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1. INTRODUCTION 

i 

t 

This  r e p o r t  desc r ibes  the work done under Cont rac t  No. NASW-1085. 
The cont rac t  w a s  divided into t h r e e  phases.  During the first phase,  theo- 
retical s tudies  w e r e  pe r fo rmed  and a mathematical  model of a'perforrnance 
control  and monitoring sys t em was developed. Applications for t ra inable  
logic w e r e  developed in  the  areas of computation and controls .  The first 
phase  te rmina ted  with the  presentat ion of t h r e e  application problems which 
were  designed to  i l l u s t r a t e  facets  of the theoret ical  work. 

The second phase of the program s t a r t e d  with the select ion of one 
problem by NASA and subsequent development of a computer  program.  The 
p rogram s imula ted  a second-order  s e r v o  controlled by  an adaptive logic 
e lement  t ra ined  by monitoring of human performance.  

During the final phase  of the program the s y s t e m  behavior was observed  
through experimentation. The success  of this approach indicated that the 
method might indeed be applicable to m o r e  complicated sys t ems .  

c 
c 
t 
I 
I 
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2.  R E S U L T S  O F  THEORETICAL STUDIES 
I 

2.1 Per formance  Control Systems 

2.1.1 General  

A performance var iab le  assoc ia ted  with a given s y s t e m  is taken to be 
s imply  an attr ibute of that  sys tem.  It is distinguished f r o m  other  a t t r ibutes  
of the system in that t he re  is always a known l fopt imumll  range  of values f o r  
this variable.  Most frequently,  i n t e re s t  is centered  upon the observat ion and 
control  of this performance.  A per formance  vec tor  is an o r d e r e d  s e t  of such  
performance var iables .  In this light, per formance  of an a i r c r a f t  s y s t e m  could 
correspond to i t s  vector  r m s  deviations f r o m  a given fl ight t ra jec tory .  Like- 
wise,  the performance of an  environmental  control  s y s t e m  could correspond 
to the par t ia l  p r e s s u r e  deviations f r o m  a given temperature-dependent norm.  

In general ,  per formance  is a function of var ious random variables .  It is 
i tself ,  therefore ,  a random variable.  Hence, statistical techniques can be ap- 
plied to es tabl ish the p rope r t i e s  of this performance.  Frequent ly ,  control  mus t  
be indirect ,  involving prediction o r  es t imat ion of performance,  experimentat ion,  
and control  decisions.  

A block diagram of one such  per formance  cont ro l  s y s t e m  is provided fo r  
i l lustrat ion in f igure 1. This  s y s t e m  involves man and machine. The s y s t e m  
behavior is subject to control  inputs which de te rmine  its per formance  a t  t i m e  
tn. Other a t t r ibutes  of the s y s t e m  can  be measu red  at t i m e  tn, designated as  
the measurement  vec tor  

The basic  assumption is that  fu ture  per formance  a t  t i m e  tn+l is s o m e  function 
of these at t r ibutes  a t  t ime  tn, x (tn); i.e., the assumption is that  the p e r f o r m -  
ance var iable  can  be predicted.  The predict ion technique employed can be 
made adaptive, by an  updating p rocedure  shown as feedback to the per formance  
prediction. 

A 

When the predicted per formance  falls out  of to le rance ,  control-determinat-  
ing experiments can be implemented. This  would involve a change in the con- 
t ro l  p a r a m e t e r s  that would actual ly  change the s y s t e m  p a r a m e t e r s ,  x( tn) ,  where- 
by the predicted per formance  would be  changed. Modification could continue 
until the predicted per formance  falls back within tolerance.  A m o r e  probable  
approach would be to p e r f o r m  expe r imen t s  which e s t ab l i sh  dis t r ibut ional  p rope r -  
ties of X(tn), thus r e s t r i c t ing  the class of modif icat ions tha t  a r e  actual ly  imple- 
mented. These can be se l ec t ed  on the basis of statistical theory.  

2 
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The major e lements  of the above-described per formance  control  s y s t e m  
involve adaptive prediction and decision theory. These a r e  considered in  
greater detail  below. 

2 . 1 . 2  - Prediction and Estimation 

Various techniques f o r  es tabl ishing the performance prediction rela- 
tions hip 

have been developed and a re  descr ibed  in the l i t e ra ture .  One of these  would 
cons ider  performance, q, as being a d i sc re t e  valued function; i.e., 

i g e  4 , f o r  i = 1,2 ,  ..., n 
\ 

The r-components of the sys t em measurement  vector ,  z(t), would be viewed 
as  the coordinates of a point in  r-dimensional space .  If one knows the dis- 
tr ibutions,  p ( i  1 q) ,  the a p r i o r i  probabilities, p(q), and the loss ma t r ix  (cor- 
responding to an  e s t ima te  of the re la t ive  penalty assoc ia ted  with assigning 

given measurement  x can be made on the basis of minimum expected loss.'-" 
Other selection criteria can be used, however. 

performance qi when q j should be assigned) ,  then the select ion of q f o r  a 
a 

The technique is t e r m e d  adaptive when e i the r  the r equ i r ed  dis t r ibut ions,  
A 

p ( x \ q ) ,  o r  the loss ma t r ix  must  be obtained f r o m  the incoming data.  (The 
a p r i o r i  probabili t ies,  p(q),  may o r  may not be known.) If measu red  perform- 
ance  were noise free (i.e,, the s a m e  as pe r fo rmance ) ,  then the problem be- 
comes  one of "supervised" learning. More general ly ,  however, measu red  
performance is a random variable  about whose dis t r ibut ion l i t t le may  be 
known. This makes the problem h e r e  much m o r e  difficult.7 Most of the 
work available avoids s o m e  of this difficulty by assuming measu red  per form-  
a y e  to be normally distributed. Fu the rmore ,  the f o r m  of the dis t r ibut ions,  
p ( x \ q ) ,  is general ly  assumed to be known. 
moved in many cases, however. 

This  last r e s t r i c t ion  could be re- 

Various al ternat ive approaches can be  applied to adapt ive per formance  
prediction. A f ami l i a r  curve-fi t t ing technique is desc r ibed  in appendix A ,  as 
applied to prediction. Here, the pe r fo rmance ,  E(q), is r e p r e s e n t e d  by s o m e  
given functional fo rm 

I 
' 1  

I 
1 
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A A A 
which is l inear  in  8, where x is the measu remen t  vector  (an r-tuple) and 8 
is a vector of unknown p a r a m e t e r s  (an S-tuple). These p a r a m e t e r s  a r e  se- 
lected so as to minimize the s u m  of the squa res  of the deviations of meas-  
ured ve r sus2 red ic t ed  performance over  the discrete t ime  variable.  If a 
fixed set of 8 p a r a m e t e r s  w e r e  desired, the weights would be set to unity. 
Values less than unity pe rmi t  t ime variation in the 8 parametere .  The up- 
dating procedure is established by a ve ry  s imple  i te ra t ive  process ,  and a 
well-known theorem is applied to discuss  the distributional proper t ies  of the 
parameter .  This distribution over  the predicted performance is important  
in forming control decisions,  as will be seen  in  the next section. 

A 

2.2 Decisions and Decision Cr i t e r i a  

The s imples t  f o r m  of decision consis ts  of select ing an  action f r o m  a set 
of a l ternat ive actions with perfect inf~rmst ion abest the vaiioue consequences. 
Formally,  one a s s u m e s  a set of states-of-nature R=(w,, cu,, ..., wr) and set 
of possible actions A=(a,, a,, ... ,a ). A l o s s  mat r ix  is assumed,  b(i,jl, 
whose elements  L(i,j) are the l o s s  associated with select ing action a w ile 
nature  is in  s t a t e  w 
nature  and the lo s s  matrix.  A rational decision would be to select that  action 
which yields the l ea s t  loss. 

S 

With perfect information, one knows both the s t ate-of- 
j’ 

With less perfect  information, one might be restricted to knowing the 
cos t  mat r ix  and only the a p r io r i  probabili t ies of nature  being in  s t a t e  j, p(j), 
f o r  j = 1,2, ..., r ( r a the r  than the actual state of nature).  In such  a case one 
might make a selection on the bas i s  of its yielding, on the average,  the mini- 
mum loss; i.e., the expected loss associated with select ing action i is given by, 

wherein one would select that action which minimizes  p (i). 

Consider  now the case where one is given the loss  matr ix ,  [ L(i, j)]  , but 
has no information on the probabilftiee ove r  the states-of-nature. One method 
of es tabl ishing a decision is somet imes  employed in game theory. Here, one 
selects an action f rom a probabili ty distribution over  the available actions. 
This  distribution over  the available actions is established so that, on the aver-  
age, the  maximum lose jeilstalned for any possible distribution over  the states- 
of-nature) wi l l  be minimized. 

A m o r e  useful  class of decision problems extends the above considera- 
t ions to include information obtained f rom experiments  or observations.  

5 



These  are  used to  modify the establ ished probabili ty distribution ove r  the 
states-of-nature.  F o r  example,  l e t  the observation be s o m e  p a r a m e t e r  (or  
vector)  x. Let the conditional probabili t ies p( i1  j )  be known fo r  each  state- 
of-nature,  j .  Let the a p r i o r i  probabili ty that nature  is indeed in s t a t e  j, 
p(j) ,  be a l so  known. A s  before,  l e t  the loss matr ix  be given by L(i , j)  , where 

of possible  states-of-nature.  F o r  such  problems,  decisions a r e  now based 
upon the observation, 2. In fact, a decision ru l e  is defined as any function 
that maps the observation x into action i ,  

A 

the index i ranges over  the set of possible  act ions and j ranges  [ 1  over  he s e t  

A 

h 
i = d(x) 

The Bayes decision c r i te r ion  (applied aga ins t  the a p r i o r i  distribution ove r  
the states-of-nature) is one that yields the minimum loss -- on the average :  
i.e., i t  is a c r i te r ion  fo r  select ing a decision ru l e  which minimizes  the ave r -  
age loss. Its name is derived f r o m  the use  of the Bayes theorem in proba- 
bility, which is used to der ive  these  decisions.  It can be readi ly  shown* 
that  this  minimum average  lo s s  c r i t e r ion  impl ies  tha t  one should s e l e c t  action, 
i ,  when 

r A 
r 1 = L(i,j) P ( X l  j )  P( j )  L(k,j) P(:lj) P(j) 

j= 1 j= 1 

fo r  a l l  possible actions,  k. (This is essent ia l ly  the c r i t e r ion  mentioned in 
d iscuss ing  prediction and est imat ion in n-dimensional space.)  

