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SUPERSOMC AERODYNAMIC CHARA~STICS OF T R I A N G U  

PLAN-FORM MODELS AT ANGLES OF ATPACK TO 900* 

By riyle E -  W i g g i n s  and George E. Kaattarl 

SUMMARY 

R e s u l t s  are presented of an investigation of a family of tr iangular 
plan-form models with Eo swept leading edges tes ted  through the angle- 
of-attack range -5' t o  +90° a t  Mach nunibers of 2-94, 3.87, and 4-78 a t  
Reynolds number 1.06Xl@- The resul ts  are i n  the  form of aerodynamic 
lift, drag,  and pitching-moment coefficients, and Wt-drag ra t ios .  
Effects of apex bluntness and cross-sectional shape on the models are 
considered, 
and trailing-edge f l aps  and f o r  a modified e l l i p t i c  cone model with t i p  

Aerodynamic coefficients f o r  a slab model with t i p  controls 
- 

controls a re  also presented. 

INTRODUCTIOR 

It has been shown in references 1 and 2 that t h e  use of lift during 
entry of a planetary atmosphere can reduce guidance requirements, extend 
range, and pruvide a manewering capability. Configurations of triangu- 
lar plan-form which provide lift during atmosphere entry have been pro- 
posed and investigated in references 3 t o  8. Additional experimental 
data are required f o r  such vehicles, however, t o  determine the  e f fec ts  
of cross-sectional shape, apex bluntness, control size,  and control loca- 
t i o n  on the aerodynamic performance, s tab i l i ty ,  and control characteris- 
t i c s  over a wide range of angles of attack- It i s  the  purpose of t h i s  
report t o  provide some of t he  needed data, 
data are presented f o r  the angle-of-attack raage -5O t o  +go0, f o r  Mach 
numbers of 2-94, 3-87, and 4-78, and a Reynolds number of 1.06xloS based 
on vehicle length, Estimated aerodynamic 'coefficients of the vehicles 
are compared with experimental values. 

Longitudinal force and moment 
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SYMBOLS 

r a t io  of major t o  minor semiaxes of e l l i p t i c  cone 

lift coefficient, - l i f t  

drag coefficient, 

pitching -moment coefficient , 
mean geometric chord, in. 

free-stream Mach number 

dynamic pressure, lb/sq in .  

qs 

(is 
pitching moment 

q= 

Reynolds number based on model length 

plan-form area, sq in. 

angle of attack, deg 

control deflection angle, deg 

semiapex angle, deg 

EXPERIMENTAL CONSIDERATIONS 

Wind Tunnel 

The investigation was conducted i n  the  Ames 1- by 3-Foot Supersonic 
Wind Tunnel No. lwh ich  i s  a single-return, continuous-operation, variable- 
pressure wind tunnel having a Mach number range of 1.2 t o  6. 
number i s  changed by varying the w a l l  contour by use of f lex ib le  p la tes  
which comprise the  top and bottom w a l l s  of the  wind tunnel. 

The Mach 

Models and Balance 

I 

. 

The models were a c i rcu lar  cone, an e l l i p t i c  cone, a modified 
e l l i p t i c  cone, and a t r iangular  s l a b  wing with a centerbody. 
drawings are  shown In figure 1. 
of 75' (semiapex angle of l5O)- 

Dimensional 
A l l  models had a leading-edge sweepback 
The e l l i p t i c  cone had a major t o  minor 

* 
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ax is  r a t i o  of 3 t o  1. 
blunting the  q e x -  
plan and s ide p roJec t i a s .  
scooping uut t h e  t a p  portion of the  cone t o  form a centerbody s i m i l a r  t o  
t h a t  of the s7ah wing model- 
base area of 41 percent of t h a t  of the unmodified model. 

Two variations of the  e l l i p t i c  cone were made by 
The shape of the blunted apex was parabolic in both 

The modified e l l i p t i c  cone was formed by 

This modification l e f t  the m o d k l  w l t h  a 

Controls were  provided fo r  both the slab wing model and the  modified 
e l l i p t i c  cone. 
percent of t h e  plan-form area. 
slab wing: 
area, and trailing-edge f laps  having 10 percent of t he  model plan-form 
area. 

