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Project Monitor for the National Aeronautics and Space Administration.
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1. INTRODUCTION

This report describes the work done under Contract No. NASW-1085,
The contract was divided into three phases. During the first phase, theo-
retical studies were performed and a mathematical model of a)‘performance
control and monitoring system was developed. Applications for trainable
logic were developed in the areas of computation and controls. The first
phase terminated with the presentation of three application problems which
were designed to illustrate facets of the theoretical work.

The second phase of the program started with the selection of one
problem by NASA and subsequent development of a computer program. The
program simulated a second-order servo controlled by an adaptive logic
element trained by monitoring of human performance.

Dui'ing the final phase of the program the system behavior was observed
through experimentation. The success of this approach indicated that the
method might indeed be applicable to more complicated systems.



2., RESULTS OF THEORETICAL STUDIES

2,1 Performance Control Systems

2.1.1 General

A performance variable associated with a given system is taken to be
simply an attribute of that system. It is distinguished from other attributes
of the system in that there is always a known "optimum'!' range of values for
this variable. Most frequently, interest is centered upon the observation and
control of this performance. A performance vector is an ordered set of such
performance variables. In this light, performance of an aircraft system could
correspond to its vector rms deviations from a given flight trajectory. Like-
wise, the performance of an environmental control system could correspond
to the partial pressure deviations from a given temperature-dependent norm.

In general, performance is a function of various random variables., It is
itself, therefore, a random variable. Hence, statistical techniques can be ap-
plied to establish the properties of this performance. Frequently, control must
be indirect, involving prediction or estimation of performance, experimentation,
and control decisions.

A block diagram of one such performance control system is provided for
illustration in figure 1. This system involves man and machine. The system
behavior is subject to control inputs which determine its performance at time
tn. Other attributes of the system can be measured at time t,, designated as
the measurement vector

Rtn) = [x1 (ty), % (E)y evy Xplty)

The basic assumption is that future performance at time t; ¢ is some function
of these attributes at time t,, X (ty); i.e., the assumption is that the perform-
ance variable can be predicted. The prediction technique employed can be
made adaptive, by an updating procedure shown as feedback to the performance
prediction.

When the predicted performance falls out of tolerance, control-determinat-
ing experiments can be implemented., This would involve a change in the con-
trol parameters that would actually change the system parameters, x(t,), where-
by the predicted performance would be changed. Modificationcould continue
until the predicted performance falls back within tolerance. A more probable
approach would be to perform experiments which establish distributional proper-
ties of x(tp), thus restricting the class of modifications that are actually imple-
mented. These can be selected on the basis of statistical theory.
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Figure 1. A Performance Control and Monitoring System



The major elements of the above-described performance control system
involve adaptive prediction and decision theory, These are considered in
greater detail below,

2.1.2 Prediction and Estimation

Various techniques for establishing the performance prediction rela-

tionship
_ A
.17 9 [x(ty)

have been developed and are described in the literature, One of these would !
consider performance, q, as being a discrete valued function; i.e.,

qe ql, fori=1,2, ...,n

The r-components of the system measurement vector, SE(t), would be viewed

as the coordinates of a point in r-dimensional space. If one knows the dis-

tributions, p(ilq), the a priori probabilities, p(q), and the loss matrix (cor-

responding to an estimate of the relative penalty associated with assigning '
performance q1 when qj should be assigned), then the selection of q for a
given measurement X can be made on the basis of minimum expected loss,'”
Other selection criteria can be used, however,

5]

The technique is termed adaptive when either the required distributions,
p(xlq), or the loss matrix must be obtained from the incoming data, (The
a priori probabilities, p(q), may or may not be known.) If measured perform-
ance were noise free (i.e., the same as performance), then the problem be-
comes one of '"'supervised'' learning. More generally, however, measured
performance is a random variable about whose distribution little may be
known. This makes the problem here much more difficult.” Most of the
work available avoids some of this difficulty by assuming measured perform-
ange to be normally distributed. Futhermore, the form of the distributions,
p(x|q), is generally assumed to be known, This last restriction could be re-
moved in many cases, however,

Various alternative approaches can be applied to adaptive performance
prediction. A familiar curve-fitting technique is described in appendix A, as
applied to prediction. Here, the performance, E(q), is represented by some
given functional form

A A
[q‘tm)] - f[x(tn>,e<tn>]
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which is linear in 3, where ; is the measurement vector (an r-tuple) and_g
is a vector of unknown parameters (an S-tuple). These parameters are se-
lected so as to minimize the sum of the squares of the deviations of meas-
ured versusApredicted performance over the discrete time variable. If a
fixed set of 8 parameters were desired, the weight‘would be set to unity.
Values less than unity permit time variation in the § parameters. The up-
dating procedure is established by a very simple iterative process, and a
well-known theorem is applied to discuss the distributional properties of the
parameter. This distribution over the predicted performance is important
in forming control decisions, as will be seen in the next section.

2.2 Decisions and Decision Criteria

The simplest form of decision consists of selecting an action from a set
of alternative actions with perfect information about the various consequences.
Formally, one assumes a set of states-of-nature O=(w,, Wy, ..o, w,) and g set
of possible actions A=(a,, a,, ...,a_). A loss matrix is assumed, (i,j)al,
whose elements L(i,j) are the loss associated with selecting action a, while
nature is in state w,. With perfect information, one knows both the state-of-
nature and the loss 'matrix. A rational decision would be to select that action
which yields the least loss.

With less perfect information, one might be restricted to knowing the
cost matrix and only the a priori probabilities of nature being in state j, p(j),
for § = 1,2, ..., r (rather than the actual state of nature). In such a case one
might make a selection on the basis of its yielding, on the average, the mini-
mum loss; {.e., the expected loss associated with selecting action 1 is given by,

r

o (1) =12 L)) p()
=1

wherein one would select that action which minimizes p (i).

Consider now the case where one is8 given the loss matrix, | L{,j) |, but
has no information on the probabilities over the states~-of-nature. One method
of establishing a decision is sometimes employed in game theory. Here, one
selects an action from a probability distribution over the available actions,
This distribution over the avalilable actions is established so that, on the aver-
age, the maximum loss (sustained for any possible distribution over the states-
of-nature) will be minimized.

A more useful class of decision problems extends the above considera-
tions to include information obtained from experiments or observations.



These are used to modify the established probability distribution over the
states-of-nature. For example, let the obserzation be some parameter (or
vector) X, Let the conditional probabilities p(x! j) be known for each state-
of-nature, j. Let the a priori probability that nature is indeed in state j,

p(}), be also known, As before, let the loss matrix be given by L(i,j)l , where
the index i ranges over the set of possible actions and j ranges over the set
of possible states-of-nature. For such problems, decisions are now based
upon the observation, %, In} fact, a decision rule is defined as any function
that maps the observation X into action i,

hY
i=d(x)

The Bayes decision criterion (applied against the a priori distribution over

the states-of-nature) is one that yields the minimum loss on the average;

i.e., it is a criterion for selecting a decision rule which minimizes the aver-
age loss, Its name is derived from the use of the Bayes theorem in proba-
bility, which is used to derive these decisions. It can be readily shown®

that this minimum average loss criterion implies that one should select action,
i, when

r r

AY S
z = L(,9) px!9) pQ) sz L(k,J) p(x|9) p()
=1 =1

for all possible actions, k. (This is essentially the criterion mentioned in
discussing prediction and estimation in n-dimensional space.)

There are various other criteria that can be employed. One of these is
the Neyman-Pearson criterion, as generalized to cover cases of more than
two possible actions. With only two possible actions, say 1 and 2, the deci-
sion-maker can hypothesize that action 1 is called for. He could then test
this hypothesis and make two different kinds of errors, An error of the first
kind would be made if his observation, 5‘(, led him to select action 2 when ac-
tlon 1 was called for (i.e., when he falsely rejects his hypothesis). An error
of the second kind would be made if his observation, X, led him to select ac~
tion 1 when action 2 was called for (i.e., when he falsely accepts his hypoth-
esis). Whereas it is desired to minimize the probability of both of these
errors, this is not, in general, possible. Normally, the decision rule which
decreases the probability of one of these errors will increase the probability
of the other type of errors.

The Neyman-Pearson criterion calls for selecting the decision rule
(function, d(x), which maps our observations into a selected action) which




minimizes the probability of an error of the second kind, subject to the re-
striction that the probability of an error of the first kind remains below some
preassigned value. ° The generalization for the case of more than two ac-
tions can be accomplished in several ways. In one of these, °*'! the prob-
ability of correct decisions is maximized, while the probability of certain in-
correct decisions is constrained to being less than, or equal to, some pre-
assigned constants,

When more than one observation or experiment can be made, it becomes
important to establish a criterion for stopping the process of experimentation
(or observation) as well as the decision to be made once this has stopped.
This is referred to as sequential decision theory and analysis.

