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ON SOLUTION STRUCTURE OF THE RADIAL HEAT PROBLEM

WITH SINGULAR DATA

1. Introduction. Let p be a real parameter and let

%} = Di +[ (- 1D/r] D, the radial Laplacian operator, In this paper,

we will be concerned with the structure and behavior of the solutions of

the initial value problem

¢

(a) u, (r,t) Ah u (r,t), r>0, t>0
(1.1)¢

() u (r,0) = ¢ (), >0

for variod% choices of the data function ¢ (r). Particular emphasis will be
given to solutions corresponding to functions ¢ (r) that have poles or
logarithmic singularities at r = 0 but which are otherwise analytic,

In recent years, extensive research has been carried out relating to
partial differential equations that have singular points, The Euler-Poisson-
Darboux equation is one of the most notable examples of such equations,
During the last decade, A, Weinstein and his associates [9] (other references
are given here) developed a broad body of significant results on the solution
structure of the equation, Weinstein and P, C. Rosenbloom [8] have given

theories for a more general class of the equations of the form

k
u (x,t) + T Y (x,t) + P (%, t, Dx’ u) = 0,

It is clear that the equation (l.1) does not fit into this class,



A detailed study has been made about solutions and expansions of solu-
tions of (1.1) when ¢ (r) is an entire function of r2 of suitable growth
( {11, [51, [6] ). More recently, the author has related the particular
form of solution of (l.1) used in [1] to Laplace transforms and their
inverses [2] and has applied this to data involving distributions. Through
an examination of these transforms for elementary functions along with an
application of the referred to expansion theory, we can obtain solutions of
(1.1), valid in the large, in the form of convolutions when ¢ (r) has poles
or logarithmic singularities (or the product of a pole and a logarithmic
singularity) at r = O, This will permit us to read off properties of the
solution function. It is assumed that ¢ (r) has, at most, exponential growth
of order 0 (ea r 2) as r > ‘w. For functions in this class, our results

will show that there exist solutions of (1.1) provided Iﬁ o (r) r ¥ lar
0+

exists for any positive B.

In section 2, we summarize, for the reader's convenience, a portion of
the basic definitions, notations, and results from [1,2,5,6]. At the same
time, we introduce a pair of solution forms (in addition to the one appearing
in [2] ) corresponding to data functions having poles or logarithmic singu-
larities at r = 0. Relations among solutions of (l.1) and properties of
these solutions are developed in section 3 and 4 when @ (r) is entire or has
poles but no logarithmic singularities. In one of these forms, the pole
dissjpates when t > O while in the other form, the pole remains intact, For
. an even integer with y 2 b, it will be shown in section 5 that the solu-

2 - + 2m

tions corresponding to the function r , with 0 < m < [p/2 - 2],

take on a particularly simple form., The last two sections relate to



solutions corresponding to data of the form ¢ (r) = ¥ (r) log r, firstly
when Y (r) is entire in r2 and secondly when ¥ (r) has a pole. Again, the
dissipation property holds for one form when u > 2 but not necessarily for
the other, Elementary examples are provided throughout to illustrate
theorems or properties of solutions.

2, Preliminary Remarks. We now introduce some of the basic ideas and

knowvn results that will be needed in the ensuing development. At the same
time, a notation will be introduced that will permit us to easily distinguish
between the different forms of solutions of (1.1).

Definition (2.1). The basic source solution of (1.1) is given by
W-RE S

SP- (r,t) = (b t) ~

Theorem 2.1 [2], Let u% (r,t; ¢ (r) ) denote a solution of (1.1)., Let

2.1) T @) = [ e (1t - 1/p} x wle =1 o 12y 4
Then
@2 W @t M) =t 0 (Pns By T2 L7t 2 T, (pt) )

in which the variable in this inverse Laplace transform is replaced by
a= r2/16 t2.
The definition of a given in theorem 2. 1 will be used throughout this

paper.

Definition (2.2) ( [1], [6] ). The radial heat polynomials

[Rg (r,t) }? _ g are defined by R? (r,t) = u% (r,t; r23), j=0,1,2, ... .

