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RESEARCH MEMORANDUM ~
D
&
DYNAMIC STABILITY INVESTIGATION OF 14O RICHT CIRCULAR
¢S
CYLINDERS IN AXTAL FREE FLIGHT AT S
MACH NUMBERS FROM O.4 TO 1.7 ;*\t
AN
FINENESS-RATIO-2.56 CYLINDER AND FINENESS-RATIO-k.0
CYLINDER WITH FLARED AFTERBODY a
. '3
By John C. McFall, Jr. L
AR
o
N
SUMMARY ~ e
1N

Two right circular cylinders have been tested in axial free flight
over a Mach number range of O.4 to 1.7 and a Reynolds number range of

1 x 106 to 8 x 106 by using the rocket-boosted-model technique. When
given a large disturbance at supersonic speeds, both the fineness~ratio-
2.56 cylinder and the fineness-ratio-4.0 cylinder with flared afterbody
damped from a large-amplitude coupled motion at supersonic speeds to a
low-amplitude sustained oscillation at low subsonic speeds. The varia-
tion of moment coefficient with force coefficient was nonlinear, the
region of most stable slope occurring at the zero force coefficient.

For both cylinders the average center of pressure over the force-
coefficient range of 0.5 moved rearward with decrease in speed to sub-
sonic Mach numbers. Although large pitching and yawing motions were
observed, there were no large deviations from a ballistic trajectory.
Comparison of the drag data of this test with the drag data from the
wind-tunnel and free-flight helium-gun tests indicates that the friction
drag is a very small part of the total drag. The presence of the after-
body flare on the fineness-ratio-L4.0 cylinder causes an increase of about
20 percent of the total drag over the drag of a cylinder with no flare

at low supersonic speeds.

INTRODUCTION

The unusual requirements of very low 1lift and very high drag for
aerodynamic shapes have become of general interest in the design of
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various stores. (See‘refg. 1l and 2.) One configuration which meets these
. unusual requirements is a right circular cylinder in axial flow. An
investigation is being conducted by the ILangley Pilotless Aircraft Research
Division with the rocket-boosted free~-flight-model technique to determine
the dynamic stability of right circular cylinders in axial free flight.
This paper presents the results from flight tests of a right circular
cylinder having a fineness ratio of 2.56 and a right circular cylinder
with a flared afterbody and having s fineness ratio of 4.0. These tests
covered a Mach number range from O.4 to 1.7 and a Reynolds number range

from 1 x- lO6 to 8 x lO6 based on the cylinder diameter. The free-fllght
tests were conducted at the Langley Pllotless Aircraft Research Station
at Wallops Island, Va.

s SYMBOLS

normal accelerometer reading from accelerometer in forward end

@n,1 X R
,of cylinder, g units
an. o normal accelerometer reading from accelerometer in rear end of
? cylinder, g units
ay 1 transverse accelerometer reading from accelerometer in forward
’ end of cylinder, g units
ay o transverse accelerometer reading from accelerometer in rear end
’ of cylinder, g units
X distance along cylinder from nose, ft
Xn,1 displacement of 8n,1 accelerometer from center of gravity,
positive forward, ft
Xn,o displacement of an,2 accelerometer from center of gravity,
positive forward, ft
Xt,1 displacement of at,1 accelerometer from center of gravity,
positive forward, ft
Xt,2 displacement of at,2 accelerometer from center of gravity,
positive forward, ft
aw LN ] ) a 2 - a l
0 - W¢ pitching acceleration, g i 2 s radians/sec2

Xp,2 = *n,1
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8n,cg

v+ 69

%n,1%n,2 - ®n,2%n,1
i )

” ” g units
n,2 - “n,l

normal acceleration,

at,2 - at,l
,0 7 %,1

yawing acceleration, g 5 radians/sec2

86,1%,2 = 8¢,0%,1

transverse acceleration, , & units
*t,2 T %%,1
longitudinal accelerometer reading, g units
- W
normal-force coefficient a _—
4 n,cg S/q

lateral-force coefficient, a W
t,ce g/
a

resultant.-force coefficient, JENE + CY2

drag coefficient based cn cress-sectional areca

longitudinal-force coefficient, a1, cq gg—
aq

I . .
yawing-moment coefficient, a%a<¢ + d¢>

Iv /- ..
pitching-moment ccefficient, ;égcj - w¢>
q

center cf gravity
dismeter of cylinder, ft
acceleration due to gravity, ft/sec2

moments of inertia, slug—ft2

length of cylinder, ft

Mach number
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a dynamic pressure, 1b/sq ft

R Reynolds number based on cylinder diameter
S cross-sectional area of cylinder, sq ft

W weight of cylinder, 1b

o angle of attack, radians

e angle of ﬁitch, radians

¢ angle of roll, radians

v angle of yaw, radians

A dot above a symbol indicates time rate of change of symbol; for

example, § = %%.

