

NUCLEAR AEROSPACE RESEAR 11. FACILITY

MEASURED EFFECTS OF THE VARIOUS COMBINATIONS OF NUCLEAR RADIATION, VACUUM, AND CRYOTEMPERATURES ON ENGINEERING MATERIALS

BIENNIAL REPORT

1 May 1964 through 1 May 1966

E. E. Kerlin E. T. Smith

Prepared for George C. Marshall Space Flight Center Huntsville, Alabama

Centract NAS8-2450

GENERAL DYNAMICS

Fort Worth Division

FOREWORD

This report was prepared by the Fort Worth Division of

General Dynamics under Contract No. NASS-2450, Measured Effects

of the Various Combinations of Nuclear Radiation. Vacuum, and

Cryotemperatures on Engineering Materials, for the George C.

Marshall Space Flight Center of the National Aeronautics and Space

Administration. The work was administered under the technical

direction of the Propulsion and Vehicle Engineering Division,

Engineering Materia. Branch of the George C. Marshall Space

Flight Center, with Eugene C. McKannan acting as project manager.

A series of tests was performed during the total contractual period from 9 November 1961 to 1 May 1966 to measure the effects of the various combinations of nuclear radiation, vacuum, and cryotemperatures on nonmetallic engineering materials. The purpose of the tests was to evaluate materials for potential use in spacecraft containing nuclear reactors, where these reactors would be used either as a source of propulsion or for the generation of electrical power. The work was performed by the Nuclear Aerospace Research Facility (NARF) at the Fort Worth Division.

The tests were divided into three main groups, with each group being successively conducted within a 12- to 24-month period. During each of the three periods, monthly and quarterly

progress reports, plus one annual (or biennial) report, were submitted to describe general progress in the work and results of specific tests conducted during the reporting period. Each of the first two annual reports was published in two volumes. They are listed in the References section at the back of this document (Refs. 1-4). This biennial report, which covers the period from 1 May 1964 through 1 May 1966, presents the data on the third and final group of tests to be conducted under the program and constitutes the final report to be submitted under the contract.

The authors wish to acknowledge the valuable assistance of a number of scientific and engineering personnel at NARF in the conduction of these tests: Dr. R. P. Lightfoot for material selection, specimen preparation, and data analysis; W. E. Dungan and F. F. Fleming for nuclear radiation measurements; E. E. Baggett and D. C. Butson for assistance in equipment design; R. E. Miller for design and operation of electronic test instrumentation; J. E. Warwick for operation of vacuum systems and specimen testing; W. C. McMillan, M. R. Self, and G. D. Martin for conduction of dielectric and bearing-lubricant tests; H. G. Thornton, W. M. Laney, and R. L. Burtnett for assistance in conduction of the liquid-hydrogen tests and assistance in data reduction; and J. B. Wattier for statistical analyses.

The authors also wish to acknowledge the special services of David Rocray of the Miniature Precision Bearing Company for balancing the flywheels, supplying the test bearings and lubricants, applying the test lubricants, and testing the operating conditions of the bearings and motors in the bearing-lubricant tests.

Additional valuable assistance was rendered in the tests by people at the Material Division of the Propulsion and Venicle Engineering Laboratory of the George C. Marshall Space Flight Center: R. L. Gause of the Engineering-Physics Branch for his contribution to the design of the Dielectric Tester, and the group at the Physics Branch for conducting the weight-loss tests that are documented in previous reports.

SUMMARY TABLE PROGRAM

MATERIALS TESTED UNDER NASA CONTRACT MASS-2450

Trade	_Material	Numerical		tifying Rep t Data	ort Contain
Name	Description	Icradiat	ion or Co	ntrol Test	Environment
		Air	Vac	Cryo	Cryo-Vac
	STRUCTURAL ADHESIVES				
Aerobond 422J	Epoxy-phenolic	4,5		4,5	
Aerobond 430	Epoxy-phenolic	3,5	3,5		
APCO 12.4 Epon 422J (Aerobond 4?23) ^b	Polyurethane	3,5	3		5
spon 4223 (Nærobond 4323) Epon 929	Epoxy-phenolic		1		
Epon 934	Epoxy	3,5	3	5	
2pon 951	Proprietary	5	,	,	
non VIII	Ероху		1		
H-47	Viny1-phenolic	3	1,3		
M-1000	Epoxy-nylon	3,5	1,3	5	
lexcel 1252	Folyurethane	2		2	
IT-424	Epoxy-phenolic	3,5	3	5	
let1bond 302	Epoxy-phenolic		1		ļ
let1bond 406	Epoxy-polyamide	1,2	1	2	
Set1bond 408	Epoxy-nylon		1		
ietlbond 4021 Jarmco A	Nitrile-phenolic	3	13		1
armoo A Jarmoo C	Modified epoxy Polyurethane	3,5	3	5	ļ
Scotchweld AF-6	Nitrile-phenolic	1	1		1
Scotchweld AF-40	Epoxy-nylon	4	1 1	4	
	STRUCTURAL LAMINATES		j i	₹	Ì
Conolon 506 (Narmco 506)b	Phens.ic-fiberglass	1,2	1	2	5
TL 91-LD	Phenolic-fiberglass	4,5	l i	Ä,5	1
C 2104	Silicone-fiberglass	3,4,5	3	4,5	1
C 2106	Silicone-fiberglass	' '	1	•	ł
Ipon 828/A	Epoxy	5	1	5	ł
iRP Honeycomb	Phenolic-fiberglass	3	3		
Mobaloy AH-81 (AH7-81)b		į] 1		
Mobaloy AH/-81	Phenolic-fiborglass	3,5	3	5	1 .
Paraplex P-43	Polyester-fiberg'ass	2,3,5	3,5	2	3
Selectron 5003	Polyester-fiberglass	3,5	3	5	ĺ
DC R-7521	POTTING COMPOUNDS Silicone		١, ا		1
Durock D-133	Ceramic	3	1 3		
EC-2273B/A	Proprietary	3,4	3	4	
Epon 828/Z	Epoxy	3,4	l i	4	3,5
RTV-60	Silicone Elastomer	31"	1,3	•	
RTV-501	Silicone Elastomer	[3	3		3,5
Scotchcest 212	Epoxy	3	3		1
Sylgard 182 (DC 93-002)b	Silicone	5	5		5
	ELECTRICAL INSULATIONS		,		
DC 7-170	Silicone	3	1,3		
Duroid 5600	Tetrafluoroethylene-fiberglass	4		4,5	5
Estane 5740X1	Polyurethane (ester typa)	3	3		3,5
Geon 2046	Polyvinyl chloride] 3	3		
Geon 8800	Polyvinyl chloride	3,4	3	4	١.
H-Film	Polyimide Chlorotatical	1,2,3,5	1,3	2 2] 3
Kel F-81	Chlorotrifluoroethylene	1,2,3	1,3,5	4	ł
Kyner Kyner 400	Vinylidene fluoride-fiberglass Vinylidene fluoride	1 3	5	5	5
Lamicoid 6033E	Melamine fiberglass	4,5	5	4,5	5
Lexan	Folycarbonate	3'	1 5	4,5	1 5
tylar	Polyester	1	i		-
fylar A	Polyester	3	1,3		
Mylar C	Polyester	1,2,3,5		2	Į.
Plaskon CTFE X2204	Chlorotrifluoroethylene	5	5		[
ilastic 950	Silicone	5		5	l
ilastic 1410	Silicone	5	5	5	l
	DIELECTRICS				
AC-1220	Polyethylene	3	1		
Marlex 6001	Polyethylene	5	ا ، , . ا		l
Marlex 6002	Polyethylene	3	1,3,5		3
Polymer SP-1 Fedlar	Polyimide Polyvinyl fluoride film	3,5] 3		'
rediar Teflon FEP	Fluorinated copolymer of ethylene and propylene (films)	3,5	3,5		1
Teflon TFE-7	Tetrafluoroethylene	2,3,5	1,3,5	2,4,5	3,5
Teflon 100 (Teflon FEF)b		-,-,-	i	-,.,-	-''
Teslar (Tedlar)		1	ī		l
Thermofit RNY	Polyvinyl Chloride	3	3		I

⁴1

NAMF Report No. FZK-161-1, Investigation of Combined Effects of "adiation and Vacuum and of Radiation and Cryotemperatures on Engineering Materials, Volume 1: Radiation-Vacuum Tests
 MAMF Report No. FZK-161-2, Investigation of Combined Effects of Radiation and Vacuum and of Radiation and Cryotemperatures on Engineering Materials, Volume II: Radiation-Cryotemperature Tests
 NAMF Report No. FZK-188-1, Measured Effects of the Various Combinations of Muclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials, Volume II: Padiation-Vacuum Tests
 NAMF Report No. FZK-188-2, Measured Effects of the Various Combinations of Muclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials, Volume II: Radiation-Cryotemperature Tests
 NAMF Report No. FZK-290, Measured Effects of the Various Combinations of Nuclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials

bCurrent trade name of material

MATERIALS TESTED UNDER NASA CONTRACT NAS8-2450 (cont'd)

Trad e	Materiel	Numerical		tifying Rep t Deta	ort Containir
Name	Description	Irradia	tion or Co	nt ol Test	Environment
	·	Air	Vac	Cryo	Cryo-Vac
	THERMAL INSULATIONS				
CPR-200-2 (CPR-20-2) ^b	Polyurethane (polyether-polyester rigid foam)	3,5	3,5	5	
CPR-1021-2	Polyurathane (rigid foam) CO2 blown	3,4,5	3]	4,5	
DS-620	Urethane (polyester, flexible foam)		1		
EF8-175	Epoxy (rigid, spray foamed)	5	5	5	
Refrasil Batting B-100	Silicia oxide] 1]		
Stafoam AA-402	Folyurethane (polyether) rigid-halocarbon blown	1,2	1	2	
Stafoam H-1502	Polyurethane (polyether) rigid-halocarbon blown	5	5	5	
Styrofoam 22	Styrene	1.2	11!	2	
	THERMAL CONTROL COATINGS	•	! I		
Kemacryl Black No. W49BC12	Acrylic lacquer with P40GCLK primer		1 ;		
Skyspar A-423 SA9185	Epoxy with epoxy primer SA9184	2	1 1	2	
W.P. Fuller 517-W-1	Silicone with TiO2 pigment		1		
W.P. Fuller 172-A-1	Silicune-aluminum filled, no primer		1		
Sherwin Williams W49BCl2	Proprietary	2] }	2	
	SEALS		1 1		
Buna N (Parker 66-581)	Acrylonitrile-butediene .opolymer	1,3	1,3		
Buna N (PRP 737-70 FLX)	Acrylonicrile-butadiene copolymer	3,5	3,5		
Buna N (RA-30760)	Acrylonitrile-butadiene copolymer	1] 1		
Natural Rubber (RA-33860)	Natural Rubber	3	1,3		
Neoprene (PRP 2277)	Chloroprene	3.5	3,5		
Neoprene (RA-24160)	Chloroprene	i	1		
Polymer SP-1	Polyimide	4,5	t l	4,5	
Viton A (RA 26360)	Copolymer of vinylidene fluoride and hexafluoropropylane	1	1		
Viton A (V495~7)	Copolymer of vinylidene fluoride and hexafluoropropylima	5	1 !		
Viton B (PRP 19007)	Copolymer of vinylidene fluoride and hexafluor-y. *** 60** SEALANTS	1,3,5	1,3,5	4,	
DC 92-018	Silicone	5	!!		
DC 94-002	Silicone	Š	,		
EC-1663	RTV silicone	4	1	4	
EC 1949	Vendor proprietary	ž	1	- Ž	
	LUBRICANTS	•	1 1	·	
Almasol SFD-238	MoS2 plus Pb0 plus organic binder (dry film)	5	5		
DC-705	Phenyl silicone fluid	5	1 5 '		
Duroid Retainer	Fiberglass reinforced Telien impregnated with MoSo	3	3.5		
llectrofilm 66-C	MoS2 epoxy-resin binder (div film)	3	1.3.		
etr-H	F-SC with indenthrene thickener	3	1,1,	ì	
7-50	Chlorophenyl methyl polysiicxade (silicone oil)	š	1,3,5		
8-1265	Fluorosilicone fluid	•	5		
Kynar (filled)	Modified vinylidene fluoride 'fller of MoSo	5] š		
linapure	Proprietary	-] 5 .		
QLF-5	MoS2-sodium silicate binder (dr / film)	1	3,5		
Molykote X-15	Dry film inorganic binder		l [] .		
DS-124	Polyphenyl ether fluid	5	. 5		
/espel (Polymer SP-F)	Polyimide with filler (retainer)	5	5		

PROGRAM SUMMARY

This program was initiated under NASA Contract NAS8-2450 from the George C. Marshall Space Flight Center on 9 November 1961. The objectives were to develop equipmen: and procedures sufficient to measure various mechanical properties of selected organic materials in environments of (initially) vacuum and reactor radiation, to conduct the planned tests, and to report the data received. The environments were designed to approximate those which would be experienced by the component parts of space-craft vehicles containing operating nuclear reactors. The materials selected for testing were representative of those most likely to be used in spacecraft of this type.

During the first year of operation under the contract, a requirement was added to investigate the combined effects of radiation and cryotemperatures on selected organic marerials. Then, with the start of the second annual contract period on 9 November 1962, a third requirement was added to the scope of tests, namely, to test organic materials under the triple-combination environment of radiation, vacuum, and cryotemperature.

During the conduction of this overall program, several items of static and dynamic test equipment were designed, built, and operated at the Fort Worth Division. This equipment includes:

- 1. A vacuum system to operate in a reactor radiation field and sustain a vacuum of 10⁻⁷ torr.
- 2. Dynamic test equipment to measure the mechanical properties of organic materials in vacuum immediately after reactor irradiation.
- 3. Apparatus to measure the lubricating properties of various lubricating materials in a bearing application while in air, vacuum, and reactor radiation environments.
- 4. Apparatus to measure the volume resistivity, dielectric constant, and dissipation factor or organic materials while in the environments of air, vacuum, cryotemperature, and radiation.
- 5. A tensile tester to measure the tensile strength of materials at cryotemperatures while in the environments of vacuum and radiation.
- 6. Apparatus to measure the thermal conductivity of rigid foam-type insulation materials while in the environments of reactor radiation and either air, LN2, or LH2.
- 7. Equipment to measure the tensile strength and elongation properties of materials while in the environments of radiation and either LN₂ or LH₂.

Standard (and modified) ASTM tests, using the above equipment in conjunction with the Ground Test Reactor (GTR) at NARF, were conducted on approximately 5000 specimens of 90 different space-craft materials. The data thus obtained were tabulated, reduced, plotted, analyzed, and periodically reported to NASA.

The tests were successfully conducted within three main periods. The first two periods were for approximately 1 year each and the last period was for 2 years. During each of these three

periods, monthly and quarterly progress reports were submitted to describe general progress of the work. These reports were published in limited quantities and served only as status reports to NASA. At the end of each of the first two periods, an annual report, having a wider distribution than the quarterlies, was published to document the results of all tests conducted during that period. The present biennial report serves the same purpose for the third period. These reports are comprehensive in every respect and contain all details of equipment, tests, and data relative to the annual or biennial period. The two annuals are two-volume reports. This biennial report, however, is confined to a single document that contains not only all information concerned with the current testing period but also summary descriptions of equipment, tests, and data connected with the entire program. The complete details of the work conducted prior to the current testing period can be obtained only from the prior annual reports.

To facilitate the location of the data compiled throughout the entire program, a tabulation of all materials tested is given on pages vii and viii. Also, for each material listed, its corresponding chemical classification is given. The materials are arranged in application categories, which, in most instances,

is the arrangement used in reporting data in the annual reports.

In Appendix A of this report, materials tested during the third

period of the program are described, and the sections of this

document that describe the work on these materials are referenced.

100

One main objective in the current period was to complete the data cycles on the various test materials. A few materials not previously tested were added to the program during this period to replace materials that were dropped from the program because of their poor response in previous experiments.

In the overall program, materials from the following classifications were evaluated: adhesives, seals, thermal insulations, structural laminates, electrical insulations, potting compounds, dielectric materials, lubricants, sealants, and thermal control coatings. Tests performed on the material specimens included those sufficient to measure lap-shear strength, ultimate tensile strength, ultimate elongation, stress-strain characteristics, weight loss, lubricity, compression strength, dissipation factor, dielectric strength, spectral reflectivity, thermal conductivity, and potted-wire pull-out strength.

These were first-order experiments to evaluate the combined effects of the many environmental conditions and also to demonstrate synergistic effects on the various materials tested.

Results of the work showed that many of the materials could be used in the extreme environments associated with a nuclear reactor in space. For a particular application, additional data may be required to completely evaluate some of the materials. However, for many materials, there are enough data presented to definitely qualify them for use in specific applications.

REPORT SUMMARY

This biennial report (which is also the final report under NASA Contract NAS8-2450) consists of descriptions and discussions of equipment and procedures used in, and results obtained from, mechanical and physical property tests conducted on nonmetallic spacecraft materials under various environmental combinations of temperature, pressure, and radiation. All data obtained from the tests are tabulated and plotted in the applicable material results sections of the report.

The materials selected for testing in the current program (see pages xvii and xviii) are considered representative of those most likely to be used in spacecraft utilizing nuclear reactors. They consist of 8 materials in the category of adhesives; 7 materials in the category of structural laminates; 5 materials in the category of seals; 2 materials in the category of sealants; 19 materials in the categories of electrical insulations and dielectric materials; 4 materials in the category of thermal insulations; and 12 materials in the category of lubricants.

Representative tests included those sufficient to measure the ultimate lap-shear strength, ultimate tensile strength, ultimate elongation, stress-strain characteristics, lubricity, thermal conductivity, dissipation factor, dielectric strength, and volume resistivity.

The radiation source for the tests was the Ground Test Reactor (GTR) located at the Nuclear Aerospace Research Facility (NARF) of the Fort Worth Division of General Dynamics.

The procedure for the static vacuum-irradiation tests was to fit groups of tensile and compression specimens to expanded-metal racks which, in turn, were belted to the underside of the vacuum-system test-volume cover plate. Then, with this assembly installed in the vacuum system located in irradiation position, the specimens were subjected to a simultaneous exposure of high vacuum and nuclear radiation. After completion of the irradiation under vacuum conditions, the specimens were moved to the Irradiated Materials Laboratory (IML) and tested in an Instron machine under atmospheric conditions.

For the dynamic vacuum-irradiation tests (irradiation and testing of specimens without interruption of the vacuum), low-and high-force dynamic tensile testers were used in conjunction with the vacuum systems. These testers consist of specimen-loading devices attached to pull rods which are, in turn, attached to remotely operated hydraulic cylinders. The specimen-loading devices are designed to apply either tensile or compressive loads

Tester ⁸ →						Ir	str	on	Tes	ter								L	FT			НF	T		Cry	ote	.`s'1
Environment (Irradiation) - (Test)				Air	• •	Air	-					Vac		Air			Air	,	Vac		Vac				ln ₂		
Gamma Dose [ergs/gm(C)]	0	1(7)	5(7)	2(8)	5(8)	1(9)	5(9)	1(10)	3(10)	1(11)	5(7)	1(8)	5(8)	1(9)	5(9)	1(10)	0	o	5(8)	3(9)	5(9)	0	1(10)	0	5(9)	1(10)	3(10)
<u>MATERIALS</u>																											
ADHESIVES Aerobond 422J Aerobond 430 APCO 1252 Epon 934 Epon 951 FM-1000 HT-424 Narmeo A LAMINATES Conolon 506	5 5 5 5 4 5 5 5					4	4	5 4 5 5 5	5 5 5 5 5	5 5 5 5 5				5		5								4 4 4		4 4 4	4 4 4 4 4 4 4
CTL-91-LD DC 2104 Mobaloy AH7-81 Paraplex P-43 Selectron 5003 SEALS	5 5 6 5							5	5	3 6 5 5						5						4	4	4		3	3 4
Buna N (PRP-737-70 FLX) 0-Rings Compression Buttons Neoprene (PRP-2277) 0-Rings Compression Buttons	9 5 5 5			5	5		5	5	5	5 5				5	5	4		5		5							
Polymer SP-1 Viton A (V495-7) Viton B (PRP 19007) O-Rings Compression Buttons SEALANTS	5 9 5			5	5				5 5 5	5 5 5				5	5	•		4	5		5						
	10 5		1	10	5	10	5	1.0					5	5	5												
H-Film Kel F-81	10	14.							10	10			İ					2		2							
Kynar 400 Lamicoid 6038E Lexan Marlex 6001	5 4 5 5				5	5	5	10 5	5 5	5 5 5			5	5	2	5 5	2	2	2		2	4 4	4	4	4	4	
Marlex 6002 Mylar 100C Plaskon CTFE X2204	10				10	3	10	10					7	3	3	5 5 3	3	6	3		3	4	4				
RTV 501 Silastic 950 Silastic 1410 Sylgard (DC 93-002) Tedlar	8 9 5 10				5 5	5 5 5	8 9	5 5 5	10	10			5	5	5	5							المارية والمارية والم	4	4	4	
Teflon FEP-200A (2 mil) Teflon FEP-1000A (10 mil) Teflon FEP-4000A (40 mil) Teflon TFE-7 (2 5 mil) Teflon TFE-7 (5 mil) Teflon TFE-7 (10 mil) Teflon TFE-7 (20 mil) Teflon TFE-7 (40 mil) Teflon TFE-7 (40 mil) Teflon TFE-7 (125 mil)	5	5 5 5	5 5 5 5	5 5 5 5	5	5 5	5 5	5 5			5 5 5 5 5	5 5 5 5 5	5 5 5 5 5	5 5 5 5 5 5	5 5	5 5	3	3		3							

as Environmental Conditions In the Current Contractural Period

Te	st	er			С	ΜT			Di	ele	ect	ric	: Te	ste	er			Th	erm	al-	Cond	iuct	ivi	lty	Te	st€	r	Bea	ring	g-Lι	ıbr	lcar	nt 1	est	er		
L	.H ₂	2			Т	Έ			Ai	r					TE			A	ir	- A	iı	L	N ₂ ·	- L	N ₂	1	н ₂ - н ₂ -	Air	- 1	Air		,	/ac	- 1	ac.		Tot al Tests
1(0)	1(7)	5(9)	1(10)	3(10)	0	1(10)	(24)	O .	1(7)	1(8)	1(9)	1(10)	0	1(7)	1(8)	1(9)	1(10)	0	5(9)	1010)	3(10)	0	5(9)	1(10)	3(10)	2(10)	3(10)	1(7)	1(8)	1(9)	1(10)	0	1(7)	1(8)	1(9)	1(10)	
			4 4 4 4 4 4 4 4 4	4 444 444 4	4	4																															22 25 23 44 16 44 44 32 8 15 23 42 24 42 51 15 15 15
		4	4		5	5							2 2	2 2	2 2	2 2	2 2																				40 35 22 10 10 30 4
	4	4	4	4	5	5	2 2 2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2																				107 64 77 15 13
e .	4	•	4				2		2	2	2	2	2	2	2	2	2																				18 10 55 72 45
4		•			į								2	2	2	2	2																				64 77 15 13 87 18 10 55 72 45 30 35 35 35 45 45 45 45 45

Comprehensive Summary of Specimens Tested Under Various Environme

Con. 2

Tester ^a →						Iı	nst	ron	Te	ster	5							1	FT			н	T	(ryc	ter	sil	e T	est	er
Environment (Irradiation) - (Test)				Air	- 1	Air					1	/ac	- 4	ir			Air		Vac	_ 1	Vac				LN	2				LH ₂
Gamma Dose — → [ergs/gm(C)]	0	1(7)	5(7)	2(8)	5(8)	1(9)	5(9)	1(10)	3(10)	1(11)	5(7)	1(8)	5(8)	1(9)	5(9)	1(10)	0	0	5(8)	3(9)	۶(9)	0	1(10)	ر د	5(9)	1(10)	3(10)	0	1(9)	5(9)
THERMAL INSULATIONS CPR 200-2 Thermal Conductivity Compression Buttons CPR 1021-2 Thermal Conductivity EFS-175 Thermal Conductivity Compression Buttons Stafoam H-1502 Thermal Conductivity Compression Buttons LUBRICANTS Almasol SFD-238 DC-705 Duroid Electrofilm 66-C ETR-H ES-1265 GE F-50 Kynar (fiiled) Minapure MLF-5 OS-124 Polymer SP-F																	2	2 2 2	2 2 2	2										

^aAbbreviations: LFT - Low-Force Tester

HFT - High-Force Tester
CMT - Cryomechanical Tester
TE - Triple Environment (Vacuum, LN₂, and Radiation)

x VIII-/

ntalConditions in the Current Contractural Period (cont'd)

-,	СМ	T		D (ele	ctr	ic	Tes	ter		····, •••		Th	erm	al-	Con	duc	tiv	ity	Te	ste	r	Б	ear	ing	-Lul	brio	anı	т Т	eite	r		
,	Т	E		A	ir				Ί	E.			Ai	r -	Ai	r	LN	2-	LN2		LH	2 - 2	Ai	r -	Ai	r		V	ac	- Va	ıc		rotal Tests
3(10)	0	1(10)	0	1(7)	1(8)	1(9)	1(10)	0	1(7)	1(8)	1(9)	1(10)	0	(6)	1(10)	3(10)	0	5(9)	1(10)	3(10)	0	3(10)	0	1(7)	1(8)	1(6)	1(10)	0	1(7)	1(8)	1(9)	1(10)	
*													1 1 1	1 1 1	1	1	1	1	1 1	1 1 1	1 1 1	1	2 2 2	2	2	2	2	4 4 4 6 5 4	2	2	2	2 2 2 2	4

to the specimens. A flange plate that mates to the vacuum-system test-volume port separates the slave-cylinder end of the apparatus from the specimen (or vacuum-chamber) end.

An additional dynamic tensile tester, similar in testing capability to the tensile apparatus described above, was used to maintain the test specimens at cryotemperatures during a vacuum irradiation and subsequent tensile tests.

A dynamic vacuum-irradiation tester was used for testing the operating characteristics of lubricants. This tester uses small servomotors to test the lubricating efficiency of selected lubricants in simulated motor-operating conditions. The motors were run at high and low speeds and with varying amounts of electrical power loading to simulate various operating loads. Out of a total of 12 lubricants scheduled for testing during the program, five that operated best during control tests were irradiated in vacuum and air. The motors containing these lubricants were then operated for 500 hours, or to failure, whichever occurred first, in a postirradiation test.

A dielectric tester was developed during the current program to test the dielectric constant, dissipation factor, and volume resistivity of materials in a combined environment of vacuum, cryotemperature, and radiation. This tester was also operated in air at ambient temperature to determine the difference in effects between the two environments and to determine the corresponding cryotemperature and synergistic effects.

For the ambient-air irradiation, tensile specimens were tied to expanded metal racks and positioned next to the face of the reactor core in a framework open to the atmosphere. Subsequent tests were carried out with the Instron machine in the IML.

For the cryotemperature irradiation tests in the current program (irradiation and tensile testing of specimens immersed in cryogens), a new tensile tester was developed and built. The unit was used in the LN2 and LH2 control and irradiation tests. Also, for the LN2 tests, a new dewar with improved radiation-dose-rate geometry and LN2 safety handling procedures was built. For the LH2 tests, a separate dewar with particular provisions for liquid-hydrogen safety was used. This improved cryotemperature test equipment operated satisfactorily throughout all scheduled tests.

It should be emphasized that the cryotemperature and vacuum control data presented in this and the two previous annual reports published under the contract will be useful in other materials tests not concerned with a radiation environment. It was understood by those working in this program when it was originally set up that some of the materials scheduled for testing in a cryo-

temperature environment would not perform outstandingly in this medium. Their possession of various properties indispensible to space applications, however, led to the decision to obtain cryotemperature data on them, and the LN₂ and LH₂ control data show that many of the plastic and rubber materials tested can be used in these environments if certain application limitations are followed.

In general, the data contained herein should be used in conjunction with that shown in the previous annual reports. No attempt is made in this report to reprint previous data or to correlate previous data with the data generated in the current period.

A complete description of all materials tested in the current period is given in Appendix A. Representative vacuum-chamber pressure curves and specimen temperature plots are given in Appendix B. A complete description of the irradiation test facility is given in Appendix C. The methods and procedures used in the dosimetry for these tests are given in Appendix D.

TABLE OF CONTENTS

			Page
	FOREW	JORD .	iii
	PROGR	AM SUMMARY	vii
	REPOR	T SUMMARY	хv
	LIST	OF FIGURES	xxxi
	LIST	OF TABLES	xxxxi
I.	INTRO	DUCTION	1
II.	TEST	EQUIPMENT	3
	2.1	Vacuum Control System	4
	2.2	Vacuum-Irradiation Systems	5
		2.2.1 General 2.2.2 Vacuum Pumps 2.2.3 Pressure Gages	5 5 6
	2.3	Low-Force Tester	7
	2.4	High-Force Tester	8
	2.5	Cryomechanical Tester	8
	2.6	Bearing-Lubricant Tester	10
	2.7	Dielectr: Testers	11
		2.7.1 Basic Equipment 2.7.2 Cryotemperature Dielectric Tester 2.7.3 Air-Environment Dielectric Tester	12 13 14

				Page
	2.8	Cryote	ensile Tester	14
		2.8.1	Basic Equipment	14
			Calibration of Load Cells	18
		2.8.3	Calibration of Pull-Rod-Movement	
			Potentiometers	19
		2.8.4	Measurement of Biasing Forces	19
	2.9	Cryoge	n Dewars	20
		2.9.1	Liquid-Nitrogen Dewar	20
			Liquid-Hydrogen Dewar	21
	2.10	Therma	1-Conductivity Tester	22
III.	TEST	EQUIPME	NT PROCEDURES	49
	3.1	Static	Tests	49
		3.1.1	Static Irradiation Tests	49
		3.1.2	Pre- and Postirradiation Static Tests	50
	3.2	Dynami	c Tests	50
		3.2.1	Low-Force Tests	50
			High-Force Tests	51
			Cryomechanical Tests	51
			Bearing-Lubricant Tests	52
		3.2.5		53
			3.2.5.1 Dielectric Test Procedures	53
			3.2.5.2 Temperature Control	54
		3.2.6	• • • • • • • • • • • • • • • • • • •	55
			3.2.6.1 General	55
			3.2.6.2 Operating Procedures for	
			Test Hardware	56
			3.2.6.3 Instrumentation	59
		3.2.7	Thermal-Conductivity Tests	60

			Page
	3.3	Cryogen Handling	60
		3.3.1 Liquid Nitrogen 3.3.2 Liquid Hydrogen	60 61
IV.	SPECI	MEN CONFIGURATIONS AND TESTING CHARACTERISTICS	67
	4.1	Mechanical-Property Specimens	67
		4.1.1 Dumbbell Specimens 4.1.2 Lap-Shear Specimens 4.1.3 Thin-Film Specimens 4.1.4 Flexure Specimens 4.1.5 Compression Specimens	67 70 70 70 71
	4.2	Dielectric Specimens	71
	4.3	Thermal-Conductivity Specimens	71
	4.4	Bearing-Lubricant Specimens	72
V.	STRUC	CTURAL ADHESIVE TEST METHODS AND RESULTS	81
	5.1	Aerobond 422J	84
	5.2	Aerobond 430	85
	5.3	APCO 1252	86
	5.4	Epon 934	87
	5.5	Epon 951	88
	5.6	FM-1000	88
	5.7	HT-424	90

			Pago
	5.8	Narmco A	90
	5.9	General Discussion of Results	91
VI.	STRUC	CTURAL LAMINATE TEST METHODS AND RESULTS	107
	6.1	Conolon 506	110
	6.2	CTL 91-LD	111
	6.3	DC-21.04	112
	6.4	Epon 828/A	113
	6.5	Mobaloy 81-AH7	114
	6.6	Paraplex P-43	115
	6.7	Selectron 5003	116
	6.8	General Discussion of Results	117
VII.	SEAL	TEST METHODS AND RESULTS	145
	7.1	Buna N (PRP-737-70 FLX)	148
	7.2	Neoprene (PRP-2277)	149
	7.3	Polymer SP-1	150
	7.4	Viton A (V495-7)	151
	7.5	Viton B (PRP-19007)	152
	7.6	General Discussion of Results	153

			Page
VIII.	SEALA	ANT TEST METHODS AND RESULTS	171
	8.1	Dow Corning 92-018	173
	8.2	Dow Corning 94-002	174
	8.3	General Discussion of Results	175
IX.		TRICAL INSULATION AND DIELECTRIC METHODS AND RESULTS	181
	9.1	Duroid 5600	185
	9.2	Estane 5740X1	186
	9.3	Epon 828/Z	187
	9.4	H-Film	188
	9.5	Kel F-81	188
	9.6	Kynar 400	189
	9.7	Lamicoid 6038E	196
	9.8	Lexan	200
	9.9	Marler 6001	205
	9.10	Marlex 6002	206
	9.11	Mylar 100C	207
	9.12	Plaskon :CTFE: X2204	209
	9.13	RTV-501	210

				Page
	9.14	Silastic 950		210
	9.15	Silastic 1410		233
	9.16	Sylgard 182		215
	9.17	Tedlar		218
	9.18	Teflon FEP		218
	9.19	Teflon TFE-7		219
	9.20	General Discus	sion of Results	220
x.	THERM	AL-INSULATION T	EST METHOD AND RESULTS	299
	10.1	Test Methods		301
		10.1.1 Therma 10.1.2 Compres	1-Conductivity Test ssion Test	301 304
	10.2	Test Results		305
		200-2,	1-Conductivity Test (CPR CPR 1021-2, EFS-175, and	205
			m H-1502) ssion Tests (CPR 200-2,	305
		•	5, and Stafoam H-1502)	308
XI.	LUBRI	CANT TEST METHO	DS AND RESULTS	319
	11.1	Almasol SFD-23	8	324
	11.2	DC-705		326
	11.3	Duroid		328