They satisfy the generating relation o

(1 -\ e) M2 /(1 - b - Z A R*Jf' (r,t)

i=o i



& .
and are given by R; (r,t) = j! ()] Lj(u/z D (-rzlht) where

L; (x) denotes the generalized Laguerre polynomial of degree j and

index v.
[22d
Definition (2.3). An entire function ¢ (2) = i= aj z) is of
rowth {(p,7) iff lim sup (3700) la | p/j < T
g \P) J j__> o LS Ak o |“j| - -
, 0

Theorem 2.2 [1]. Let ¢(r) = ;E;: aj raJ be an entire function of

growth (1,0) in r2. Then the series j=o aj Rg (r,t) converges to the
solution function u? (r,t; @(r)) of (1.1) in the time strip It] < 1(& o)
and satisfies a Huygens' principle there provided p > 1,

The solution function uT (r,t; @(r)) defined above is not the only
form of solution related to the problem (1.1). For, under the trans-

2 -

formation u(xr,t) = r u"v(r,t), we find that v(r,t) satisfies

v, (r,t) = Vo, (r,t) +[ (@-p) - 1] r-l v, (r,t)

.4

v(r,o0) = r2

" P o).
The above equation has the same form as (1.1 a) with p replaced by b-p,
Denote the solution of (1.1) corresponding to (2.4) by ug (r,t; o(r)).
An examination of theorem (2,1) shows that

Theorem 2,3. Let i(p,t) = f: e {(1/ht - 1/p} = @(xlle) d x,
Then

/2 pp./2'2

2.5) w (5,85 o) = x M5 o 1t T(p, th

in which the variable in this inverse Laplace transform is replaced by
a=1°/16 .
Observe that uy 2 (r,t; o(x)) = u22 (x,t; Q(IIL We will obtain

other connections between ulu and uzu in section 3. Symbolically, we can



eh o-y Thy- -2
write u? (r,t; o(xr) = e W o(r) and ug (r,t; o(r) ) =1 b e b (M o(xr)}.
-]
th J .
By the interpretation e B o(r) = z;;'ﬁT Ai @(r), we may be able to attach

a meaning to u, even if the integrals in theovem 2.1 fail to exist. 1In

particular, if m is an integer, then

th

A s -5m
(2.6) e “rt= Rj (ryt), 3 =0, 1, ... o

Finally, let us suppose that the data function @(r) in (1.1) has the
form ¥(r) log r in which Y¥(r) is entire of growth (1,g) in r2. Under the

transformation

2.7 ‘ u(r,t) = v(r,t) log r + w(r,t)

we can require that v(r,t) and w(r,t) satisfy the problem

Il

(a) vt(r,t)

.80
(b) Wt(r)t)

Abv(r,t), v(r,0) = ¥(r)

n

%iw(r,t) + F(r,t,v), w(r,o) =0

with F(r,t,v) = 2r-1 v+ (b - 2) r—2v. A solution of (a) is given either

by u% (r,t; ¥(r)) or u2u(r,t; ¥(r)). Then by Duhamel's principle [4],we find that

1

(a) wl? (x,t) Iﬁ ug (r,t-"M; Fiu (r,M) 47
2.9) i=1,2
(b) WEE (r,t) Jﬁ rg_u u?-u (xr,t-T; ru-eFi ”(r,ﬂ))dﬂ

with Fiu (r,M) = F(x,M; viu (r,T) ). The integrals in (2.9) are not always
defined and appropriate pairings must be made according to the value of .

We will later discuss the integrals (2.9)'with the F." function. The

1

analysis for the other case is analogous but more tedious.



3. Relations Among the Solution Forms, It is evident that the solution

forms u1“ (r,t; o(r)), i = 1,2, defined in section 2 are basic to most of our
developments relating to the behavior of solutions of (1.1). For this

reason, it is useful to obtain some of the relationships pertaining to these
forms, 1It will be convenient to call upon some elements of Laplace transforms

as well as the theorem 2.2, The symbol ¢ will denote convolution, i.e.

f(a)se(a) = [7 £(E)g(a-D) dt.

Theorem 3.1, ugu(r,t; re-u Y(r)j = rz—u ulh_u (xr,t; ¥(r))
whenever either side of this expression is defined.

Proof. When p < 4, this is immediate by comparing the integrals in
theorems 2,1 and 2.3. If i > i, this can be regarded as a continuation

formula if either side of the expression can be defined symbolically,

Theorem 3.2.

