represented by the profile of the meanwind and its direction azimuth,
uponwhich are superimposed the horizontal componentsof the random turbulence nor-
mal andparallel to the meanwind. Turbulence generated by the flow about the umbili-
cal tower andthe vehicle is indicated by vortex shedding. The response of the vehicle
to the mean andturbulent componentsof the wind is composedof a mean (steady)de-
flection plus oscillatory motion. Thesedeflections can have componentsparallel and
normal to the meanwind direction. The directions parallel and normal to the mean
wind are analogousto the drag and lift directions on an aerodynamic surface and here-
after are referred to as such.

It must be pointedout that the discussion and analytical techniques that follow are
generally applicable only to those vehicles for which wind tunnel data are available.
The effect of nose shape, external piping, and protuberances is such that the vortex
sheddingmay vary by large amounts due to changeswhich, at first glance, might be
considered negligible. For example, it has been shown(Ref. 3.1) that the addition of
a single conduit with a diameter of 1/60 of the vehicle diameter can increase the vor-
tex sheddingresponse by a factor of three whenthe conduit is at the upstream stagna-
tion point on the lower stage. It is apparent that small protuberances cannot be ig-
nored, especially if they are on the forward end. While the current state of the art
does not provide for analytical prediction of the effect of changesin nose shapeor pro-
tuberances, wind tunnel data provide for a qualitative evaluation of relative severity
of configurations.

3.2 HISTORICAL BACKGROUND

The method of treating groundwind induced loads has followed a somewhatdevi-
ous route in its developmentto its current state. Methodshave varied from consid-
eration of only steadydrag to treatments using multipoint random pressure input.
While civil engineers have beenconcernedfor years with the effect of wind on an elas-
tic body, especially since the collapse of the Tacoma Narrows Bridge, this effect was
not fully investigated for missiles until Goldman's investigation for the Vanguard (Ref.
3.2). Since that time, wind tunnel tests have beena part of the developmentprogram
of nearly all launchvehicles.

Following identification of the vortex sheddingproblem during the Vanguardtests,
several programs were initiated to obtain useful data. These included the literature
survey by Midwest Research Institue (Ref. 3.3), which effectively summarized the
literature published prior to 1958; the two dimensional cylinder tests of Fung (Ref.
3.4); the work of Roshko(Ref. 3.5); and a rather comprehensive test program at the
NASAAmes Research Center 12-Foot Pressure Tunnel.

Publication of Fung's work in 1960led to several approachesfor predicting the
vortex sheddingloads onexisting vehicles. Oneof the most prevalent approacheswas
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to use Fung's two-dimensional data (either directly or slightly modified) assuming a
correlation coefficient of unity; i.e., it was assumedthat the fluctuating pressures
were equal in magnitude and phasealong the entire length of the vehicle. The root-
mean-square (RMS)response of the vehicle to Fung's power spectrum was calculated
using the method outlined in Section2.6. This RMSresponse, multiplied by an appro-
priate value to give the desired probability of occurence, was then addedvectorially
to the steady-state drag.

Later tests of scale and generalized models, suchas thoseof Buell (Refs 3.6 and
3.7), Ezra (Ref. 3.8), Gaffney (Ref. 3.9), et al., have donemuch to shed light on a
complex phenomenon. While these tests have not given too much insight into the me-
chanism of the phenomenon,they have identified configurations and factors which
either require further study or which should be avoided in vehicle design. It has, for
example, beenrepeatedly demonstrated that small changesin configuration (e.g.,
either addition or deletion of roughnessor protuberances) can have drastic effects on
the oscillatory load. Further, turbulence shedfrom nearby towers can cause excess-
ive loads as can either an extremely blunt (e. g., hemispherical) or a narrow conical
nose shape. Conduits, cableways, andpiping can also causehigh loads, particularly
whenthese are at the stagnationpoint. (Refs 3.1 and 3.25.)

Becauseof the complexity of the problem, it has beennecessary to conductwind
tunnel tests of each configuration to assess the severity of the vortex shedding. The
test data must then be scaled to the prototype, for which efforts have been madeto
find a simplified approach. The approach taken by Buell (Ref. 3.7) and others is simi-
lar to the methodof handling mechanical systems with random excitation, outlined in
Section2.6. The addition of an aerodynamic damping term to Buell's method, as pro-
posedby Reed(Ref. 3.10), improves the method whenmechanical damping is very low.

The method of treating vortex sheddingproposed by Bohne(Ref. 3.11) requires
power spectra and cross-power spectra of the lift coefficient, or fluctuating pressure,
along the entire length of the vehicle. This requires the acquisition of a large amount
of data. The data reduction task is many times greater than that required for the
method proposed by Buell, although Bohnehas shownthat his method can be simplified
if there are long uniform sections of the vehicle, i.e., so that each section can be
treated as thoughit were in two-dimensional flow. Becauseof the greater data acqui-
sition and reduction task andthe lack of theoretical or empirical techniques for pre-
dicting the effect of configurational changes, it is considered that Buell's method is
the more optimum at this time. Whendata becomeavailable and the mechanism of vor-
tex sheddingbecomesbetter understood, then it should be possible to use Bohne's
methodwithout dependingon individual wind tunnel tests.

The foregoing discussion has beenprimarily concerned with vortex shedding,
which is only one factor of the overall problem. Other factors are steady-state and
gust loads. Steady-state load techniques have not varied significantly over the past 10
years. The effect of atmospheric turbulence, i.e., gustiness, has beendiscussed in
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the literature with various solutions proposed. These discussions have concerned
themselves with the direct effect of the turbulence without trying to predict interactions
with vortex shedding. The solutions have employedvarious gust power spectra and
correlation techniques.

Early treatment of gust loads consisted simply of calculating steady-state drag
basedon the peak wind speedand assuming that this load would encompassany dyna-
mic load. Later, discrete gusts were proposed (Refs 3.12 and 3.13) for which dyna-

mic response could be determined. As random response techniques became more pre-

valent, the use of gust power density spectra became the preferred approach.

Wind gustiness has been studied in a statistical manner only in recent years. The

first such investigations were for aircraft gust loading wherein the emphasis was on

the vertical component. However, erected space-launch vehicles are loaded by the

horizontal components of the turbulence and these data have only recently been made

available in a form suitable for loads analysis (see Refs 3.14 through 3.17). The

work of Lumley and Panofsky (Ref. 3.16) provides a thorough treatment of atmosphe-

ric turbulence. Their bibliography covers the significant literature published prior to

1964. Henry's gust spectrum (Ref. 3.15) has been employed by Fontenot (Ref. 3.18),

Bohne (Ref. 3.19), and others in their treatment of gust loads. The method proposed

by Reed (Ref. 3.10) is similar to Bohne's vortex shedding response method and is a

refinement of earlier treatments in that it accounts for spatial correlation of gusts

along the length of the vehicle.

The method of combining the various components of the load has not been dis-

cussed to any great extent in the literature. Fontenot's (Ref. 3.18) statistical combin-

ation of loads tends to give a combined load that has a lower probability of being ex-

ceeded than do the component loads, e.g., the total load may be exceeded only once in

10,000 cycles when the vortex shedding component is set to be exceeded three times

in 1000 cycles (3-sigma value). The root-sum-square technique for combining random

variables also tends to be conservative when the component loads have the desired

"sigma" level. A method employing a bivariant distribution is presented in Section

3.3.3.2 of this report.

3.3 ANALYTICAL APPROACH

Procedures for ground wind loads analysis require a development of mathematical

descriptions of the applied wind forces and the structure to be analyzed. With these

simulations, a set of equations can be written and solved, using the response solutions

of Section 2, to obtain vehicle loads. Because of the random nature of winds and the

different types of loads (such as steady, vortex shedding, gusts, and others), there is

the added task of combining these loads, obtained from separate response calculations,

into a form that can be used for stress analysis. Procedures and analytical techniques

to be used for loads analysis are discussed in this section.
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3.3.1 REPRESENTATION OF THE WIND VELOCITY AND FORCE. The wind veloci-

ty is a random variable in both time and space. The randomness of the time variation

is evident from the anemometer recording presented in Fig. 3.2. For loads analy-

sis, the wind velocity may be considered as a mean wind averaged over, say, five

minutes, upon which is superimposed the random atmospheric turbulence. The turbu-

lence, or gustiness, may then be represented by the power density spectra of _he com-

ponents that are parallel and normal to the mean wind, i.e., the lift and drag compo-

nents of the gusts. The problem now involves establishing the appropriate represen-

tations for the mean wind and the gust power density spectra.

TIME, t {rain}

Typical Recording of Ground Wind Velocity and Direction

The mean wind profile varies with height above ground due to frictional effects,

temperature gradient, etc. The profile shape recommended uses the power law re-
presentation, viz.,

(3.1)
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where V R is the average wind speed at

reference height h R . This profile ap-

pears to be adequately representative for m

most analyses. The value of V R will vary

for different launch sites and is dependent 150

upon the desired probability of not exceed-

ing the design wind speed. For example, =

Table 3.1 lists wind speeds and their asso- _ ,25

ciated probabilities of not being exceeded o

at two launch sites. These data are from _ 100

Ref. 3.20. The 95-percentile profiles are
:¢

illustrated in Fig. 3.3. _ 75

The gustiness of the wind is represented by
5O

the power density spectra of the fluctuating

velocity. There are several representa-

tions currently in use which are, in the main, 25

curve fit equations based on observed data.

The equations given below, describing the 00

power density spectra of the velocity at a

point along the vehicle, are taken from the

noted references.

E

/

I

_WTR

I0 15 20 25

WIND PROFILE, V(h) (Knots}

Fig. 3.3. 95-Percentile Ground

Wind Profiles

3O

Table 3.1. Average Ground Wind Speeds for Eastern

and Western Test Ranges

E TR WTR

Pr (_/ < VR) = 95% 14 knots 16 knots

Pr (_Z < VR) = 99% 18.4 20

p (_r < 99.9% 23.0r VR) = --

V R

h R

= steady-state wind.

= average wind speed over a two-minute period.

=10ft.
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Drag Component

-4
SD(f) = (1.28 × 10 )

8/3
fV

R

2 4/3

SD(f)
=(5.67 × 10-3)__VR7 tl/3h2f5 tanh

(Ref. 3.14)

(Ref. 3.15)

(3.2)

(3.3)

SD(f) = D

3
-4 V

(3. 036 x 10 ) R

VR D/262.8 +f2

(Ref. 3.10) (3.4)

SD(f ) = (2.15 x 10 -2 ) VR 5/2

Lift Component

+ f2
\2 _h]

(Ref. 3.17) (3.5)

SL(f)

SL(0

V 2 2

= (4.56 xlO -4) VR L3k_.8D/ + f

--1.4 SD(f)

(Ref. 3.10)

(Ref. 3.17)

(3.6)

(3.7)
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The gust power density spectra for the drag componentsare illustrated in Fig. 3.4
for the following conditions:

VR = 10 ft/sec and 40 ft/sec (10-foot reference height)

D = 10 ft

h = 100 ft

f = is in cycles/second

The equation given by Davenport (Eq. 3.2) appears to give the most conservative spec-

trum. It may be simplified for all reasonable values of V R, viz.,

V(_f5R___ ) 1/3SD(f) =(1.28 x 10-4) (3.8)

The wind force is proportional to the square of the velocity, so that the power

density spectrum of the square of the wind velocity is required, rather than just the

power density spectrum of the velocity. Bohne (Ref. 3.19), Fontenot (Ref. 3.18), and

Wood (Ref. 3.21) have derived the spectrum of the drag force, ignoring the lateral

gusts. In a manner similar to that of the appendix of Ref. 3.21, the square of the total

wind velocity at a given height is found to have the form given below.

The mean-square wind velocity, V 2, is

(VR + 2 2 +(_DG) +2 VR2(:r2 G (_4 G
2 2

+ 2 (?DGO'LG

I/2
(3.9)

The power density spectrum, _) (f), is

O0

4 V R SD(f)+ _ SD(X)SD(f-X)dX
O_

f°SDL(X) SDL(I-X)dX+_" SL(X) SL(f-_)dX
(3.10)

The first term in the mean-square velocity and the first and third terms in the spec-

trum will be recognized as the same as those given by Bohne, Fontenot, and Wood for

the drag direction. Bohne and Fontenot have indicated that the convolution integral of

the drag spectrum is negligible, so it can be expected that the convolution integral of

the lift spectrum and of the cross-power spectrum will also be small. The variances

will usually be much smaller than V 2, so that the above expressions can be well

approximated by
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Cross-power density spectra for vertically

separated points are not presented since

these are not, as yet, well defined. It is

known, however, that there is little correla-

tion between gusts at points separated by

more than one-quarter wavelength (Refs

3.14 and 3.17), where the wavelength is

found by dividing the mean wind speed by

the frequency, i.e., X = VR/f. Further,

the cross-power density spectra and the

eovarianee between drag and lift compo-

nents of the gusts have not yet been estab-

lished, although Reed (Ref. 3.10) has de-

rived a theoretical expression for the drag

and lift cress-power density spectra.
Fig. 3.4. Comparison of

Gust Spectra The aerodynamic coefficients for a cir-

cular cylinder in a fluctuating flow are not

well known. Lacking pertinent data, one is left with the choice of using steady-state

coefficients or estimating them. The use of steady-state coefficients is recommended

until more is known about the problem.

Vortex shedding coefficients will ordinarily have been obtained in a wind tunnel

wherein the wind velocity is essentially steady state, i.e., the turbulence is very small

(Ref. 3.10 discusses this subject). The analyst must, therefore, establish an "equiva-

lent" steady-state wind for loads analysis purposes. The equivalent wind should repre-

sent a uniform profile, i.e., V(h) = constant, and produce the same response to vortex

shedding as the real wind. The latter criterion is difficult to establish because little is

known about the effect of gusts on vortex shedding. Therefore, it is not unreasonable

to use an equivalent mean-square wind based on steady-state loads as given below,

V (h) D(h) x(h) dh

V 2 = L (3.13)

e f D (h) x(h) dh
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3.3.2 RESPONSEOF THE VEHICLE TO
GROUNDWINDS

3.3.2.1 Mathematical Model. The mathe-
matical model of the vehicle is given in
Figure 3.5. This simplified model will or-
dinarily be sufficient for groundwind loads
calculations. However, for a large multi-
stagevehicle, or a vehicle with thrust aug-
mentation (strap-ons), a more complex
model may be in order. Mathematical
modeling has beendiscussed in some detail
in Section 2.2.

3.3.2.2 Steady-StateResponse. The
steady-state wind loads on the erected ve-
hicle are determined from the meanwind
and appropriate aerodynamic coefficients.
The meanwind profile has been given in
Section 3.3.1 (Eq. 3.1 and Table 3.1) and
the load equations follow the classical
treatment of static loading of a cantilever
beam.

NODE (i+l)

NODE (1)

NODE (i-l)

_--_------LUMPED MASS

i xi

i xi- 1

I ELASTIC ELEMENT

Fig. 3.5 Typical Mathematical Model

With a perfectly symmetrical vehicle, only drag loads need be considered. When

there are protuberances, or even differences in surface roughness, some lift load will

be developed due to unsymmetric separation of the boundary layer. This lift load will

ordinarily be less than 25 percent of the steady-state drag. However, with a lifting

body payload or highly unsymmetric vehicle, the lift load may equal the maximum

drag load, at certain orientations. Steady-state drag and lift coefficients for typical

symmetrical vehicles may be found in Ref. 3.6.

3.3.2.3 Vortex Shedding Response. Vortex shedding is the terminology generally ap-

plied to any phenomenon wherein the flow of fluid past an object causes "burbles", or

turbulence in the wake. When the object is cylindrical and the Reynolds number,

'is often takes the form of the classicalvery low (<5000) the turbulence very

Von K_rma'n Vortex Street, illustrated in Fig. 3.6. Note that the vortices are shed al-

ternately from each side and that they are periodic. The frequency of the vortex shed-
fD

ding in this periodic case is found from the Strouhal number relationship, S = _-, where

S is on the order of 0.2. When the Reynolds number is supercritical (>>5000), the vor-

tex shedding becomes random and the Strouhal number relationship loses its significance.
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The shedding of the vortices causes fluctu-

ations in pressure near the separation point. This

fluctuating pressure has force components that are

parallel and normal to the approach velocity. The

lift (normS) component is the more significant ef-

fect. If the structure is elastic, the fluctuating

pressures will produce oscillatory motion in the

lift ,and drag direction. Further, if an elastic body

is in the turbulent wake of another body, it will be

excited by that turbulence as well as by its own

vortex shedding. The presence of an umbilical

tower can have a very pronounced effect on the

oscillatory load. The location is usually dictated

by considerations other than load, but if it is

practical, relocating the tower about two diameters

from the vehicle will result in lower loads than at

one diameter (Ref. 3.25). The data of Ref. 3.25

also show that the load can be reduced by increas-

ing the effective width of the tower.

Space launch vehicles are seldom clean bodies

of revolution. Antennas, equipment pods, and

other protuberances have localized effects on vor-

tex shedding that are generally not predictable by

analytical means. Each vehicle configuration should
therefore be tested to determine the vortex shed-

ding effects. The test program should adopt good

modeling techniques, such as discussed in Ref.

 11111

• D L _f

Fig. 3.6. Representation of
I I

Von Karman Vortex

Street

3.22. Briefly, the model should be scaled such that

the Reynolds number VDp reduced frequency,--_ damping ratio, C/C c, and mass
_l n ' bL ,

ratio, , are simulated, and such that geometric features, including roughness, are

properly scaled.

The most usable form of wind tunnel data is the envelope of the drag and lift bend-

ing moments at the model base. This envelope may be obtained by making the two bend-

ing moments the X and Y inputs to an oscilloscope and taking a time exposure of the re-

sultant trace. The trace will have the form of a Lissajous figure with an elliptic en-

velope. The maximum bending moments in the drag and lift directions are then taken

from the time-exposed photograph of the oscilloscope traces.

Data from the various wind tunnel tests indicate that the response is predominate-

ly in the first structural mode. The response equations are therefore written in terms

of only the first mode. The response of the vehicle to the wake turbulence of the um-

bilical tower may include higher modes, which would require a modification of the
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response equationspresented below. Further, it is assumedthat the motion of the ve-
hicle does not affect the aerodynamics. While there is some evidenceto the contrary
(Refs 3.10 and 3.25), it is considered that the proposed method adequatelyaccounts
for this phenomenon.

The maximum lift anddrag loads on the model are sealed to the prototype by use
of the following relationships *(Ref. 3.6):

u <x> 1..... (3.14)
e 2 L 2 ?r V e _lJFull Scale

_1 ¢Cl

CV = L''(M b)l qA2Wl _;D ]Model (3.15)

Eqs 3.14 and 3.15 are applicable to both the lift and drag directions with the appropri-

ate parameters. If the full-scale damping ratio is very low, say on the order of 0.5

percent of critical, the use of an aerodynamic damping term as discussed in Ref. 3.10

may be advisable.