The latter was provided with t i p  controls having 10 
Two types of controls were provided t h e  

t i p  controls having 10 percent and 20 percent of t he  plan-form 

To achieve the large range of angles of attack desired, it was 
necessary t o  support the models with a shrouded s t ra ight  sting f o r  angles 
of -5' t o  +45O and a sting with an offset  adapter f o r  the  angles of 45' 
t o  90'. 
section are sham i n  figure 2. 

Photographs of t yp ica l  model ins ta l la t ions  i n  the tunnel t e s t  

The balance used t o  measure the  aerodynamic forces  was a six- 
component, side-support, strain-gage-type balance whose details are 
described in reference 9. 
force, and pitching moment, were used in the  present tests, 

Only  three components, normal force, ax ia l  

Tests, Procedures, and Data Reduction 

Measurements of normal force, axial  force, and pitching moment w e r e  
made at  Mach numbers of 2-94, 3.87, and 4-78 at  a Reynolds number of 
l.O6Xl@ based on model length. A t  Mach number 2.94, additional data 
w e r e  ta.ken at a Reynolds number of 2.12XlO8 t o  ascer ta in  any Reynolds 
number effects.  
with t h e  aerodynamic forces when the shrouded s t ra ight  s t ing  was used. 
The correction f o r  support interference was believed t o  be small and t he  
coefficients herein presented are f o r  t o t a l  axial force- 

Pressures at t h e  model base were recorded simultaneously 

Measured forces are reduced t o  coefficient form i n  the  wind axes 
system. 
were used f o r  reference, 
60 percent of t h e  actual  model length from the nose except f o r  models 
with controls, 
fo r  a l l  models- 

The actual  plan-form area and mean geometric chord of t he  models 
Pitching-monent coeff ic ients  r e fe r  t o  a point 

Pitching-moment reference points are indicated in f igure  1 
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Data Uncertaint ies  

1 ,  

'p 
The uncer ta in t ies  i n  t h e  data were estimated by considering t h e  

Repeatabi l i ty  of t h e  da ta  r e p e a t z b i l i t y  of t h e  measured quant i t ies .  
w a s  checked by making severa l  runs with a given model and was found t o  
be consistent with t h e  values given below: k 

CL 20.01 

CD 5.01 

Cm t .005 
0 a 5.3.  

M t .01 

RESULTS 

The r e s u l t s  f o r  t h e  models without cont ro l  surfaces a r e  presented 
i n  f igures  3 and 4 i n  t h e  form of  Lift-drag r a t i o ,  CL, CD, and Cm 
functions of angle of a t tack.  Figure 3 w a s  prepared t o  show t h e  e f f e c t  
of cross-sectional shape on t h e  aerodynamic c h a r a c t e r i s t i c s ;  r e s u l t s  of 
impact theory (refs. 4 and 10) a r e  a l s o  shown. It can be seen t h a t  t h e r e  
a r e  large changes i n  coef f ic ien ts  for t h e  range of cross-sect ional  shapes 
considered; impact theory i s  only of l imited value i n  predict ing t h e  
coef f ic ien ts ,  The theory works best  f o r  CL and L/D and f o r  angles of 
a t tack  above about 20'. 

as 

I 

Figure 4, prepared t o  show t h e  e f f e c t s  of apex bluntness, ind ica tes  
L/D and l e s s  negative values a s l igh t  decrease i n  the  m a x i m m  value of 

of C, as t h e  bluntness i s  increased. If the  centroid of plan area of 
each model had been chosen as t h e  moment reference, ins tead  of 60 percent 
of t h e  ac tua l  model length f r o m t h e  nose, t h e r e  would have been very l i t t l e  
change i n  Cm with changes i n  bluntness, s ince t h e  center  of pressure of 
these  models was  close t o  t h e  centroid of plan area. 

Figures 5 through 8 show t h e  aerodynamic c h a r a c t e r i s t i c s  f o r  t h e  
models with controls .  It can be seen t h a t  none of t h e  controls  a r e  
effect ive i n  providing trim a t  la rge  angles of a t tack .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif ., Apri l  20, 1961 
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Figure 6.- Effect of controls on the aerodynamic characteristics of a 
triangular slab; tip control area = 20 percent S, E = 15'. 
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