/ (a) ulu(r,t; er), p even integer and p > 2.

G- e, S o) __adW? R ERR2 Ve o™ g, w2

r(1-u/2)

\(0) (hpylW/2] + 1-u/2 [ (a-gy [W/21-p/2 b e2lp/2lHl) ) VT g,
T{[p/2]+ 1 -p/2} “° J
if u > 2 but is not an even integer.

Proof., We derive (3,1) with the aid of a generating function. Select
2
o(r) = ekr in theorem 2,3, Then it follows that

pl2-2 - Lt P,u./2-1

(3.2) p T (p,t) =
1-4at

{p-kt /(1-krt)}



(a). If p is an even integer with p > 2, then LP-1 {pu/2-1} = 6(u/2-1) (a)

where §(a) denotes the Dirac distribution. By the convolution theorem

6(p./2~-1) ehat/(l-hkt)

Ll 22 Fp,00) = bt

(a) *
P 1-Iat

/2 lhat e16at2X/(1~hlt)
\l-hxt ’

= (o)t

(1-4pe)B/2

o0

j!

the last step following by the generating relation in definition (2.2). The
stated result (a) then follows by introducing the multiplier ﬂ“/Q Su(r,t) in
theorem 2.3 and comparing coefficients of kJ/jl .

(b). If p< 2 in (3.2), an application of the convolution theorem gives

Lt {pu/2-2 T (p,£)} = kt 1 fa (a_g)-ulzehgt/l-hxt aE
P 1-hat '(1-p/2) "o
165650/ (1-t)
= )-l—t ‘ra (a_g) -IJI/Z ehgt e dg.
T(1-p/2y *° Y

The result (b) follows by expanding the generating function in brackets,
introducing the multiplier n“lgsu (r,t), and comparing coefficients of
Mrse .

(¢). If p > 2 but is not an even integer, then (3.2) can be written

in the form

{ ht } P [w/2] 1 1
1-4rt (p4t/(1-4At)} p[p./2] + 1-p/2

in which [p/2] denotes the greatestinteger function. Taking inverses, we get



(3.3) Lp-l {pp./2-2 T (p,t)] = [ht/:l-h)\,t} 6[-[.l./Z] (a)*ehrat/].-’-kkt*a[u/Q]";1./2

I{[u/21+1-p/2}

[p/2] (a) * ehat/(l-hkt)

Since §

= Gt/ (-l [B/2] hat/ (L-kae)

. ', (3.3) reduces
{ Lt [i
l-l—l)\.t

r {([u/2) +1 - p/2} "©

to: /2] + 1
1t *22 1 p,00)

ehgt/(l-bflt)(a__ £) [w/2]-p/2 aE.

The stated result (c) now follows by the argument used in (b).

o0

23
Theorem 3.3 Let o¢(r) = Z ajr be an entire function of growth
J=0

2 \
(1,0) in r , Then, for 0 < 1/ko

{(a) ulu' (r,t; o(r)), p even, 22

(3.1) uzu(r,t,cp(r)H (b) . ((1{1:);“)‘/2 [ (a-g) M2 h(a-)t u%(ht\f-g-,t;cp) dE, p <2
—u 2

\(C) (ut)[“/2]+1'“/2 ji (a-g)[“/2]’“/2e'h(a’§)tu12[[“/2]+1}(ut S t50) dE >0
r{lp/2]+1-p/2)

b not an even integer,

Proof, The validity of (3.4a) follows trivially by the (a) part of

theorem 3.2 and theorem 2.2. We need only examine the proof of part (b) of

the theorem since (¢) follows by similar reasoning.

The series f

j=o ajugl"' (r,t; r J) converges to the solution function
u2u' (r,t; ¢(r)) for 0S t < 1/ho if the series

5

j=o aj Ji (a_g)’l-h/z e~l+(a-§)t u12 (htE t; rej) dE converges.