Bohne (Ref. 3.11) presents a method using multipoint random input in terms of

pressures. This method requires cross-power density spectra in addition to the usual

power density spectra. A great deal of data must be obtained and reduced; hence the

test program is more complicated than that of the method presented above.

3.3.2.4 Gust Reponse. Reed (Ref. 3.10) has presented a method of calculating the

response to gusts which includes cross-power density spectra. In this method, the re-

sponse power density spectra have the form of Eq. 2. 181 of Section 2.6, which are

then simplified. However, since the cross-power density spectra have not been veri-

fied, it is probably best to continue using a homogeneous gust-type solution; that is,

assume that the gust envelopes the vehicle. In this case, the mean-square response

has the form of Eq. 2.185 of Section 2.6, viz.,

2 c 2 /1 1
uG (x) = DG t_p7 I._2-_

¢2 ix)W 2 _(fn)
n n

m 2 (217 fn) 2
n

(3.16)

This equation is applicable to both the lift and drag gust components.

*The load equations are written in terms of displacement. Any other item of interest

may be found by the appropriate substitution for ¢ Ix).
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The aerodynamic coefficients for a cylinder in a fluctuating flow are not well
known. It is therefore recommendedthat steady drag coefficients beused for the gust
response, unless more specific data are available. The square root of Eq. 3.16 is
multiplied by three to obtain the "three-sigma" displacement.

3.3.3 RESULTANT RESPONSE. The total resultant load on the vehicle in the launch-
ready condition includes the various groundwind components, the axial gravity load,
loads due to tank pressurization, and, at ignition, thrust-induced loads. Thrust-in-
ducedloads are discussed in Section 4 alongwith the method for combining all the on-
the-pad loads. The axial gravity load and tank pressurization load are determined by
classical static analyses. The manner in which the various ground wind load compo-
nents may be combined is discussed in this section.

The groundwind load is a function of vehicle tanking, as well as a function of the
wind. The loads at the supports will ordinarily be most severe for the fully tanked
vehicle. However, at some other point the loads may be more severe for some parti-
ally tanked condition. To be sure that the worst case has beenfound for the design,
it is advisable to calculate groundwind loads for each possible tanking condition.

3.3.3.1 Equal Probability. Onemethod of com-
bining the individual loads into a resultant is to
vectorially addthe vortex sheddingand gust loads
of the desired probability-of-occurrence level to
the steady-state loads. This technique, illus-
trated in Fig. 3.7, tends to be conservative as
the probability of the resultant beingexceededis
lower than the probability of a componentload be-
ing exceeded. Secondaryloads due to deflection
shouldbe accountedfor.

3.3.3.2 CombinedProbability. Data of Ref.
3.10 indicate that the envelopeof the steady-
state andvortex sheddingloads tends to be an
ellipse. The eccentricity of this ellipse is a
function of the ratio of the vortex shedding
lift anddrag loads. Using the aboveobserved
distribution of load and assuming that the vor-
tex sheddingand gust loads are independent,
normally distributed, andhave zero correl-
ation it is possible to develop a methodwhere-
in the resultant load has the desired probability
of occurrence.

The combination of the random loads in
the lift anddrag direction is assumedto be

SECONDARY AND

MISCELLANEOUSEFFECTS

Equal Probability

Combination of Loads
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boundedby a closed curve R and havethe equation:

2

2 (D _ K 2 2
eL+ 2 o aLT

a

(3.17)

where

aDT
a = --

aLT

= [Sum of the mean-square values of the random drag components] 1/2

= [Sum of the mean-square values of the random lift componentsJ 1/2

The probability of the resultant load (e L, _D) falling within the region R is given
by the bivariant normal distribution (Refs 3.23 and 3.24).

r 2rrGDTfTLT
R

-_ _ +a d_

aLT aDT/J

Ld_D (3.18)

A plot of K ° versus a is shown in Fig. 3.8 for a 99.73-percent probability that (L' _D
is in R. The region R of Eq. 3.17 has the desired properties as illustrated in Fig. 3.9;

i.e., it is circular when aDT = (_LT and degenerates to a univariant distribution when

_DT = 0. The maximum oscillatory lift or drag loads may be found by utilizing

3.6

3.4

M°3.2

3.0

2.8
0

Fig. 3.8.

J

0.2

J

0.4 0.6 0.8
_DT

LOAD RATIO, a = _L'LT

K Versus a for
O

= 0.9973

eL

3.44 _LT (a=l'O)

•
1.0 __a_ 0

Fig. 3.9. Regions Formed for Various

Values of _DT/_LT = a, for

Pr I((D' eL)is in R]

= 0.9973
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Eqs 3.17 and 3.18; that is, (EL)max = KoaLT

and (ED)max = ¢_ Ko aLT, respectively.
When a > I, the ratio may be inverted and

Fig. 3.9 is stillapplicable.

The resultant load is found as indicated

in Fig. 3.10. The center of the ellipse is

biased from the no-load position by the

amount of the steady-state load components.

The maximum resultant load will be a vector

from the origin to a point on the ellipse

whose tangent is perpendicular to that vec-

tor. This point is found by the following

set of equations.

(UD),,na x

uD

"RESULTANT. UDT

uL

4 3 2

+ K 2 + K 3 + uK1 UDT UDT DT

ENVELOPE OF RANDOM

LOADS FOR Pr : 0. 9973

+K 4uDT +K 5 = 0 (3.19)
Fig. 3.10. Statistical Combination

of Loads

where

K 1 = (r - 1)2

K2 = 2r 2 (uDS)(1-r2)

4 r 2 2 2 2
K3 = r (aDS)2+ (uLS) -r (¢ (r 2 -

K4 = 2r4(¢i)2ax(UDs)(1-r2 )

= 6 (¢ 2

(_ L)max
r --

ULT
UDT(r2- 1) +r2(UDs )

(3.20)
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Eq. 3.19 is a fourth order equation andwill therefore yield four roots. For the case
at hand, the four roots are" one maximum, one minimum, andtwo imaginary. The
maximum root is the root of interest. Oncethe resultant drag, UDT is found, it is
substituted into Eq. 3.20 to solve for the resultant lift, ULT. The total resultant is
then

jCuo  2 (3.21)

3.4 CONCLUSIONS

3.4.1 WIND. The statistical variation of the mean wind and the representation of

the profile are adequately defined, and there is reasonable agreement on the power

density spectrum of the gusts. The cross-power density spectra for vertically sepa-

rated drag and lift gusts are required as is the cross-power density spectrum between

the drag and lift gusts. Further, since the vehicle may respond in a steady-state

manner to low-frequency gusts (half-period on the order of 30 seconds), the probabili-

ty of occurrence of the gust wave length should also be determined.

3.4.2 RESPONSE. The general form of the response is well known, even for a ran-

dom force. The real problem here is in defining the forcing function. The total

force applied to the vehicle is complicated due to the fact that it is made up of several,

possible interacting, random forces, in addition to the steady-state force. The general

practice taken in the literature has been to isolate one, or possibly two, aspects of

the overall problem and concentrate on obtaining a reasonable solution to that portion

alone. What is needed is an integrated treatment of the overall problem, in which an

attempt is made to account for all known and suspected force terms and interactions.

Such a solution is not immediately obtainable due to lack of data. Additional research

is required to obtain a tractable solution that contains the effects of all parameters

and their components simultaneously. This solution would then, of course, need to be

verified by full-scale tests.

3.4.3 RECOMMENDED PROCEDURE. Within the scope of the present state of the

art in ground wind loads analysis, it is recommended that the following procedures

be used for design loads.

a. Vehicles that are clean bodies of revolution.

The first requirement is to establish the desired wind speed for design purposes.

This wind speed is determined from the wind data at the launch site and the

desired probability of launching on a specific date.

For the design wind speed, calculate steady-state loads using classical static

loads analysis techniques, the mean-square wind speed of Eq. 3.11 and the wind

profile of Eq. 3.1. Lift and drag aerodynamic coefficients can be obtained from

Ref. 3.6.
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b.

Calculate gust loads using Eq. 3.16, the gust spectrum of Eq. 3.12, and steady-

state aerodynamic coefficients.

Calculate vortex shedding loads using Eq. 3.14 for a wind speed, Ve, and Eq.

3.13. Applicable coefficients can be obtained from Ref. 3.6.

Combine the stead-state, gust, and vortex shedding loads using the methods of

Section 3.3.3.1 or 3.3.3.2. Secondary bending loads, other random loads, and

basic vehicle loads such as weight, thrust, etc., must be included.

Vehicles that are not clean bodies of revolution.

The procedure is the same as for the clean bodies of revolution except for the

vortex shedding loads. It will be necessary to search the literature to deter-

mine or estimate vortex shedding coefficients to be used in preliminary de-

sign. As soon as possible, wind tunnel tests should be run to determine vor-

tex shedding coefficients for the vehicle.
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4/ENGINE START AND SHUTDOWNAND VEHICLE LAUNCH

4.1 STATEMENT OF THE PROBLEM

The largest forces acting on spacelaunch vehicles are those produced by thrust
of the engines. These thrust loads, and attendantlongitudinal inertial loads, design
or contribute to the design of almost every part of the vehicle structure. Longitudinal
load conditions to be analyzedinclude rigid body and vibratory loads at engine start
and shutdown, liftoff from the launch pad, and steady-state loads between these times.
In the case of multiple engines, there exists the possibility of lateral loading induced
by unsymmetrical engine start and shutdown. Also, unsymmetrical launcher release
can cause lateral loads.

The major problems encounteredin the analysis are the adequatedescription of:
1) a longitudinal mathematical model, and 2) the time history of applied forces. The
difficulties in synthesizing the mathematical model are associatedwith the represen-
tation of the propellant in a dynamic model. The procedure of Section 2.2.3 provides
a goodrepresentation for cylindrical tanks but doesnot provide goodmodels for tanks
approaching spheres or oblate spheriods.

Description of applied forces is difficult becauseof the random nature of engine
starting characteristics. These characteristics vary not only amongengines of a
given model, but also amongfirings of the same engine. Two methods of obtaining
design loads are: 1) to determine a worst-case buildup (or decay) curve anduse this
in the analysis for the design condition, or 2) to calculate responsesusing a large
number of engine thrust time histories and obtain design loads from a statistical
evaluation of the calculated responses. In multiple engine systems, the time at which
different engines receive the start (or shutdown)signal has tolerances that addto the
random nature of applied forces. For the liftoff problem, tolerances in engine timing
and mechanical, pneumatic, or pyrotechnic operation of the release mechanism must
be understood for a complete description of forces acting uponthe vehicle.

Vehicle total loads must include those of other sources that can coincide with
thrust forces. Typical examples are groundwinds andwinds aloft, effects of control
system response to vehicle motion, and vehicle design and assembly misalignments.
Combining these loads can be straightforward based onworst-case combinations or it
canbe a statistical combination including the random occurrences of all these forces.

4.2 HISTORICAL BACKGROUND

A dynamic analysis of spacevehicles for their response to thrust forces usually
uses data obtainedfrom enginetests to describe the applied forces and employs
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normal-mode theory in the response calculations. Development necessary for the

analysis has been mostly in the modeling of the propellant and its containers. The

works of Li (Ref. 4.1) and Wood (Ref. 4.2) were among the first attempts to obtain

a model representing the first mode of a cylindrical tank. These works either as-

sumed a rigid tank bottom or test data were available to describe the tank bottom

effects. Pinson in Ref. 4.3 gives methods for obtaining effective spring rates of

the bulkheads at the ends of each tank. Rose (Ref. 4.4) modifies the model by add-

ing the effective spring rate of gases in the propellant tanks. He also proposes a

method for representation of more than one propellant mode. The propellant tank

model development is given in Section 2.2.3.

4.3 ANALYTICAL APPROACH

Analyses to obtain vehicle response to engine transients follow general normal-

mode theory. However, there are several details, not necessary in the general ap-

plication, that are required for satisfactory solutions of responses to these transients.

4.3.1 ENGINE START AND SHUTDOWN ANALYSES. Consider the simple longitudinal

model of Fig. 4.1. Masses 2 through 4 represent major vehicle components, connect-

K 4

q

[
K 3

K]T_KI

Fig. 4. I. Typical

Longitudinal

Model

ed by springs K 3 and K4. Mass 1 is the engine connected

to the vehicle through spring K 2. The vehicle is held to

the ground by spring K 1. The thrust, T, is applied by
the engine. The loads for this condition can easily be

analyzed with normal-mode theory by first obtaining the

modes with the vehicle fixed to the ground and then

writing the equations of motion in terms of normal-mode

coordinates. For the n th mode,

Q (t)

_'n+2_nO 2 _ +a2_ = n....p.._ (4 1)n n n n m
n

wherein the product of instantaneous thrust and the modal

displacement of the engine is the generalized force, Qn(t).
Simultaneous solution of the "n" equations and use of

either mode displacement or acceleration methods will

give vehicle load and acceleration distributions. The

loads due to gravity must be added to obtain total loads.

Such is a typical analysis for engine thrust buildup on a vehicle held to ground by

a "launcher." An analysis for engine shutdown in the launcher can be approximated

by the same procedure but with the force time history equal to full thrust minus the

thrust decay, That is, if the decay is represented by T(t) of Fig. 4.2 then the force

time history used in the analysis is T o - T(t) as shown in Fig. 4.3. This represen-
tation would give good results for the transient loads.
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T

TIME

Fig. 4.2. Thrust Decay Time History

T

Fig. 4.3.

The exact solution for the shutdowncondition
shouldconsider the vehicle under its distributed
loading at the time of shutdown. For the vehicle
of Fig. 4.4, these applied forces are the weight
andthrust, as indicated. The time histories of
these forces are given in Fig. 4.5, where T iso
the full thrust and T(t) is the thrust decay. The
weights remain constant.

The thrust andweight time histories imply
step functions at t=0. To eliminate this "step
function" it is required to have initial conditions
equal to the static deflections under loads mig
and T. Thesedeflections are obtainedfrom

__o - T(t)

TIME

Equivalent Thrust Decay
Time History

m4g
K4

m3g
K3

m2g

mlg

D

:K 1

I
The solution is executed in terms of

normal mode coordinates _n" Therefore,
it is necessary to represent initial condi-

tions in terms of normal coordinates.

Since

{x] = [¢] [_] (4.3)

then

(_] = E¢_ -1 {x] (4.4)

T

T

Fig. 4.4. Longitudinal Model

and Forces for

Engine Thrust Decay

TIME

m4g

m3g
m2g

mlg
D

Fig. 4.5. Time Histories of Applied

Forces During Engine

Thrust Decay
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Initial deflections in terms of _ can also be obtained directly from Eq. 4.5.

[_} = [r_ -I _'co2_ -1 [¢]' [F} (4.5)

The initial conditions and force time histories are now defined and the solution can

be effected. Total loads, including gravity, for engine start could be similarly

simulated.

The analyses for inflight engine start and shutdown are similar except that free-

free modes replace the fixed modes, the applicable rigid-body modes must be included,

and the force due to gravity is replaced by the inertial force of m i x, where _ is the

steady-state acceleration under thrust.

4.3.2 LIFTOFF ANALYSIS. Liftoff analysis introduces several additional consider-

ations since it involves a model transition from "fixed" to "free" and also entails

changes in the model such as elimination of the launcher. The procedure for liftoff

analysis is indicated by the case of a free launch, i.e., a vehicle held down only by

gravity, which will lift from its launcher when the thrust exceeds the weight. Fig.

4.6 presents a simplified model of vehicle and launcher. The analysis begins with the

fixed model in Fig. 4.6a and proceeds as in the buildup and decay analysis above.

When the force in K 1 is zero, then the vehicle is free and the analysis switches to the
free modes of Fig. 4.6b. Because of oscillations, the vehicle and the launcher can

make contact after initial liftoff; to represent this chatter condition the fixed modes

of the launcher alone are required. The system is defined by two sets of modes, fixed

and free:

: K4

m3g
: K3

m2g _-'-_ ',_K

KI' _

msg _ _ mlg

m4g _K 4

m3g _-_K 3

m2g _

mlg _@ K2

a. Fixed b. Free

Fig. 4.6. Longitudinal Liftoff Models

4-8



{xvL} (fixed modes) (4.6)

{::} 011, / (free modes) (4.7)

where Xv, x L are displacements of the vehicle and launcher, and CV are free-free

(including rigid-body) modes of the vehicle and ¢L is the fixed mode of the launcher

by itself.

The force in spring K 1 is zero when the relative deflection between masses 2 and

5 is greater than or equal to zero. Computerized monitoring of this quantity deter-
Initial conditions for the second setmines the time of switching between mode sets.

of mode shapes are obtained by

i°]
(4.8)

The solution then continues with this set of modes. Forces and accelerations are ob-

tained by either the mode-displacement or mode-acceleration method.

Simulation of an instantaneous release launch is achieved by obtaining initial

conditions for the free-free vehicle modes under the thrust, the gravity, and the

launcher forces. The forces in the response solution are the thrust and weight time

histories. The inclusion of the launcher forces in the initial displacements, but with

omission of launcher forces in the response solution, provides the force step-function

of instantaneous launcher release. If the launcher force is applied at the same point

as the thrust forces, then the solution follows the same procedure, with liftoff being

represented by a step change, equal to the launcher force, in effective force at the

point of engine-launcher force application.

A controlled-release launch is more complicated since it must include the mech-

anics of the control. It is often sufficient to follow the procedure of the instantaneous

launch with the force time history of launcher load release applied to the free-free

modes. This treatment is an approximation because the vehicle is not free until the

launcher force is zero. A detailed analysis, with representation of the launcher

mechanism modeled, is necessary if loads for this condition are surmised to be

critical. The significance of these loads can be investigated by assuming various re-

lease time histories for evaluation of important parameters.

4.3.3 LATERAL LOADS. Lateral loads during engine start, shutdown, and vehicle

liftoff are caused by misalignment of the thrust vector, unsymmetrical start and shut-

down in the case of a multiple engine system, and unsymmetric launcher release. The
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analytical approach is identical to that for longitudinal loads with moments and lateral

forces replacing the axial forces and, of course, a lateral model replacing the longi-

tudinal model. For thrust misalignment the generalized force in the n th mode is

n

Qn (t) = CE F(t)

where ¢_ is the modal deflection at the point of thrust application and F(t) is the lateral

component of the thrust vector. In the case of unsymmetrical engine start the general-

ized force is

n

Qn(t) = a E M(t)

where _E is the modal slope at the point of thrust application and M(t) is the product
of differential thrust and the distance of the engines from the eenterline of the vehicle.

