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ABSTRACT

ON DIRECTED GRAPHS AND RELATED TOPOLOGICAL SPACES,
231°%
In this report, we investigate certain tie-ups between
the theory of directed graphs and point-set topology. This
. work extends certaln aspects of the work done by Bhargava In
"A Stochastic Model for Time Changes in a Binary Dyadic
Relation",
Wlth each directed graph T(A,E) on an arbitrary set A,
we associate a unique topologlcal space (A,T) by defining
a set a £ A to be open If there does not exist an edge In
F'(A,E) from set (A ~ a) to set a; each such topology Is
shown to have the property of completely additive closure.
We obtain several theorems relating connectedness and access-
Ibillty properties of a directed graph fo propertlies of the
topology determined by that directed graph, It Is found that

the connectedness of a directed graph is, In a certaln sense,

consistent with the "topological connectedness™ of the topo-
. loglical space determined by that directed graph., We further
Iinvestigate these topologies in terms of the closure, kernel,
and core operators,

We show that fthe definition of an open set, as given
here, establishes a single valued mapping of the family of
all directed graphs on set A onto the family of all topol-
offes with completely additive closure on set A. This
mapping also maps one-to-one fhe family of all transitive

directed graphs with loops on set A onto the family of all




topologlies with completely additive closure on set A,

Furthermore, the transl!tive directed graph with |oops mapped
to a particular topology Is, In each case, the directed
graph with the maximum edge set determining that topologye.
On the other hand, we find that there does not necessarily

d exist a directed graph with a minimal edge set determining a
particular topology.

Finally we make a brief study of the properties of

topologles obtained from a directed graph with respect to

two other definltlons for an open set,
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CHAPTER O,
INTRODUCT ION

The object of this repart is to Investigate certaln

cint-get

tie-ups between the theory of directed graphs and

Q)

topology. In a certaln sense this report carries further
some of the work done by Bhargava In [3], where he develops
a probabillstic model for the study of binary dyadic relations,
An aggregate of binary dyadic relations on a set has two [so-
morphic representations: (i) a directed graph, and (1i) an
Incidence matrix, Applications of mathematical models of
these types have been freated by Bhargaval and are being
fur ther lnvesflgafed2 by hime In this meport, we do not
consider applicafiong rather, we study certain theoretlical
aspects of directed graphs In terms of point-set topology,
The notions of accessibllity of points and of connected-
ness of a directed graph appear similar respectively to the
concepts of a closed set and of connected sets as used in
point-set topology, Therefore, it seems natural, as we have
done in this report, to investigate possible tie-ups between
directed graphs and point-set topology. It is hoped that the
results of this work will be helpful In the study and analy-

sis of mathematical models similar to those developed In (3],
. P

L With L. Katz, "A Stochastic Model for a Binary Dyadic
Relation with Applications to Social and Blological Sciences",
Bull., Insf. Internat, Statist, LO (1964), 1055-1057,

2 Under National! Aeronautics and Space Administration,
research grant number‘ﬂs 6-568,




A directed graph (or simply a digraph) consists of a
set of points and a set of edges (possibly void) joining
particular ordered pairs of points, whereas a topology is a
family of sets in which the infersection of any two sets iIs
a member of the family and the union of the members of each
subfamily is a member of the family.

Our investigation consists of establishing a topology on
an arbitrary digraph and then expressing the notions of
accessibility of points and connectedness of a digraph in
terms of that topology. We relate certain topological con-
cepts, for example the separation axioms and the closure
operator, to some of the connectedness properties of digraphs.
We also make a comparative study of the family of digraphs
with respect to the family of topologies determined by these
digraphs and briefly consider other topologyies which may be

established on a digraph,.



CHiAPTZR [..
PRELIAINARIES

SECTION 1.1, DEFINITIOHS AND NOTATIONS

The following definitions and notations serve as a

basis for our discussion of directed graphs throughout this

report. Most of these are standard and have appeared else~

where (e.g., see Bhargava [3]).

Let A denote a set of points, A=fR ] ‘“D’ an

index set?. Set A may be a finite, a counftable, or an

uncountable set. e denote a subsef of A by a.

Let € denote a subset of the cartesian product A X A,

e:AXA.

DEFINITION l.1.t. A digraph (directed graph) is a
set A of points and a set E of ordered pairs of points
such that § ~E « A X A, A digraph is denoted by T (A,E),

or simply by T(A) if the set E is fixed.

DEFINITION 1.1.,2, For a~ A, the digraph

r{a, E~ a x a), denoted simply by [ (a), is a subdigraph

of the digraphT (A,E).




DEFINITION 1,143, An element of E Is called an edge of
the digraph T (A,E) and is denoted by e(1,j); e(l,j) Is
said to be an edge from Pi to Pj and may be represented

by a directed line from P' to PJ.

In the digraph T(A.E), e(i,j) € E 1is also sald to

be an edge from set a_ c A toset a oA, If P, €a

and P, € a_,

S

J

DEFINITION I.1.4. A dipath (directed path) of length

L from Pi to Pj s an ordered (L + |)-tuple of points of

Pry Po s P g Py aeu 5 P P
< ” kl, k2’ ka’ ? k(L_.l)’ J> t4

In which L 1Is a positive Integer and

r(A,E),

WM

Felloiy)s el pky)y elkpaks)y wae s el _1y0d) 3

is a subset of the edge set E of T (aA,E)s The point P,

is called the Initial polnt, the points Pk s P s Py eee
| Ko K
P are called Intermediate points, and P is called
K(L-1) J
the terminal point of the dipath,

We note that a dipath is always of positive finite
length and that the dipath <:PiJii> of length one is

simply the edge e(i,j).