The time sequence for the cross plots is indicated by the sym-
bols (2, [, <$5 A, O, and Cj; the symbols change at each maximum and

each minimum value of Cy.
CYLINDERS

The physical characteristics of the cylinders are’presented in fig-
ures 1 and 2 and table I.

The fineness-ratio-2.56 cylinder was a right circular cylinder with
a diameter of 8 inches. The center of gravity was located at 32.3 per-
cent of the cylinder length behind the nose. The fineness-ratio-4.0
cylinder was a right circular cylinder with a diameter of 8 inches and
had a 13° flare that began 4.84 inches from the rear end of the cylinder
and ended 1.25 inches from the rear end of the cylinder. The remainder
of the afterbody consisted of a circular cylinder section with a diam-
eter of 9.66 inches. The center of gravity of the fineness-ratio-4.0
cylinder was located at 25 percent of the body length from the nose.

The cylinders were constructed of welded steel and were covered
with a fiberglass-plastic shell. Two small rockets (called pulse rockets)
were mounted normal to the longitudinal axis and ahead of the center of
gravity to give a yaw disturbance.
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INSTRUMENTATION

Fach cylinder contained an NACA six-channel telemeter which trans-
mitted data from six accelerometers located as follows: one normal and
one transverse accelerometer in the forward end of the cylinder; two
longitudinal accelerometers near the center of gravity; and one normal
and one transverse accelerometer in the rear end of the cylinder. A
measure of the signal strength transmitted from the loop antenna pro-
vided an indication of the roll rate of the cylinders since the strength
of the signal varied with the cylinder roll position.

Ground instrumentation included a CW Doppler radar unit used for
velocity measurement, an SCR 584 tracking radar to determine the flight
path, a rawinsonde to determine the atmospheric conditions, and the
telemeter receiving and recording stations. Motion-picture cameras were
used to photograph the launching and cylinder-booster separation portions
of the flight.

FLIGHT TESTS

The cylinders were ground launched at an angle of 70° from the
horizontal by an ABL Deacon solid-propellant rocket motor booster.
Separation of the cylinder from the spent booster was accomplished by
the opening of the drag flaps attached to the booster. Motion pictures
of the cylinder-booster separation indicated that the cylinders oscil-
lated to angles of at least +30° immediately after leaving the booster.
This large disturbance was caused partly by the booster pulling away and
partly by the firing of one of the pulse rockets as soon as the cylinder
cleared the booster. Tracking radar showed that the cylinders followed
an approximately parabolic flight path with no change in azimuth.

ACCURACY

For the fineness-ratio-2.56 cylinder some indication of instrumen-
tation malfunctions (instantaneous changes in absolute values of the
measured quantities) make it impossible to state any absoclute accuracy.
However, since the data for the fineness-ratio-2.56 cylinder were cor-
rected for the observed malfunctions and none were observed for the data
for the fineness-ratio-4.0 cylinder, some indication of accuracy is
obtained from the instrument accuracies which are estimated to be t2 per-
cent of the full calibrated range. The incremental values and relative



trends are much more accurate than the absolute level of the measure-
The instrument accuracles are stated in coefficient form for

ments.

representative Mach numbers as follows:

NACA RM 156128

Fineness-ratio-2.56 Fineness-ratio-4.0
model at Mach model at Mach
Coefficient numbers of - numbers of -
1.4 0.8 0.k 1.4 0.8 O.4
CN +0.022 | +0.071 | £0.31 | £0.02k4 | £0.078 | £0.340
Cy +.022| +.071| .31 *.024| +.078 | #.340
Ce +.025] +.081| .36} +.018 | *.059| *.256