At liftoff, M(t) is the moment due to unsymmetrical release. The analysis then fol-

lows the mechanics of the longitudinal loads analysis. For most practical systems

the lateral deflection due to center-of-gravity offset and gravity can be ignored in the

computation of lateral transient loads.

4.4 ILLUSTRATIVE EXAMPLES

Typical analyses and results of engine start and shutdown and vehicle liftoff are

presented in this section. The Atlas/Centaur/Surveyor vehicle has multiple engine

systems in both the Atlas and Centaur stages. The Atlas stage has three engines, two

engines with high thrust called booster engines, and one engine, the sustainer engine,

of lower thrust. The booster engines, which are more efficient at sea level, are

jettisoned at high altitude and flight is maintained by the more efficient sustainer

engine (shutdown and jettison of the booster engines also reduce the maximum axial

acceleration as propellant is depleted). The Centaur stage has two engines of nominally

identical performance.

4.4.1 MATHEMATICAL MODELS. Models shown in Figs 4.7 and 4.8 are the longi-

tudinal models that will be used for: 1) engine thrust buildup on the launch pad, 2)

liftoff, and 3) sustainer shutdown. The model forward of Mass 11 is identical for all

three conditions except for a reduction in Masses 5 and 7 to include the effect of

jettisoning the nose fairing and insulation panels prior to sustainer engine shutdown.

The spring-mass systems attached above Mass 4 represent Surveyor spacecraft modes

that are coupled with totaled vehicle modes using the analytical techniques described

in Ref, 4.5. The masses include structure and propellant as indicated in the figures.

Spring constants for the LH 2 tank are obtained by application of the cylindrical tank

model developed in Section 2.2.3. The model for the Centaur oblate spheroid LO 2
tank is obtained from test data interpreted to fit a cylindrical tank model. For pur-

poses of this example the ullage pressure effects are not included and the bulkhead is

assumed to be rigid.
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Below Mass 11 the models for on-the-pad transients and for liftoff are the same

except that the launcher has been eliminated for liftoff when the analysis is performed

with free modes. In this model the propellant tank representations are as developed

in Section 2.2.3. Again ullage pressure effects are omitted and the bulkhead is as-

sumed to be rigid. That part of the fuel in the conical section of the tank is assumed

to be a rigid mass lumped with structure at Mass 17. The sustainer engine (Mass 18)

is connected to Mass 17 by spring rate AE/L of the conical tank structure. The

booster section and its engines (Mass 19) are attached by a spring, the stiffness of

which was determined from tests. The launcher-arm mass is included with Mass 19,

since it is rigidly attached to the booster and the effective spring rate (19-20) of the

launcher is below the arms. The remaining launcher mass is represented at Mass 20,

which is connected to ground. The spring rates 20-19 and 20-21 were obtained from

static load-deflection tests. For the liftoff condition the masses of LO 2 and fuel are
slightly reduced, the mass of the launcher arm is removed from Mass 19, and the

vehicle is "freed" (spring 19-20 and the model below are omitted). The modal fre-

quencies and generalized masses are given in Table 4.1.

The sustainer shutdown model has eliminated Mass 19 because it was jettisoned

earlier in flight. The fuel is depleted to the extent that all of it is in the conical sec-

tion. The spring between the conical section and the intermediate bulkhead is the

AE/L of the cylindrical fuel tank. The LO 2 level has subsided to Station 918 and the

model between Stations 918 and 960 is obtained from Section 2.2.3 by considering the

propellant tank extending from Station 918 to 960. The spring from nodes 12 to 11 is

the AE/L of the cylindrical tank above Station 918. The modal frequencies and gen-

eralized masses corresponding to the representation are given in Table 4.2.

Development of the lateral model of Fig. 4.9 is a straightforward process fol-

lowing the guidelines of Section 2.2. The spring-mass systems attached at Station 173

are derived from modal vibration surveys of the spacecraft. Aft of Station 1133 the

model follows two paths, one down the conical portion of the tank to the sustainer

engine, the other down the wall of the booster engine section. The wall of the booster

section is represented by Masses 46 and 54-59. Masses 60-62 represent the thrust

beam, with effective spring rates to the booster wall of K F (60-54) and KA (62-56).

Mass 63 is the vehicle side of the gimbal point, and Mass 64 is the engine side. The

rotational spring between 63-64 is the effective rotational stiffness of the engine

actuator system and backup structure, while the lateral spring, 63-64, is the effec-

tive stiffness, normal to the thrust axis, of the gimbal block. For convenience, the

masses and springs of the two engines are lumped as one. The vehicle is tied to

ground by the experimentally determined launcher spring rates between Masses 70

and 71. Tables 4.3 and 4.4 list the stiffness element data and weight data pertaining

to the lateral model of Fig. 4.9. The modal frequencies and generalized masses for

the lateral model are given in Table 4.5.
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Table 4.2. Longitudinal Modal Frequencies and Generalized Masses for Sustainer

Shutdown Condition

MODE GENERALIZED MASS FREQUENCY

NO. 0b-sec2/in.) (cps)

1 142.3 0

2 0. 0003580 8.44

3 0.4123 16.40

4 0.001115 16.78

5 0. 005482 23.42

6 1.737 30.30

7 0.3638 33.64

8 0. 002060 35,88

9 1. 169 39.16

10 0.3107 40.39

11 0,009863 48.00

12 18,44 51.00

13 0.000005655 51.75

14 0.05187 57.62

15 5. 122 87.52

16 33.13 89.26

17 1.642 148.8

18 5. 544 163.5

19 0,001556 189.6

20 2. 195 368.9

21 3. 123 643.3
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Table 4.3. Atlas/Centaur/Surveyor Lateral Model Weight Data

NODE

NO.

1

2

3

4

5

6

7

12

13

14

15

16

17

18

19

20

21

69

66

67

68

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4O

STATION

(in.)

-20

10

50

100

145

173

200

173

192

200

219

250

280

315

345

375

412

388

438

453.5

477.7

438

47O

5O0

525

555

57O

60O

630

667

696

725

754

784

812

840

871

900

929

960

WE IGHT

(Hundreds

of pounds)

1.933833

1.489122

1.739427

2.432240

4.121724

3.22951O

3.028173

7.576172

2 874967

3.685906

11.310

11.118

11.635

11. 188

10.4267

9.2762

112.686

51. 7704

61. 54664

10.96110

8. 1286

2. 079684

1.912255

2. 191229

3. 124462

24. 17955

98.44672

132.0887

147.1717

144. 9370

127.2731

127. 1857

129. 5109

127. 1721

122.6780

129.3658

131.6285

125.0831

89.67365

99.33865

MOMENT OF

INERTIA NODE STATION

(lb-in. 2) NO. (in.)

41 992

42 1025

43 1057

44 1090

45 1122.5

46 1133

47 1150

395,280 48 1160

49 1180

50 1198

51 1210

52 1210

53 1240

54 1160

55 1176

56 1206

57 1212

58 1242

59 1267

70 1190

71 1190

60 1160

61 1176

62 1206

63 1212

64 1212

101 70.24

102 78.91

103 -2.22

104 131.87

110 115

76 203.88

77 383.7

1 78 573.1

79 950.6

1 80 203.88

81 383.7

82 573.1

83 950.6

65 1242

WEIGHT

(Hundreds

of pounds)

104. 2039

104.2527

104. 1664

103.3811

69.42969

46. 27086

37. 80067

28.46361

19. 06233

6.795801

3. 585753

0.0

11. 150

3.27047

8.8812

13.05785

11.47866

7. 56912

6.25061

0.0

0.0

0.0

2.0

0.0

0.0

0.0

0.74729

0.26777

0. 000085

2. 3902

17.6685

3.644

33.245

101. 546

52. 066

0.0

0.0

0.0

0.0

1846.0

MOMENT OF

INERTIA

(lb-in. 2)

884,400

28,000

1,707,288
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Table 4.4.

_EGINNING ENDING

NODE NODE

101 12

102 12

103 12

104 12

110 12

1 2

2 3

3 4

4 5

5 6

6 7

7 15

12 13

13 14

14 80

80 15

80 76

15 16

16 17

17 18

18 19

19 20

20 21

81 69

81 77

69 21

21 66

66 67

67 68

21 22

22 23

23 24

24 25

25 26

26 27

27 82

82 28

82 78

28 29

29 30

30 31

31 32

'YPE

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

TS

B

B

B

B

B

B

B

TS

B

B

B

B

B

B

B

B

B

B

B

B

TS

B

B

B

B

Atlas/Centaur/Surveyor Lateral Model Stiffness Element

Data

EI AT

BEGINNING

NODE OR

SPRING CONSTANT

(lb-in. 2 lb/in.,

or lb-in./rad)

1.95251 +08

2.14179 +08

8. 72389 _08

7. 29353 +08

1.0 +14

0.5 +10

1.0 +I0

3.0 +I0

7.5 +10

14.0 + 10

14.0 +10

14.0 +10

4.5 +10

7.00 +10

11.0 +10

16,20 +10

11,31

25.5 +10

25.5 +I0

25.5 +i0

25.5 +10

25.5 +i0

25.5 +10

10.0 +10

178.94

14.0 + i0

32.0 +10

10.5 +i0

56.5 +I0

43.5 +10

43.5 +I0

43.5 +I0

43.5 +10

43.5 +10

43.5 +I0

25.6 +i0

25.6 +10

441.9

25.6 +10

25.6 +10

27.6 +10

31.2 +10

El AT

ENDING NODE

(Ib-in.2)

1.95251 +08

2. 14179 +08

8. 72389 +05

7.29353 +08

1.0 +14

1.0 +I0

3.0 +i0

7.5 +I0

14.0 +10

14.0 +10

14.0 +I0

14.0 +10

16.7 +I0

11.0 +10

16.20 +I0

25.0 +10

25.0 +10

25.5 +10

25.5 +10

25.5 +10

25.5 +10

25.5 +10

15.0 +10

25.5 +10

10.5 +10

18.2 +10

6.28 +10

43.5 +10

43.5 +10

43.5 +10

43.5 +10

43.5 +10

43.5 +10

25.6 +10

25.6 +10

25.6 +10

25.6 +10

27.6 +10

31.2 +10

KAG AT

BEGINNING NODE

(Millions

of pounds)

0.3

0.5

0.7

1.5

2.5

2.5

2.5

10.5

19.0

20.5

25.1

28.9

28.9

28.9

28.9

28.9

28.9

21.0

22.58

37.5

30.0

214.0

45.5

45.5

45.5

45.5

45.5

45.5

29.0

29.0

29.0

29.0

31.0

35.0

KAG AT

ENDING NODE

(M ill ions

of pounds)

0.5

0.7

1.5

2.5

2.5

2.5

2.5

19.0

20.5

25.1

22.7

28.9

28.9

28.9

28.9

28.9

28.9

22.5

29.0

30.0

15.0

21.4

45.5

45.5

45.5

45.5

45.5

45.5

29.0

29.0

29.0

29.0

31.0

35.0
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Table 4.4. Atlas/Centaur/Surveyor Lateral Model Stiffness Element

Data, Contd

BEGINNING

NODE

32

33

34

35

36

37

38

39

83

83

40

41

42

43

44

45

46

47

48

49

5O

51

51

52

46

54

55

7O

7O

7O

56

57

58

54

56

6O

61

62

63

63

64

E NDING

NODE TYPE

33 B

34 B

35 B

36 B

37 B

38 B

39 B

83 B

40 B

79 TS

41 B

42 B

43 B

44 B

45 B

46 B

47 B

48 B

49 B

5O B

51 B

52 RS

52 TS

53 B

54 B

55 B

70 B

56 B

71 RS

71 TS

57 B

58 B

59 B

60 TS

62 TS

61 B

62 B

63 B

64 TS

64 RS

65 B

EI AT

BEGINNING

NODE OR

SPRING CONSTANT
2

(lb-in. , lb/in.,

or lb-in./rad)

EI AT

ENDING NODE

(lb-in. 2)

32.9

34.8

34.8

34.8

36.6

38.4

42.0

44.0

44.0

241.0

47.6

47.6

49.6

51.3

53.2

62.2

46.0

34.0

39.0

6.5

1.5

1.2

0.92

2.0

88.0

83.0

88.0

89.0

2. 738

2.222

33.8

33.7

33.4

1.2

1.5

1.0

1.0

1.0

1.0

8.55

1.0

+10 32.9 +10

+10 34.8 +10

+10 34.8 +10

+10 34.8 +10

+10 36.6 +10

+10 38.4 +10

+10 42.0 +10

+10 44.0 +10

+10 44.0 +10

+10 47.6 +10

+10 47.6 +10

+10 49.6 +10

+10 51.3 +10

+10 53.2 +10

+10 62.2 +10

+10 34.0 +10

+10 27.0 +10

+10 6.5 +10

+10 1.5 +10

+10 1.5 +10

+O7

+09

+12 2.0 +12

+10 83.0 +10

+10 88.0 +10

+10 89.0 +10

+10 90.0 +10

+09

+O5

+10 33.7 +10

+10 33.4 +10

+10 33.0 +10

+05

+O5

+12 1.0 +12

+12 1.0 +12

+12 i.0 +12

+10

+07

+12 1.0 +12

KAG AT

BEGINNING NODE

(Millions

of pounds)

37.5

39.5

39.5

39.5

41.5

43.5

47.5

49.8

49.8

54.0

54.0

56.0

58.0

60.0

70.5

47.5

47.5

63.0

25.0

10.0

i000.0

105.0

107.0

118.0

121.0

18.0

18.0

18.0

500.0

500.0

500.0

500.0

KAG AT

ENDING NODE

(Millions

of pounds)

37.5

39.5

39.5

39.5

41.5

43.5

47.5

49.8

49.8

54.0

54.0

56.0

58.0

60.0

70.5

47.5

45.0

25.0

10.0

10.0

1000.0

107.0

118.0

121.0

125.0

18.0

18.0

18.0

500.0

500.0

500.0

500.0

NOTE: Symbols in third column indicate B= Beam, TS= Translational Spring, RS -= Rotational Spring.

Values on the right side of the fourth and fifthcolumns indicate powers of 10, i.e., 1. 95251 ×108.
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Table 4.5. Lateral Modal Frequencies and Generalized Masses For Thrust

Buildup Condition

MODE GENERALIZED MASS FREQUENCY

NO. (lb-sec 2/in. ) (cps)

1 63.12 0.315

2 0.9614 0. 553

3 36.05 0.668

4 21.86 0.675

5 10.36 0.750

6 28.26 1.85

7 19.07 4.51

8 8.666 6.93

9 6. 572 7.7O

10 0.2075 8.44

11 7.264 9.13

12 8.944 10.12

13 2. 079 11.88

14 8.995 13.91

15 0. 07172 16.83

4.4.2 LONGITUDINAL LOADS

4.4.2.1 Engine Start on the Pad. The analysis for this condition uses the longitudinal

model of Fig. 4.7. For longitudinal load analyses the initial deflections due to gravity

were calculated and used as initial conditions for the response solution. Gravity forces

on each mass were also imposed for the response solution to obtain total loads, in-

cluding gravity. The engine forces used are shown in Fig. 4.10. These engine thrust

buildup curves are envelopes of maximum buildup rates and peak thrusts obtained

during manufacturers test runs. (The buildup analysis could be done without gravity

forces and initial deflections. The gravity loads would then be added to the transient

loads. )

The results of the response calculations using Adam's method of Section 2.4 are

given in Figs 4.11 and 4.12. The transient acceleration at the Centaur/Surveyor

interface, Station 173, is shown in Fig. 4.11. (The acceleration does not include

gravity. ) The normal-mode-coordinate displacements in Fig. 4.12 show that the re-

sponse is primarily in the first four modes. Fifteen modes were used in the analysis

but only the first eight are plotted. The initial deflections and gravity loads are seen

represented at time zero.

4.4.2.2 Vehicle Liftoff. Liftoff analysis is undertaken using the free-free modes of

the model in Fig. 4.7. Initial deflections due to thrust, gravity, and launcher forces

are calculated and used as initial conditions. In the response solution the gravity
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forces are applied to each mass, the steady

engine thrusts at Masses 18 and 19, and the

launcher force at Mass 19. The time history

of the net launcher force is given in Fig.

4.13. The net launcher force is the sum-

mation of four forces exerted by the launcher
on the vehicle. These forces are the hold-

down launcher arm force, the auxiliary

launcher-arm force, the rise-off disconnect

force, and the inertial force of the launcher

arms. Initially, all these forces are acting;

however, as the vehicle moves upward, all

are removed. The holddown launcher-arm

force is the force exerted by pneumatic cy-

linders (in the Atlas system) to restrain

the vehicle. To accomplish the vehicle re-

lease the pressure in the cylinders is re-

leased. When the pressure drops below that

required to restrain the vehicle the vehicle

begins to move upward. When the pressure

has dropped sufficiently the arms are
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disconnected. In Fig. 4.13, vehicle motion begins at 0.1 second and the arms are

disconnected at 0.6 second. The step at 0.6 second represents a small residual pres-

sure at arm disconnect. The auxiliary arm force is a constant upward force for the

first 0. 102 second of motion and is then rein oved. This removal is seen at 0.202

second in Fig. 4.13. The rise-off disconnect force is a constant upward force for the

first 0. 164 second of motion. Its removal is seen at 0.264 second in Fig. 4.13. The

weight of the launcher arms is a downward force; it is assumed constant from 0 to

1.0 second.

With the model and applied forces described, the response is calculated using

Adam's numeric integration. The acceleration at Station 173 is shown in Fig. 4.14

and the normal-mode-coordinate displacements are given in Fig. 4.15. in contrast to

the thrust buildup condition, there is significant response in higher modes caused by

the abrupt changes in the applied force.

4.4.2.3 Inflight Engine Shutdown.

Engine shutdown in flight is illustrated with
80

the model of Fig. 4.8. The initial conditions
for this analysis are the quasi-steady in- g_
ertial loads on the masses, the sustainer

Z

thrust at altitude, and the associated de- _ 40

flections. The sustainer engine shutdown

characteristics are given in Fig. 4.16, __ 2o
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which is taken from test data. The ac-

celeration at Station 173 is given in Fig.

4.17 and the normal-mode-coordinate

displacements are shown in Fig. 4.18.

It should be noted that the results apply

only while vehicle is under some thrust.

As the thrust drops, the energy in the

structure supporting the propellant will

give the liquid a velocity relative to the

tank. At some time, the propellant is

moving inside the tank without physical

contact longitudinally. When this "free

fuel" situation occurs a new mathematical

model is required. Generally, the items

of significance are the peak transients,

which are valid. (The propellant velocity

at the time the acceleration of the liquid

becomes zero will give initial conditions

for the liquid under zero g conditions.)