		Page
11.4 Ele	ctrofilm 66-C	329
11.5 ETR	-H	331
11.6 FS-	1265	332
11.7 GE	F-50	333
11.8 Kyn	ar (filles)	335
11.9 Min	apure	337
11.10 MLF	- 5	338
11.11 os-	124	340
11.12 Pol	ymer SP-F	341
11.13 Gen	eral Discussion of Results	344
APPENDIX A	: DESCRIPTION OF MATERIALS IRRADIATED AND TESTED	399
APPENDIX B	: REPRESENTATIVE SPECIMEN TEMPERAQURES, VACUUM-CHAMBER PRESSURES, AND REACTOR POWER LEVELS DURING STATIC, LOW-FORCE DYNAMIC, AND BEARING-LUBRICANT TESTS	433
APPENDIX C	: GTR RADIATION EFFECTS TEST FACILITY	439
APPENDIX D	: DOSIMETRY TECHNIQUES	445
APPENDIX E	: STATISTICAL ANALYSIS OF DATA OBTAINED FROM TESTS ON LAP-SHEAR SPECIMENS OF TWO ADHESIVE MATERIALS	451
REFERENCES		457
DISTRIBUTION		459

LIST OF FIGURES

Figure		Page
2.1	Vacuum Control System	27
2.2	Vacuum-Irradiation System	28
2.3	Vacuum Systems in Irradiation Position	29
2.4	Low-Force Dynamic Tester	30
2.5	High-Force Dynamic Tester	31
2.6	Cryomechanical Tester	32
2.7	Bearing-Lubricant Tester	33
2.8	Bearing-Lubricant-Tester Instrumentation	34
2.9	Air-Environment Dielectric Tester	35
2.10	Cryogenic Dielectric Tester (Side View)	36
2.11	Cryogenic Dielectric Tester (Front View)	37
2.12	Dielectric-Test Instrumentation	38
2.13	Cryogenic Dielectric Tester Covered by an Aluminum-Foil Heat Shield	39
2.14	Cryotensile Tester	40
2.15	Cryotensile Tester Installed in Liquid- Nitrogen Dewar	41
2.16	Liquid-Nitrogen Dewar	42
2.17	Liquid-Hydrogen Dewar	43
2.18	Thermal Conductivity Test Unit: Vertical and Horizontal Cross Sections	44

Figure		Page
2.19	Thermal-Conductivity Air Test Arrangement	45
2.20	Thermal-Conductivity Cryogenic Test Arrangement	46
2.21	Thermal-Conductivity Tester Mated with LN ₂ Dewar	47
3.1	Static Samples on Rack for Vacuum Irradiation	64
3.2	Static Samples on Rack for Ambient-Air Irradiation	65
4.1	Typical Narrow-Gage Tensile Specimen	76
4.2	Typical Wide-Gage Tensile Specimen	77
4.3	Specimen-Break Code Description	78
4.4	Typical Lap-Shear Adhesive Specimen	79
6.1	Conolon 506 Stress-Strain Curves: Vacuum/LN ₂ Irradiation; Dynamic Tests	129
6.2	CTL-91LD Stress-Strain Curves: Air Irradiation; Static Test and LH ₂ Dynamic Tests	130
6.3	DC-2104 Stress-Strain Curves: Air Irradiation; Static Tests	131
6.4	DC-2104 Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	132
6.5	Epon 828/A Stress-Strain Curves: Air Irradiation; Static Test	133
6.6	Epon 828/A Stress-Strain Curves: LN ₂ Irradiation: Dynamic Tests	134

<u>Figure</u>		Page
6.7	Epon 828/A Stress-Strain Cures: LH ₂ Irradiation; Dynamic Tests	135
6.8	Mobaloy 81-AH7 Stress-Strain Curves: Air Irradiation; Static Tests	136
6.9	Mobaloy 81-AH7 Stress-Strain Curves: LN ₂ Irradiation; Dynamic Tests	137
6.10	Mobaloy 81-AH7 Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	138
6.11	Paraplex P-43 Stress-Strain Curves: Air and Vacuum Irradiations; Static Tests	139
6.12	Paraplex P-43 Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	140
6.13	Selectron 5003 Stress-Strain Curves: Air Irradiation; Static Tests	141
6.14	Selectron 5003 Stress-Strain Curves: LN ₂ Irradiation; Dynamic Tests	142
6.15	Selectron 5003 Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	143
7.1	PRP-737-70 FLX Seal Stress-Strain Curves: Air and Vacuum Irradiations; Static Tests	165
7.2	PRP-737-70 FLX Seal Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	166
7.3	Polymer SP-1 Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	167
7.4	PRP-19007 Seal Stress-Strain Curves: Air and Vacuum Trradiations: Static Tests	168

Figure		Page
7.5	PRP-19007 Scal Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	169
9.1	Duroid 5600 Stress-Strain Curves: Vacuum/LN ₂ Irradiation; Dynamic Tests	280
9.2	Duroid 5600 Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	281
9.3	Kel-F-81 (Flexure) Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	282
9.4	Kynar 400 Stress-Strain Curves: Vacuum Control; Dynamic Tests	283
9.5	Kynar 400 Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	284
9.6	Kynar 400 Stress-Strain Curves: LN ₂ Irradia-tion; Dynamic Tests	285
9.7	Kynar 400 Stress-Strain Curves: LH ₂ Irradia-tion; Dynamic Tests	286
9.8	Lamicoid 6038E Stress-Strain Curves: Air and Vacuum Irradiations; Static Tests	287
9.9	Lamicoid 6038E Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	288
9.10	Lamicoid 6038E Stress-Strain Curves: Vacuum/LN ₂ Irradiation; Dynamic Tests	289
9.11	Lamicoid 6038E Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	290
9.12	Lexan Stress-Strain Curves: Vacuum Irradiation;	291

<u>Figure</u>		Page
9.13	Marlex 6002 Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	292
9.14	Mylar 100C Film Stress-Strain Curves: Air Irradiation; Static Tests	293
9.15	Mylar 100C Film Stress-Strain Curves: Vacuum irradiation; Dynamic Tests	294
9.16	Silastic 950 Stress-Strain Curves: LN ₂ Irradiation; Dynamic Tests	295
9.17	Silastic 1410 Stress-Strain Curves: LN ₂ Irradiation; Dynamic Tests	296
9.18	Comparison of Ultimate Elongation Values of Various Thicknesses of Teflon TFE and FEP Irradiated in Vacuum and Air	297
9.19	Teflon TFE-7 (125-mil) Stress-Strain Curves: LH ₂ Irradiation; Dynamic Tests	298
10.1	Thermal Conductivity of CPR-200-2 Foam at Various Internal Pressures and Temperatures	314
10.2	CPR-200-2 Compressive Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	315
10.3	EFS-175 Compressive Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	316
10.4	Stafoam H-1502 Compressive Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests	317
11.1	Speed During Coastdown of Motor 10 for Almasol SFD-238: Vacuum Irradiation (Low Power to	350

<u>Figure</u>		Page
11.2	Speed During Coastdown of Motor 11 for Almasol SFD-238: Air Irradiation (Low Power to Phase 1)	351
11.3	Speed During Coastdown of Motor 10 for Almasol SFD-238: Air Irradiation (Low Power to Phase 1)	352
11.4	Speed During Coastdown of Motor 9 for Almasol SFD-238: Vacuum Control (Low Power to Piase 1)	353
11.5	Speed During Coastdown of Motor 10 for Almasol SFD-238: Vacuum Control (Low Fower to Phase 1)	354
11.6	Speed During Coastdown of Mo o: 6 for DC-705: Vacuum Irradiation (Low Power to Phase 1)	355
11.7	Speed During Coastdown of Motor 5 for DC-705: Vacuum Irradiation (Low Power to Phase 1)	356
11.8	Speed During Coastdown of Motor 6 for DC-705: Air Irradiation (Low Power to Phase 1)	357
11.9	Speed During Coastdown of Motor 5 for DC-705: Air Irradiation (Low Power to Phase 1)	358
11.10	Speed During Coastdown of Motor 8 for DC-705: Vacuum Control (Low Power to Phase 1)	359
11.11	Speed During Coastdown of Motor 11 for DC-705: Vacuum Control (Low Power to Phase 1)	360
11.12	Speed During Coastdown of Motor 7 for Duroid: Vacuum Control (Low Power to Phase 1)	361
11.13	Speed During Coastdown of Motor 8 for Duroid: Vacuum Control (Low Power to Phase 1)	362

<u>Figure</u>		Page
11 , 14	Speed During Coastdown of Motor 9 for Electro- film 66-C: Vacuum Control (Low Power to Phase 1)	363
11.15	Speed During Coastdown of Motor 10 for Electror film 66-C: Vacuum Control (Low Power to Phase 1)	364
11.16	Speed During Coastdown of Motor 3 for ETR-H: Vacuum Control (Low Power to Phase 1)	365
11,17	Speed During Coastdown of Motor 4 for ETR-H: Vacuum Control (Low Power to Phase 1)	366
11.18	Speed During Coastdown of Motor 3 for ETR-H: Vacuum Cont 1 (High Power to Phase 1)	367
11.19	Speed During Coastdown of Motor 4 for ETR-H: Vacuum Control (High Power to Phase 1)	368
11.20	Speed During Coastdown of Motor 1 for FS-1265: Vacuum Control (Low Power to Phase 1)	369
11.21	Speed During Coastdown of Motor 2 for FS-1265: Vacuum Control (Low Power to Phase 1)	370
11.22	Speed During Coastdown of Motor 6 for GE F-50 (Phenolic Retainer): Vacuum Control (Low Power to Phase 1)	371
11.23	Speed During Coastdown of Motor 5 for GE F-50 (Phenolic Retainer): Vacuum Control (Low Power F Phase 1)	372
11.24	Speed During Coastdown of Motor 1 for GE F-50: Vacuum Control (Low Power to Phase 1)	272

<u>Figure</u>		Page
11.25	Speed During Coastdown of Motor 2 for GE $F=50$: Vacuum Control (Low Power to Phase 1)	374
11.26	Speed During Coastdown of Motor 1 for GE F-50: Vacuum Control (High Power to ≥hase 1)	375
11.27	Speed During Coastdown of Motor 2 for GE F-50: Vacuum Control (High Power to Phase 1)	376
11.28	Speed During Coastdown of Motor 8 for Kynar: Vacuum Irradiation (Low Power to Phase 1)	377
11.29	Speed During Coastdown of Motor 7 for Kynar: Vacuum Irradiation (Low Power to Phase 1)	378
11,30	Speed During Coastdown of Motor 8 for Kynar: Air Irradiation (Low Power to Phase 1)	379
11.31	Speed During Coastdown of Motor 7 for Kynar: Air Irradiation (Low Power to Phase 1)	380
11.32	Speed During Coastdown of Motor 7 for Kynar; Vacuum Control (Low Power to Phase 1)	381
11.33	Speed During Coastdown of Motor 8 for Kynar: Vacuum Control (Low Power to Phase 1)	382
11.34	Speed During Coastdown of Motor 5 for Minapure: Vacuum Control (Low Power to Phase 1)	383
11.35	Speed During Coastdown of Motor 6 for Minapure: Vacuum Control (Low Power to Phase 1)	384
11.36	Speed During Coastdown of Motor 6 for MLF-5: Vacuum Control (Low Power to Phase 1)	385

Figure		Page
11.37	Speed During Coastdown of Motor 5 for MLF-5: Vacuum Control (Low Power to Phase 1)	386
11.38	Speed During Coastdown of Motor 4 for OS=124: Vacuum Irradiation (Low Power to Phase 1)	387
11.39	Speed During Coastdown of Motor 3 for OS-124: Vacuum Irradiation (Low Power to Phase 1)	388
11.40	Speed During Coastdown of Motor 4 for OS-124: Air Irradiation (Low Power to Phase 1)	389
11.41	Speed During Coastdown of Motor 3 for OS=124: Air Irradiation (Low Power to Phase 1)	390
11.42	Speed During Coastdown of Motor 3 for OS=124: Vacuum Control (Low Power to Phase 1)	391
11.43	Speed During Coastdown of Motor 4 for OS-124: Vacuum Control (Low Power to Phase 1)	392
11.44	Speed During Coastdown of Motor 1 for Polymer SP-F: Vacuum Irradiation (Low Power to Phase 1)	393
11.45	Speed During Coastdown of Motor 2 for Polymer SP-F: Vacuum Irradiation (Low Power to Phase 1)	394
11.46	Speed During Coastdown of Motor 2 for Polymer SP-F: Air Irradiation (Low Power to Phase 1)	395
11.47	Speed During Coastdown of Motor 1 for Polymer SP-F: Air Irradiation (Low Power to Phase 1)	396
11.48	Speed During Coastdown of Motor 2 for Polymer SP-F: Vacuum Control (Low Power to Phase 1)	397

Figure		Page
11,49	Speed During Coastdown of Motor 1 for Polymer SP-F: Vacuum Control (Low Power to Phase 1)	398
B-1	Temperature History of Mylar 100C Specimen During Low-Force Irradiation Test: Run 5a, East Position	435
B-2	Vacuum-Chamber Pressure and Reactor Power During Low-Force Irradiation Test: Run 5a, East Position	4.36
B-3	Temperature History of Duroid 5600 Specimen During Cryomechanical Irradiation Test: Run 4c, West Position	437
B-4	Vacuum-Chamber Pressure and Reactor Power During Cryomechanical Irradiation Test: Run 4c, West Position	438
C-1	Upper View of GTR Tank	443
C-2	GTR Irradiation Test Cell	444

LIST OF TABLES

<u>Table</u>		Page
	Materials Tested Under NASA Contract NAS8-2450	vii
	Comprehensive Summary of Specimer Tested Under Various Environmental Conditions in the Current Contractual Period	xvii
3.1	Irradiation Schedule	63
5.1	Outline of Structural Adhesive Tests	82
5.2	Aerobond 422J Structural Adhesive Summary Table of Test Results	93
5.3	Aerobond 430 Structural Adhesive Summary Table of Test Results	94
5.4	APCO 1252 Structural Adhesive Summary Table of Test Results	95
5.5	Epon 934 Structural Adhesive Summary Table of Test Results	96
5.6	Epon 951 Structural Adhesive Summary Table of Test Results	98
5.7	FM-1000 Structural Adhesive Summary Table of Test Results	99
5.8	HT-424 Structural Adhesive Summary Table of Test Results	101
5.9	Narmco-A Structural Adhesive Summary Table of Test Results	103
5.10	Summary Table of Ultimate Tensile Shear Strength for Adhesives	105

<u>Table</u>		Page
6.1	Outline of Structural Laminate Tests	108
6.2	Conolon 506 Structural Laminar Summary Table of Test Results	118
6.3	CTL-91LD Structural Laminate Summary Table of Tests Results	119
6.4	DC-2104 Structural Laminate Summary Table of Test Results	120
6.5	Epon 828/A Structural Laminate Summary Table of Test Results	121
6.6	Mobaloy 81-AH7 Structural Laminate Summary Table of Test Results	123
6.7	Paraplex P-43 Structural Laminate Summary Table of Test Results	125
6.8	Selectron 5003 Structural Laminate Summary Table of Test Results	126
6.9	Summary Table of Tensile Strength at Rupture for Four Selected Laminates	128
7.1	Outline f Seal Tests	146
7.2	PRP-/37-70 FIX Seal (O-Rings) Summary Table of Test Results	155
7.3	PRP-737-70 FLX Seal (Compression Buttons) Summary Table of Test Results	157
7.4	PRP-2277 Seal (O-Rings) Summary Table of Test Results	158
7.5	PRP-2277 Seal (Compression Buttons) Summary Table of Test Results	159

<u>Table</u>		Page
7.6	Polymer SP-1 Seal Summary Table of Test Results	160
7.7	V495-7 Seal (O-Rings) Summary Table of Test Results	161
7.8	PRP-19007 Seal (0-Rings) Summary Table of Test Results	162
7.9	PRP-19007 Seal (Compression Buttons) Summary Table of Test Results	164
8.1	Outline of Sealant Tests	172
8.2	DC-92-018 Sealant (Lap Shear) Summary Table of Test Results	176
8.3	DC-92-018 Sealant (Die C Specimens) Summary Table of Test Results	177
8.4	Q94-002 Sealant (Lap Shear) Summary Table of Test Results	178
9.1	Outline of Electrical Insulation and Dielectric Materials Tests	182
9.2	Dielectric Property Values for Estane 5740X1	228
9.3	Dielectric Property Values for Epon 828/Z	229
9.4	Dielectric Property Values for Kynar 400	230
9.5	Dielectric Property Values for Lamicoid 6038E	231
9.6	Dielectric Property Values for Lexan	232
9.7	Dielectric Property Values for RTV-501	233

<u>Table</u>		Page
9.8	Dielectric Property Values for Sylgard 182 (DC 93-022)	234
9.9	Dielectric Property Values for Teflon TFE-7	235
9.10	Duroid 5600 Electrical Insulation Summary Table of Test Results	236
9.11	H-Film (2 mil) Electrical Insulation Summary Table of Test Results	237
9.12	Kel-F-81 Electrical Insulation (Flexure) Summary Table of Test Results	238
9.13	Kynar 400 Electrical Insulation Summary Table of Test Results	239
9.14	Results of Visual Inspection of Kynar Specimens	243
9.15	Lamicoid 6038E Electrical Insulation Summary of Test Results	244
9.16	Lexan Electrical Insulation Summary Table of Test Results	246
9.17	Lexan Electrical Insulation (Flexure) Summary Table of Test Results	248
9.18	Marlex 6001 Electrical Insulation Summary Table of Test Results	249
9.19	Marlex 6002 Electrical Insulation Summary Table of Test Results	250
9.20	Mylar 100C Electrical Insulation Summary Table of Test Results	251

<u>Table</u>		Page
9.21	Plaskon CTFE X2204 Electrical Insulation Summary Table of Test Results	254
9.22	Silastic 950 Electrical Insulation Summary Table of Test Results	255
9.23	Silastic 1410 Electrical Insulation Summary Table of Test Results	258
9.24	Sylgard 182 Electrical Insulation (Compression Buttons) Summary Table of Test Results	261
9.25	Tedlar Electrical Insulation Summary Table of Test Results	262
9.26	Teflon FEP 200A (2 mil) Electrical Insulation Summary Table of Test Results	263
9.27	Teflon FEP 1000A (10 mil) Electrical Insulation Summary Table of Test Results	264
9.28	Teflon FEP 4000A (40 mil) Electrical Insulation Summary Table of Test Results	267
9.29	Teflon TFE-7 (2.5 mil) Electrical Insulation Summary Table of Test Results	269
9.30	Teflon TFE-7 (5 mil) Electrical Insulation Summary Table of Test Results	271
9.31	Teflon TFE-7 (10 mil) Electrical Insulation Summary Table of Test Results	273
9.32	Teflon TFE-7 (20 mil) Electrical Insulation Summary Table of Test Results	275

<u>Table</u>		Page
9.33	Teflon TFE-7 (40 mil) Electrical Insulation Summary Table of Test Results	277
9.34	Teflon TFE-7 (125 mil) Electrical Insulation Summary Table of Test Results	279
10.1	Outline of Thermal Insulation Tests	300
10.2	Thermal Conductivity Test Data	310
10.3	CPR-200-2 Thermal Insulation (Compression Buttons) Summary Table of Test Results	311
10.4	EFS-175 Thermal Insulation (Compression Buttons) Summary Table of Test Results	312
10.5	Stafoam H-1502 Thermal Insulation (Compression Buttons) Summary Table of Test Results	313
11.1	Outline of Lubricating Efficiency Tests	320
11.2	Bearing Lubricant Test Results	346
11.3	Summary of Bearing Lubricant Test Data	347
11.4	Field Current of Servomotors During a Bearing Lubricant Test	349
A-1	Materials Used in Structural Adhesive Tests	401
A-2	Materials Used in Structural Laminate Tests	406
A-3	Materials Used in Seal Tests	412
A-4	Materials Used in Sealant Tests	414
A-5	Materials Used in Electrical Insulation Tests	415
A-6	Materials Used in Thermal Insulation Tests	424
A-7	Materials Used in Lubricant Tests	427

I. INTRODUCTION

Radiation-effects research has shown that changes are induced in various mechanical and physical properties of engineering materials by incident nuclear radiation and also by the coincident influence of associated pressure, temperature, and chemical environments. This work has also shown, however, that materials can be used successfully in radiation fields, provided that they have first been properly screened for retention of their properties in specific applications involving radiation and other associated environments. This screening process involves the measurement of individual environmental effects and also the synergistic effects of various combination environments.

Efforts during this final two-year contractual period were directed toward continuing tests initiated in the two previous annual periods and were concerned both with generating data on new materials and obtaining new data points on previously tested items. Some new test equipment was designed and built, and other existing items of equipment were modified to facilitate data accumulation. Major items involved were a new cryotensile tester and an extensively modified dielectric tester.

A primary objective of the current program was to obtain additional information on the properties of materials tested in

the previous annual program, with major emphasis being put on the radiation-cryotemperature tests. Some new materials, having particularly desirable properties, were also added to the program to replace several materials that did not qualify under irradiation conditions.

This report is organized to provide the reader with a ready access to data associated with specific materials tested. Each main section from V through XI is concerned with a particular material class and is broken down in accordance with individual materials tested under that classification. The materials tested under each classification are listed, along with the associated test parameters, on the colored section-divider pages in the report. Each material section is organized to show (1) reasons for testing the material, (2) test methods (including the test hardware used), and (3) test results.

II. TEST EQUIPMENT

The 1964-65 materials test program under Contract NAS8-2450 was conducted, primarily, with equipment developed during previous years. However, a few items of new equipment were added during this program and some modifications to existing equipment were made to improve and refine testing capabilities. Previously developed equipment that was used in its original form in the current tests is discussed in detail in References 1, 2, 3, and 4 and will only be mentioned briefly in this report. Modified and new equipment will be discussed in detail in this section.

The irradiation tests were performed in the GTR Radiation-Effects Testing Facility at NARF (see Appendix C). Figures C-l and C-2 of Appendix C show the 3-Mw Ground Test Reactor and the Irradiation Test Cell. Items to be irradiated can be placed at any or all of the three irradiation positions (north, east, and west) adjacent to the reactor closet.

The vacuum equipment used to contain specimens during irradiation tests consists of two Vacuum-Irradiation Systems - one used on the east and one on the west side of the reactor closet. A third vacuum system, used for control tests, is located in the Irradiated Materials Laboratory (IML). Test fixtures containing specimens for irradiation were attached to the underside of the

- cover plate of the Vacuum-Irradiation System so that with the cover in place the test fixture was suspended within the vacuum-chamber volume. The various types of test fixtures designed for use in conjunction with the two Vacuum-Irradiation Systems and with the IML system are:
 - · Static Specimen Racks
 - Low-Force Dynamic Tester
 - High-Force Dynamic Tester
 - Bearing-Lubricant Tester
 - · Cryomechanical Tester
 - · Dielectric Tester

In addition to the equipment used for vacuum and vacuumcryotemperature testing, a Cryotensile Tester was used to maintain specimens at cryotemperature during irradiation and postirradiation testing. Specimens were submerged in either liquid
nitrogen or liquid hydrogen for these tests. Special dewars
designed for use with these cryogens were used in conjunction
with the Cryotensile Tester and also with apparatus used to determine the thermal conductivity of materials.

2.1 Vacuum Control System

The Vacuum Control System (Fig. 2.1) is located in the IML and is used for testing control specimens. It is also used for

preirradiation outgassing, leak-checking of dynamic systems, and postirradiation testing of materials and components. The system is capa¹ le of maintaining reduced pressures as low as 6 x 10⁻⁷ torr in a test-chamber volume equivalent to that in a Vacuum-Irradiation System. The test chamber is mounted above a liquid-nitrogen baffle on a 16-in. diffusion pump.

2.2 Vacuum-Irradiation Systems

2.2.1 General

Two additional vacuum systems used in these tests are called Vacuum-Irradiation Systems (Fig. 2.2) and are designed to fit next to the east and west faces of the GTR closet. Figure 2.3 shows both systems in irradiation position. The systems were built to NARF specifications by Consolidated Vacuum Corporation (CVC), Palo Alto, California. During irradiation tests, lead and water shields protect the mechanical forepump, diffusion pumps, and system accessories from the reactor radiation (Fig. 2.3). The usable test volume in each system, located at the front of the vacuum chamber near the centerline of the reactor when the system is in irradiation position, is a right circular cylinder 20 in. in diameter and 34 in. in depth.

2.2.2 Vacuum Pumps

Each system contains a Model 212-H Stokes mechanical forepump and to 10-in. diffusion pumps, CVC Model PMC 4100. Pumpdown time of the vacuum-irradiation chamber to a reduced pressure of 1×10^{-6} torr is approximately 3 hr, depending on the materials, moisture, and condensable gases present in the system at startup.

The diffusion pumps use silicone DC-704 pumping fluid, which has a vapor pressure of approximately 1×10^{-7} torr. This particular silicone was selected because of its low outgassing rates during irradiation. During preliminary evaluation, the systems demonstrated pumping speeds of at least 3100 liters/sec at 10^{-6} torr.

2.2.3 Pressure Gages

The primary pressure gage used in the vacuum chambers is a nude Bayard-Alpert-type ionization gage, Type 6578, manufactured by the Vacuum Tube Division of Hughes Aircraft. This gage utilizes the vacuum chamber for its enclosure, thus eliminating the tubulation and self-pumping problems inherent with enclosed gages. A Hughes IGC-101 Ionization Gage Controller is used for excitation and readout. The gages and their electronic equipment were calibrated by the Fort Worth Division Standards Laboratory.

Since the Hughes gage can only be used at pressures below 1×10^{-4} torr, a CVC Phillips cold-cathode gage, Type PHG-09, is incorporated in each vacuum system for use in obtaining pumpdown data at higher pressures and for use in leak checks. This

secondary gage can also substitute for the Hughes gage in the lower-vacuum region.

A more complete description of the systems is given in Reference 1.

2.3 Low-Force Tester

The Low-Force Dynamic Tester (Fig. 2.4) is used to test material specimens in either tension, compression, or bending while in an environment of high vacuum and nuclear radiation. The tester is designed to operate inside one of the Vacuum Irradiation Systems during irradiation and testing. A maximum force of 200 lb can be applied to the specimens in these tests, and a maximum specimen extension of nearly 4 in. can be obtained.

The tester has 16 test positions: eight for testing specimens in tension, six for testing specimens in compression, and two for testing specimens in bending (flexure). A hydraulic cylinder located at the top of the tester is slave-driven by an identical cylinder remotely located in the facility control room. The cylinder on the tester applies the desired loads to the test specimens and is coupled to a dynamometer used for generation of applied-tensile-load signals and a potentiometer for generation of test-specimen-deflection signals. Temperatures are monitored by copper-constantan thermocouples attached to the test specimens.

2.4 <u>High-Force Tester</u>

The High-Force Dynamic Tester (Fig. 2.5) is used to perform mechanical-property tests on high-tensile-strength materials in an environment of high vacuum and nuclear radiation. are possible for structural lap-shear-adhesive and structuraltensile specimens. A maximum force of 5000 lb can be applied to the specimens by actuation of a hydraulic cylinder in the tester. Each of the four pull rods in the tester is attached to a clevis that can hold five adhesive lap-shear or four tensile specimens. The specimens have varying-length slots to allow each specimen to be picked up and pulled, sequentially, during one continuous upward stroke of the pulling cylinder. The pull rod is coupled to a load cell which transmits an electrical signal sufficient to determine the applied loads on the specimens. An LVDT was used previously for rod-movement indication, but has since been replaced by a Helipot wire-wound potentiometer. The potentiometer yields rod-motion data similar in form and accuracy to that obtained in the Low-Force Tester and the Cryotensile Tester. The tester is designed to be used in one of the Vacuum-Irradiation Systems.

2.5 Cryomechanical Tester

The Cryomechanical Tester (Fig. 2.6) is a device designed to apply tensile forces to material specimens while maintaining the

specimens under a combination environment of high vacuum, cryotemperature, and nuclear radiation. The tester is built to operate within one of the Vacuum-Irradiation Systems.

The tester contains six pull positions, each capable of exerting a force of 5000 lb on a specimen. Four specimens can be tested consecutively at each position. Each of the six pull positions is operated by an independent hydraulic cylinder. Each cylinder is driven from a remote location by a master cylinder which is mounted in, and driven by, an Instron machine. Coupled with each cylinder actuating rod is a load cell and potentiometer for transmission of applied-load and actuator-rod-movement signals.

The tester contains three sealed chambers. These are:

- (1) the upper vacuum chamber, (2) the main vacuum chamber, and
- (3) the cryogen chamber. In the upper vacuum chamber, a vacuum of the order of 10 microns is maintained to minimize conductive heat flow. Two tubes pass through this chamber into the cryogen chamber, one for cryogen exhaust and the other to serve as a path for the liquid-level-control probe and for connections to safety equipment. The latter consists of a rupture disc, rated at 99 psi, and a 70-psi pop relief valve.

The cryogen inlet, thermocouple probes, and pull rods pass through the vacuum-system mounting plate. All components passing

through the mounting plate are vacuum sealed. The cryogen flows through a coil of 0.50-in.-diam stainless-steel tubing which surrounds the specimens, and into a 5.0-in.-diam chamber. It boils off in this chamber and the evaporate is exhausted through a facility exhaust system. Cryogen flow is regulated (see Section 3.3) to maintain a two-thirds-full condition in the cryogen chamber.

2.6 Bearing-Lubricant Tester

The Bearing-Lubricant Tester is used to measure the lubricating properties of materials during exposure to an environment of air or high vacuum, and air or high vacuum in combination with nuclear radiation. Ten servomotors with SR3-type bearings are used to test paired samples of five types of lubricants. Lubricating characteristics of the materials are determined by measuring the coastdown time of the motors, motor speed, field current, time of operation, and bearing temperature.

The Bearing-Lubricant Tester is shown in Figure 2.7. Essentially, the tester consists of ten small servomotors and flywheels, two water-cooled aluminum mounting blocks, ten magnetic reed switches, and necessary wiring and support members.

The electrical instrumentation, shown in Figure 2.8, consists of a power control panel with ten milliammeters for reading currents drawn by the field windings of each motor; an electronic

counter, printer, and oscilloscope for motor-speed determination; a reed-switch selector panel and pulse-shaping network; and a dc power supply for reed-switch signals.

Motor speed is measured by use of the magnetic reed switches, which are actuated by a magnet on the periphery of the flywheel of each motor. The reed switch is in series with a dc power supply so that when the switch is closed an electrical pulse is produced. The pulses are fed through a pulse-shaping network to an electronic counter and/or an oscilloscope.

The bearings used in the tests were types SR3RHH and SR3M manufactured by Miniature Precision Bearings, Inc., Keene, New Hampshire. Type SR3RHH bearings, having ribbon-type retainers and two shields, were used to test all lubricants except Duroid, Polymer SP-F, and Kynar (filled). The SR3M type bearings had retainers machined from the test materials. No shields were employed, and the outer race was bore-ground on one side to a diameter equal to the major diameter of the outer ball groove.

Additional detailed information on the Bearing-Lubricant Tester is included in Reference 3.

2.7 <u>Dielectric Testers</u>

The Dielectric Testers shown in Figures 2.9 and 2.10 were designed to determine the changes in dielectric constant, dissipation factor, and volume resistivity of solid dielectric specimens.

that are produced by high vacuum and cryotemperatures with and without nuclear radiation. Tests were also conducted to determine the effects of nuclear radiation and an air environment on these same properties.

2.7.1 Basic Equipment

The basic equipment consists of eight aluminum dielectric test cells mounted vertically on two stainless-steel panels. The test cells (Fig. 2.11) are fabricated in accordance with ASTM D 160-59T, "A-C Capacitance, Dielectric Constant, and Loss Characteristics of Electrical Insulating Materials." The unguarded electrode and guard ring are 4.5 in. in diameter. The guarded electrode is 3.96 in. in diameter, and the gap width between the guarded electrode and guard ring is 0.020 in. The guarded electrode and guard ring of each test cell are secured to a boron-nitride disc 5.1 in. in diameter by 0.25 in. in thickness which, in turn, is secured to the steel panel. A spring-loaded aluminum plunger in contact with the unguarded electrode secures the test specimens between the electrodes. Specimens varying in thickness from 0.002 to 0.250 in. can be tested.

A copper-constantan thermocouple is embedded ~ 0.12 in. into each guarded electrode and is sealed in place with a boron-nitride adhesive.

The instrumentation (Fig. 2.12) associated with the testers consists of (1) a capacitance-measuring assembly, Type 1610-A, manufactured by General Radio Company, which is used for determination of ac capacitance and loss characteristics; (2) a Tera-Ohmmeter (Model FT-H4) manufactured by Federal Telephone and Radio Company, used for resistance measurements; and (3) an electronic recorder manufactured by Minneapolis-Honeywell, used for test-cell temperature monitoring.

2.7.2 Cryotemperature Dielectric Tester

The Cryotemperature Dielectric Tester used in the current period is a redesigned version of the tester used previously (Ref. 3). It is shown in two views in Figures 2.10 and 2.11. The purpose of the modifications was to obtain lower specimen temperatures than were previously possible. The major changes were involved with the cryopanels, electrode material, and electrical insulation used between the guarded electrode and the cryopanel.

Two rectangular, hollow, stainless-steel cryopanels serve as the mounting surfaces for the test cells. With these panels filled with liquid nitrogen, specimens are maintained at a cryotemperature. Liquid nitrogen is supplied to the bottom of the tester through a 1/2-in.-OD fill tube incorporating a 4-in.-long bellows joint. Rectangular end plates are bolted to the front

and back of the tester. Liquid nitrogen flows into each cryopanel and surge tank at the bottom and is vented at the top. A liquid-level probe consisting of a rake of seven carbon resistors and three copper-constantan thermocouples is immersed in the surge tank for cryogen-level monitoring and control.

Boron-nitride discs and adhesive are used for electrical insulation and for good heat transfer between the guarded electrodes and cryopanels and between the aluminum plurgers and the unguarded electrodes. Heat conductive paths are provided from the test cells to both cryopanels. In addition, radiant heat transfer occurs from the test cells to the cryopanels and end plates of the tester. The main part of the tester is wrapped with several layers of aluminum foil (Fig. 2.13) to minimize radiant heat transfer between the tester and vacuum chamber walls.

