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I One of the  problems confronting the current 
effor t  t o  explore the moon i s  the physical condi- 

regard t o  i t s  bearing strength with respect t o  
spacecraft landings. 
Research Center have found that a good idea as t o  
the hardness, bearing strength, and penetrabil i ty 
of the lunar surface can be gained from analysis 
of the deceleration time history result ing from 
the impact of deceleration measuring instruments, 
i.e., impact accelerometers. The accelerometers 
are embodied in a structure called a penetrometer 
which also houses a radio telemeter. 
trometer thus has the capabili ty of transmitting 
the impact information t o  a remote receiver. The 
instrumentation concepts and d e t a i l s  of two types 
of pqetro- s are described. Typical applica- 
t ions  of h ~ w  such instrumentation might be 
employed t o  investigate lunar or planetary sur- 
face conditions with various spacecraft are 
presented. 

I I t ion  of the  lunar surface, par t icular ly  with 

Researchers a t  the Langley 

The pene- 

I ~ O l X E l ! I O N  

One of the  problems confronting the current 
effor t  t o  land upon and explore the moon i s  the 
determination of the  moon's surface character 
with regard t o  spacecraft landings and post- 
Landing locomotion of exploratory vehicles and 
personnel. In the  past ,  investigators have been 
able t o  ascertain the large-scale characterist ics 
of the moon, such a s  the s ize  and distribution of 
mountains and craters ,  by the  use of a variety of 
earth-based radio and opt ical  techniques and 
instrumentation. 
po di rec t  measurements of the  small-scale fea- 
tures, such a s  texture,  and topographical d e t a i l  
on a dimensional scale  of interest  t o  man's mve- 
ment on the surface, have been possible. 
casual Observer can f ind descriptions i n  contem- 
porary l i t e r a t u r e  which estimate that the lunar 
surface hardness may range from the hardest of 
rocks t o  the  f i n e s t  of dusts. Such a l i t e r a t u r e  
search would also reveal that there  i s  a general 
agreement among most observers that whatever the 
surface material  may be, on a s m a l l  scale it is  
of uniform character over the  en t i re  lunar disk. 
F'urther, the surface material  appears t o  be of 
very l o w  gross density,  and very low reflec- 
t i v i t y ,  which suggests the possibi l i ty  of a 
structure  similar t o  oceanic coral, for  example. 
The lack of posi t ive information on the load sup 
porting capabi l i ty  of the  lunar surface i s  due 

However, t o  the present t i m e ,  

The 

t o  the inabi l i ty  of earth-based instrumentation 
t o  measure such quantit ies with the required 
resolution. 

Presently planned and scheduled missions 
incorporate photographic and other survey tech- 
niques which should do much t o  provide great ly  
improved knowledge of the small scale topograph- 
ica l  features of the lunar surface. 
results from such missions may not provide the 
necessary information regarding character is t ics  
of the surface such as its hardness and load sup- 
porting capabili ty.  

However, 

BACKGROUND €BSAFXH 

The Langley Research Center of the National 
Aeronautics and space Administration has been 
interested i n  the problem of obtaining a measure 
of the load supporting capability, o r  bearing 
strength, of the  lunar surface f o r  some t i m e .  
One of the outgrowths of t h i s  in te res t  i s  a 
research program t o  find suitable means of per- 
forming such measurements. This endeavor has 
shown that cer ta in  of the physical cbaracteris- 
t i c s  of a typical  ear th  surface materiai, such as 
i t s  hardness and penetrabil i ty,  can be determined 
by analysis of the deceleration signature pro- 
duced by the Impact of suitably instrumented pro- 
jec t i les  upon the material. The impact measuring 
instrumented pro jec t i les  have been designated 
"penetrometers. It 

also shown that  there i s  a relationship between 
the hardness and penetrabil i ty character is t ics  of 
a terraneous-like material and i t s  s t a t i c  load 
bearing strength. Knowledge of the complete 
impact acceleration t i m e  history of a penetrw- 
eter  can indicate the physical composition of the 
material, tha t  is ,  whether it i s  granular, such 
as gravel o r  sand, or powdery, such as various 
dust media. Configurations of hard rock, such as 
granite, o r  b r i t t l e ,  frangible structures such a s  
lava or  coral  can be ident i f ied with good accu- 
racy with the  penetrometer technique. 
f r o m  the penetrometer impact research programs t o  
date shov tha t  the penetrometer technique can 
provide useful information on the  bearing 
strength of the lunar surface fran the point of 
view of the  spacecraft landing-gear structure 
designer. 

The LRC research program has 

Results 

Some results of the Langley Fmpact studies 
are  presented i n  reference 1. This report shows 
that  suff ic ient  information can be derived from 
the acceleration time h is tor ies  of impacts upon 



ear th  materials t o  adequately define the  nature 
of the materials. I n  the  case of  a remote sur- 
face, such a s  that of the moon, impact accelera- 
t ion  time histories can be compared with impact 
acceleration t i m e  h i s tor ies  developed by the 
same, or similar, instruments impacted on ear th  
materials t o  characterize the unknown target  sur- 
face material, t o  a first order a t  least, i n  
terms of known ear th  materials. 