4.4.3 LATERAL LOADS. Lateral loads

have been calculated for the condition of

differential buildup of engine thrust. The

applied loads are the result of lateral com-

ponents of the thrust vector and differential

thrust of the two engines. For this ex-

ample it is assumed that there is no thrust-

vector misalignment. The moment due to

unsymmetric engine start has been obtained

by taking the differential thrust of the two

engines in an actual firing and multiplying

by the lateral distance from the vehicle

centerline of the engine support point. The

associated moment time history is shown

in Fig. 4.19. Applying this moment at

Mass 57 of the lateral model in Fig. 4.9

provides the necessary description of ex-

citation to proceed with response calcu-

lations. Results are shown in the graphs

of Figs 4.20 and 4.21. The normal-mode-

coordinate displacements are shown in Fig.

4.22.
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4.5 DISCUSSION

From the preceding examples it is evident that the thrust-transient loads analyses

are relatively straightforward after the mathematical model and applied forces are

defined. Comments on the model development are given in Sections 2.2.3 and 4.4.1.

In this discussion comments will be related to applied forces, resulting loads, and

combinations of loads. Special considerations to be examined for vehicles include

engine-vehicle stability and high-frequency transients. It must be remembered that

these comments are general and that often in practice what could be done and what is

done are dependent on schedule, available information, and relative importance of

various aspects of the total vehicle program. As an example, design loads can be

determined from worst-case combinations or from a statistical evaluation of all the

loads. From a schedule standpoint, it may not be possible to gather all the data

necessary for a statistical study (or the data are just not available) to provide design

loads; therefore, the expedient and conservative worst-case combination approach is

indicated.

Other problems, such as Pogo (discussed in Section 4.5.5), have occurred on

some vehicles but not on others. Possible behavior of this nature should be examined

in enough detail such that the probability of surprise is small.

4.5.1 ENGINE FORCES. Liquid-propellant rocket-engine characteristics during

starting and shutdown are dependent on propellant temperatures, head pressure,

manufacturing tolerances, and other parameters. As a result, the engine thrust

buildup and decay curves have significant variations from run to run on one engine

and also among different engines. These variations are compounded with launch ve-

hicle configurations using multiple-engine systems because timing delays, variations

in plumbing, thrust-vector alignment, and variations in engine performance all have

tolerances. No single thrust time history accurately describes the propulsive excitation

applied to the vehicle. For longitudinal loads analyses, either of two basic approaches

is used to derive the design loads. In the first approach, a few response analyses are

made with typical thrust time histories to determine significant parameters. From

this preliminary analysis with available thrust time histories, a synthetic force time

history is developed to represent a worst-case envelope. The significant parameters

are usually rise rate, peak transient thrust, and frequency content. The envelope so

derived is then used for loads analysis.

The second approach is a statistical study of response to a large number of thrust

time histories. A response analysis is performed for every available (or a very large

sample) thrust time history, or in the case of multiple-engine systems, combinations

selected at random. A statistical study of the response will then give the mean and the

variance of loads from which design loads are specified. This approach involves the

expenditure of considerable execution time which must be repeated whenever there is

a significant design change in the vehicle.
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Inputs for lateral responses are obtainedby similar procedures. Thrust mis-
alignment canbe the maximum allowed by the manufacturer or it canbe a statistical
distribution of the tolerance. With multiple engines, there is the addedconsideration
of combining the direction of misalignment of individual engines. Also, with multiple-
engine systems, the enginesundoubtedlywill have different thrust time histories which
will produce a time-varying application of moment to the vehicle. Establishment of the
thrust differential constituting the applied momentmay, again, be developedfrom
worst-case combinations. A Monte-Carlo technique, using enginetest curves selected
at random, can provide a methodfor describing the response statistically. The vari-
ation in the time at which the different engines receive the start signal must also be
considered in establishing meaningful boundson the differential thrust. In general,
secondary loads, such as produced by lateral response to thrust-vector misalignment
and differential engine thrust are small comparedwith total loads on the vehicle. A
worst-case simulation is often adequatefor establishing a "design" load associatedwith
the mode of "loads addition." For somevehicles, the start time is deliberately stagger-
ed to reduce transient effects. The staggered start time must be examined in great de-
tail, including performance tolerances in the separate engine systems, to obtain the
system-peculiar loads criteria defining input forces andresponse. It is, indeed,
possible to select a staggered start which will reduce vehicle elastic response, but is
it also possible to select a start sequencewhich will result in more critical loads than
a simultaneous start with random engine characteristics.

The reduction in transient longitudinal load by staggeredstart or by statistical
study of responsecan be significant in designingcertain parts of the vehicle andlauncher
system. It is necessary to examine all the relevant loading conditions during vehicle
life and then to establish a compatible structural design. An evaluation of this type often
determines the detail of the analysis. Also, other phenomenamay be a controlling
variable. As an example, a simultaneous start of all enginescan produce pressure
waves in the exhaust ducts which could be harmful to the vehicle. The design signifi-
canceof the pressure wave is subject to reduction by a staggered start. This considera-
tion could be the predominant factor in deciding betweenstaggered andsimultaneous
starts and could be important in establishing the stagger time. Deciding what has to be
doneand what canbe doneis often more difficult than performing the analysis.

4.5.2 METHODOF LAUNCH. Two methods are employedfor launch of space ve-

hicles. Most commonly, a vehicle is held down until its engines are at full thrust.

It is released at some specified time interval after full thrust. The release is com-

monly "instantaneous" or "controlled." One other method is the "free launch," where-
in the vehicle is not held down and will lift off when the thrust is equal to the weight.

The holddown is used for almost all space launches, while the free launch is used in

weapon systems. Free launch eliminates complicated launcher and control mechanism

and thus is better from maintenance and operations standpoints. Holddown permits

abort if initial engine and vehicle operation is not satisfactory. Thereby, it adds a

safety factor in the success of a specific payload mission.
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Advantagesanddisadvantagesbetweenthe two methods related to vehicle loads

are dependent on vehicle and engine characteristics. With a holddown, minimum

tr_msient loads are incurred during engine thrust buildup if the launcher tiepoints are

close to points of engine load application and the stiffness of the launcher is great so

that most of the thrust forces are reacted by the launcher with small deflection. The

same effect is obtained in a free launch system if the vehicle structure from the engine

to the ground support point is very stiff. This permits a transition from gravity loads

being supported by ground to support by engine thrust without significant change in de-

flections and, in turn, no large transient loads to upper parts of the vehicle.

The liftoff loads are determined by the rate that thrust minus launcher forces

exceeds the weight of the vehicle. An instantaneous release would give a step change

and the most severe liftoff transients. The free launch would give a liftoff transient

determined by the engine thrust time history. One disadvantage of free launch is that

the engine buildup and liftoff transients are in fact one condition. With a holddown

these transients are separated slightly and some relief, due to damping and phasing,

can be expected because of the time interval.

In general, a holddown and controlled release will result in minimum vehicle

loads. The amount of load reduction will depend on the vehicle and launcher character-

istics. Indeed, launcher characteristics can be specified as a function of vehicle loads.

These characteristics may be effective spring rate, tie-down point, and rate and stroke

of release.

4.5.3 COMBINATION OF LOADS. A complete description of loads at engine ignition

and vehicle liftoff would include longitudinal and lateral steady-state and transient

loads discussed in the preceding sections, wind loads, vehicle misalignment or center-

of-gravity offset, vehicle loads incurred due to controlling the vehicle, or any other

load that is imposed at this time. Adding the worst-case conditions of all the above

loads is often used to obtain the total load. Certainly for ground equipment this is

the only reasonable approach. For parts of the vehicle designed by this total load

some weight saving could be gained by statistical combination of loads but, generally,

the weight saving is small in terms of pounds of payload and the applied forces are

not too well described so that a good statistical analysis cannot be made. Therefore,

it is recommended that worst-case combinations be used to specify design loads for
vehicles.

There are occasions when a designed vehicle is to be used with a new stage or

payload. In order to minimize modification costs it may be necessary to determine

whether the vehicle is able to sustain the loads. In this case the reduction in load by

a statistical combination of loads is justified.

For purposes of statistical analyses the loads to be combined are assumed to be

independent and normally distributed. The quantities required for analyses are (from

Ref. 4.6)
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17r average of load r (mean)

a - variance or standard deviation of load r
r

_2
_Tr = square of the mean

--2 e second moment (mean square)
rl r

-_ 2 2
_r = r_r + ar

Probability theory shows that for any number of random variables _r, the combined

values rl are obtained by

_-2 = _rrlr +_Z;_rrs _s[r_s

a2 _- ___2

2 _ _ -2: _ +_ +_r_slr_s r'r-_s_r_slr_sr r r s r

2
=_

r r

The three-sigma combined load is then _ + 3a.

As an example, consider combining vertical and lateral loads due to thrust rise

with ground wind loads. The probability distributions of these loads are illustrated

in Fig. 4.23. The lateral loads are to be considered as expressed in terms of equiv-

alent axial loads. Also, the three loading conditions are assumed to be independent.

The sum of the mean loads is

PAVE = A + C + E

and the combined variance is

(O2z+2ap = +

2 \1/2

(4.9)

(4.10)
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The three-sigma combined load is then

P = PAVE + 3(rp (4. ii)

Although the statistical combination appears straightforward it is necessary to

gather much information to describe the properties of each variable. Indeed, this

information is not always readily available.
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4.5.4 CONTROL SYSTEM ACTIVATION. The disturbances of engine thrust buildup

or decay and vehicle liftoff can cause an error in vehicle orientation with respect to

the desired trajectory and can also excite the bending modes. Upon activation of the

control system it will command the engines to correct vehicle attitude. Also, the

control system may respond to the sensed vehicle bending. Loads corresponding to

the attitude correction can be obtained from control studies which would give an en-

velope of commanded engine gimbal angle required for the correction. Applying this

amplitude (as a force), with a time history compatible with maximum possible engine

gimbal rate, to the vehicle will give the vehicle loads. The control system should be

designed so that it does not aggravate these initial bending moments. However, if a

limit-cycle* instabilityshould occur because of bending mode feedback from the sensor,

the magnitude of load during this limit cycle can be determined by the frequency re-

sponse solution presented in Section 6.

4.5.5 LONGITUDINAL INSTABILITIES. The combined vehicle system of

structure, mass, pneumatic system, propellant ducting, and propulsion system can

couple to produce instabilities and limit cycles. An example is the 5-cps limit cycle

shortly after liftoff on the Atlas vehicle. This phenomenon is due to coupling between

the vehicle modes and the pneumatic sensing and feed systems. Another example is

the Pogo problem of the Titan and Thor vehicles where limit cycles later in flight were

caused by coupling of the vehicle, propellant ducting, and engine systems. Problems

of this nature are very dependent on characteristics of each system. These character-

istics can vary considerably from one vehicle to another. The work of Ref. 4.4 dis-

cusses these problems and gives methods for analyses which can be used for predesign

evaluation on the existence of the problem and for identification of significant

parameter s.

4.5.6 HIGH-FREQUENCY EXCITATION. The discussion in the previous sections

pertains to excitation of the low-frequency modes of the vehicle. Perturbations in

some of the vehicle systems can also excite the higher frequency modes of the vehicle

or its systems. Sources of the excitation can be high-frequency pressure oscillations

in the thrust chambers, pump speeds, and operation of other mechanical equipment.

These phenomena are not amenable to analysis because of unsatisfactory mathematical

models for representation of the higher modes. In these higher modes there gener-

ally is coupling between lateral, longitudinal, torsion, shell, and individual compo-

nent modes. The problem can be attacked by two methods. One, the vibration tests

for components should include provision for adequate levels in the suspect frequency

regions. Two, using test data describing input, response, or vehicle modes an ap-

proximate analysis can be made that will give some information on loads. As an ex-

ample, a 70-cps transient of a few cycles in duration exists in booster engine chamber

pressure during the shutdown of the Atlas engines. From flight data it was found that

*Limit cycle is a term describing an "instability" which reaches a peak amplitude but

does not diverge beyond this peak, usually because of system nonlinearities.
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a torsional modewas excited by this transient. Physical coupling between longitudinal
excitation andtorsion response of a magnitude indicated by the flight data could not be
established. Therefore, using theoretical torsion modes and flight response data,
a fictitious forcing function was derived which gavethe recorded response. To eval-
uate the accuracy of this analysis a physical changein the vehicle was made on a
succeedingflight andthe changein response was found to agree with predicted change.
This established somevalidity in the analysis.

The solution of these problems is not straightforward and does require test data
to identify the problem andcontrolling variables. Wherever possible, the conditions
shouldbe treated analytically so that subsequentvehicle changesdo not require ex-
pensive test programs to verify the effect of the change.

4.6 CONCLUSIONSAND RECOMMENDATIONS

Methodsof analysis for response to enginetransients are well developed for cy-
lindrical-tank liquid-propellant launchvehicles. For propellant tank shapesother
than cylindrical, developmentwork is necessary to obtain a satisfactory mathematical
model representing the vehicle.

The recommendedprocedure is as follows.

1. Develop a mathematical model as given in Sections 2.2.4.3 and 4.3.

2. Obtain a description of applied force time history from engine test data.

3. Use a worst-case condition for design loads. If the worst-case condition is
detrimental to vehicle performance then a statistical analysis of engine character-
istics and vehicle response shouldbe attempted.

4. Perform analyses for lateral loads due to engine misalignment and, in the case of
multi-engine systems, unsymmetrical start. A worst-case analysis is usually
sufficient.

5. Obtain liftoff responseby the methods of Section4.3.2. A more detailed simu-
lation maybe necessary for some controlled-release launches.

6. Combine thrust-transient loads with other loads imposed on the vehicle using the
methods of Section4.5.3.
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C

CD

CN/o_

CNO

Cy/ 

Cyo

CS_

CSO

CM_

CMO

CMz"

CM_

CS A

F

G

I

K

Actuator piston area; cross-sectional area of the

vehicle structure

Flexibility matrix

Drag coefficient

Normal force coefficient per pitch plane angle

of attack

Normal force coefficient at zero pitch plane

angle of attack

Yaw force coefficient per yaw plane angle of
attack

Yaw force coefficient at zero yaw plane angle
of attack

Shear coefficient per pitch plane angle of attack

Shear coefficient at zero pitch plane angle of
attack

Shear coefficient per unit normal acceleration

Shear coefficient per unit pitch plane rotational

acceleration

Moment coefficient per pitch plane angle of
attack

Moment coefficient at zero pitch plane angle

of attack

Moment coefficient per unit normal acceleration

Moment coefficient per unit pitch plane rotational

acceleration

Static aeroelastic coefficient

Force

Shear Modulus

Moment of inertia

Stiffness; shear effectiveness factor

ft 2

ft/lb

N.D.

1/rad

N°D°

1/rad

N.Do

1/rad

N°D°

lb/ft/sec 2

lb/rad/sec 2

ft/rad

ft

ft-lb/ft/sec 2

ft-lb/rad/see 2

N.D.

lb

lb/ft 2

lb-sec2-ft

lb/ft or _"
ft-lb
rad ' N.D.
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X
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X

Y

Z

A

Autopilot transfer functions described in text

Length; vector of lengths

Moment

Mass supported by structure at i th station

Mach number

Total mass of vehicle

Axial load

Generalized force

Shear

Reference area

Thru st

Velocity

Weight

Sensed parameter for load-relief autopilot

Penetration distance into gust

Function, e.g., f(x)

Altitude

Station index

Mass, vector of lumped masses

Lumped mass at i th station

Pressure

Dynamic pressure

Time

Coordinate along neutral axis

Coordinate normal to neutral axis, yaw plane

Coordinate normal to neutral axis, pitch plane

Increment

5-4

rad/rad

rad/rad or rad/rad/sec

rad/rad

rad/ft/sec 2 or rad/rad

or rad/lb/ft 2

ft

ft-lb

lb-sec2/ft

N.D.

lb -sec2/ft

lb

lb

lb

ft 2

lb

ft/sec

lb

variable

ft

variable

ft

N.D.

lb -sec2/ft

lb-sec2/ft

lb/ft 2

lb/ft 2

sec

ft

ft

ft

N.D.
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P

(Y
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02

LA

[]

EB

Angle of attack, pitch plane

Angle of attack, gust

Angle of attack, yaw plane

Flight path angle (angle between local

horizontal and velocity vector)

Engine gimbal angle

Iteration convergence tolerance

Damping coefficient

Average of load

Angle between local horizontal and vehicle

centerline; angle between undeformed axis and

deformed axis

Gust length

Normal mode coordinate

3.1416

Density

Standard deviation of load; modal slopes

Modal displacements

Angle between launch azimuth and vehicle

centerline

Frequency

Generalized mass

Row matrix

Column matrix

Square matrix

First derivative with respect to time

Second derivative with respect to time

rad

rad

rad

rad

rad

N.D.

N.D.

lb or ft-lb

rad

ft

ft

N.D.

lb-sec2/ft 3
ff

lb or ft-lb; rad/ft

ft/ft

rad

rad/sec 2

lbmsec2/ft
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5/ATMOSPttERIC DISTURBANCES

5.l STATEMENT OF THE PROBLEM

The powered phase of flight through the atmosphere is a condition that often
dictates design of a significant portion of the vehicle structure. Axial and lateral
loads imposed during this period are functions of axial acceleration, atmospheric
disturbances (winds andgusts), vehicle shape, Mach number, trajectory, and atmos-
pheric density. Axial loads are primarily drag loads and inertial loads of the quasi-
steady acceleration. Lateral loads are the result of vehicle (or structure) orientation
with respect to the relative air velocity, which is called the angle of attack. The
magnitudes of lateral loads are functions of angle of attack and dynamic pressure.
Ttle angle-of-attack magnitudeis primarily a result of vehicle trajectory and atmos-
pheric disturbances. Vehicle shape, Machnumber, and atmospheric density deter-
mine the distribution of drag andlateral loads. Also, vehicle shapeand Machnumber
determine the type of air flow andcan lead to phenomenasuchas buffeting.

Axial load values are relatively straightforward computations of trajectory param-
eters such as acceleration, Machnumber, altitude, dynamic pressure, andweight.
Lateral load calculations are also straightforward computations of these parameters
with the addition of angle of attack; however, the angle of attack is a function of atmos-
pheric disturbances which are random in nature. Thus, the major problem in lateral
loads is the determination of wind criteria. Oncethese are established, analytical
techniques are used to obtain the loads.

Winds are large-scale movements of air persisting for a period of time consider-
ably longer than the vehicle flight and extending over a significant altitude range.
Fig. 5. la presents a detailed wind profile taken by the smoke-trail method. Fig.
5. lb showsthe samewind as measuredby a balloon system and also the averaged
(smoothed)smoke-trail data.