The re  a r e  var ious  o ther  criteria that can be employed. One of these  is 
the Neyman-Pearson cr i te r ion ,  as general ized to cover  cases of m o r e  than 
two possible  actions. With only two poss ib le  act ions,  s a y  1 and 2, the  deci- 
s ion-maker  can hypothesize that action 1 is called for .  He could then t e s t  
this  hypothesis and make two different  kinds of e r r o r s .  An e r r o r  of the first 
kind would be made i f  his observat ion,  i ,  led him to s e l e c t  action 2 when ac-  
tion 1 was called f o r  (i.e., when he  fa l se ly  r e j e c t s  h i s  hypothesis).  An e r r o r  
of the second kind would be made i f  h is  observat ion,  x, led him to s e l e c t  ac- 
tion 1 when action 2 was cal led f o r  (i.e., when he  fa l se ly  accepts  his  hypoth- 
e s i s ) .  Whereas i t  is des i r ed  to minimize the probabi l i ty  of both of t hese  
e r r o r s ,  this  is not, i n  general ,  possible .  Normally,  the decision r u l e  which 
d e c r e a s e s  the probabili ty of one of these e r r o r s  wi l l  i n c r e a s e  the probabili ty 
of the o ther  type of e r r o r s .  

h 

3 

The Neyman-Pearson c r i t e r ion  ca l l s  f o r  se lec t ing  the decision r u l e  
(function, d(x), which maps ou r  observa t ions  into a se l ec t ed  action) which 



I -  minimizes  the probabili ty of an e r r o r  of the second kind, subjec t  to the re- 
s t r ic t ion  that the probabili ty of an  e r r o r  of the first kind r ema ins  below s o m e  
preass igned  value. The generalization for the case of m o r e  than two ac- 
t ions can be accomplished in seve ra l  ways. In one of these, l o  9 l 1  the prob- 
ability of c o r r e c t  decis ions is maximized, while the probabili ty of cer ta in  ln- 
c o r r e c t  decis ions is constrained to  being less than, or equal to, s o m e  pre- 
assigned constants.  

9 

When more  than one observation or exper iment  can be made, it becomes  
important  to es tab l i sh  a c r i t e r ion  for  stopping the p r o c e s s  of experimentation 
(or  observation) as well  as the decision to be made  once this  h a s  stopped. 
This  is referred to as sequential  decision theory  and analysis .  

Wald  l a  developed the sequential  probabili ty r a t io  test (SPRT) f o r  
binary-type decis ions (accept or reject ct hypcthesis), terminating expeifmen- 
tation at s o m e  point beyond which a Neyman-Pearson type of c r i te r ion  is 
satisfied; i.e., numbers  corresponding to the acceptable maximum probabili ty 
of e r r o r s  of the f i r s t  and second kinds are first selected. Experimentation 
ceases and a decision is made only when these  conditions are sa t i s f ied  by one 
of the two possible  actions.  H i s  generalization of this test to multivalued 
decis ion functions was made on the basis of minimizing the r i s k  of maklng a 
wrong decision. 

The Bayes sequent ia l  decis ion model postulates  a given set of experi-  
men t s  (or observat ions) ,  which can  only be pe r fo rmed  in  the given o r d e r  
(i.e., exper iment  i mus t  precede experiment  i + 1). These  exper iments  can  
be s i m i l i a r  to one another  or completely different. If the set of exper iments  
is finite, then it is called a truncated se uential  theory.  A s  with nonsequential 
Bayes decisioning, a lo s s  mat r ix ,  L(i,j) , a set of a p r i o r i  probabili t ies,  

the observat ion vector ,  x, is that of including measu remen t s  made by all the 
exper iments .  Hence, decis ions made on the basis of, s ay ,  n-experiments can  
only u s e  the conditional probabili ty of observat ion vec to r s  whose first n-coor- 
d ina tes  only are  known; i.e., one must  ave rage  the expected lo s s  ove r  all 
coord ina tes  correeponding to experiments  which have not yet  been performed.  
The last r equ i r emen t  is to place a cost  on each  exper iment  which, in general ,  
depends upon the outcome of the experiments .  

p(j), and a set of conditipnal proba  w ilities, p(x 1 j), is presumed.  The na ture  of 

8 The snhtior, ea:: be shown to be obtainable by taking a dynamic pro- 
g r a m  ming type of approach  and working backwards.  Essentially,  experimen- 
tation is to be continued only when the c u r r e n t  Bayes r isk (established, as 
with nonsequential  decis ions,  to be the average  lo s s  anticipated on the basis of 

i 
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c u r r e n t  estimations of the state-of-nature) is greater than the expectation of 
loss if experimentation continues. The detailed solution is given in appendix C. 

8 
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2.3 Computational Techniques 

2.3.1 Introductory Discussion 

T h e r e  are s e v e r a l  areas in  which trainable logical networks (TLN) 
apply to per formance  control and monitoring s y s t e m s  s i m i l a r  to  that  de- 
s c r ibed  in  the preceding section. Its uti l ization rests upon ce r t a in  key prop- 
erties of such  networks. One property is that  they are finite state devices  
whose only m e m o r y  cons is t s  of what state it is cu r ren t ly  in. Another proper ty  
is that  they can be  configured to behave as s tochas t ic  devices which can be  
analyzed as a Markov process .  It appears  natural ,  then, to consider  t h e i r  
application to  such  computational techniques a s  Monte Car lo  and Simulation. 

Other  u ses  of TLN, however, have been s tudied previously.  One of t hese  
w a s  used  to  obtain high reliabil i ty i n  system-n. A m t h e r  use ini;o:veb them as 
control  e lements .  This  latter work, although not descr ibed  he re ,  will be con- 
s i d e r e d  re la t ive  to  its application to the  se lec ted  s tudy problem. This  sect ion 
wil l  concentrate  on the u s e  of TLN's f o r  computation. 

The bas i c  e lement  of the TLN, r e fe renced  as SOBLN, is a k-level sta- 
t i s t ica l  switch. This  is s imply  a switch which can at ta in  any of k-s ta tes .  
Each of t hese  states cor responds  to  a probabili ty of the  switch being closed. 
It is th i s  e lement  which is fundamental to  the computation p r o c e s s  descr ibed  
below. The fact that  t hese  devices a r e  s o  flexible, so amenable  to high-reli- 
ability considerat ions,  and cons is t  of t h i s  common element  (wherein it is 
amenable  t o  concepts of microminiatur izat ion)  provides r eason  fo r  the  in- 
vestigation of t h e i r  utility as basic computing e lements  a s  we l l  a s  t he i r  u s e  
in  problems amenable  to  solution by o ther  than Monte Car lo  techniques. 

2.3.2 Bas i c  Ari thmetic  Operations Using Stat is t ical  Switches 

T h e r e  are s e v e r a l  methods for implementing the statistical switch to  
p e r f o r m  the multiplication and division of two numbers .  The f i r s t  method 
cons i s t s  of convert ing both numbers  into p rope r  f ract ions by a sca l ing  opera-  
tion. Each number is then associated with a probabili ty set t ing of a k-level 
statistical switch. The outputs of the switches a r e  s e n t  through an  AND gate  
(a l ternat ively,  the  switches may be  mere ly  placed in  se r i e s ) .  Since an n-bit 
counter  is the  basic element  of a s ta t i s t ica l  switch, the k-level switch is one 
that  is capable  of taking on k = 2" different probabiii ty sett ings.  

A Monte Car lo  p rocess  is init iated with s o m e  number of s amples ,  N, 
taken for convenience to  be  a power of 2 (Say 2m). The 1 outputs f r o m  the 
above-referenced A N D  gate  w i l l  increment  an m-bit counter. For a l a rge  

9 



enough m, one would expect that  approximately 

number of 1's present  in the counter)  
-(m-2n) 

PIP, = 
2 

where P is the bias  sett ing.  To obtain the  original,  one m e r e l y  shif ts  the 
counter  m-2n b i t  positions to  the right.  This  is a sca l ing  operat ion which, in  
effect, cor responds  to multiplying by the  s q u a r e  of the scale fac tor  in  the 
denominator. Since the switches a r e  independent, the A N D  function is r e p r e -  
sen ted  by 

i 

P(AB) = P(A) P(B) 

The accuracy  in  th i s  Monte Car lo  computation can b e  analyzed on the 
basis of the  var iance of a binomial distribution, given as 

a u NPq 

where q = 1 - P, and where N is the number  of independent s amples .  

To i l lus t ra te  this  p rocess ,  cons ider  the following example: Le t  N = 
1024. The product of 3.5 = 15 could be per formed with k-level switches,  
where 

k = 2n = 2 6  = 32 

Then, 

5 
and P(B) = - 3 

P(A) = - 
32 32 

Since m = 2n, t h e r e  would be no shif t  of the  counter  a f t e r  the end of the 
N-samples. In general ,  however, one would ant ic ipate  much l a r g e r  values  f o r  
m, which would r equ i r e  the above-described sca l ing  shift .  

The division of a s c a l e r  by another  s c a l e r  can  b e  r ead i ly  pe r fo rmed  by 
modifying the k-level switch to include a decoder  which resets the  n-bit counter  
a t any in tege r ,  r, where r<2". Thus,  for  the opera t ion  a / r ,  where r>a,  w e  m e r e l y  
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u s e  the foreshortened counter  k-level switch,  with reset occur r ing  on the r t h  
pulse  and with the b ias  level  set at a. 