2.7.3 Air-Environment Dielectric Tester

The dielectric tester (Fig. 2.9) used in an air environment is similar to the cryogenic tester except for the cryotemperature and vacuum provisions in the latter. Solid 0.25-in. stainless-steel plates replace the hollow cryopanels, and the cryogen fill tube, surge tank, and liquid-level probe are omitted.

2.8 Cryotensile Tester

2.8.1 Basic Equipment

The Cryotensile Tester is designed for use with the dewars

described in Section 2.10 for testing specimens in LH₂ and LN₂ immediately after irradiation. The system (ig. 2.14) is designed to apply vertical tensile loads to slotted specimens located in four clevis assemblies. Each clevis assembly can contain as many as 20 tensile specimens, the quantity being limited by the specimen thickness and difference in successive slot lengths.

The overall height of the tester is approximately 8 ft, the width 3-1/2 ft, and the depth 1-1/2 ft. The structure is made of aluminum which, because of rapid radioactive decay rates, permits repeated use of the system in neutron irradiation tests over relatively short time periods. A horizontal dewar-mounting flange is located approximately one third of the way up from the bottom. The portion of the tester below the flange fits into a dewar, as shown in Figure 2.15.

Tensile data, in the form of applied tensile load in pounds and linear pull-rod travel in inches, are obtained with the equipment. The applied loads to the specimens are obtained through actuation of a vertically mounted hydraulic cylinder. The cylinder has a net piston area of 6.8 in. 2 and a stroke of 9.0 in. The cylinder is mounted in the upper section of the tester. The piston rod of the hydraulic cylinder is coupled to a strain-gage-type load cell which provides electrical signals to

instrumentation for determining loads to specimens. Double pull rods extend from the load cell, through the dewar mounting flange, to the clevis assemblies. These pull rods are sealed to the flange with stainless-steel bellows to ensure a vacuum-tight connection. A gear rack is mounted to the upper portion of the pull rod and engages a pinion gear mounted on the shaft of a potentiometer. Rod travel is thus transmitted to instrumentation in the form of varying potentiometer voltages. The entire upper portion of the tester is covered with an aluminum housing, or shroud. All connections to the tester are routed through this shroud.

The lower section of the double-pull-rod system connects to the upper end of the clevis assembly in which the tensile test specimens are loaded. The specimens themselves are the connecting link between the upper and lower sections of the clevis assembly. The lower section of the clevis assembly is secured to the lower extremity of the aluminum structure, forming a continuous tensile linkage between the lower clevis and the actuating hydraulic cylinder.

Each tensile test specimen contains a circular mounting hole near the bottom of the specimen through which the lower-clevis connecting pin passes, thus securing it to the clevis. The upper end of the tensile test specimen contains a slot for attachment

length to permit sequential loading of successive specimens by the upper-clevis connecting pin as the upper clevis is moved vertically upward by the hydraulic cylinder. Actuation of individual hydraulic cylinders in the tester is accomplished by slaving them to one master hydraulic cylinder mounted between the loadecell fitting and the crosshead member of an Instron machine. The crosshead downward motion in the Instron machine results in upward linear motion of the upper section of the clevis assembly, thus applying a tensile load to the test specimen. An accurate control of the Instron machine crosshead speed yields precise vertical movement rates for the upper section of the clevis assembly and enables compliance with established ASTM tensile-testing rates for the specimens.

The cryogen container for the tester is attached to the lower surface of the dewar mounting flange and encloses the clevis assembly. This container is slotted at the top, but is designed to maintain the cryogen liquid level above the upper section of the clevis assembly. With the tester mounted in the dewar cavity, the resultant boil-off of cryogen passes over the upper edge of the cryogen container, into the cavity, and out an exhaust port.

Under testing conditions utilizing liquid hydrogen, an inert gaseous helium purge of the shroud is maintained. Gas-tight connections are provided within the test assembly for insertion of measurement devices such as liquid-level indicators, pressure sensors, and thermocouples.

A small pump is included within the hydraulic system for priming and bleeding purposes. Hand valves are incorporated to select directional flow and individual tester cylinder action.

Copper tubing, of 0.25-in. diameter and 0.030-in. wall thickness, is utilized for routing the hydraulic fluid. Valving and connections are provided to bleed the system of hydraulic fluid that might have been damaged during irradiation. This fluid is flushed out, collected in an individual reservoir, and replaced with new fluid prior to initiation of tests. Pressure relief valves and manifold pressure gages are utilized to ensure proper system protection.

2.8.2 Calibration of Load Cells

Individual load cells were serialized and calibrated. The calibrations were conducted with an Instron machine for application of known loads to a given load cell. Readouts were obtained in percent of bandwidth for each of the Sanborn scales: X1, X2, X5, X10, X20, X50, and X100, with emphasis placed on X1 through

X50. A total of 33 increments were recorded from 0 to 5000 lb, and back to 0 lb. Of these 33 increments, 26 were utilized in the up-scale calibration to 5000 lb while the remaining seven were used to check down-scale readings, and repeatability, from 5000 to 0 lb.

2.8.3 Calibration of Pull-Rod-Movement Potentiometers

Individual wire-wound potentiometers (Helipot Model C, 1000 ohms) were calibrated over a total distance of 4.0 in. This distance was sufficient to measure the pull-rod travel for all given specimen configurations. The known travel was correlated with the percent of bandwidth of a Sanborn Recorder. The series of calibrations indicated that all of the potentiometers were reading out with less than 1% deviation between any two units. The calibration curve was a straight-line function having a slope of 0.061 in. of travel per 100% Sanborn bandwidth. This factor was utilized as the data-reduction function for pull-rod travel.

2.8.4 Measurement of Biasing Forces

Biasing forces that result in the deformation of component parts of the tester assembly during tests on specimens were measured for each tensile-test-specimen position. The resultant deformation correction in terms of inches per inch of elongation

per total load force was plotted for specific positions. A correction factor was then determined from these plots and used
during data reduction to determine correct strain values for each
given test specimen.

2.9 Cryogen Dewars

2.9.1 Liquid-Nitrogen Dewar

The all-welded, aluminum, liquid-nitrogen dewar (Fig. 2.16) was designed and fabricated at the Fort Worth Division. It is obround in shape, having overall dimensions of approximately 43 in. in width, 18 in. in depth, and 37 in. in height.

The assembly consists of two concentric obround enclosures, having radially enclosed ends and bottom. A top cover plate is attached to both enclosures and is provided with an opening for insertion of a test assembly. A vacuum is maintained between the two outer walls of the dewar for thermal insulation. The vacuum space is protected by means of a rupture-disc assembly mounted to the common top plate. A rupture-disc assembly is also used to protect against overpressure within the main dewar cavity. Discharge from either rupture disc is vented to the atmosphere.

An exhaust port used to discharge evaporated cryogen is located in the common top plate. Exhaust is routed to the test-

facility exhaust system. A pneumatically operated valve is located on the bottom of the assembly and is used to drain cryogen from the test cavity.

2.9.2 Liquid-Hydrogen Dewar

The liquid-hydrogen dewar used in these tests is composed of two concentric aluminum cylinders with similar 2:1 elliptical closures at the bottom (Fig. 2.17). The cylinders are connected to a common circular top plate. A rectangular opening used for insertion of the Cryotensile Tester is located in the top plate eccentric to the dewar centerline by 5 in. The dewar is approximately 4 ft in diameter and 3-1/2 ft in height. The opening is 37 in. by 9 in.

A vacuum is maintained between the cylindrical walls for insulation. A vacuum check valve provides protection for the vacuum chamber. Evaporated cryogen is exhausted from the inside bottom of the main dewar cavity through an aluminum tube extending through the top plate. The evaporate is then routed through flexible exhaust lines to the main facility exhaust stack. A secondary exhaust port is also provided within the assembly. It is sealed from normal flow by a rupture disc rated at 22 psig. Excessive pressures within the main dewar cavity will rupture this disc and exhaust through a secondary facility exhaust stack.

The mounting flange of the tester assembly is secured to the top plate by high-tensile stainless-steel bolts located around the perimeter of the rectangular hole. A 1/16-in.-thick asbestos gasket is employed between the flange and top plate.

2.10 Thermal-Conductivity Tester

A test was conducted to measure the thermal conductivity of various rigid, organic, foam-type insulation materials at temperatures ranging from +90°F to -380°F after exposure to a relatively low and a relatively high dose of nuclear radiation. Test specimens were maintained in a room-air environment or submerged in liquid nitrogen or liquid hydrogen during preirradiation control tests, during the actual irradiation, and during postirradiation tests. The postirradiation thermal-conductivity measurements at cryotemperatures were performed without the specimens having been removed from the cryogen, from the beginning of the irradiation through the postirradiation tests.

The testing device consists of an arrangement of three concentric cylinders, with the inner cylinder made up of 40-gage constantan wire spiral-wound on a 34-in.-diam ceramic spool, a central cylinder of test-specimen foam, and an outer aluminum cylinder serving as a container for the device. Figure 2.18 shows longitudinal and horizontal cross-sectional views of the

test unit.

The figure shows that no separate guard heater is used.

Instead, power dissipation in the center 2 in, only of the heater coil is used to calculate thermal-conductivity values, with the 3 in, on each end of the heater serving as effective guard heaters. In addition, 2-in,-long plugs of the test foam are placed at each end of the heater-test-specimen section to ensure virtual radial flow of heat through the test specimen.

The length of the heater and test-specimen section is 8 in.

The overall length and diameter of the test unit are 12.25 in.

and 3.00 in., respectively. The test foam cylinder and two foam plugs (one at each end) were carefully machined on a lathe to tolerances of +0.001 in. and -0.005 in. This ensured a press fit for the test foam cylinder into the outer container and for the heater core into the test foam. Twelve thermocouples for thermal-conductivity determinations were placed in the test foam, as shown in Figure 2.18. Six inner thermocouples were located 1/8 in. into the foam from the heater core, and six outer thermocouples were located 1/8 in. into the foam from the inner surface of the outer container.

Although some slight non-radial flow of heat from the heater might take place near its ends, heat flow from at least a 4-in.

length of heater in the center of the unit was assumed to be purely radial. This assumption was verified in a computer analysis using the N76 program in an IBM 7090 computer. All twelve thermocouples were placed within $\frac{1}{2}$ 1 in. of the center of the unit, as can be seen in Figure 2.18.

Placement of these thermocouples was a critical operation from the standpoint of maintaining dimensional integrity and minimizing rupture of foam cell walls near the thermocouple placement point and in the thermocouple lead-wire path. It was desirable, of course, to have maximum contact between the thermocouple junction and the immediately surrounding cell walls for good conductive heat transfer. Thermocouple placement was accomplished by attaching the thermocouple junction to the point of a hypodermic needle and puncturing the foam to the specified depth. The depth was held constant by use of a fixed flange on the needle. The heater wire was high-resistance, 40-gage constantan; the heater lead-in wire was copper. The lead-in wire for the copper-constantan thermocouples was 3-mil size. The thermocouple junction diameter was estimated to be in the order of 5 mils. Both the heater and thermocouple lead-in wires entered the test section through a passageway drilled through the top insulation plug.

The constantan heater wire was uniformly wound on the ceramic spool so that heat generated in (and dissipated from) the heater was uniform along its length. This means that heat conducted radially through the 2-in. section of test foam containing thermocouples was equal to one-fourth of that generated in the entire heater. A small amount of heat was lost by conduction out of the heater and thermocouple lead-in wires. This was calculated and subtracted during data reduction. The I²R losses from heater lead wires were also calculated and subtracted.

Four different foam materials were tested in the current contractual period, and each test cycle used an arrangement of four test units, each containing one of these four foams. For the air control, irradiation, and postirradiation tests the units were exposed to the atmosphere, as shown in Figure 2.19. The arrangement used for testing at cryotemperatures is shown in Figure 2.20. As can be seen in the figure, the units were flanged to a tubular lead-wire housing which, in turn, was flanged to a dewar-mounting flange. During LN₂ tests the assembly was used with an LN₂ irradiation dewar, as shown in Figure 2.21. During LN₂ tests, the LN₂ level in the dewar was maintained at a point several inches above the flange on the test unit. This flange was sealed with an indium-wire gasket, and a vacuum of approxi-

mately 2000 microns was maintained in each test unit. Some degree of vacuum was necessary to prevent frost and liquid air from accumulating at various points in the units.

For tests utilizing liquid hydrogen as the cryogen, the $\ensuremath{\text{LH}}_2$ dewar shown in Figure 2.17 was used.

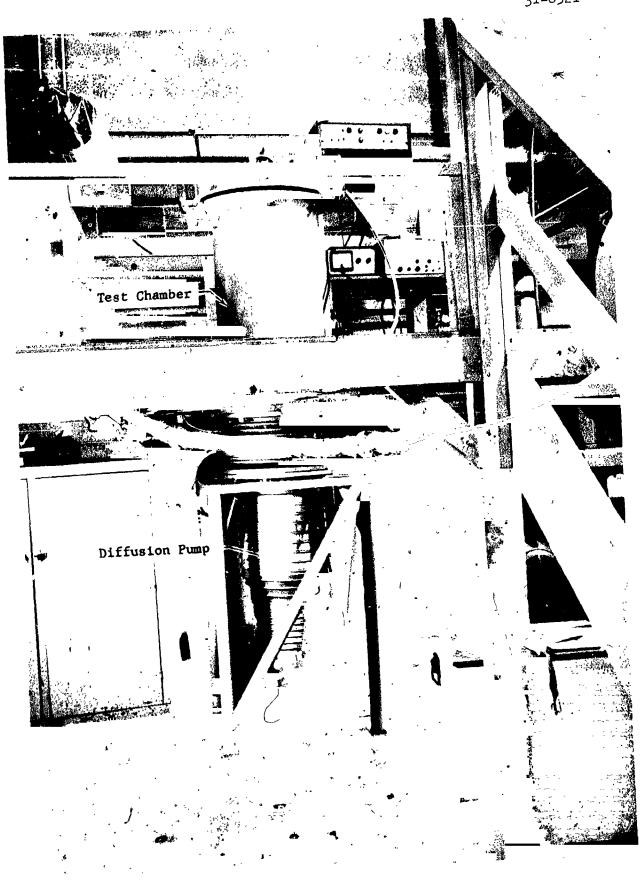


Figure 2.1 Vacuum Control System

29

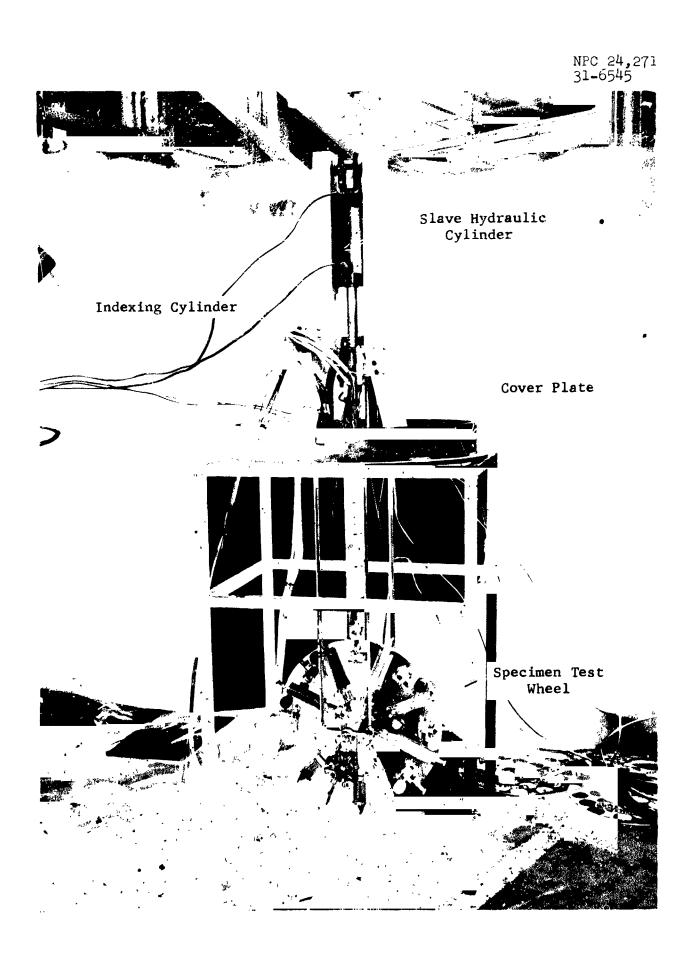


Figure 2.4 Low-Force Dynamic Tester

NPC 24,272 31-6548

Figure 2.5 High-Force Dynamic Tester

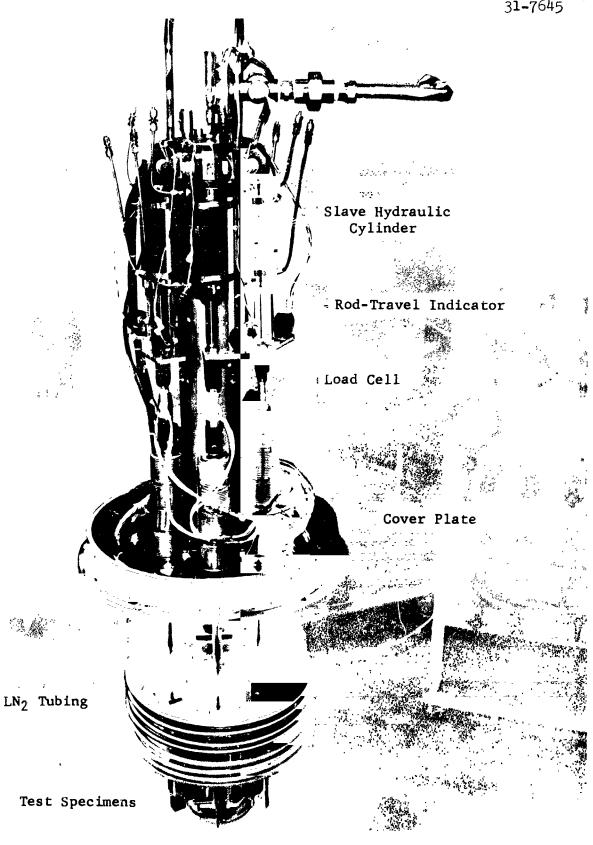


Figure 2.6 Cryomechanical Tester

33

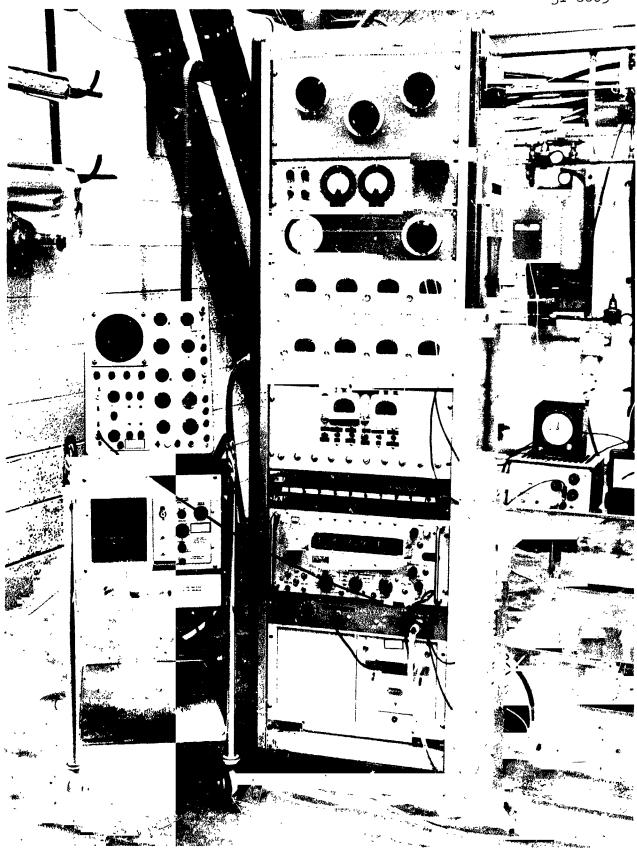


Figure 2.8 Bearing-Lubricant-Tester Instrumentation

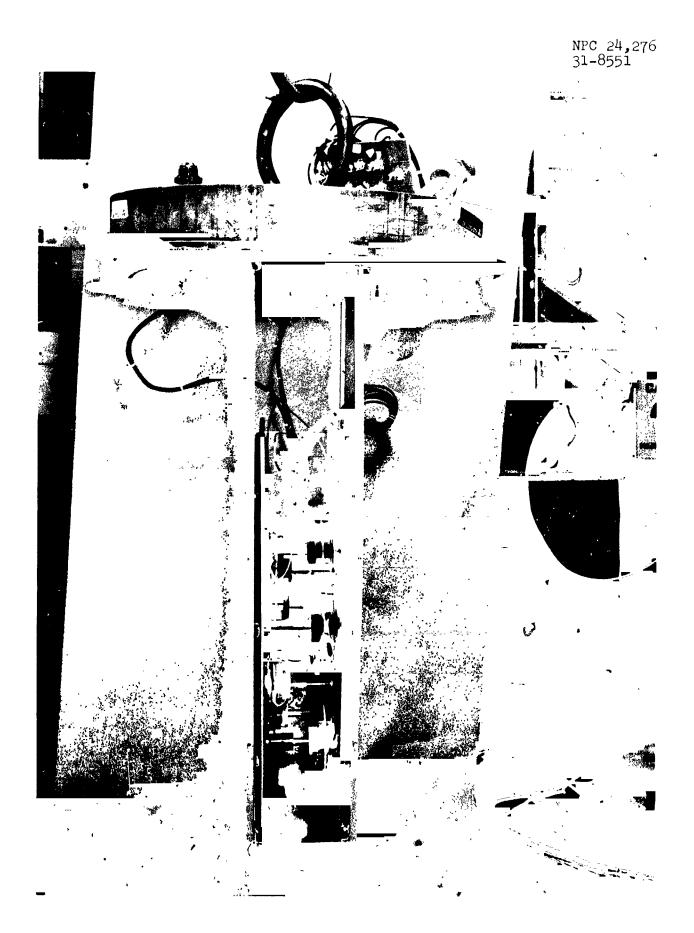


Figure 2.9 Air-Environment Dielectric Tester



Figure 2.10 Cryogenic Dielectric Tester (Side View)

NPC 24,278 31-8523

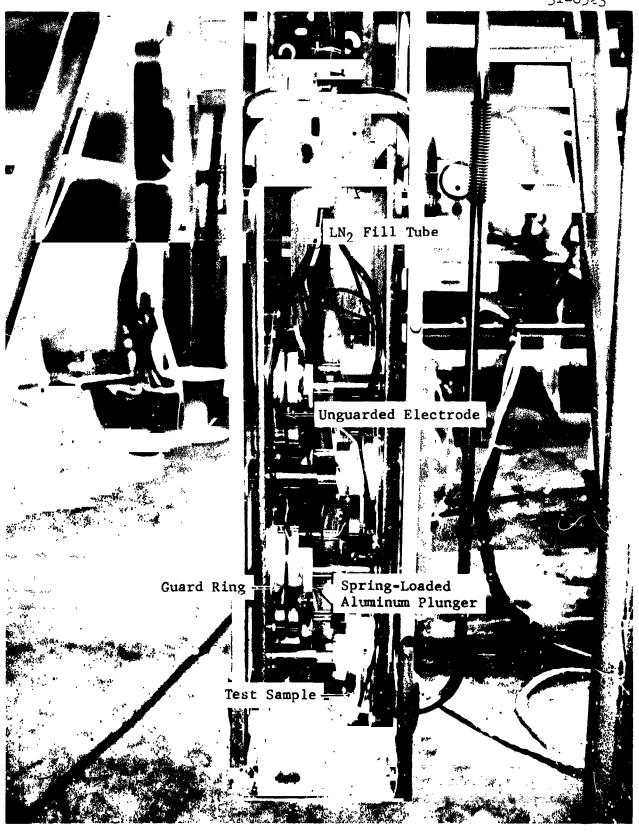


Figure 2.11 Cryogenic Dielectric Tester (Front View)

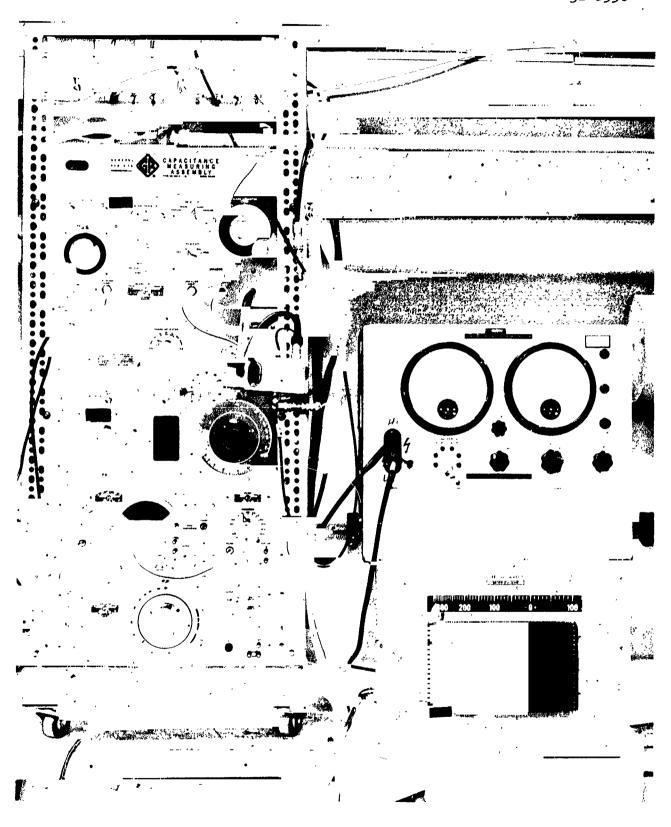


Figure 2.12 Dielectric-Test Instrumentation

Figure 2.13 Cryogenic Dielectric Tester Covered by an Aluminum-Foil Heat Shield

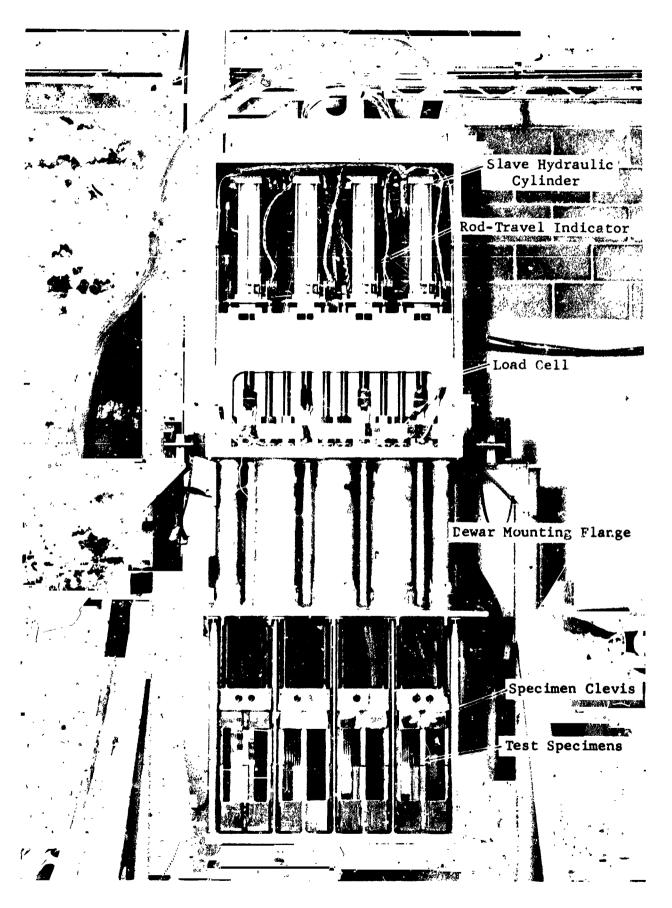
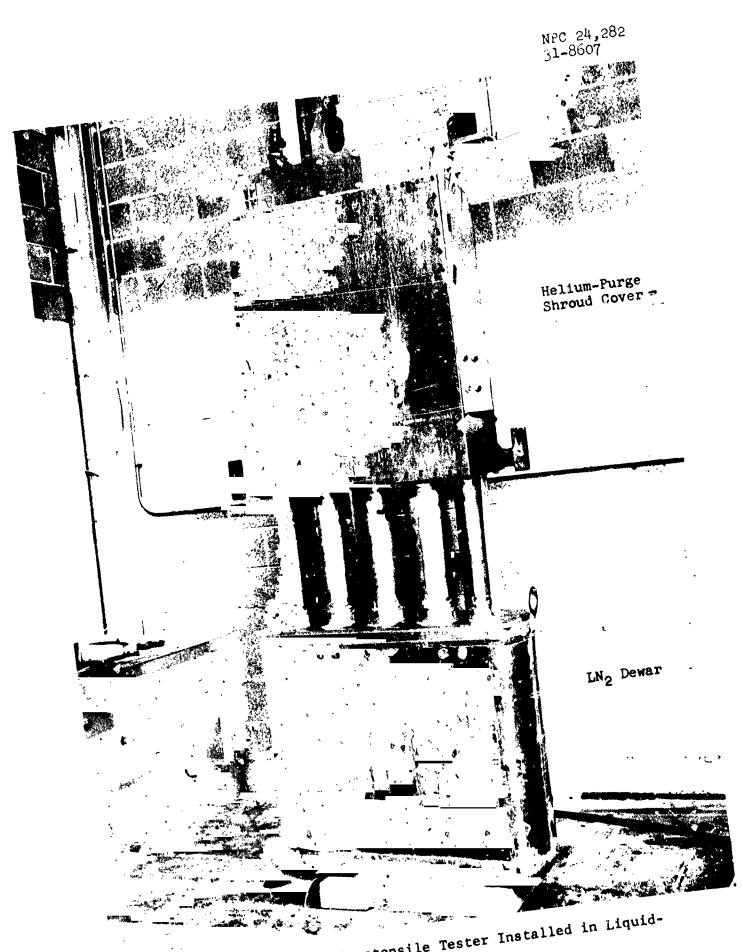



Figure 2.14 Cryotensile Tester

Cryotensile Tester Installed in Liquid-Nitrogen Dewar Figure 2.15

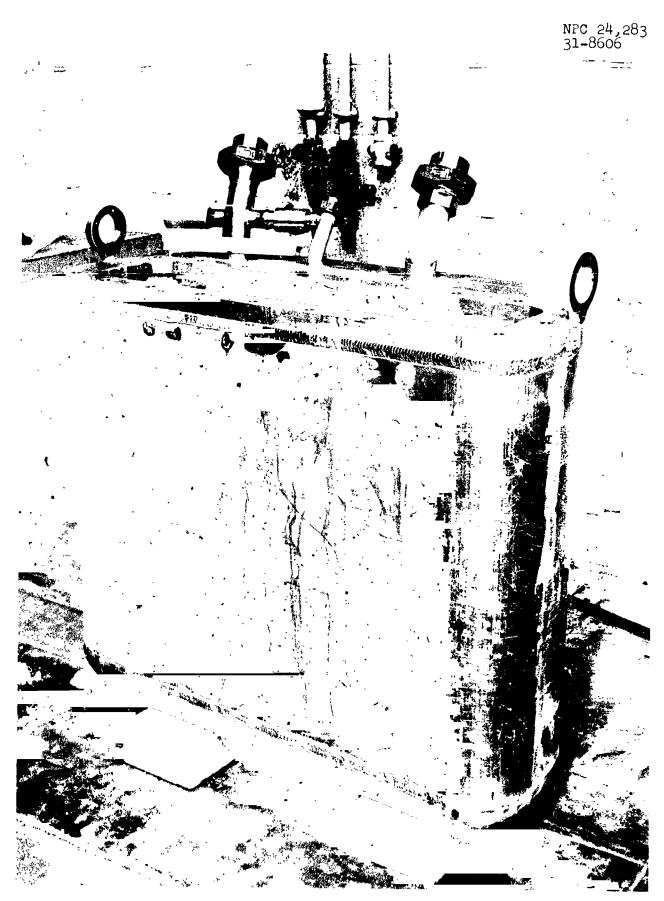


Figure 2.16 Liquid-Nitrogen Dewar

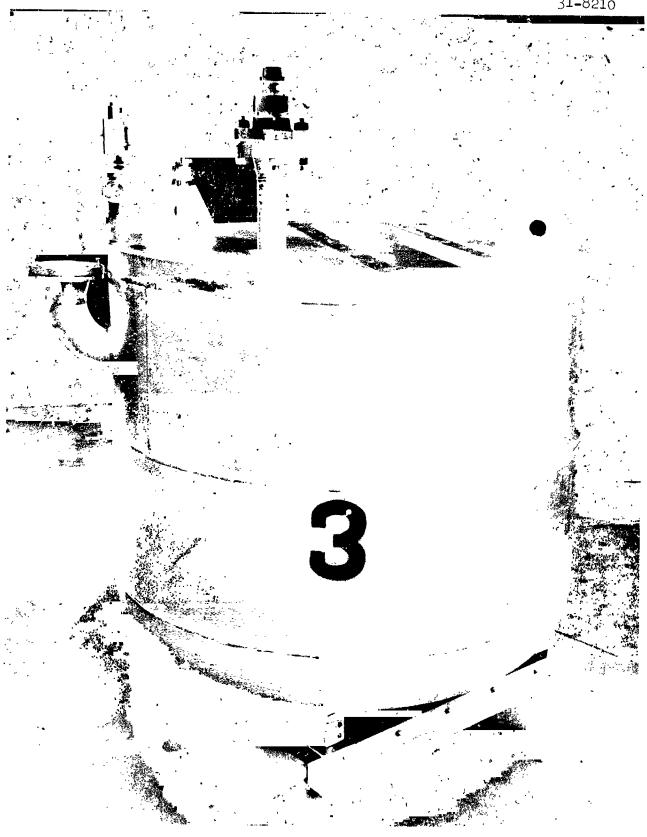


Figure 2.17 Liquid-Hydrogen Dewar

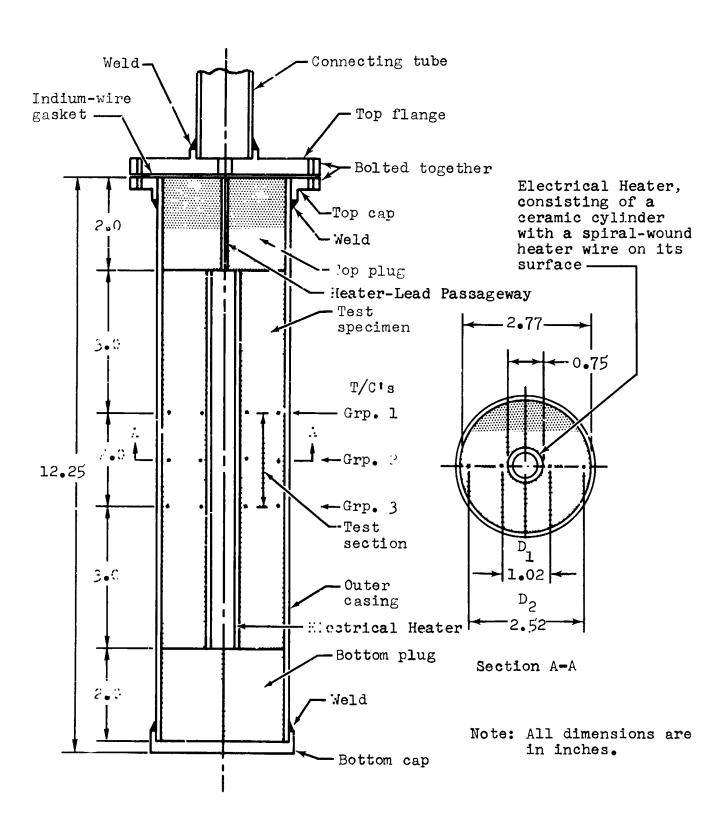


Figure 2.18 Thermal-Conductivity Test Unit: Vertical and Horizontal Cross Sections