Wind speedsat launch are small (comparedto wind speedsat altitude) and increase
with altitude in anunevenmanner, reaching a peak in the 25,000- to 40,000-foot-
altitude range. The wind speedthen decreasesup to approximately 100,000 feet where
it starts to increase. Little data are available onwind speedsabove60,000 feet; how-
ever, loading dueto wind abovethis altitude is quite small becuaseof low dynamic
pressure and is rarely considered. Gusts are defined as short-period disturbances
in the air and are usually considered to account for the profile detail not measuredby
the balloon system (seeFig. 5.1). For highly accurate wind profiles only the elastic
response to gust is generally considered. For most launch vehicles the time spanof
exposure to a discrete gust is on the order of less than one second. While data on
gusts are meager they are usually considered to exist in the samealtitudes in which
high wind speedis prevalent.

5-7



X:)

0

B
1.-,

<

40

30

20

I0

,,f

o.....,

•o_o'° ,k_'W'°'*

'...._.

4'.
O_o_o

,l..,J

oo _ °...° ° -
• ;o.

.>--
_, oo •

°.e-

°."°°

0

-40 0 40 -80 -40 0

W-E COMPONENT (ft/sec) S-N COMPONENT (ft/sec)

a. Measured Smoke-Trail Winds

4O

30

_ 20

oOO_

q_ p-*"

,!
J

j _( ....._

,.r""___.

-4O 0 40

W-E COMPONENT (ft/sec)

LEGEND [

oB_ I
= AVERAGED [

SMOKE TRAIL[

/'C

-80 -4( 0

S-N COMPONENT (ft/sec)

b. Balloon and Averaged Smoke-Trail Winds

Fig. 5.1. Typical Wind Profile

5-8



The general procedure for calculation of lateral loads consists of a trajectory

simulation through a specified wind and gust profile (or profiles) to obtain the re-

quired parameters for loads. Generally rigid-body plus aeroelastic loads due to wind

arc obtained and added to the loads due to elastic response to a gust.

In the transonic region (0.8 < MN _ 1.2) shock waves begin to build up and areas

of random turbulence form aft of points where the geometry changes. This random

turbulence is referred to as buffet. Buffet is first discernible as the transonic region

is entered, builds up sharply in the region 0.8 <- M N _ 1.0, and then somewhat slowly

decreases with increasing Mach number. Hence buffet is strongly dependent on Mach

number. Buffet loads analysis is accomplished by random response analysis of ex-

perimental pressure distribution data or by scaling of experimental response data.

In summary, the loads due to atmosphere come from two principal sources: 1)

wind and gusts, and 2) buffet. The angle of attack due to wind and gust reaches a

maximum value during the period of flight when dynamic pressure is near its peak,

i.e., at a 25,000- to 40,000-foot altitude. This produces a critical condition for this

type of loading. The buffet loads are mostly local loads although some response of

the complete vehicle may occur. The maximum buffet condition occurs in the tran-

sonic region which for most space vehicles is earlier than the maximum wind and gust

loads; however, the combination of maximum buffet loads and all other loads at that

time may be critical. Other minor loads may occur while in the atmosphere; these

will be discussed in detail later. Guidance steering is not usually used while in the

atmosphere; however, if used it may produce another critical condition.

5.2 HISTORICAL BACKGROUND

The historical background of analysis of loads due to atmospheric disturbances

centers around efforts first to obtain accurate wind and gust data and then to derive

useful, accurate criteria from the data. It became apparent early in the history of

launch vehicles that the wind profile (wind speed vs altitude) that would be encountered

was important. It was also recognized that the available wind data, especially the

wind shear (the rate of change of speed with altitude), were inaccurate. The need for

methods to reduce the data to criteria that were accurate, yet economical and simple

in application, was also recognized.

The bulk of wind data obtained in the 1950Vs was taken with the AN/GMD-1 balloon

system. This system used data radioed from the balloon to compute altitude and then

used the cotangent of the elevation angle to obtain horizontal distance. At low elevation

angles the errors could be large, errors in wind shear sometimes approaching the

value of the wind shear. The AN/GMD-2 balloon system was developed in the late

1950's to provide better data. In this system the slant range is obtained by a radio-

ranging attachment and sine and cosine are used to compute altitude and horizontal

distance. This system is approximately six times more accurate then the AN/GMD-1

system. Comparisons of the two systems are made in Refs 5.1 and 5.2. However,
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both systems yield accurate data at 1000-foot-altitude increments. To provide ac-

curate data at shorter altitude increments the FPS-16 Radar/Spherical Balloon sys-

tem was developed. This system yields data at 25-meter-altitude increments and is

several times more accurate than the AN/GMD-2 system. An evaluation of the sys-

tem is given in Ref. 5.3. Two other methods of obtaining wind data have been tried

on an experimental basis. One of these is the smoke-trail method. In this method a

rocket leaves a continuous trail of smoke as it ascends, photographs are taken at

given times, and the dispersions of the trail are analyzed to provide wind data. Ref.

5.4 discusses the application of the method and some experimental results. The other

method uses a doppler radar system to track a column of chaff. The dispersions of

the chaff column are used to obtain wind velocity profiles. Ref. 5.5 describes the

method and some experimental results obtained from it. Neither system is, nor is

planned to be, operational.

The development of wind criteria has taken two approaches. One approach is to

do a statistical analysis of the wind data and then develop synthetic wind profiles.

Loads are then obtained by application of these profiles. Synthetic profiles have been

generated by many persons involved in wind criteria. The first widely used profile

was the Sissenwine profile developed in the early 1950's. It is given in Ref. 5.6 and

has since been modified by Ref. 5.7. Currently, the most widely used synthetic pro-

file criteria are the Marshall Space Flight Center (MSFC) criteria. MSFC has develop-

ed a computer analysis of wind data that yields, for a given launch site and azimuth,

wind speed and shear data from which synthetic profiles are constructed. Refs 5.8 and

5.9 are examples of the criteria generated by MSFC.

The second approach is to obtain loads for each wind sounding in a set of sound-

ings and then do a statistical analysis of the loads. This approach is referred to as a

statistical load survey. The original development of this approach was done by Avidyne

Research, Inc., and reported in Refs 5.10, 5.11, and 5.12. The approach requires a

trajectory simulation for each sounding; this approach entails a considerable amount of

computer time. To decrease the computer time involved, several approximate metohds

have been developed. The influence coefficient method uses an influence coefficient

matrix derived from 'basic" profiles, i.e., triangular spike, ramp, etc. The vector

of wind speeds from a particular wind sounding is multiplied by an appropriate in-

fluence coefficient matrix to obtain loads for that sounding. The method was studied

by Avidyne and the results are given in Ref. 5.13. Clingan (Ref. 5.14) uses a closed-

form trajectory solution to reduce computer time for the statistical load survey. The

trajectory solution is obtained by using perturbation equations and neglecting rotational

rate and acceleration. Van der Maas (Ref. 5.15) developed a method that uses two

basic parameters of a wind sounding to obtain loads on a vehicle. The parameters are

maximum wind velocity and the integral of the wind velocity from ground to the altitude

of the maximum wind velocity.

The statistical load survey, as developed by Avidyne, is the most accurate method

since no assumptions are made concerning either the trajectory simulation or the
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correlation betweenwind data and resulting loads (as is done for synthetic profiles).
Avidyne investigated the several methods and compared them, using the statistical
load survey as the standard of comparison. The results are given in Ref. 5. l'_. In
order of decreasing accuracy, Avidyne ranked the methods as follows: influence co-
efficient method, ClinganTsmethod, discrete profiles, and Vander Maas method.

The data available onwhich to base gust criteria are sparse. Refs 5.16 and 5.17
give some of the available data. Thesedata were gatheredby aircraft flying horizon-
tally andthen measuring the aircraft vertical accelerations. Randomnessof the data
is not necessarily established andcorrelation with wind speedis lacking. Also, most
of the data were taken below a 20,000-foot altitude; however, peak launch vehicle loads
generally occur in the 25,000- to 40,000-foot-altitude range. Thus, assumptions have
to be madewhen applying these data to launch vehicles. Currently, the gust criteria
cover any short-period disturbance not adequatelymeasuredduring the wind sounding.
As wind soundingsbecomemore accurate, and especially as the incremental altitude

for measurement becomes smaller, the wind sounding will include more and more of

what is now included as gust. Thus the question of improving gust criteria will pro-

bably be resolved not by gust measurements but by highly accurate wind soundings.

Analysis for loads due to atmospheric disturbances consists of a five or six

degree-of-freedom rigid-body trajectory simulation through the design wind profile.

The parameters from the simulation are used to calculate vehicle loads. With large

boosters the trajectory simulation should include the low-frequency bending modes

(less than 2 cps) since these modes can be excited by the wind profile. As wind pro-

file representation improves, it will be necessary to include elastic modes for most

vehicles in the trajectory simulation. Ref. 5.18 presents work examining the in-

clusion of elastic modes in the simulation with detailed wind profiles. Here the pro-

blem is not one of methodology but one of determining a sufficiently accurate procedure

with economical execution.

The gust effects are added by either of two methods: 1) adding the gust profile

to the wind profile to obtain rigid-body gust loads, and performing an elastic analysis

with the gust only to obtain those loads due to elastic response, and 2) calculating

rigid and elastic body gust loads independently of the wind profile and adding these to

the loads resulting from the wind profile. The end result is essentially the same and

use of either method is usually at the discretion of the analyst.

The buffeting during the transonic regime of flight is not an atmospheric dis-

turbance, but a phenomenon caused by the shape of the vehicle. It is mentioned here

because loads caused by buffeting must be considered in combination with wind loads

for total vehicle loads. Ref. 5.19 gives a complete discussion on buffeting historical

background and state of the art. Ref. 5.20 contains criteria for determining whether

or not a particular configuration is buffet prone. Both references have their own

extensive lists of references on the subject.
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5.3 QUASI-STEADY FLIGHT LOADS

The term, "quasi-steady flight loads," is used to describe loads and/or response

produced by long-period maneuvers and disturbances. The primary sources are winds

and steering to accomplish a desired trajectory, either by a predetermined pitch pro-

gram or by a guidance system. The period is sufficiently long that the vehicle is

characterized elastically as deflecting statically and possibly responding in its lower

frequency normal modes. The gross wind speed changes take place during altitude

spans of several thousand feet; however, recent wind data are providing wind detail

for altitude spans of less than a hundred feet.

5.3.1 ANALYTICAL APPROACH. The initial step in obtaining quasi-steady flight

loads is to simulate, analytically, the trajectory so that the required trajectory

parameters can be obtained. While all trajectory simulations have the same basic

analytical features, they usually differ in the detail of these features. Factors in-

fluencing the detail composition of a trajectory simulation include optional ways of

calculating some parameters, the intended use of the simulation (loads analysis, per-

formance analysis, etc.), the degree of complexity deemed necessary to provide ac-

curate results, and the coordinate system(s) used. With this in mind, the basic form

and equations will now be outlined. The vehicle coordinate system is shown in Fig.

5.2. The vehicle forces are illustrated in Fig. 5.3.

The equations of motion for the trajectory of a launch vehicle are derived in Ref.

5.21. An inertial reference frame, usually having its origin at and fixed to the center

of the earth, is used. However, forces on the vehicle are expressed in body axes. It

is also desirable to fix the vehicle position relative to the launch site. Thus several

coordinate systems and the accompanying coordinate transformations are needed. The

range of launch vehicles while in the atmosphere is usually on the order of 20-30 miles;

hence a flat nonrotating earth will suffice for determining quasi-steady flight loads.

The acceleration of the vehicle is obtained by consideration of the thrust, aerodynamic,

gravitational, and centrifugal forces. The resultant acceleration produces, over its

time integral, a vehicle velocity, V, which is relative to still air and a fixed launch

point. The flight path angle, _/, is defined as the angle between the horizontal datum

at a fixed launch point and the vehicle velocity vector. The altitude is given by

h = /V sinv dt (5.1)

In vehicle coordinates, the axial, lateral, and vertical velocities with respect to the

atmosphere are (assuming a flat nonrotating earth and _ and B to be small)

= V-V H cos e /

= Vsin/9-V Lcos

= Vsin_-V Hsine

(5.2)
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where

V H = horizontal wind velocity parallel to launch azimuth

V L = horizontal wind velocity normal to launch azimuth

@ = angle between vehicle centerline and launch horizontal

The Mach number is

M N

Cx •2 • 22 +Y +z

V S

(5.3)

where V S is the speed of sound at the particular altitude. The dynamic pressure is
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(5.4)

The angles of attack in the pitch and yaw planes are

-- (pitch plane)
x

= _ (yaw plane)

x

} (5.5)

The total aerodynamic drag, normal, and yaw forces are

F D = q SR C D (5.6)
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where

(5.6

Contfl)

S = aerodynamic reference area
R

CD = drag coefficient (function of MN)

CN/_

CNO

Cy/8

Cyo

= normal force coefficient per pitch plane angle of attack (function of

M N and _)

= normal force coefficient at zero pitch plane angle of attack (function

of MN)

= yaw force coefficient per yaw plane angle of attack (function of M N

and B)

= yaw force coefficient at zero yaw plane angle of attack (function of MN)

The reference area, SR, is an arbitrary area used in the derivation of aerody-
namic coefficients. For Space Vehicle Systems the reference area usually is taken

as the cross-sectional area of the stage with the largest diameter.

The normal and yaw centers of pressure are defined as Xep N and Xcp Y. They are

functions of M N and _ or B as appropriate. The weight is the weight at launch minus

all propellant weight expended and jettisoned weight as appropriate. The centers of

gravity Xcg, Ycg, and Zcg and the moments of inertia Iyy (pitch) and Izz (yaw) are
easily computed. The information required for the aufdpilot simulation is now avail-

able. There are three types of autopilots to discuss and since the discussion is fairly

lengthy, it is simply stated here that the autopilot will provide engine angles in pitch,

6p, and in yaw, 6y, and the angular attitude of the vehicle in pitch, O, and in yaw, _.
The axial, lateral, and normal thrust forces are

T = T cos 6p cos 6yX

T = -T 6
z P

T = T6yY

(5.7)

The thrust, aerodynamic, and inertial forces can now be combined to obtain the total

acceleration vector. The computational loop is now complete. The problem is one of

numeric integration, and standard techniques are employed.
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The function of the autopilot is twofold: 1) to maintain vehicle attitude when errors

arise from disturbances, and 2) to execute the steering commands. The simulation of

the autopilot can be simple or complicated depending on the analysis requirements.

There are three general types of autopilot simulations used in trajectory simulations,

the instantaneous, the standard, and the load-relief autopilots.

The instantaneous autopilot is based on an assumed zero rotational acceleration

condition. The engine is, at every instant, assigned the proper angle to balance all

moments about the center of gravity. The rotational rates are simply those supplied

by the pitch programmer or by guidance, and there is no feedback from the vehicle to

the autopilot since the vehicle always has the prescribed attitude. The engine angles

are

_K - Xcg /FN cPN

5p = T (Xcg - XT) (pitch plane)

xo )
(5.8)

where x T is the engine gimbal point location.

The standard autopilot attempts to closely simulate the actual autopilot. The auto-

pilots used on launch vehicles are usually of the form shown in Fig. 5.4. The following

definitions are made:

c lVEHC }O McsS 'EM00 O

AUTOPILOTDYNAMICS
c

Fig. 5.4. Standard Autopilot Block Diagram

transfer function between rate (SG) and/or displacement (8G).sensed

by gyros plus pitch programmer and/or guidance command (8c) and

the attitude error (8E).
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K A = transfer function between attitude error (0E) and commanded engine

angle (6 c)

transfer function between commanded engine angle (6c) and the actual
KC engine angle, angular velocity or angular acceleration (6, 6, 6")

Considering only the pitch plane, the vehicle pitch acceleration, velocity and displace-

ment are, respectively,

[Ty(XcgxT)  N(XcgXcp )zo Mx]

dt

0 =/0 dt

I
YY (5.9)

where M T is the total mass of the vehicle. Assuming the actual engine angular ac-

celeration is the output parameter of the control system, the engine gimbal quantities

are

6p = f , ' 0G'

_p = f "5"p dt (5.10)

Similar expressions are obtained for the yaw plane. Normally there is an autopilot

for each.plane and the two autopilots are uncoupled. The details of the expression for

6"p (and 6y) depend on the specific autopilot hardware being used.

The load-relief autopilot is basically the standard autopflot with an additional

feedback loop designed to reduce the angle of attack; hence the name "load-relief auto-

pilot." The form is shown in Fig. 5.5. Sensors are used to measure one of three

parameters. These parameters are normal (or lateral) acceleration, angle of attack,

and differential pressure. Any of these will indicate when airloads are increasing.

When an increase occurs the load-relief loop generates an error signal for the auto-

pilot that causes the vehicle attitude to be changed so that the angle of attack is re-

duced. The autopilot analysis is the same as for the standard autopilot except that

the engine angular acceleration becomes

6"p = f(%, KA, KR, 0G, 0G, ec, KLR, X ) (5.11)
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Fig. 5.5. Load-Relief Autopilot Block Diagram

KLR

X

= transfer function between the sensed parameter (X) and the error

signal to the autopilot (0E)

= zorcxorAp

With the trajectory parameters available the shear and bending moment distri-

butions for the vehicle can now be calculated. Two approaches can be taken in cal-

culating rigid-body shear and bending moment due to airloads. One approach is to

apply the airloads due to ¢Xq (or _q) from the trajectory and to balance moments with

the engine, so that the rotational acceleration and rate are zero. This approach, re-

ferred to as the "trimmed vehicle condition," is a good approximation and is widely

used. Here, the aerodynamic normal force distribution along the vehicle is lumped

at panel points in the same manner as the weight is lumped (see Section 2). The re-

quired engine angle is

FN (XcPN-Xcg)

6 = T(XT_Xcg ) (5.12)

The normal acceleration is

.. T6 +F N

z - MT (5.13)
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The net force at eachpanel point is

CN CNOi] ""
F. = qS _ + -m z (5.14)x R /_. i

1

When x i = x T the thrust force T5 is added. The shear and bending moment distribution
can now be obtained in the classical manner of summation and integration of forces.

When the mathematical model contains branch beams, the analyst must be careful to

sum and integrate correctly.