Figure 1 presents a few typical acceleration 
time his tory waveforms, as  developed by penetrom- 
e t e r s  used i n  the LRC impact t e s t s .  The s igni f i -  
cant features  of these wavefonns are  a s  follows: 
duration t i m e ,  maximum acceleration, time 
required t o  reach maximum acceleration, the num- 
ber  and location of acceleration peaks, t a i l -of f  
characterist ics,  and the  overall  shape of the 
waveform. The important features of these ty-pi- 
c a l  information signals with respect t o  the 
instrumentation requirements are the acceleration 
range and pulse-duration range - these quant i t ies  
define the instrumentation dynamic-amplitude and 
frequency-response requirements. 

I n  the investigation of a remote surface 
such as that  of the  moon, a penetrometer instru- 
ment must not only have the capabili ty of trans- 
ducing the physical process of the impact event 
t o  a usable information signal, but must a lso be 
capable of relaying the information signal t o  a 
location where it can be ut i l ized.  I n  present 
concepts of penetrometer deployment essent ia l ly  
two information relay techniques are under con- 
sideration; interconnecting cable and radio 
telemetry. From an instrumentation viewpoint, 
interconnecting cable systems are  typical ly  l e s s  
complex than radio telemetry; however, the cable 
systems have l imitations associated with 
deploying the cable while maintaining instrument 
orientation during f l igh t  and impact. 
though these problems be solved, or  reasonably 
under control, dispersion ranges f o r  space vehi- 
c le  applications appear t o  be limited by pract i -  
c a l  cable lengths and weights. Although radio 
telemetry techniques f o r  relaying information 
signals are more complex, and in  some respects 
may not offer  off-the-shelf technology for pene- 
trometer applications, such techniques are 
devoid of many of the problems of t r a i l i n g  cable 
information transmission systems, and simultan- 
eously can provide greater experimental f lex i -  
b i l i t y  of the impact penetrometer instrument. 

Even 

LRC has undertaken the development of pene- 
trometer instruments having radio telemetering 
capabili ty.  The instrumentation requirements 
f o r  a radio telemetering penetrometer instrument 
can be divided in to  two major areas: (a )  accel- 
erat ion sensing and transducing, and (b) the 
radio telemetry system, and i t s  power supply, 
signal conditioning, antenna and support 
s t ructure .  

a. Acceleration Sensinq 

The requirements of the acceleration sensing 
and transducing components are  defined by param- 
e t e r s  of the  information signal derived from the 
impact a s  shown i n  figure 1. These parameters 
naturally have a strong dependency on the impact 
velocity,  which i n  turn,  i s  dependent upon the 
maneuvering capabili ty of spacecraft from which 
the penetrometers a re  deployed. Therefore the 
acceleration sensor must be capable of performing 
adequately throughout the range of impact veloc- 
i t i e s  l ike ly  t o  be encountered a s  a resul t  of 
l imitat ions i n  space vehicles maneuverability. 
I n  the LRC studies impact veloci t ies  from 20 t o  
300 fee t  per second have been considered a s  a 
f a i r l y  broad range of capabi l i t ies  for  spacecraft 
maneuvering. 
but not en t i re ly  dependent on the l imitat ions of 
spacecraft maneuverability, i s  the orientation of 
the penetrometer during the impact process. The 
ideal  penetrometer i s  omnidirectional so tha t  
impact decelerations measured are equal regard- 
l e s s  of the angle of impact or  impact a t t i tude  of 
the penetrometer. Such omnidirectional capabil- 
i t y  thereby infers  a spherical penetrometer. It 
can be shown tha t  the impact accelerations 
measured by an omnidirectional penetrometer have 
significance despite impact angles re la t ive  t o  
the target  surface which may be encountered due 
t o  loca l  surface slopes, o r  penetrometer t ra jec-  
to r ies .  However, for t h i s  application, omnidi- 
rect ional  acceleration sensing i s  unfortunately 
not off-the-shelf technology. 

I 

A second factor ,  associated with, 

I 

I n  figure 1, it w a s  shown that the t i m e  
duration of acceleration time h is tor ies  may range 
from a 2%-microsecond essent ia l ly  half  sinusoid 
waveform, produced by an impact with a hard, 
e l a s t i c  material, t o  a 200-millisecond asymmet- 
r i c a l ,  although s t i l l  unipolar, waveform produced 
by encounters with very sof t  materials. It i s  
probable t h a t  the longer duration signals w i l l  
contain intervals  where the waveform amplitude i s  
changing rapidly.  
impact information signals a re  within these 
l imi t s ,  it is evident tha t  the penetrometer 
instrumentation must  be capable of encompassing 
the frequency range, 2000 t o  2.5 cycles per 
second. 