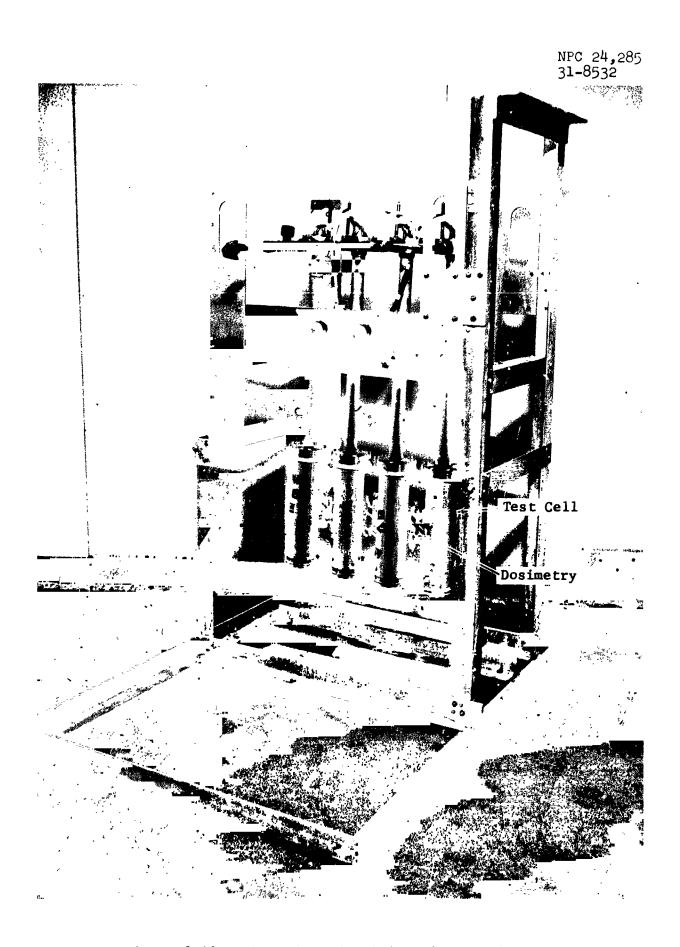


Figure 2.19 Thermal-Conductivity Air Test Arrangement

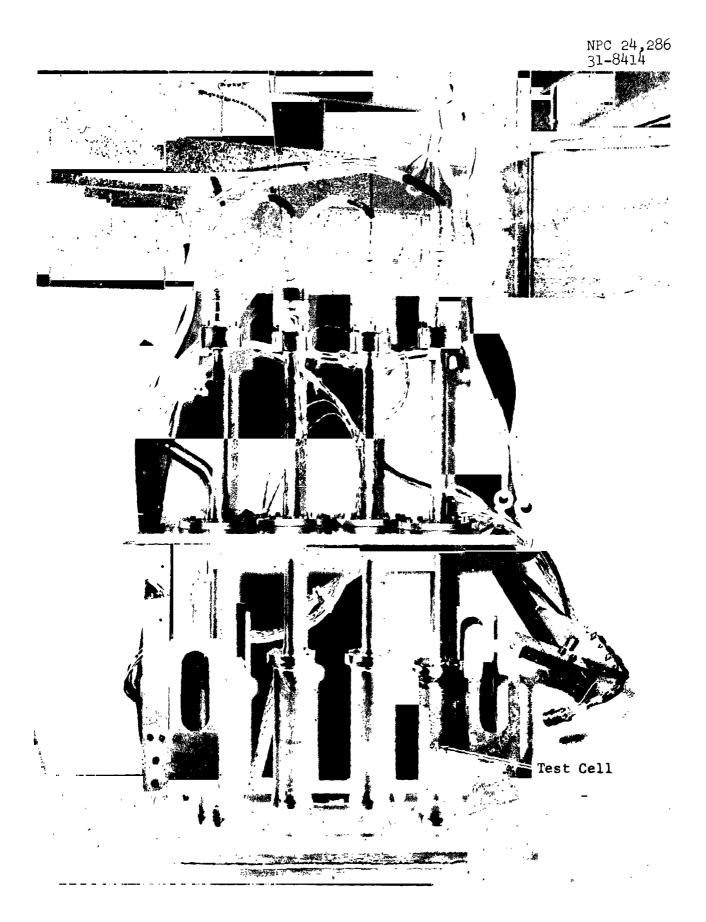


Figure 2.20 Thermal-Conductivity Cryogenic Test Arrangement

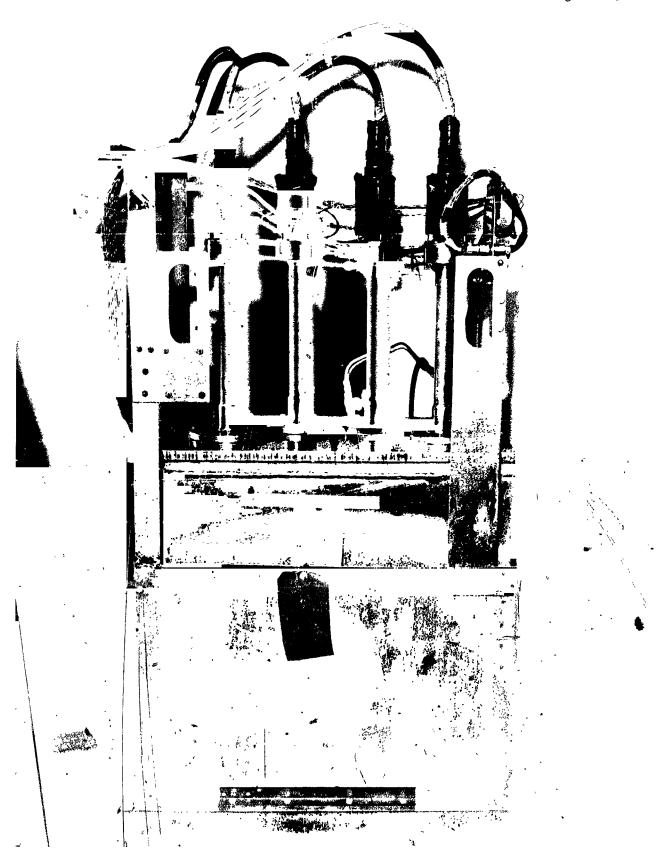


Figure 2.21 Thermal-Conductivity Tester Mated with LN2 Dewar

BLANK PAGE

III. TEST EQUIPMENT PROCEDURES

Many different radiation exposures and test environments were required to obtain specified data cycles for all materials. In all, eleven reactor runs were made, the last being in January 1966. The dates of these runs, the types of tests performed, and the gamma doses to which the specimens were exposed are presented in Table 3.1.

The time delay between the various radiation periods was required to allow radioactivity of the test equipment to decrease to a point where maintenance could be performed prior to subsequent tests.

The test equipment procedures used in this work are described in this section. The test-specimen configurations are given in Section IV.

3.1 Static Tests

3.1.1 Static Irradiation Tests

Static specimens to be irradiated in vacuum were mounted on an aluminum framework that attaches to the underside of the vacuum-chamber cover plate (Fig. 3.1). The specimens were clamped to a grid of expanded metal, which was then wired to the framework.

Static specimens to be irradiated in ambient air were mounted on expanded-metal racks that fit into an aluminum framework (Fig.

3.2) designed for use on the remote-controlled shuttle system of the GTR Radiation-Effects Testing System (see Appendix C). The amount of radiation received by each specimen depends not only on total exposure time but on its location on the rack and the location of the rack in the framework. By use of the shuttle system, the framework containing the racks can be removed from the radiation field at any time while the reactor is at power. Thus, racks containing specimens requiring low doses can be removed, and racks containing specimens requiring higher doses can remain at one of the irradiation positions without interruption of reactor operation.

3.1.2 Pre- and Postirradiation Static Tests

Pre- and postirradiation determinations of the tensile and compressive properties of specimens were made with a 10,000-1b, Model TT Instron machine. This machine has five tensile load cells and two compressive cells to cover the 10,000-1b range. Each cell had six load ranges. The accuracy of the load-range detection system is independent of the range in use and is better than $\frac{1}{2}$ 0.5% of that range. The tests were performed in the IML.

3.2 Dynamic Tests

3.2.1 Low-Force Tests

Three irradiation test runs (3a, 4a, and 5a) were conducted

with the Low-Force Tester. Prior to the irradiation, control tests were conducted on representative test specimens in the Low-Force Tester in vacuum and in air. The control data thus obtained were utilized for comparison with the irradiation data.

In the irradiation tests, gamma doses of 2.4×10^8 , 2.1×10^9 , and 5.3×10^9 ergs/gm(C) were obtained on the specimens. The GTR was operated at power levels to 3 Mw for the time necessary to obtain the desired doses.

Tabulations of the material types tested and the resultant data from all specimens tested in the Low-Force Tester are given in Sections V through X.

3.2.2 High-Force Tests

The High-Force Tester was used during irradiation Run 3b. Specimens were tested after irradiation to a gamma 'ose of $1 \times 10^{10} \, \text{ergs/gm(C)}$. Sixteen test specimens were irradiated and tested.

Prior to irradiation, sixteen specimens identical to those irradiated were tested in vacuum with the High-Force Tester.

Data from specimens tested with the High-Force Tester are tabulated and plotted in Sections VI and IX.

3.2.3 Cryomechanical Tests

The Cryomechanical Tester was employed in the testing of

specimens after irradiation (Run 4c) to a gamma dose of 1 x 10¹⁰ ergs/gm(C). The environment maintained on the specimens during both the irradiation and postirradiation tests included a vacuum of approximately 0.10 torr and a temperature of approximately -270°F. A total of eighteen specimens were tested after irradiation in this environment.

Unirradiated control specimens were tested with the Cryomechanical Tester while in an environment of approximately 0.10 torr vacuum and a temperature of -320°F. Other control specimens were tested in air and in vacuum for comparison. The various control-run data and irradiation test data are tabulated and plotted in Sections V, VI, and IX.

3.2.4 Bearing-Lubricant Tests

The test procedure consisted of periodically recording the parameters of motor speed, current, coastdown time, speed during coastdown, bearing temperature, operating time, and pressure (when applicable).

Motor speeds were adjusted to the desired rpm (usually 6000) by varying the phase-2 motor current. After the desired motor speed was reached, the coastdown time was obtained by starting a timer at the instant the motor currents were cut off and stopping the timer when the motor stopped. Motor speed during coastdown

was obtained with an electronic printe. which automatically printed motor speed at 2-sec intervals. The coastdown procedure was repeated for each of the ten motors by manual control of the instrumentation. Each motor was immediately restarted after obtaining the coastdown time.

The basic test procedure was the same for all lubricants tested, although the environment, motor input power, and operating speed varied (see Section XI). A more detailed description of the test procedures is given in Reference 3.

3.2.5 Dielectric Tests

Three irradiations were performed with the Dielectric

Tescers: two with the Cryotemperature Dielectric Tester in vacuum

and one with the Air-Environment Dielectric Tester. Dielectric

property values of normalized dielectric constant, dissipation

factor, and volume resistivity were obtained.

3.2.5.1 <u>Dielectric Test Procedures</u>

The dielectric properties of dielectric constant (normalized) and dissipation factor were obtained by periodically measuring the ac capacitance and loss characteristics of the test cells containing the dielectric specimens. The eight test cells per tester were measured sequentially by the Capacitance Measuring Assembly (Section 2.7) and, using the substitution method of

measurement, the Schering bridge was balanced with and without the test cell in the circuit. The bridge oscillator was operated at 1000 cps. Volume-resistivity values were obtained by switching the test cells to a Tera-Ohmmeter and measuring the resistance of the dielectric specimens. The Tera-Ohmmeter was operated at 500 v-dc, and a 1-min charging time was used. A Minneapolis-Honeywell temperature recorder automatically switched the eight thermo-couples per tester and recorded the temperature. The vacuum pressure (when applicable) was recorded manually.

3.2.5.2 Temperature Control

automatic or manual control of the tester was accomplished by automatic or manual control of the quantity of liquid or cold gaseous nitrogen in the tester cryopanels. Temperatures were sensed with copper-constantan thermocouples attached to each dielectric test and with three thermocouples in the liquid-level probe mounted in the tester surge chamber. The LN₂ level was monitored by observing the panel of resistance indicators commenced to the seven carbon resistors in the probe. Additional temperature control was obtained by reducing the degree of vacuum to approximately 100 microns with the introduction of gaseous helium into the vacuum chamber. The gaseous-helium conductive heat transfer enhanced the cryotemperature capability of the

tester and was required occasionally during extended irradiations at maximum reactor power.

Temperature control for the air-environment tester consisted of passing cool air over the tester to prevent overheating of the specimen during irradiation at maximum reactor power.

3.2.6 Cryotensile Tests

3.2.6.1 General

The Cryotensile Tester (CTT) was employed to determine the tensile characteristics of various organic materials after subjecting the test specimens to specific doses of reactor radiation and a temperature of either -320°F or -423°F. The temperature control was obtained by submerging the specimens in liquid nitrogen or liquid hydrogen.

Tensile testing of specimens of each material was initially accomplished to obtain control data in each of the stipulated temperature environments prior to irradiation. These data were used to compare with the data obtained after testing under like temperature environments and after exposure of the materials to radiation from the GTR. The resulting data from the comparison yielded the net radiation effect for the specific radiation levels and temperature environment involved. Test materials were supplied by NASA and by various material manufacturers.

These irradiations were performed: one with liquid nitrogen, and two with liquid hydrogen. After reaching the specified radiation dose, the reactor was shut off and the specimens pulled to fracture.

A listing of the materials tested in the Cryotensile Tester for specific test environments is included in the summary table given in the Report Summary.

3.2.6.2 Operating Procedures for Test Hardware

After delivery of the test specimens and Cryotensile Tester to the reactor test area, setup for the irradiation test was completed. This included the connection and operational checkout of all instrumentation, hydraulics, purge gas system, cryogen supply system, and facility controls. These initial checkouts were made to establish the operational integrity of the hardware and instrumentation before the tensile test specimens were sequentially loaded in the tester clevis assemblies. The tester was then mated with and secured to the dewar assembly (see Sec. 2.9) and the cryogen system checked for leaks.

For the liquid-nitrogen control run, the dewar was filled with liquid nitrogen and the desired liquid level established above the test specimens mounted in the clevis assemblies and

enclosed within the cryugen container (see Sec. 2.8.1). After the desired temperature for test specimens had been stable for one hour, tensile testing was started and all control data obtained.

The control run for the liquid-hydrogen environment was performed similarly to that using liquid nitrogen. Some variation in cryogen handling procedures was necessary, however, because of the inherent hazards associated with the use of liquid or gaseous hydrogen. The essential deviations in procedures were those associated with purging the cryogen system with gaseous helium prior to the introduction of liquid hydrogen and the constant monitoring of the system for possible explosive gas mixtures.

Preparation of the test assembly and loading of test specimens for the liquid-nitrogen irradiation test were identical to that for the control run. The test assembly was then positioned in the north irradiation test cell. Once positioned, instrumentation was verified as operational and the cryogen system was cooled down and filled with liquid nitrogen. Control of the liquid nitrogen was automatically maintained at the prescribed level (see Sec. 2.8.1). The reactor was operated at power levels of up to 3 Mw for time periods required to yield gamma radiation doses of 5×10^9 , 1×10^{10} , and 3×10^{10} ergs/gm(C). Tensile

data were obtained for test specimens after irradiation to the prescribed gamma dose levels in the same manner as the data in the control ru.

Two liquid-hydrogen irradiation tests were conducted. irradiation involved reactor power levels of up to 3 Mw for time periods required to produce gamma radiation doses of 1 x 109, 5×10^9 , 1×10^{10} , and 3×10^{10} ergs/gm(C). Initial preparation of the test assembly was the same as that for the control run. Prior to placement of hardware in the irradiation test cell, the test assembly was subjected to three complete temperature cycles, each cycle including the cooling of the system with liquid hydrogen to -423°F and then allowing it to warm up to -100°F. Constant leak checks were conducted during these temperature cycles for indication of hydrogen gas leakage. Upon completion of these preparatory tasks, the test assembly was positioned in the north irradiation cell of the test facility, filled with LH2, and the reactor operated for the specified periods. Tensile tests were performed on submerged specimens after each irradiation period. Testing was conducted precisely as it was for the control runs.

Because of the hazardous nature of LH2, precautionary measures were observed at all times during the test. Explosive

mixture detectors were mounted on the test assembly and at specified positions throughout the test facility to continuously monitor the atmosphere for the existence of hydrogen.

After completion of all postirradiation testing, the LH₂ was allowed to boil off and the test assembly purged completely with helium. The test assembly was then removed from the facility, demated, and the fractured test specimens removed for further study.

3.2.6.3 Instrumentation

Tensile stress and strain signals from the load cells and potentiometers were fed to a Sanborn Model 150 recorder. Data were recorded in the form of continuous curves measured as percent bandwidth. Correlation with the calibrations of the load cell and potentiometer units with the indicated percent bandwidth yielded tabulated data of total load and specimen elongation. The Instron machine recorder was utilized during all tensile loadings. This provided secondary, or backup, instrumentation should the Sanborn load cells or potentiometers fail.

Operation of the Sanborn included null verifications prior to each specimen loading. Drag loads were also noted and subtracted during the data tabulation to yield the net tensile load. Cross-sectional area and gage lengths for all specimens

were also tabulated. Data reduction is discussed in Section IV.

Signals from copper-constantan thermocouples mounted at each tensile clevis assembly were continually monitored by a Brown recorder. This temperature indication verified that the proper liquid level was being maintained (see Sec. 2.8.1).

3.2.7 Thermal-Conductivity Tests

The procedures for operation of the test equipment are so closely related to the procedures used in taking a data cycle that only the latter are included in this report. These procedures are described in Section 10.1.1.

3.3 Cryogen Handling

3.3.1 Liquid Nitrogen

Liquid nitrogen is supplied to test equipment from a 6500-gal storage vessel. It is routed through insulated copper tubing to the facility manifold valve assembly and metered from there to the test assembly. Evaporated cryogen is exhausted to the atmosphere through the test facility exhaust system. Automatic flow control is maintained by employing a Bristol control unit with a +100° to -430°F range. The controller sensor consists of a series of copper-constantan thermocouples mounted in the liquid-level section of the cryogen container. The controller transmits

signals to a pneumatic flow regulator within the facility manifold valve assembly.

Small amounts of liquid nitrogen are periodically dumped from the bottom of the test dewar during irradiation to dispose of any liquid or solid ozone that might have accumulated.

3.3.2 Liquid Hydrogen

Liquid hydrogen is handled in basically the same manner as liquid nitrogen; however, its hazardous characteristics require added precautionary procedures. Personnel working within the hydrogen inclusion area are provided with grounding straps. Explosion proof electical equipment is used exclusively and nonsparking beryllium tools are also used.

A vacuum-jacketed stainless-steel flexible line is used to route the liquid hydrogen from the trailer to the facility manifold assembly and to the test assembly. A flexible steel exhaust line connects the test assembly exhaust port to the facility exhaust system, and a burn stack is employed to burn off the evaporated hydrogen.

Alternate purging of the entire cryogen system with helium gas and evacuation of the system with a vacuum forepump is accomplished to provide an oxygen-free atmosphere prior to introduction of hydrogen. Upon completion of hydrogen use, the

is present. The system may then be disconnected and the liquid-hydrogen trailer removed. Liquid-level control of liquid hydrogen in the test hardware is accomplished in the same manner as that of the liquid nitrogen and uses the same equipment.

The entire liquid-hydrogen circuit and the test facility are continuously monitored for indications of the presence of an explosive gas mixture. Should such a condition develop, all power and liquid-hydrogen flow are terminated until such time as the condition is remedied.

Table 3.1 Irradiation Schedule

Run No.	Irradiation Date	Irradiation Position	Irradiation Test Hardware	Specified Gamma Dose [ergs/gm(C)]	Total Mw-Hours	Remarks
1	25 Mar 65	N E W	(NERVA) (NERVA) 2 Static Air Racks	3(10),1(11)	470	3-Mw Power Level - 2" H ₂ 0 Shield at N. Position
2a	3 Aug 65	N 5: W	3 Static Air Racks 2 Static Air Racks Open	2(8),5(8),1(9) 1(7),5(7)	0.2	500-kw Power Level - 4" H ₂ 0 Shield at N. Position
2b	3 Aug 65	N E W	3 Static Air Racks Open Open	2(8),5(8),1(9)	1.3	1-Mw Power Level - 4" H ₂ 0 Shield at N. Position
3a	16 Aug 65	N E W	2 Static Air Racks Open LFT ⁸ in Vac.	5(9),1(10) 3(9)	18.0 18.0	3-Hw Power Level - 4" H ₂ 0 Shield at N. Position
3b	18 Aug 65	N E W	CTT ^a - LN ₂ TCT ^a - LN ₂ HFT ^a - Vac. (with static spec.)	5(9),1(16),3(10) 5(9),1(10),3(10) 1(10)	61.2	3-Mw Power Level - 4" H ₂ 0 Shield at N. Position, Doses Obtained by Intermittent Reactor Operation and Testing.
4 a	29 Nov 65	N E W	Open LFT - Vacuum Static Vacuum Spec.	5(8) 5(8),1(9)	2.0	2-Mw Power Level - 4" H ₂ 0 Shield at N. Position
4b	29 Nov 65	N E W	Open Open Static Vacuum Spec.	5(8),1(9)	4.6	3-Mw Power Level - 4" H ₂ 0 Shield at N. Position
4c	1 Dec 65	N E W	BLT ^a - Air DT ^a - LN ₂ - Vac. CMT ^a - LN ₂ - Vac.	1(7),1(8),1(9),1(10) 1(10)	30.2 88.1 88.1	500-kw and 3-Mw Power Levels - 4" H ₂ 0 Shield at N. Position. Bearing Tester Was Retracted During Run Without Changing Reactor Power Level.
4d	9 Dec 65	N E W	CTT - LH ₂ TCT - Air Open	1(9),5(9),1(10) 5(9),1(10),3(10)	34.2 34.2	3-Mw Power Level - 2" H ₂ O Shield at N. Position. This Run Was Stopped Prematurely Because of Indicated Hydrogen Leak.
4e	15 Dec 65	N E W	CTT - LH ₂ TCT - LH ₂ Open	1(10),3(10) 5/9),1(10),3(10) 	54.5	3-Mw Power Level - 2" H ₂ 0 Shield et N. Position
5 a	6 Jan 66	N E W	Open LFT - Vacuum Open	5(9)	44.4	3-Mw Power Level - 4" H ₂ 0 Shield at N. Position
5b	10 Jan 66	N E W	Open Open Static Vacuum Spec.	5(7),1(8)	0.8	1-Mw Power Level - 4" H ₂ 0 Shield at N. Position
5c	11 Jan 66	N E W	DT - Air - Vac LN ₂ BLT - Vac.	1(7),1(8),1(9),1(10) 1(7),1(8),1(9),1(10) 1(7),1(8),1(9),1(10)	61.3 61.3 61.3	500-kw and 3-Mw Power Level - 4" H ₂ 0, Shield at N. Position

Abbreviations

LFT - Low-Force Tester CTT - Cryotensile Tester TCT - Ther.mal Conductivity Tester HFT - High-Force Tester BLT - Bearing Lubricant Tester DT - Dielectric Tester CMT - Cryomechanical Tester

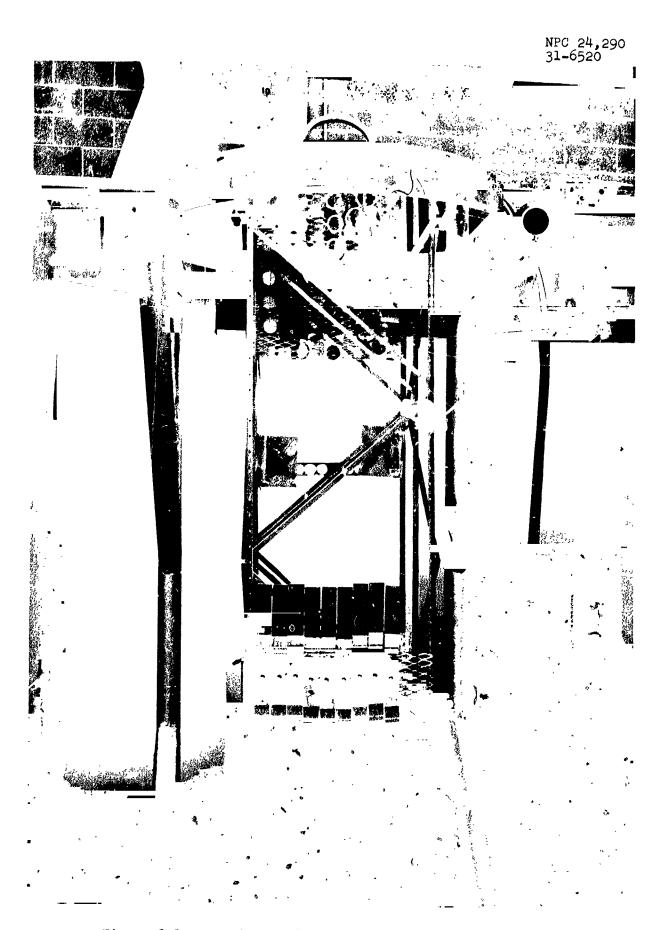


Figure 3.1 Static Samples on Rack for Vacuum Irradiation

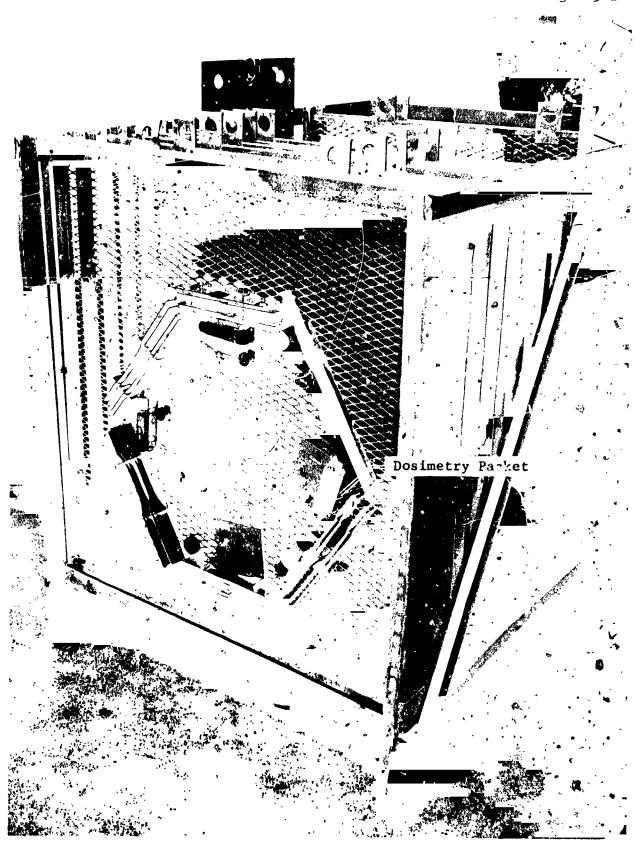


Figure 3.2 Static Samples on Rack for Ambient-Air Irradiation

BLANK PAGE

IV. SPECIMEN CONFIGURATIONS AND TESTING CHARACTERISTICS

In this test program, many different types of materials were subjected to a variety of environments and, as a consequence, several types of test specimens were required. When possible, ASTM standard test specimen configurations were used; however, in order to test materials in vacuum and at cryotemperatures it was necessary, in several instances, to design special test equipment and specimen configurations. Obviously, the prime consideration in the design of the test specimens was that they be as similar to the ASTM standard specimens as possible and still be compatible with the test equipment used to obtain the required environment.

The configurations and testing characteristics of all the types of specimens used in this period are described below. In addition, the specific type of specimen used with each dynamic tester is mentioned in the test-method section for each individual material (Sections V through XI).

4.1 <u>Mechanical-Property Specimens</u>

4.1.1 Dumbbell Specimens

All the tensile specimens tested during the current period which have a reduced section in the center are referred to as dumbbell specimens. Several types of dumbbell specimens were fabricated, but the reduced center sections were all shaped and

sized in accordance with ASTM D-638 or D-412.

Figures 4.1 and 4.2 are drawings of typical tensile specimens that were tested in the dynamic testers. The dynamic testers incorporate a pin-type jaw arrangement, and sequential testing of the specimens is accomplished by one upward movement of the pin-type jaw applied to a parallel loading of specimens having varying-length pin slots.

The specimens tested in the Instron were either the same type as those tested in the dynamic testers or standard ASTM specimens. The particular specimen configuration used for each material is given in the appropriate material Test Methods and Results sections.

In testing tensile specimens in the dynamic testers in vacuum and at cryotemperatures, precise elongation measurements with an extensometer or strain gage, as required by ASTM methods, were not possible. At the time this program was planned, methods for using extensometers and strain gages in vacuum and cryogens and operating them remotely had not been sufficiently developed. Since the only extension measurement possible with the dynamic equipment used in this program was the crosshead travel (corrected for tester deflection), it was evident that some compensation should be made for the extension which occurs throughout the length of

the specimen as contrasted to that which takes place in the gagelength section only.

It is possible to correlate total strain in the test specimen with the strain in the reduced section by using a standard extensometer, with its associated readout equipment, in the appropriate dynamic testers and thus establish a relation between the actual strain recorded by the extensometer and the crosshead travel. This could be done manually in the IML with all equipment exposed to the atmosphere, and would result in a specific relationship for each type of test material. However, this relationship could only be established under room-temperature conditions and would not be valid for LN₂ and LH₂ test conditions. It was therefore decided that a nominal gage length would be selected which would cover a portion of the specimen in which greater than 90% of the strain would occur. The nominal gage lengths established for Type I and Type II specimens (Figs. 4.1 and 4.2) were 3.5 and 4.0 in., respectively. Thus, by using the total strain as represented by total crosshead travel, and dividing this value by 3.5 (or 4), a very close value for strain in terms of inches-per-inch of gage length resulted. This method was used in all test procedures for dumbbell-type specimens and definitely provided means of showing relative changes due to the effects of radiation.

Visual examinations of the dumbbell specimens were made following testing, and the type of break exhibited by each specimen was classified according to the break code shown in Figure 4.3.

4.1.2 Lap-Shear Specimens

The structural adhesives were fabricated into lap-shear specimens according to ASTM D-1002-64. For testing lap-shear specimens in the dynamic testers, a modification was made to adapt the specimens to the pin-type jaws of the testers. Figure 4.4 is a drawing of a typical lap-shear specimen.

The silicone sealants were made into special lap-shear speciments by the Dow Corning Corporation.

4.1.3 Thin-Film Specimens

Specimens of all materials were fabricated in accordance with ASTM D-882-61T. The specimens were 1.0 in. wide by 6.0 in. long except for the H-Film specimens, which were 0.5 in. wide. The thickness of each material is given in its respective Test Method and Results section of the report.

4.1.4 Flexure Specimens

The flexure specimens were cut from plastic sheets into pieces 1.0 in wide by 4.0 in. long. The thickness of each specimen depended on the sheet of plastic from which it was cut and is given in Sections 9.5 and 9.8.

4.1.5 Compression Specimens

All of the compression specimens were cylinders which measured 0.5 in. in height and 1.129 in. in diameter.

4.2 Dielectric Specimens

The dielectric specimens were 4.5-in.-diam discs of test material ranging in thickness from approximately 0.10 to 0.15 in. With the exception of Epon 828/Z, the specimens were cut from the manufacturer's sheet stock. The Epon specimens were obtained by casting the resin and curing agent to the desired thickness in 4.5-in.-ID aluminum molds.

The dielectric specimens were cleaned thoroughly prior to placement in the dielectric test cells. A wash with methyl ethyl ketone, followed by acetone, was used for the Lamicoid, Kynar, Teflon, and Estane specimens. A toluene wash, followed by acetone, was used for the Sylgard and RTV-501 specimens. Alcohol only was used to clean the Lexan specimens. The Epon samples were washed with a solvent degreaser, followed by cleaning with methyl ethyl ketone and then acetone.

4.3 <u>Thermal-Conductivity Specimens</u>

Thermal-conductivity tests were performed on four rigid, cellular, organic foam materials. The raw material was foamed by the manufacturers and shipped to the Fort Worth Division in

blocks which were, roughly, 4 in. by 4 in. by 18 in. in size. These blocks were then machined on a standard lathe into the size and shape required for their use in the thermal-conductivity test units. As can be seen in Figure 2.18, the test specimen consisted of a cylinder of foam 8 in. in length, having a 2.77-in. outside diameter and a 0.75-in. inside diameter. Tolerances of +0.001 in. and -0.005 in. were held in the machining operation, which allowed a press fit of the cylinder into its outer aluminum casing and also a press fit for the ceramic heater spool used in the center of the test specimen.