2.3.3 Par t i a l  Differential Equations 

One of the capabi l i t ies  of a SOBLN as a Monte Car lo  simulation device 
is i n  the solution of l i nea r  pa r t i a l  differential equations of the parabol ic  or 
el l ipt ic  type. The parabol ic  type will be  cons idered  only br ief ly  because of 
its relevance to random walk and diffusion p rocesses .  The  Fokker-Planck 
equation, mentioned later, is a P.D.E. of the parabol ic  type. 

Consider the genera l  second-order  l i nea r  pa r t i a l  differential  equation 
with two independent var iables:  

If ( the discr iminant)  ba - 4 ac<O, the equation is of the  ell iptic type. Such 
equations commonly r e p r e s e n t  equilibrium si tuat ions,  an  example of which 
is the ce lebra ted  Laplace equation, 

0 

heat flow equations are  of ,he parabol ic  type with d iscr imi-  
nant  ba - 4 a c  = 0. They commonly r ep resen t  s i tuat ions with unbalanced 
equilibrium. Two examples  of this  a r e  the one- and two-dimensional heat 
flow equations,  descr ibed  by 

respect ively.  

1 

I 

The s tandard  approach t o  the one-dimensional express ion  is the sepa ra -  
t ion of var iab les ,  yielding the solution 

CJ u = eCl t  [a cosh  t + b s inh 

I 

I 



A very  useful means which ex i s t s  fo r  obtaining the solution of the two-dime:- 
s ional  equations is the  Monte Car lo  p rocess ,  where a par t ic le  is considered to 
be undergoing a series of random walks o v e r  a two-dimensional lattice with 
a tall ied s c o r e  cor responding  to the state a f t e r  t - t r a n ~ i t i 0 n s . l ~  F o r  an ex- 
planation of this p rocess ,  cons ider  the following situation. Let  a par t ic le  under- 
go a series of random walks s t a r t i ng  at (x,y) = (0,O) and continuing ove r  the 
la t t ice  for  t-steps with a t ransi t ion probabili ty at each  point (x,y) assoc ia ted  
with having the pa r t i c l e  move to (x+l,y),  (x-1,y) (x,y+l),  (x,y-1). Let  each  of 
t hese  transit ion probabi l i t ies  be equal. Assume,  init ially,  that  the t rans i t ion  
probabili t ies a r e  independent of x and y as well as the pas t  h i s tory  of the par -  
t icle.  This  descr ibes  a Markov p r o c e s s  with xy states and a symmet r i c  t rans i -  
tion matr ix .  The t ransi t ion ma t r ix  has nonzero t e r m s  along the two diagonals 
on e i ther  s ide  of t h e  main diagonal, where all nonzero t e r m s  a re  1/4. The rest 
of the en t r i e s  a r e  zero .  

A t  each  point on the lattice t h e r e  is a probabili ty function P(x,y,t)  of find- 
i n g  the par t ic le  at (x,y) a f t e r  t - t ransi t ions,  s t a r t i ng  f r o m  (0,O). To show the  
relat ionship of this  p r o c e s s  to the heat  equation, note that  P(x,y,t) mus t  s a t i s fy  
the difference equation 

P(x,y,t+l)  = 1/4 P(x+l ,y , t )  + 1/4 P(x-l ,y,t)  + 1/4 P(x,y+l , t )  + 1/4  P(x,y- l , t )  

Th i s  follows because the pa r t i c l e  must  have been at one of the above fou r  posi-  
t ions a t  t ime,  t ,  to a r r i v e  at (x,y) at t i m e  t + l .  Subtract ing P(x,y,t) f rom both 
sides and using the express ion  fo r  second differences,  

Af(x) = f(x+l)-f(x) 

a 

= f(x+2) -2f  (x+ l ) + f (  x) 

Hence, 

P(x,y, t+l)  - P(x,y,t)  = P(x+l,y,t)  - 1/2 P(x,y,t)  + P(x-l ,y , t )  
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This  r e l a t e s  the f i r s t  difference of P, with r e spec t  to  t, to  the second difference,  
with r e spec t  to x,y. For the  l imiting case of a f iner  lattice, the above difference 
equation is s i m i l a r  to  

K =  1/4 aap a 9  
a 2  a? K- +- a p  

a t  - =  

This  is the two-dimensional heat flow equation. 

If w e  keep a tabulation of the  number of t i m e s  the pa r t i c l e  appea r s  i n  
each state (x,y) for a range  of t and is divided by the  sample  s ize ,  we have an  
e s t i m a t e  of P(x,y,t). If, ins tead of s ta r t ing  at (O,O), one s t a r t s  a t  a point on 
the lattice (x,y) where the s t a r t i ng  point is de termined  by a distribution, f(x,y), 
we have the ini t ia l  function P(x,y,O) generat ing a pa r t i cu la r  solution of the 
difference equzticn. 

I 
I 
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2.3.4 Matrix Inversion 

A brief description is presented  h e r e  of the inversion of a spec ia l  type 
of m a t r i x  encountered when concerned with the control  of Markovian proc- 
esses. Another procedure with a different implementation is possible ,  but 
l e s s  desirable, using the resolvent  expansion of a matr ix .  In the  sect ion on 
application problems dealing with Markovian procedures ,  the need fo r  m a t r i x  
inversion is avoided by using the i te ra t ive  solution of a set of equations. Thus,  
only the s to rage  of a vector  is needed r a t h e r  than a matr ix .  

W e  can  invert  a ma t r ix  of the f o r m  I-Q, where Q is a s tochas t ic  ma t r ix  

with al l  elements qij  2: 0, and where 

tend the dimension of Q by attaching a first row and a first column to  it. 
These  a re  se lec ted  so that the new mat r ix ,  A ,  will be s tochast ic .  A s  an  

qij <1 fo r  all i. To do this ,  we ex- 
J 

example,  l e t  

One then f o r m s  

A =  

3 
4 
- 

- 

11 
0 0  

3 
- 0  4 

3 0 -  4 - 
The m a t r i x  A w i l l  always be s tochas t ic  (z aij  = 1 f o r  a l l  i and aij 2: 0). It de- 

s c r i b e s  a Markov p r o c e s s  which is absorbing,  due to the  select ion of the 
e lements  of the f i r s t  row. Because the  eigenvalues  of Q a re  l e s s  than unity, 
(I-Q)-’ will exist  and can be shown to equal I + Q + Q2 + e g o .  Using analytic 
techniques such as  the Z-transform, one can show (in closed fo rm)  the  state 
probabi l i t ies  for  each t ransi t ion,  t. It is shown16 that  t h e s e  probabi l i t ies  can  
be direct ly  re la ted  to (I-Q)-’. Thus,  using the  above-defined Q,  one obtains  

J 

14 
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T h h  i i l u s t r a t e s  that  we can allow a s e r i e s  of random walks to  occur ,  where,  
each t i m e  the absorbing state is reached, the p r o c e s s  is reinit ialized. A TLN 
can uti l ize 2N statistical switches a s  memory  devices,  and thus have a 
capability of handling a ma t r ix  of dimension N. 

The  random walk can proceed in  e i ther  of two ways. F o r  the f i r s t  
method, let one k-level statistical switch r ep resen t  the t rans i t ion  ma t r ix  with 
a s ingle  t ra ining ru l e  generat ing the  matrix.  This  configuration is feasible  
fo r  lower o r d e r  m a t r i c e s  that  posses s  a l a r g e  amount of s y m m e t r y  and a 
s m a l l  number of nonzero elements ,  such  a s  the class d iscussed  in  section 
2.3.3. An a l te rna te  method is t o  include N extra statistical switches,  j = 1,2, ..., N,  to this  TLN. This  a r rangement  allows each of t hese  switches to  r ep re -  
s e n t  a state of the Markov p rocess  and to  have a s e p a r a t e  t ra ining ru l e  applied 
to  each  switch. Such a t ra ining rule  is m e r e l y  a probabili ty distribution to  
r ep resen t  the respec t ive  row of the t ransi t ion m a t r i x  and is easier to 
synthesize.  

2.3.5 Linear  Difference and Differential Equations 

W e  now consider  the stabil i ty of an autonomous sys t em of l inear  
differential o r  difference equations. The sys t em could be a vector  ma t r ix  
state space  representa t ion  of an nth o r d e r  l i nea r  difference equation. In the  
Markov decision p rocess  application, descr ibed  in  sect ion 3.2, the  Jacobi  
point i t e ra t ive  method of computing an optimal policy r e s u l t s  in 

3 k-. d k = F  d 
0 

2 -1) 3 2  2 where  do = x1 - xo, dk = G+l - G, and where dk r e p r e s e n t s  a vector  
difference which converges to  z e r o  as the  i te ra t ive  p r o c e s s  converges to  a 
solution. This  convergence can only be  guaranteed when the latent roots  of 
the  m a t r i x  F are 4. To show this, cons ider  the difference equation related 
to  the  above express ion  

with given initial state x0. If the  latent vec tors  are independent, we can 
apply a s imi l a r i t y  t ransformat ion  to diagonalize F, as 

F = P D P - I  

where  

15 
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D = P-I  F P  

0 

r A 

where A, is the i th  latent roo t  of F .  Since 

k 0 
A2 

0 

* Ak 

P -I 

kA 3 

Thus, for  l a rge  k ,  dk = F do-0, and the p r o c e s s  converges  to a solution. If 
the charac te r i s t ic  vec tors  a r e  not independent, then the m a t r i x  can always b e  
t r ans fo rmed  into a t r iangular  mat r ix ,  T h e r e  exists a l i nea r  t ransformat ion ,  
R ,  such that 

The or iginal  equation, 

can now b e  writ ten as  

o r  

= R’l F R yk 1 

’k+ 1 

s o  that 

D ’  = R - l  F R 

and is the t r iangular  matr ix .  

16 

1 



t -  Now, note that  we  can always write D ' in  the  form 

D ' =  D, + D2 

where D, is a diagonal ma t r ix  and D, is a nil potent ma t r ix  (having nonzero 
e lements  only to the  r igh t  of the main diagonal). Expanding Dp by the  bi- 
nomial theorem gives 

P P-1 
D ~ = D ,  P + PD, D, + + D, 

Since D, is nil potent (all cha rac t e r i s t i c  roots  are 0), t h e r e  ex is t s  a "p," 
such  that D,P2 = 0. It is a l so  evident that  f o r  the diagonal t e r m s  i n  D,, t h e r e  
ex is t s  some  p1 whereby DIP1 w i l l  a lso be zero .  