DEFINITION 1,1.5, An edge from Pi to Pl is called

a loop at P, and is denoted by e(i,i)a




DEFINITION {,l46, [|f there exists a dipath from P,

to PJ In T(A,E), we say that Pl Is accessible to Pj

(or that P. 1Is accessible from Pl) and denote this by

J
AQ(i,])e In this situation, the ordered pair (P',P ) is

J

called an accessible palir,

1§ P, ls not accessible to Pj’ we write ii,(l,j).

repost
In this Weessbe, we adopt the convention that Pl Is

always a member of the set of points accessibie from P]i

we denote this fact by (@(i,i). It should be noted that

A (1,1) does not necessarily imply that there exists a

dipath from P, to P, but does imply that P, € {Pjtcl(l,j)l

for each Pi € A,

DEFINITION 1,1.,7. If both @ (1,j) and @(j,1),

that Is If Pi Is accessible to Pj and Pj is accessible

to P we say that Pi and Pj are symmetrically accessible

i’
and denote this by (@ »(1,j).

We note that the relation (% 1Is an equivalence
relation on set A and thus partitions set A (see

Bhargava [3]).

DEFINITION 1,1.8, T(A,E) 1is a transitive digraph |If

e(1,j) € E and e(j,k) € E implies that e(i,k) € E,

DEFINITION 1,1.9, An edge function f on the digraph

{A,E) is a function which assigns a non-negative real number
to each element of A X A, such that f(i,j) > 0 Iff

e(f,j) € E« f(1,j) = 0 otherwise,




DEFINITION l,1410 The characteristic edge function fc

on the digraph T(A,E) 1is defined to be:

: I, 1f e(i,j) eE
| fc(l,j) =
0, tf el(i,j) ¢E.

-

ions and notations

In general, the fopoiogicai defini

used In this report are quite standard and may be found in

Keltey [5],

SECTION |.,2, CLASSIFICATION SYSTEMS

There are clearly many ways of describing classification
systems for digraphs., We present below ftwo of these which

are relevant to our discussion, These are given in Bhargava

[3]’ PPe To

CONNECTEDNESS CLASSIFICATION

A digraph F(A,E) 1Is said to bes

(1) strongly connected, if (@=+(1,]) for every Py

and Pj in A,

(11) unilaterally connected, if &@(1,j) or d(j,1),

for every P, and Pj in A,

(1i1) weakly connected, if T(A,E U E”) 1is strongly

connected, where E’ = fe(j,1) : e(l,j) € E1,

(tv) disconnected, If T(A,E) 1s not even weakly

connected,




To obtaln a mutually exclusive, totalily exhaustive
classification system, we may define a digraph T(A,E) to

be of type:
(1) Sz i1f T(A,E) 1Is strongly connected,

(1i) S5 1§ I'(A,E) is unilaterally, but not strongly

connec ted,

(1i1) s,, 1f T(A,E) Is weakly, but not unilaterally
I

connected,
(1v) sq, If T(A,E) 1Is disconnected.

A digraph of type Sy ls said to be in the connected-

ness state Si» for t =0, I, 2, or 3,

ACCESSIBILITY CLASSIFICATION

A digraph T(A,E) 1Is of type s if the set {(P,,PJ):

L 4
K’

(P',P ) e A XA, @(1,j)% contains exactly k members.

J




CHAPTER 2,

POINT-SET TOPOLOGY AND DIGRAPHS

In this chapter we investigate the accessibllity of
points of a digraph (see section l,l.) and the connectedness
state of a digraph (see section [{.,2.) in ferms of some of

the concepts of point-set topology.

SECTION 2,1, A TOPOLOGY ON A DIGRAPH

A topology may be detftermined on set A by sultably
defining certain subsets of A to be open with respect fto

a digraph T(A,E),

DEFINITION 2.1s1s Set a c A of digraph T(A,E) Is
open, if P, € (A~ 3) and PJ ca Implies that e(1,j) ¢ E,
In other words, a c A [Is open If there does not exist an

edge In T(A,E) from (A ~a) to a.

We mention, in passing, that set a c A of T[(A,E) Is
closed 1ff set (A~ a) of I(A,E) Is open. Hence set
2 c A of digraph T(A,E) Is closed I1ff Py €2 and

PJ € (A~ a) Implies that e(i,]) ¢ E. That Is, set
8 chA Is closed Iff there does not exist an edge in T (A,E) wg

from a to (A ~a),

! The main results of this chaptfer have been presented
at the April, 196l meetings of the American Mathematical
Society; see [4],

8 ]




THEOREM 2,14.1s Each digraph T(A,E) determines a
unique topological space (A,T), where T = {a: a c A of
T(A,E) 1Is openl, Moreover, (A,J) has éompletely addi tive
closure (l.e. the iIntersection of any number of open sets

Is open),

PROOF, Let T(A,E) be an arbitrary digraph. Relative
to definition 2,1.!le, T(A,E) determines a unique family w,
where T = (g2 a c A of F{(A,E) Is openl,

To prove that (A,T) 1is a topologlical space, we must
show that (see Kelley [5], ppe. 37): (1) the union of
the members of the family T Is A, (I1) the union of
the members of each subfamily of T Is a member of T,
and (111) the Intersection of any ftwo members of T Is
a member of T,

(1) (A~ A) =4¢, the vold set, Thus, set A vacuously
satlisfies definition 2,1.!. and thus A € T, For every
ae€e¥, aghA. Therefore, Ufat a € T} = A,

(1i) Let fa,? k € KY be an arbitrary subfamily of T,
For each k € K, there does not exist an edge from set

(A~a) toset a Thus there does not exist an edge

=K K °®
from n fA ~a : k € K} to any g+ Hence there does not
exist an edge from A ~ {gkt k € K1 to u {gk= K € K,

leea llf_a_k= K€K 1 € T

(111) Agaln let rik: k € KY be an arblifrary subfamily

of To For each k € K, there does not exist an edge from

gk) to set 20 Thus there does not exist an

edge frem any (A "Qk) to fﬂ§«= k € K. Hence there

set (A ~

does not exist an edge from ({A ~ 2kt Kk € K} =



A ~n (gkt k € K?