4.4 Bearing-Lubricant Specimens

Prior to application of the test lubricants, the motor bearings were subjected to standardized multiple wash processes to ensure cleanliness, followed by drying with pressurized, filtered air. Details on specimen preparation are outlined as follows:

Almasol SFD-238 is a MoS2-base dry-film lubricant with organic binder that was applied to the inner and outer bearing races and retainer by the Almasol Corporation.

The binder material and application process are proprietary.

DC-705, FS-1265, GE F-50, and OS-124 are oil-type lubricants that were applied to the bearings by Miniature Precision Bearing, Inc. The lubricants were applied to the bearings from a hypodermic syringe through a No. 26 needle. As an added precaution against contamination of the oil, a Millipore filter was mounted between the syringe and the needle. The lubricant quantity was determined by comparing the weight of the bearing before and after lubrication. A Model No. 1-910 Gramatic Balance was used for weighing the bearings.

<u>Duroid</u> bearing retainers were machined by Miniature Precision Bearing, Inc., from Teflon stock impregnated with MoS_2 and reinforced with fiberglass.

Electrofilm 66-C is a solid-film lubricant that was diluted with a solvent for spray application by Miniature Precision Bearing, Inc. The lubricant was kept under agitation at the time of application to avoid settling of the MoS₂. It was applied with an air brush to the rotating bearing component (inner and outer races), which was allowed to rotate after the spraying process until the film was air-dried. The

film. The thickness of the baked film was held between 0.0002 and 0.0003 in.

ETR-H is a Shell Oil Company grease that was applied to the bearings by Miniature Precision Bearing, Inc. from a hypodermic syringe through a No. 18 needle. Application was made under a binocular microscope to ensure that an even pattern of grease was laid at the bore and outside diameter of the retainer in direct contact with the balls and ball grooves. Lubricant quantity was determined by comparing the bearing weight before and after the lubricant was applied.

Kynar (filled) bearing retainers were machined by Miniature Precision Bearing, Inc., from vinylidene fluoride stock containing a filler.

Minapure is a grease manufactured by Miniature Precision

Bearing, Inc. It was applied to the bearings by the manufacturer.

MLF-5 is a solid-film lubricant with inorganic binder. Midwest Research Institute prepared and applied the lubricant to t'e bearings. After the standard bearing wash procedure, the MLF-5 (dispersed in distilled water by continuous stirring) was sprayed onto the races by an air brush utilizing pressurized dry nitrogen. The lubricant was dried at temperatures not exceeding 140°F and then cured in an air environment according to the following sequence:

1 hr at 65° to 100°F and 8 to 16 hr at 300°F, followed by cooling from 300° to 150°F for not less than 1 hr.

Polymer SP-F bearing retainers were machined by E. I. du Pont de Nemours and Co., Inc., from specifications supplied by Miniature Precision Bearing, Inc.

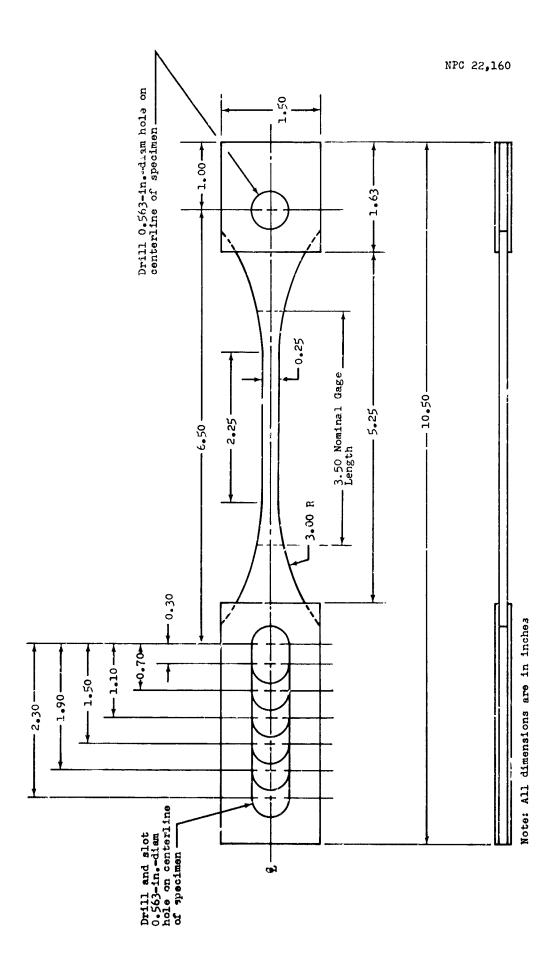
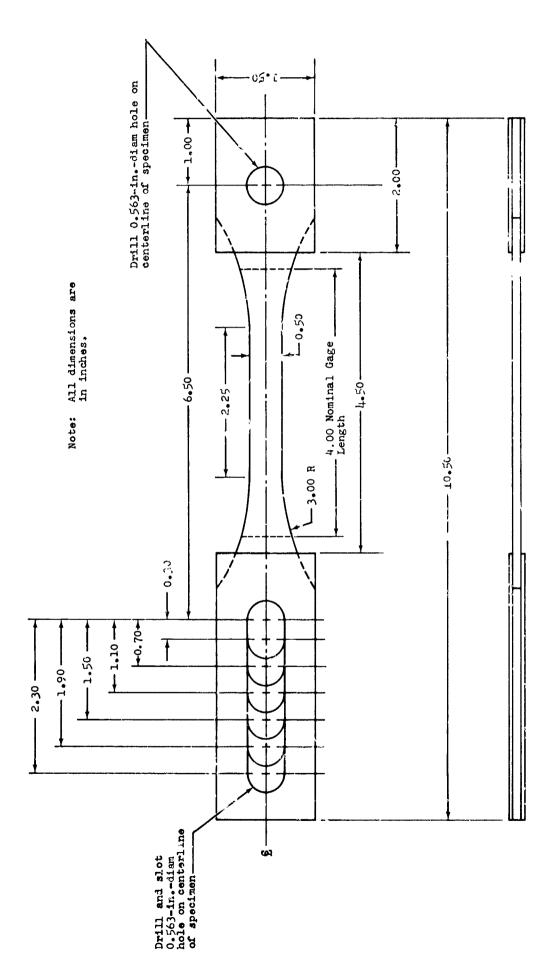
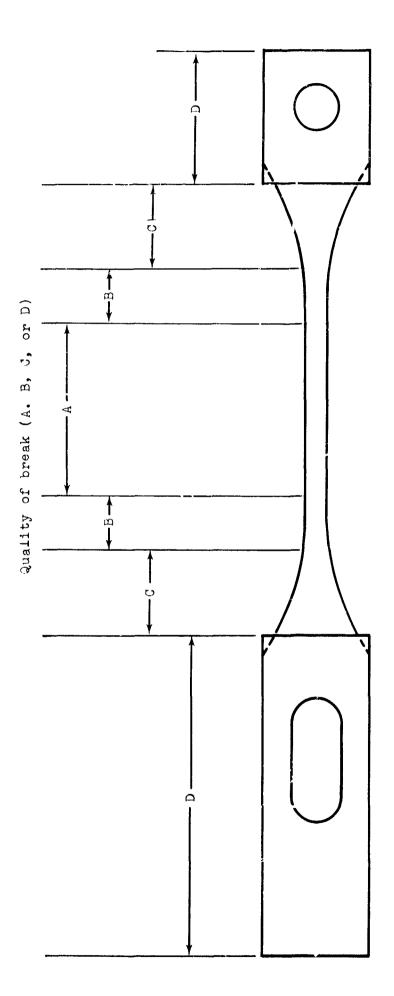




Figure 4.1 Typical Narrow-Gage Tensile Specimen

Pigure 4,2 Typical Wide-Gage Tensile Specimen

NPC 20,887

Note: See Figures 4.1 and 4.2 for detailed specimen drawings, including dimensions.

Figure 4.3 Specime.1-Break Code Description

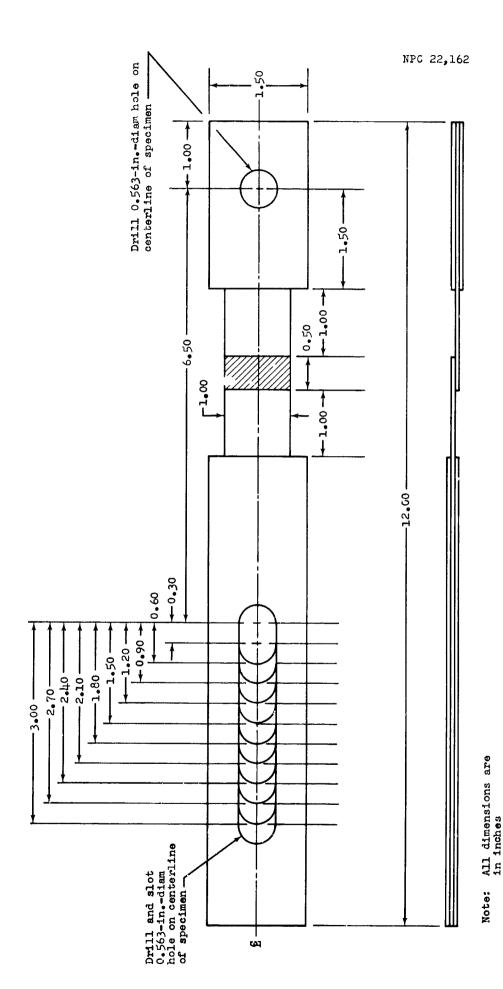


Figure 4.4 Typical Lap-Shear Adhesive Specimen

BLANK PAGE

V. STRUCTURAL ADHESIVE TEST METHODS AND RESULTS

Table 5.1

Outline of Structural Adhesive Tests

	Type		Nominal		ASTM
Material	of	Irradiation	Gamma Dose	Materials	Test
	Test	Environment	$[\mathtt{ergs/gm(C)}]$	Tester	Method
Aerobond 4223	Static	Air	1(11)	Instron	D-1002-64
	Dynamic	LH2	1(10),3(10)	Cryotensile	D-1002-64, Mod.
Aerobond 430	Static	Air	3(10),1(11)	Instron	D-1002-64
		Vacuum	1(9),1(10)	Instron	D-1002-64
APC0 1252	Static	Air	3(10),1(11)	Instron	D-1002-64
	Dynamic	Vac-cryo	1(10)	Cryo-	D-1002-64, Mod.
				mechanical	
Epon 934	Static	Air	1(10),3(10),1(11)	Instron	D-1002-64, Mod.
	Dynamic	LN2	1(10),3(10)	Cryotensile	D-1002-64, Mod.
	Dynamic	LH2	1(10),3(10)	Cryotensile	D-1002-64, Mod.
Epon 951	Static	Air	1(9),5(9),1(10)	Instron	D-1002-64, Mod.
FM-1000	Static	Air	1(10),3(10),1(11)	Instron	D-1002-64, Mod.
	Dynamic	LN2	1(10),3(10)	Cryotensile	D-1002-64, Mod.
	Dynamic	LH2	1(10),3(10)	Cryotensile	D-1002-64, Mod.
HT-424	Static	Air	1(10), 3(10), 1(11)	Instron	D-1002-64
	Dynamic	LN ₂	1(10),3(10)	Cryotensile	D-1002-64, Mod.
	Dynamic	LH2	1(10),3(10)	Cryotensile	D-1002-64, Mod.
Narmco A	Static	Air	1(10),3(10),1(11)	Instron	D-1002-64
	Dynamic	LH2	1(10),3(10)	Cryotensile	D-1002-64, Mod.

^aUltimate Tensile Shear Strength and Percent Adhesive Failure data presented.

V. STRUCTURAL ADHESIVE TEST METHODS AND RESULTS

This section of the report contains all of the data obtained on structural adhesives tested during the current period. The ultimate tensile-shear strength of each adhesive listed in Table 5.1 (facing page) was measured under the conditions shown. Table A-1 (App. A) lists the manufacturers of the materials and gives a description of how each test panel was prepared.

The Program Summary table in this report lists all of the adhesive materials tested during the three major contractual periods and references the corresponding reports containing the data. In most cases, the current test data were required to fill remaining gaps in the data compilation.

All of the materials tested in the current period were irradiated statically in an air environment to two relatively high doses. Several days after completion of the irradiations, the specimens were tested at room temperature and pressure in an Instron machine at a crosshead speed of 0.05 in./min. In addition to the static tests, dynamic tests were performed with the Cryotensile Tester on three materials in LN₂ and LH₂. These materials were Epon 934, FM-1000, and HT 424. Two additional materials were subjected to an LH₂ test only, LN₂ tests having

been performed in a previous period. These were Aerobond 422J and Narmco A. Both control and irradiation tests were performed on all materials. Tabulated data for each material are located at the end of this section.

The static test specimens were fabricated and tested in accordance with ASTM D-1002-53T. The test specimens which were subjected to LN₂ and LH₂ irradiations and tested in the Cryotensile Tester were modified lap-shear type as described in detail in Section 4.1.2. The 1/2- by 1-in. bonded area was in accordance with the ASTM designation, and the spacing between top and bottom doublers was the same as the jaw-grip spacing specified by ASTM. Doublers were used for reinforcement on the ends of the dynamic test specimens.

5.1 Aerobond 422J

The test specimens for this material were cut from the same batch of material used in a previous period (Ref. 4). The results from current tests on Aerobond 422J are given in Table 5.2 for both the static and dynamic conditions.

The Aerobond 422J specimens were inspected after completion of all tests for color change and percent adhesive failure. The original dark olive color yellowed slightly during the air irradiation, but no color change was apparent after the LH₂ irradia-

tions. Definite contrasts in the type of failure were obvious. A 10% adhesive failure was noted for control and high-dose air-irradiated specimens, but specimens tested in LH₂ (both control and irradiated) showed a 90 to 95% adhesive failure. However, a visual inspection of the specimens and a study of the ultimate shear strength data revealed no significant damage to this material, either from cryotemperature or radiation effects.

5.2 Aerobond 430

Aerobond 430 was the only adhesive material irradiated in vacuum during this current test period. All of the other adhesives were irradiated in vacuum previously and reported in Reference 3. The test specimens for the current period were taken from the same batch of specimens as those used in the previous period. Postirradiation testing of all specimens irradiated in either vacuum or air was accomplished in the Instron Tester in ambient air. The results from current tests on Aerobond 430 are given in Table 5.3.

No significant color change from the original olive-green color was noted in any of the irradiated specimens. However, there was an increasing percent of adhesive failure as a function of radiation dose, ranging, for those irradiated and tested in air, from 10% on controls to 90% after irradiation to

 $1.7 \times 10^{11} \text{ ergs/gm}(C)$. For those irradiated in vacuum and tested in air, the percent of adhesive failure increased from 10% for controls to 40% for those irradiated to the high dose.

5.3 APCO 1252

This material was tested previously in ambient air, LN₂, and LH₂, and the data were reported and discussed in Reference 2. The test specimens used in the current program were from the same batch of materials used for specimens tested in vacuum and reported in Reference 3. As shown in Table 5.4, lap-shear specimens of APCO 1252 were subjected to two radiation exposures in air and one radiation exposure in vacuum while at cryotemperature. The test specimens used in both the vacuum-LN₂ control test and the vacuum-LN₂ irradiation test were lap-shear type as described in Section 4.2.

Inspection of the APCO 1252 specimens after irradiation in air showed a change in color from light cream to yellow. There was no color change in specimens that were irradiated in the vacuum-cryotemperature environment. Adhesive failure for airtested specimens varied from 85% for the controls to 90% for the irradiated specimens. In contrast, for the vacuum-cryotemperature conditions, the controls had a 95% adhesive failure and irradiated specimens only 72%, a reversal in trend.

5.4 Epon 934

17 4

As shown in Table 5.5 this material was subjected to two complete radiation exposures in air, two radiation exposures in LN₂, and two radiation exposures in LH₂. The test specimens for the current program were fabricated from a new batch of material.

Specimens irradiated in air and LN₂ showed a color change from grey to brown, with a yellow cast evident in thin sections, but specimens irradiated in LH₂ showed a slight brownish cast as the only change. Adhesive failure of control and irradiated specimens in air, LN₂, and LH₂ tests ranged from 90 to 100%, with no trend being noted for any of the environmental conditions. This uniformity in percent of adhesive failure for all test conditions suggests a high degree of reliability for this adhesive under the various environments involved.

It should be noted that this is the material that was selected previously by the Fort Worth Division as a bonding agent for specimen doublers. This added experience with the material showed it to be an adequate adhesive for use in bonding plastic to plastic, plastic to aluminum, and aluminum to aluminum for use in environments encountered in this program. This material was not used on silicone elastomers but was used to bond siliconeres in laminates, polyethylene, and Teflon to aluminum.

5.5 Epon 951

This material had not been tested previously in the overall program. It was tested in the current period for a comparison with similar epoxy-nylon materials tested during the first two annual contractual periods. It was irradiated and tested under ambient-air conditions only. The static-air irradiation results are shown in Table 5.6.

The following color progression was noted for this material: control specimens, grey; low-dose specimens, light grey; high-dose specimens, light green. This color change with irradiation dose seems to be typical of the epoxy-nylon adhesives, as will be noted for FM-1000 (below). Adhesive failure varied from about 50% to 80%, with no specific trend for any test condition being discernible. It should be noted that specimens for this particular material, as prepared by the manufacturer, were made up with a very thin layer of Epon 951. This method may be proper, but it is noted.

5.6 <u>FM-1000</u>

This material is also an epoxy-nylon adhesive that has shown good retention of adhesive properties in previous testing. The specimens tested and reported in the current period were taken from a new batch of material. The air-irradiation tests were

repeated for comparison with previously reported data. As can be seen in Table 5.7, FM-1000 was subjected to several test conditions in environments of air, LN_2 , and LH_2 , and significant differences in properties were measured as a function of exposure to these environments. There was a definite progressive change in the color of the FM-1000 as it was irradiated in air. Furt ermore, the type of failure during postirradiation tests was gradually more adhesive than cohesive with higher and higher doses. Adhesive failure for air tests progressed from 10% for the controls to 55% at the high dose of $1 \times 10^{11} \text{ ergs/gm}(C)$. The following color progression was noted: control specimens, light cream; specimens irradiated to 9.7 \times 10⁹ ergs/gm(C), light tan; specimens irradiated to 3.3×10^{10} ergs/gm(C), tan; specimens irradiated to 1.7 \times 10¹¹ ergs/gm(C), dark brown. In the LN₂ irradiation, a color change was again noted, but it was not as pronounced as in the air test. Specimens irradiated to 3×10^{10} ergs/gm(C) were a light tan, considerably lighter than those irradiated to the same dose level in air. Again, the degree of adhesive failure was typical for a cryotemperature test, being in the range of 90 to 95%. In the LH, irradiations, virtually no color change was apparent between the original material and the irradiated specimens and, here again, a typical adhesive failure of 90 to 100% was noted.

5.7 HT 424

The test specimens were taken from the same batch of material used for specimens tested in a previous period (Ref. 3). As can be seen in Table 5.8, this material was tested after a high radiation exposure in air and after two radiation exposures each in LN_2 and LH_2 .

Inspection of this material showed very little color change after irradiation in both air and LN_2 . All specimens in the air irradiation demonstrated an adhesive failure of about 5%. All specimens tested in LN_2 (both control and irradiated) showed an adhesive failure of about 80%. With the addition of these data to the data reported in Reference 3, a complete picture of the irradiation and testing history of this material is available.

5.8 Narmco A

The test specimens used in the current period were taken from the same batch of material used for specimens tested and reported on in Reference 3. As can be seen from the data contained in Table 5.9, LH₂ tests only were conducted during the current program.

Inspection of the specimens showed a trend in both color change and percent of adhesive failure as a function of irradiation time. The following color progression was noted for the

LH₂ test control specimens, light cream; specimens irradiated to 1×10^{10} ergs/gm(C), yellow; specimens irradiated to 3×10^{10} ergs/gm(C), bright yellow; specimens irradiated to 1×10^{11} ergs/gm(C), yellowish brown. Adhesive failure changed from about 30% for control specimens to almost 100% for those irradiated to the maximum dose.

5.9 General Discussion of Results

This current testing work on adhesives is essentially a continuation of the program originated in the previous contractual period. Only Epon 951, a new epoxy-nylon material, was added to the current program for a comparison with the FM-1000, which had a very high initial tensile shear strength. A comparison of the control values given in Table 5.10 shows that these high tensile values are reproducible between vendors and that the values are retained to $1 \times 10^{10} \, \mathrm{ergs/gm}(\mathrm{C})$. But for the higher doses, epoxy material such as Epon 934 would be more predictable and reliable, since no change in tensile shear properties was noted for the material.

Table 5.10 gives a few of the test values obtained during this program and presents a comparison between the LH₂ and air environmental effects.

The adhesives showed a general trend toward increased percentage of adhesive failure when tested at cryotemperatures, being 90 to 100% adhesive at the high doses in LH_2 .

Table 5.2

Aerobond 422J Structural Adhesive Summary Table of Test Results

Avg.	Press. (torr)	760	760	760	760	760	
Avg.	Temp. (F)	75	240	423	-423	-423	_
%	Adhesive Failure	10 avg	10 avg	92 avg	92 avg	92 avg	
Ultimate Tensile	Shear Strength (psi)	2464 2437 2344 2215 2312 2354/107	2319 2435 2569 2181 2303 2361/167	2396 2597 2521 2228 2436/179	2278 2245 2454 2454 2000 2244/220	2456 2167 2195 2020 2209/212	
Time Until	Test (days)	•	15	•	•	•	
Txpc:3ure	E> 8.1 Mev	0	•	0	ı	•	
	Neutrons (n/cm ² ev E>2.9 Mev	0	2.5(16)	0	1.3(15)	4.4(10)	
Radiation Exposure	Neu E<0.48 ev	0	ı	0	•	•	
	Gamma Dose [ergs/gm(C)]	0	1.7(11)	0	7.5(9)	2.4(10)	
Environment	Tester	Instron at 0.05 in./min	Instron at 0.05 in./min	CTT at 0.05 in./win	CTT at 0.05 in./min	CII et 0.05 in./min	
	Test	Air	Air	LH2	EH Z	LE ₂	
	Irrad- iation Test Tester	ı	Afr		LH ₂	LH ₂	
	Number	1-11 1-12 1-13 1-14 1-15	1-6 1-7 1-8 1-9 1-10	1-112	1-126 1-127 1-128 1-129	1-131 1-132 · 1-133 · 1-134	

*Values given as: average value/standard deviation on an individual basis.

Table 5.3

Aerobond 430 Structural Adhesive Summary Table of Test Results

, , , , , , , , , , , , , , , , , , ,	Avg. Press.	760	760	760	4.6(-6)	2.0(-6)
	Avg. Temp.	75	200	240	145	160
	Adresive Failure	10 avg	73 avg	90 avg	10 avg	40 avg
111+120+04-04-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Ultimate lensile Shear Strength a (nsi)	3198 3221 3211 3211 3152 3133 3183/38	2666 2624 2678 2788 2671 2671	2086 2253 2267 2181 2279 2279	3190 3140 3200 3440 3060 3206/163	2895 2921 2909 2923 2800 2890/53
T. + ci_	Test (days)		15	15	45	t
	E > 8.1 Mev	0	1	1	6.7(13)	3
0 to	Neutrons (n/cm ² ev E>2.9 Mev	O	5.4(15)	2.5(16)	1.8(14)	t
00000	Neutron Exposure Neutrons N	0	ı	1	1.6(13)	7.6(13)
	Gamma Dose	0	3.3(10)	1.7(11)	1.2(9)	8.7(9)
400	Tester	Instron at 0.05 in./min	r Instron at 0.05 in./min	r Instron at 0.05 in./win	r instron at 0.05 in./min	r Instron at 0.05 in./min
Fourtronmont	Irrad- iation Test	- Air	Air Air	lr Air	Air Air	Air
	Specimen Ir Number Ia	2-11 2-12 2-13 2-14 2-15	2-1 2-2 2-3 2-4 2-5	2-6 Afr 2-7 2-8 2-9 2-10	2-66 Vac 2-67 2-68 2-69 2-70	2-76 Vac 2-77 2-78 2-79 2-80

avalues given as: average value/standard deviation on an individual basis.

Table 5.4

}

APCO 1252 Structural Adhesive Summary Table of Test Results

		······································				
		760	760	760	.2 to .02	.13 to .07
Avg.	remp. (F)	75	200	240	-250	-290
%	Adhesive Failure	88 avg	95 avg	95 ævg	95 avg	72 avg
Ultimate Tensile	Shear Strength ^a (psi)	3469 3398 3177 3127 2969 3228/215	3559 3741 3416 3309 3020 3409/310	2877 3242 2836 2421 2373 2750/374	4139 4347 5012 3780 4329/598	3802 4248 3041 3697/713
Time Until	Test (days)	•	15	15	•	•
	E> 8.1 Mev	0	•	The second secon	0	•
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	0	5.4(15)	2.5(16)	0	1.1(15)
Radiation Exposure	Neu E<0.48 ev	0	ı	•	0	5.9(13)
	Gamma Dose [ergs/gm(C)]	0	3.3(10)	1.7(11)	0	1.2(10)
ent	Test Tester	Instron at 0.05 in./min	Instron at 0.05 in./win	Instron at 0.05 In./min	et 0.05	CMT at 0.05 in./min
Environment	Test	Air	AIE	Aix	Vac- LN ₂	Vac- LN ₂
Envi	Irrad- iation	•	Afr	Air	1	Vac- LN ₂
Special	Number	7-11 7-12 7-13 7-14 7-15	7-1 7-2 7-3 7-4 7-5	7-6 7-7 7-8 7-9 7-10	7-136 7-137 7-138 7-139	7-141 7-142 7-143 7-144

*Values given as: average value/standard deviation on an individual basis.

Table 5.5

Epon 934 Structural Adhesive Summary Table of Test Results

		760	760	760	760	760
Avg.	Temp.	75	160	200	240	-320
69	Adh	90 avg	90 avg	90 avg	90 avg	. Sas 06
Ultimate Tensile	Shear Strength a (psi)	2920 2598 2842 2531 2561 2690/167	2158 2919 2153 2811 2839 2576/334	3066 2882 2824 2799 3098 2934/129	2818 2739 2450 2846 2977 2766/227	2019 2016 1957 1942 1983/37
Time Until	Test (days)	•	ĸ	15	1.5	,
	E>8.1 Mev	0	6.3(13)	1	•	
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	0	2.0(15)	5.4(15)	2.5(16)	0
Radiation Exposure	Neu E<0.48 ev	0	3.5(13)	•	1	0
	Gamma Dose [ergs/gm(C)]	0	9.7(9)	3.3(10)	1.7(11)	0
	ster	Instrop at 0.05 in./min	Instronat 0.05	Instronate 0.05	Instron at 0.05 in./min	CTT at 0.05 in./min
Environment	Test	Air	Air	Air	Air	LN ₂
Envi	Irrad-	•	Air	Air	Aír	
Specimen	Number	18A-11 18A-12 18A-13 18A-14 18A-15	18A-46 18A-47 18A-48 18A-49 18A-50	18A-1 18A-2 18A-3 18A-4 18A-5	18A-6 18A-7 18A-8 18A-9 18A-10	18A-91 18A-92 18A-93 18A-94

*Values given as: average value/standard deviation on an individual basis.

		· · · · · · · · · · · · · · · · · · ·			T	
Avg.	Press. (torr)	760	760	760	760	760
Avg.	Temp. (F)	-320	-320	-423	-423	423
%	Adhesive Failure	90 avg	90 a 08	8a. 06	90 avg	90 avg
Ultimate Tensile	Shear Strength (psi)	2034 2065 2023 1969 2023/47	2060 1520 2219 1835 1908/339	1880 1861 1874 1984 1984	1815 1842 1859 1768 1821/44	1704 1874 1383 1802 1684/238
Time Until	Test (days)	1	ı			0
	E> 8.1 Mev	·	1	0	•	ı
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	8.5(14)	2.4(15)	0	1.3(15)	4.4(15)
Radiation Exposure	Neu E<0.48 ev	•	•	o	•	•
	Gamma Dose [ergs/gm(C)]	4.8(9)	1.4(10)	0	7.5(9)	2.4(10)
냁	Tester	CII at 0.05 in./mit	CTI at 0.03 in./win	CTT at 0.05 in./min	crr at 0.05 in./min	crr ar 0.05 in./ain
Environment	Test 1	LN ₂	LN2	1.112	H 2	LH ₂
Envi	Irrad- iation Test Tester	LN2	LN2	•	1.17	Ę.
Specimen	Number	18A-101 18A-102 18A-103 18A-104	18A-106 18A-107 18A-108 18A-109	18A-111 18A-112 18A-113 18A-114	18A-126 18A-127 18A-128 18A-129	18A-131 18A-132 18A-133 18A-134

Table 5.6

Epon 951 Structural Adhesive Summary Table of Test Results

						
302.	Press.	760	760	760	760	
AVE.	Temp.	75	7.5	125	160	
%	Adhesive	6.5 avg	65 avg	65 avg	65 avg	
Ulcimate Tensile	Shear Strength	6605 6532 6592 6582 6582 6578/35	6858 6508 6390 6052 <u>6052</u>	7042 6911 5793 6202 6487/607	6303 5857 6463 6807 6358/461	
Time Until	Test (days)	•	2	m	m	
	F > 3.1 Mev		5.7(12)	3.4(13)	6.3(12)	
Exposure	Neutrons (n/cm ²	Ú	1.7(14)	1.1(15)	2.0(15)	
Radiation Exposure	Neur	0	4.1(12)	5.5(13)	3.5(13)	,
	Gamma Dose	0	8.8(8)	5.2(9)	9.7(9)	
ent	Irrad-	Instron at 0.05 in./min	Instron at 0.05 in./min	Instron at 0.05 in./min	Instron at 0.05 in./win	
Environment	Test	Afr	Air	Air	Air	
Env	Irrad-	•	Air	Air	Air	
rami veci:	Number	102-11 102-12 102-13 102-14	102-36 102-37 102-38 102-39	102 41 102 42 102 43 102 43	102.46 102.47 102.48 102.49	

Lalues given as: average value/standard deviation on an individual basis.

Table 5.7

•

,

Fif 1000 Structural Adhesive Summary Table of Test Results

	Press.	760	760	760	760	760
AVO	Temp. (F)	7.5	160	200	240	-320
7,	Adhesive Failure	10 avg	25 avg	40 avg	808 CC	808 808
Ultimate Tensile	Shear Strength ² (psi)	6770 6587 6318 6517 6531 6531	6741 6155 6155 6016 6250 6263/312	5331 5918 5909 6093 5839 5818/328	2068 2549 2152 2146 2090 2201/207	3560 5214 4784 5118 4669/803
Time Until	rest (days)	1	m	15	15	9
	E> 8.1 Mev	0	6.3(13)	1	1	0
Pynoc:170	Neutrons (n/cm2) ev E > 2.9 Mev	0	2.0(15)	5.4(15)	2.5(16)	0
Radiation Exposure	Neur 0.48 ev	0	3.5(13)	•	•	0
	Garma Dose [ergs/gm(C)]	υ	9.7(9)	3.3(10)	1.7(11)	0
1	Irrad- iation Test Tester	Instron at 0.05 in./win	Instron mt 0.05 fn./min	Instron at 0.05 in./min	Instron at 0.05 in./win	CTT mc 0.05 in./min
Friti	Test	Afr	Air	Atr	Air	I'N 5
Pare	Irrad-	•	Alt	Air	Afr	1
	Specimen Number	6A-11 6A-12 6A-13 6A-14 6A-15	6A.46 6A.47 6A.48 6A.49 6A.50	6A-1 6A-2 6A-3 6A-4 6.1-5	6A-6 6A-7 6A-8 6A-9 6A-10	6A-91 6A-92 6A-93 6A-94
L		L				

evalues given as: average value/standard deviation on an individual basis.

		* ·····				
AVZ.	Press. (corr)	760	760	760	760	760
AVE.	Temp. (F)	-320	-320	-423	-423	-423
6.9	Adhesive Failure	92 avg	95 avg	95 avg	97 a vg	998 a 80
Ultimate Tensile	Shear Strength (psi)	5360 3278 5635 3761 4508/1145	1439 2951 2746 1250 2096/826	3397 2675 2732 3080 2971/324	1891 2585 2243 1920 2159/337	2064 1684 1708 1446 1726/170
Time Until	Test (days)	•	•	•	•	,
	E>8.1 Mev	•	•	0	1	f
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	8.5(14)	2.4(15)	0	4.4(15)	4.4(15)
Radiation	Neu E<0.48 ev	•	1	c	•	
	Gamma Dose [ergs/gm(C)]	4.8(9)	1.4(10)	0	7.5(9)	2.4(10)
Environment	Irrad- iation Test Tester	LN ₂ CTT at 0.65 in./min	LN ₂ CTT at 0.05 in./min	LH ₂ CIT at 0.05 in./min	LH ₂ cTT at 0.05 in./min	LH ₂ CTT at 0.05 in./air
Envir	Irrad- iation I	LN ₂	LN ₂	1	LH ₂	
Specimen	Number	6A-101 6A-102 6A-103 6A-104	6A-106 6A-107 6A-108 6₽-109	6A-111 6A-112 6A-113 6A-114	6A-126 6A-127 6A-128 6A-129	6A-131 6A-132 6A-133 5A-134

Table 5.8

)

HT-424 Structural Adhesive Summary Table of Test Results

					·····	
Avg.	Press. (torr)	760	760	760	760	760
Avg.	Temp. (F)	75	160	200	240	-320
<i>b</i> 9	Adhesive Failure	S & C	5 avg	S avg	5 ave	80 avg
Ultimate Tensile	Shear Strength [®] (psi)	3399 3439 3465 3658 3340 3460/137	3082 3062 2959 2966 3066 3027/53	2613 2650 2591 2795 2545 2639/107	2150 2198 2184 2275 2156 2193/54	4684 4482 4212 4506 <u>4471/229</u>
Time Until	Test (days)	1	ო	14	14	ı
) E>8.1 Mev	ာ	6.3(13)		•	0
Exposure	Neutrons (n/cm ²) ev E>2.9 Mev	0	2.0(15)	5.4(15)	2.5(16)	0
Radiation Exposure	Neu E<0.48 ev	0	3.5(15)	•	•	0
	Gamma Dose [ergs/gm(C)]	0	9.7(9)	3.3(10)	1.7(11)	0
ent	ster	Instron at 0.05 in./min	Instron at 0.05 in./min	Instron at 0.05 In./min	Instron at 0.05 in./min	CTT mt 0.05 in./min
Environment	Test	Air	Air	Air	Air	LN ₂
Env	Irrad- istion	•	Afr	Air	Air	
Specimen	Number	8-11 8-12 8-13 8-14 8-15	8 8 8 8 9 7 4 4 4 4 7 6 6 7 7 8	88888 8-2-1 4-4-2		8-91 8-92 8-93 8-94

*Values given as: average value/standard deviation on an individual basis.