PRESENTATION OF RESULTS

The positive directions of the force and moment coefficients and
angular velocitles are indicated in figure 3. The Reynolds number range
of the cylinder flights dre shown in figure L4 and the flight paths are
given as plots of altitude against horizontal distance in figure 5. Time
histories of the measured force coefficients and Mach number are pre-
sented in figures 6 and 7. (Note that the scales of these figures change
at 10 seconds.) Basic data cross plots of forces and moments for the two
cylinders are shown in figure 8 for the fineness-ratio-2.56 cylinder and
in figure 9 for the fineness-ratio-4.0 cylinder. The variation of the
average center of pressure with Mach number is given in figure 10. An
indication of the drag of the two cylinders is given in figure 11 where
the longitudinal-force coefficient measured at low values of resultant

force, VCN2 + CYE, on the cylinders is plotted against Mach number.
DISCUSSION OF RESULTS

Time History

Fineness-ratio-2.56 cylinder.- A time history of Cy, Cy, M,

and CR for the fineness-ratio-2.56 cylinder is shown in figure 6. The
large disturbance at separation mentioned in the section called "Flight
Tests" caused the instruments to exceed their calibrated ranges at each
oscillation peak for about 1.5 seconds after cylinder-booster separation.
During this time the cylinder decelerated from a Mach number of 1.7

S
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to a Mach number of 0.9. The amplitude of the oscillation following the
separating disturbance gradually decreased until the cylinder reached
low subsonic speeds where an oscillation of low amplitude persisted for
the remainder of the flight.

Fineness-ratio-4.0 cylinder with flared afterbody.- For the fineness-
ratio-l.0 cylinder with flared afterbody, a time history of Cy, Cy, M,
and CR 1is shown in figure 7. The times that the instruments exceeded
their calibrated ranges is indicated on the time-history plot. A large-
amplitude oscillation in pitch at separation damped until the cylinder
reached low subsonic speeds where a low-amplitude oscillation similar to
that of the fineness-ratio-2.56 cylinder persisted for the remainder of
the flight. The disturbance in yaw caused by the firing of a pulse rocket
at 5.6 seconds also damped until the cylinder reached low subsonic speeds.
The resultant of the pitching and yawing motion Cr also shows damping
following the two disturbances and displays the low-amplitude oscillation
at low subsonic speeds which continues throughout the flight.

Bagsic Data Cross Plots

Fineness-ratio-2.56 cylinder.- Plots of Cy against Cy presented
in figure 8 for various Mach numbers show the model motion about trim
which was discussed in detail in reference 3. The indication of rolling
motion given by the angular displacement of adjacent peaks agrees closely
with check values (not presented herein) obtained from the telemeter sig-
nal strength data. For the fineness-ratio-2.56 cylinder, this value is
about 1 revolution per second. This rolling motion was probably caused
by the roll of the cylinder-booster combination due to some small asym-
metry in the booster.

Moment coefficients as a function of force coefficients for the
yawing and pitching motions are shown in figure 8 for various Mach num-
bers. The moment curves are very nonlinear; the region of most stable
slope 1s indicated to be near the zero force coefficient.

Fineness-ratio-4.0 cylinder with flared afterbody.- From the varia-
tion of Cy with Cy (fig. 9) for various Mach numbers, it can be seen
that a very low roll rate was present for the fineness-ratio-4.0 cylinder.
This value is in agreement with check values obtained from the telemeter
signal strength data; a roll rate of less than 1/2 revolution per second
was indicated.

Some nonlinearity of the moment curves can be seen in the plots of
figure 9 for various Mach numbers, the region of most stable slope being
near the zero force coefficient.
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Center of Pressure

The variation of the average center-of-pressure position with Mach
number for the two cylinders of this test is presented in figure 10. The
quality of the data precluded measurement of moment curve slopes at a
particular force coefficient; therefore, a force-coefficient range of
+0.5 was selected and average slopes were read. Where the data permitted,
average slopes were also read over a force-coefficient range of *0.1 to
show the region of most stable slope; the region was near the zero force
coefficient. This type of nonlinearity has also been observed in data
from the bluff shapes of references 4 and 5.