Other  considerat ions apply to the continuous t i m e  case .  Here, the 
sei of differentiai  equations 

has  solution 

A t  - 2 

x(t) = e x(o) 

+ 0 )  2 ( 0 )  
~2 A3 = ( I t A + -  + -  
2! 3! 

1 7  
which can be evaluated in  a manner  descr ibed  i n  the l i t e ra ture .  

2.3.6 Computation of the Inverse  of the  Leas t  Square Recursion F o r m u l a  

In the r e c u r s i o n  relat ion for updating a least s q u a r e s  es t imate ,  
descr ibed  in the  preceding section, an express ion  of the  fo rm 

-1 -1 
= P  + G ? F  

k 
P 

k+ 1 
-1 

where  P is an  n-by-n s y m m e t r i c  
m a t r i x  and (Y is an  n-by-1 column vector. Using a ma t r ix  inversion l emma,  l3  

we can  r ep resen t  the above as 

is known, is encountered, where  P k _ r  k 

--1 AT -1 AT 
'k P = P  -Pka(cy  Pk$+ 1) 

k+ 1 k 
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The above expression can be handled on a Monte Car lo  bas i s ,  s ince 
the underlined vector  ma t r ix  
the vector  t ranspose of$Tpk. Thus, TLN's could pe r fo rm a s ingle  vector  
ma t r ix  product in the fashion descr ibed  e a r l i e r  in  this repor t .  Then, a dot 
product operation i s  per formed to yield the expression (gT Pk)&, using 2n 
s t a t i s t i ca l  switches in the fashion identical  to the first portion of a vector  
mat r ix  computation. 

Pk  appears  twice, and s ince  Pk$ is 

After incrementing this  r e su l t  by 1, the resu l t ing  s c a l a r  (GT PkG + 1)-l 
is s e t  into a single s ta t i s t ica l  switch consisting of a mod P-counter (descr ibed 

e a r l i e r )  with numera tor  1. The bias  probabili ty is - d ; ' ~  pk$ +1 . This switch is 

placed in s e r i e s  with a l l  switches in the TLN to obtain the des i r ed  quantity 

1 

The quantity (PkG) (gT Pk) is obtained by a vector-vector  product  that r e -  
su l t s  i n  a matrix.  The e lements  of this mat r ix  

can be s tored  in the switches themselves  to minimize the amount of the 
input-output logic. Since 

'k+ 1 

we can subtract  the 
being performed by 

e lements  Pij f rom a i j  and change its s ign,  this operation 
a combinational network at each  switch. 

This  technique, combined with the ma t r ix  invers ion  method descr ibed  
e a r l i e r ,  is somet imes  a useful supplement  to  the s t anda rd  s c h e m e s  f o r  
solving a sys tem of equations. 

2.4 Application P rob lems  

At the conclusion of the theoret ical  work per iod,  t h ree  problems were  
formulated.  Each problem i l lus t ra ted  s o m e  f a c e t  of the theore t ica l  work done 
during Phase  1. The select ion of one of the p rob lems  by NASA s e r v e d  as a 
bas i s  for  the computer s imulat ion to be desc r ibed  in  sect ion 3.  

1 8  
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The three problem s ta tements  w e r e :  

a. Trainable  Control ler  (Problem No. 1): Given that f a i lu re s  and/or  
changes in plant characteristics have o c c u r r e d  in  an automatic control  system, 
can t ra inable  logic be designed to take ove r  the control  function by monitoring 
human per formance  on manual control of the s y s t e m ?  

b. Markovian Process Control (P rob lem No. 2): Given a man-machine 
sys t em that is 
t rans i t ion  f rom one state to another state be respons ib le  as a s ta t ionary  
Markov process .  Le t  the t ransi t ion matr ix ,  descr ib ing  this operation, depend 
upon which of a f ini te  set of policies (modes) the sys t em is se lec ted  to  
opera te  under. W e  investigate the optimization of s y s t e m  per formance  
through mode control.  

cha rac t e r i zed  by its being in  a finite set of states, let the 

.- c. Bayes Decision Making ( r r o b i e m  No. 3): This probiem is the 
application of t ra inable  logical networks (TLN) to  the on-line solution of 
Bayes decisions.  The specific decision problem is the routing of s ignals  
along one or m o r e  paths. 

The decision computer  de te rmines  what output channels are  to be 
activated according to the lowest cos t  Bayes cr i ter ion.  One output path in- 
c ludes an  ex te rna l  evaluation device that can modify the cos t  ma t r ix  contained 
in the decision computer.  

The problem selected by NASA f o r  s imulat ion w a s  P rob lem No. 1, as 
shown in f igure  2. 

19 
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Figure 2. Control Policy Change with Adaptive Logic 
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1 '  3. COMPUTER SIMULATION O F  PROBLEM NUMBER 1 

3.1 Mathematical  Formulat ion 

W e  may set for th  the following f ramework  of the problem i n  a 
genera l  state notation. Let 

x = x1 + , ..., Xn be me te red  sys t em state var iab les  

- 
u = u1 u,, ..., u be control ler  policy vec tor  m 

(o (E) SO a cont ro l le r  constraint  

G(%,ii,t) = 0 a relat ion between control policy and sys t em 
var iab les  

P(St,G) a per formance  index which is minimized by proper  se- 
lection of ii(S) 

Per fo rmance  general ly  is marked: 

P (Z,ii)<O sa t i s f ac to ry  

o r  

P(Z,ii)s 0 unsatisfactory.  

For the  case we wish to study, we  may a s s u m e  that  a policy G(Z) has  
been prede termined  such  that  P(x,E) < 0 until a cont ro l le r  fa i lure  o r  plant 
c h a r a c t e r i s t i c  change occurs .  In the latter case it is n e c e s s a r y  to  de te r -  
mine  a new control policy at:) such that  P(W,fi*)<O. The new policy is 
s imultaneously de te rmined  by  the human and t r a n s f e r r e d  t o  the  t ra inable  
computer  (control ler) .  Additionally, it might be expected that  the t ra inable  
logic  gives s o m e  indication t o  the  human when it is r eady  to  take  control.  

T o  give m o r e  meaning to the  genera l  f ramework ,  let u s  specify 
p a r a m e t e r s ,  constraints ,  plant equations, costs ,  etc. Le t  the plant be a 
s e r v o m o t o r  that is adjusting to  command inputs which are  s t ep  functions. 
By le t t ing the  t i m e  in te rva ls  between s t ep  changes be  much g r e a t e r  than 
the  s y s t e m  t ime  constant, the  s t eps  can be considered independent in t ime.  

21 



Nature se l ec t s  any one f r o m  a number of plant equations by select- 
ing i and j i n  the governing differential equation 

A f t e r  a select ion of (i , j) ,  the control 
that a performance index, P, is minimized. 
a rb i t r a r i l y  se lec t  an index which conserves  

problem is to choose k such  
A s  a per formance  index let u s  
both fuel and t ime.  

t=tf 

P = J ( C p  + 1) dt 
t=t 

0 

where i = 1 ,2 ,  ..., n, and where tf-to is t h e  t i m e  r equ i r ed  to  br ing  t h e  s y s t e m  
output to t h e  input command and C i  is a weighting fac tor  fo r  fuel use.  

A s  a constraint  on the controll ing policy, let us  a s s u m e  

cp (u) = l u l  -1 5 0 

and actual pe rmis s ib l e  values 

u = ( l , O , - 1 )  

Let  
s ta r t ing  t i m e  t = to 
input z = zo 

output Y (t) 

e r r o r  rate 
control policy u1 = u(&,e) 

e r r o r  e(t) =z( to)  - y (t) 
6(t) = 20 - jr(t) = -jr(t) f o r  s t ep  input 

The differential  equation governing error is 

Starting a t  t = to the above va r i ab le s  are: 

z = zo 
Y = Yo 
e = eo 
e ' =  G o  

2 2  
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I -  A t  t = tf, the e r r o r ,  the e r r o r  r a t e ,  and the per formance  are expected to 

sa t i s fy  the conditions 

e2 + S2 5 C e  
P 5 P, 

A change i n  the des i r ed  control  policy occur s  .when the values of coefficients 
(a,k,C) are  not (a,,k, ,C,), and when the  corresponding per formance  threshold  
is exceeded. 

3.1.1 Per fo rmance  

Thinking of u as a torque-producing p a r a m e t e r  and \ u l  a s  a r a t e  of 
fuel consumption, we  consider  a sys tem which at tempts  to null its e r r o r  
while minimizing a combination of fuel and t ime.  For a s ingle  s t ep  input, 
t he  functional 

t' = tf 
f 

P(u,t) = (C I u ~  + 1) dt' 
t' = t 

0 

is minimized (where tf - to is the  t ime  r equ i r ed  to  br ing  the s y s t e m  t o  the  
des i r ed  output value). By lett ing the t i m e  in te rva ls  between s t ep  changes be 
much g r e a t e r  than the  sys t em t ime constant,  the  s t eps  can be cons idered  
independent in  t ime.  This  being the  case ,  per formance  may be  judged on 
nulling the e r r o r  fo r  individual steps.  To accomplish this ,  the function, P, 
is treated as a cos t  function and its value is compared  with an expected 
value,  E(P).  The expected value is: 

E(P)  = minimum cos t  + to le rance  

= min 1 ( C \ U ~  + 1) d7 + y 
0 

w h e r e  the minimization is over  control policy u (e,&). A warning of 
Pe r fo rmance  deter iorat ion is given to the human when 

E(P)  - P 2 0 
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3.1 .2  Control Policy 

A control policy, u(e,d), is a specification of control  values (-1, 0, 1) 
fo r  all  points in  t he  e r r o r - e r r o r  r a t e  plane. A convenient method is to divide 
the phase  plane into regions and to specify control  values for  each region. 
The p rope r  choice of regions is der ived by a laborious computation Of  

switching boundaries fo r  the control var iable ,  u, which minimizes  the Per-  
formance  cr i ter ion.  These  boundaries a r e  dependent on both plant parame-  
t e r s  and the choice of per formance  c r i te r ion .  