By interchanging summation and integration, this last series reduces to

Iz (a-§)-p'/2 e - (a5t ul2 kt \/E; t; o(r)) dE. This interchange

step is valid if the following series converges:

(3.5) i ol 2 (a-5) /2 @R |y BafE 5 2Py | ae

Select t <t < 1/boand 0 < 8 < 1/kg - t_. It follows that

. . ] 2
|u12 (ht‘fg-, £ rQJ) | <@ +to/6) {h; (to + 6)] o 4t"E/S t]."u,/g for
- e

o<t<€to, o<r<w(see [1], p. 276). Since, by hypothesis,

lajl § A (E)J cJ for some constant A, the series (3.5) is dominated by
3

[+

. . 2
A (1+%/) Zo o (&, + 8) 13 (582 2 (augy /2 THETDIELMEE/S 4

and, by the ratio test, this converges if the bracketed integral exists,
With the change of variables 4(a-f) t = {, it is easy to show that this

integral is bounded by r2/h‘
I (1-u/2) e /%8 gince to was arbitrary,

this completes the proof,

4. General Relations on Poles, An examination of theorem 3.1 shows

that if the data function has a pole at r = o, then the uzu solution is
readily obtainable if one can attached a meaning to ulh—u (r,t; V),

analytically or symbolically. For example, if ¥ (r) = 1, then

k- A | - -
uy u'(r,t‘; 1) = et Yoy @ 1 =1 and u2p' (r,t; r2 Hy = r2 ¥ for all real TR



-10-

. . . .2 .
However, even if ¥(r) is entire in r of growth (1,0), the existence of

u L-u)

(r,t; ¥) 1is not assured unless p < 3. In order to obtain a
better understanding of solutions of (1.1) when @(r) possesses a pole

at r = 0o, we examine the ulu solution function in more detail,

2
. 2=i-2¢ + 2m AT e i
For this purpose, select ¢k(r) = ¢~ P e M @s a generating
function with @ < 1 and m a non-negative integer, A simple computation

shows that for this @k(r):

p_ulg’l‘u(p,t)=l"(m+1-0c)b 1 (t ’“”1'0‘
(p _ht/(l_m\t}mﬂ-a Pu./2 + a-m-1 1kt

Assume that p/2 + @ - m - 1 > o0, Then, by the convolution theorem:

L -1 { "I.L/2
P

(' bt m+1l-q au/Q + o~ me2 a2 hat/(1-4At)
1-kat ) r'(p/2 + a-m-1)

LR tl-o Ja gm0 e)-l-gt(a_g)p./Z + Q-m-2 e16§t27\/(1-2+)\t)

T'(p/2 + a-m-1) o (1—&11:)“*1'0‘

P Tﬂ (p,t) }

1]

(4.1)

ag |

An application of definition 2.2 followed by an introduction of the required

multiplier in theorem 2.1 gives:

h.2) “lu(r:ti r2-|_|.-2a + 2m + 2j)

1-u/2
e - _1:_2_ Gt)m+1-a Ia g (ang)u/2+a-m*2e1k§tR2.(m+1-—,;)FN'§"t) at.
- Te? 16t2 T(p/2 + a-n-1) o - J

An examination of this solution shows that if @ is close to but less

than 1 and > 4, the choices m = 0 and j = o lead to a meaningful



definition of ulu (r,t; r2-u-2a). We are not in the position to apply the
expansion theorem 2,2; however, since the choice m = o gives rise to radial
heat polynomials of index < 1 for  near 1. 1If we select m = 1 in (4.2) and
require that /2 + @ > 2, the radial heat polynomials entering the integrand
of (L.2) have index at least 2. Upon combining these observations along with

theorem 2.2 and the method of proof of theorem (3.3b), we have the following

result:

2-p-2C

Theorem 4,1 Let g(r) =r {B + r2 ¥(r)} in which a is less than

but close to 1, Bro + o> 2, and Y¥(r) is an entire function in r2 of growth

(1,0). Then, for o < t < l/ko,

w? (1,85 o) =

-u/2
(4. 3), ﬁ”'/ (r t) (/16t> J-a £ ( g)p./Z-*a -2 hgt dE +
‘ (u/2 +a-1) ©

L(%tai-a I: gl-a(a_g)u/2 + a3 ehgt ulh-ea(htlvgit5 ¥Y) dE }
T'(p/24x-2)

This result shows that ¢(r) can behave, at worst, as c* 7 e, for arbitrary
€ > o, and still give rise to a classical solution of (1.1).