Consequently, (A,T)
T™(A,E) determines a unique topological

over, by part (111),

LEMMA 2,142
@ (1,]),

2 < A containing P,

Let P! and PJ

l.ee P‘ Is accessible to

but not PJ,

to

point of (A ~ a).

PROOF. If P, =P ,

! J
Assume that ®(1,]) for P, 3 PJ.

the lemma is

dipath of finite length from P, to Pj.

I
contalning P'

trary subset of A but

Inition lilel,,we note that a dipath Is

finite length., Let Pk, the k th point

first point of this dipath which is not

P ¢ a2 and each point preceding P, in

Atso P % Py. Thus P(k1) € 2» and we

namely e(k=l,k),

Let P' and P

J
Assume that for each subset 2
there exists an edge from set a

set g, = fP: a@ (1,n),

to n {a 2 Kk € Ki, leee n fa,’

be fixed poinfs

there exlists an

(A ~a), 14e, an edge from some point of a

be distinct fized points of set
containing P!
to set

the set of all

0

k €K} € To

Is a topolglical space and thus

space (A,T), More-

(A,T) has completely additivie closure.

of t A

seq Mo

[ff for each subset

J’

edge from

fo some

trivially true,
Thus there exists a
Let 2 be an arbl-

not P In def-

°
an ordered tuple of

of the tuple, be the
in set a, l.e.

the tuple is in a.

have the required edge,

A,
but not Pj’

(A ~2a)e Form the

points to which Pl

ls accessible, Assume that PJ ¢ aye Then, by hypothesis,

there exists an edge from a, fo

say e(r,s) from



Pr€2; toP_ e (Aoa), But P, Is accessible to P_:

le€o PI = Pr or there exists a finite dipath from P, to

Pr' Thus there exists a finite dipath from P, to Ps which
includes the point Pr' Thus Pi Is accessible to Ps and
therefore P_ € a,, Contradiction! Thus P, €2y, Tee. Py

ls accessible to P,

J

THEOREM 2,1,3. Let Pl and PJ be fixed points of set A,

®R{i,j), i.e. P, s accessible to PJ, iff each closed

set conftaining P  contains Pj; or equivalently, 1ff each
i

open set containing P contains P

J i

PROOF, Let P' and PJ be fixed points of set A,

Assume that (@ (1,j)e Let g be an arbitrary closed set

containing P.. If PJ € (A~ a), then,by lemma 2.1.2., there

exists an edge from a to (A ~a), l,e, a Is not closed,
Thus PJ € 2.

Now assume that each closed set containing P' contalns
PJ, le.eo there does not exist a closed set containing Pl

but not P A set a 1Isclosed Iff the set (A~ a) Iis

J.
openy thus there does not exist an open set containing P

J

but not Pi’ l.e, each open set containing PJ contains Pl'

Finally assume that each open set containing P, con-

J
tains Py« Hence each set a containing Pj but not P, Is

not open, f.e. each set (A~ a) is not closed, Thus for each
set (A~a), there exists an edge from (A ™ a) to a. By

lemma 2.1.2., P] is accessible to PJ.




SECTION 2,2, CONNECTEDNESS STATES

We present now an identification theorem for the connect-
edness states (section 1.2,) of a digraph It A,E) 1In terms

of the topology (A,Y) on that digraph.

THEOREM 2.2.1,

(1) The digraph T'{A,E) 1is strongly connected (53)
1ff (A,Y) s an indiscrete topological space, (1.e.

T = A 00).

(11) The digraph T(A,E) 1s unilaterally connected

(s2 or 53) 1¢£f the family of open sets, Y, 1Is llnearly
ordered by inclusion, (i.e., whenever 2 and 3, are open,

then a, za, or a; 3 )e

(111) The digrpph T(A,E) 1Is weakly connected

(s; or s, or 53) 1¢¢ (A,T) 1Is "topologically connected",
(lee. set A cannot be expressed as the union of two disjoint

non-void open sets),

(1v) The digraph T(A,E) 1Is disconnected (so) 1ff  (A,T1)

Is not "topologically connected", (l.e. set A can be ex-

pressed as the union of two disjoint non-vold open sets),

PROOF,
(1) Assume that T(A,E) 1Is strongly connected (see sec~-

tion 1.2.). If P, and Pj are arbitrary points of F(A,E), then




CP(!,J), lees Py Is accessible to P By theorem 2.1.3,,

JQ

each open set containing P contalns Pi' Hence the only

non-vold open set in (A,T) Jls Ae Thus, T = fA,{l.