Since the  duration of a l l  

Because of the unknown load supporting cap- 
a b i l i t y  of the lunar surface, a wide dynamic 
range of acceleration amplitude response, p a -  
s ib ly  encompassing three orders of magnitude, i s  
required. The wide range requirement imposes 
some d i f f icu l ty .  For example, i f  a penetrometer 
i s  deployed from a space vehicle so that it 
impacts the target  surface at  a velocity higher 
than 100 fee t  per second, extremely high shock 
loadings can resu l t  i f  a hard solid surface i s  
encountered - shock loadings approaching 1 0 0 , o ~  
e a r t h  "g" are  possible. However, f o r  penetrom- 
e t e r  applications presently being considered the 
information s ignal  qual i ty ,  or resolution, can 
be allowed t o  degrade as shock loadings increase. 



.The reduction of required resolution results from 
the lessening of the  exactness with which it is  
necessary t o  how the load supporting capability 
of a ta rge t  surface a f t e r  it has been established 
that i t s  support capability exceeds a given 
threshold value; or, i n  other words, it is  much 
more important t o  how the  probability of typ ica l  
spacecraft loads t o  cause slnking t o  dangerous 
depths i n  a soft material, than t o  how how much 
stronger a ta rge t  surface may be above an estab- 
l ished threshold value. 
deterioration of data quali ty above a certain 
threshold suggests the possibilities of providing 
some form of impact l imi te r  on the  penetrometer - 
a crush-up outer structure fo r  example. 
of impact llmlting structure has Beveral advan- 
tages i n  addition t o  providing shock protection 
for instrumentation components. The impact lim- 
i t e r  i s  a mechanical form of acceleration dynamic 
range compression - very vide acceleration range 
r e spnse  is not required of the acceleration sen- 
sor. Further, the  impact l imiting structure can 
be made very l i gh t  i n  weight, thus reducing the 
gross density of the  penetrometer and increasing 
i t s  surface area t o  mass ra t io ,  hence improving 
its sens i t iv i ty  t o  law-density ta rge t  materials. 

The apparent allowable 

The use 

A block diagram of instrumentation which 
might be employed i n  a penetrmeter  equipped with 
a radio telemeter is sham i n  figure 2. Fol- 
lowing  the omnidirectional acceleration trans- 
ducer and signal conditioning c i r cu i t ry  are the 
basic telemetry compnents required of a pene- 
trometer. 
transmitter-modulator, an antenna, and a power 
supply system. 

These components are a radio 

A number of in te res t ing  requirements exist 
f o r  the  transmission of data with minimum cammun- 
ica t ion  l i n k  d is tor t ion  t o  even moderate d is -  
tances of a few miles. Adequate radio-frequency 
power output i s  naturally an important cri terion. 
Frequency s t a b i l i t y  is  equaUy important. Since 
amplitude modulation imposes extremely d i f f i cu l t  
conditions upon attempts t o  communicate during an 
impact process, acceptable alternative modulation 
techniques not requiring unduly complex modula- 
t i o n  drive a re  frequency modulation, or possibly 
-phase modulation. Single-channel frequency modu- 
l a t i on  by d i rec t  deviation of the transmitter 
ca r r i e r  signal i s  an acceptable technique. Thus, 
frequency s t a b i l i t y  becomes of paramount impor- 
tance. Frequency s t a b i l i t y  as achieved by use of 
the  conventional piezoelectric quartz c rys ta l  
frequency controll ing element i s  impractical for 
the high shock l e v e l s  that may be encountered. 
Thus a self-excited transmitter having high 
short-term frequency s t a b i l i t y  is  required. 
unately, most missions envisioned for penetmm- 
e t e r  applications do not require long transmis- 
sion in te rva ls  - transmitt ing times w i l l  usually 
be measured i n  seconds. Thus it appears reason- 
able t o  t r y  t o  bui ld  miniature ruggedized radio 

For- 

transmitting equipment capable of-&mining 

within a few thousandths of a percent of a given 
operating frequency fo r  a few minutes. 

A second requirement of t he  telemetry system 
of an omnidirectional penetrometer i s  an omnidi- 
rectional transmitting antenna. Again, several 
factors unique t o  operation during an impact 
process define i ts  desired operating c r i t e r i a .  
The requirement that the  radiation pattern of 
such an antenna be omnidirectional implies a 
losey antenna; other fac tors  affecting i t s  per- 
formance during an Fmpact process indicate fur- 
ther antenna inefficiency. For example, the 
antenna canes in to  contact with and may becme 
par t ia l ly  or completely immersed i n  the  material 
it impinges upon, yet it i s  required that pene- 
trometer performance including data transmission 
not be grossly affected by this circumstance. 
Contact with a m e d i u m  other than that of f ree  
space causes severe e l ec t r i ca l  loading ef fec ts  on 
an antenna. 
changes result ing f r o m  such e l e c t r i c a l  loadings 
can cause severe sh i f t ing  of the transmitter 
operating frequency, as well as detuning and 
inefficiencies of the  antenna. One of several 
possible approaches to  minimizing these problems 
i s  two sided: (a)  t o  operate the  antenna capac- 
i t i ve ly  detuned, and (b) t o  i so la te  t he  transmit- 
t e r  output from its osc i l l a to r  t o  the greatest  
practical  extent. 