A further examination of (4.2) shows that if o < a < 1/2 and m=0, then the
2-p-20 + 23y 1

integral there converges if p > 2 and defines the set {ulp(r,t; r

Moreover, the radial heat polynomials entering the right member of (4.2) have



} ) have index > 1. Consequently, we have

Theorem 4.2, Let ¢(x) = rz—”-2aY(r) where o < a < 1/2 and ¥(r) is

entire in 2 of growth (l,0). Then, for o < t < 1/ko and p, > 2,
4

wt (r,t5 p(r) =

’ 1'”./2 1 P —
2 1o - p/2+-2 LEt 2-2a
{ /e r (bt) § (a-B) e > u, T T heVE, ;5 v) dE
(.1 ] T Sp(r’t)(16£2 T'(p/2 +x-1) Ji ! ’

k

behaved pole entering the data is precisely the potential function for the

The choice @ = o in theorem (4.2) leads to the case in which the most badly

2-u h -2, -2 -kt
operator Ah’ namely r~ ", The choice p = 4 in (k.Lh) gives u, (T, t;r )=r “(l-e )

while ueh (z,t; r-2) = r-e. Thus, in the first case, the pole in the data

dissipates in the solution while in the second case it remains intact, This
dispersion property for the ulp solution always holds. For example, if we

make the change of variables € = a { in the first integral in (4.3), we get

ulp (r,t; rz-u-2a)'= (ut)l’a'“/ae'hat Ii g-a(l_g)u/2+a-2el+al;tdg  Then

T'(p/2+-1)
1lim, _ .
for t > 0, r—> o ulpl (r:t,' r2-p, 205) = FS 1;&2 ()-I-t)l a p./2.
T'(u/2)

We shall give some further special results about the case a =0 in section 5.
Finally, we record, without proof, a result for odd data functions., The
proof follows the lines of theorems 4.1 and 4,2,
Theorem 4,3, Let g(r) = r¥(r) in which ¥(r) is an entire function
in r2 of growth (l,0). Then for o < t <1/Lkg and p > 2,

u e o) = b2t B TP 2w bt gl wae,
o
Vehey? 28



This theorem coupled with the theorem 2.2 permits the treatment of solutions
of (1.1) corresponding to the most general type of entire function of r,

Example., Take p = 3 and o(r) =1 Jo(r). Now

2, .. -t
uy (r,t; Jo(r) = e Jd(r) so that

- -1 =1’2 LP’_— AT § PRI v -
u13(r,t5 rJ (r) =¢ [ Lt e FTHat Ja (a-€) M e 5 @ JZ-) dg,
O 2 + o

nr

5. Special Pole Properties. In the preceding section, we have given

some general properties of solutions of (1.1) when the data function (1)
possesses a pole at r=o, There is some interesting structure of these
solutions that is not quite brought out by these theorems, particularly
when =0 in theorem 4.2. The purpose of this section will be to -examine
this case and to show what reductions take place when p is an even integer
with z .,

If we select m = =0 in (4.1) and make the change of variables

a-g = (1-4At) o/hkt, we can write

2
ulu(r,t; rz—u e)Lr ) =
hat
: _ 240 1-3At  p/2-2  _
5.1) r2 uekr /(1-bate) g e % 4
2-pf2 °

T(p/2-1) (1-krt)
The integral in the last member of this is precisely the incomplete gamma
function‘?’d (uw/2-1, kat/(1-4at)) [T, p. 95]. Making use of the defining

relations for/a4 (a,X) in [T7], it follows that

) (Lat)”® (1-lae) ™1

n=0

2"“, e)\rz)
eyH/21 I'(u/2+n)

-Lat
= e

ulu(r,t; r



From this we find

. . 2
ull"'(r,t; r2-“'+2-]) = D)\J ul(r,t; r2 s e)“r

) Ik=o

(5.2)
H2 s, (5, ) (3! @i F (G415 p/e; ban).
r/2)