Assume now that T = {A,4}. Let P, and Py be arbl-
trary points of T(A,E), Each open set containing P, con-
t-ins Pj o d each open set contalning PJ contains Pl’
since A s the only non-void open set in (A,T), By theorem
2ele3e, @(J,1) and @ (1,]), le.ea @%i1,j)s Consequently
T(A,E) 1Is strongly connected,

(11) The family T of open sets of (A,T) 1Is linearly
ordered by inclusion (l.e. for every two open sets of (A,T),
one Is a subset of the other) Iff for arbitrary points Py
and PJ of A there does not exist an open set containing
Pi but not Pj or there does not exist am open set contain-
Ing Pj but not P, That Is, each openr set containing PJ
contains P, or each open set containing Pi contains PJ. This
Is true 1ff, by theorem 2.1¢3., @ (1,j) or @(j,1), for the
arbitrary points P‘ and PJ of T(A,E). By section 1,2.,
T(A,E) 1Is unilaterally connected.

(111) In the digraph T(A,E), set A cannot be expeessed
as the union of two disjoint non-void open sets [ff every non-
void proper subset of A 1Is not open or is not closed, Equi-
valentiy, by definition 2.lel., for each non-void proper sub-

set, say a of A, fthere exists an edge from (A ~a )

k’

to a  or there exists an edge from 3  to (A~3a.) In




Ky

r'(A,E)a That is, in T(A, EUE’), where E’ = {e(]J,}) :
e(1,J) ¢ El, there exists an edge from (A “'Ek) to a

and there exists an edge from a to (A ~a_), for each non-

K =K
vold proper subset a  of A, Hence by definition 2.l.l.,

=k
the only open sets Iin T(A, E UE’) are ¢ and A, This Is
true [ff, by part (1) of this theorem, T(A, E U E’) s
strongly connected., Equivalently, by section 1,2, T(A,E)
Is weakly connected,

(tv) This Is the contrapositive of part (1il) of this

theorem,

In section 2.4,, we discuss the closure operator ad
present an ldentiflcation theorem (thm. 2.4.4.) based upon
the closure operator, It Is equivalent to the theorem that

we have Just proved,

We note that the connectedness classification of a
digraph T(A,E) 1Is consistent with the "topological connected-
ness" of the topological space (A,J) determined by that
digraph. The topological space determined by a digraph Is
dependent upon the definition of an "open set", In chapter
3, we show that altermate definitions for an "open set" may
or may not produce this consistency., 1hroughout this report,

an open set refers to a set satisfying definition 2.1.1.

SECTION 2,3, SEPARATION AXIOAMS

In this section, we investigate a digraph In terms of
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the separation axiom(s) satisfied by the topological space
which Is determined by that digraph. lie make use of the
following two separation axioms (see Kelley 1[5}, pp. 56-57):

(1) a topological space (A,T) 1Is a T.-space iff for every

P, % Pj’ el ther there exists an open set containing P, but

not PJ or there exists an open set containing Pj but not

P, 3 and (11) a topological space (A,J) Is a T,=space Iff

each set which consists of a single point is closed.

THEOREM 2,3.1,

(1) In digraph T(A,E), @ (1,j) or @(j,1), for

all P, % PJ (lees there does not exlst P, and P, such that

J
P'# PJ and CQ*(I,})) 1ff (A,T) Is a I_o-sgace.

(11) In digraph T(A,E), f{e(i,j) : e(1,]) €E, 1 # jl
= Q¢ I1ff (A,T) Is a I,zspace; or equivalently, Iff (A,7)

!s a discrete space,

PROOF .

(1) Let P, #dd P, denote distinct arbitrary points

J
of T(A,E)e Q@ (1,j) or &(j,1), l.es P, 1s not access-

ible to Pj or P_ Is not accessible to P, This is true
J

iff, by theorem 2,1,3.,, there exists an open set containing

P but not P

J {
but not Pj’ lees (A,T) 1Is a To-space.

or there exists an open set contalning PI
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(11) For digraph T(A,E), f{e(l,]) : e(l,]) €E,
143} =4, t.e. there does not exist an edge from any point
of A to any other distinct point of A, 1ff (using defl-
nition 2.1.1.) each set consisting of a single point is
closed, l.e« (A,T) is a T -space. Since (A,¥) has com-
pletely additive closure, each sef consisting of a single polnt
Is closed 1ff every subset of A is open, f.es (A,T) 1Is a

discrete space,

SECTION 2.4, TOPOLOGICAL OPERATORS

In this section, we make use of the closure, kernel,
and core operafors to investigate the connectedness of a
digraph., The standard topological definition is given for
the closure of a sef, The definitions for the kernel and the
core of a set are taken from an articie by Aull and Thron [1].
First let us state the definition of the closure of a

set in the topological space (A,T).

DEFINITION 2.4e1s The_closure of set a, denoted by
Ci(a), is the intersection of all the closed subsets of A

containing a, l.e. Cl(a) = n{E-j : 2 Is closed, a <« 8 < Al

Let us now define an operator analogous to the closure

operator In terms of the open sets rather than the closed

sets containing a particular set,
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DEFINITION 2,4,2. The kernel of set a, denoted by
‘ Ki(a), 1is the intersection of all fthe open subsets of A
containing set a, fi.,e, Ki(a) =" {gj *a; is open,

c AL

We note that the closure of a sef is always closed and
that set a s closed iff a = Cl(a). Also, since the
topology on a digraph has completely additive closure (see
theorem 2,1.1.), we see that the kernel of a set is open a d

| that set a is open iff a = Ki(a).

THEOREM 2.4.1.