The d ra s t i c  antenna impedance 

A t h i rd  requirement of a penetrameter i s  
that it contain its o m  power supply. Since the  
penetrometer must be ruggedized for t he  possible 
high shock load- situation, it ie desirable 
that the  power supply be an in tegra l  part of t he  
penetrometer instrument structure.  The require- 
ment that the  complete penetrometer instrument be 
e lec t r ica l ly  tes ted  f o r  proper operation and 
determination of i ts  operating characterist ics,  
and callbrated by impact upon various ear th  
materials, c a l l s  f o r  a rechargeable ba t te ry  type 
power supply. Such a battery must be capable of 
performing adequately throughout t he  maximum 
anticipated shock loadings while providing the 
required e l ec t r i ca l  power without appreciably 
disturbing other e l ec t r i ca l  functions. 

All ccmponents of the penetrometer's telem- 
e t ry  system must be capable of performing during 
all impact conditions which may be encountered, 
without inserting undue d is tor t ion  into the 
impact acceleration information signal. The 
range of h p c t  conditions may include high 
levels of shock loadings, t o  many thousands of 
earth "g" ranges possibly, a s  v e l l  a s  e f fec ts  
result ing from immersion in to  some m e d i a  it may 
encounter. 
be the simpler problem, since both impact 
limiting and shoak protection structures can be 
employed, and a t  the same time, it i s  allowable 
for information quali ty t o  degrade at high shock 
loadings, as previously noted. Telemetry system 
antenna perfornance during Immersion in to  B 

terraneous-like media l e  an Fmportant coneider- 
ation, which i s  a t  present under intensive inves- 
t igation. Early results from these studies 

The high shock loading condition may 



indicate  the feas ib i l i ty  of reasonable operation 
during immersion up t o  a few penetrometer diam- 
e te rs ,  and the studies are  now being directed 
toward the numerical def ini t ions of performance 
characterist ics.  

Flgure 3 summarizes penetrometer instrumen- 
t a t i o n  requirements and considerations j u s t  
discussed. 

INSlWJMENTA!ITON DESCRIPTION 

I n  order t o  determine the prac t ica l i ty  of 
performing direct  measurements of the load sup- 
porting capabili ty of the  surface of the moon and 
the planets with the penetrometer technique, a 
number of applicable hardware items are  being 
developed under t h e  auspices of LRC. Some of 
this hardware w i l l  now be described. 

a. Omnidirectional Acceleration Sensing 

One of the most interest ing and challenging 
aspects of the instrumentation requirements of an 
omnidirectional penetrometer is the omnidirec- 
t iona l  acceleration sensor. 

A number of approaches t o  satisfying the 
omnidirectional acceleration sensing requirement 
a r e  conceivable; some of them have been investi-  
gated t o  the  extent of hardware tes t ing  i n  the 
LRC program. Included were spherical f lu id  
f i l l e d  sensors, which sense f lu id  pressure 
changes produced by applied acceleration forces; 
concentric spherical capacitors, which sense 
capacitance changes caused by displacement 
between the  capacitor plates  produced by accel- 
erat ion forces; concentric res is tors ,  essent ia l ly  
similar t o  the concentric capacitors except that 
the sensed quantity is the resistance change 
caused by the applied s t r e s s  of the acceleration 
forces; systems of spherically dis t r ibuted s t r a i n  
gages, and several configurations of piezoelec- 
t r i c  c rys ta l  acceleration sensors. The l a t t e r  
category seems t o  offer  the  best  promise of ful- 
f i l l i n g  the  requirements of a penetrometer mis- 
sion, with the leas t  amount of development. How- 
ever, of the several concepts of spherically 
confined f luid sensors considered f o r  penetrom- 
e t e r  applications, a t  l e a s t  one type has been 
constructed and tes ted suff ic ient ly  t o  demon- 
s t r a t e  adequate omnidirectionality for a pene- 
trometer. Testing of t h i s  device demonstrated 
the considerable d i f f i c u l t i e s  inherent i n  fabr i -  
cating such devices t o  perform within desired 
limits, with regard t o  both consistently repeat- 
able omnidirectionality and the accuracy of 
acceleration measurements. Further, the 
frequency-response and dynamic range requirements 
previously described do not seem t o  be readily 
a t ta inable  with f l u i d  f i l l e d  devices. 

Concentric capacitor systems tha t  were 
explored suffered f r o m  d i f f i c u l t i e s  of obtaining 
and maintaining t rue concentricity while 

simultaneously allowing adequate displacement t o  
provide usable values of capacitance variation. 
It w a s  a lso found very d i f f i c u l t  t o  maintain 
proper e lec t r ic  f i e l d  dis t r ibut ion w h i l e  pro- 
viding e lec t r ica l  lead feed through the spherical 
capacitor plates .  The spherical capacitor sensor 
a l so  inherently becomes more sensitfve with 
increasing acceleration forces, which i s  Opposite 
t o  the desired condition of signal amplitude com- 
pression a t  high impact levels .  
res is tors ,  and distributed strain-gage systems do 
not conveniently provide wide range capabi l i t ies ,  
and fur ther  may require undesirably high drive 
currents and/or nu l l  balance circui t ry ,  and 
attendant complexities. 