Wwald 12 developed the sequential probability ratio test (SPRT) for
binary-type decisions (accept or reject a hypothesis), terminating experimen-
tation at some point beyond which a Neyman-Pearson type of criterion is
satisfied; i.e., numbers corresponding to the acceptable maximum probability
of errors of the first and second kinds are first selected. Experimentation
ceases and a decision is made only when these conditions are satisfied by one
of the two possible actions. His generalization of this test to multivalued
decision functions was made on the basis of minimizing the risk of making a
wrong decision,

The Bayes sequential decision model postulates a given set of experi-
ments (or observations), which can only be performed in the given order
(i.e., experiment i must precede experiment { + 1). These experiments can
be similiar to one another or completely different. If the set of experiments
is finite, then it is called a truncated sequential theory. As with nonsequential
Bayes decisioning, a loss matrix, |L(1,J)| , a set of a priori probabilities,
p(}), and a set of conditignal probabilities, p(xlj), is presumed. The nature of
the observation vector, x, is that of including measurements made by all the
experiments. Hence, decisions made on the basis of, say, n-experiments can
only use the conditional probability of observation vectors whose first n-coor-
dinates only are known; i.e., one must average the expected loss over all
coordinates corresponding to experiments which have not yet been performed.
The last requirement is to place a cost on each experiment which, in general,
depends upon the outcome of the experiments,

The solution can be shown ° to be obtainable by taking a dynamic pro-
gramming type of approach and working backwards. Essentially, experimen-
tation is to be continued only when the current Bayes risk (established, as
with nonsequential decisions, to be the average loss anticipated on the basis of



current estimations of the state-of-nature) is greater than the expectation of
loss if experimentation continues. The detailed solution is given inappendix C,




2.3 Computational Techniques

2.3.1 Introductory Discussion

There are several areas in which trainable logical networks (TLN)
apply to performance control and monitoring systems similar to that de-
scribed in the preceding section. Its utilization rests upon certain key prop-
erties of such networks., One property is that they are finite state devices
whose only memory consists of what state it is currently in. Another property
is that they can be configured to behave as stochastic devices which can be
analyzed as a Markov process. It appears natural, then, to consider their
application to such computational techniques as Monte Carlo and Simulation.

Other uses of TLN, however, have been studied previously. One of these
was used to obtain high reliability in systems. Another usc involved them as
control elements. This latter work, although not described here, will be con-
sidered relative to its application to the selected study problem. This section
will concentrate on the use of TLN's for computation.

The basic element of the TLN, referenced as SOBLN, is a k-level sta-
tistical switch. This is simply a switch which can attain any of k-states.
Each of these states corresponds to a probability of the switch being closed.
It is this element which is fundamental to the computation process described
below. The fact that these devices are so flexible, so amenable to high~reli-
ability considerations, and consist of this common element (wherein it is
amenable to concepts of microminiaturization) provides reason for the in-
vestigation of their utility as basic computing elements as well as their use
in problems amenable to solution by other than Monte Carlo techniques.

2.3.2 Basic Arithmetic Operations Using Statistical Switches

There are several methods for implementing the statistical switch to
perform the multiplication and division of two numbers. The first method
consists of converting both numbers into proper fractions by a scaling opera-
tion. Each number is then associated with a probability setting of a k-level
statistical switch. The outputs of the switches are sent through an AND gate
(alternatively, the switches may be merely placed in series). Since an n-bit
counter is the basic element of a statistical switch, the k-level switch is one
that is capable of taking on k = 2" different probability settings.

A Monte Carlo process is initiated with some number of samples, N,
taken for convenience to be a power of 2 (say Zm). The 1 outputs from the

above-referenced AND gate will increment an m-bit counter. For a large




enough m, one would expect that approximately

(number of 1's present in the counter)

P,P, =
152 2-(m-2n)

where P, is the bias setting. To obtain the original, one merely shifts the
counter m-2n bit positions to the right. This is a scaling operation which, in
effect, corresponds to multiplying by the square of the scale factor in the
denominator. Since the switches are independent, the AND function is repre-
sented by

P(AB) = P(A) P(B)

The accuracy in this Monte Carlo computation can be analyzed on the
basis of the variance of a binomial distribution, given as

oa = NPq

where q = 1 - P, and where N is the number of independent samples.

To illustrate this process, consider the following example: Let N =
1024, The product of 3:5 = 15 could be performed with k-level switches,
where

Kk = 2" = 2% = 32
Then,
3 5
P(A) = and P(B) = o>
15

P(AB) = P(A) P(B) = -10__2-:1

Since m = 2n, there would be no shift of the counter after the end of the
N-samples. In general, however, one would anticipate much larger values for
m, which would require the above~described scaling shift.

The division of a scaler by another scaler can be readily performed by
modifying the k~level switch to include a decoder which resets the n-bit counter
atanyinteger, r, where r<2h, Thus, for the operation a/r, where r>a, we merely

10
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use the foreshortened counter k-level switch, with reset occurring on the rth
pulse and with the bias level set at a.

2.3.3 Partial Differential Equations

One of the capabilities of a SOBLN as a Monte Carlo simulation device
is in the solution of linear partial differential equations of the parabolic or
elliptic type. The parabolic type will be considered only briefly because of
its relevance to random walk and diffusion processes. The Fokker-Planck
equation, mentioned later, is a P.D.E, of the parabolic type.

Consider the general second-order linear partial differential equation
with two independent variables:

2 2 3
H . ) Y \a D A L%
a{x,y) 'fxa + byl eyiE + fxyYso0 ) = 0

If (the discriminant) b® - 4 ac<0, the equation is of the elliptic type. Such
equations commonly represent equilibrium situations, an example of which
is the celebrated Laplace equation,

Diffusion and heat flow equations are of the parabolic type with discrimi-

nant b® - 4ac = 0. They commonly represent situations with unbalanced
equilibrium. Two examples of this are the one- and two-dimensional heat
flow equations, described by

Bu _ _ 3°u 3u _ 3*u 3%y
At 3x%’ 3t ax? | ay?
respectively.

The standard approach to the one-dimensional expression is the separa-
tion of variables, ylelding the solution

= eclt [a cosht + b sinh t}

11




A very useful means which exists for obtaining the solution of the two-dimen-
sional equations is the Monte Carlo process, where a particle is considered to
be undergoing a series of random walks over a two-dimensional lattice with

a tallied score corresponding to the state after t-transitions.’* For an ex-
planation of this process, consider the following situation. Let a particle under-
go a series of random walks starting at (x,y) = (0,0) and continuing over the
lattice for t-steps with a transition probability at each point (x,y) associated
with having the particle move to (x+1,y), (x-1,y) (x,y+1), (x,y-1). Let each of
these transition probabilities be equal. Assume, initially, that the transition
probabilities are independent of x and y as well as the past history of the par~
ticle. This describes a Markov process with xy states and a symmetric transi-
tion matrix. The transition matrix has nonzero terms along the two diagonals
on either side of the main diagonal, where all nonzero terms are 1/4. The rest
of the entries are zero,

At each point on the lattice there is a probability function P(x,y,t) of find-
ing the particle at (x,y) after t-transitions, starting from (0,0). To show the
relationship of this process to the heat equation, note that P(x,y,t) must satisfy
the difference equation

P(x,y,t+1) = 1/4 P(x+1,y,t) + 1/4 P(x~1,y,t) + 1/4 P(x,y+1,t) + 1/4 P(x,y-1,t)
This follows because the particle must have been at one of the above four posi-
tions at time, t, to arrive at (x,y) at time t+1, Subtracting P(x,y,t) from both
sides and using the expression for second differences,

M(x) = f(x+1)-f(x)

2% £(x)

A[f(x+ 1)-f(x)]

]

f(x+2)~-2f(x+1)+f(x)
Hence,

P(x,y,t+1) = P(st)t) = P(X+1,y,t) = 1/2 P(X,Y,t) + P(x-lyy’t)
+P(x,y+1,t) - 1/2 P(x,y,t) + P(x,y~-1,t)
= 1/4{[P(x+1,y,t) -2 P(x,y,t) + P(x-l,y,t)]

. [P(k,y+1,t) -2 P(x,7,t) + P(x,y-l,t)]}

12




" WA UMY W W wew g e

This relates the first difference of P, with respect to t, to the second difference,
with respect to x,y. For the limiting case of a finer lattice, the above difference
equation is similar to

3P 32p a%p
5t~ K32 Tag /

This is the two-dimensional heat flow equation.