						
AVE.	Press (torr)	760	760	760	760	760
Avg.	Temp. (F)	-320	-320	-423	-423	-423
%	Adhesive Failure	80 avg	80 avg	90 avg	90 avg	90a 90g
Ultimate Tensile		4315 4110 3801 3878 4026/250	3124 3486 3247 3498 3339/182	3603 3559 3454 3760 3593/149	2868 2793 3359 3479 3125/333	3118 2743 2982 2727 2893/190
Time Until	Test (days)	•	ı	1	•	
	2) E>8.1 Mev	•	ı	O	•	t
Exposu: e	Neutrons (n/cm ² ev F>2.9 Mev	8.5(14)	4.3(15)	0	1.3(15)	4.4(15)
Radiati	E<0.48		•	0	•	
	Gamma Dose [ergs/gm(C)]	4.8(9)	2.5(10)	0	7.5(9)	2.4(10)
nt	Test Tester	CTT at 0.05 in./min	CiT at 0.05 in./min	CTT at 0.05 in./min	CTT at 0.05 in./min	crr ar 0.05 in./min
Environment	Test	LN ₂	LN ₂	LH2	LH ₂	LH ₂
Envi	Irrad- iation	LN ₂	LN2	t	LH ₂	LH2
Chacimon	Number	8-101 8-102 8-102 8-103	8-106 8-107 8-108 8-109	8-111 8-112 8-113 8-114	8-126 8-127 8-127 8-128	8-131 8-132 8-133 8-134

Table 5.9

)

Narmco-A Structural Adhesive Summary Table of Test Results

Avg.	Press. (torr)		760	760	760
Ave	remp. (F)	75	160	200	240
F-4	Adhesive Failure	30 ævg	50 avg	70 avg	95 a vg
Ultimate Tensile	Shear Strength ^a (psi)	3945 3683 3695 3718 3926 3793/113	3380 2960 3471 4019 3623 3491/455	3814 4011 4150 4185 4541 <u>4140/</u> 313	1277 1225 775 1603 1686 1313/292
Time Until	Test (days)	ı	ო	41	41
) E>8.1 Mev	0	6.3(13)	•	
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	0	2.0(15)	5.4(15)	2.5(16)
Radiation Exposure	Neu E<0.48 ev	0	3.5(13)	1	•
	Gamma Dose [ergs/gm(C)]	0	9.7(9)	3.3(10)	1.7(11)
int.	Test Tester	Instron at 0.05 in./win	Instron at 0.05 in./win	Instron at 0.05 in./min	Instron at 0.05 in./win
Environment	Test	Afr	Afr	Air	A
Env	Irrad- iation	. •	Air	Air	Air
	Number	13-11 13-12 13-13 13-14 13-15	244445 44445	22222 42242	6.50 6.50 6.50 6.50 6.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7

*Values given as: average value/standard deviation on an individual basis.

		T	····	
Avg.	Press. (torr)	760	760	
AVE.	Temp. (F)	423	-423	. 773
69	Adhesive Failure	96 avg	96 avg	80 80 80
Ultimate Tensile	Shear Strength (psi)	2375 1963 1771 2081 2048/293	1895 1638 1388 1498 1605/246	1921 1705 1665 1412 1676/247
Time 'ntil	Test (days)	6	ı	•
	E>8.1 Mev	0	•	1
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	0	1.3(15)	4.4(15)
Radiation 1	Neur E<0.48 ev	0	ı	•
	Gamma Dose [ergs/gm(C)]		7.5(9)	2.4(10)
		<u> </u>	crr at 0.05 in./min	crr in./min
Environment	Test.	LH2	LH ₂	EH 2
Env	Irrad- iation Test Tester	. •	LH ₂	E
Snecimen	Number	13-111 13-112 13-113 13-114	13-126 13-127 13-128 13-129	13-131 13-133 13-134

Table 5.10

Summary Table of Ultimate Tensile Shear Strength for Adhesives (psi)

	Ai	r Environmen	t	LH ₂ Environment		
Adhesive Material	Control	1.0(10) [ergs/gm(C)]	1.7(10) [ergs/gm(C)]	Control	8.0(10) [ergs/gm(C)]	
Aerobond 422J	2354	••	2361	2436	2244	
Aerobond 430	3183	2450	2213	980	•	
APCO 1252	3228	3416	2750	•	-	
Epon 934	2960	2576	2766	1899	1821	
Epon 951	6578	6358		-	-	
FM-1000	6545	6263	2201	2971	2159	
HT 424	3460	3027	2193	3593	3125	
Narmco A	3800	3491	1313	2048	1605	

BLANK PAGE

VI. STRUCTURAL LAMINATE TEST METHODS AND RESULTS

Table 6.1

Outline of Structural Laminate Tests

Material	Type of Test	Irradiation Environment	Nominal Gamma Dose [ergs/gm(C)]	Materials Tester
Conolon 506	Dynamic	Vac-cryo	1(10)	Cryomechanical
CTL 91-LD	Static	Air	1(11)	Instron
	Dynamic	LH2	1(10),3(10)	Cryotensile
DC-2104	Static	Air	1(11)	Instron
	Dynamic	LH2	1(10),3(10)	Cryotensile
Epon 828/A	Static	Air	1(10),3(10),1(11)	Instron
	Dynamic	LN2	1(10),3(10)	Cryotensile
	Dynamic	LH2	1(10),3(10)	Cryotensile
Mobaloy 81-AH7	Static	Air	1(10),3(10),1(11)	Instron
	Dynamic	LN ₂	1(10),3(10)	Cryotensile
	Dynamic	LH2	1(10),3(10)	Cryotensile
Paraplex P-43	Static	Air	1(11)	Instron
	Static	Vacuum	1(10)	Instron
·	Dynamic	Vacuum	1(10)	High-Force
Selectron 5003	Static	Air	1(10),3(10),1(11)	Instron
	Dynamic	LN2	1(10),3(10)	Cryotensile
	Dynamic	LH2	1(10),3(10)	Cryotensile

^aASTM Test Method D638-61T(Mod) was used to obtain the following data: Tensile Strength at Rupture, Elongation at Rupture, and Stress-Strain Curves.

VI. STRUCTURAL LAMINATE TEST METHODS AND RESULTS

This section of the report contains a tabulation and discussion of data obtained on structural laminates tested during the current period. Materials tested were selected on a continuing basis with those tested in previous periods. The Program Summary table shown at the beginning of this report lists all of the structural laminate materials tested during the two annual and final biennial contractual periods in the program, and applicable reports covering each material are referenced.

Six of the seven current materials were irradiated and tested in an air environment, and five were irradiated and tested while submerged in either LN₂ or LH₂. Some were exposed to both of these environments. One material was tested in a vacuum-cryotemperature environment and one material was tested in a vacuum environment to complete the data cycles required. The current data, along with the data contained in previous reports, provide a comprehensive picture of the various environmental effects on the mechanical properties of structural laminates.

Table 6.1 (facing page) contains a résumé of the test conditions, environments, doses, and materials tested under this category in the current period. Summary tabulations and plots of the data obtained on materials listed in Table 6.1 are snown at the end of this section and are organized according to individual materials tested. Both static and dynamic tests were conducted in the program. Static tests consisted of irradiating specimens in an air environment and subsequently testing them in an Instron machine at a crosshead speed of 0.05 in./min. The dynamic tests involved the use of a cryotemperature or vacuum environment for both the irradiation and subsequent tests, without intervening removal of the specimens from the environment.

The ASTM D-638 test method was modified slightly for the dynamic tests. The modification involved the use of pinned specimens with doublers bonded onto each end. In the static tests the specimens had the same configuration, but no doublers were used. The latter were tested in the Instron machine with standard jaws. No significant differences were detected between data received from tests using the two types of specimens and jaws. Specimen configuration details are given in Section 4.1.

6.1 Conolon 506

A new batch of this material, which is presently designated Narmco 506, was ordered for this test program. The material was subjected to vacuum-LN₂ control and vacuum-LN₂ irradiation tests in the Cryomechanical Tester, which is described in Section 2.5.

Except for the specimen modification described above, the tests were conducted in accordance with ASTM D-638-61T at a testing speed of 0.05 in./min. Average stress-strain curves of the four specimens tested in each condition are shown in Figure 6.1. Table 6.2 is a tabulation of the environmental conditions and test results.

This material, being a phenolic laminate, demonstrated exceptional resistance to deterioration from both the radiation and cryogenic environments. The breaks, both for the control and irradiated specimens, were all "A" type (or good). Some delamination occurred during the fracture process, but this was very slight compared to other laminates tested under cryogenic conditions.

6.2 CTL 91-LD

This material has been tested extensively throughout the overall program, as is shown in the references in the Program Summary New test panels were ordered for current tests in ambient air and LH₂, and the specimens were subjected to the irradiation exposures and environments given in Table 6.1. The test specimens subjected to the air irradiation were slotted specimens and were subsequently tested in the Instron with pin-type jaws. The test specimens subjected to LH₂ irradiation exposures were tested in

the Cryotensile Tester in the specimen configuration described in Section 4.1. Average stress-strain curves for the specimens tested under various environmental conditions are shown in Figure 6.2. Table 6.3 is a tabulation of the environmental conditions and test results.

This material demonstrated excellent resistance to deterioration in mechanical properties under the influence of either cryotemperature or radiation environments, or both environments in combination. Most specimens had good "A"-type breaks in all environments after irradiation to $3 \times 10^{10} \, \text{ergs/gm}(\text{C})$.

6.3 <u>DC-2104</u>

This material has been tested extensively in vacuum, air, and LN2, as can be seen from the references in the Program Summary table. It was tested this year in LH2 to complete the data cycle begun in previous test periods. Specimens and material for current tests were chosen from that remaining from the previous periods. The specimens tested in the Instron machine were of the same configuration as the pin-type specimens, but were minus the doublers and pin holes. Dynamic tests in cryotemperature environments were similar to those reported for the previous tests. The test results are presented in Table 6.4, and stress-strain curves are presented in Figures 6.3 and 6.4.

Good breaks resulted for all statically tested control specimens. The data were statistically satisfactory and there was no delaminating. Data from specimens irradiated to the high dose and tested statically were also good. Most breaks were "A" type. Generally good data, "A"-type breaks, and only minor delaminations resulted in LH₂ control and postirradiation tests.

6.4 Epon 828/A

A new batch of this material was ordered for the extensive testing planned for the current period. The material was subjected to three air irradiations, two LN₂ irradiations, and two LH₂ irradiations. Data from the tests are given in Table 6.5. Data for individual specimens tested in the various irradiation configurations are included. Stress-strain plots for specimens tested under each of the environmental conditions are given in Figures 6.5, 6.6, and 6.7. Each of the curves shown represents an average of data from four or five specimens.

Inspection of Epon 828/A showed that in air-irradiation conditions all specimens had good "A" breaks, which ensured statistically good data. However, there was a definite color change in the material as a result of the irradiation. This change was from an original greenish yellow to a light brown, and ultimately, to a dark brown. Cryotemperature test results were satisfactory,

with all specimens breaking in the gage length. The color changed in the LN_2 test conditions from a green to a dark yellowish brown. The Shell Epon 934 adhesive used to bond the aluminum doublers to this material failed during all of the LN_2 tests; however, the rivets held to a satisfactory completion of the tests.

In the LH₂ tests, all of the doublers remained bonded to the test specimens. The color changed from a green to a light yel-lowish brown. Data were quite good, however, even to the high dose of 3×10^{10} ergs/gm(C).

6.5 Mobaloy 81-AH7

A new batch of test material was obtained for this year's tests at the high dose in air and for the LN₂ and LH₂ tests. The cryotemperature irradiation and postirradiation tests were made in the Cryotensile Tester. Table 6.6 presents the complete environmental test conditions and test results for this material, and Figures 6.8, 6.9, and 6.10 present stress-strain curves for the material under each of the environmental conditions shown. Each curve represents an average curve for three or four specimens. The specimen configuration is shown in Section 4.1.

From a visual standpoint, Mobaloy tested quite satisfactorily.

For the air, LN₂, and LH₂ tests, all breaks could be classed as

"A" type. Some discoloration occurred during irradiation in air,

All specimens showed some delaminating, but it was minimal. This material should be considered for use in high radiation fields, cryotemperature conditions, or both.

6.6 Paraplex P-43

Specimens for current tests on this material were taken from the same batch of specimens that were used in a previous period (Ref. 3). During the current testing period, the material was subjected to one air irradiation and two vacuum irradiations. Both the vacuum control specimens and the specimens that were irradiated in vacuum were subsequently tested in vacuum in the High-Force Tester. All the other specimens were tested in the Instron using wedge-action jaws, with the exception of three air controls which were tested using the pin-type jaws. ASTM Designation D-638-61T was followed during all tests. Table 6.7 is a tabulation of the environmental conditions and test results. Figures 6.11 and 6.12 present stress-strain curves plotted from average values obtained for all test conditions.

An inspection of Paraplex P-43 specimens showed some discoloration after irradiation. There was also some delamination noted in tested specimens, but 90% of the breaks could be classed as either "A" or "B" type.

The vacuum controls had ply separations in the entire gage section; this produced ragged fiberglass breaks, which indicated resin weakness. In vacuum there was no color change, while in air the specimens changed from green to yellow. The test results for this material are not as consistent as they are for other laminates tested.

6.7 Selectron 5003

A new batch of this material was ordered from the vendor for the current testing period. The results of the tests are given in Table 6.8. Individual specimen values and averages of data obtained from tests under each of the environmental conditions shown in Table 6.1 are included. Stress-strain curves for the dynamic tests are presented in Figures 6.13, 6.14, and 6.15 for the air, LN₂, and LH₂ irradiations, respectively. The stress-strain curves are average curves for data obtained for three or four specimens.

In air control tests, and tests in air after irradiation in air, all specimens showed "A"-type breaks. Some discoloration was observed in specimens irradiated in air, but very little delaminating occurred in the air tests. Significant delaminating occurred in the cryotemperature tests.

This material evidently had a cryotemperature failure independent of any irradiation failure, since there was a separation of the resin from the fiberglass plies even in the cryotemperature controls. The separations extended beyond the narrow gage section into the doubler section. This indicates the stress-relief pattern of these specimens as they are pulled and gives a visible indication of the pull-outs at the pin holes in some materials.

6.8 General Discussion of Results

The four basic types of structural laminates tested both in air and in LH₂ are represented in Table 6.9. Air irradiation produced only moderate changes in the tensile strength at rupture. Cryotemperatures greatly increased the tensile strength at rupture for the controls, with the only significant cryotemperature—irradiation change being noted in the polyester, Selectron 5003.

A general trend was noted in all test-specimen color changes. They were most pronounced in the air irradiations. The discolorations for specimens in LN_2 were less pronounced at the same doses, while in LH_2 the specimen color changes were very slight.

Table 6.2

Conolon 506 Structural Laminate Summary Table of Test Results

	Avg.	Press. (torr)	.202	.1307	·
	Avg.	Temp. (F)	-250	-290	
Rupture &	Elongation (%)		3.15 3.48 3.20 3.01 3.21/.23	2.89 3.18 2.56 3.51 3.047.46	
At Rup	Tensile	Strength (psi)	59,171 59,896 61,221 60,813 60,275/996	51,708 58,752 30,926 43,926 46,328/13,514	
Time	Until	(days)	ı	ı	
		E>8.1 Mev	0	1	
Exposure	ns (n/cm ²)	E>2.9 Mev	0	9.1(14)	•
Radiation	Neutrons	E<0.48 ev	0	1.7(14)	
	Garma Dose	[ergs/gm(C)]	0	6.1(9)	
nt		Tester	CMT at 0.05 in./win	CMI at 0.05 in./win	
Environment		Test	Vac- LN ₂	Vac- LN ₂	
Env	Irrad-	iation	1	Vac- LN2	
	Number		41A-136 41A-137 41A-138 41A-139	41A-141 41A-142 41A-143 41A-144	

a Values given as: average value/standard deviation on an individual basis.

CTL-91LD Structural Laminate Summary Table of Test Results

		1	***************************************		
	Avg. Press. (torr)	760	760	760	760
	Avg. Temp. (F)	200	-423	-423	-423
Rupture &	Elongation. (%)	1.15 1.15 1.17 1.17 1.16/0.12	3.50 2.28 1.99 1.90 2.42/.78	2.15 2.64 3.19 2.79 2.697.51	3.74 2.73 3.55 2.96 3.257.49
At Rup	Tensile Strength (psi)	36,820 33,020 34,850 34,897/2245	40,762 35,920 41,390 28,040 36,528/648	51,078 54,982 47,922 43,186 49,292/5728	53,909 51,939 44,873 49,044 49,941/4389
Time	Until Test (days)	17	1	1	1
	E>8.1 Mev	•	0	•	•
Exposure	Neutrons (n/cm ²) 48 ev E>2.9 Mev	2.5(16)	0	1.1(15)	4.1(15)
Radiation	Neutro E<0.48 ev	•	0	•	•
	Garma Dose [ergs/gm(C)]	1.7(11)	0	6.2(9)	2.3(10)
at	Tester	Instron at 0.05 in./win	CTT at 0.05 in./min	CIT at 0.05 in./min	fin./min
Environment	Test	Aír	LH ₂	LH2	LH ₂
Env	Irrad- iation	Air	•	LH ₂	LH ₂
	Specimen Number	42-6 * 42-7 * 42-8 *	42-111 42-112 42-113 42-114	42-126 42-127 42-128 42-129	42-131 42-133 42-134 42-134

*Values given as: average value/standard deviation on an individual basis.

*Slotted specimen

119

DC-2104 Structural Laminate Summary Table of Test Results

			·			····		i
Avg. Press. (torr)	760		760		760	7e0	760	terial
Avg. Temp. (F)	75		200		-423	-423	-423	th of ma
Rupture# Elongation (%)	0.98 0.97 0.94 0.96/0.02	0.91 1.00 0.96/0.08	0.96 0.99 0.95 0.97/0.02	1.56 1.76 1.74 1.69/0.12	4.61 4.69 4.30 4.43 4.527.15	4.56 5.74 4.43 4.91 4.91	4.23 3.99 4.39 4.50 4.28/.25	ifferent bato
At Rupi Tensile Strength (psi)	18,990 19,100 19,260 19,117/159	24,770 23,620 24,195/1019	19,740 20,880 21,120 20,580/815	32,870 31,290 31,710 31,957/685	57,322 56,822 53,318 52,623 55,021/2282	61,169 63,066 58,211 61,770 61,770	53,218 56,010 64,250 51,543 56,255/6171	*Specimens from different batch of material
Time Until Test (days)	•		16		ž.	•	•	**
E>3.1 Mev	0		ı		0		,	18fs.
Exposure ns (n/cm ²) E>2.9 Mev	0		2.5(11)		0	1.1(15)	4.1(15)	dividual be
Radiation Exposure Neutrons (n/cm E<0.48 ev E>2.9 M	0		ı		0	•	ı	ion on an ir
Garma Dose [ergs/gn(C)]	0		1.7(11)		0	6.2(9)	2.3(10)	average value/standard deviation on an individual basis.
ester	Instron at 0.05 in./min		Instron at 0.05 in./min		CTT at 0.05 in./min	CIT at 0.05 in./min	CII at 0.05 in./win	value/st
Environment d- on Test T	Air		Air		LH ₂	LH ₂	LH ₂	erage
Envi Irrad- iation	,		Air		1	7H2	7 11	88 55
Specimen Number	43-11* 43-12* 45-13*	43-14 43-15	43-6* 43-7* 43-8*	43-9 43-10A 43-10B	43-111 43-112 43-113 43-114	43-126 43-127 43-128 43-129	43-131 43-132 43-133 43-134	avalues given

Table 6.5

Epon 828/A Structural Laminate Summary Table of Test Results

	Avg.	Fress. (corr)	763	760	760	760	760
	Avg.	Temp. (F)	75	140	170	200	-320
Rupture	Elongation	(%)	2.13 2.13 1.95 2.08 2.21 2.10/0.11	1.89 1.91 1.65 1.64 1.79 1.78/0.12	1.81 1.87 2.06 2.20 1.74 1.74	1.71 1.98 1.88 1.85 1.82 1.82	5.17 5.26 5.34 5.30 5.27/0.08
At Rup	Tensile	Strength (psi)	39,910 43,490 41,420 36,280 37,890 39,798/3100	38,863 39,066 36,390 37,592 38,144 38,144	39,830 40,860 39,030 38,850 37,460 39,206/1462	39,380 36,236 40,200 37,790 34,760	83,385 85,139 84,194 85,478 84,549/1017
Time	Uncil	(days)	•	4	16	16	,
		E>8.1 Mev	0	6.3(13)	•	•	0
Exposure	Neutrons (n/cm ²)	E>2.9 Mev	0	2.0(15)	5.4(15)	2.5(16)	o
Radiation Exposure	Neutro	Z<0.48 ev	0	3.5(13)	1	•	0
	Gazma Dose	[ergs/gm(C)]	0	9.7(9)	3.3(10)	1.7(11)	0
nt		Tester	Instron at 0.05 in./win	Instron at 0.05 in./min	Instron et 0.05 in./min	Instron mr 0.05 in./min	CII at 0.05 in./min
Environment		Test	Air	Air	Air	Air	LN2
Envi	Irrad-	iation	ı	Air	Afr	Afr	1
	Specimen		45A-11 45A-12 45A-13 45A-14 45A-15	45A-46 45A-47 45A-48 45A-49 45A-50	45A-1 45A-2 45A-3 45A-4 45A-5	45A-6 45A-7 45A-8 45A-9 45A-10	45A-91 45A-92 45A-93 45A-94

*Values given as: average value/standard deviation on an individual basis.

	: 🕤					
	Avg. Press. (torr)	760	760	760	760	760
	Avg. Temp. (F)	-320	-320	-423	-423	-423
Rupture	Elongacion (%)	4.43 5.94 5.91 5.43 ⁷ 0.89	5.46 5.74 5.89 5.70/0.25	5.31 5.29 5.47 5.50 5.50	4.99 3.27 4.61 5.42a 4.297.43	3.60 b 3.35 b 5.51 5.48 5.497.526
At Rup	Tensile Strength (psi)	75,930 83,918 84,282 81,377/4904	86,543 88,446 74,406 83,132/8293	94,424 87,362 88,913 78,676 87,344/7648	89/528 63,306 83,936 42,764 78,923/15,488	60,292b 57,126b 81,898 87,453 84,675/49,250
Time	Until Test (days)	•	•	•	•	•
	E>8.1 Mev	•		0	•	•
Sxposure	Neutrons (n/cm²) 48 ev E>2.9 Mev	9.4(14)	2.6(15)	0	1.5(15)	2.0(15)
Radiation Exposure	Neutro E<0.48 ev	•	ı	0	1	ı
	Garma Dose [ergs/gm(C)]	5.2(9)	1.5(10)	0	8.4(9)	1.1(10)
ıt	Tester	CII at 0.05 in./min	CTT at 0.05 in./min	CII at 0.05 in./min	CII at 0.05 in./win	CTT at 0.05 in./min
Environment	Test	LN2	LN ₂	H ₂	LH2	TH.
Envi	Irrad- iation	LN ₂	LN ₂	•	1.112	LH ₂
	Specimen Number	45A-101 45A-102 45A-103	45A-106 45A-107 45A-108	45A-111 45A-112 45A-113 45A-114	45A-126 45A-127 45A-128 45A-129	45A-131 45A-132 45A-133 45A-134

Double failure - data not included in average or standard deviation. Tested at $\pm 20^{\circ}\text{F}$ - data not included in average or standard deviation.

Table 6.6

,

Mobaloy 81-AH7 fc. .tural Laminate Summary Table c. .est Results

	3778	(corr)	760	760	. 60.	760	760
Avg. Temp. (F)			ι» 10	140	170	200	-320
cure	Elongation	(%)	1.17 1.24 1.56 1.15 1.16 1.26/0.18	1.28 1.17 1.14 1.04 1.21 1.21	1.42 1.29 0.97 1.10 1.04 1.15/0.19	1.20 1.21 1.09 1.04 1.09 1.13/0.07	2.90 3.02 2.61 2.53 2.77/0.24
ding av	Tensile	Strengin (psi)	33,620 35,100 40,330 35,660 35,800 36,102/2885	43,777 38,763 39,554 36,492 39,209 39,551/3132	46, 080 44, 650 34, 370 36, 060 32, 740 38, 780/5735	38,440 37,910 38,970 35,810 32,770 36,780/2438	61,604 62,791 59,495 56,992 60,221/2816
Time	Radiation Exposure Time At Rupture A		1	4	1.5	15	ı
		>3.1 Mev	o	6.3(13)	ı	ı	0
xposnre	(n/cm	2.9	O	2.0(15)	5.4(15)	2.5(16)	0
1	Neutron	87.	0	3.5(13)	ı	•	0
	Garra Dose	[ergs/gm(C)]	0	9.7(9)	3.3(10)	1.7(11)	0
			Instron ac 0.05 in./min	Instron at 0.05 in./min	Instron at 0.05 in./min	Instron at 0.05 in./win	CII et 9.05 in./min
Environment		Test	Air	Afr	Air	Alr	LN ₂
Envi	Irrad-	iation	•	Afr	Afr	Air	•
a caricoas	Number		47A-11 47A-12 47A-13 47A-14 47A-15	47A-46 47A-47 472-48 47A-49 47A-50	47A-1 47A-2 47A-3 47A-4 47A-5	478-6 478-7 478-8 478-9 478-10	47A-91 47:-92 47A-93 47A-94

Values given as: average value/standard deviation on an individual basis.

Tensile Elongation Avg. Avj. Strength (Table)	sss.						
th Rupture Cangation Cangation	AV. Pre	Av Press.	Tress. (torr) 760	760	760	760	
11 8 8 8 174 4 8 8 174 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Avg. Temp. (F)	Avg. Temp.	Temp. (F) -320	-320	-423	-423	-423
, 99 7 4 4 4 8 8 8 119 60 4 4 4 4 6 8 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	Elongation (%)	Elongation (%)	3.37 2.86 3.11 3.11/0.30	2.69 2.86 3.26 94.70.	2.71 2.31 2.25 2.47 2.447.22	72 a 12 a	2.29 [£] 2.35 ⁸ 2.39 2.39 2.927.97
In the second se	Tensile Surength (psi)	Tensile Strength	Strength (psi) 65,673 55,484 61,913 61,023/6018	52,759 54,381 66,598 57,913/8174	58,067 50,671 48,368 45,719 50,706/5997	57,914 ^a 41,257 ^a 65,274 54,751 60,012/9328	46,6194 46,4294 48,147 66,159 57,153/15,967
Time Uncil Tesc (days)	Uncil Test (days)	uncil Test (days)	Test (days)	t	•	1	1
E>8.1 Mev	Mev	Mev	Mev	ı	0	1	•
E>2.9 Mev 1.5(15) 1.5(15) 1.5(15) 2.0(15) 2.0(15)	(n/c	(n/c	1.5(4.7(15)	0	1.5(15)	2.0(15)
Radiation Ex Neutrons E<0.43 ev E	e let	e ctr	E<0.43 ev	ı	o	•	•
Gamma Dose [ergs/gm(C)] 8.4(9) 0 0 8.4(?)	Garma Dose [ergs/gm(C)]	Garma Dose [ergs/gm(C)]	[ergs/gm(C)]	2.7(10)	0	8.4(?)	1.1(10)
Tester CTT at 0.05 in./min cTT at 0.05 in./min in./min cTT at 0.05 in./min cTT at 0.05 in./min	Tester	Tester	Tester CTT at 0.05 in./min	CTT at 0.05 in./min	CIT at 0.05 in./min	CIT at 0.05 in./min	CTT at 0.05 in./min
Environment d. 1 LN2 LN2 G. 1 LH2 G. 1 LH3 G. 1 LH3 G. 1 LH4 G. 1	Test	Test	· · · · · · · · · · · · · · · · · · ·				,
Irrad- iation LN2 LN2 LH2 LH2	Irrad- iation	Irrad- iation	istion LN ₂	LN ₂	•	LH ₂	1.42
Specimen Number 47A-101 47A-102 47A-103 47A-107 47A-111 47A-113 47A-113 47A-129 47A-129 47A-131 47A-131 47A-131 47A-131 47A-131 47A-133 47A-133	Specimen Number	Specimen Number	Number 47A-101 47A-102 47A-103	47A-106 47A-107 47A-108	47A-111 47A-112 47A-113 47A-114	47A-126 47A-127 47A-128 47A-129	47A-131 47A-132 47A-133 47A-134
124					1	24	

*Tested at +20°F - data not included in average or standard deviation.

Table 6.7

Paraplex P-43 Structural Laminate Summary Table of Test Results

	Avg. Press. (torr)	760		260	2.0(-6)	1.0(-3)	2.0(-6)
	Avg. Temp. (F)	75		200	140	75	140
Rupture	Elongation (%)	1.87 2.09 1.84 1.93/0.15	1.99 1.85 1.79 1.89/0.12	1.72 1.60 1.67 1.78 1.78 1.61	1.88 1.60 1.72 1.96 1.51	3.71 3.48 3.57 3.55 3.58/0.11	4.07 4.35 4.11 3.90 4.10/0.22
At Rup	Tensile Strength (psi)	45,000 45,640 45,310 45,317/378	42,400 43,270 42,640 42,270/514	41,600 38,800 41,500 39,750 38,420 40,01471367	46,255 46,712 46,906 44,300 43,313 45,497/1545	45,460 42,013 46,441 46,995 45,227/2142	47,273 49,327 48,077 48,920 48,920
Time	Until Test (days)	1		16	∞	ı	•
	E>8.1 Mev	0		ŧ	6.3(13)	0	ı
Exposure	ns (n/cm²) E>2.9 Mev	o		2.5(16)	2.0(15)	0	1.5(15)
Radiation Exposure	Neutrons E<0.48 ev E>	o		1	3.5(13)	0	1.1(14)
	Gamma Dose [ergs/gm(C)]	0		1.7(11)	9.7(9)	Ö	9.2(9)
at	Tester	Instron at 0.05 in./win		Instron at 0.05 in./win	Instron st 0.05 in./min	High- Force Tester at 0.05 in./min	High- Force Tester at 0.05 in./min
Environment	Test	Air		Air	Air	Vac	Vac
Env	Irrad- iation	•		Air	Vac	•	Vac
	Specimen Number	48-11b 48-12b 48-13b	48-14 48-15A 48-15E	48-8 48-8 48-9 48-10	48-76 48-77 48-78 48-79 48-80	48-81 48-83 48-83 48-84	48-86 48-87 48-89 48-89

avalues given as: average value/standard deviation on an individual basis.

• Slotted specimen

125

Table 6.8

Selectron 5003 Structural Laminate Summary Table of Test Results

	Avg. Press.	(corr)	760	760	260	760	760
	Avg. Temp.	(F)	7.5	140	170	200	-320
Rupture #	Elongation (%)		1.47 1.53 1.45 1.57 1.65 1.53/0.09	1.60 1.26 1.44 1.42 1.42 1.36	1.55 1.43 1.82 1.51 1.57 1.57	1.63 1.70 1.81 1.70 1.82 1.82	5.98 5.88 4.23 5.95 5.51/0.85
At Rupt	Tensile Strength	(psi)	41,340 44,760 34,850 37,680 36,220 38,970/4,261	46,346 40,463 40,122 41,531 40,972 41,88772676	36,140 36,780 44,930 36,640 36,960 38,290/3779	41,770 41,800 46,850 44,640 44,580 43,928/2184	76,331 74,712 65,180 71,478 71,925/5416
Time	Until Test (Aave)	(skap)	•	4	16	16	ı
	E>8.1 Xev	;	0	6.3(13)	1	ı	0
Exposure	Neucrons (n/cm ²)		0	2.0(15)	5.4(15)	2.5(16)	0
Radiation E	Neucro: E<0.43 ev		0	3.5(13)	ı	1	0
	Garma Dose [ergs/gm(C)]		0	9.7(9)	3.3(10)	1.7(11)	0
nt	Tester		Instron at 0.05 in./min	Instron at 0.05 in./win	Instron at 0.05 in./min	Instron at 0.05 in./min	CTT at 0.05 in./win
Environment	Test		Air	Air	Air	Afr	LN ₂
Env	Irrad- iation		•	Air	Air	Air	;
	Number		49A-11 49A-12 49A-13 49A-14 49A-15	49A-46 49A-47 49A-48 49A-49 49A-50	49A-1 49A-2 49A-3 49A-4 49A-5	49A-6 49A-7 49A-8 49A-9	49A-91 49A-92 49A-93 49A-94

avalues given as: average value/standard deviation on an individual basis.