A change in  the control policy may be brought about e i ther  by a 
change of switching boundaries o r  by a change of the control  values used 
within the regions defined by the boundaries.  It was decided to take the 
latter approach. The phase  plane was divided into m o r e  regions than an 
optimal control policy demands.  In addition, the boundaries  can be adjusted 
by input data. The ex t r a  regions pe rmi t  a select ion f r o m  a l a r g e r  c l a s s  of 
control policies, while the adjustable boundaries p e r m i t  exper iments  to be 
conducted with var ious values of plant pa rame te r s .  

When the per formance  of the automatic control  sys t em is judged 
to be inadequate, the control  may be t r a n s f e r r e d  to manual mode. 

In the manual mode, adaptive logic monitors  the manual control and 
adapts to a n  available control  policy which most  c losely r e s e m b l e s  that of 
the human. A block d iagram that indicates the flow of information is shown 
in f igure 2 .  The following sect ion explains the computer  implementation of 
the problem. 

3.2 Digit  a1 Imp 1 em e n  t a t  ion 

The digital p rog ram f o r  the Human P e r f o r m a n c e  Control  and 
Monitoring System was writ ten fo r  the SDS 910 computer .  The main pro-  
g r a m  is in  FORTRAN,  and the random number  subrout ine  is in  Meta Symbol. 
A flow diagram of the p rogram is presented  in f igure  3 .  A complete l i s t  of 
symbols  and the program l is t ings a r e  p re sen ted  in  appendix B. 

- 1  
1 
I 
1 

The program begins by reading i n  the  data  f o r  the exper iment  and 
set t ing the system p a r a m e t e r s  equal to t h e i r  ini t ia l  values .  The expected 
per formance  is computed for  the value of yin (des i r ed  output) cor respond-  
ing to TIME = 0, a s  explained in sect ion 3.1. 

I 
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Figure 3. Flow Diagram of Digital Program 
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The main loop of the program (figure 4) is then completed fo r  each 
increment  of time. The state var iables  a r e  evaluated a s  to the i r  position in 
the phase space,  which is present ly  divided by four  s t ra ight  l ines  with var i -  
able s lopes and in te rcepts  and one curve  through the origin.  This quantizes 
the space  into 32 possible  regions.  Associated with each region is a control  
value and a counter that  is used when monitoring manual operation. The 
t ra ining takes  place by rewarding the counter when the manual control and 
the control value assoc ia ted  with the region a g r e e ,  and punishing the 
counter otherwise.  The maximum number of s t eps  in the counter is a 
var iable  and is input at  the beginning of the experiment .  If the counter is 
decreased  to zero,  a new random control  is generated and i s  now assoc ia ted  
with that region. A specif ic  example of the above procedure  follows, where 
the number of s teps  needed fo r  t ra ining is s e t  a t  3. 

I 

~ Manual Tra in  e d 
- Time Control Control Counter 

tk 1 1 2 

1 1 3 

1 1 3 
tk+ 1 

tk+ 2 

tk+ 3 -1 1 2 

tk+4 -1 1 1 

tk+ 5 -1 1 0 

tk+6 -1 (Random) 0 0 

-1 (Random) -1 1 tk+7 

tk+ 8 -1 -1 

tk+9 -1 -1 

tk+ 10  -1 -1 

A fa i r ly  s imple  method of generat ing pseudo-random numbers  in 
a binary digital machine was found.21 
appea r s  to be generated by random p r o c e s s e s .  While adequate random 
numbers  were available on punched c a r d s  o r  magnet ic  tape,  they w e r e  
imprac t ica l  f o r  ou r  u se  because  of insuff ic ient  quantity and s low access. 
The de terminis t ic  method employed is given by the equation 

F o r  o u r  purpose,  the series 
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I '  

DETERMINE COMPUTE INCREMENT * EXIT 
DETERMINE 

ENTER REGION CONTROL - OUTPUTS TIME 

, 

Figure 4. Main Loop of Digital Program 

27 



where 

Rn = nth random number 

Rn+l = ( n + l ) s t  random number 

K = a constant mult ipl ier  (the l a rges t  odd power of 5 that a 
24-bit word wil l  hold) 

N = the number of binary digits p e r  word, o r  24 in  our  c a s e  

N The mod 2 operation is done by taking K t imes  Rn,  and then by 
se t t ing  Rn+l equal to the l ea s t  significant half of the resu l t .  It can be shown 
that, s t a r t i ng  with an odd Ro, one wil l  run through 2N-2 numbers  before r e -  
peating a number.  Since o u r  random decis ions could only take on three  values,  
-1, 1, and 0, only 2 bi ts  of the generated 24 random bits were  used p e r  
decision, according to the following tabulation. 

Random Bi ts  - 

0 0  
0 1  
1 1  
1 0  

Decision 

0 
1 

-1 
Not used 

This  then inc reases  our  repeatabi l i ty  f ac to r  by 6 .  

Since four  s e n s e  switches are  avai lable  on the SDS 910 computer ,  it 
was decided to have SS 4 de te rmine  the mode of operat ion and a combination 
of SS 1 and SS 2 the control  value when in the manual mode. When in the 
automatic  mode, the t ra ined control  is used. 

Set  - Manual mode 

Rese t  - Automatic mode 
s s 4  < 

Manual 
ss 1 ss 2 Control  

Set  Se t  1 

Set  Rese t  0 

Reset  Set 0 

\ 
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This control value is then a l te red  by the s y s t e m  gain constant, which 
is input with the initial data. 

Straightforward computations, which evaluate  the plant equations and 
the e r r o r  equations, include: 

where 

T = t ime  increment  

a = input constant 

u = control  value 

The actual  per formance  is then evaluated where 

P = J‘ (C Iu1 + 1) d t  
P 

t0 

and checked against  the expected performance.  T ime  is incremented,  and the 
data f o r  this loop a r e  output if s e n s e  switch 3 is reset. Before repeat ing the 
main loop, a check is made to see if the value of yin has changed. If it has ,  
a new value f o r  the expected per formance  is computed. This p r o c e s s  
continues until the upper  l imi t  of the per formance  in tegra l  is found, which 
o c c u r s  when 

where  Ce is a specified constant. 
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3.3 Experimental  Work 

The experimental  setup w a s  a s  follows. The computer  input data were  
r e a d  i n  on cards .  The data specified the values of constants and the t i m e  a t  
which inputs to  the control sys t em and the cos t  weighting of fuel in  the pe r -  
formance  index would change. The computer  output was  a typewritten print-  
out. The output consis ted of a l is t ing of the following information in  eight 
columns: 

a. Time. 

b. Control being used. 

c. Position. 

d. Posit ion ra te .  

e. E r r o r .  

f. E r r o r  r a t e .  

g. Per formance .  

h. Desired position. 

A nonzero s t ep  input gives r i s e  to an e r r o r  which the cont ro l le r  mus t  
null, With each change i n  input value, a n  e s t ima te  of expected cos t  and t i m e  
of convergence is given. 

Convergence occur s  when the e r r o r  and e r r o r  rate a r e  sufficiently s m a l l  
(ea + G a  50.01). If the actual  cos t  exceeded the  expected cos t  before  conver-  
gence occurred ,  a message  was typed out to indicate  tha t  per formance  w a s  
poor. 

3.3.1 Choice of P a r a m e t e r  Values 

P a r a m e t e r  values w e r e  chosen in mos t  ins tances  to help i l l u s t r a t e  and 
emphasize those  aspec ts  of the sys t em which w e r e  of i n t e re s t .  Where  pa ram-  
e t e r s  were  of l imited in te res t ,  normal ized  values  w e r e  used. 

Typical values, 

AT = 0.05 s e c  (computation and pr intout  in te rva l )  

30 
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a = 1 (plant damping constant) 

k = 1 (sys tem gain) 

u = f 1, 0 (torque) 

C = 0.1, 2.5, 5.0 values used in the per formance  index 
P 

ea + Ga gO.01 is the te rmina l  zone for  convergence 

The minimum number of t i m e  increments  n e c e s s a r y  to  t r a in  completely 
within a phase  space  control  region w a s  set equal t o  three .  

3.3.2 Cost Project ion and Choice of Control Regions 

The projected coat fnr ll1tllillg 2n e r ro r  WEE nhtalned hy cnrr*p’-rting the 
minimum cos t  and adding a tolerance.  The minimum cos t  calculation, how- 
ever ,  did not take  into account tha t  the automatic  control  policy finally adopted 
had to be se lec ted  f r o m  a set of admiss ib le  controls ,  possibly none of which 
minimized the per formance  function, F igu re  5 shows one quadrant of the 
phase  plane with regions defined by  switching boundaries.  The circle about 
the or igin indicates  the te rmina l  region in which no cos t  is accumulated.  The 
sys t em constants and control  to rque  constrain the plant output r a t e s  to less 
than fl rad/second. The weighting given t o  fuel in  the per formance  index and 
the pe rmis s ib l e  switching cu rves  in  the phase space  were  se lec ted  such  that  
n e a r  opt imal  policies exis ted for  the  per formance  indices used. An a l te rna t ive  
approach would be  to complete the expected costs ,  based  upon available control  
policies.  However, i f  control flexibility is desired,  the number of policies to  
which the cont ro l le r  can be  t ra ined  must  be  la rge .  This  would r e s u l t  i n  a 
prohibit ively long computation fo r  the expected cos t  s ince  each control  policy 
should be  examined. 