The second approach is to calculate shear and bending moment coefficients for

aerodynamic forces, translational accelerations, and rotational accelerations and to

use these in conjunction with trajectory parameters to obtain shear and bending mo-

ment. The equations for shear and bending moment are

s., = q sR _ Cs_"+Cso Cs_ Csii
i i

M.=qSR(_ +CMoi )+z + 01 CM_. CMz" CM0"
1 i i

(5.15)

where the C's are the following coefficients.

x. d

=_x i CN/tXCS_. dx
1 N

dx

= f°:i d CNO

CSO i .JXN _ dx

i dmCsz i : -_-- a_

=9(Ni dmCS_ i -_- (x - Xcg ) dx

= f"i d CNO

CMC_i _x N _ (x - xi) dx
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= f_i d CN/{2

C MO i _x N _x
(x - xi) dx

_( xi dm
CMz i = -_- (x-xi) dx

N

CMe i fXN i -_"
= dm (x - Xcg ) (x - xi) dx

and where x N is the vehicle nose station.

The quasi-steady axial loads come from the vehicle axial acceleration and aero-

dynamic drag. The axial load at the i th station is

P'I = M.1 x +qS R CD. (5.16)
1

where

Mo

1

CD.
1

= the mass supported by the structure of the ith station

= cumulative drag coefficient to the ith station

The foregoing discussion on loads has been for a rigid vehicle. Aerospace ve-

hicles are usually sufficiently flexible to have considerable deflection under limit

(design) load. In the case of air loads, this deflection causes changes in local angle

of attack and, in turn, the load distribution on the vehicle. The change in load dis-

tribution again changes the local angle of attack. Thus an iterative process is begun

which rapidly converges on a suitable airload distribution. Experience to date indi-

cates that inclusion of quasi-static aeroelastic effects in analysis can give loads for

aerospace vehicles of 5 to 20 percent over rigid vehicle loads.

Two methods employed for obtaining static aeroelastic effects are: I) finding

deflections and changes in load using the flexibility matrix and 2) obtaining deflections

and changes in load by using normal mode theory. In the first method, the restrained

stiffness matrix of Eq. 2.34 is inverted to obtain the flexibility matrix, C. Since the

configuration under study is a free-free vehicle, the displacements of the fixed point

must be added to obtain the total displacements. Also, vehicle slope due to shear

should be added if these slopes are significant terms for the vehicle under consider-

ation. The total displacement is
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= + YO+ O0+
lOT OE S

where IL] is a vector of (xi-x 0) and

The shear, IS], is obtained from

(5. i7)

(5.18)

The displacements of the constraints, Y0 and 0 0, are obtained from a development
similar to that in Section 2.2.4.1 by satisfying the equations of linear and angular

momentum in conjuction with the compatible elastic deflections. Satisfying both linear

and angular momenta

_mlI'f0m0 Y0 + L#J 0 E

i0_0+_EmJI_f°
(5.19)

where _ and r are as defined in Section 2.2.4.1.

l_l_-l_f,o-t,f_o;I_]l_1
The deflection equation is

(5.20)

Following the development of Section 2.2.4.1 we obtain

YO W 0 E

1[ _]I'l0 0 = _ S LAJ - M T LB 0 E

(5.21)
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where W, §, A, B, MT, and IT are as defined in Section 2.2.4.1. The applied forces

are

where

(5.22)

and

Zcg MT El] ¢_ + 0 i MT

;/  1%1)
5 = (T Xcg- T)_('-Xcx1 N/O_ _+ei + (5.23)

For the first iteration, e i is assumed to be zero and values are found for OE, Oo, and

0S. The second iteration uses {_ + 0 i} in computing airloads, and another set of values

for 0 E, 0o, and 0S are found. This process continues until

{0] n - {0} n-1 < e

The shears and moments are then obtained from

(5.24)

If the trimmed-vehicle-condition approach is being used, the static aeroelastic

solution just derived will yield both rigid-body and static aeroelastic loads. If the

coefficient approach is being used, the static aeroelastic effects must be handled in

another form. One convenient method is to calculate static aeroelastic coefficients

and to apply these to the rigid-body loads obtained by Eq. 5.15. The static aero-

elastic coefficients are obtained by calculating both the rigid-body loads (SRB , MRB )

and static aeroelastic loads (SsA , MSA ) by Eqs 5.13 through 5.28. The coefficient is,
then, for the moment at a particular station

MSA.
1

CSA i - lVIRB. (5.25)
1

Shear coefficients are obtained similarly. The shear and moment in Eq. 5.15 are

multiplied by the appropriate coefficient to obtain rigid-body plus static aeroelastic
loads.
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If the normal modes are available an alternate method of solution exists.

2. 163 states that

For static loads the derivatives are set equal to zero

_.a_2_ [_} = _]-1 [Q]

Eq.

(5.26)

(5.27)

where

[Q}

+q St_¢]' [CN/c_ i][a] [_}
(5.28)

The engine angle is

0--_(__x__s_I{o_o,1+_o,}I_
q SR

+ [C ][_] [_} (5.29)
T(Xcg - XT) LLJ N/O_i

where LLJ is a vector of (x i - Xcu ). Substituting Eq. 5.29 for 6 in [Q] and rearrang-

ing terms and solving for [_ } in _q. 5.27, we have

qSR LLJ [C ][_]-qS R
Xcg - x T N/_ i

[_ l_ }I+x sR_]'_%/_.}_+{%5 -- _XTXcg x T

The deflection, slope, shear, and bending moment are then obtained by mode displace-

ment (Eq. 2. 179).
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5.3.2 ILLUSTRATIVE EXAMPLE. A trajectory simulation, with a wind included,
of the Atlas/Centaur/Surveyor vehicle is used to illustrate the determination of ve-
hicle response and loads due to winds. The wind used was picked at random simply
for illustration, henceno significance is to be attachedto the results for design pur-
poses or for launch probability considerations. Simulations were madewith "instan-
taneousautopilot," "standard autopilot," and "load-relief autopilot" to show the ef-
fects of control options.

The trajectory simulation used is, in its basic form, that described in Section
5.3.1. Propellant sloshing is not included. A linear control system is employed,
even thoughthe actual Atlas control system is nonlinear. The coefficient method is
used to computeloads. Static aeroelastic effects are included by the use of coef-
ficients computedby Eq. 5.25. The vehicle and aerodynamic data used are those
employed in the wind monitoring procedure for the Atlas/Centaur/Surveyor vehicle.
Thewind speedanddirection are shownin Fig. 5.6.
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The wind loads, which included the static aeroelastic effects, have been calculated

for the pitch and yaw planes and then summed vectorially. The translational acceler-

ations, shears and bending moments at the Centaur/Surveyor interface are shown in

Fig. 5.7. The bending moments at the Atlas/Centaur interface are shown in Fig. 5.8.

The standard autopilot and instantaneous autopilot simulations yield loads that are

quite similar. The similarity is expected since the standard autopilot is an attitude

control system and is closely approximated by the instantaneous autopilot. The loads

using the standard autopilot simulation are, in general, slightly higher at the peak.

The loads using the load-relief autopilot simulation are, of course, significantly lower

at the peaks since the autopilot is designed to achieve the reduction in loads. The
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rotational acceleration is the same (at any instant) at every point on the vehicle since

the vehicle is nonvibrating. The rotational acceleration time history is shown in Fig.

5.9. Its form is quite different from the other loads due to the character of the ro-

tational motion. The rotational motion oscillates about zero whereas angles of attack

and translational motion have large aperiodic excursions. However, the vector sum-

mation of loads has resulted in the absolute values of the loads. Thus the accelerations

and bending moments in Figs 5.7 through 5.9 are plotted as positive.

5.4 GUST RESPONSE

5.4.1 ANALYTICAL APPROACH. The equations for gust response have already

been given in Section 2.4. The basic equations are applicable to any vehicle; however,

the autopilot equations are for a particular form of autoptlot and may need modification

for the particular vehicle under analysis. The general approach is well illustrated and

little additional work should be required to accommodate various autopilot representations.
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The aerodynamic forces used in Section 2.4 are for a gust angle of attack, _gi'
the form of which has not been specified. For an "immersion" gust the vehicle is

subjected to the same gust velocity over its entire length. In this case, _giS constant

with respect to vehicle station and it varies in time according to the gust shape.

Another representation for aerodynamic forces is a "penetration" gust, for which the

forces are applied along the vehicle as it penetrates the gust or shear layer. For a

penetration gust the _g is a function of vehicle station as well as time. In this case,

the _g in Eqs 2. 151, 2. 152, and 2. 165 is defined as follows. First, it is assumed
that the beginning of the gust is at the most forward station at t = 0. The distance the

most forward station (x l) has traveled into the gust at time t is

1 .. 2 (5.31)
d I = Vt +_ x t

where

V = vehicle velocity

x = vehicle axial acceleration

The distance that the ith station (xi) has traveled into the gust at time t is

d i = d 1- (x i-x1)
(5.32)

The position of the i th station within the gust can be expressed as the ratio diA where

X is the length of the gust. The general form for (_gi is now

= _ f (di/k) (5.33)
gi gmax
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where _gmax is the maximum gust angle of attack and f (di/_) is a function describing

the shape of the gust. To illustrate, the particular description of a "l-cosine" gust is

o_ = o_ [1 - cos 2y (di/k)] for 0 < d./_ _ 1 ]

gi gmax 2 1 I= 0 ford./k<0

gi

(5.35)

5.4.2 ILLUSTRATIVE EXAMPLE. The gust response of the Atlas/Centaur/Surveyor

vehicle in the yaw plane at 60 seconds flight time has been obtained as an illustration

of gust response analyses. The gust wavelength has been "tuned" in the sense that the

vehicle transit time through the gust has produced (on the computer) the maximum

response in a particular mode; here, the third bending mode. The transit time for

maximum excitation of a particular mode is nearly equal to the period of that mode.

In this example, with a third mode period of 0. 088 second and a vehicle velocity of

1128 feet per second, the "tuned" wavelength is 100 feet. Both "immersion" and

"penetration" gusts have been used with "l-cosine" gust profiles. The gust, in this

example, is applied normal to the vehicle longitudinal axis.

The spacecraft response is greater at short gust wavelengths due to higher response

of the second, third, and fourth bending modes at these wavelengths. These modes

produce high translational and rotational accelerations at the ends of a vehicle; however,

the first bending mode and the rigid-body modes produce the highest bending moments

in the central portion of a vehicle. The lower frequency modes have peak gust response

at longer wavelengths. A 30-foot-per-second gust velocity, which is rather unrealistic

for such a short wavelength, has been used in this illustration.

The mathematical model is shown in Fig. 4.9. The model derivation is discussed

in Section 4.4.1. The modal frequencies and generalized masses are given in Table

5.1. The lumped aerodynamic coefficients are listed in Table 5.2. The normal modes

are presented in Ref. 5.22. The model damping coefficients are given in Table 5.3.

The trajectory, autopilot, and control system parameters are listed in Table 5.4.

The translational accelerations, rotational accelerations, shears, and bending

moments at the Centaur/Surveyor interface are shown in Fig. 5.10. The dominant

response is in the tenth mode (third bending mode at 11.33 cps) with some structurally

significant response in the lower modes. Since the gust wavelength was set equal to

the period of the tenth mode this behavior is to be expected. The bending moments at

the Atlas/Centaur interface are presented in Fig.5.11. Here the dominant response is

in the sixth mode (second bending mode at 6.24 cps). The difference in the character-

istics of the bending moments at the two interfaces (see Figs 5.10d and 5.11) is attri-

butable to the type of loading encountered. At the Centaur/Surveyor interface the loads
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Table 5.1. Modal Frequencies and Generalized Masses for Flight Time of 60 Sec

MODE GENERALIZED MASS FREQUENCY
NO. (Ib-sec2/in.) (cps)

1 0.9555 0.553

2 16.28 0. 729

3 28.66 0.763

4 64.72 0.783

5 28.69 2.47

6 5.012 6.26

7 5. 746 7.78

8 0. 2048 8.45

9 8.624 9.75

10 1.761 11.33

11 7.729 12.58

12 0. 07099 16.82

13 24.13 21.02

14 0. 3779 22.07

15 0. 00002202 23.66

Table 5.2. Lumped Aerodynamic Coefficients for Gust Response Analysis

MODE STATION AER ODYNAMIC COE FFICIE NT,

NO. (in.) CN/(_i (1/deg)

1 -20 0.0035045

2 10 0.0038855

3 50 0.0071037

4 100 0.0092550

5 145 0,0057220

6 173 0.0058178

7 200 0.0058139

15 219 0.0043591

16 250 0.0034393

17 280 0.0007659

18 315 -0.0016652

19 345 -0,0020418

20 375 0.0014364

21 412 0.0009813

22 438 -0.0025994

23 470 -0.0018201

24 500 0.0001090

25 525 0.0006557

26 555 0.0010347
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Table 5.2. LumpedAerodynamic Coefficients for Gust ResponseAnalysis (Contd)

MODE STATION AERODYNAMICCOEFFICIENT,

NO. (in.) CN/_i (I/deg)

27 570

28 600

29 630

30 667

31 696

32 725

33 754

34 784

35 812

36 840

37 871

38 900

39 929

40 960

41 992

42 1025

43 1057

44 1090

45 1122

46 1133

54 1160

55 1176

56 1206

57 1212

58 1242

59 1267

0.0011025

O.O0O1349

-0.0000769

0.0001674

0.0002750

0.0002886

0.0002550

0.0002483

0.0000707

0.0007345

0. 0031814

0.0024361

0.0018514

0.0000527

-0.0015103

0.0000362

0.0028011

0.0064948

00046974

-00013529

-00010350

0.0020909

0.0039168

0.0055976

0.0089609

0.0055240

Total 0. 0927500

Table 5.3. Damping Coefficients for Gust Response Analysis

MODE

NO.

DAMPING COEFFICIENT MODE

(% Critical) NO.

DAMPING COEFFICIENT

(% Critical)

1 0.02 9 1.00

2 O.02 10 1.50

3 0.02 11 1.00

4 0.02 12 3.00

5 1.25 13 1.00

6 1.50 14 4.0O

7 1.00 15 4.00

8 2.00
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Table 5.4.

SYMBOL

V

q

SR

TB

TS

CV

CB

C L

A

R

K C

K E

KA

K I

rlag

W e

_C

x G

x D

Trajectory, Control System, and Autopilot Parameters for Gust Response

Analysis (Atlas/Centaur/Surveyor)

PARAMETER (see Section 2.5 for

further definition)

Velocity

Dynamic pressure

Reference area

Longitudinal acceleration

Thrust of booster engines

Thrust of sustainer engine

Engine gimbal angle used in linearization

of control system

Viscous friction coefficient

Coulomb friction coefficient

Discharge coefficient of leakage bypass
orifice

Actuator piston area

Engine moment arm

No-load open-velocity gain

Ratio of hydraulic compliance to hydraulic

plus structural compliance

Autopilot rate gain

Integrator loop gain

Rate gyro loop gain

Time constant, lag filter

Natural frequency of second order lag filter

in autopilot

Damping ratio of second order lag filter in

autopilot

Natural frequency of rate gyro

Damping ratio of rate gyro

Station at which rate gyro is located

Station at which displacement gyro is located

VALUE

1128

674

78.5

58.7

352,900

72,176

1.0

63

565

0.00000478

0. 0247

1.769

36.18

0. 104

1.8

0.178

0.45

0.0116

15.5

0.5

157

0.6

600

991

UNITS

ft/sec

Ib/ft2

ft2

ft/sec2

Ib

Ib

deg

ft-lb-sec/deg

ft-lb

ft3/sec/_

ft 2

ft

1/sec

N.D.

deg/deg

1/sec

see

see

rad/sec

N.D.

rad/sec

N.D.

in.

in.
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are inertial loads due to spacecraft response

whereas at the Atlas/Centaur interface the

dominant load is aerodynamic loading on the

nose fairing. This illustrates the variation

in response characteristics that can occur

for various points on the vehicle. The loads

from both the "immersion" and "penetration"

gusts shown for the Atlas/Centaur/Surveyor

vehicle are quite similar; however, there is

no reason to expect this similarity for other

atmospheric descriptions or space vehicle

configurations.

The relative deflection between the pay-

load and fairing (at a critical point} is shown

in Fig. 5.12. Here the peak response is at

approximately 8.45 cps, the frequency of

the eighth mode (payload "first mode"}. Of

note here is that the maximum loads occur

on the first or second peak but the maximum

relative deflection occurs on the fourth peak.

The reason is the phasing of the response of

the fifth, sixth, and eighth modes. These

three modes contribute most of the relative

deflection. Initially, the fifth and sixth

modes subtract from the eighth mode re-

sponse, then cancel each other, and, at the

peak, add to the eighth mode response.

The process is then reversed.

The normal-mode displacements for

the immersion gust are presented in Fig.

5.13. Where the displacements are not

shown, the response was negligible. The

displacements for the penetration gust are

not presented due to the similarity of re-

sults for the particular configuration sub-

jected to exemplary analysis.

5.5 DISCUSSION
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The importance of loads due to atmospheric disturbances on the design of space

launch vehicles will depend upon the particular vehicle systems. The lower portion

of the first stage is generally designed by thrust buildup conditions. Structural design

of the upper portions of second and third stages is usually governed by the maximum
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accelerations at first stage burnout. The design of the structure between these two

areas may be dictated by the predicted loads due to atmospheric disturbances. These

considerations suggest only general trends which may apply to a particular system.

Such considerations are mentioned here to place the proper perspective on the pro-

blem areas discussed below.

5.5.1 QUASI-STEADY FLIGHT LOADS. Loads imposed during flight in the atmosphere

are axial loads due to drag and vehicle acceleration and lateral loads due to winds and

vehicle trajectory. The axial loads are essentially static loads determined from thrust,

weight, and vehicle drag. Disturbances affecting longitudinal loads at this time are

very small and can be neglected.

The lateral loads are predominantly those due to winds but the pitch program (tra-

jectory) contributions can be a significant parameter. The nominal performance tra-

jectory (without winds) for most missions demands only a small angle of attack through

the period of maximum dynamic pressure. This required angle of attack is approxi-

mately one-fifth or less of the total angle of attack. The remainder is due to winds.

5.5.1.1 Wind Criteria. Development of wind criteria to be used for design of a ve-

hicle has been discussed in Section 5.2. For an operational system to be launched at

many sites and at many azimuths, it is generally practical only to apply synthetic

wind profiles as headwincls, tailwinds, and crosswinds to the vehicle. The synthetic

5-34



profiles should be an envelope of the wind speeds and shears which can be expected

within a required probability of successful launch for that operational system.

Vehicles to be launched from one site with small deviation in azimuth can make

use of more detailed wind criteria. Examples are the directional criteria for Eastern

Test Range developed by MSFC. These criteria result in significantly lower loads

compared to loads obtained by applying the maximum profile in any direction. Another

wind criterion is a set of actual wind profiles for that launch site, statistically sampled

as in Refs 5.10 to 5.12. A statistical load survey can be accomplished by simulation

of the vehicle flight through these profiles.