If we keep a tabulation of the number of times the particle appears in
each state (x,y) for a range of t and is divided by the sample size, we have an
estimate of P(x,y,t). If, instead of starting at (0,0), one starts at a point on
the lattice (x,y) where the starting point is determined by a distribution, f(x,y),

we have the initial function P(x,y,0) generating a particular solution of the
difference equation,

13




2.3.4 Matrix Inversion

A brief description is presented here of the inversion of a special type
of matrix encountered when concerned with the control of Markovian proc-
esses, Another procedure with a different implementation is possible, but
less desirable, using the resolvent expansion of a matrix., In the section on
application problems dealing with Markovian procedures, the need for matrix
inversion is avoided by using the iterative solution of a set of equations. Thus,
only the storage of a vector is needed rather than a matrix,

We can invert a matrix of the form I-Q, where Q is a stochastic matrix

with all elements qij z 0, and where § Qi <1 for all i. To do this, we ex-

tend the dimension of @ by attaching a first row and a first column to it.
These are selected so that the new matrix, A, will be stochastic. As an
example, let

- -—
3 0
4
Q =
o 2
- 4_J
One then forms
1 0 0
1 3
A== -
4 4 0
1 3
—_— 0 —
4 4_

The matrix A will always be stochastic (Z aij = 1 for all i and ajj 2 0). It de-
]

scribes a Markov process which is absorbing, due to the selection of the
elements of the first row. Because the eigenvalues of Q are less than unity,
(I-Q)~' will exist and can be shown to equal I + Q + Q? +.... Using analytic
techniques such as the Z~transform, one can show (in closed form) the state
probabilities for each transition, t. It is shown!® that these probabilities can
be directly related to (I-Q)™. Thus, using the above-defined Q, one obtains

1 0 4 0

- -1l = 2 eee = §- t —
(I-Q) [+Q+Q<+ tZ:O(4) 0 1= 1o 4

14
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This illustrates that we can allow a series of random walks to occur, where,
each time the absorbing state is reached, the process is reinitialized. A TLN
can utilize 2N statistical switches as memory devices, and thus have a
capability of handling a matrix of dimension N,

The random walk can proceed in either of two ways. For the first
method, let one k-level statistical switch represent the transition matrix with
a single training rule generating the matrix. This configuration is feasible
for lower order matrices that possess a large amount of symmetry and a
small number of nonzero elements, such as the class discussed in section
2.3.3. An alternate method is to include N extra statistical switches, j = 1,2,
«ess N, to this TLN. This arrangement allows each of these switches to repre-
sent a state of the Markov process and to have a separate training rule applied
to each switch. Such a training rule is merely a probability distribution to
represent the respective row of the transition matrix and is easier to
synthesize,

2.3.5 Linear Difference and Differential Equations

We now consider the stability of an autonomous system of linear
differential or difference equations. The system could be a vector matrix
state space representation of an nth order linear difference equation. In the
Markov decision process application, described in section 3.2, the Jacobi
point iterative method of computing an optimal policy results in

2 k -

dk =F do
where dy = %, - %, Gk = %41 - Xi, and where J represents a vector
difference which converges to zero as the iterative process converges to a
solution. This convergence can only be guaranteed when the latent roots of
the matrix F are <1. To show this, consider the difference equation related
to the above expression

d _=Fd
k+1 dk

with given initial state ?iJO. If the latent vectors are independent, we can
apply a similarity transformation to diagonalize F, as

F=P DP?

where

15
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where A, is the ith latent root of F. Since

Fa

one notes that

F = PD P! =

A

k

2

A

—

k

n
-

(PDPH)(PDP') = PD?P

Thus, for large k, _cfk = Fkao~0, and the process converges to a solution, If
the characteristic vectors are not independent, then the matrix can always be

transformed into a triangular matrix.

R, such that

-
d = RY
k- B

The original equation,

can now be written as

R — —_—
Vo1 - T RY
or
— . ¥
= R™! FR
yk+1 yk
so that

D’ = R!' FR

and is the triangular matrix,

There exists a linear transformation,



—-—

Now, note that we can always write D’in the form
D’= D, + D,

where D, is a diagonal matrix and D, is a nil potent matrix (having nonzero
elements only to the right of the main diagonal). Expanding DP by the bi-
nomial theorem gives

p=1

p+PD1 D,+---+D,p

p’ =D,

Since D, is nil potent (all characteristic roots are 0), there exists a ''py "'
such that D,P2 = 0, It is also evident that for the diagonal terms in D,, there
exists some p, whereby D.,_p1 will also be zero.

Other considerations apply to the continuous time case. Here, the
set of differeniiai equations

X=A%
has solution
x(t) = ¢** x(0)
=(I+A+-‘;—'2- +-§‘—; + )% (0)

17
which can be evaluated in a2 manner described in the literature.

2.3.6 Computation of the Inverse of the Least Square Recursion Formula

In the recursion relation for updating a least squares estimate,
described in the preceding section, an expression of the form

-1 -1 .
P =P +aaT
k+1 k
) -1, .
where P_ is known, is encountered, where P is an n~by-n symmetric
matrix and @ is an n-by-1 column vector. Using a matrix inversion lemma, *3

we can represent the above as

17
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The above expression can be handled on a Monte Carlo basis, since

the underlined vector matrix product s ' Py appears twice, and since Pka}‘ is
the vector transpose of‘&TPk. Thus, TLN's could perform a single vector
matrix productinthe fashion described earlier in this report. Then, a dot
product operation is performed to yield the expression (c’f‘T Pk)&‘, using 2n
statistical switches in the fashion identical to the first portion of a vector
matrix computation,

After incrementing this result by 1, the resulting scalar (31 Py + 1) '
is set into a single statistical switch consisting of a mod P-counter (described

1
earlier) with numerator 1. The bias probability is 3T Pk5)+1 . This switch is
placed in series with all switches in the TLN to obtain the desired quantity

1
A=sro—— PiaaT
3T P +1 k¥ Pk

The quantity (Pk?y‘) (&‘T Pk) is obtained by a vector-vector product that re-
sults in a matrix. The elements of this matrix

(ay) = (P@d) @T Py)

can be stored in the switches themselves to minimize the amount of the
input-output logic. Since

p = P, -
k+1 k= A

we can subtract the elements Pij from ajj and change its sign, this operation

being performed by a combinational network at each switch,
This technique, combined with the matrix inversion method described
earlier, is sometimes a useful supplement to the standard schemes for

solving a system of equations,.

2.4 Application Problems

At the conclusion of the theoretical work period, three problems were
formulated. Each problem illustrated some facet of the theoretical work done
during Phase I. The selection of one of the problems by NASA served as a
basis for the computer simulation to be described in section 3.




The three problem statements were:

a. Trainable Controller (Problem No. 1): Given that failures and/or
changes in plant characteristics have occurred in an automatic control system,
can trainable logic be designed to take over the control function by monitoring
human performance on manual control of the system?

b. Markovian Process Control (Problem No. 2): Given a man-machine
system that is characterized by its being in a finite set of states, let the
transition from one state to another state be responsible as a stationary
Markov process, Let the transition matrix, describing this operation, depend
upon which of a finite set of policies (modes) the gsystem is selected to
operate under., We investigate the optimization of system performance
through mode control.

c. Bayes Decision Making (Problem No, 3): This problem is the
application of trainable logical networks (TLN) to the on-line solution of
Bayes decisions. The specific decision problem is the routing of signals
along one or more paths.

The decision computer determines what output channels are to be
activated according to the lowest cost Bayes criterion. One output path in-
cludes an external evaluation device that can modify the cost matrix contained
in the decision computer,

The problem selected by NASA for simulation was Problem No. 1, as
shown in figure 2,
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3. COMPUTER SIMULATION OF PROBLEM NUMBER 1

3.1 Mathematical Formulation

We may set forth the following framework of the problem in a
general state notation., Let

1
W

X, X3, ..., Xn be metered system state variables

U= Uy Uy, eeey u_ be controller policy vector

o (0) <0 a controller constraint

G(x,4,t) = 0 a relation between control policy and system
variables

P(%,u) a performance index which is minimized by proper se-
lection of G(R)

Performance generally is marked:

P(x,1)<0 satisfactory

or
P(x,u)> 0 unsatisfactory.

For the case we wish to study, we may assume that a policy (X) has
been predetermined such that P(X,U) < 0 until a controller failure or plant
characteristic change occurs. In the latter case it is necessary to deter-
mine a new control policy ii'b'{) such that P(i‘c,ﬁ*)<0. The new policy is
simultaneously determined by the human and transferred to the trainable
computer (controller). Additionally, it might be expected that the trainable

logic gives some indication to the human when it is ready to take control.