F i g u r e s  6 and 7 show the cos t  i ncu r red  when different control pol ic ies  
are used  with a given per formance  index. Pe r fo rmance  is shown for four  
cont ro l  pol ic ies  and a minimum fuel cost .  Table  1 gives a s u m m a r y  of c o s t s  
with t h r e e  different per formance  indices.  Each of the  control pol ic ies  is 
n e a r  opt imal  fo r  one of the performance p a r a m e t e r s  (C ). The four  control  
po l ic ies  range  f rom a minimum fuel policy to  a minimu& t i m e  policy. 
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I -  
TABLE 1. SUMMARY O F  REFERENCE COST DATA i -  

~ Type of Pol icy 

Minimum fuel 

Conservat ive fuel 

Conservat ive fuel 

Minimum t i m e  

Expected cos t  E(P) 

5.0 

7.6 

7.4 

7.5 

9.9 

7.9 

2.5 

5.2 

4.8 

4.75 

6.48 

5.7 

0.1 

3.0 

2.25 

2.11 

1.86 

2.04 

Expected cos t  is based  on cos t  to  o r ig in  while actual  cos t  is 
based  on cos t  to  t e rmina l  zone near  origin.  

3.3.3 Training. t o  a Control Pol icy 

The  control  values  and resul t ing cos t s  are graphed in  f igure  8, with 
a t i m e  opt imal  policy being used where fuel conservat ive policy is desired.  
The r e s u l t  is a high cos t  to  converge to  the  t e rmina l  zone. Retraining 
starts with approximately the s a m e  initial conditions as the previous s t e p  
( e r r o r  0.8, e r r o r  rate 0). The cost  fo r  the control  used during the  re- 
t ra in ing  in te rva l  is lower  than t h e  previous policy but still f a r  i n  excess of 
the poss ib le  minimum. The t ra ined  cont ro l le r  has  a per formance  cos t  below 
tha t  of the  human control ler .  This  occurs  because  the automatic  policy which 
c lose ly  approximates  the human cont ro l le r  is c l o s e r  to optimal than the  human 
cont ro l  policy. F igu re  9 shows the  phase plane t r a j ec to ry  during the r e t r a in -  
ing  per iod,  while f igure  10 shows the phase  plane t r a j ec to ry  resul t ing f r o m  
the  t r a ined  control ler .  

F i g u r e s  11, 1 2 ,  and 13 again show t ra in ing  t o  a n e a r  optimal policy where 
the  pe r fo rmance  index weights the cost of fuel somewhat less. 
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Finally,  f igures  14 and 15 show training to a policy which is not optimal 
but ve ry  close to  that of the human control ler .  Training was accomplished 
over  a period of two s t ep  inputs. After the initial t ra ining,  the control  w a s  
re turned  to automatic but, before  convergence occur red ,  the human opera tor  
became dissat isf ied with the per formance  and se lec ted  manual control  again. 
The t ra ined  policy closely approximates  the human policy, because  the human 
opera tor  did not change control values frequently within given phase space  
regions.  A s u m m a r y  of the experimental  work is given i n  table  2. 

It was observed that  the human opera tor  tended to switch control  torque 
f a r  more  often than necessa ry  to keep cos t s  low. Consequently, the automatic  
control to which the opera tor  t ra ined  frequent ly  c a m e  up with lower cos ts ,  
s ince the t ra inable  cont ro l le r  tends to in tegra te  the type of control  used within 
a control  region. 
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TABLE 2. DESCRIPTION O F  GRAPHS 

Description of Graphs 

Switching Boundaries i n  P h a s e  Space 

Reference  Data for C 
P 

Reference Data f o r  C 
P 

Experiment  Number 1: Training of Cont ro l le r  f rom 
T ime  Optimal to a Fuel Conservat ive Policy; E r r o r ,  
Cost, and Control Values 

= 5.0 

= 5.0 

Experiment  Number 1: P h a s e  P lane  Tra j ec to ry  During 
m--a..:..- A 1 a A l l A 1 1 5  

Experiment  Number 1: P h a s e  Tra j ec to ry  of Tra ined  
Control ler  

Experiment  Number 2: 
Minimum Fuel  Pol icy  to Fue l  Conservat ive Policy; Cost  
and Control Values 

Training of Control ler  f r o m  

Experiment  Number 2: Phase  Plane Tra j ec to ry  During 
Training 

Experiment Number 2: P h a s e  Tra j ec to ry  of Trained 
Control ler  

Experiment Number 3: Tra in ing  of a Control ler  to  Arb i t r a ry  
Human Control Pol icy  

Experiment  Number 3: P h a s e  Tra j ec to ry  Resulting from 
Tra in ing  i n  Experiment  Number 3 
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4 .  CONCLUSIONS AND RECOMMENDATIONS 

The work done under the PCMS program has  extended the t ra inable  
logical network concept into a tool for  adaptive decision-making. Types of 
decision p rocesses  and the i r  assoc ia ted  decision c r i t e r i a  were  identified. A 
mathematical  model of the adaptive decision p rocess  was developed and 
evaluated by applying it to a problem of control.  The r e su l t s  were  ve ry  en- 
couraging for the sample  plant and per formance  index chosen. The approach 
adopted made maximum u s e  of a p r i o r i  information about the plant and  input 
waveforms. 

It is recommended that a study be undertaken which d i rec t ly  a t tacks the 
two problems:  (1) choice of per formance  measurements ,  and (2) teaching 
a human to control a sys t em in accordance with predefined per formance  
c r i t e r i a .  
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APPENDIX A 

LEAST SQUARES PREDICTION 
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Let qi be the per formance  measured  a t  t ime t i+ l .  It is taken as a 
random variable,  having mean value E(qi). Let this mean value be given by 

-i  where x is the measurement  vec tor  a t  t ime ti, having components xj(ti) fo r  
j = 1 ,2 ,  ..., r, and where 8 is a vector  of p a r a m e t e r s  having components 
B j  (ti). Knowing this relationship enables  one to establish. the mean value of 
per formance  one t ime unit in  advance of measu remen t s  K' . The problem 
posed i s  one where we a r e  given the fo rm of the function f .  We must  
es tab l i sh  the bes t  es t imate  of the p a r a m e t e r s ,  e ,  its dis t r ibut ional  proper t ies ,  
and s o m e  computing algori thm fo r  its updating with t ime.  

- 

Let the measured  per formance  over  n-time indices  be r ep resen ted  by 
the vector  

The problem becomes especial ly  s imple  now, i f  we take  the above re ferenced  
functional form as l 3  

E(q)  = A T  

where 

A = [aij = gj(xi)] ; i = I, 2,  ..., n 
j = 1, 2, ..., r 

with gj(xi) being independent functions of the measu remen t  vec tor  
index i,  and where the p a r a m e t e r  vec tor  is of the f o r m  

a t  t ime  

That i s ,  the  performance predicted fo r  t ime index i+ l  is given by 
r 

= ail 0, + aia€), + ... + airer 

fo r  i = 1, 2, ..., n. Select  the "best" e s t i m a t e  of the p a r a m e t e r ,  - r \  9, 0 ,  as one 

which minimizes  the sum of the s q u a r e s  of the deviation of E(q) f rom the 
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actual  measurements ,  q; i.e., let 

I 

To minimize R a ,  let the r ank  of A be r ,  whereby it can be shown in a s t ra ight -  
forward  manner  (sett ing its der ivat ive with r e spec t  to s equal to the vec tor  
0) that  one mus t  select 
- 

A -  T 
9 = qA (A A)" 

T Note that  ma t r ix  A is not a s q u a r e  matr ix ,  and that A A is a nonsingular 
s y m m e t r i c  r-by-r matr ix .  In th i s  case ,  one obtains 

A theo rem by Markov states tha t  i f  we take the components of q as normal ly  
dis t r ibuted with common var iance  0' (a res t r ic t ion  that is convenient rather 
than necessa ry ) ,  then 

A Ra 
(3) e and a U are independent, 

where n is used to denote "distributed as'' and N a, B is used to denote 
"normal  with mean a and var iance-covariance B*?! ThJs r e s u l t  is of i n t e r e s t  
to u s  here in that one obtains the distributional p rope r t i e s  of the prediction 
r equ i r ed  fo r  decision theore t ic  considerations.  

A s  an i l lustrat ion,  let f (K , i )  be s o m e  arbitrary function of, say,  three 
va r i ab le s .  Let these be the t h r e e  measurements :  xl , xa ,  and xg . The best 
second-order f i t  nf E(qi) is of the form 
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where 

is evaluated a s  above using the mat r ix  A given by 
r- 1 

A =  I 
I 

(n) (n) (n) x , x 2  , x 3  , . . . . . . . . . . . . . . . . . . . . . . . * * * * * * *  
1 1  1 

The previously descr ibed  procedure  now yields the l e a s t  s q u a r e s  f i t  of the 
specified form.  

With n > r  collections of data (consisting of the n-rows of ma t r ix  A ) ,  
is known, one can a l s o  one can readi ly  establish'$. If the distribution of 

es tabl ish the distribution of g. F o r  the t ime  being, however,  we will cons ider  
q a s  normally distributed. Consequently, as n ge ts  l a r g e r ,  the e lements  of 
the variance-covariance mat r ix  assoc ia ted  with 8 d e c r e a s e s  approximately 

1 
a s  - Whereas this proper ty  is des i r ed  when the p r o c e s s  being considered n '  
is s ta t ionary,  i t  may not be des i red  in the adaptive prediction techniques 
conside r ed  here .  

- 

Consider,  f i r s t ,  the c a s e  where N-sets of data a re  to be considered in 
conjunction with weighting f ac to r s  which depend only on the i r  age.  The 
solution i s  obtained by  using a modified R2, Q 2 ,  given by 

1 r o  w2 0 .  . .  
w1 0 0 . .  . 

w l  n 
J 

where the w j  a r e  posit ive weighting fac tors .  By denoting the weighting 
mat r ix ,  S, we obtain 

T T T T T 
Q" = qWq - qWAQ - QA Wq +- 9A WAO 



wherein 

Hence, 

T 8 = (WA) (A WA)- l  

where (ATW A ) - l  exists whenever (AT A)-l ex is t s  (i.e., whenever A is of rank  
r, and e = el, ..., er). One can again obtain the distribution in  8 by knowing 
the distribution o f t .  