(1) For any point P, of T(A,E),

@ (1,j)3, and

] @(j,1)e

In words, C! {P'} Is the set of points of the digraph which

.

ct {P;l = {PJ
Kt {P') = {P

are accesslible from P Kl {P'} Is the set of points of the

'.
digraph which are accesslible to point P'.
(i) For any set a S A of T(A,E),

Ci(a) = {Pj : A (1,]) for some P, € a}, and

Ki(a) {Pj : @ (j,1) for some P, € ale

PROOF o

(1) By definition 2.4ele, Cl {P'I = N {gj a; Is

closed and P, E_a_j}. That Is, Cl {P,} 1Is the set of all

points such that every closed set containing Pi contains



18

that point, TFnherefore, applying theorem 2.,1.3.,, we have

ct {P'} = {PJ : @ (1,])1e Similarly, from definition 2,442,

!
(11) The topology (A,T) on a digraph (A,T) has com-

and theorem 2,1.%,, we have that Kl fP,1 = {PJ :&__(j,l)}.

pletely additive closure} therefore, Cl (U fa : 1 € 11) =

U {cl fa,1 21 €1} and Ki (U f_g_J s ] edy) =u {Kt {Q_J} :

J € J1. Using this fact, along with theorem 2.4.1., we obfain

the followinge
Ci(a)

Cl(U{{P,l:Ple_g?)
ufctrpysP €al
U { !PJ : R (1, 0Nn
= { PJ : Q1,]) for some P,
Kl(a)=Kl(Ur{P,1:P,cg1)
u i ki Py} 2 Pp €2
J=Q(j,!)3=P,c_a_3

f PJ t Q(j,1) for some PJ € 2.

P, €2 3

63_].

i

i { P

!

1

We wish fo note here that Berge defines fthe "transitive
closure™ of a point P, to be a set of points identical with,
in our terminology, the set {Pk : A (i,k)}., Thus, from the
results of theorem 2,L4l., it follows that, in a digraph,
our closure of P, 1s equivalent to Berge’s "transitlve

[
closure" of Pye (Berge [21, pps. ll)e

The closure operator is used fo define various topologi-
cal terms, e.ge: a set a 1is dense In a topological space

(A,7) 1f Cl(a) = A (see Kelley [5], ppe L9)e Two subsets
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8, and a, are separated in (A,T) If Ci(g;) n 2y = ¢

J
and a, n Cl 2= ¢ (see Kelley [5], ppe 52)e Let us relate
dense and separated sets to the accessibility of points in

a digraph,

s Set a s _dense In A of T(A,E) Iff

for each point P_ of A, there exisfts a point Py of 2

such that P‘ s accessible to Pk.

PROOF, Follows from theorem 2.L.1.

COROLLARY 2.4.3. Two subsets a, and a; of A are

separated in T(A,E) Iff there does not exist P, €2, and

Pj EQJ, such that @ (i,j) or Q@ (j,i)e

PROOF, Cl(2,) N a, =¢ and 2, n Cl a; = ¢ iff, by

J

theorem 2.L4.1., there does not exist points P' €3; and

P such that @ (1,j) and there does not exist points

1 €23

Pr E‘Ql and Ps € a such that Cp(s,r).

J

In section 2,2, we proved an identification theorem for
the connectedness states of a digraph. We now present an
identification theorem based upon the closure operator and

separated sets,

THEOREM 2.4.4.

(1) The digraph T(A,E) 1Is s, (disconnected) Iff
set A can be expressed as the union of two non-void

separated subsets of (A,T).
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(11) The digraph F(A,E) is g (disconnected) or s’
(weakly connected, but not unilaterally connected) Iff (A,T)

contains two non-vold separated subsets,

(111) The digraph T(A,E) s 53 (strongly connected)
1¢f each point of A Is dense in (A,T), 1.e., iff for each

P, €A, Cl [P} = A,

PROOF ,
(1) T(A,E) Is s, Iff, by theorem 2.2,1., set A can
be expressed as the union of ftwo disjoint non-void open sets,

say a3, and (A ~g3a,). That Is, there does not exist an
edge from set a;, to (A ~a;) or from set (A ~3;) to
3;s Hence, Cl{a;)=3a; and CI(A~a;)=(A~a,). There-
fore, T(A,E) Is s, [Iffsets a, and (A ~a,) are
separated In (A,T),

(17) Assume that T(A,E) is either s; or sg, l.e.
T(A,E) 1is nelther 3 Nor sy. Then, by section 1.2.,

there exist points, say P, and P in A such that Q (1,3)

I J’

and Zf(j,i). By theorem 2.L4.1., P, ¢ ClI rPJ? and

PJ ¢ Cl fP‘}. Thus, {P]} and fP.} are two non-vold

J

separated subsets of (A,3).
Assume now that (A,7) contains two non-void separated

subsets, say,a and‘gj. By corollary 2.4.3., there does

1

not exist P' ca, and Pj € 25 such that @(1,j) or

Aa(j,i), since 2 and‘gJ are non-void, there exist points,

~ Ll
say P. €35 and P_¢ay such that Q@ (r,s) and &(s,r),

7}, i
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By section 1.2., T(A,E) [Iselther s; or s,;.
(111) By theorem 2,2.l., T(A,E) 1Is strongly connected
1ff « = rA,Q}s This is true Iff Ci {P'? = A for each P, ¢ A,

Let us now define the core operator and relate it to the

closure and kernel operators,

DEFINITION 2,4.3, The core of set a, denoted by K (a),
Is the intersection of all subsets of A containing a which
are closed or open, i.e.

K (@)=n f_a_J : 3y Is closed or open, 3 C 3, S A, Ve

note that X(a) = Ci(a) n Ki(a).