Over the force-coefficient range of +0.5 for both cylinders of this
test, the average center-of-pressure position moved toward the base as
the speed decreased to subsonic Mach numbers. 2 qualitative comparison
with right circular cylinders with fineness-ratio of 2.0 and 5.0 is fur-
nished by the faired curves of data presented in reference 4. (See
fig. 10.)

Drag

The drag level of the two cylinders is indicated in figure 11 by
the variation of longitudinal-force coefficient measured at low values
(CN and Cy wusually less than O.l) of the resultant-force coefficient

with Mach number.

Comparison of the data from the present test for the fineness-ratio-
2.56 cylinder, the data from reference 6 for the fineness-ratio-5.0 cylin-
der, and the data from the unpublished helium-gun free-flight tests for
the fineness-ratio-l2 cylinder indicates that the friction drag is a very
small part of the total drag since about the same drag level is shown for
all three cylinders. (See fig. 11(a).)

Since the fineness-ratio effect is indicated to be small, the dif-
ference of about 20-percent higher drag level at low supersonic speeds
for the fineness-ratio-4.0 cylinder with a flared afterbouy over that
for the fineness-ratio-5.0 cylinder of reference 6 (fig. 11(b)) is
thought to be caused by the presence of the flare. A somewhat similar
bluff shape having a flared afterbody (unpublished helium-gun tests)
indicates about the same drag level as was obtained with the flared
cylinder of the present tests.
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CONCLUDING REMARKS

A fineness-ratio-2.56 cylinder and a fineness-ratio-4.0 cylinder
with flared afterbody have been tested in rocket-boosted axial free
flight over a Mach number range of 0.4 to 1.7 and a Reynolds number

range of 1 X 106 to 8 x 106. When given a large disturbance at super-
sonic speeds, both cylinders damped from a large-amplitude coupled motion
at supersonic speeds to a low-amplitude sustained oscillation at low sub-
sonic speeds. The variation of moment coefficient with force coefficient
was nonlinear, the region of greatest stable slope occurring at the zero
force coefficient. Although large pitching and yawing motions were
observed for both cylinders, there were no large deviations from a bal-
listic flight path. TFor both cylinders the average center-of-pressure
over the force-coefficient range of *0.5 moved rearward with decrease in
speed until the cylinder reached subsonic Mach numbers. Comparison of
the drag data of this test with wind-tunnel and free-flight helium-gun
data indicates that the friction drag is a very small part of the total
drag. The presence of the afterbody flare on the fineness-ratio-4.0
cylinder causes an increase of about 20 percent of the total drag over
the drag of a cylinder with no flare at low supersonic speeds.

Langley Aeronautical Iaboratory,
National Advisory Committee for Aerocnautics,
Langley Field, Va., December 5, 1956.
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PHYSICAL CONSTANTS FOR CYLINDERS TESTED

Fineness-ratio-

Fineness-ratio- 4.0 cylinder

2.56 cylinder with flared

aftervody
Wy 1D o v v e v e e e e e 71.0 69.5
Ix, slug-ft2 o v v v v v . . 0.121 0.137
Iy, slug-ft . . . . . ... 0.575 0.891
Iy, slug-ft2 .« . . . . . . . 0.575 0.891

X

ZE 0.323 0.250
o i 0.666 0.666
R i 1.708 2.667
S, T2 4 v i e v e e e . 0.348 0.348
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(a) Fineness-ratio-2.56 cylinder.

-

S 9.66

- t<~1,25

—1 L8l e

(b) Fineness-ratio-4.0 cylinder with flared afterbody.

Figure 1l.- Drawings of cylinders tested. All dimensions are in inches.
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(a) Fineness-ratic-2.56 cylinder.

(b) Fineness-ratio-4.0 cylinder with flared afterbody.

Figure 2.- Photographs of cylinders tested.

13
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(c) Fineness-ratio-2.56 cylinder on booster in launching position.

Figure 2.- Continued.
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L-93ko5 4
ared

afterbody on booster in
position. .
Figure 2,. COncluded.
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CC CY

Figure 3.- Axes system showing positive directions of force and moment
coefficients and angular velocities.
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Figure 8.- Basic data cross plots of force and moment coefficients for
the fineness-ratio-2.56 cylinder.
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(b) M= 0.935 to M= 0.78.
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Figure 9.- Basic data cross plots of force and moment coefficients for

fineness-ratio-4.0 cylinder with flared afterbody.
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