A 

W e  sha l l  now consider  the computational aspec ts  of the above. Desig- 
nate the  per formance  measu remen t s  by the vector  

Let  the  p a r a m e t e r s  that  have been est imated after the above n-measurements  
be designated$,. Let  the sys t em measurement  ma t r ix  be a r r anged  in the 
(n-by-r) mat r ix ,  An. W e  have indicated tha t  the s imple  unweighted case gives 
rise to  the solution 

= q A A 1-1 
A 

'n n n n 

If the  additional data obtained during the ( n + l ) s t  in te rva l  a r e  designed by the  
(vector)  row m a t r i x  Bn+l,= a n + l , l ,  an+1,2,*.*s a n + l , r  ), then the updated "best" 
e s t ima te  of p a r a m e t e r  e is representab le  in  t e r m s  of the par t i t ioned m a t r i c e s  
given in  the equation 

wherein 

B )-I 
n n n + l  n+l 

The total  s y s t e m  m e m o r y  r equ i r ed  for this  updating p r o c e s s  res ide6  in  the 
(1-by-r) vector  (6 A ) and the (r-by-r)  mat r ix ,  A n n  TA . o n  
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F o r  the weighted case, we establ ished that  for  n-sets  of data, 
-1 8 = t  W A (A W A )  

n o n n n n n  

where 

w =  
n 

w , o  0 .  
0 w , o  . 

. w  - n 

This  impl ies  that  the weight, w 
re la t ive  to the minimization procedure .  Assume,  for the s a k e  of s implici ty ,  
that  the relat ive importance of one sample  to  another  sample  r e m a i n s  fixed 
once it is established; i.e., once the weight, wj, is establ ished,  the ra t io  wj/wk 
for  all k 5 j r ema ins  fixed (independent of ass ignments  of weights wi fo r  
i > j). Under this assumption, we see that  for t ime  index, n + l ,  we can  wr i t e  

is given to the s q u a r e  of the  j th deviation, j' 

wherein o u r  weighted updating p rocedure  would compute 

-1 

A -1 
n + l  qn+1 "n+l) [ A W A  + w  BT B ) 

n + l  n + l  n + l  
= q W A  + w  

'n+l [ o n n 
n n n  

Noting that the updated p a r a m e t e r s  a r e  r ep resen ted  as 

A i," ) 
n+ 1 

w o  

n+ 1 
n+ 1 



w e  see that 

= q W A  + w  q B 
qoWn+lAn+l  o n n n + l  n + l  n+ l  

and 

W A = A ' W A  + w  B n + l  n + l  n + l  n n n  n + l  n + l  n + l  A 

These p a r a m e t e r s  are then used i n  the succeeding cycles  of computations, 
yielding for all m. 

The above scheme  can  be readi ly  modified t o  pe r fo rm the  computation 
of predicted per formance  on the  basis of previous data without updating. This  
would be  useful fo r  es tabl ishing control modifications of the man-machine 
process .  
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APPENDIX B 

SYMBOL 

A N D  

PROGRAM LISTINGS 



FORTRAN Name Meaning 

A 
ALPH(J) 
BETA( J) 
CE 
C P  
ER 
ERDAB 
ERDOT 
EXPR 
ICTR(M) 
IFLAG 
IRU(M) 
L 
NUMST 
OFLAG 
P E R F  
PFLAG 
RAND 

SIER 

S T P  
TAU 
TIM E 
TYIN (J) , J= 1, L 
Y I N P  (J), J=1, L 
TOL 
uu 

Y 
YDOT 
YIN 
Z K  

V(J)  

Constant used in  y, i ,  and performance equations 
Slope of l ine J 
Intercept  of l ine J 
Tolerance f o r  des i r ed  output region 
Constant used in  performance evaluation 
e = error 
Absolute value of 6 
4 
Expected per form anc e 
Counter fo r  region M 
Flag  to  denote change in  yin 
Monitored control  f o r  region M 
Number of s t eps  in  t i m e  function for yin 
Number of s t e p s  needed f o r  t ra ining 
Flag to  denote actual  output within to le rance  region 
Pe r fo rmance  evaluation 
Flag to denote poor per formance  
Random number subrout ine 
Sign function of 6 = la . 

e 
Distance f rom desired output 
Increment  of t i m e  
T ime  
T ime  for  values  of yin 
Values of yin as a function of t i m e  
Pe r fo rmance  to le rance  
Control value before  incorpora t ing  gain 
Value of regional  function J at s o m e  point 
y = actual  output 

Value of yin (des i r ed  output) 
System gain constant  

f 



Random Number Subroutine 

06081 
8ff 883 

1 WAN0 PZE 
2 RP M 
3 XS D 
4 RQM 
9 *  
6 LOX 
7 A  BP X 
8 L DX 
9 A A  L I I A  

10 SUA 
11 RQU 
12 L OA 
13 XUP 
1 4  FTA 
1’; lrTA 
16 BZ1 L ne 
17 LOA 
A9 I S H  
19 FTB 
20 SK c 
2 1  RQU 
22 LDB 
33 SKU 
24  RQU 
25  L I I A  
26 OUT S f A  
27 STX 
28 P W  
2P 
10 N12 nATA 
31 N12l DATA 
72 ON1 DATA 
35 RANDM DATA 
34 K DATA 
1 5  TWE DATA 
36 TEM PES 
37 R 2 8 1 1  PZE 
78 N1 EQU 
79 ZERO EQU 
49 OH EOU 
41 XUP OPD 
42 XSO OPD 
43 END 

281SYS 
2@2SYS 

211SYF 
TEM 
2 02SYS 

N12 
88 
N12 I 
RANDM 
N1 
%2 
PN1 
I( 
RANDM 
Q2B 1 f 
V 6  I T 
7ERO 
2 
Q26 I T 
ONE 
OUT 
THRE 
THRE 
A 
N1 

*T€M 
N12 
RAND 

-1 
-12 
8371 45213 
637145213 
873 46545 
3 
2 

026 
123 
62 4 
6146bOObl 
6116060160 



7 
8 
9 
l(! 
11 
12 
73 
14 
15 
1 6  
17 
18 
19 
21 
21 
22 
23 
24 
29 
26 
27 
28 
29 
3tl 
31 
32 
35 
34 
35 
36 
37 
38 
79 
kfl 
41  
h2 
h3 
44 
45 

47 
48 
49 
TQ 
51 
52 
53 
54 
55 

46 

1 ’  WMAN PFRFORYANCE CONTP01 AN0 YON1 TOl, I NG SYSTEM 
2 c  CnNfRACf  NO, N A S I  1085 
3 DIMENSION TYINt751 YINPf’ISI, ALPHf51, BEfAf51, V f ’ i l ,  IRUW311,  

5 
6 C  INPUT INITIAL bAfA 

rr 1 IC fR  c11/11 I,CPINI75\ 
COWN TVIN,Y INP,ALPH,BETA,V, IRU, ICTQ,CPIN 

C L=NO. OF VALUES Y I N  CAN ASSUW 
C TvlN,vlNP:TlME.FtlIMEl FOR Y IN 

25 REAb- 126,t 
126 F ~ M A T  r 131 
118  READ 171, f TY I N f J I, Y I NP f J I ,  CP I N t J 1, J:l ,L 1 
ill fOOMATIJF11.? I 

174 FORMATI//, 7X, 4Hf I UF,7X,3HY IN17X,2H CPI 
135 TVPF 176,rJ tVIN?JI,YINPtJl,CPl#CJ~,J=1,L 1 
136 FMMAf f I7,3Fld.? 1 
177 FCIPUAT 11~,2ClB.21 
178 FmMhT ?2F1@,21 

TYPF 174 

C READ SLOPFS AND INTERCEPTS OF LINES OElEPWNING REGIONS 

TVPF 141 

PEA0 NO, r)F STEPS NEEOF0 FOfi TRAININC 
REA0 126, NUMST 

1 4 I  READ 178, CALPHtJ1,BETA !J1, J=1,4 I 

145 TVPF 177, tJ,ALPHtJl,RETAfJf .J=l,hI 
141  F n R M A T l / / , l X , 4 H A L P ~ , 7 ~ , ~ ~ ~ € T A I  

C 

146; TVPE 147,NUksT 
147 FOPMAfl//,5X,6HNU~T=, 111 

C IRUIMI=INITIAC CONTRnt FOR WGICIN Y 
W A D  126, t tQUCW,Mrl,311 
TVPE 127 

127 FfY’?MATr//,?Y,SWGION CONTPOL*l 
148 WPF 149, IM, IRUfMEl,M=B,Sl I 
749 FCIRMATf9X, lS,7X, 111 
158 rrm=fl.r 
151 00 154 kt11,51 

1 CTQ (MI= 8 
734 CnNTlNUE 

v=e .@ 
PFRF= II , fl 
IFLAG=(! 
nFLAI: = I 
1 =7 

155 vlY:YtNPrl1 
F R W T  = 

v a  W A ~  111,~ 
RFAn 118,tK 
PFAn 118,CP 
REAn 110,TAU 
RFAn 11Q,CF 
WAr) l i e ,  TOL 
TVPF 113, A,7K,CP,TAU,CE,TrrC 
w e €  126 

l l ( l  FnRYATfFlt.J1 
115 F ~ U A 7 f / , 2 H A ~ , F ~ . ~ , 6 ~ ~ ~ ~ ~ ~ ~ , f ~ , ~ , 6 ~ - ~ ~ C P ~ , F ? . 3 , 7 ~ - - l A U ~ , ~ , S ,  

Y DOT= e. e 



t 

= 56 
= 97 
= 58 
= 59 
= 69 
= 61 
= 4 2  
= 63 
= 64 
= a 5  = 66 
= c n  
= 68 
= 6? 
: 79 

71 
= 72 
= 73 = 74 
= 7s 
= 76 
= 77 = 78 
= 79 
= 86 
= P l  = 82 
= 85 
= F4 
= F5 
= e6 
= 87 
= 80 
= p19 
= 91 
= 91 = *  
= 93 = 94 
= 95 
= 96 = 97 
= ?e 
= 99 
= tge 
= 161 = 982 
= lf l3 
= 164 
= 185 
= l d 6  
= l(r7 
= 1A8 
= l b 9  
= f l l l  