THEOREM 2.L.5.

(1) For any point P, of TF(A,E),

A {P'} = {PJ : @*(1,j5)1,
in words, 2% {P;1 Is the sef of all points of the digraph

which are symmetrically accessible to PI'
(11) For any set a S A of T(AE), X(a)= ;pJ :

Q@ (i,j) for some P, € A and (@(j,k) for some P € 2al.

PROOF, Using theorem 2.,4.l. and definition 2.4.3., we
obtain the following,

(1) K{p, ¥ =ct P 10 KI {P1
' @ (1,0) 0 P 2 @ (1)
@ (1,)) and @ (3,1} = {P, : @1,1))

= (P
J

J

={P




(11) % (a)=ci(a) " ki(a)

= {PJ. : ad(1,]) for some P, cal
n fPJ : @ (j,k) for some P €al
= fPJ : {(1,]) for some Py €2 and

@ (j,x) for some P, €2%

We note that X (U ra =1 €1} )2V x(g):1€n
and thus for any a S A, X (a) 2 {PJ : @*1,]) for some

P, €al,

1

COROLLARY 2,;.6, For any point P, of the digraph
T(A,E), the core of Py s the maximum subset, say a, of
A containing PI such that the subgraph P(g) Is strongly

connec ted (53).

PROOF. By theorem 2.4.5., P e X P/} 1ff @ 1,x).
Thus by the connectedness classification (section [.,2.),
the subdigraph T(?({P'}) Is strongly connected, For any
set 2 confalning P‘ and containing some other point, say

Pj’ where ﬁj ¢ 9({P’}, T(2;) s not strongly connected.
SECTION 2,5, TOPOLOGIES AND TRANSITIVE DIGRAPHS

In this section, we establish a one-to~one mapping of a

cerfain class of digraphs onfo a certain class of topologies.

Let A be a fixed,but arbitrary, set of points and let
e=1g: S ESAX A}, leea g 1Is the family of all sub-

sets of the cartesian product A X A,
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From theorem 2,1.1., we see that each digraph T(A,E)
determines a unique topological space (A,T) and this
topological space has completely additive closure, This
establishes a mapping of the family of all digraphs,

W= (T(A,E)

?: { (A"r)

set A, Let us demote this mapping by o,

E eel, on set A into the family of topologles,

(A,T) has completely additive closure }, on

PROPOSITION 2,5.1,

(1) For any digraoh T(A,E), o (T™(A,E)) = (the topology
(A,7) which has the family { {P, 2 [0.(1,j) In T(A,E)]} ¢
Py EA } = {KI {PJ} PPy € Al as a base).

(1) o 1Is a many-to-one mapping of the familyq)jof all
digraphs on set A onto the family ?ﬁ’of all topologies with

completely additive closure onvsef A,

PROOF ,

(1) o (™(A,E)) = (A,T) 1Is the topology determined by
the digraph T(A,E) relative to definition 2.1.1. of an open
set, For each point Pj of T(A,E), the set KI {Pjg Is
open and Is the smallest open set containing the point Pj‘
Thus {KI fPJ} H PJ € A} is a base for the topology (A,T).

By theorem 2.L4,1., for each Pj in T(A,E), KI fPJ} =
: D(1,j) in T(A,E) ],

(11) ® 1Is a many-to-one mappinjj, by theorem 2,l.le If

{P!

(A,T) s an arbitrary topology on set A and if
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E= fe(l,]) P' € Kl {Pj} In (A,7)}, then T(A,E) 1Is one of
the members of %), such that o (T(A,E)) = (A,T)s Hence @

s an onto mapping.

We wish now to determine a subfamily of ‘W such that the

mapping © restricted to this subfamily is a one-to-one

mapping onto the family%?’.
Let U= [T(A,E) = e(1,]) €E 16F (L (i,J) in ~A,E)}e

PROPOSITION 2,5.2 “U 1s the family of fransitive die

graphs, with loops, on set A, That Is:

T'(A,E) € W 1% and only If
(1) e(1,j) € E and e(j,k) € E implies that e(i,k)e E,
™) fet,n s ey e at gk
PROOF, The relation of accessibility Is transitive and
reflexives U = IT(A,E) : e(1,]) € E 16§ GL (1,]) In T(A,E) ],
Thus T(A,E) €WUiff r(A,E) is a transitive digraph (see

definition 1.1.8.,) and T(A,E) has a loop (see definttion

lel.5.) at each point of set A,

Let us consider the mapping o restricted to the family

i1<§¢0, l.e. the mapping (% IQLQ.
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PROPOSITION 2.5.3, Let A be a fixed set of points,
(1) (olW) (T(A,E)) = (the topology (A,T) which has
the famity { fP, s e(1,j) €E} 2P €A }={Kl {PJ} 3

J

P e Alo as a base),

J
(r1) (mIQL) s a one~fto-one mapping of the family‘ZC of

all transitive digraph with loops on set A onto the famlily

2?’0f all topologies with completely additive closure on

set A,

PROOF,
(1) This Is propositlion 2.5.1, (i) with the mapping @
replaced by (o|%), whereZd = rm™(A,E) : e(1,]) € E 1ff
R (1,3) in T(A,E) e
(11) By part (1), (9¢|%) s a many-to-one mapping of
ah IntoZé». If (A,T) 1Is an arbitrary member of the family
E?fand E= fe(l,j) : Py € Kl {PJ} In (A,T)}, then T(A,E)
Is the unique member of 9L such that (o|?) (T(A,E)) =
(A,7)s Thus (o|U) Is a one-to-one mapping of wU onto?} o