To give more meaning to the general framework, let us specify
parameters, constraints, plant equations, costs, etec, Let the plant be a
servomotor that is adjusting to command inputs which are step functions.
By letting the time intervals between step changes be much greater than
the system time constant, the steps can be considered independent in time.
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Nature selects any one from a number of plant equations by select-
ing i and j in the governing differential equation

¥+ ag¥ = ky ug (7,9)
After a selection of (i,j), the control problem is to choose k such
that a performance index, P, is minimized. As a performance index let us

arbitrarily select an index which conserves both fuel and time.

t=tf

P = J/ (Ci\ul + 1) dt
t=t

0

where i = 1,2, ..., n, and where tf-to is the time required to bring the system
output to the input command and Cj is a weighting factor for fuel use,.

As a constraint on the controlling policy, let us assume
o (u) = lul -1 <0

and actual permissible values

u=(1,0,-1)
Let
starting time t=tg
input z =2z,
output y(t)
error e(t) =z(ty) - y (t)
error rate é(t) = 25 - y(t) = -y(t) for step input

control policy u, = u(é,e)

The differential equation governing error is

€ + a, e = k,u,

Starting at t = t ) the above variables are:

.0 < N
1 U
O <
o




At t = tg, the error, the error rate, andthe performance are expected to
satisfy the conditions

e? + €% < Cq
P < P,

A change in the desired control policy occurs when the values of coefficients

(2,k,C) are not (a,,k,,C,), and when the corresponding performance threshold

is exceeded.

3.1.1 Performance

Thinking of u as a torque-producing parameter and |ul as a rate of
fuel consumption, we consider a system which attempts to null its error
while minimizing a combination of fuel and time. For a single step input,
the functional

=t
P(u,t) = f (Clul + 1) at*
t' =

t
o

is minimized (where t; - t0 is the time required to bring the system to the
desired output value). By letting the time intervals between step changes be
much greater than the system time constant, the steps can be considered
independent in time. This being the case, performance may be judged on
nulling the error for individual steps. To accomplish this, the function, P,
is treated as a cost function and its value is compared with an expected
value, E(P). The expected value is:

E(P) = minimum cost + tolerance
t
f
=minf (Clul +1)dr + vy
to

where the minimization is over control policy u (e,&). A warning of
performance deterioration is given to the human when

E(P) - P >0
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3.1.2 Control Policy

A control policy, u(e,€), is a specification of control values (-1, 0, 1)
for all points in the error-error rate plane. A convenient method is to divide
the phase plane into regions and to specify control values for each region.
The proper choice of regions is derived by a laborious computation of
switching boundaries for the control variable, u, which minimizes the per-
formance criterion. These boundaries are dependent on both plant parame-
ters and the choice of performance criterion,

A change in the control policy may be brought about either by a
change of switching boundaries or by a change of the control values used
within the regions defined by the boundaries. It was decided to take the
latter approach. The phase plane was divided into more regions than an
optimal control policy demands. In addition, the boundaries can be adjusted
by input data, The extra regions permit a selection from a larger class of
control policies, while the adjustable boundaries permit experiments to be
conducted with various values of plant parameters.

When the performance of the automatic control system is judged
to be inadequate, the control may be transferred to manual mode.

In the manual mode, adaptive logic monitors the manual control and
adapts to an available control policy which most closely resembles that of
the human. A block diagram that indicates the flow of information is shown
in figure 2. The following section explains the computer implementation of
the problem,

3.2 Digital Implementation

The digital program for the Human Performance Control and
Monitoring System was written for the SDS 910 computer., The main pro-
gram is in FORTRAN, and the random number subroutine is in Meta Symbol,
A flow diagram of the program is presented in figure 3. A complete list of
symbols and the program listings are presented in appendix B.

The program begins by reading in the data for the experiment and
setting the system parameters equal to their initial values. The expected
performance is computed for the value of y;, (desired output) correspond-
ing to TIME = 0, as explained in section 3.1.

T —




E4421

39YS53W y
ININHVA A3153dX3<
LNIdd $34 uz«smo&w
]

T HILIMS ISNIS

ON oN
JONVIHO0AY3d ; IONVWHOLY3d
VALV 3w viva INd X a3153dx3
ILVATVAI LNIWIUONI LAdLNO s34 S 30 30VA
#3N 3LNdWOD
t~= TO¥LNCD
135
1353y
2'a Ak
H 4 0HLNOD J08LNOD = T0¥LNOD
3LNdW0D 11N4W0D 31v28 Qe ARV e 0= i
NOID3Y 0L
| _oNIgdo2dV | = 08LNOD
T04.1NQJ 135 135
oN
VANV
IONVHII0L IONYWHO ¥ 3 SLINIT 3 SNOILIANGD
0 = 1q8.N00 NIHLIA I a ll@ll Q3103dx3 e sinvisnod [e=— Tvinni pe—]  FAYD 1YV1S
1Nd1Ng 31NdwD NN 135
~— et e — .

Figure 3. Flow Diagram of Digital Program
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The main loop of the program (figure 4) is then completed for each
increment of time. The state variables are evaluated as to their position in
the phase space, which is presently divided by four straight lines with vari-
able slopes and intercepts and one curve through the origin., This quantizes
the space into 32 possible regions. Associated with each region is a control
value and a counter that is used when monitoring manual operation. The
training takes place by rewarding the counter when the manual control and
the control value associated with the region agree, and punishing the
counter otherwise, The maximum number of steps in the counter is a
variable and is input at the beginning of the experiment. If the counter is
decreased to zero, a new random control is generated and is now associated
with that region. A specific example of the above procedure follows, where
the number of steps needed for training is set at 3.

Manual Trained
Time Control Control Counter
e 1 1 2
b1 1 1 3
tki2 1 1 3
tk+3 -1 1 2
tk+4 -1 1 1
tk+5 -1 1 0
tksg -1 (Random) 0 0
tes7 -1 (Random) -1 1
tk+g -1 -1 2
tk+9 -1 -1 3
tk+10 -1 -1 3

A fairly simple method of generating pseudo-random numbers in
a binary digital machine was found.?! For our purpose, the series
appears to be generated by random processes. While adequate random
numbers were available on punched cards or magnetic tape, they were
impractical for our use because of insufficient quantity and slow access.
The deterministic method employed is given by the equation

_ N
Rn+1 = KRn mod 2
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where
Rn = nth random number

Rn+1 = (n+1)st random number
K = a constant multiplier (the largest odd power of 5 that a
24-bit word will hold)

N = the number of binary digits per word, or 24 in our case

The mod 2N operation is done by taking K times Rp, and then by
setting Ry, ; equal to the least significant half of the result. It can be shown
that, starting with an odd R,, one will run through 2N-2 numbers before re-
peating a number. Since our random decisions could only take on three values,
-1, 1, and 0, only 2 bits of the generated 24 random bits were used per
decision, according to the following tabulation.

Random Bits Decision
00 0
01 1
11 -1
10 Not used

This then increases our repeatability factor by 6.

Since four sense switches are available on the SDS 910 computer, it
was decided to have SS 4 determine the mode of operation and a combination
of SS 1 and SS 2 the control value when in the manual mode. When in the
automatic mode, the trained control is used.

Set - Manual mode
SS 4 <

Reset - Automatic mode

Manual
SS 1 SS 2 Control
Set Set 1
Set Reset 0
Reset Set 0
Reset Reset -1




This control value is then altered by the system gain constant, which
is input with the initial data.

Straightforward computations, which evaluate the plant equations and
the error equations, include:

“( 1)+ Yl + 2 - yty) I (LW
L1

-ar

Y(tk+1)=; a * 122 -, e

. . -aT
Fltiey1) = ¢ - [—‘j; - y(tp} e

e(tk+1) = Yin = Y(tk+1)
€(tg,1) = Yin = Yty 1)
where

time increment

3
I

®
1

input constant

u = control value

The actual performance is then evaluated where

Y
Pth' (cp]u\ + 1) dt

(o)

and checked against the expected performance, Time is incremented, and the
data for this loop are output if sense switch 3 is reset., Before repeating the
main loop, a check is made to see if the value of Yin has changed, If it has,

a new value for the expected performance is computed. This process
continues until the upper limit of the performance integral is found, which
occurs when

where C, is a specified constant.
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3.3 Experimental Work

The experimental setup was as follows. The computer input data were
read in on cards. The data specified the values of constants and the time at
which inputs to the control system and the cost weighting of fuel in the per-
formance index would change. The computer output was a typewritten print-
out. The output consisted of a listing of the following information in eight
columns:

a. Time,

b. Control being used.

c¢. Position,

d. Position rate,

e. Error.

f. Error rate.

g. Performance.

h. Desired position,

A nonzero step input gives rise to an error which the controller must
null. With each change in input value, an estimate of expected cost and time
of convergence is given,

Convergence occurs when the error and error rate are sufficiently small

(e® + €2 <0.01). If the actual cost exceeded the expected cost before conver-
gence occurred, a message was typed out to indicate that performance was

poor,

3.3.1 Choice of Parameter Values

Parameter values were chosen in most instances to help illustrate and
emphasize those aspects of the system which were of interest. Where param-
eters were of limited interest, normalized values were used.