i 

Concentric 

Conventional piezoelectric c rys ta l  acceler- 
a t ion sensing devices seem t o  have a number of 
advantages compared t o  other techniques. As a 
class,  these devices have very wide dynamic 
ranges, 4 decades and more are  usually available.  
A wealth of technology i n  the use of the devices 
as acceleration sensors has been b u i l t  up i n  
recent years. They can be self-generating, and 
can be manufactured i n  very small size,  light- 
weight, and a var ie ty  of configurations. T r i -  
a x i a l  versions of such devices a re  commercially 
available and are  a t t rac t ive  as the acceleration 
sensing element of an omnidirectional accelera- 
t i o n  sensor, with the resul tant  of the three-axis 
system determined by associated electronic oper- 
a t ions.  However, piezoelectric devices are  
charge generators, and a s  voltage signal sources, 
have very high internal  impedance; fur ther ,  t h i s  
source impedance is, i n  e f fec t ,  frequency 
dependent - a s  frequency decreases, the effect ive 
source impedances increase. The high source 
impedance factor  places severe demands on the 
signal conditioning c i rcu i t ry  required t o  t r e a t  
t h e i r  output signals; although these demands can 
be met. 

A considerable e f for t  has been underway i n  
recent months t o  develop piezoelectric omnidirec- 
t i o n a l  acceleration sensing devices sui table  f o r  
use i n  an omnidirectional penetrometer. I n  gen- 
eral, the development e f f o r t  has been along two 
paths, (a )  electronic c i rcu i t ry  capable of pro- 
viding the  square root of the sum of the squares 
of the  signals from each of the three axes of a 
conventional triaxial piezoelectric accelerom- 
e te r ,  and (b) the development of various config- 
urations of piezoelectric material  which approx- 
imate sphericity.  Among the l a t t e r  are included 
spherical  piezoelectric c rys ta l  elements and 
spherically dis t r ibuted arrays of l inear  piezo- 
e l e c t r i c  crystal  elements. Each of the l a t t e r  
techniques seems t o  have potent ia l  and studies 
a re  currently aimed a t  determining which has the  
highest potent ia l .  

Figure 4 i s  a photograph of a typical  con- 
ventional t r i a x i a l  piezoelectric accelerometer, 
a pair of piezoelectric hemispheres, and a hollow 
piezoelectric sphere; a l l  of which are under 
study as possible acceleration sensing elements 



of an omnidirectional acceleration sensing 
‘ system. 

b .  Penetrometer Radio Telemetering 
Considerations 

Given a solution t o  the  developmental prob- 
l e m  of omnidirectional acceleration sensing, and 
asrmming tha t  the  solution employs some form of 
piezoelectric crystal ,  w h o s e  si- conditioning 
requirements are sa t i s fac tor i ly  met ,  further 
problems unique t o  radio telemetering penetrom- 
eters require solution. Among these problem 

* areas are the radio transmitter itself, its power 
supply system, and the omnidirectional trans- 
mitt ing antenna. Considering the  transmitter 
first, i t s  fundamental requirements are adequate 
radio-frequency power, frequency s t a b i l i t y  com- 
mensurate with the  mission requirements, adequate 
performance during the high shock loadings it may 
encounter, and smell size  and w e i g h t .  Present- 
day t rans is tor  technology i s  such tha t  adequate 
radio-frequency power output i s  not a problem at 
the frequencies and short transmission ranges of 
in te res t  t o  a penetrometer mission. 
radio-frequency power outputs of 100 milliwatts 
a t  250 megacycles are readily achieved i n  the 
units i l l u s t r a t e d  i n  figure 5.  However, the fre- 
quency s t a b i l i t y  required under the various con- 
di t ions of operation a penetrometer may encounter 

I 

I 

I 

Nominal 

l is  a more c r i t i c a l  problem area. 

The requirement for  operation during high 
shock loadings appears t o  eliminate conventional 

crystals .  
excited osc i l la tor  a s  i t s  frequency determining 
element. The osc i l la tor  i s  coupled t o  a buffer, 
or isolat ion,  amplifier, and then t o  a f i n a l  
power amplifier. The three stages of the trans- 
mit ter  are designed a s  uni la teral ly  as is prac- 
t i c a l ;  RF signal progression through the three 
stages i s  coupled by attenuating pads, and inter-  
stage shielding i s  employed so as t o  minimize 
unwanted feedback. 
encapsulated i n  a sol id  epoxy resin medium. 
intimacy between the epoxy m e d i u m  and all com- 
ponents of the  transmitter minimizes instabi l i -  
t ies  encountered during high shock loadings, 
although such i n s t a b i l i t i e s  cannot be completely 
suppressed during the very high shock loadings. 
However, the data  qual i ty  degradation allowable 
a t  the higher shock loadings reduces the demand 
upon t ransmit ter  shock s t a b i l i t y  under these 
circumstances. h’equency i n s t a b i l i t i e s  associ- 
ated with power supply voltage variations are 
minimized by employing a simple solid-state reg- 
ulator .  Transmitter frequency i n s t a b i l i t y  
caused by var ia t ions of antenna impedance 
changes as the  penetrometer impinges upon various 
ta rge t  materials i s  minimized by the proper 
antenna e l e c t r i c a l  configuration and the uni la t -  
eral izat ion of the  transmitter i t s e l f .  The 
fundamental frequency of a typical  transmitter 
model used i n  the IsIC studies w i l l  be changed 