59 



= 111 215 IFtSENSE SWITCH 21  226,236 

= 117 GO TO 768 
= 114 230 UV= -1.0 = 115 c MONITOR MANUAL CONTROL 
: 116 711 IffUU-IRUIMY1 731,710,730 
= 117 710 1Cf ICTPfMl-NUMST1 726,366,360 = 118 72Q ICTR[MI= ICTR[Ml+ l  
= 119 60 TO 786 
= 120 736 IF f iCTRfMl l  76~,746,761 
: 121 740 CALL RANOtNEWl 
= 122 IPU(Ul=NEWU 
= 135 1 f fUU-NEW1 366,351,366 
= 134 750 ICTR(Mk2 = 125 7i;B 1 CTR fMI= l C f P  (MY-1 
= 126 ctl TO 361 
= 127 C UNDFR AUTOMAT I C  CONTRfX 
= 128 351 IFfOFlAGY 278,27b,266 
= 129 361 U=B.b 
= 178 GO Tn 110 
= 111 370 UU=IQUtMI 
= 172 T(l0 u=uu*7K 
= 133 c COMPUTE V AWrJ VOOT = 134 310 V=U/A*(TAU-l .b/A )+[YDOT+AV Y/A+CU/A**2-VMlT/AI*EXPt-A'fAUI 
= 175 YD~T-U/A-fU/A-Y00Tl*EXP~~A*TAUl 
= 736 W ERzVIN-Y 
= 177 EPDnT=-Y DflT 

t 112 230 uu=g.a 

= 1M Sf P-E!? n0f **2+ER*Y 
= 119 45ll flFLAk1 
= 1 4 8  cn TO 575 
: 141 455.ORAG-8 
= 142 755 IFtlFLAG1 Vfl,361,371 
= 143 16Q P€QF=PfRF+CCP*ARSIU1+1 .6 )*TAU = 144 cfl TO 175 
= 145 170 PERF= fCP*ARS I U H l  .O ]*TAU 
= 146 C OUTPUT DATA FOQ THIS 1C)OP 
= 147 179 IFrSENSE SWITCH 11 461,408 
= 148 466 TYPF 388 t tMf, l l ,V,Y00t,ER,ER~~T,P~~F,Y IN = 149 V?6 FtWMATf8hfl.41 
= lq(1 461 TIMf=llME+lAU 
= 157 
= 152 410 VIN=VlNPfl+l l  
= 15s CP=CPINCI+lI 
= 154 I= 1+1 
= 155 IFLAC1 = 156 Gn TO 960 
= 157 420 IFLAfZO 
s 158 436 I F  (PERF-EXPRI 499,471,476 
= 159 470 IPFLAC=IWLAG+l 
= 168 I F f  IPFLAG-11 499,480,009 
: 167 SFl6 TVPF 485 = 162 485 FMMAt f//,%-PERFORYANCE IS POOR31 
= 163 CO TO 499 = 164 STnP 
= 165 *€W 

1 F f T I ME-TY 1 N t l+l11 42 I, 41 I, 41 6 

60 



C O W M  ALLOCATION 

77552 TV IN V324  VlNP 71312 ALPH 
77246 v 77226 IRU 77166 ICTR 

713111 E T A  
767411 CPlM 

go812 M 
60616 U€W 
@OB25 P€RF 
1111035 A 
16055 CE 
611155 mr 
01165 8 
86075 TACE 
66165 ERDAB 

I 
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BAYES TRUNCATED SEQUENTIAL DECISION SOLUTION 

Let the loss  function associated with one of a finite set of possible 
s t a t e s  of nature,  w e n ,  and one of a finite set of possible  actions,  a c A ,  be 
denoted L(a,w). If one se lec ts  the action which minimizes  the expected lo s s  
af ter  k-experiments have been performed,  then this  expected loss  can be 
shown' to be given b y  

where Ci is the cost  of the ith experiment  which yielded measurement  xi. (If 
A is not finite, one s imply rep laces  with "infimum" over  A.)  In 
t h i s  expression, T ( w )  is the distribution over  the s t a t e s  of na ture  and 

To establish whether to continue experimenting o r  to  make a decision 
af ter  a given experiment,  one compares  the expected lo s s  associated with each 
of these possibil i t ies.  The lesser of these  two expected l o s s e s  (af ter  k-experi-  
ments  have been performed) is given by 
N-experiments has  been run, the minimum los s  would be 

A f t e r  the complete set of 

N 
CY = u N  = CI(xI, x,, ..., x.) + Min E [L(a,w)] 

1 N 5  i= 1 a c A  
N 

Hence ,  a f te r  N - 1  experiments  it would be 

L J 



Continuing i n  th i s  way, one obtains the  complete set of minimum r i s k s  at each 
s t age  of experimentation to  be  

CY = u N  N 

= s m a l l e r  U 
CY N- 1 [ N-1, EN- l ,5  [@N]] 

CY = s m a l l e r  Po, ES 
0 

where  Uo is the expected loss assoc ia ted  with making a decision without 
experimentation, given by 

The  Bayes optimal procedure  r equ i r e s  the computation of cyN,  CY^,^, ..., cyo, in 
tha t  o r d e r .  A t  each s t age  of experimentation, s a y  j ,  one makes  a decision i f  

CY = u  
j j  

Otherwise,  one continues with experiment  j + 1. This is r ep resen ted  sche-  
mat ica l ly  by the tree s t r u c t u r e  shown in  f igure (3-1. 
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Figure C-1. Decision Tree (Sequential Theory with Fixed-Ordered Experiments) 



TRUNCATED SEQUENTIAL DECISIONS WITH 
DETERMINATION OF THE ORDER OF EXPERIMENTATION 

Because notation becomes cumbersome,  the procedure  is descr ibed  
fo r  the c a s e  of t h r e e  experiments:  e,, e,, e3. Generalization t o  N-experi- 
ments  follows directly,  as does a r igorous proof. The descr ipt ion given below, 
however, makes  fo r  g r e a t e r  c lar i ty .  

Basically,  the p r o c e s s  is l ike tha t  descr ibed  previously.  The loss 
ma t r ix  wi l l  be  given by L(a,w) . Let  the states of nature ,  WBR, and the set of 
possible  actions,  acA, be  finite. Le t  the set of observat ions resu l t ing  f r o m  the 
experiments  be denoted by the vector ,  9 = (x, , xa, xg), where  coordinate  xi 
cor responds  to exper iment  ei. The minimum expected loss without experimen- 
tation is then given byla  

[ I  

r 1 U = Min ET [L(a,W)J 
acA 

where  <(w) is the  a p r i o r i  distribution ove r  the states of na ture  and 

9 I 

After experiment  ei has  been performed,  yielding the r e su l t ,  x i  = xio, the  
minimum expected loss assoc ia ted  with making a decision is given by 

where  Ci (xiO) is the cos t  of performing exper iment  ei and having the  r e s u l t s  
be  xi = xio, and where  

E 
5i 

t 
3 wi th  t h e  set F (x Ixio) used  to indicate summat ion  taken ove r  the set of all  

poss ib le  
to  r e p r e s e n t  tlprobability.l’) In a like manner ,  the minimum expected lo s s  
a s soc ia t ed  with making a decision af ter  performing experiment  ei and then 
pe r fo rming  e obtaining r e su l t s  xi and x is given by 

whose i th  coordinate  is xi = xi”. (The symbol,  p, is used generical ly  

j*  j’  
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0 0  U = Min E [L(a,w)] + C.(x. 0 ) + c.. (Xi , X .  ) 
i j  acA O j  1.l J 1 1  

where Ci j  (Xio ,Xjo )  is the cos t  of experiment e. after ei has  been performed,  1 

F o r  the genera l  c a s e  cons idered  he re ,  one should note that  

That is, the o r d e r  i n  which exper iments  are per formed can b e  expected to  b e  
different i f ,  fo r  example, the  experiments  alter the  state of the s y s t e m  con- 
s idered .  However, th i s  procedure is actually requi red  (in genera l )  whenever 
these  probabili t ies are  not independent. 

The procedure  at each  stage in  experimentation is to  compare  the  
expected lo s s  assoc ia ted  with stopping experimentat ion and the expected lo s s  
for the  var ious continuations. A s  before,  the var ious  expected l o s s e s  a r e  
establ ished by first computing 

cy123 = '123 O231 = '231 

a132 = '132 a312  = '312 

F r o m  this,  one computes 



Then one computes 

Finally,  one es tab l i shes  

One can note that Wijk is the expected loss  assoc ia ted  with performing 
exper iments  i, j, k -- i n  tha t  o rde r .  The expression,  q j ,  is the s m a l l e r  of the 
expected l o s s e s  assoc ia ted  with stopping o r  with continuing. Hence, it is the 
minimum expected loss (corresponding to the minimiim expected loss  pro- 
cedure).  This  argument  is repea ted  for  CY^ and f o r  cy 

sees that cya) is the minimum expected r i s k  p r i o r  to  experimenting. 
By this  argument ,  one t$* 

To uti l ize this  procedure,  one should decide without experimentation if 

CY = u  
b , @  

If th i s  is not so,  and 

then one  should pe r fo rm experiment  ei. Having done this ,  one obtains the  
r e s u l t  xi = xio, and inqui res  i f  

0 0 
CY(x ) = U ( x  ) i i  i i  

where in  one should decide without fur ther  experimentation. If this is not so, 
and 

- -  

then the  procedure  calls f o r  continuation by per forming  e 
t r a t e d  by the t r e e  shown in f igure C-2. 

etc. This is i l lus- 
j*  

A r,ucS, =?ore fo rma l  proof can be a rgued  on the  bas i s  of showing that 
t he  expected loss for any o ther  partitioning of the outcome space  into actions 
or expe r imen t s  wi l l  be  higher than that descr ibed  above. This  has  been 
accomplished but, due to its lack of heur i s t ic  appeal, is not included in th i s  
r epor t .  
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Figure C-2. Decision Tree (Path Depending on Experiment Outcome) 
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