Typical values,

AT = 0.05 sec (computation and printout interval)

30




a = 1 (plant damping constant)

k = 1 (system gain)

u=4+1, 0 (torque)

Cp = 0.1, 2.5, 5.0 values used in the performance index

3 33

e + €° <0.01 is the terminal zone for convergence

The minimum number of time increments necessary to train completely
within a phase space control region was set equal to three.

3.3.2 Cost Projection and Choice of Control Regions

cogt for nulling an error was obtained

, g by computing the
minimum cost and adding a tolerance. The minimum cost calculation, how-
ever, did not take into account that the automatic control policy finally adopted
had to be selected from a set of admissible controls, possibly none of which
minimized the performance function, Figure 5 shows one quadrant of the
phase plane with regions defined by switching boundaries. The circle about
the origin indicates the terminal region in which no cost is accumulated. The
system constants and control torque constrain the plant output rates to less
than +1 rad/second. The weighting given to fuel in the performance index and
the permissible switching curves in the phase space were selected such that
near optimal policies existed for the performance indices used. An alternative
approach would be to complete the expected costs, based upon available control
policies. However, if control flexibility is desired, the number of policies to
which the controller can be trained must be large. This would result in a
prohibitively long computation for the expected cost since each control policy
should be examined.

o 0,

Figures 6 and 7 show the cost incurred when different control policies
are used with a given performance index. Performance is shown for four
control policies and a minimum fuel cost. Table 1 gives a summary of costs
with three different performance indices. Each of the control policies is
near optimal for one of the performance parameters (C ). The four control
policies range from a minimum fuel policy to a minimugl time policy.
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TABLE 1. SUMMARY OF REFERENCE COST DATA

Fuel Weight
(Cp)

Type of Policy 5.0 2.5 0.1
Minimum fuel 7.6 5.2 3.0
Conservative fuel 7.4 4.8 2.25
Conservative fuel 7.5 4.75 2,11
Minimum time 9.9 6.48 1.86
Expected cost E(P) 7.9 5.7 2.04
Expected cost is based on cost to origin while actual cost is
based on cost to terminal zone near origin.

3.3.3 Training to a Control Policy

The control values and resulting costs are graphed in figure 8, with
a time optimal policy being used where fuel conservative policy is desired.
The result is a high cost to converge to the terminal zone. Retraining
starts with approximately the same initial conditions as the previous step
(error o 0.8, error rate ., 0). The cost for the control used during the re-
training interval is lower than the previous policy but still far in excess of
the possible minimum. The trained controller has a performance cost below
that of the human controller. This occurs because the automatic policy which
closely approximates the human controller is closer to optimal than the human
control policy. Figure 9 shows the phase plane trajectory during the retrain-
ing period, while figure 10 shows the phase plane trajectory resulting from
the trained controller.

Figures 11, 12, and 13 again show training to a near optimal policy where
the performance index weights the cost of fuel somewhat less.
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Finally, figures 14 and 15 show training to a policy which is not optimal
but very close to that of the human controller. Training was accomplished
over a period of two step inputs. After the initial training, the control was
returned to automatic but, before convergence occurred, the human operator
became dissatisfied with the performance and selected manual control again.
The trained policy closely approximates the human policy, because the human
operator did not change control values frequently within given phase space
regions. A summary of the experimental work is given in table 2,

It was observed that the human operator tended to switch control torque
far more often than necessary to keep costs low. Consequently, the automatic
control to which the operator trained frequently came up with lower costs,
since the trainable controller tends to integrate the type of control used within
a control region,
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TABLE 2, DESCRIPTION OF GRAPHS

Description of Graphs

Switching Boundaries in Phase Space

Reference Data for Cp = 5.0

Reference Data for Cp = 5.0

Experiment Number 1: Training of Controller from
Time Optimal to a Fuel Conservative Policy; Error,

Cost, and Control Values

Experiment Number 1: Phase Plane Trajectory During

madnine

Experiment Number 1: Phase Trajectory of Trained
Controller

Experiment Number 2: Training of Controller from
Minimum Fuel Policy to Fuel Conservative Policy; Cost

and Control Values

Experiment Number 2: Phase Plane Trajectory During
Training

Experiment Number 2: Phase Trajectory of Trained
Controller

Experiment Number 3: Training of a Controller to Arbitrary
Human Control Policy

Experiment Number 3: Phase Trajectory Resulting from
Training in Experiment Number 3
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4, CONCLUSIONS AND RECOMMENDATIONS

The work done under the PCMS program has extended the trainable
logical network concept into a tool for adaptive decision-making. Types of
decision processes and their agssociated decision criteria were identified. A
mathematical model of the adaptive decision process was developed and
evaluated by applying it to a problem of control. The results were very en-
couraging for the sample plant and performance index chosen. The approach
adopted made maximum use of a priori information about the plant and input
waveforms,

It is recommended that a study be undertaken which directly attacks the
two problems: (1) choice of performance measurements, and (2) teaching
a human to control a system in accordance with predefined performance
criteria,




APPENDIX A

LEAST SQUARES PREDICTION
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Let g; be the performance measured at time t;, . It is taken as a
random variable, having mean value E(q;). Let this mean value be given by

E(q) = f (x, 8)

where x1 is the measurement vector at time t;, having components x](ti) for
j=1,2, ..., r, and where e is a vector of parameters having components

e (tj). Knowing this relationship enables one to estabhsh the mean value of
performance one time unit in advance of measurements x . The problem
posed is one where we are given the form of the function f. We must
establish the best estimate of the parameters, 5, its distributional properties,
and some computing algorithm for its updating with time,

Let the measured performance over n-time indices be represented by
the vector

A= (Qy) eoeer Q)

The problem becomes especially simple now, if we take the above referenced
functional form as '3

E(g) = 6 AT

where

A= [aij = gj(xi)] ’ ;: 1’ ;’ eeey I

with g (xi) being independent functions of the measurement vector x at time
index i, and where the parameter vector is of the form

8= (8, 83, +..r O1)

That is, the performance predicted for time index i+1 is given by
r

-i -
E(qi) = f(x", 8) =¥ ajy 8
=1

=ay, 8; + 24,83 + c00 + 34,0,

-i -1 -1
=g1(X)8 + ga(Xx )03 + 1 + gu(x)Ay

fori=1, 2, ..., n. Select the '""best'" estimate of the parameter, 9, ’e\, as one
which minimizes the sum of the squares of the deviation of E(q) from the




actual measurements, q; i.e., let

)

(a-éA (q-eA)T

R2

To minimize R?, let the rank of A be r, whereby it can be shown in a straight-
forward manner (setting its derivative with respect to q equal to the vector
§) that one must select

A -

8 =gA (AT Ay?
Note that matrix A is not a square matrix, and that ATA is a nonsingular
symmetric r-by-r matrix, In this case, one obtains

9

[ =
\A "n -8 A

N T =
l‘i

AATI]T

=g [1 - A(AT Ay? AT] ar

A theorem by Markov states that if we take the components of q as normally
distributed with common variance c® (a restriction that is convenient rather
than necessary), then

@ &n x5, o AT ar]

R? 3
2 —
2) o? N X p-r
2
(3) /e\and ?g are independent,

where () is used to denote ''distributed as'' and N[a, B] is used to denote
""normal with mean a and variance-covariance B''." This result is of interest
to us here in that one obtains the distributional properties of the prediction
required for decision theoretic considerations,

As an illustration, let f()—{,é) be some arbitrary function of, say, three
variables. Let these be the three measurements: x,, x;, and Xx;. The best
second-order fit of E(q,) is of the form

i i
E(qi)—-xl()/\ ()/9\,+...+x,( xa()@”
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where

is evaluated as above using the matrix A given by

(ML @ M2 M2 )]
2 () (1) (1) (1) (D) (D)
xl ’ X2 ’ X3 ’ x]. 3 xz , X3 , x]_ X2 , 1 X3 , X2 X3

(n) _(m) _(n)
xl,xz,x3,.... .
i J
The previously described procedure now yields the least squares fit of the
specified form,

With n>r collections of data (consisting of the n-rows of matrix A),
one can readily establish 9. If the distribution of El is known, one can also
establish the distribution of B, For the time being, however, we will consider
q as normally distributed, Consequently, as n gets larger, the elements of
the 1variance-covariance matrix assoclated with o decreases approximately
as ne Whereas this property is desired when the process being considered
is stationary, it may not be desired in the adaptive prediction techniques
considered here,

Consider, first, the case where N-sets of data are to be considered in
conjunction with weighting factors which depend only on their age. The
solution is obtained by using a modified R?, Q?, given by

fw, 0 O0... |
0 w, 0
. w
n
_ .

where the wy are positive weighting factors. By denoting the weighting
matrix, S, we obtain

T T T T
Q® = quT - qWA94 - A Wq + 9A  WAH




wherein

3
297 = -2qWA + 20ATWA =0

Hence,
- T
8 =g (WA) (A  WA)™

where (ATW A)-! exists whenever (AT A)-! exists (i.e., whenever A is of rank
r, and & = 6, ..., 8,). One can again obtain the distribution in 8 by knowing
the distribution of q.