I frequency s tabi l iz ing elements such as quartz 
Thus, t h e  transmitter u t i l i z e s  a self- 

The transmitter i s  en t i re ly  
The 

less than M.05 percent when i t s  output terminal 
i s  reconnected from i t s  normal 5O-ohm tennina- 
t ion,  t o  e i ther  a short c i rcu i t  or an open cir-  
cuit .  The s m a l l  size  and mass of the trans- 
mitter, and i t s  encapsulation i n  a material of 
low thermal conductivity, do not allow ready 
elimination of internal ly  generated heat and 
although the power dissipated is  moderate, ther- 
ml frequency ins tab i l i ty  effects  exis t .  A num- 
ber of techniques can be used t o  minimize thermal 
ins tab i l i ty  effects ,  such as temperature compen- 
sating element s , very long pre-deployment warmup 
time, and relat ively short operational perform- 
ance time. The use of high transmitter car r ie r  
frequency deviation ra t ios  and wide bandwidth 
communication can also be employed t o  override 
frequency i n s t a b i l i t i e s  with signal. deviation 
large i n  comparison t o  the ins tab i l i ty  deviation. 

The transmitting antenna configuration of an 
omnidirectional penetrometer also presents a num- 
ber of unique factors  for consideration. One of 
the most important is that the radiation pattern 
of the  transmitting antenna be essent ia l ly  omni- 
directional.  An additional requirement is that 
the omnidirectional antenna be coupled t o  an 
instrumentation system contained within the 
antenna structure and the  en t i re  device be physi- 
cally small. The small size suggests tha t  the 
antenna probably cannot be resonant a t  the oper- 
ating frequency. 
system i s  further expected t o  operate reasonably 
well during severe shock loadings, and a l so  
during immersion i n  media other than free space. 
One technique of satisfying the above problems i s  
t o  operate the antenna system capacitively 
detuned and t o  provide the antenna with a dielec- 
t r i c  covering preventing ohmic contact with sur- 
rounding media. If the coating is thick enough 
t o  a id  in minimizing the added capacitance 
loadings presented by the contacted media, then 
an antenna system of reasonably sat isfactory per- 
fonrance i n  terms of recovering the desired 
impact data resul ts .  I n  the LRC investigations, 
it has been found that spherically shaped anten- 
nas a t  about 250 megacycles can be driven so tha t  
radiation patterns are omnidirectional within a 
Pew decibels. Figure 6 is  a photograph of a wire 
mesh hemisphere pair operated as an antenna 
sphere in ear ly  tests, and an orthogonal loop 
omnidirectional antenna configuration presently 
being studied. The antenna spheres were coated 
ui th  d ie lec t r ic  shel ls  and quite good operation 
was attained during impact tests, i n  terms of 
the usabi l i ty  of the  recovered data. 

The antenna and instrumentation 

It -ems l i k e l y  tha t  most mission applica- 
t ions of the  penetrometer technique w i l l  require 
that the penetrometer instrument have a low over- 
a l l  density; specific gravity may be on the  order 
of 1/2 gram per cubic centimeter, for  example. 
Since the basic penetrometer device discussed up 
to  now must be compact and rugged, it may be 
considerably more dense than 112 g r a m  per cc. 
Thus an additional outer shell of very light 
material of considerable thickness is implied. 



Such a lightweight outer shell  can a l so  serve as 
a shock absorber or impact l imiting structure, 
and thus relieve some of the problems imposed by 
high impact velocit ies on hard ta rge t  surfaces. 
However it does not seem l ike ly  that the impact 
l imi te r  structure could a l so  house an antenna 
structure,  due t o  the severe mechanical deforma- 
t i ons  which it may undergo. 

c. Interim Unidirectional Acceleration Sensing 

Due t o  the lack  of an established technology 
capable of fu l f i l l i ng  the  omnidirectional accel- 
eration sensing requirements, an interim unidi- 
rectional acceleration sensing technique has been 
employed. This technique, with t r a i l i n g  cable 
transmission links, was used i n  the  study of 
impact response characterist ics of terraneous 
materials described a t  the  beginning of th i s  
paper and shown i n  figure 1. The technique 
employs a uniaxial piezoelectric c rys ta l  accel- 
erometer mounted i n  a suitable manner within a 
pro jec t i le .  The accelerator output upon impact 
can be transmitted t o  recording equipment by 
t r a i l i n g  cable connection or applied t o  a self-  
contained radio telemeter and radioed t o  the 
recording equipment. I n  e i the r  case, the  use of 
a piezoelectric element, and i ts  attendant high 
e f fec t ive  source impedance requires signal con- 
dit ioning c i rcu i t ry  t o  transform impedance leve ls  
t o  lower values. I n  the case of radio telemetry 
signal transmission, a further requirement of the  
signal conditioning was signal amplitude range 
selection, since the telemetry employed had a 
prac t ica l  l i m i t  t o  i t s  amplitude range 
capability. 