In the wind profiles, the wind shear (the change in velocity with altitude) is as

important as the wind speed. As the vehicle rises, the wind causes the vehicle to

drift and build up a lateral velocity. The lateral velocity reduces the angle of attack

induced by the wind. For low wind shear, e.g., a profile increasing linearly with

altitude, the vehicle has considerable time to build up the lateral velocity. However,

for high wind shear the vehicle has much less time to build up a lateral velocity. It

is apparent, then, that the wind shear has an important effect on the angle of attack.

5.5.1.2 Pitch Program. For vehicles launched from a single site at constant azi-

muth it is possible to fly a trajectory that will give an angle of attack, without wind,

opposite in direction to the angle of attack induced by the critical wind. Thus, a pro-

perly preselected pitch-program can provide some reduction in load. The reduction is

usually in the area of 5 to 15 percent. Selection of this pitch program is mostly by

trial and error to produce the best compromise of payload capability, thermodynamic

effects, and aerodynamic loads.

5.5.1.3 Trajectory Simulation. The degree of physical representation in the tra-

jectory simulation is open to question with the shortcomings in wind criteria. Gen-

erally a fiat, nonrotating earth is sufficient for the earth model. The vehicle can be

represented as a rigid body for determination of significant trajectory parameters with

the present available wind criteria. The vehicle autopilot can be simplified to its

rigid-body terms. Actually, a trimmed vehicle condition would be sufficient for loads

analysis; however, it is advisable to include a simplified version of the autopilot to

insure against a significant increase in loads because of the autopilot. Loads can be

calculated by either the coefficient method or trimmed condition of Section 5.3.1.

Usually the trimmed method will be used with synthetic profiles and the coefficient

method with actual wind profiles.

5.5.1.4 Elastic Modes. A good comparison of wind loads with and without inclusion

of elastic modes in the simulation has not been made at this time. The wind criteria,

either synthetic profiles or actual wind soundings, are not sufficiently detailed to include

the transients that would produce modal excitation. With more detailed wind data

available, inclusion of elastic modes may be necessary. However, flight data to date

do not show significant response in any elastic modes.
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5.5.2 GUSTLOADS. Gust loads are the lateral loads due to short-period wind speed
variations. For wind data taken at large altitude intervals, the gust treatment accounts
for the loads due to that wind profile detail not measuredby the wind-measuring sys-
tem. With more detailed wind data, the gust loads may reflect only the elastic re-
sponseto the measuredwind profile detail. Gusts are random in nature. Therefore
they have a probability of occurrence (though ill-defined) for a given gust velocity.

There are insufficient data to establish a correlation between gust velocity and wind

velocity; hence peak gusts and winds are generally considered to act simultaneously.

An immersion gust is generally used although insufficient investigations have been

made to indicate a preference between analytical usage of "immersion" and "penetra-

tion" gusts. As with trajectory simulations, the degree of physcial representation is

open to question. Generally rigid-body, slosh, and elastic modes will be considered.

The complete autopilot representation will be needed, but the engine control system

nonlinearities can usually be ignored.

5.5.3 BUFFET LOADS. Buffet is loading of a structure by an unsteady aerodynamic

flow. The flow is usually measured as a fluctuating pressure and exists at all fre-

quencies. Buffet is usually significant only in those areas where a change of vehicle

radius occurs or a protruberance exists. It is especially severe in, and downstream

from, the transition region from a larger diameter to a smaller diameter. Ref. 5.20

contains criteria for determining whether or not a vehicle shape is a clean body of re-

volution or is buffet prone. The response analysis is done using the techniques dis-

cussed in Section 2.6. The input spectra to use can be difficult to obtain. Either wind

tunnel tests must be made, or estimates must be derived from tests of similar con-

figurations. The analysis is usually conservative because of the unknown validity of

the chosen assumptions. Buffet can be important for the design of local structure and

of components mounted on structure affected by buffet. Theoretically, some overall

vehicle response can occur, but flight data do not indicate any significant response of

the gross vehicle to buffet.

5.5.4 OTHER LOADS. The previous discussions have covered the major loads ap-

plied to the vehicle. There are minor loads applied which, depending on the particular

case, may need to be considered. One of these is the center-of-gravity offset load

due to the center of gravity not being on the vehicle centerline. A similar load is the

load due to angular misaligument of various stages of the vehicle. These loads are

quite small compared to axial loads, wind loads, and gust loads and therefore need

not be considered unless a large amount of unsymmetry exists. Dispersions in tra-

jectory parameters, principally in angle of attack, dynamic pressure, and axial ac-

celeration, cause additional axial and lateral loading. Again these loads are small

compared to the major loads and are also random. When they are combined statisti-

cally with the gust loads, the loads virtually disappear.

5.5.5 COMBINED LOADS. The loads discussed previously need to be combined for

design purposes and for comparison with allowable loads. It is to be noted that loads

other than dynamic loads may be important for the complete load analysis of the space

vehicle. Examples are assembly pre-loads, internal tank pressures and differential
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pressures associated with nose fairing venting systems. Suchloads are outside the
scopeof this report. The combination of loads is discussed in Section 4.5.3. Eqs 4.9
and 4.10 become, in this case,

rl = rIXI + _XD + _Ycg +rlyw +rlYB +_TYG

2 2 2 2 2 2 2
= +(_XD + +(_YB +(_ CrXI _Ycg + Cryw (_YG

where the subscripts are defined as follows:

X = axial loading

Y = lateral loading

I = inertial load due to axial acceleration

D = drag load

cg = center-of-gravity offset and misalignment load

W = wind and pitch program loads

B = buffet load

G = gust load

Since some loads are axial loads and some are lateral loads, itis necessary either

to convert axial loads to equivalent bending moment, or vice versa. This conversion

is usually easily accomplished.

5.5.6 WIND MONITORING. The usual procedure for space launches is to take wind

soundings on launch day and determine if the launch is acceptable from the standpoint

of loads. The entire process is referred to as the wind-monitoring procedure or simply

wind monitoring. The basic steps of the procedure are

1. Calculate, in advance, all loads except those due to wind.

2. Obtain the wind sounding at the launch site and transmit it to the engineering

facility.

3. Obtain the loads due to the wind.

4. Compare applied loads with the allowable load either by: 1) comparing the total

load with the allowable, or 2) subtracting the loads obtained in step 1 from the

allowable load and comparing this with the wind load.

5. Transmit the results of this comparison to the person(s) authorized to decide

whether to continue with the launch.

The procedure (except step 1) is repeated several times, beginning 1-3 days prior

to launch and becoming more frequent as launch time approaches. A small allowance

is usually made for the wind changing during the time between the wind sounding and
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the launch. The changein wind velocity over a period of 2-8 hours is approximately
5-10%and to somedegree, canbe predicted. This persistence also exists, to a
lesser extent, over a period of days. A strong wind condition will generally persist
for a period of 2-8 days.

In connectionwith spacelaunches the term "launch probability" is frequently
used. Launchprobability is the probability of not having a delayed launch due to winds
aloft. If the vehicle is being designed, this corresponds to the probability of winds not
exceedingthe wind criteria used. If the vehicle is already designed, the launch pro-
bability corresponds to the probability of winds not exceedingthe maximum winds that
the vehicle is capable of withstanding.

Launchprobability is usually stated with reference to launch on a given day. How-
ever, the launchopportunity (window)for space launchesusually extends over several
consecutivedays. The probability of a launch sometime during the launch window is
higher than the probability of launch on a given day and, for some launch vehicles, this
increase may be significant. An example of this applying to the Atlas/Centaur vehicle
is Ref. 5.23; for onecase the launch probability for oneday was approximately 50%but
the launch probability for a five-day window was 95%.

5.6 CONCLUSIONSAND RECOMMENDATIONS

5.6.1 WIND CRITERIA. Wind soundingshave, in the past, beentaken at relatively
large altitude intervals. As a result, the actual wind profile hasbeen effectively
smoothedandfiltered to the extent that the profile detail for short altitude intervals
(especially less than 1000feet) hasbeenlost. To correct this, the FPS-16 Radar/
Spherical Balloon system is being used to obtain more accurate wind soundingsand
is providing data for an altitude interval of 25 meters. Thesedata are becoming
available in quantity and the wind and gust criteria shouldbe changedto reflect the
new data.

5.6.2 ANALYSIS. The "state of the art" of the analysis of vehicle response to winds
and gusts is regarded to be sufficiently advancedat this time. With the advent of
more detailed wind soundings, the elastic mode(s)will probably be required in the
trajectory simulation. This does not require any newanalytical techniques, being
merely another application of existing techniques.

5.6.3 PROCEDURE. With present available wind criteria the following procedure
shouldbe followed for calculating loads causedby atmospheric disturbance.

1. Wind and gust criteria for design must be specified.

2. Proceed with rigid trajectory simulation using a nonrotating fiat earth model and

a simplified rigid-body autopilot.

3. Calculate wind loads using a trimmed vehicle condition or the coefficient method

of Section 5.3.
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4. Calculate gust loads using the methods of Section 2.4 and 5.4.1 with immersion
or penetration gust.

5. Calculate axial inertial anddrag loads.

6. Calculate other loads suchas center-of-gravity offset and misalignment effects
and trajectory dispersions (if necessary).

7. Combineloads using the methodsof Section 4.5.3.

8. Set up launchwind-monitoring procedures as discussed in Section 5.5.6.
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6/ FREQUENCYRESPONSE

6.1 STATEMENT OF THE PROBLEM

The forces applied to SpaceVehicle Systemsor componentsof SpaceVehicle Sys-
tems are often sinusoidal in nature. If the systems respond in a set of normal modes,
vibrating at fundamental frequencies, then the dynamic response at discrete frequen-
cies can be determined from the summation of the responseof each normal mode.
The problem then reduces to finding the responseof single-degree-of-freedom systems
to a harmonic force.

The applied harmonic forces are most frequently encounteredin the various vibra-
tion tests of the system or its components. Modal vibration surveys require excitation
of the system at its natural frequencies. Checkoutof vehicle control and engineactua-
tor systems requires sinusoidal gimballing of the engine. Also, limit cycles of some
magnitudecan occur during flight. Typical examples are vehicle bending modeand
propellant sloshing limit cycles causedby feedbackto the control system.

The vibration tests andcontrol systems are designedsuch that these limit cycles
are not excessive; however, response analysis must be performed to establish
maximum limits.

6.2 HISTORICAL BACKGROUND

The analysis of a single-degree-of-freedom system's response to harmonic ex-
citation is developedin many text books on vibration. Adequatebackgroundfor control
system analysis related to limit cycles and frequency response canbe obtained in
Refs 6.1 to 6.5.

6.3 ANALYTICAL APPROACH

The equation of motion describing a vehicle natural mode subjected to a sinusoidal
force can be written as

2 1 _i cn+ 2_n¢C _ + _ _ =_n . F. sincot (6.1)_n n n n . 1 1

where _n is the normal mode coordinate and _n' COn' and _n are damping, frequency,
n is the normalized modeand generalized mass of the n th mode. The quantity ¢i
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deflection at point i and F i is the applied force at point i with frequency _. The

solution of Eq. 6.1 is

-Cn_nt -CnU_n t
= Ae sinu_ t + Be cos_ t

in n n

E nsin (_t - 0) ¢i F.1
i

_nU_:J[ I- (_n)2] 2 + [2_ n u_n]2

(6.2)

The terms associated with coefficients A and B represent the starting transients of

the system. The steady-state vibration is given by the third term in the right-hand

side of Eq. 6.2. Phase angle 0 is defined by

2_n_n _
tan 0 = (6.3)

2 2
¢d -4D

n

In frequency response problems the quantity of interest is the maximum steady-state

vibration after the starting transients have decayed. For maximum response as a

function of forcing frequency, Eq. 6.2 reduces to

nF.
1

i

in = (6.4)

_n _n 1 - _ + 2 _n _n

The acceleration of the normal mode coordinate is

_n = i (6.5)

J[ Ej2U_2 1- ('_'_ + 2; n U_
rr nn Wn/J

The maximum deflections, accelerations, moments, and shears in a natural mode

of the system can now be obtained by either the mode acceleration or mode displace-

ment methods of Section 2. Examination of Eqs 6.2 and 6.3 shows that maximum

response occurs when the forcing frequency is nearly equal to a natural frequency.
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For the case of zero damping, the maximum response occurs whenthe forcing fre-
quencyis equal to a natural frequency. However, the addition of damping shifts the
frequency at which maximum response occurs away from the natural frequency. Fur-
ther, the amount of shift dependsuponthe amountof damping. For SpaceVehicle
Systems, the dampingis quite small; therefore the shift in frequency at which maximum
responseoccurs is small. The phaseangle betweeninput and response is about 90 de-
grees. Therefore, at the time of maximum response at resonance, the applied force
is almost zero. This means that for the case of _ almost equal to _n, either method
(modeacceleration or mode displacement) will give the same accurate result.

At a given forcing frequency the complete load description requires time history
responsesof all the modes or the phasing betweenthe maximum responses of all the
modes. If the modeacceleration method is used, the time history of phasing of rigid-
body loads dueto the applied force alongwith the time histories or phasing of modal
accelerations are required. However, in most cases, the peak response at the reson-
ance of a mode is much larger than contributions from other modes. Usually, there-

fore, it is sufficient to be concerned with the summation of modal response at forcing

frequencies equal to natural frequencies.

6.4 ILLUSTRATIVE EXAMPLE

The Atlas/Centaur/Surveyor vehicle response to booster engine gimballing is used

to illustrate the solution to the problem and to show typical results. The mathematical

model is that of Section 5, i.e., t=60 seconds. The aerodynamic forces are omitted

in the example.

The forces acting on the vehicle are the lateral thrust component, T 8, and the

inertial loads, M E L E'5 and I E'6, as shown in Fig. 6.1. The generalized force of

Eq. 6.1 is

_ n [ n ( n n) ] 6 (6.6)i _i Fi = CxTW - MELECxE + IEqxE u_2

axe

ENGINE CG, x
E

I

L= x -x
E E T

REFERENCE PLANE

Fig. 6.1. Engine Gimballing Forces
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FREQUENCY (cps)

Maximum Gimbal Angle

for Atlas Booster

I0

The available engine gimbal angle, as

a function of frequency, is established by

displacement, velocity, and acceleration

characteristics of the engine-actuator sys-

tem. The maximum gimbal displacement

is set by mechanical stops in the actuator.

Engine velocity is limited by the flow rate

of the hydraulic fluid to and from the actua-

tor piston. The maximum displacement,

as limited by velocity, is a function of fre-

quency since the time available to gimbal

depends on the gimballing frequency. En-

gine acceleration is limited by the torque

available from the actuator system. The

maximum displacement, as limited by ac-

celeration, is also a function of frequency.

Plotting the three limits and selecting the

lowest limit at each frequency yields the

maximum gimbal angle as a function of

frequency, shown in Fig. 6.2.

Table 6.1. Modal Damping Values

MODE

NUMBER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DAMPING

COEFFICIENT,

0

0

0

0

0. 025

0.015

0.010

0. 010

0. 010

0.015

0.010

0.010

0.010

0.010

0. 010

The thrust of the two booster engines

at t = 60 seconds is 352,900 pounds. The

mass of the booster engines, the distance

from the gimbal point to the engine center

of gravity, and the moment of inertia of the

engines about their centers of gravity are

57.5 slugs, 2.5 feet, and 368 slug-ft 2,

respectively. The damping values used

are given in Table 6.1.

Calculations were made at frequencies

corresponding to those of the fifth, sixth,

and the eighth through eleventh modes.

These modes are vehicle bending and

booster engine rotation modes. (Modes

one through four are propellant sloshing

modes. Mode seven is the sustainer en-

gine rotation mode. For this example,

excitation at their frequencies was not per-

formed although significant loads can re-

sult from limit cycles at the sloshing

frequencies. ) At each forcing frequency

the peak responses of the first 17
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vehicle modes (including two rigid-body modes)were summedto obtain total vehicle
response. The responses, in terms of translational acceleration, rotational accelera-
tion, moment, and shear at the Centaur/Surveyor interface (Station 173) andthe Atlas/

Centaur interface (Station 412) are listed in Table 6.2. Nearly all the response at a

particular frequency came from the mode with a natural frequency equal to the exciting

frequency. The much larger response at 2.47 cps is mainly due to the larger engine

capability at that frequency. Above 8 cps, where engine capability is nearly constant,

the variation in response is due to modal quantities such as generalized force,

generalized mass, and mode shape.

It must be remembered that this example does not represent a flight condition.

However, it does point out that engine gimballing up to the full capability of the engine

Table 6.2. Summary of Loads Due to Engine Gimballing

LOCATION

0

0

FREQUENCY

(cps)

2.47

6.26

8.45

9.75

11.33

12.58

2.47

6.26

8.45

9.75

11.33

12.58

TRANSLATIONA L

ACCELERATION

(g's)

3.76

0.09

0.02

0.10

0.18

0.12

0.73

0.06

0.01

0.12

0.04

0.05

ROTATIONAL

ACCE LERATION

(rad/sec 2)

12.50

0.24

0.03

0.31

0.27

0.19

9.75

0.08

O. 02

0.40

0.22

0.04

SHEAR

(lb)

13,300

340

6O

170

550

370

38,950

76O

5O

2,670

120

450

BENDING

MOMENT

(in. -lb)

579,00O

16,000

5,200

5,500

22,600

15,800

8,450,000

223,000

17,000

271,000i

100,000

81,000
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system at frequencies greater than 6 cps does not produce excessive vehicle loads.

Below 5 cps, large response can occur and this illustrates the reason control design

is concerned primarily with rigid-body, sloshing, and first and second vehicle bending

modes in a system with hydraulic engine actuators.

6.5 DISCUSSION

The analyst is interested in the vehicle response as a function of the forcing fre-

quency. From this response the acceptability of forces at certain frequencies and

amplitudes can be determined. It is seen from Eq. 6.4 that the response will peak

sharply at the modal frequencies, i.e., _ = _-_n. The response will decrease rapidly

when u_ is unequal to a_n, even if by a small amount. Since only the peak values are of
interest in most cases, it is often necessary to make numeric solutions only at the

modal frequencies.

The response is a function of modal quantities (generalized mass, frequency,

shape), forcing frequency, force amplitude, and damping. All but damping are usually

available with sufficient accuracy for analysis. Damping can be obtained only by test;

since response is inversely proportional to damping, care must be exercised to obtain

and use correct damping values.