We shall now consider the computational aspects of the above. Desig-
nate the performance measurements by the vector

qO = (qls qa,---,qn)

Let the parameters that have been estimated after the above n-measurements
be designated ’e‘n. Let the system measurement matrix be arranged in the
(n~by-r) matrix, An‘ We have indicated that the simple unweighted case gives
rise to the solution

A T

= A -1

en 9, An (An n)
If the additional data obtained during the (n+1)st interval are designed by the
(vector) row matrix Bn+1,= 8n41,1, ®n+1,2, " an+1,r)' then the updated ""best'!

estimate of parameter 8 is representable in terms of the partitioned matrices
given in the equation

-1

wherein

7y - T T
en+1 _(qun + qn+1 Bn+1) (An An * Bn+1 Bn+1

The total system memory required for this updating process resides in the
(1-by-r) vector (ﬁoAn) and the (r-by-r) matrix, AnTAn.

51



For the weighted case, we established that for n-sets of data,
-1

A -

= A (A W
en CloWn n(n nAn)

where
(w, 0 0 . .
0 w, O .
W =],
n
L] L] L] w
- n.J

This implies that the weight, Wis is given to the square of the jth deviation,
relative to the minimization procedure. Assume, for the sake of simplicity,
that the relative importance of one sample to another sample remains fixed
once it is established; i.e., once the weight, Wi, is established, the ratio wj/wk
for all k < j remains fixed (independent of assignments of weights w; for

i > j). Under this assumption, we see that for time index, n+1, we can write

-1
0 0 A
lé = ( ) wn An (AT BT ) Wn n
n+1 . 9o ey 0 w B n’ n+1 0w B
n+1 n+1 n+1l n+1
wherein our weighted updating procedure would compute
-1

A

= T
en+1 qoWnAn * wn+1 qn+1 Bn+1) (AT W A +w
n n n n

B B
+1 n+1 n+1

Noting that the updated parameters are represented as

q, = (qo. qn+1)

A
n
An+1 -
B
n+1
w 0
n
W =
1
n+ 0w

52




we see that

A = W A B
q0Wn+1 n+1l qo nn * Wn+1 qn+1 n+1
and
T T T
= B
n+1 n+l1l n+l An WnAn * wn+1 Bn+1 n+l

These parameters are then used in the succeeding cycles of computations,
yielding 8, - for all m.

The above scheme can be readily modified to perform the computation
of predicted performance on the basis of previous data without updating. This
would be useful for establishing control modifications of the man-machine
process.



APPENDIX B

SYMBOL

AND

PROGRAM LISTINGS



FORTRAN Name Meaning

A Constant used in y, };, and performance equations
ALPH(J) Slope of line J

BETA(J) Intercept of line J

CE Tolerance for desired output region

CP Constant used in performance evaluation
ER e = error

ERDAB Absolute value of é

ERDOT é

EXPR Expected performance

ICTR(M) Counter for region M

IFLAG Flag to denote change in y;,

IRU(M) Monitored control for region M

L Number of steps in time function for y;,
NUMST Number of steps needed for training
OFLAG Flag to denote actual output within tolerance region
PERF Performance evaluation

PFLAG Flag to denote poor performance

RAND Random number subroutine

SIER Sign function of € = 'L:.J‘

STP Distance from desired output

TAU Increment of time

TIME Time

TYIN(J),J=1,L Time for values of y;,

YINP(J),J=1,L Values of y;,, as a function of time

TOL Performance tolerance

Uuvu Control value before incorporating gain
V({J) Value of regional function J at some point
Y y = actual output

YDOT y

YIN Value of y;, (desired output)

ZK System gain constant




aneee
g0081
80802
LLLLA

po00N
p0065
80006
00807
o800
0r011
08812
CLLEN
80814
80815
08816
00817

SR an
ornh2e

#8021
000822
00823
06824
nRp25
80826
00027
LLIR]
ere1
88832

LLY AN
eseta
LLT M
LLIATS
eFe3?
LI
L LY
LI

LLLLA
enees

L1
83
L1
83

- -d e W

7
3
71
76
72
0
76
»e
5
15
75
16

3K
73
LA
75
70
a1
76
35
X7
51

B2 ATDDNDRRDTRANDDDND LA DD ED D

£74

Uy

’

BB - WD DI DD DN DD DD W

00ty
LIS
LLL LY

LLLANS
#0816
LLINL
LLLAT
16026
LLL AN
LLLAY
08837
LLL ALY
LLLLN]
L LLLA
06923
a2

LI
pae2s
LLLAL)
LLL LY
LLLLY
fnges
#9826
LLIL ]
Ll LA
LI L]

77777777
TITTIT6N
37145213
Y7145213
PTINE5H5
LLLILITA

¢ 08 oo0de
80000026
00000023
80880828

Random Number Subroutine

1 SRAND PZE
2 BPM
3 XSO
L] ROM
5 &
6 LDX
TA BRX
8 LOX
9 AA LDA
16 SKA
1 L)
12 LDA
13 xwp
1% STA
15 STA
16 BB LDB
17 LDA
18 LSH
19 T8
28 N 4
21 RRU
22 LD8
23 SYM
24 BRY
25 LOA
26 OUT STA
27 STX
28 BRRR
29 ®
8 N12 NATA
31 N121 DATA
12 oN1 DATA
33 RANDM DATA
hLIN 4 DATA
%5 THRE DATA
Y6 TEM RES
X7 R2BIT PZE
8 N1 EQU
39 7ERN  EQU
A ONE EoQu
8 XWP oPD
42 XSO oPD
A3 END
2018YS
2#2S8YS

2818YS
TEM
202SYS

N12
88
N121
RANDM
N1
2
RN
K
RANDM
R2B1Y
R281T
7ERO
2
R2BIY
ONE
ouY
THRE
THRE
A
NY
*TEM
N12
RAND

-1

-12
837145213
037145213
#TINE5HS
3

2

826
823
rd
s1no80600
g10608000




L T T I O U T B T LI T ) B ] ]

(5]
(o]

- e h b DD DA D
WNANE AN DO O NAN FAN

(]

OO

11CTR18/311,CPINT 75}
COMMON TY 1N, YINP ALPH,BETA,V, IRU, ICTR CPIN

25
126
130
131

178
135
136
137
178

158
141
185

146
147

127
188
149
150
151

154

155

194

116
115

HUMAN PERFORMANCE CONTROL AND MON{TORING SYSTEM

CONTRACT NO, NASW 10885
DIMENSION TYINETS)

INPUT INITIAL DATA

L=NO, OF VALUES YIN CAN ASSUMF
TYIN,YINP=TIME,FITIME) FOR YN
READ 126,1

FORMAT []3)

READ 131, [TYINTJY, YINPEJS),CPINCIT, J=1,L)
FORMAT(3F16,2)

TYPE 174
FORMAT[//, TX, WHT IME , X, 3HY IN TX,2H CP)

TYPE 134, 1J, TYINCJY, YINPLJ),CPINTSY, J=1,L )

FORMAT £13,3F10,2)
FORMAT [13,2F19,2]
FORMAT 2F16,2)

READ SLOPES AND INTERCEPYS OF LINES DETERMINING REGIONS

READ 138, (ALPH[J1,BETATJY, J=1,4])
TYPE 141
FORMATT//, TX, AHALPY, X, BHBETA )
TYPF 137, (J, ALPHIJ), BETALJY, J=1,8)
PEAD N0, NF STEPS NEEDED FOR TRAINING
READ 126, NUMST