We note that (ml@L)'l (A,7) = (the digraph T(A,E) In
which E = {e(l,J) : P; € Kl fPy3 In (A,7)))e Equivalently

E = {e(l,j) : P, €CI {P‘} in (A,7) 1,

J
In general, If the set of points is not specified,

(o] 42) 1s a one-to-one mapping of the family 2.° of all

transitive digraphs with loops onto the familygé" of all

topologies with completely additive closure,
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SECTION 2,64 MAXIMUM AND MINIMUM EDGE SETS

By proposiftion 2,5.le, the mapping o® [Is a many~to-one
mapping of the family of all digraphs on set A onto the
family of all topologies with completely additive closure on
set A, Thus, distinct digraphs on set A may determine
Identical topologies on set A, In this section, for an arbl-
trary topology with completely additive closure, we investim
gate the existence of a digraph with a maximum edge set and
a digraph with a minimum edge set which determine that

topology.

DEFINITION 2.6.1,

(t) The digraph T(A,E) is called the maximum digraph

de termining the topology (A,T), If
(1) o (T(a,E)) = (A,T), and
(11) E’ S E, for all E’ such that ®(T(A,E’)) = (A,T),

(11) The digraph T(A,E) 1Is called the minimum_dlgraph

determining the topology (A,¥), If
(1) o (r(A,E)) = (A,7T), and
(11) E S E’, for all E® such that ¢ (T(A,E*)) = (A,7),

DEFINITION 2.,6.,2. The digraph T(A,E) 1Is called a

minimal digraph determining the topology (A,T), If

(1) o (T(A,E)) = (A,T), and
(11) o (T(A,E’)) 3 (A,T), for all E’ such that
E‘ € E and E* # E,
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PROPOSITION 2,6, Let A be an arblitfrary set of points
and let (A,T) be an arbitrary topology with completely
additive closure on set A, (mIQL)"l (A,T) = (the digraph
T(A,E) In which E = fe(l,]) & P, € Cl {P,} in (A,T)}) 1s

the maximum digraph determining (A,T).

PROOF, For any point P, of T(A,E), CI fPrl =

I
{PJ :t e(l,]) € Ex, For any point P, of any digraph on set
A, C1 fP 12 {PJ : e(k,]) s an edge of that digraphl. Thus
the addition of an edge to set E will necessarlily al ter

the closure of the Inltlal point of that edge and thus alter
to topology on set A, Therefore T(A,E) 1Is the maximum

digraph determing the topological space (A,T),

For a topology with completely additive closure there
does not necessarily exist a minimum digraph defermining fhat
topology. In fact, there does not always exist a minimal

digraph,

PROPOSITION 2.,6.2. Let A be an arbitrary set of polnts
and let (A,T) be an arbitrary topology with completely

additive closure on set A, There does not necessarily exist

a minimal digraph determining (A,T),

PROOF, Let set A be the set of all ordinal numbers

which are less than or equal to P the first non-finite

w?

ordinal, l.ee A = fP‘, P2, P§, cee Pwi. Let T =

fay U { {PJ : PJ < Pk} : Pk € Ale
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Let 1(A,E) be an arbitrary digraph determining the
topological space (A,T). The only open set containing P
Is A. Thus KI {P,} = A ad, by theorem 2.4.1., Qu (k,w)
for every P, € A, That is, for every Pk € (A o {Pw}), there

exists a finite dipath from Pk to Pw, Therefore, there exists

In E a countably infinite number of edges from set

Let P denote the first point

(& ~ mei) to point P,

i
of set A such that e(l,») € E» Let E¥ = (E ~ell,wn)).

Therefore, o (F(A,E‘)) = (A,T), where E* ©E and E* 4 E.



CHAPTER 3,
OTHER TOPOLOGIES ON A DIGRAPH

In thls chapter we consider two alternate definitions to
the definltion of an open set used in Chapter 2., and Investi=-
gate briefly the ftopology determined by a digraph with respect
to each of these alternate definitions, In all cases, we
assume the standard topological concepts, e.g. set a S A s

~open [ff set (A ~a) Is w—closed,
SECTION 3.1, OPEN SETS

As convenient reference, we restate several definitions

and theorems from Chapter 2.

DEFINITION 2,1.1. Set a S A of digraph T(A,E) s
open, If P, ¢ (A ~a) and Pj € a Implies that

e(1,J) ¢ E. In other words, set a € A Is open, If

there does not exist an edge in T(A,E) from set (A ~a)

to set a.

THEOREM 2.1.1. Each digraph T(A,E) determines a
unique topological space (A,Tc), where Te = fa 3

a S A of T'(A,E) 1Is openil, Moreover, (A,TE) has

completely additive closure,

THEOREM 2,2.1. (111) The digraph T(A,E) Is weakly

connected (sl or s, or 53) iff (A’TE) Is

29
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"topologically connected", (l.e. set A cannot be ex-

pressed as the union of fwo disjolnt non-void open sets),
SECTION 3,2, ¥ -OPEN SETS

DEFINITION 3,2,l. Set a S A of digraph T(A,E) s
av—open, If P, €a and PJ € (A ~a) implies that

e(l,j) ¢ E. In other words, set a S A Is wv-open, If there

does not exist an edge in T(A,E) from set a to set (A ~a).

PROPOSITION 3,2.1¢
(1) Set ac A of digraph I(A,E) Is ~~open Iff
a S A of T(A,E) 1Is closed.
(11) Set a S A of digraph T(A,E) 1Is ~—open [ff set
a S A of digraph T(A,E’) 1Is open, where E’ = fe(j.l) 3
e(i,j) € ElS

PROOF, Compare definifion 3.,2,l, with definition 2.1.1.