The interim unidirectional penetrometer 
demands proper orientation of the acceleration 
sensing element a t  impact fo r  accurate knowledge 
of i t s  performance. This l imitation i s  of l i t t l e  
consequence i n  laboratory investigations where 
impact a t t i tude  can be eas i ly  controlled; how- 
ever, i n  instrumented space vehicle explorations 
such control may be considerably more d i f f i cu l t  
t o  achieve. Further, the use of a unidirectional 
device cannot account fo r  the ef fec ts  of unknown 
loca l  surface slopes which it may encounter. 
Omnidirectional instruments eliminate or reduce 
the magnitude of th is  la t te r  problem and for 
these reasons, the principal e f fo r t  of the  LRC 
development effor t  has been directed toward pro- 
ducing an omnidirectional penetrometer. How- 
ever, a number of successfully operating unidi- 
rectional penetrometers have been constructed and 
u t i l i zed  i n  the LRC investigations. 

d. Unidirectional Penetrometer 

The objective of t he  unidirectional pene- 
trometer investigation a t  LRC was twofold; one, 
t o  demonstrate the feasb i l i ty  and prac t ica l i ty  
of the radio telemetering penetrometer concept 
without waiting fo r  development of t he  omnidi- 
rectional technology and, secondly, t o  provide a 

penetrometer of greater f l e x i b i l i t y  and u t i l i t y  
than the  counterpart t r a i l i n g  wire type. A sec- ' 
tioned view of a typ ica l  unidirectional penetrom- 
eter i s  shown i n  figure 7. 
eration sensor employed i s  a conventional piezo- 
e l e c t r i c  accelerometer. The antenna system 
employed i s  essent ia l ly  a ver t ica l ly  oriented 
dipole, i n  which the metallic body structure of 
the  penetrometer i s  one-half of the  dipole ele- 
ment. The antenna i s  isolated from ohmic contact 
with impacted media by the  separation i t s  dielec- 
t r i c  housing provides. 
employed and shown i n  figure 7 is essent ia l ly  as 
was previously described and shown i n  figure 5. 
The power supply system i s  a series-connected 
s t r ing  of miniature nickel cadmium rechargeable 
ba t te ry  c e l l s  capable of 
15 vol t s  f o r  15 t o  20 minutes. A t rans is tor  
series regulator maintains constant voltage t o  
the transmitter during i t s  operating t i m e ,  and 
also incorporates overcharge protection and pro- 
tec t ion  against the  application of reversed 
polar i ty  external power. The impedance matching 
signal conditioning c i rcu i t ry  employs f i e l d  
e f fec t  t rans is tors .  
employ any range compression technique and 
dynamic "g" range i s  limited t o  s l i gh t ly  less 
than 2 decades. However, the sens i t iv i ty  leve l  
can be decreased by adding shunt capacitance t o  
the output of t he  piezoelectric c rys ta l  acceler- 
ometer, thus permitting higher impact velocit ies.  
The basic structure of the  penetrometer i s  an 
epoxy res in  f i l l e d  with randomly oriented f iber -  
g lass  roving. Fiberglass cloth wrappings a re  
inserted i n  cer ta in  regions f o r  increased 
strength. The epoxy formula is adjusted by 
adding flexing agents so as t o  provide high 
impact strength without allowing permanent or 
excess dynamic deformation during impact. 
the unidirectional penetrometer requires impact 
a t t i t ude  orientation, the unidirectional appli- 
cation of shock forces can be exploited t o  pro- 
vide some shock protection t o  components. 

The uniaxial accel- 

The transmitter module 

milliamperes a t  minus 

These penetrometers do not 

Since 

The unidirectional penetrometers shown here 
have m e t  their  development objectives and prove 
very useful i n  the continuing impact research and 
tes t  programs. I n  terms of the  capabi l i t i es  of 
present-day space vehicles maneuverability, uni- 
d i rec t iona l  penetrometers have l imited applica- 
b i l i t y  because of t he  requirement of  controlled 
impact orientation. Thus, deployment techniques 
are more complex than is required f o r  omnidirec- 
t i ona l  penetrometers; i n  e f fec t ,  simpler instru- 
mentation is gained a t  the  expense of more com- 
plex deployment systems and possible reduction 
of the  probabi l i t i es  of a t ta in ing  desired exper- 
imental goals. 

Figure 8 presents some comparative views of 
impact acceleration t i m e  h i s tor ies ,  i l l u s t r a t ing  
the  performance of telemetering unidirectional 
penetrometers compared t o  t r a i l i n g  wire unidirec- 
t i o n a l  penetrometers, both impacted in to  the same 
media a t  the  same ve loc i t ies .  



The main e f for t  of future  work is  t o  com- 
plete  the developnent of the  omnidirectional 
penetrometer. 
a t ta ining a penetrometer compatible with a vari-  
e t y  of missions and spacecraft with minimum mod- 
i f icat ion.  An ef for t  w i l l  be made t o  extend the 
transmission range capabi l i t ies  of penetrometers 
beyond the present l i m i t  of a f e w  miles t o  con- 
siderably longer ranges, approaching 100 miles, 
for  example. It i s  also planned t o  develop 
suitable receiving equipment, designed specifi-  
cal ly  for handling the unique form of typical  
penetrometer signal transmissions with mxhm 
efficiency w h i l e  retaining campatibility with the 
various spacecraft i n  which such receiving equip- 

The e f f o r t  is aimed toward 

- ment might be housed. 