TYPE 147, NUMST
FORMAT( /7, 5X, GHNUMST=, 1Y)
JRUTMI= INTTIAL CONTRNL FOR REGION M
RFAD 126, [1RUIMI, M=0,31]

TYPE 127

FORMAT[//,2X,SREGION CONTPOLS]
TYPE 189, TM, IRUCM] M=8,311
FORMATLSX, 13, 7X, 131

TINE=A 8

DO 154 M=h,31

ICTR{M)=8

CONT INUE

v=0.8

YDOT=8.8

PFRF=A 8

IFLAG=2

NFLAG = §

1=1

VIN=Y NP Y

FRANT = 6,9

REAN 110, A

REAN 119, 7¥

PEAD 116,CP

REAN 118, TAU

REAN 110,CF

REAN 119, TOL

TYPF 115, A, 7%,CP, TAU,CE,TAL
TYPE 128

FORMATF13,3)

FORMAT T/, 2HA= FT 3, 6H===7¥= F7,3, 6Han=CP= FT,3, THe==TAUZ,FT.3,

YINPLTS), ALPHIS), BETA[S1, V(5], 1RU(8/31],



56
57
58
59
68
61

63
6h

6€

68
€9
78
71
72
73
T8
75
76
77
78
79
g0
f1
82

a8y
85
R6
87
a8
89
98
91

93
op
95
96
97
98
99
190
191
182
113
104
185
196
107
198
199
114

¢

16MemCE=, F7,3, THe==TOL= F7,1)

12¢

FORMAT([/7,3X, kHTIME, BX, THU,9X, THY, TX, SHY DOT, 6X, 1HE,8X,5HE DOT,

16X, 14P B AHV IN)

L1

1880
1092

140
161

1081

k99
588

595

510
526

648

681

€82
€n3
685

618
515
R28

178
288

285
21¢

CNMPUTE EXPECTED PERFORMANCE
M=1/{ACP})
FR= YiN-Y
|PFLAG=S
CYT=FELOGL1+A®DL)
ABE=ABS(ER]
ACYT=ABSICYT)
W= A*TARE4ACYT)
B=(1=-FXPLA*WI I/
Y0S=[1-EXP{=-A®ABE1)/A
S=SORTIYDS]
IFTVDS-DL®*2]) 1483, 170R 1881
FSCP=[14CP 1* [ 1/AY*ELOGL [ 145)/11=-8 1)
TYPE 148, ESCP
TACEZ[1/A1*ELNGI[14S )/ 1=-S Y HTIME
TYPE 1K1, TACE
FORMAT/// SEXPECTED PERFORMANCE=%,F 7,31
FORMAT [SEXPECTED TIME OF CONVERGENCE =%, F 7,3}
ExPR=FSCP
6N TN k99
FXPR={14CP I*AR[2%ACYTHABE J+{1/AJ*ELOGIB HTOL
TRAPzA®#[2%ACYTH+ARF HTIME4TOL /24£L0GIB)
TYPE 148, FXPR
TYPE 11, TRAP
IFTERNOTY 588,585,519
SIFR = -1
60 TO 529
SiIER = 2
50 TH 529
SIER = 1
FRNDAB = ABS[ERNOT)
DETERMINE REGION M
M=3
NN A28 J=1,5
IFtJ=-5) 682,681,602
VIJIZARS25ER o« SIER *ELOG(1,0+AERDABH-A®ERDOT
6O TO K63
V{J1=ERDOT-ALPH{J1*ER-BETALJ]
IFIVEJ1) 485, 665,619
viJi=#
50 TN 615
VEJi=1
M2 # R =T 1Y)
CONTING
NETERMINE AUTO OR MANUAL CONTROL

{F{SENSE SWITCH &) 208,258
UNDER MANUAL CONTRAL

IFFSENSE SWITCH 1] 205,215

IF(SENSE SWITCH 2 216,220

yi=1.8

6N TN 760



T R L L O L T O O N O IO E Y O] ]

(o2}
o)

111
112
113
11
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
139
131
132
133
134
13%
136
137
138
139
149
141
142
143
184
145
146
147
148
149
156
151
152
153
154
155
156
157
158
159
168
161
162
163
14
168

215
229

238
700
T18
728
738
The

750
760

258
268

278
180

310

58

550

458,
5%
68

370
375
111
ALL
A1

k10

426
438
AT

(3.1 )
h8S

*END

IFCSENSE SWITCH 21 228,239

yu=96,0

50 TO 708

uy= -1.9

MONITOR MANUAL CONTROL

IFTUU=1RUIMY] 73!,710,730
1FLICTRIM)=NUMST] 72!,3'!,3!0
(CTRIMIZICTRIMH1

G0 TN %89

IFCICTRIMYY T60,Th8, 768
CALL RANDINEWU)

IRUTMI=NEW

1FUU=NEWU) 306,750,300

ICTR(M]=2

1CTRIMI= ICTR [M)=1

0 TO 360

UNDFR AUTOMATIC CONTROL

IFIOFLAG) 278,278,268

U=9.,9

GO TN 318
UU={RUM)
U=y 7K

COMPUTE ¥ AND vDOT
V:U/A’[TAU-1.0/A]+[YDOT+A’Y1/A+[U/A"2-VDOT/A]’EXP[—A’TAU]
YDOT=U/A=TU/A=YDOT Y*EXP[=-A®*TAU]
ER=Y | N=Y
ERNOT==YDNT
STP=ERNNT ##24FR**#2
OFLAG=1

6N TH 375

OFLAG=S

IFLIFLAG) 36!,36!,376
PERF=PFRF+{CP*ARSTUI+1,0)1*TAU

0o TO 375

PERF=CP*ARSIUY+1,0]*TAU

OUTPUT DATA FOR THIS LOOP

{FISENSE SWITCH 3] 481,489
YYPE 384 TI"E,U,Y,YDOT,ER,ERDﬂT,PERF,YIN
FORMAT [8F 14,4
TIMF=T{ME4TAU
IFETIME=TYINCIH1]) 820,818,018
YINZVINP[141]
CP=CPIN[1+1]

1=+

IFLAG=1

GN 70 968

{FLAG=®

|F {PERF-EXPR] l99,b7!,l7l
IPFLARZ IPFLAGH
{FTIPFLAG-11 499 488, 499
TYPF 485

FARMATY T//,$-PERFORMANCE 1S POORS)
GO TO 499
STNP




T T T T T—" e T T T, e

COMMON ALLOCAT{ON

77552 TYIN
TT266 V

TT32% YINP
77226 1RU

PROGRAM ALLOCAT{ON

#0067 L
00813 IFLAG
00817 TIME
00027 OFLAG
08037 KX
f00AT TOL
28857 ABE
98867 VDS
68077 EXPR

masa 11

8RNI uv

FLOG ABS

89018 J
00014 |
e0m21 v
00631 YIN
88041 CP
68851 DL
88661 ACYY
#0871 S

18181 TRAP
88111 U

SUBPRNGRAMS REQUIREDN

Exp

77312 ALPH
77166 ICTR

8eA11 NUMST
00815 |PFLAG
98823 YDOT
#6833 ERDOY
06883 TAU
86853 ER
#0063 W
80073 ESCP
ea18% SIER
#8113 STP

SORY RAND

77380 BETA
76780 CPIN

seg12 M
00016 NEW
80825 PERF
00035 A
#6045 CE
00055 CYY
00065 B
60875 TACE
86165 ERDAB

61 /62




APPENDIX C

TRUNCATED SEQUENTIAL DECISIONS
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BAYES TRUNCATED SEQUENTIAL DECISION SOLUTION

Let the loss function associated with one of a finite set of possible
states of nature, we(), and one of a finite set of possible actions, acA, be
denoted L(a,w). If one selects the action which minimizes the expected loss
after k-experiments have been performed, then this expected loss can be
shown® to be given by

k

U = & C%;, wesy X)) + Min Ee [L(a,w)]
i=k acA

where C; is the cost of the ith experiment which yielded measurement x;. (If

A is not finite, one simply replaces ""minimum'" with "'infimum'' over A.) In
this expression, €(w) is the distribution over the states of nature and

Z L(a,w) p (il X919 Xoy ooy xka w)g(w)

_ F(X)weld
Epe [Lia,w)] = T 5 PG[x, X, o) £ @
F(X) wel

where F(')}) is the set of all x whose first k-coordinates are x,, ..., Xpe

To establish whether to continue experimenting or to make a decision
after a given experiment, one compares the expected loss associated with each
of these possibilities, The lesser of these two expected losses (after k-experi-
ments have been performed) is given by o .. After the complete set of
N-experiments has been run, the minimum loss would be