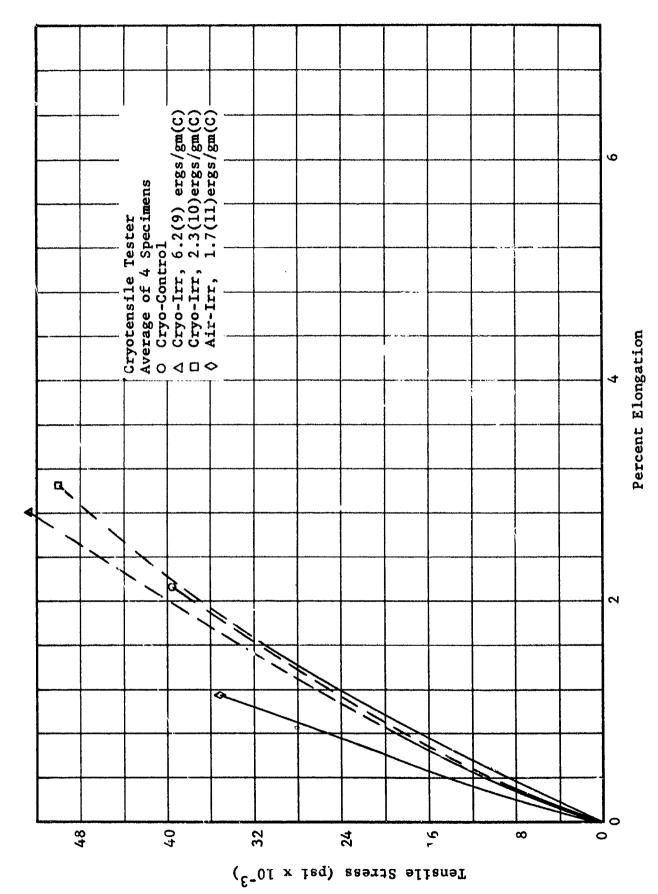

Γ	<u>;; c</u>		_			
	Avg. Press. (torr)	760	760	760	760	760
	Avg. Temp. (F)	-320	-320	-423	-423	-423
cure	Elongation (%)	6.34 6.20 - 6.27/0.12	6.00 7.06 5.91 6.32/0.68	4.98 5.46 5.42 3.87 4.93/0.77	4.10 4.39 4.61 4.77 4.47/0.33	4.53 6.17 4.80 5.77 5.32/0.80
At Rupture	Tensile Strength (psi)	70,647 76,176 No Dæte 73,41274902	73,177 63,207 70,753 69,046/5853	73,511 72,881 69,796 66,851 70,760/3235	59,147 61,432 58,430 53,597 58,152/3805	56,620 45,277 58,929 52,120 53,237/6655
Time	Until Test (days)	1	ı	,	•	•
	E>d.1 Mev	•	•	0	1	•
Exposure	Neutrons (n/cn^2) 48 ev $\to 2.9$ Mev	1.4(15)	3.9(15)	0	1.5(15)	2.5(15)
Radiation	Neutro E<0.48 ev	•	•	0	•	•
	Garma Dose [ergs/gn(C)]	,7.8(9)	2.2(10)	0	8.6(9)	1.4(10)
nt	Tester	CTT at 0.05 in./min	CTT at 0.05 in./win	CTT at 0.05 in./min	CII at 0.05 in./min	CIT at 0.05 in./min
Environment	Test	LN ₂	LN ₂	LH ₂	LH2	LH ₂
Env	Irrad- iation	LN ₂	LN ₂	•	LH2	LH2
	Specimen Number	49A-101 49A-102 49A-103	49A-106 49A-107 49A-108	49A-111 49A-112 49A-114	49A-126 49A-127 49A-128 49A-129	49A-131 49A-132 49A-133 49A-134

Table 6.9

Summary Table of Tensile Strength at Rupture for Four Selected Laminates (psi)

	Air Env	ironment	LH ₂ Env	vironment
Laminate Material	Control	1.7(11) [ergs/gm(C)]	Control	1.5(10) [ergs/gm(C)]
Phenolic: Mobaloy 81-AH7	36,102	36,780	50,706	57,153
Silicone: DC 2104	24,195	31,957	55,021	56,255
Epoxy: Epon 828/A	39,798	37,672	87,344	84,675
Polyester: Selectron 5003	38,970	43,928	70,760	53,237

Conolon 506 Stress-Strain Curves: Vacuum/LN2 Irradiation; Dynamic Tests Figure 6.1

CTL-91LD Stress-Strain Curves: Air Irradiation; Static Test and LH2 Dynamic Tests Figure 6.2

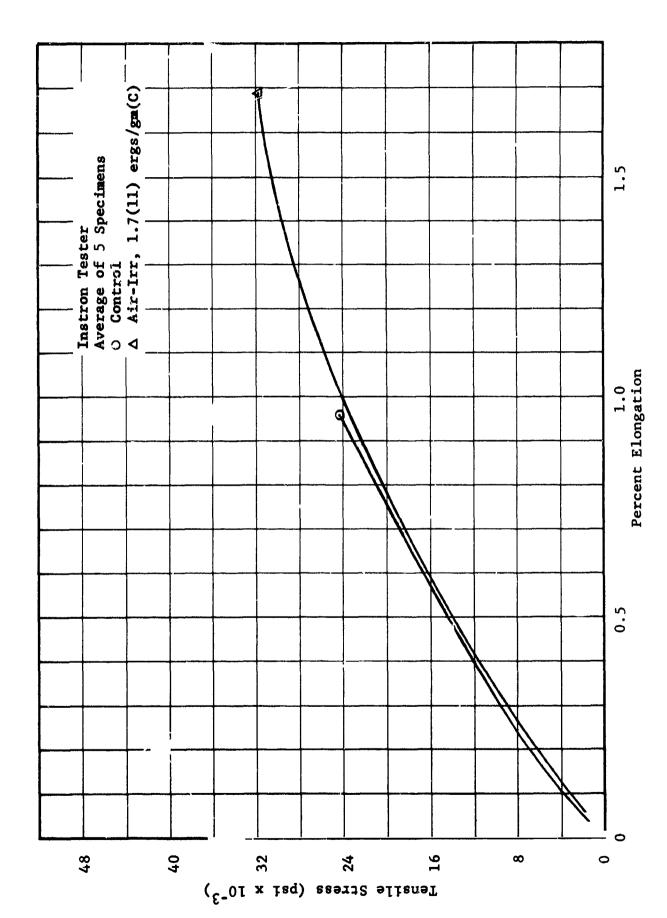
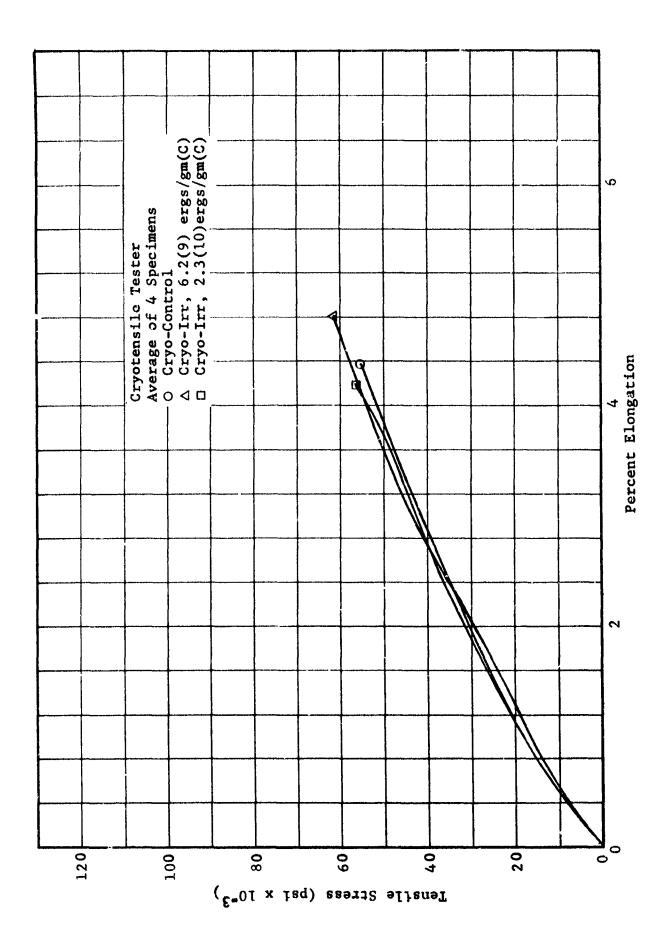



Figure 6.3 DC-2104 Stress-Strain Gurves: Air Irradiation; Static Tests

DC-2104 Stress-Strain Curves: LH2 Irradiation; Dynamic Tests Figure 6.4

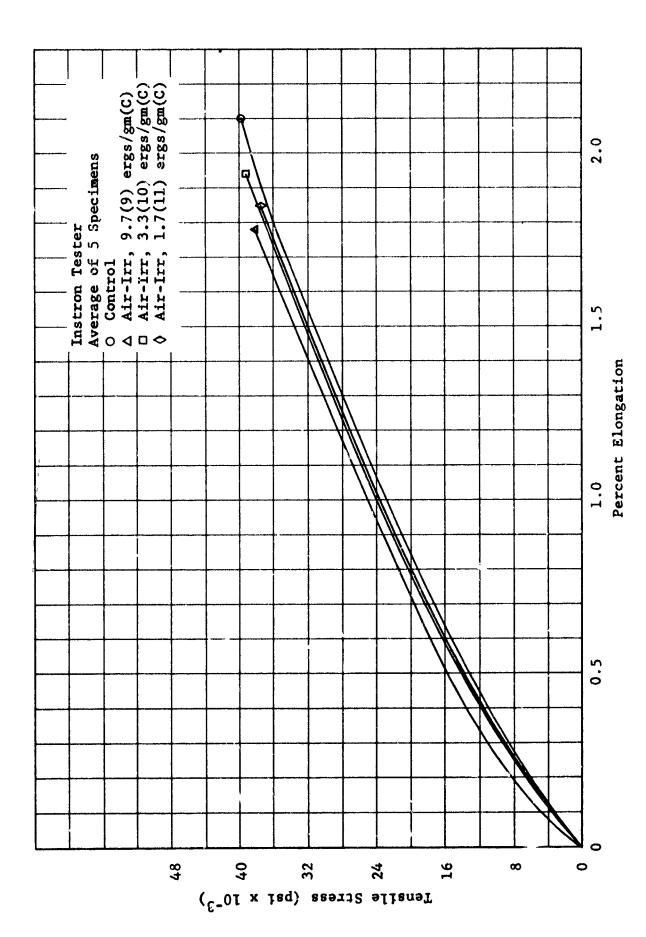
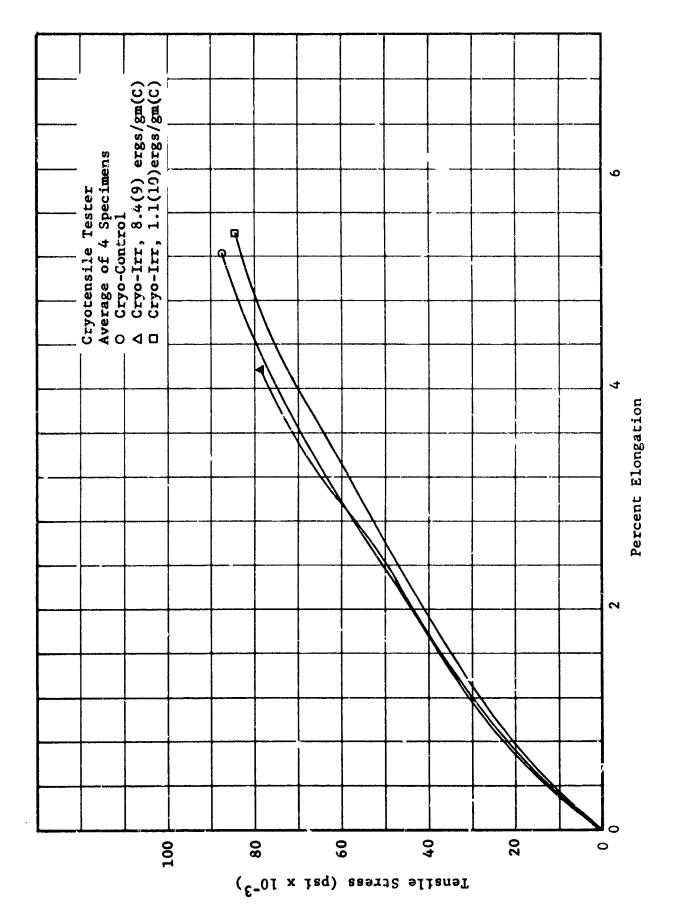



Figure 6.5 Epon 828/A Stress-Strain Curves: Air Irradiation; Static Test

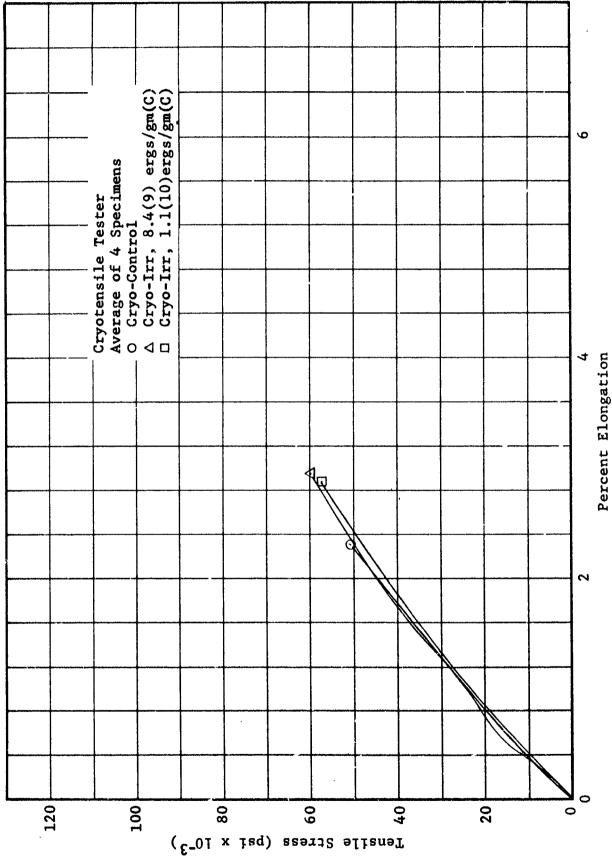
かっている なるのでは、一般のでは、一般のでは、

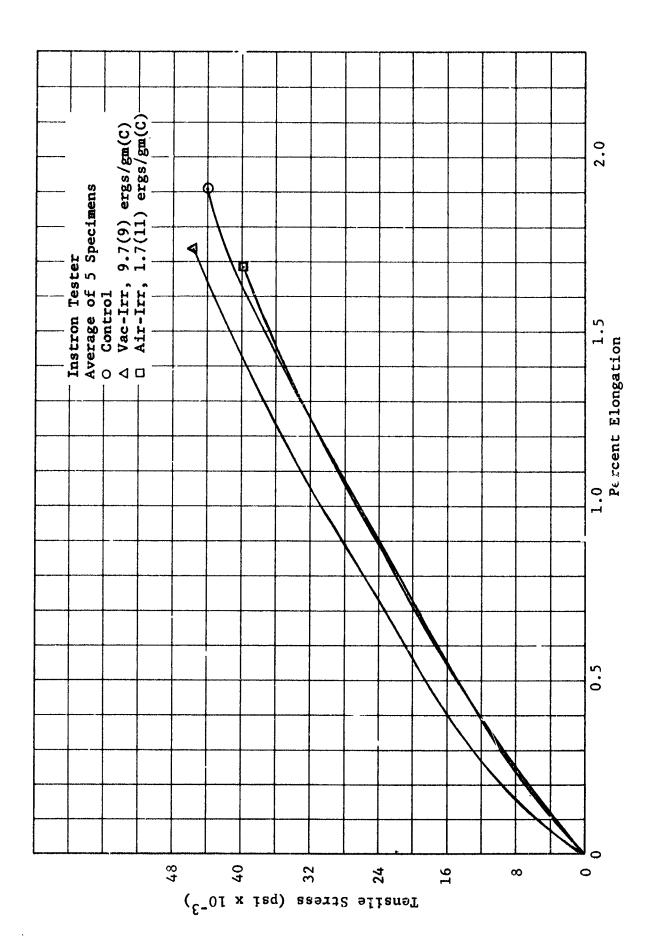
THE CASE AND THE

Epon 828/A Stress-Strain Curves: IN2 Irradiation; Dynamic Tests Figure 6.6

Epon 828/A Stress-Strain Curves: LH2 Irradiation; Dynamic Tests Figure 6.7

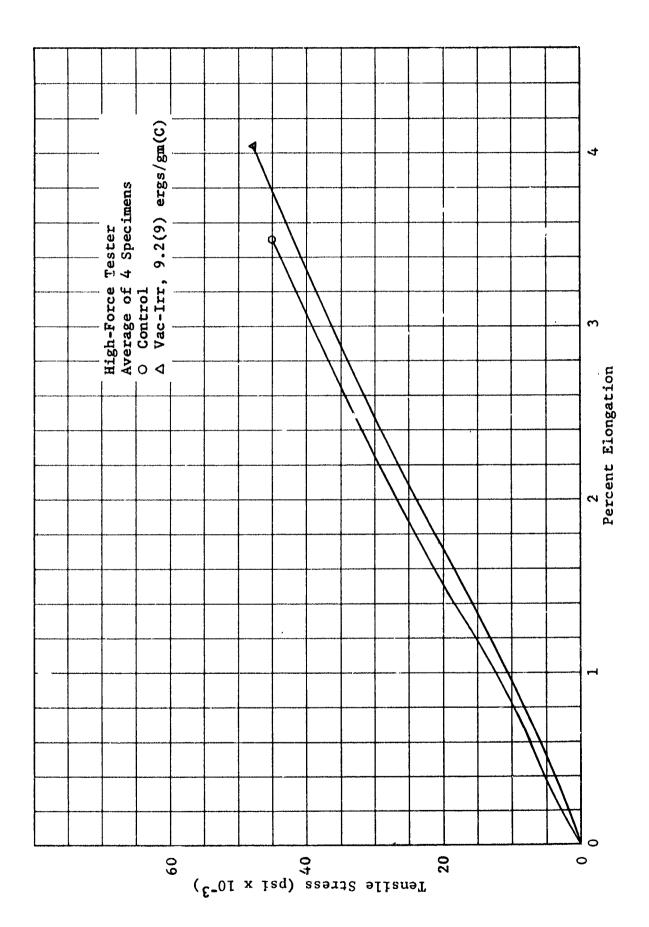
j,


Mobaloy 81-AH7 Stress-Strain Curves: Air Irradiation; Static Tests Figure 6.8

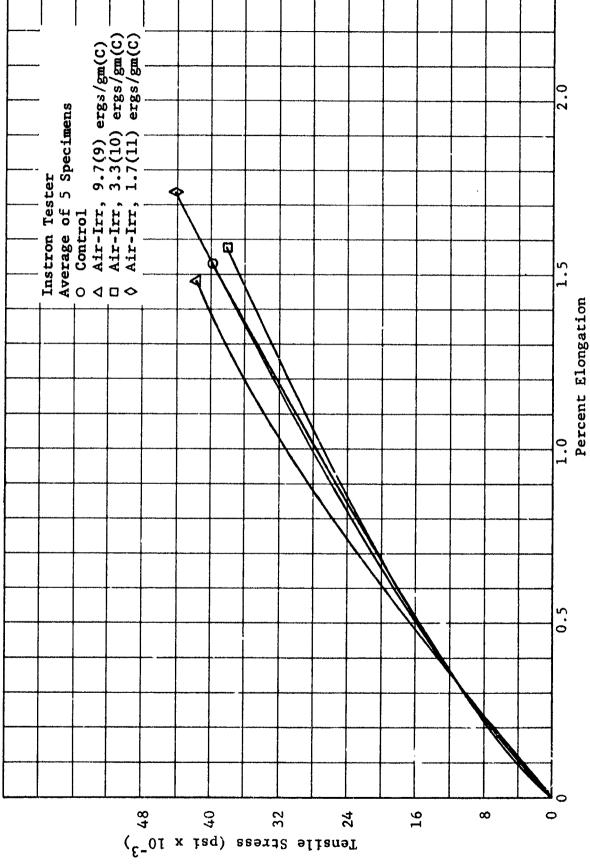

Mobaloy 81-AH7 Stress-Strain Curves: ${\tt LN}_2$ Irradiation; Dynamic Tests Figure 6.9

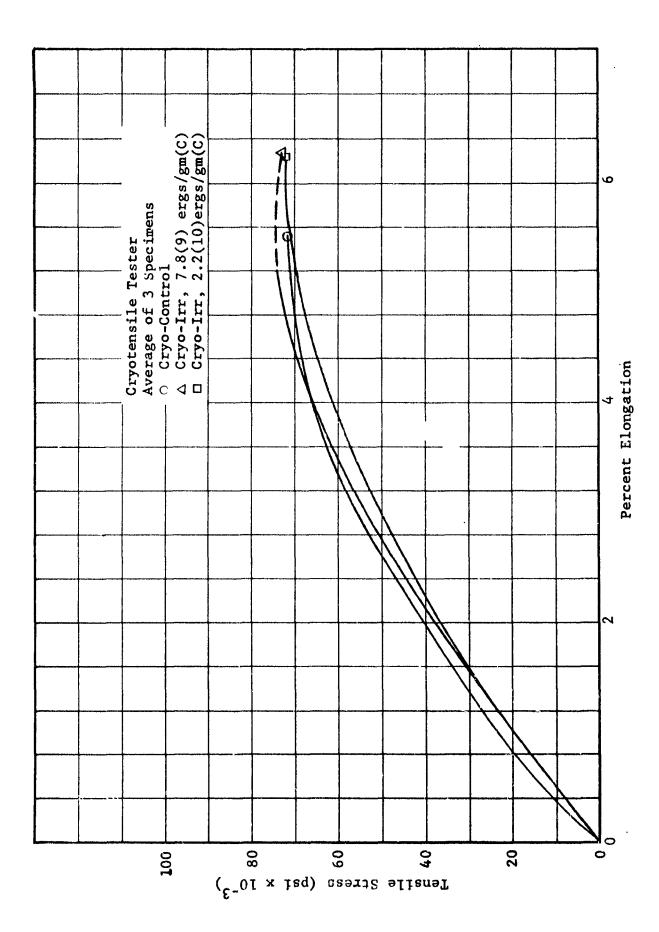
Mobaloy 81-AH7 Stress-Strain Curves:

Figure 6.10


LH2 Irradiation; Dynamic Tests

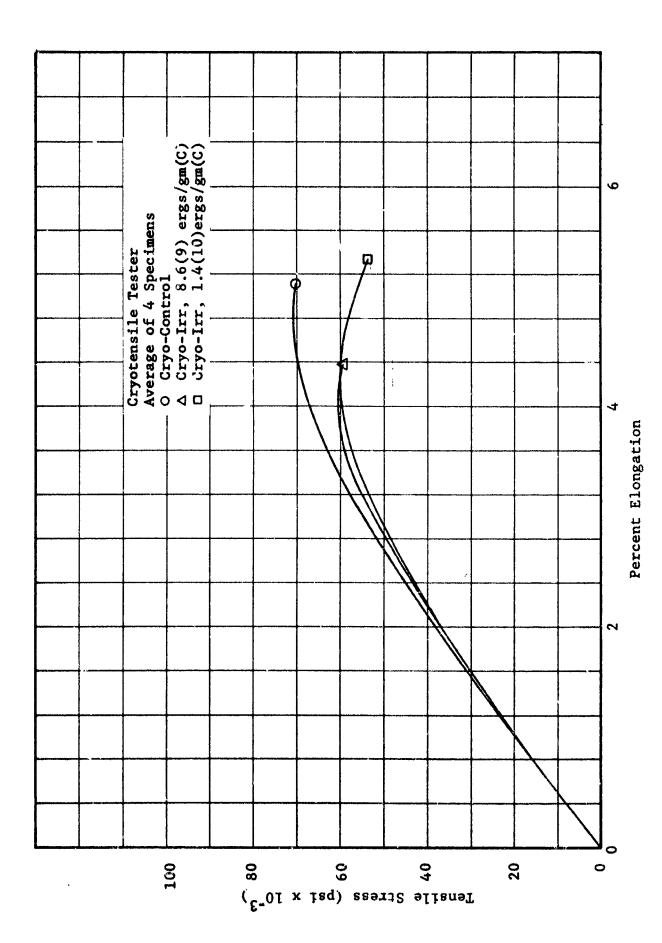
Paraplex P-43 Stress Strain Curves: Air and Vacuum Irradiations; Static Tests Figure 6.11


· ここのは、ここでは、これでは、これのないのは、一般のは、これのないでは、これので



140

Selectron 5003 Stress-Strain Curves: Air Irradiation; Static Tests


Figure 6.13

The same of the sa

Selectron 5003 Stress-Strain Curves: LN2 Irradiation; Dynamic Tests Figure 6.14

Selectron 5003 Stress-Strain Curves: LH2 Irradiation; Dynamic Tests Figure 6.15

BLANK PAGE

VII. SEAL TEST METHODS
AND RESULTS

Table 7.1

Outline of Seal Tests

Material To Buna N St. (PRP-737-70 FLX)	type of	Irradiation	Terrimon	Macerials	Test	HOOF 120
N -737 -70 FLX)		Fourtransent	Gamma Dose	Tester	Method	ובפר הסרס
-737 -70 FLX)	Tear	EIN TE OUMEUL		123621	2000	
	Static	Air	2(8),5(6),3(10),1(11)	Instron	D-1414-56T	Modulus Tensile Strenoth at Runchute
T S						
		0,000	1(3) 5(0)	Thetron	n-1414-56"	Modulius
	SCECE	v accuum	(6)(1)(6)	11077011	100-111-2	Teneile Strenoth at Bunture
-						
	يه ونگ					Street Crain Cumps
<u> </u>			3/0)	I other Powers	n-1414-56# Mod	Modulius
A	Dynamic	Valcium	(6)6	ייסא - ג סור כפ	יייייי ייייייייייייייייייייייייייייייי	Teneile Ctronath at Runture
	_					Tenstre Strength at Suprate
						Stress-Strain Curves
		1	3710) 1711)	Taetron	D-575-46	Load-Deflection
	State	Air	5(9) 1(10)	Instron	D-1414-56T	Modulus
(000.0077)	1	•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Tensile Strength at Rupture
(1:77-303)						Elongation at Rupture
SE	Static	Vacuum	5(9),1(10)	Instron	D-1414-56T	Modulus
						Tensile Strength at Rupture
						Elongation at Rupture
St	Static	Air	3(10),1(11)	Instron		Load-Deflection
	Static	Air	1(11)	Instron	D-638-61T, Mod.	Tensile Strength at Rujture
SP-1						Elongation at Rupture
L_	Dynamic	LH,	1(10),3(10)	Cryotensile	D-638-61I, Mod.	Tensile Strength at Rupture
•		•				Elongation at Rupture
						Stress-Strain Curves
Viton A St.	Static	Aİr	3(10),1(11)	Instron	D-1414-56T	
_						Tensile Strength at Rupture
						Elongation at Rupture
	Static	Afr	2(8),5(8),3(10),1(11)	Instron	D-1414-56T	
(PRP-19007)						Tensile Strength at Rupture
						Elongation at Rupture
	-					Stress-Strain Curves
SE	Static	Vacuum	(6), (6)	Instron	D-1414-56T	Modulus
A distance						Tensile Strength at Rupture
						Elongation at Rupture
						Stress-Strain Curves
Ág .	Dynamic	Vacuum	5(8),5(9)	Low-Force	D-1414-56T, M.J.	Modulus
•						Tensile Strength at Kupture
						Klongarion at Kupture
ŀ			2010/1011	1	77-67E-4.6	Total Detternion

VII. SEAL TEST METHODS AND RESULTS

This section of the report describes the test methods and results concerned with seal materials tested during the current period. The Program Summary table in the front of this report lists all of the seal materials tested during the two annual and one biennial contractual testing periods and references the applicable reports containing data.

Table 7.1 (facing page) lists the test conditions, environments, doses, and seal materials tested during the current period. All of the seal materials, with the exception of Polymer SP-1 and Viton A(V495-7), were tested in the form of 0-rings and compression buttons. Viton A was tested in the form of 0-rings only. Polymer SP-1 was tested for tensile properties and the test specimens were of the narrow-gage type described in Section 4.1.1. All of the static tests referred to in Table 7.1 are concerned with specimens that were irradiated statically in the environment shown, with postirradiation testing being performed on the Instron under room-air conditions. The dynamic tests were tests in which the postirradiation testing was conducted in the same environment as that used during the radiation exposure.

As shown in Table 7.1, Buna N and Viton B were tested in the Low-Force Tester in accordance with ASTM D-1414-56T, except for a change in crosshead speed from a specified 20 in./min to 0.5 in./min. This compromise in testing speed was made to prevent excessive hydraulic pressure in the Low-Force Tester. Polymer SP-1 is also shown as being tested under a modified test procedure. The modification entailed a change in specimen configuration in order to test the material in the Cryotensile Tester. The static specimens tested in the Instron were also made in the same configuration as the dynamic specimens so that comparable data would be obtained. The test specimens are described in Section 4.1.1. The materials in all seal specimens were from the same batch that was used in previous periods.

The summary tables containing the data and the summary stressstrain plots for the materials are presented at the end of this
tion and are listed by the material name. The names for these
materials are based on chemical composition, which is different
from the procedure used with other materials in this report.

7.1 Buna N (PRP-737-70 FLX)

The Buna N O-rings and compression buttons were selected from a supply on hand that had been submitted previously by the manufacturer for testing in this program. The material contains a special antirad agent.

Both static and dynamic irradiations were performed in air and vacuum. Static 0-ring tests included air controls, four air irradiations with postirradiation tests in air, and two vacuum irradiations with postirradiation tests in air. Table 7.2 and Figure 7.1 summarize the static 0-ring data. The elongation of Buna N decreased with increasing dose. Tensile strength varied very little but did increase slightly and then decreased. No discrepancies in elongation and tensile strength were apparent between air-irradiation and vacuum-irradiation conditions. At $1.7 \times 10^{11} \, \mathrm{ergs/gm(C)}$ the 0-rings were too brittle to test. Even at $3.3 \times 10^{10} \, \mathrm{ergs/gm(C)}$ the elongation had dropped to an average of 16.5%.

A vacuum control and two dynamic irradiations were performed with this material in the Low-Force Tester. Results are presented in Table 7.2 and Figure 7.2. All specimens fractured, and after irradiation to a dose of $2.1 \times 10^9 \, \text{ergs/gm}(\text{C})$ the elongation was 94%, having dropped from 177%.

Compression buttons showed the expected increase in hardness and reduced compressibility. These results are shown in Table 7.3.

7.2 <u>Neoprene (PRP-2277)</u>

Standard neoprene O-rings and compression buttons from stock previously supplied by the manufacturer for this program were

irradiated in air and vacuum and tested in air. There were no dynamic tests on this seal material. Static data for the O-ring air controls plus two air and two vacuum irradiations are shown in Table 7.4.

Irradiation dose levels of up to $9.1 \times 10^9 \, \text{ergs/gm}(C)$ in air and $8.5 \times 10^9 \, \text{ergs/gm}(C)$ in vacuum reduced the tensile strength only slightly, but percent elongation diminished from 239% for controls to 57% for air irradiations and 39% for vacuum irradiations.

The compressive strength of compression buttons increased from 500 psi at 25% deflection for unirradiated specimens to over 7000 psi for only 10% deflection after irradiation to 3.3×10^{10} ergs/gm(C). Results are shown in Table 7.5.

7.3 Polymer SP-1

Polymer SP-1 is a rigid plastic seal material tested as dumbbell-type tensile specimens that were machined at NARF from slabs of the polyimide resin furnished by the manufacturer. In addition to an air irradiation to a high dose, performed to round out a data cycle started previously, an LH₂ control test and two LH₂ irradiations with LH₂ postirradiation tests were performed. Table 7.6 presents the air and LH₂ test data. The curves plotted in Figure 7.3 illustrate the stability and uniform performance of

Polymer SP-1 when irradiated in LH_2 . Both the elongation and tensile strength at rupture increased when the specimens were submerged in LH_2 , and nuclear radiation does not seem to have any effect on the polyimide up to a dose of $2.3 \times 10^{10} \, \text{ergs/gm}(\text{C})$. When inspected following the irradiations, no visible changes in color or structure of the Polymer SP-1 specimens were evident. Tensile breaks were mostly "A" type in the narrow gage section in both the air and LH_2 tests.

7.4 <u>Viton A (V495-7)</u>

The Viton O-rings were stock items available from the manufacturer and were included in the program in order to provide additional information on a material known for its good environmental characteristics. Irradiation space and scheduling allowed only one set of static air controls and two static air irradiations for this material during the test period.

It was evident from the test results that the Viton A received extensive radiation damage. Although they were brittle, the large diameter of these 0-rings allowed them to be tested after the high radiation doses of 3.3×10^{10} and 1.7×10^{11} ergs/gm(C). The ultimate tensile strength at rupture changed from 1739 psi for the controls to 411 psi at the low dose and finally to 262 psi at the high dose. Elongation at break declined

from 224% to 12.2% and finally to 3.8% at the high dose. The crosshead speed of the Instron was reduced to 10 in./min for the irradiated 0-rings from the standard speed of 20 in./min used on the controls. This change allowed the stiff irradiated 0-rings to be pulled on the Instron mandrel.

Since the Viton B could not be tested after these irradiation levels (see below, Sect. 7.5), Viton A, as formulated for these specimens, appears to have better radiation stability than the Viton B selected for these tests. Table 7.7 presents the test data.

7.5 Viton B (PRP-19007)

Standard O-rings and compression buttons of this Viton as supplied by the manufacturer were irradiated. The environmental conditions included air and vacuum with both static and dynamic irradiations.

Static O-ring tests included air controls, four air irradiations with postirradiation tests in air, and two vacuum irradiations with postirradiation tests in air. Table 7.8 and Figure 7.4 summarize the static O-ring data. The elongation of the Viton B decreased with increasing dose, but the tensile strength at rupture varied very little with dose for the O-rings that could be tested. Both elongation and tensile strength were in-

dependent of environment, as indicated by comparison of air and vacuum irradiations. At first, tensile strength increased slightly with dose but returned to a value near that of the controls at $5.3 \times 10^9 \, \mathrm{ergs/gm}(\mathrm{C})$. The two high dose levels of 3.1×10^{10} and $2.0 \times 10^{11} \, \mathrm{ergs/gm}(\mathrm{C})$ in air stiffened the 0-rings until they were too hard and brittle to be tested on the Instron 0-ring mandrel.