We note that (E’)* = E and that the digraph T(A,E’)
may be obtained from the digraph T(A,E) by reversing the
direction of each and every edge of T (A,E). This operation
does not alter the connectedness state (see section [.2.) of
a digraph, thus for I =0, |, 2, or 3, T(A,E’) 1Is of type
S 1¢f T(A,E) 1s of type Sje
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LEMMA 3,242 FEach digraph T(A,E) determines, with
respect to Y-open sets, a unique topological space (A,TE)V.
This topological space is identical to the topological space
(A,TE,) determined with respect to open sets by digraph
T(A,E”), where E’ = {e(j,1) 3 e(},]j) €El,

PROOF, Let a be an arbifrary subset of A, By
proposition 3.,2.1, (1i), set a S A of T(A,E) Is ~-open
1ff a S A of T(A,E’) 1Is open, Thus T_. = {_q_ ¢ a S A of
T(A,E) 1s v-open} Is the same family as T, = {a : aS¥
of T(A,E’) Is open', Hence, by theorem 2,1.ls, T (A,E’)
defermines a unique topological space (A,JTc.) which Is
Identical to the topological space (A’TE)V' Therefore,
each digraph T(A,E) determines, with respect to a~open
sets, a unique topological space (A,TE)y. Moreover, '(A,II'E)‘v

has completeiy additive closure,

THEOREM 3.,2.3., The digraph TI(A,E) 1Is_weakly connecied

(sl or s, or 53) 1#f (A,T), 1s "topologically con-

nected" with respect to Y-open sets,

PROOF, T(A,E) 1is of the same connectedness state as
I (A,E’), where E’ = le(j,1) ¢t e(1,5) € E}, In particular,
T(A,E) Is weakly connected 1ff TI(A,E’) 1Is weakly connected,
By the lemma 3.2.2., (A,T:), fIs Identical to (A,T:.),
Substituting into theorem 2,2.1, (11i), we have the follow-

inge T(A,E) 1s weakly connected Iff (A,T.), Is
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"topologically connected" with respect to 7Y-open sets,

Likewise, parts (1), (1i), and (iv) of theorem 2.2.l. of
chapter 2,hold true both when the topology is based upon open
sets and when the topology is based upon Y-open setfs, Thus
the connectedness classification of a digraph T(A,E) s
consistent with the "topological connectedness" of the

topological space (A,Tz) and the topological space (A,T),.

SECTION 3.3. &-OPEN SETS

DEFINITION 3,3,1, Set a c A of digraph I(A,E) s
§-open, ff P, € (A ~a) ad Pj €a Implies that e(l,j) € E,

In other words, set a & A Is 3-open, if there exists an

edge from each point of set (A ~ a) to each point of set a.

PROPOSITION 3,3,1, Set a S A of digraph T(A,E) Is
s-open iff set a C A of digraph T(A,E*) 1is open, where
E* = (A X A) ~E,

PROOF, Comnare definition 3,3,|l, with definition 2,1.1.

We note that (E¥)* = E and that the digraph T-(A,E¥)
may be obtainéd from the digraph I(A,E) be including in
T(A,E*) those and only those edges which do not appear in
the digraph IT(A,E), Tnis operation does, in some cases,

change the connectedness state of a digraph, For example,
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let A = {PI’PZ}' The digraph T(A, A X A) Is strongly con-

nec fed (53), but the digraph I(A,§) 1Is disconnected (sj).

LEMMA 3.3,2, Each digraph T(A,E) determines, with

respect to b6-open sets, a unique topological space (A,J’E)6

This topological space is identical to the topological space
(A,TE*) determined with respect fo open sets by the digraph
I'(A,E*), where E* = (A X A) ~E,

PROOF, Let a be an arbitrary subset of A, By
proposition 3.3.l., set ac A of T(A,E) Is &-open [ff
aS A of I(A,E*) is open. Thus Te = f2:2acA of T(a,E)
is 6-open). Is the same family as Tp% = {a 3 a2 S A of
F(A,E*) 1s open), Hence, by theorem 2.1.l., I(A,E*) deter=
mines a unique topological space (A,E¥) which Is identical
to the topological space (A’TE)G’ Therefore, each digraph
I'(A,E) determines, with respect to &-open sets, a unique

topological space (A’TE)G' Moreover, (A,T-)s has com-

pletely additive closure,

In general, the connectedness classification of a digraph
I'(A,E) 1s not consistent with the "topological connectedness"
of the topological space (A’TE)a‘ For example: let A =
{PI,PZ}. The digraph T(A,$) 1Is disconnected (sy), but
the topological space (A,T¢)5 determined, with respect fo
)

~open sets, by I(A,9) 1s an Indiscrete space and hence

Is "topologically connected",
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Many other definitions of an open setft may be used to
establish a topology on a digraph. This author finds
definition 2.1.l. of an open set most useful in investigating
the accessibillty of points and the connectedness classifi~
cation of a digraphe.

Perhaps other approaches may be used to establish a more

general topology on a digraph, e.g« @ topology which does
not necessarily have the propertfy of completely additive
closure or a topology which may be T' in other than the
trivial cases Yet in all cases, we desire a topology whose
"topological connectedness" is consistent with the connected-
ness state of the digraph, One possible approach s to

define an open set In terms of an edge function (definition

le!.9.) assigned to the digraph.
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