N
oy = UN = Z Ci(xl, Xp sy eony xi) + Min ENg [L(a,w)]
i=1 acA

Hence, after N-1 experiments it would be

U
_ smaller of the N-1

aN—l ~ two numbers

Fn-1, e ("N)




Continuing in this way, one obtains the complete set of minimum risks at each
stage of experimentation to be

aN-l = gsmaller [UN-I, EN-l,g (QN)]

= E .
o/]. smaller [U].’ e (aﬁﬂ]

o = smaller [Uo, Eg (afl)]

where U is the expected loss associated with making a decision without
experimentation, given by

U0 = Min Z L(a,w) € (w)
acA wel

The Bayes optimal procedure requires the computation of N IN=10 +*0s %o in
that order. At each stage of experimentation, say j, one makes a decision if

. =U
i i

Otherwise, one continues with experiment j + 1. This is represented sche-
matically by the tree structure shown in figure C-1.
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PERFORM PERFORM
EXPERIMENT 1 EXPERIMENT 2

Figure C-1. Decision Tree (Sequential Theory with Fixed-Ordered Experiments)
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TRUNCATED SEQUENTIAL DECISIONS WITH
DETERMINATION OF THE ORDER OF EXPERIMENTATION

Because notation becomes cumbersome, the procedure is described
for the case of three experiments: e,, e,, €,. Generalization to N~-experi-
ments follows directly, as does a rigorous proof. The description given below,
however, makes for greater clarity.

Basically, the process is like that described previously. The loss
matrix will be given by |L(a,w)| . Let the states of nature, we?, and the set of
possible actions, acA, be finité. Let the set of observations resulting from the
experiments be denoted by the vector, X= (X;, X, Xa), where coordinate x;

corresponds to experiment e¢;. The minimum expected loss without experimen-
tation is then given by*?2

U = Min E_|L(a,o)|
? acA El. J

where £(w) is the a priori distribution over the states of nature and

E, [Law] = T Lew e ©

- well
After experiment e; has been performed, yielding the result, x; = xio, the

minimum expected loss associated with making a decision is given by

. o]
U, = Min E,, [L(a,w)] +C(x,")
acA

where C; (xio) is the cost of performing experiment e; and having the results

be x; = x;°, and where

Y, LL@wpElx =x°0 ¢ @

[ ] F(x|x %) we

E L(a,w)| =

o Z z:1!>(X|x1 =X ,w) € (w)
F(xlx ) wel

with the =nt F (% !x 0) used to indicate summation taken over the set of all
possible X whose ith coordinate is Xj = x1 . (The symbol, p, is used generically
to represent ''probability.'") In a like manner, the minimum expected loss
associated with making a decision after performing experiment e; and then
performing €j obtaining results x; and X is given by
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o) o o
U.. = Min E [L ]
i a:; i (a,w)| + Ci(xi ) + Cij (xi ,xj )

where Cij (xio,xjo) is the cost of experiment e after e; has been performed,
and where

Z Z L(a,w)p(ilxio,xjo,w) g ((.D)

o
F(F(‘lxi ,xj ) wel

E_.. [L(a,w)| =
El) [ ] Z Zp(f‘(lxio,xjo,w) E (w)

S (o] (o]
F(x|xi ,xj ) wel

For the general case considered here, one should note that
Y (o) (o] KN o] [0}
p(xlxi , xj yw) # p(x|xj X, » )
That is, the order in which experiments are performed can be expected to be
different if, for example, the experiments alter the state of the system con-
sidered. However, this procedure is actually required (in general) whenever
these probabilities are not independent,

The procedure at each stage in experimentation is to compare the
expected loss associated with stopping experimentation and the expected loss
for the various continuations. As before, the various expected losses are
established by first computing

o123 = Ujz; ¥531 = Uza
132 = Ujyap 312 = Uaiyp
o213 = Uz;a @321 = Uz,

From this, one computes

oy, = smaller ("123)

]
C:,
-
[
-
=
"
-
O]
—J

smaller {U,,, Egm (v1a2)

smaller |{U,,, E (213)

smaller (vaa4)

a3, = smaller LUau Eg:n (va12)

Q
)
W

H
L]

a
w
w

=
)
©

—_— e T

smaller [Usg’ Egsg (va21)




Then one computes

oy, = smaller[U1 Egl (232), EEI (aw)]
oy = smaller [Uz, Egz (2s4), Egg (ags)]
o, = smaller [U,,, EES (0ay), E§3 (dsa)]

Finally, one establishes

dQS = gmaller [U¢, Eg (04)s E_ (a3), Eg (as)]

3

One can note that ojj is the expected loss associated with performing
experiments i, j, k -~ in that order., The expression, ¥jjs is the smaller of the
expected losses associated with stopping or with continuing. Hence, it is the
minimum expected loss (corresponding to the minimum expected loss pro-
cedure). This argument is repeated for o; and for Oy By this argument, one
sees that @y is the minimum expected risk prior to experimenting.

To utilize this procedure, one should decide without experimentation if

® ®
If this is not so, and
o =E |o
o Fe (]

then one should perform experiment e;. Having done this, one obtains the
result x; = x;°, and inquires if
o o
ari(xi ) = Ui(xi )

wherein one should decide without further experimentation. If this is not so,

and o
= E
o) gi[“ij]
then the procedure calls for continuation by performing ejs etc. This is illus-
trated by the tree shown in figure C-2,

A much more formal proof can be argued on the basis of showing that
the expected loss for any other partitioning of the outcome space into actions
or experiments will be higher than that described above. This has been
accomplished but, due to its lack of heuristic appeal, is not included in this
report.
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Figure C-2. Decision Tree (Path Depending on Experiment Outcome)




APPENDIX D

BIBLIOGRAPHY

71



72

10.

11,

12,

13.

14.

Cooper, P. W,, The Hyperplane in Pattern Recognition, Melpar Technical
Note 61/6, Melpar Applied Science Division (1961).

Cooper, P. W,, The Hypersphere in Pattern Recognition, Melpar
Technical Note 62/1, Melpar Applied Science Division (1962).

Sebestyen, G. S., Decision Making Process in Pattern Recognition,
MacMillan Company, New York (1962).

Cooper, P. W,, ""The Hyperplane in Pattern Recognition,'" Cybernetics,
5, 215-238.

Cooper, P. W,, ""Hyperplanes, Hyperspheres, and Hyperquadrics as
Decision Boundaries,'" ONR~COINS Symposium at Northwestern
University, appearing in Computers and Information Sciences, Spartan
Books, Washington, D.C. (1963).

Sommerville, D, M, Y., An Introduction to the Geometry of N-Dimensions,
Dover Publications, New York (1958).

Cooper, P, W., and Cooper, D. B,, ""Nonsupervised Adaptive Signal
Detection and Pattern Recognition,'' Information and Control, 7, 416-444.

Blackwell, D., and Girshick, M. A., Theory of Games and Statistical
Decisions, John Wiley and Sons (1954),

Luce, R. D., and Raiffa, H., Games and Decision, Introduction and
Critical Survey, John Wiley and Sons (1957).

Thomas, J. B., and Wolfe, J. K., '"On the Statistical Detection Problem
for Multiple Signals,'' IEEE Trans on Information Theory, Vol IT-8,
pp 274-280 (July 1962).

Ogg, F. C,, Jr., '""A Note on Bayes Detection of Signals,'' IEEE Trans on
Information Theory, Vol IT-10, pp 57-60 (Jan. 1964),

Wald, A., Sequential Analysis, John Wiley and Sons (1947).

Lee, R. C. K,, Optimal Estimation and Control, MIT Press (1964).

Beckenbach, E. F., Modern Mathematics for the Engineer, McGraw-Hill
Book Co. (1956).




15.

16,

17,

18,

19.

20,

21,

Kemeny, J. G., and Snell, J. L., Finite Markov Chains, D. Van Nostrand
Co., Inc. (1960).

Jackson, A. S., Analog Computation, McGraw-Hill Book Co. (1960).

Tou, J. T., Modern Control Theory, McGraw-Hill Book Co. (1964).

Freeman, H., Discrete Time Systems, John Wiley and Sons (1965).

Howard, R. A., Dynamic Programming and Markov Process, MIT Press
(1960).

Kunz, K. S., Numerical Analysis, McGraw-Hill Book Co, (1957).

Ralston, A., and Wilf, H,, Mathematical Methods for Digital Computers,
John Wiley and Sons, p. 253 {1264),

73/74