In  conclusion, the following figures i l l u s -  
t r a t e  how penetrometers described herein might be 
employed with presently conceived lunar and 
planetary exploration programs. Reference 2 dis- 
cusses penetrometer applications t o  these mission 
concepts in mre de ta i l .  

I Figure 9 shows  the  penetrometer concept 
applied t o  a Ranger vehicle. The first sequence 
depicts the Ranger spacecraft i n  i t s  cruising 
mode during earth-moon traverse,  nearing the 
moon. Prior t o  the  next sequence, the Ranger 
t ransfers  from the cruising mode t o  i t s  terminal 
maneuver phase as  it draws close t o  the moon. 
The spacecraft now becomes oriented so tha t  i t s  
longitudinal axis  is  directed along a lunar 
radius. 
propellant retro-rocket m t o r  has f i red ,  and sep- 
arated itself and the penetrometer payload cap- 
sule from the main frame of the  Ranger space- 
c raf t .  The Ranger spacecraft main frame 
continues on t o  the lunar surface at undiminished 
velocity, and crashes. 
motor i s  separated from the payload capsule a f t e r  
burnout and f a l l s  away. 
now a f e w  thousand feet above the lunar surface. 
A t  this time, a s  shown in the  next view, a 
smaller secondary retro-rocket m t o r  contained 
within the payload capsule is  ignited,  and serves 
t o  sustain the payload capsule essent ia l ly  
hovering above the surface. The several pene- 
trometers of the  payload capsule are deployed 
during secondary retro-rocket burning, and fall  
t o  the lunar surface. 
i s  about 30 seconds for a typical  deployment 
a l t i t u d e  of 3,000 feet. The secondary retro- 
-rocket bums out i n  nominally 10 seconds, and 
then the payload capsule itself begins fa l l ing.  
During i t s  f a l l ,  the penetrometers impact upon 
the surface, as shown i n  the last sequence and 
radio the acceleration signals they develop upon 
impact t o  the s t i l l  a lof t ,  but fa l l ing,  payload 
capsule. The payload capsule contains the nec- 
essary components t o  accept the penetrometer 
impact data, process it a s  needed and retransmit 
it t o  ear th  a t  power leve l  and data format 

In the  next sequence, a solid- 

The spent retro-rocket 

The payload capsule i s  

The penetrometer f a l l  time 

appropriate for  such a transmission, pr ior  t o  i t s  
own impact upon the surface. 

Figure 10 depicts a penetrometer application 
t o  the Surveyor family of sof t  landing space- 
craf t .  Telemetering penetrometers could be 
deployed from the  Surveyor during the f i n a l  
stages of i t s  landing approach a s  shown i n  the 
figure, and the impact data relayed t o  ear th  by 
suitable relay equipment aboerd the s t i l l  a l o f t ,  
descending spacecraft. This figure also shows 
how penetrometers might be deployed from a 
Surveyor spacecraft after a sucessful landing. 
Use  of the  penetrometer technique could enlarge 
the  area within which measurements of surface 
characterist ics could be made. I n  the latter 
application it seems l ike ly  that e i ther  radio 
telemetering or t r a i l i n g  w i r e  type penetrometers 
could be deployed. 

Figure 11 shows how a penetrometer mission 
might be deployed from a nonlanding Apollo space- 
craft i n  orb i t  about the moon. I n  such a case, 
a penetrometer payload package, not unlike that 
previously described for  a Ranger mission, is 
ejected from the parent Apollo spacecraft and by 
means of suitable guidance and propulsion mecha- 
nisms i s  brought in to  position with respect t o  
both the lunar surface and the parent Apollo 
spacecraft, so tha t  penetrometers can be 
deployed. The impact signals could possibly be 
transmitted d i rec t ly  fmm the impact site t o  the 
Apollo, or relayed as before, via  the penetrom- 
eter payload peckage. The impact information 
could then be stored aboard the Apollo for l a t e r  
analysis, o r  retransmitted t o  earth.  

Figure I2 depicts the u t i l i za t ion  of pene- 
trometers a s  an aid t o  the manned landing phase 
of the Apollo program. I n  t h i s  application, the 
penetrometers a r e  deployed from the Lunar 
Excursion Module t o  d i rec t ly  a id  the astronauts 
i n  certifying a specific landing site. 

Figure 13 shows a possible configuration of 
a penetrometer experiment on a Mars exploratory 
mission. I n  t h i s  case, a surface exploratory 
package programed t o  penetrate the Martian atmos- 
phere i s  ejected f r o m  a fly-by space vehicle. 
Penetrometer deployment a f t e r  the main entry was 
essentially complete could be accomplished with 
the aid of aerodynamic s tabi l iz ing and velocity 
controlling devices, such as parachutes. 
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