6.6 CONCLUSIONS AND RECOMMENDATIONS

The analysis for frequency response is straightforward if vehicle modes are avail-

able. Damping of the system is very important in the response solution and therefore

importance of this quantity cannot be overemphasized. In the analysis it is usually

sufficient to determine the response of the nth mode with an excitation frequency equal

to the mode frequency. These results will indicate areas needing further investigation.
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7/STAGING AND JETTISON

7.1 STATEMENT OF THE PROBLEM

The problems associated with separation are as varied as the number of possible

systems or techniques used to accomplish it. Separation can be classed according to

t_vo objectives: 1) staging to separate a spent stage, and 2) jettison to separate a part

of a stage, such as a fairing, after it has accomplished its mission. Each of these can

be divided into several operational phases for dynamics analysis. First is the actual

disconnect of the two parts. This disconnection can be accomplished by explosive bolts

or clamps, pneumatic latches, or an explosive shaped charge which actually cuts a

separation plane. Problems at this time generally are related to shocks of high fre-

quency and amplitude content.

The second operational phase is the force which actually causes relative motion.

This may be in the form of retrorockets, pneumatic thruster bottles, energy stored in

springs or structure, rocket thrust of the next stage, plus others. The loads of primary

concern at this time would be the local loads at the points of application and reaction.

These loads generally are low and do not excite the overall vehicle significantly. If

devices such as guide rails or hinges are employed to assure proper clearance, then

loads on these structures are also a consideration.

A third operational phase involves clearance and vehicle control during separation.

Adequate clearance is often maintained by the use of guide rails or hinges, although

adequate clearance may be obtained without them. Control during this phase is gen-

erally of two types, inactive and active. With inactive control separation, the vehicle

is trimmed prior to disconnect and then the control system is re-activated after sepa-

ration is complete. Re-activation of control should be accomplished in such a manner

that it does not cause significant disturbing forces to the overall vehicle. An active

control separation would maintain the vehicle in proper trim condition throughout the

maneuver. During staging it is possible that either control method could be employed

on either, or both, of the stages.

This section will present a typical rigid-body analysis for jettisoning of a fairing

and will discuss elastic effects as well as the typical problems involved with separation

in general.

7.2 HISTORICAL BACKGROUND

The early ballistic missiles were single stage vehicles with only one separation

problem, that of separating the warhead from the vehicle, and sometimes even this

was not a requirement. Attempts were made to minimize errors in rates and attitude

due to separation but generally this was not critical since total errors of guidance,
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control, and propulsion were large compared to the errors encountered with separation.

With the advent of the ICBM, additional problems were caused by the separation of

various stages. Also, the attitude and rate errors due to separation became more

critical because of increased accuracy of guidance, control, and propulsion. Sophis-

ticated scientific payloads require protective fairings that are usually jettisoned after

the period of maximum heating to optimize performance.

The analysis for clearance and control is quite often satisfied by solution of the

rigid-body equations of motion. A parametric study is usually necessary for consider-

ation of possible combinations of the variables such as thrust, weight and center of

gravity, aerodynamics, installation tolerances, and timing tolerances. Where possible,

the worst-case combination of the above is used for design. If this imposes a severe

restriction on design, then a more complete statistical study may be required, although

this is an exception rather than a general procedure. Examples of the various condi-

tions and combinations to be analyzed are given in Refs 7.1 and 7.2, which provide

clearance studies for the Titan IIIC and Atlas/FIRE vehicles, respectively.

Loads and deflections for rails and hinges which may be used for the separation

sequence are usually obtained by normal mode theory. Again, the worst-case analysis

is usually sufficient although many parameters require evaluation to determine the

worst case. The analysis for ejection of flexible fairings requires use of modes for

half or quarter shells to determine loads at hinge points (if used) and also to obtain

separation velocity if the separation force is a short-duration impulse. Methods for

calculating modes for these partial shells are still in the development stage. Refs 7.3

and 7.4 are examples of efforts to develop these methods. As a result, this type of

problem is solved by tests to determine modes and tests to determine separation

velocities.

The shocks resulting from the activation of the disconnect systems are not amena-

ble to analytical solutions; however, data have been obtained from ground tests and from

flight data to adequately describe shocks and shock tests. The data of Ref. 7.5 give

results from several types of systems. Refs 7.6 and 7.7 present results for shaped

charge systems.

7.3 ANALYTICAL APPROACH

The detail of analysis is oiten determined by the properties and parameters of

importance for the specific event. In staging and jettison this detail can vary from a

planar rigid-body analysis to a multidirectional rigid and elastic body representation.

The analytical technique employs the equations of motion describing the event to the

required degree of detail. A solution for nose fairing jettison is presented in the next

section to illustrate the approach taken on this type of problem. The general case of

a rigid fairing on an elastic hinge is discussed and then a specific fairing is analyzed

to illustrate the type of results that may be obtained.
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7.3.1 NOSEFAIRING JETTISON. Nosefairing jettison has three problem areas
that require investigation:

a. Loadsdue to activation of the separation system.

b. Loadsdue to action of thrusters and/or motion of the fairing.

c. Clearance.

Loads due to activation of the separation system are not generally amenableto ana-
lytical techniques and are usually evaluated by tests. Effects of thruster gas impinge-
ment oncomponentsare also handledby tests. Loads due to thruster force and the
clearance evaluation canbe handled analytically. The remainder of this section is
devotedto developmentof the fairing trajectory equations. For this development, the
fairing will be considered rigid, but mountedon an elastic hinge.

The type of nose fairing configuration under discussion is illustrated in Fig. 7.1.
The fairing is composedof two halves which are separatedby explosive bolts, latch
pins, a shapedcharge, or a combination of these. Eachhalf rotates about a single
hingepoint during initial rotation and is released from the hinge at an angle such that
its center of gravity is outboard of the hinge. A typical hinge is detailed in Fig. 7.2.
The impulse to rotate the fairing may be provided by springs or other thruster systems.
The vehicle is assumedto be trimmed during jettison andthe dynamic pressure is as-
sumedto be negligible.

L1

AFT JOINT

Fig. 7.1.

I

I

/
/

//

/

,PART

L_E
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Typical Nose Fairing
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The mathematical model is illustrated in Fig. 7.3. The basic coordinate system
and those values which will usually be knownare given in Fig. 7.3a. The Y, X co-
ordinate system is the reference frame and moveswith the vehicle, which has a con-
stant linear acceleration of a ft/sec 2. This system was chosen since the items of
interest are relative to the vehicle. The center of gravity of the fairing mass (M
slugs) is located at Yc._, X in the fixed coordinates, and at 0, X-- on the rotatingcg _
axes. The rotating :_ axis passes through the center of gravity and the hinge, and

rotates with the fairing. The fairing is supported throughthe hinge by springs Ky and

Kxand is rotated by thruster force F(t, e)which acts at YF, XF at an angles (t, e)
from the X axis. The force and the angle at which it acts may be a function of only

time t or rotation angle e, but they can be a complicated function of both.

Fig. 7.3b shows the model and free-body diagram at t=0. The fairing is repre-

sented by the rigid beam 0, 0 to 0, X F. To simplify the representation, the thruster
force has been moved to the :_ axis and the moment

M F (t, O) = YF F (t, O) cos_ (t, e) (7.1)

added to compensate for moving the force from its line of action. The hinge reaction

loads are given by

FHy = -KyY H

FHX = -Kx X H

(7.2)

where YH' XH are the displacements of the hinge, as indicated in Fig. 7.3c. This

figure also indicates the rotation angle e, which is taken from the rest position of the

X axis,at atime after actuation of the thruster force. The angular velocity _ and ac-

celeration e are also indicated. The items of interest are the forces at the hinge,

FHy and FHX, and rotation angle e (t).

The solution is now obtained by classical rigid-body analysis, e.g., application of

Newton's second law or LaGrange's equation. The Newtonian approach is taken here.

It is assumed that all forces lie in the same plane so that only planar motion need be

considered. Thus, the motion of the fairing is completely described by three coordi-

nates. The translation in the reference plane of a point on the body and the angle the

axis makes with some reference position will provide the three coordinates, viz.,

XH' YH' and e. The notation of t and e will be dropped from F (t, e), M F (t, e), and
(t, e) for simplicity but it will be understood that these are explicit functions of time

and/or angle of rotation.
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ROTATING

AXES

AXES
_Y

a. Schematic at t = 0

Fig. 7.3. Nose Fairing Mathematical Model
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The sum of the moments about the hinge (Fig. 7.3c) is given by

MH; IH 8 = M F +FXF sin_ +MaI_cgSin(e-_)

+ M XH Xcg sin (e - _) - M YH Xcg cos (e - _} (7.3)

The sums of the forces along the X and Y directions are

FX;
•. _ _2

MX H MXcg cos (8-_)- MXcg _'sin (8-_) +Ma

= FHX - F cos [_ - (8 -_)_ (7.4)

Fy;
•" _ _2

M YH M Xcg sin (e - _) + M Xcg

= F + F sin [(_ - (e -_)]
HY

cos

(7.5)

Substituting for MF, FHX , and FHy, and collecting terms with one second order de-
rivative on the left, Eqs 7.3 through 7.5 become:

= F + sinai + cg

- YH cos ({}-B)I (7.6)

cos (e-_) + 8 sin (e-_])l - MC°S (_+_-8)XH = Xcg _2 F

KX X H
a

- M

-i .. IF= Xcg _2 sin(e -B) + {9cos (8-_) +_-sin (_ +B-8)

(7.7)

Ky YH

M (7.8)

It can be seen that these equations are coupled at the hinge, that is, either X H or YH
appear in all three equations. It will also be noted that a Coriolis acceleration term

does not appear due to the conditions of a nonrotating reference frame. Damping in

the hinge has been assumed to be negligible.
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Eqs 7.6 through 7.8 can be solved by standard numeric techniques. Several methods

are avilable {Section 2.4) and the choice will be dependent on the desired accuracy.

The velocities and displacements are found by integration of the accelerations.

Referring to Eq. 7.6, it will be noted that when F=0, the fairing weight, Ma, will tend

to rotate the fairing. This rotation is restrained by the opposite fairing half and the

base of the fairing in the real case. For the simplified model being used, however,

equilibrium must be obtained by addition of a ficticious thruster force or moment at the

hinge. The ficticious hinge moment will yield more realistic initial conditions. This

reaction moment (MR) is found by solving Eq. 7.3 for XH = _; H = _)" = F = 0, viz.,

MR = Ma Xeg sin _ (7.9)

This moment goes to zero when the thruster moment equals MR .

Eqs 7.6 through 7.8 apply to the fairing prior to hinge release. After hinge re-

lease, a similar set of equations is required for motion of and about the center of

gravity. The initial conditions for these equations are those existing at the instant of

hinge release. The item of interest here is the motion of the fairing relative to the

vehicle. Thus, the same reference frame may be employed as above.

7.3.2 ILLUSTRATIVE EXAMPLE. An example of fairing jettison is given in this

section to illustrate the type of information obtained from a typical analysis. The

fairing used in this example is that used on the Atlas/Centaur/Surveyor. The dimensions

are (see Fig. 7.1) D 1 =D 2 = 10ft, L 1 =6 ft, L 2 = 16.1ft. The hinge design is that il-

lustrated in Fig. 7.2, which forces the pin from the yoke at about 35 degrees of rotation.

The inertial and dimensional quantities necessary for the analysis are given in Table

7.1. The nominal thruster force, supplied by a cold-gas jet, is shown in Fig. 7.4.

The variations in thrust angle are caused initially by pressure buildup within the fairing

and then, as the fairing halves separate, by gas impingement upon the fairing. The

vehicle acceleration at the time of thruster activation was 46 ft/sec 2 (1.43g).

The results of the analysis are presented in Figs 7.5 and 7.6. The hinge loads of

Fig. 7.5 indicate that the maximum radial and axial loads occur at about 0.01 and 0.02

second, respectively. From Fig. 7.6, it can be seen that the fairing clears the ve-

hicle during all phases of the trajectory. A close examination of the displacement of

the hinge point near the time of hinge release may be necessary to establish that the

hinge assembly does not strike the vehicle.
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Table 7.1. Properties of Example Fairing

Mass

Moment of inertia about hinge

C.G. location

Force location

Radial spring

Longitudinal spring

M = 29 slugs

I H = 3293.6 slug-ft 2

= 10.47 ft
cg

= 19.47 ft
F

YF 5.42 ft

Ky = 1.8 x 106 lb/ft

K X--6 × 106 lb/ft
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The radial hinge loads of the two fairing halves will nearly balance each other so

that there will be little, if any, excitation of lateral vehicle modes. However, the

vertical loads act together and can excite longitudinal vehicle modes. To investigate

these longitudinal loads, the free longitudinal model of Section 4.3 was employed with

the force time history equal to twice the axial load of Fig. 7.5. This load was applied

to mass number 5 of the model shown in Fig. 4.5, when the vehicle was under 1.43g

acceleration.

TEADY STATE

0 0.10

Fig. 7.7.

0, 20 0.30 0.40 0.50

TIME (sec}

Longitudinal Acceleration

at the Centaur/Surveyor

Interface Due to Nose

Fairing Jettison

The results of this analysis are pre-

sented in Figs 7.7 through 7.9. The oscilla-

tory motion due to the nose fairing jettison

load is superimposed on that due to steady-

state vehicle acceleration. The acceler-

ations at the Centaur/Surveyor interface

(Fig. 7.7) are important in that the oscil-

lations may excite the payload significantly.

The axial load at the Centaur/Surveyor inter-

face is shown (Fig. 7.8) to illustrate that,

due to the flexible spacecraft, the acceler-

ation at the interface times the spacecraft

weight does not necessarily yield the load

at the interface. The normal coordinate

displacements presented in Fig. 7.9 indicate

the contribution of each mode to the total re-

sponse. Nearly all modes are excited be-

cause of the high-frequency pulse loading.

-4

2

£

-12

I ,

L

Fig. 7.8.

I

V vivvv!vv\

i

. lu u20 3O u 4O

TIME _scc)

Axial Load at the Centaur/

Surveyor Interface Due to

Nose Fairing Jettison

7.4 DISCUSSION

7.4.1 JETTISON. The effective force of a

gas thruster is more than just the thrust of

the nozzle. Prior to actual opening of the

fairing, there will be a pressure buildup in

the cavity. There is also the gas impinge-

ment force from the jet of the opposite fair-

ing half. Both these forces are effective

only during the first few degrees of rotation,

but they can increase the impulse signifi-

cantly. These factors make prediction of

the thrust time history a difficult task. Other

types of thrusters, such as springs, may be

more predictable.

7.4.2 ELASTIC EFFECTS. When a fairing and/or its hinge support are relatively

flexible, a rigid-body analysis may not suffice for hinge loads and initial angular
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motion. The fairing modes may be excited

which can increase the hinge loads over

those of a rigid-body analysis. Further,

under certain circumstances, modal re-

sponse of the fairing can affect the time

history of the ejection mechanism itself

and thereby reduce the total applied im-

pulse. In such a case the total momentum

imparted to the fairing may be less than

nominal and difficulty may be encountered

in clearing the missile.

Analytical techniques for calculating

modes of partial shells are in the develop-

ment stage; e.g., Refs 7.3 and 7.4. As a

result, tests must be performed to deter-

mine these modes. These modal surveys

should give the following information:

a. Frequencies.

b. Displacements in the radial, tangential

and axial directions (mode shapes).

c. Damping.

d. Generalized mass.

The axial and tangential displacements

have often been ignored in the analysis of

small fairings, but they cannot be ignored

for larger, more flexible fairings.

7.4.3 STAGING. The full spectrum of

concern during staging encompasses the

period from prior to engine shutdown to

after ignition of the next stage. The oper-

ations involved must be optimized for min-

imum payload loss, while at the same time

minimizing potentially critical design

loads. For example, disconnection of

stages cannot be performed until the tran-

sients of engine shutdown have reduced

sufficiently to preclude bumping*, ignition

*The exception to these is staging by firing

in the hole, as with Titan II. This case

will be discussed later in this section.
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of the next stagecannot occur until separation is complete, and control reactivation
shouldnot produce excessive engine gimbal angles andresultant vehicle loads. The
effects of engine shutdownandthrust buildup havebeendiscussed in Section4. The
optimization of sequencingof operations is beyond the scope of this report.

The majority of the current space launch vehicles are multistage and it is possible

that more than one type of system will be encountered on a single vehicle. The staging

system consists of two parts:

a. That required to sever the structural and mechanical connection, i.e., a dis-

connect system.

b. That required to produce relative displacement, i.e., a thruster system.

Types of disconnect systems include latches, explosive bolts, linear shaped charge,

and Marman-type clamp arrangements. Latches may be activated by high-pressure

gas or by pyrotechnic devices such as pin pullers. Explosive bolts, shaped charge,

and clamp arrangements require investigation of possible damage from loose frag-

ments ranging in weight from milligrams to possibly several pounds. Structure and

equipment must be protected from the high-velocity particles that can result from the

detonation of pyrotechnic devices. Nearly all the above systems have some shock as-

sociated with their activation.

Once the spent stage has been separated, the problem then becomes one of assur-

ing that there is no collision and to minimize turning rates to the rejected stage and the

following stage. Guide rails are often employed to eliminate any possibility of collision

during staging. The problem here is to define the loads on the rails so that deflections

and weight are optimized. The selection of a thrust system to provide relative dis-

placement may be straightforward or may require statistical analysis, depending on

the variables involved. Thrust systems that may be encountered include springs, gas

thrusters, monopropellant or hypergolic engines, solid-propellant rockets, or firing

of the upper stage engines. These devices may be on the upper or lower stage or in

combination.

Loads that must be considered during staging include shock due to disconnect and

those associated with the thruster system. Shocks range from as high as 3000g in the

immediate vicinity of shaped charges to less than 50g for latches. The shock amplitude,

frequency content, and propagation through the structure will depend upon the device

used and the type of structure. Analysis of loads due to thruster activation is usually

straightforward. The impulse resulting from release of restrained elastic energy

(pretensioning, for example) should not be overlooked.

The case of staging by "firing in the hole" presents some rather special problems,

although it does represent the most efficient method. For example, there is a greater
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possibility of explosion at engine ignition due to trapped gases in the interstage adapter.

Moreover, the thermal environment in the engine compartment may be more severe

than with other methods, and the vibration and acoustic environment may be more
severe.

7.5 CONCLUSIONS AND RECOMMENDATIONS

The analytical techniques required to determine staging and jettison loads are, for

the most part, well developed. While the Newtonian approach was used to develop the

analysis of Section 7.3.1, the Lagrangian approach is more suitable for more compli-

cated systems. When the elastic effects are considered in the analysis, Lagrange's

equation has a decided advantage. It may also be desirable to derive the equations

initially with respect to the center of gravity and then, if necessary, transform them

into another set having the desired variables.

Shock and gas impingement loads must ordinarily be determined from tests.

Methods for calculating modes of partial shells require further development for

direct project support applications. In order to reliably predict hinge loads and fairing

deflections the flexibility of the fairing and hinge must be taken into account.
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