It is interesting to note that the bracketed team here differs from the radial

heat polynomials by replacing the Laguerre polynomials by the 1Fl functions,

Now, let us examine the function 1F1 (j+1;m; z) for m an integer,

Let I £(z) = J'Z £f(Md7. Then we find that

00

10 (F) (L5 m5 2) e A ) ;; o
m =~ (D)
m-1 .
T(m) ZJ+1_m {eZ - 1—{'; Zk/kf } and

1 m-1

i1 . jr Z_j+l-m j 2 j+l-mt+k
1Fp (%15 m5 2) = rJg:o (0, '1"27" ] - ) = Ay

Through an application of the Rodrigues formula for Laguerre polynomials

{7, p.85], the right member of this last expression reduces to

T'(m) eZ A (-2) s > m-1

1-m Lj (1-m)

1Fl(j+1,'m;z) ={ T(m) eZ Zl-m Lj(l-m) (-2) +

. 2-j B
(-ni*t tt (m-2-K) ! 21 6 < < we,
j! k=0 k: (m-2-j-k)!

Substituting this evaluation for 1Fl (j+l;m;Z) into (5.2) and using definition
(2.2) we get

Theorem 5.1, Let p=2m be an even integer with p > 4, Then



5.3

uy (r,t;r

-15-

4 - -
r2 2m R.h 2m

(a) i (r,t), j 2 m-1

2—2m+2j) 4 1r2-2ij h-gm(r,t) N

m-2-j
-1y i+l hat Z::; m2-1) ! PO g Ik
L 7 k!(m-2-j-k):
It should be observed that (5.3a) can be replaced by R?Tl-m (r,t). This

results from an application of theorem 3.1 followed by theorem 3.2a, The
result (2.6) is used in (5.3b).

The above results permit a simple treatment of (1.1) if y is even and
k2 4 and =0 in theorem 4,2, We merely decompose the data into a portion
having pole type terms (finite in number) and a portion which is entire,
Then apply (5.3b) to the pole terms and theorem 2.2 to the entire part.

6. Logarithmic Singularities, The results relating to pole type

terms now permit us to examine solutions of (l.l) corresponding to data of
the form ¥(r) log r with ¥(r) entire in r2 of growth (l,0). The case in
which ¥(r) has a pole will be deferred until the last section.

A solution of (1,1) is sought in the form (2,7). This form is not
meant to suggest that the w(r,t) function does not involve or lead to
logarithmic terms in r. This function may indeed contain such terms except
in the case p = 2, The form used is merely to relate the solution function
ulu (r,t; Y(r))to the function log r in the final solution functionm.

As noted in section 2, we restrict oﬁrselves to making use of the
function ulu(r,t; ¥(r)) in the equations (2.8) and (2.9). The problem

then reduces to one of exhibiting the existence of at least one of



e -16-

wllu (r,t) o‘-w21u (r,t) in the relations (2.9). Set vlu (r,t) = ulu(r,t; ¥)
and write this in the form {vlu(r,t) - vlu (o,t}. Since vlu (r,t) is an even
function of r, this last decomposition can be expressed in the form
vlu'(r,t) = rgz(r,t) + v1“ (o,t). It follows from this Flu'(r,t; vlu')takes the
form Z (r,t) + (u-2) vlu (o,t) r“2 with Z(r,t) = 2/r d/oar {rez(r,t)}+(u-2)z(r,t).
From the entiremess property of ¥{r), it follows that i(r,t) is entire in r
and analytic in t in |t} < 1/kg. Moreover, Z(r,t) grows no more rapidly than
KeAr (K,A constants) in this time strip [1, p. 284].

If pu=2, the existence of w112(r,t) = w212(r,t) is assured by the properties
of i(r,t). Moreover, this term contains no logarithmic terms, If p + 2, we

must exhibit the existence of at least one of the following integrals:

(a) It 1-2“p u 1¥“*“'(r,t--'ﬂ; r"".—2 z (r,) + (u-2) u a (o, M ru—h) dan
o 1 1

6.1 ® [T uPe,en 2 @ @) u e,m ) an
[o]

Case a. If y 2> 4 and p is an even integer, the term ulh-u(r,t;ru—h)can be given as

by
R
3(u-)

integral of (6.la) involving Z (x,T) as ue‘L (x,t-TN; Z (r,M)). This is just

(r,F-TD by (2.6). By theorem (3.1) we can write the term in the

ulu(r,t-n5 z (r,T)) by theorem 3.3a for pu even. Consequently, the integral
(6.1a) exists and leads to non-logarithmic terms,

Case b, If p > 2, an application of theorem 2,1 shows that
2
ulp(r,t-ﬂ; r-§=jor /4 (e-T) e % (1- 4g;—n2 o }M/Q 2 do. Moreover,
T

lim u
N> t-

- -2
lu(r,t-ﬂ; T 2)=r “which exists for r%o. Since v(o,T) is continuous

it results that, for r > o, the integral
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Iz ulu(r,t—ﬂ; vlu (o,T) r-e) dN exists, This term may contribute loga-
rithmic terms. The part of the integral (6.1b) that involves z (x,M)
exists by the arguments for (a) aBove. Summarizing these conclusions,
we have

Theorem 6.1. Let @(r) = ¥(r) log r with ¥(r) entire of growth
(1,0) in r2. For p > 2 and o < t < 1/ko, there exists a solution of

(1.1) in the form
(6.2) ulu (r,t;09) = ulu(r,t;Y) log r + Wllu(r,t).

For p 2 4 and an even integer, there exists a solution of (1.1) of the form

(6.3) ulu (r,t; o) = ulu(r,t; V) log r + wélu (r,t)
The function Wélu (r,t) contains no logarithmic terms,

Example. Take p = L and ¢(r) = log r. Then ul,+ (r,t; 1) =1 and

Flbr (r,t) = 2r-2. From (5.3), the solution corresponding to (6.2) is given by

2
ulh(r,t; log r) = log r + 2t/r2 —(elré)fz e - /A (e-T) dT} while the solution

corresponding to (6.3) is just log r + 2t/r2. With the change of variables

LT 1 and repeated integration by parts, the first of the above

solutions can be written as

2 2
- 2 - oo -
ulh (r,t; log ) = (l-e © /ht} {log r + 2t/ } + 1 log(kt)e r /ut+%vjr2/hte glog EdE.
lim, L
From this, we observe that r ~> o uy (r,t; log r) = 3 {1 + log 4t + I'' (1)}
£t >o0

which says the pole dissipates. In the second solution, the logarithmic
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term remained and a pole type term was added, We will exhibit the
dissipation property for the ulu(r,t) solution in the last section.

7. Coupled Singularities, We now give some results for the case in

which the initial data function @(r) in (1.1) contains terms of the form

r2-“—2a log r2 with @ < 1. Because of the rather complicated expressions

that arise, no attempt is made to list results of a general nature such as
are contained in theorems 4,1 - k.3 for poles alone, For terms of this
type in the data, it is easier to apply theorem 2.1 directly to these terms
rather than use the procedure of section 6, We iist these results (without

derivation) for the u," function and note the simplification that occurs

1

when = o, that is, when the pole term is the potential function for A .,
We have, after appropriate changes of variables for p > 2 and a(< 1

2-p-20

2
ulu(r,t; T log r ) =

(ut)l~a-u/2 w/2+0-2 -lk(1l-o)at do +

rl(l-a) +T'(1l-a) log h;\ fl c_a(l-c)
(1) T(u/24a-1) ] °

[Ll»t: 1-(1-u/2 1 {e-)-l-a(l-c)t
T'(p/2+x-1) o

o4~ hagt,. .- -
p/2+a-2 e T hag aou/ZHJ 2

(1-0) (1-0) } log o do +

ut) 1-a-p/2 jl (T (w/240-1) e-uaot(l_c)-a wfeHa-2 -
F(p/2ta-1) T(p/2+a-1)

-
I (1-q) e-ll-a(l-c)t(l_o_)u./2 -2y} do
T'(1-a)

When =0, this simplifies to
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ulu (r,t; rg-“ log r2) =

eyl /2 flg&_l@ , Ll [PorEMet e
T'(p/2-1) [F(u/2-1)1 °

L
(ht)l"“/2 1 {e—lm(l-cj)t (l-c)p'/e-g - ehato p./2-2} log ¢ do.
T(p/2-1) °

The relation (7.1) coupled with theorem 4.1 verifies the remark about

the worst allowable behavior of ¢(r) mentioned in the introduction. Finally,

1im, 2-p-2a log r2)

it follows directly from (7.1) that for t > o, —> o

ulu(r,t;r
exists, Simply set a =o in the integrand. This shows the pole dissipation

property for the u ¥ solution.

1
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