A vacuum control and two dynamic vacuum irradiations were performed in the Low-Force Tester on this material. Results are presented in Table 7.8 and Figure 7.5. The elongation for the control and low-dose specimens exceeded the travel of the pull mechanism; therefore, elongation and tensile strength at rupture are not available for these conditions. Furthermore, the relatively slow pull speed of the Low-Force Tester prevented any comparisons with the data from the vacuum-air static runs fo. any of the O-rings.

Compression buttons showed a definite, anticipated change to a harder, less compressible condition after static irradiation to $3.3 \times 10^{10} \, \text{ergs/gm}(\text{C})$ in air. Table 7.9 presents the compression data.

7.6 General Discussion of Results

All the elastomeric seal materials were stiffened by the irradiation, with effects of individual exposures noted for each

component. Definite reductions in elongation were also noted and were more pronounced than noted changes in tensile strength.

the state of the source opening of

Results of each O-ring test are discussed in more detail in the above sections covering specific compounds. The intended applications will determine the actual radiation limits for which O-rings can be specified. For instance, static O-ring seals should be more radiation resistant than dynamic seals because of the characteristic stiffening of elastomers.

Polymer SP-1 is an excellent material for seals and was determined to have outstanding radiation and cryotemperature stability.

Table 7.2

PRP-737-70 FLX Seal (0-Rings) Summary Table of Test Results

Avg.	Press.		760	760	750	760	760
Avg.			75	۸.	75	170	200
Elonga-	tion at Resture	(%)	181 196 159 174 160 174/16	183 200 186 194 176 188 /10	127 190 178 170 170 170/27	18 18 13 17 16.5/2.4	do Test
(psi)	ტ	Rupcure	1862 1944 1697 1812 1664 1796/120	1911 2106 1921 2063 1914 1983/84	1529 2135 2043 2010 2139 1971/262	1648 1911 1087 1878 1631/400	\$rittle
Strength ((6) 100%	Elong.	890 896 923 906 896 896	906 906 893 926 926 911714	1087 1054 1054 1071 1054 1054		100 T
Tensile Str	50%	Elong.	336 330 362 346 353 345/14	362 362 362 372 372 366/4	422 395 399 412 395 405/12	111	Specimens
Ten	25%	Elong.	165 168 198 185 188 181/14	185 188 185 191 191 188/3	214 204 201 201 204 198 204/7	1111	ν. «
Time	Test	(days)	1	8	8	14	٠
	n ²)	2>8.1Mev	0	1.7(12)	4.5(12)	1	1
Exposure	Neutrons (n/cm^2)	E>2.9Mev	0	3.8(13)	1.4(14)	5.4(15)	2.5(16)
Radiation Exp	Neut	E<0.48ev	0	6.0(12)	6.1(12)	•	
Rac	Gamma Dose	ergs/gm(C)]	0	1.8(8)	5.7(8)	3.3(10)	1.7(11)
ent		Tester	Instron et 20.0 in./min	Instron et 20.0 in./min	Instron at 20.0 in./win	Instron (First spec. @ 20"/min, next 3 (@ 10"/ min)	Instron at 20.0 in./win
Environment		Test	Alr	Air	Air	Air	Air
Env	Irrad-	lacton	ŧ	Air	Air	Afr	Air
	Specimen						

*Values given as: average value/stancind deviation on an individual basis.

Avg.	Press.	(rorr)	4.6(-()	2.0(~€)	1.0(-3)	1.4(-6)
Avg.	Temp.		120	100	75	100
Elonga-	tion at	(%) (%)	160 131 131 151 151 140 143/12	55 57 60 56 56 67 5975	172 163 183 190 176 177/12	88.7 104.4 90.1 - 94.4 ⁷ 9.3
(psi)	œ.	Rupture	2257 1922 1976 2159 1932 2049/144	1681 1565 1845 1713 2175 1796/262	1663 1395 1543 1794 1682 1617/171	1197 1747 1543 - 1496/325
	(હ 10 0 %	Elorg.	1358 1341 1348 1301 1385 1347/36		800 680 680 720 700 716 /52	1680
Tensile St	20 @	Elong.	514 483 483 456 466 486	1483 1236 1433 1400 1384 106	300 260 220 260 260 200 24.3/43	545 730 730 - 668/109
Ten	ଚ୍ଚ	Flong.	243 226 230 203 203 226 226	619 494 593 593 560 572/54	60 60 80 80 4 57/33	230 400 360 - - 330/100
Time	Uncil	(days)	77	v	•	ı
	(² c	E>8.1Mev	7.0(13)	•	0	1.4(14)
Exposure	Neutrons (n/cm^2)	E>2.9Mev	1.8(14)	6.8(14)	0	3.9(14)
Radiation Ex	Neu	E<0.48ev	1.0(13)	7.8(13)	0	4.5(13)
Rac	Garma Dose	[ergs/gm(C)]	8.9(8)	5.3(9)	0	2.1(9)
nent		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Low Force Tester at 0.5 in./min	Low Force Tester at 0.5 in:/win
Environment		Test	Air	Air	V RC	0 e A
Env	Irrad-	iation Test	Vac	0 e 0	1	Vac
	Specim					

Table 7.3

PRP-737-70 FLX Seal (Compression Buttons)
Summary Table of Test Results

	Press.	(corr)		760	760
7.1.4	Temp.	<u> </u>	27	170	200
Strength	Compres-	(jsi)	595 580 585 587 550 579719	8590 8650 8650 8200 8800 8568/258	7250b 6760b 7500b 7800b 7400b 7342/447
Time	Test	(c(m))	•	23	21
	2)	E> 8.1 Mev	0	t	1
kposure	Neutrons (n/cm ²)	E > 2.9 Mev	0	5.4(15)	2.5(16)
Radiation Exposure	Nei	E<0.48 ev	0	•	•
	Gamma Dose	[(2) 8 (2)	0	3.3(10)	1.7(11)
u	Tester	- 1	Instron at 0.5 in./min	Instron at 0.5 in./min	Instron at 0.5 in./min
Environment	Test		Air	Air	Afr
Env	Irrad-		ı	Air	Afr
	Number				

Avalues given as: average value/standard deviation on an individual basis. b Strength at 10% compression.

Table 7.4

PRP-2277 Seal (0-Rings) Summary Table of Test Results

. SV.S.	Press.	(1011)	760	760	760	2.0(-€)	2.0(-6)
AVE.	Jerio.		7.5	100	140	100	140
Elonga-	rion ar	(2) (2)	265 220 235 250 250 223 223	100 95 92 93 9374	61 62 55 53 53 57 4	68 31 81 92 81/12	31 43 42 40 39/6
(psi)a	C	Rupting	2705 2201 2392 2639 2231 2434 7217	2307 2224 2340 2191 2290 2270764	_142 2142 1878 1895 2059 2023/113	2109 2010 2142 2405 2405 2167/144	1944 2867 2702 2603 2529/448
Ę.	(-, -) (-, -)	110ng.	587 659 629 649 649 646	2307	1 1 1 1 1	1 1 1 1	1111
S	6 6	Elong.	298 297 330 323 339 317/13	824 830 - 840 840 83478	1532 1532 1615 1664 1763 1621 ⁷ 99	1170 1021 1038 1005 1005 80	
Ter	תי, ש ר	Elong.	152 198 198 198 204 190/22	353 362 - 362 376 376	593 600 626 659 627/28	567 494 488 481 508/42	1384 1269 1318 1318 1322/55
Time	1122	(days)	t	4	4	ın	v
	(2,0	E>d. 1Mev	0	3.4(13)	6.3(13)	1	ı
Exposure	entrons (r/cm	5>2.9Mev	0	1.1(15)	2.0(15)	6.8(14)	1.7(15)
Radiacion Exp	.v. e.r.	3<0.48e7	0	5.5(13)	3.5(13)	7.8(13)	1.0(14)
Ra:	Gamma Dose	[ergs/gm(C)]	0	5.2(9)	9.7(9)	5.3(9)	8.5(9)
ent	•	iation Test Tester	Instron at 20.0 in./min	Instron et 20.0 in./min	Instron at 20.0 in./win	Instron at 20.0 in./min	Instron at 20.0 in./min
Ervironment		Test	4 4 4	Air	Air	Air	Air
ដ់	Irrad-	iation	t	Air	Air	Vac	Vac
	Specimen	אַריייספּו					

AValues given as: average value/standard deviation on an individual basis.

Table 7.5

PRP-2277 Seal (Compression Buttons) Summary Table of Test Results

	Avg. Press.	(corr)	760	760	760
	Avg. Temp.	(£)	75	170	200
Strength	at 25% Compres-	sion- (psi)	495 509 545 507 495	7350b 7300b 7150b 7250b 7250b 7260	7150 b 7640 b 7550 b 7450 b 7450 b 74487211
Time	Radiation Exposure Time Until Garma Dose Neutrons (n/cm ²) Test Claster Caster Cast		ı	21	21
	2)	E> 8.1 Mev	O	ŧ	1
kposure	Neutrons (n/cm	E>2.9 Mev	0	5.4(15)	2.5(16)
Radiation E		E<0.48 ev	О	ı	•
	Garma Dose	[6183/8#(0)]	0	3.3(10)	1.7(11)
t.	Tester		Instron at 0.5 in./min	Instron at 0.5 in./min	Instron at 0.5 in./min
Environment	400		Air	Air	Air
Env	Irrad-		ı	Air	Air
S. Cook	Number				

avalues given as: average value/standard deviation on an individual basis. Strength at 10% compression.

Table 7.6

Polymer SP-1 Seal Summary Table of Test Results

	Av8.	press. (torr)	ر 0 1	760	0	0 9 : ·
	Av8.	Temp.	200	-423	-423	-423
Rupture a	Flongation	(%)	3.19 2.53 3.26 2.95 2.26 2.8270.43	2.37 1.90 2.49 2.25/0.35	2.32 2.34 2.01 2.23 ⁷ 0.19	2.57 2.47 2.29 (.57b 2.44/0.17
At Rup	Tensile	Strength (psi)	10,677 9,238 10,690 9,558 8,917	15,357 12,462 14,292 14,037/1709	14,602 15,045 12,018 13,388/1787	17,903 15,448 10,884 16,349b 14,745/4146
Time	Chril Tost	(days)	17	1	ľ	1
		E>8.1 Mev	•	0	•	•
Exposure	ns (n/cm²)	5>2.9 Mev	2.5(16)	0	1.1(15)	4.1(15)
Radiation	Neutrons	E<0.43 ev	1	0	1	ı
	Garma Dose	[ergs/gm(C)]	1.7(11)	0	6.2(9)	2.3(10)
nt		Tester	Instron at 0.05 in./min	cT: at 0.05 in./min	crr at 0.05 in./min	at 0.05
Environment		Test	4 H H	LH ₂	LH2	гн ₂
Env	Irrad-	iation	Air	•	LH ₂	LH2
	Number		70A-6 70A-7 70A-8 70A-9 70A-10	70A-111 70A-112 70A-113	70A-126 70A-127 70A-128	70A-131 70A-132 70A-133 70A-134

 $^{\mathrm{a}\mathrm{Values}}$ given as: average value/standard deviation on an individual basis. Values not included in average or standard deviation.

160

Table 7.7

V495-7 Seal (0-Rings) Summary Table of Test Results

Avg.	Press.	(rorr)	760	760	
Avg.	Temp.	(1)	75	170	200
Elonga-	tion at	(%)	216 217 220 227 239 224.10	7.8 ^b 12.5 11.1 14.9 10.2 12.2/2.3	3.4 3.6 4.4 4.1 3.8/0.4
(psi)a		Rupture	1664 1746 1911 1713 1713 1739/106	277 ^b 386 389 458 409 411/35	234 234 244 297 303 262/30
	100%		616 626 593 626 593 611/14		1 1 1 1
Tensile Strength	(a)	Elong.	330 330 297 346 343 329/21	1 1 1 1 1	
Ten	@ 22	Elong.	191 214 181 224 214 205/18	1111	
Time	Until	(days)	•	14	41
	n ²)	E>8.1Mev	0	ı	1
posure	Neutrons (n/cm ²)	E>2.9Mev	0	5.4(15)	2.5(16)
Radiation Exposure	Neu	ਨੇ<0.48ev	0	ı	
Ra	Gamma Dose	ergs/gm(C)]	0	3.3(10)	1.7(11)
pent		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 10.0 in./min
Environment		Test	Air	Air	Air
Env	Irrad-	iation	•	Air	AIT
	Specimen	Number			

 a Values given as: average value/standard deviation on an individual basis. b Value not included in average and standard deviation.

Table 7.8

PRP-19007 Seal (0-Rings) Summary Table of Test Results

Avg.	Press.	760		760	760	760	092	
.AV.9.			v)	75	75	170	200	
Elonga-	tion at	(%)	266 250 235 266 229 249716	225 247 232 220 224 230/12	189 189 177 177 185 185	Test	Test	170 154 152 155 140 154/13
(psi)	ල	Rupture	1763 1697 1598 1862 1532 1690/142	1905 2003 1888 1872 1911 1916/56	2083 2076 1872 1951 2125 2021/109	Brittle to	Brittle to	2223 1986 1875 1861 1632 1915/254
-	(e 100%	Elong.	527 540 544 547 531 538	659 652 643 672 672 660/12	939 883 923 933 939	- Too Br	- Too Br	1145 1159 1095 1051 1078 1106/46
S	5.0% 50%	Elong.	287 290 297 293 280 2897	316 313 306 316 316 313/4	395 386 395 412 389 395/11	Specimens	Specimens	449 463 419 405 422 432/25
Tensil	(a)	ω	175 181 185 185 168 17877	191 175 175 185 185 185	198 198 214 214 211 207/7	5 Spe	S Spe	206 209 189 182 196/12
Time	Test	(days)	•	7	2	•	ı	•
		8. LMev	0	1.7(12)	4.6(12)	ı	1	7.0(13)
Exposure	Neutrons (n/cm ²)	E>2.9Mev	0	3.8(13)	1.4(14)	5.1(15)	2.8(16)	1.8(14)
Radiation Exp	Neut	E<0.48ev	0	6.0(12)	6.1(12)	•	ı	1.0(13)
Rac	Gamma Dose	ergs/gm(C)]	0	1.8(8)	5.7(8)	3.1(10)	2.0(11)	8.9(8)
aent		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron et 20.0 in./min	Instron	Instron	Instron et 20.0 in./min
Environment		Test	Air	Air	Air	Air	Air	Air
En	Irrad-	iation	Air	Air	Air	Air	Air	Vec
	Specimen	Tacimus.						

avalues given as: average value/standard deviation on an individual basis.

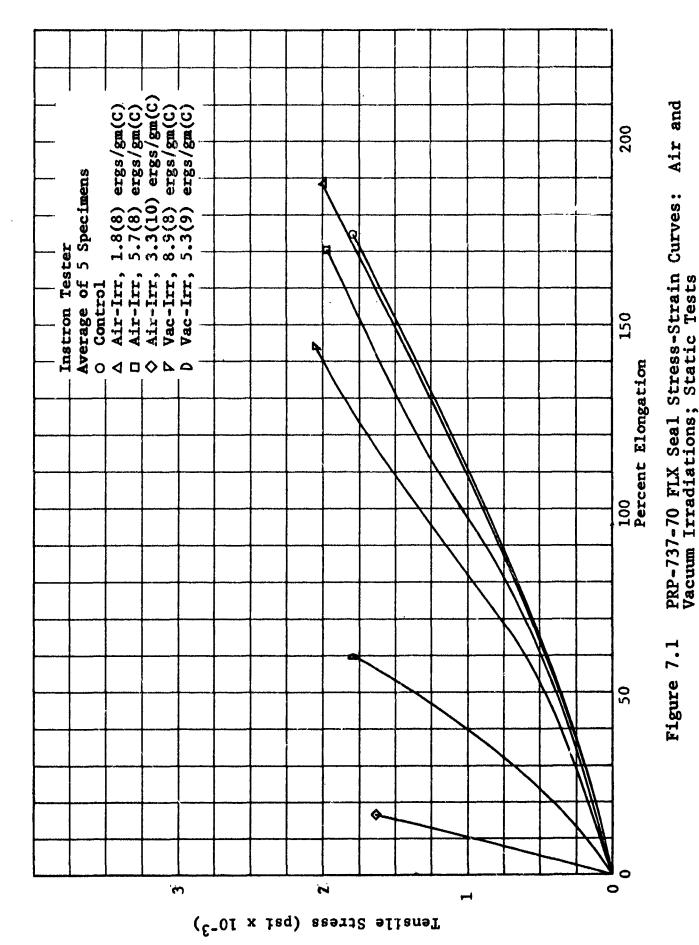
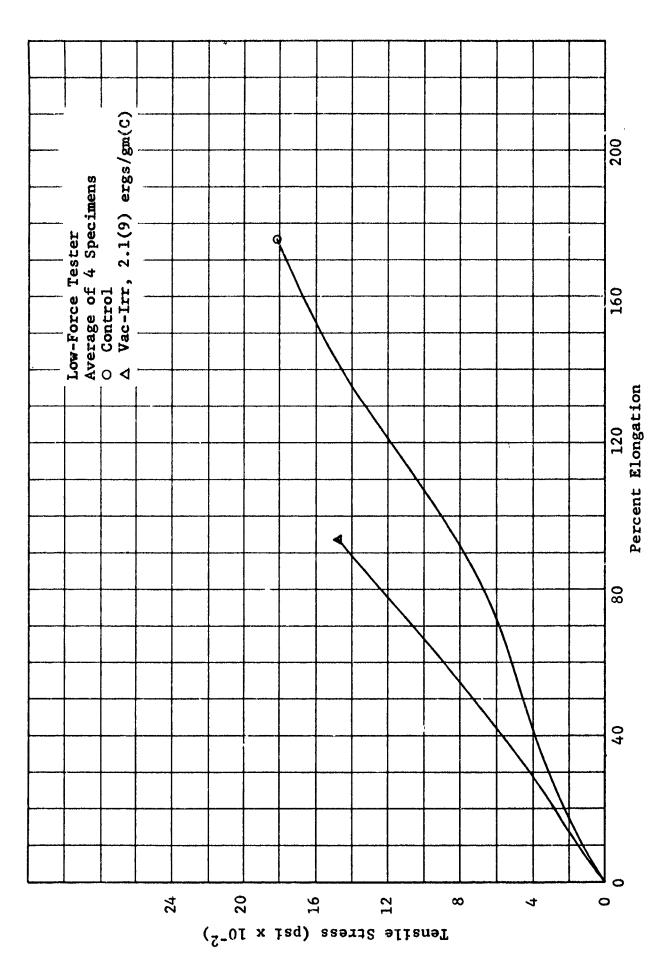
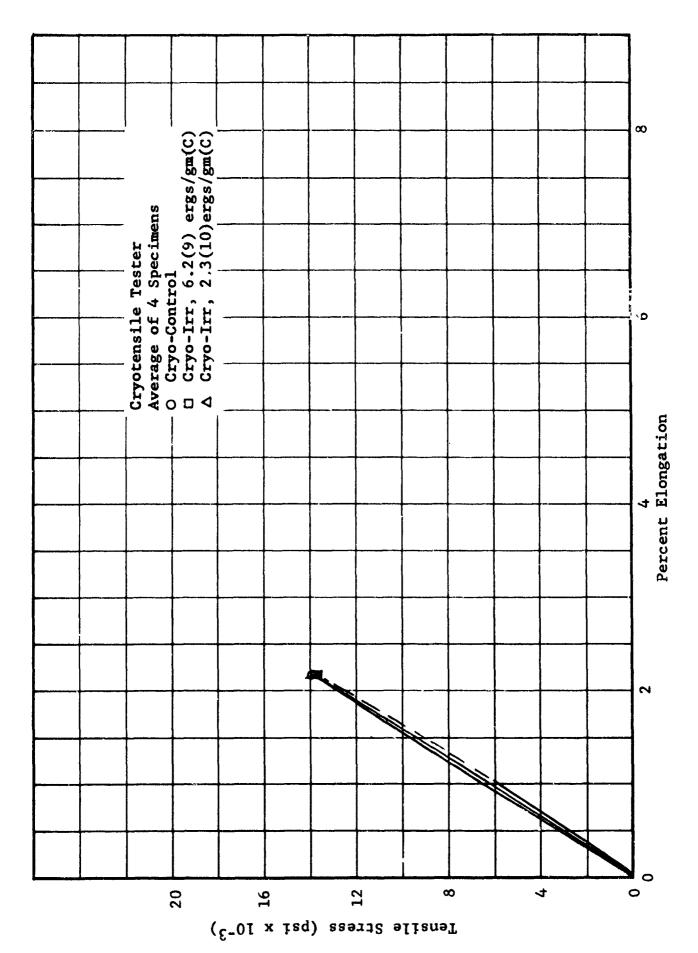

Environment	onme	ıţ	Rac	Radiation Exp	Exposure		Time	Ten	Tensile Str	Strength (p	(psi)	Elonga-	AVE.	Avg.
Tes	St T	Test Tester	Garma Dose [ergs/gm(C)]	Neut E<0.48ev	Neutrons (n/cm^2) ev $E>2.9$ Mev $E>8$	n ²) E>8.1Mev	Until Test (days)	(d. 25% Elong.	e 50% Elong.	e 100% Elong.	(d Rupture	tion at Rupture (%)	Temp. (F)	Press. (torr)
Air		Instron st 20.0 in./win	5.3(9)	7.8(13)	6.8(14)	•	5	692 659 659 659 643 643	- 1746 - 1779 1763/29	1 1 1 1	1681 1483 1746 1565 1911 1677/184	46 49 50 44 52 48/3	100	2.0(-6)
Vac		Low Force Tester at 0.50 in./min	0	0	0	0	1	39 72 79 39 57.3/	161 180 172 160 168.37	372 358 362 300 348/35	Specimens Did Not Breek	s Did eak	75	1.0(-3)
Λ α α		Low Force Tester at 0.50 in./min	2.3(8)	5.1(12)	4.4(13)	1.6(13)	ı	100 95 100 82 92.3/ 8.7	260 229 229 180 224.5/ 38.9	410 380 357 388 383.87 25.7	Specimens Did Not Break	s Did erk	80	5.0(-7)
,		Low Force Tester at 0.50 in./min	5.3(9)	1.1(14)	9.7(14)	3.5(14)	t	295 405 295 415 415 365/52		P	780 1027 872 639 983 860/167	43.6 46.7 44.4 32.7 42.9 42.1 ⁷ 6.0	12 5	

Table 7.9

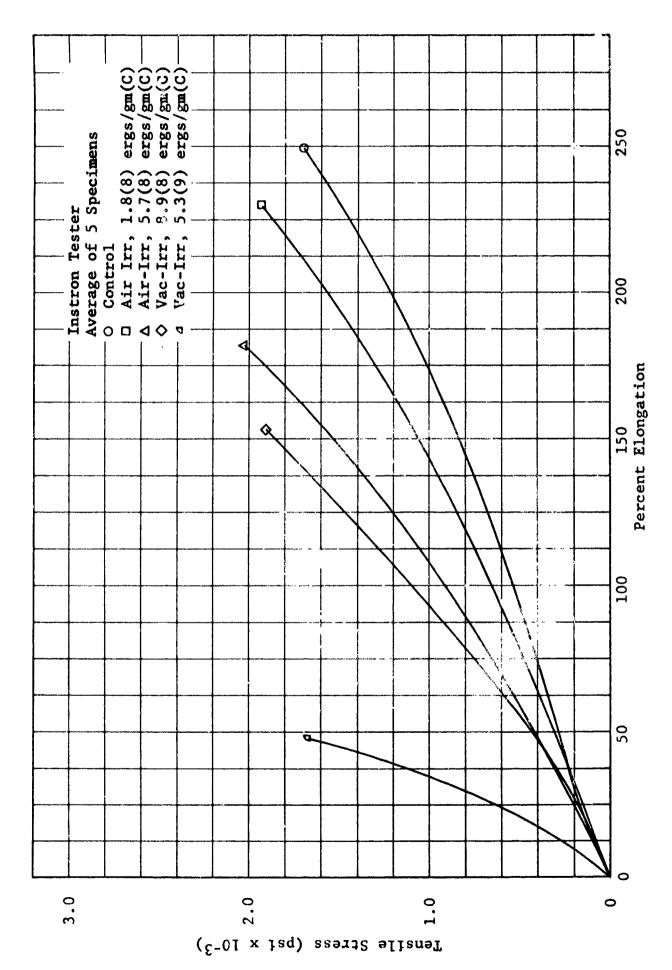

PRP-19007 Seal (Compression Buttons) Summary Table of Test Results

ti.	Avg. Press.		760	760	760
<i>t</i>	Temp.	;	75	170	200
Strength	Compres-	(psi)	477 475 476 ² 2	6150 b 6580 b 6365/381	6595 ⁵ 5500 6048/37 <u>1</u>
Time	Test	(c (mn)	ı	21	71
	2)	E> 8.1 Mev	0	ı	•
xposure	Neutrons (n/cm ²)	E>2.9 Mev	0	5.4(15)	2.5(16)
Radiation Exposure		E<0.48 ev	0	•	•
	Garma Dose [ergs/gm(C)]		0	3.3(10)	1.7(11)
11	ר מ ת זי	İ	Instron at 0.5 in./min	Instron at 0.5 in./min	Instron at 0.5 in./min
Environment	Test		Air	Air	Air
Env	Irrad-			Air	Air
Cooring	Number				

avalues given as: average value/standard deviation on an individual basis. $^{\text{b}}\text{Strength}$ at 10% compression.

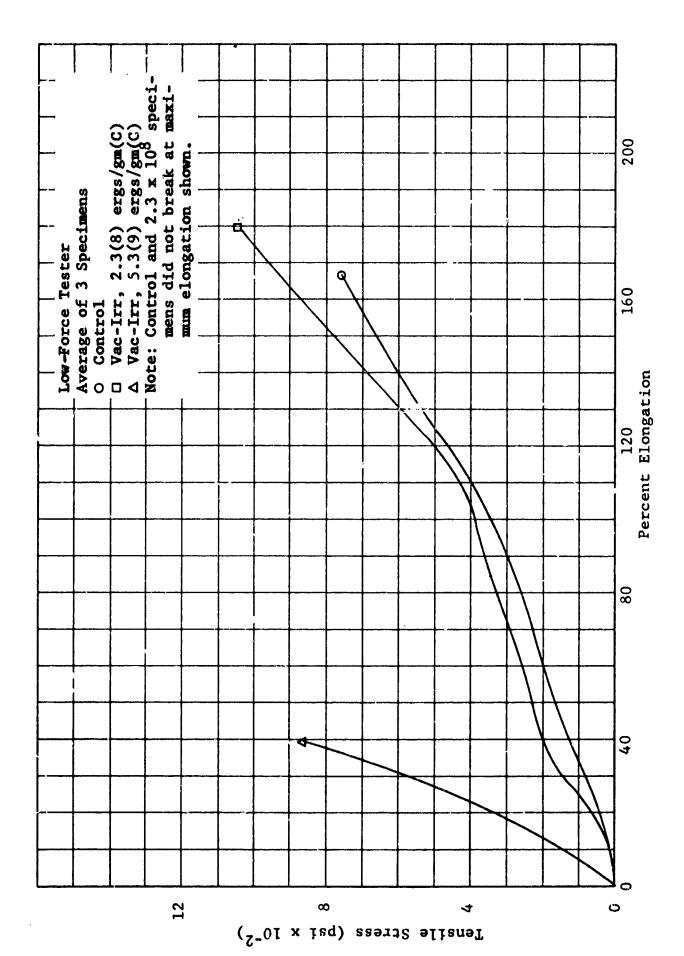


}



Constitution of the Control of the C

PRP-737-70 FLX Seal Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests Figure 7.2



Polymer SP-1 Stress-Strain Curves: LH2 Irradiation; Dynamic Tests Figure 7.3

The first transmission of the state of the s

PRP-19007 Seal Stress-Strain Curves: Air and Vacuum Irradiations; Static Tests Figure 7.4

PRP-19007 Seal Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests Figure 7.5

BLANK PAGE

VIII. SEALANT TEST METHODS AND RESULTS

Table 8.1

Outline of Sealant Tests

Material	Type of Test	Irradiation Environment	Nominal Gamma Dose [ergs/gm(C)]	Materials Tester	ASTM Test Method	Test Data
Dow Corning 92-018	Static	Air	2(8),1(9),1(10)	Instron	D-412-62T (DIE-C)	Tensile Strength at Rupture, Modulus, Elongation at Rupture
	Static	Air	2(8),1(9),1(10)	Instron	D-1002-64, Mod.	D-1002-64, Ultimate Tensile Shear Mod. Strength, Percent Adhesive Failure
Dow Corning 94-002	Static	Air	5(8),1(9),5(9)	Instron	D-1002-64, Mod.	D-1002-64, Ultimate Tensile Shear Mod. Strength, Percent Adhesive Failure
_	Static	Vacuum	5(8),1(9),5(9)	Instron	D-1002-64, Mod.	D-1002-64, Ultimate Tensile Shear Mod. Strength, Percent Adhesive Failure

VIII. SEALANT TEST METHODS AND RESULTS

This section of the report contains all of the data generated on sealant materials during this testing period. The Program Summary table at the front of this report lists all of the sealant materials tested during the three contractual periods and the corresponding referenced reports containing the data. Table 8.1 (facing page) is a résumé of the test conditions, environments, and doses for the two materials tested during the current period under this category. The results of these tests are presented in tabular form at the end of this section.

One of the seal materials was tested in air in the form of ASTM D-412 Die C dumbbell-type tensile specimens and also as modified ASTM D-1002 lap-shear specimens. The other material was tested as a lap shear in both air and vacuum environments. Both sealants are silicone-base polymers.

8.1 Dow Corning 92-018

This adhesive/sealant was irradiated and tested both in lap-shear and tensile specimen configurations. There was a progressive change in tensile property but no change from its original black color. This material is a soft, rubbery-type of sealant. Initially, as controls, the lap-shear specimens had

cohesive failure with a smooth adhesive film separation. After irradiation in air to 2 x 10^8 ergs/gm(C), the material was still soft and pliable and demonstrated about a 2% adhesive failure. After irradiation to 1 x 10^9 ergs/gm(C) in air, the sealant separated into ripples with continued cohesive failure. Some embrittlement also occurred. At the highest air dose of 1 x 10^{10} ergs/gm(C) there was a decided change in the material: a 95% adhesive failure, which was a reversal of the control and low-dose conditions. The material was also very hard and brittle. The data for the lap-shear specimens are given in Table 8.2.

The Die C tensile specimens tested as controls were flexible and fractured with "A"- and "B"-type breaks. After the first radiation level of 2 x 10^8 ergs/gm(C), there were flexible "A" breaks, but the rubber was a little stiffer. At 1 x 10^9 ergs/gm(C) the tensile specimens still had "A" breaks, but were definitely brittle. Finally, at 1 x 10^{10} ergs/gm(C) the tensile specimens still had "A" breaks, but the material was definitely no longer a sealant-type material, being more like a hard rubber, with the specimens tolerating little bending before breaking. The Die C tensile data for this material are given in Table 8.3.

8.2 <u>Dow Corning 94-002</u>

The state of the s

This material was tested in the form of lap-shear specimens

as prepared by the Dow Corning Laboratory. The amount of adhesive failure changed with irradiation, but no change in color was experienced. The general property changes in 94-002 were similar to those that occurred with 92-018. The type of failure was originally cohesive, then progressed to adhesive as it reached higher irradiation levels. The vacuum irradiation of Dow Corning 94-002 resulted in a higher threshold of damage than did the air irradiation, as is suggested by the degree of change from cohesive to adhesive failure. The exact failure modes of these materials are shown in Table 8.4. The application and required retention of pliability of the sealants will influence the radiation level considered to be a safe margin in actual design applications. There is a definite indication that vacuum does extend the useful life of these sealants during irradiation.

8.3 General Discussion of Results

skallydas greet. Here it frespect a commence and a commence when a commence

These sealants do not change color during irradiation.

Failure of lap-shear specimens progressively changes from cohesive to adhesive separation with successively higher levels of radiation. Since the pliable sealants stiffened and hardened with radiation, aerospace service requirements will determine the actual allowable service life expectancy.

Table 8.2

DC-92-018 Sealant (Lap Shear) Summary Table of Test Results

					
Avo	Press. (corr)	760	760	760	
AVP.	Temp. (F)	75	7.5	75	150
.4	Adh	.1 avg	2 avg	2 avg	95 avg
Ultimate Tensile	Shear Strength ^a (psi)	553 490 450 410 386 458/72	657 541 592 627 627 440 571/93	420 427 456 433 352 418745	369 302 418 389 340 364/50
Time Until			7	2	4
	E>8.1 Mev	0	1.7(12)	5.7(12)	6.3(13)
Exposure	Neutrons (n/cm^2) ev $E > 2.9$ Mev	o	3.8(13)	1.7(14)	2.0(15)
Radiation Exposure	Neu E<0.48 ev	0	6.0(12)	4.1(12)	3.5(13)
	Gamma Dose [ergs/gm(C)]	0	1.8(8)	8.8(8)	
ıt	rester	Instron at 0.05 in./win	Instron at 0.05 in./min	Instron at 0.05 in./min	Instron at 0.05 in./min
Environment	Test	Air	A Li	A H	I B
Envi	Irrad- iation Test Tester	1	Afr.	Air	Air
con i mon	Specimen Number	107-11 107-12 107-13 107-14 107-15	107-26 107-27 107-28 107-29 107-30	107-36 107-37 107-38 107-39 107-40	107-46 107-47 107-48 107-49 107-50

*Values given as: average value/standard deviation on an individual basis.

Table 8.3

j

DC-92-018 Sealant (Die C Specimens) Summary Table of Test Results

Avg.	Press.	(1025)	760	760	760	760
, v. v. v.	rvg. Temp. (F)		V)	(/)	r,	140
Elonga-	rion at	(%)	580 548 540 525 420 523769	460 460 490 450 420 420 456/30	300 250 232 268 190 248747	25 21 28 21 13 21.676.4
(psi)#	Ģ	Repeare	894 820 825 777 636 730/111	831 1081 867 913 759 890/138	806 741 685 795 549 715/110	507 471 665 522 314 4967151
Strength (ි 100දී	Elong.	165 180 193 162 177 175/13	203 210 194 219 202 206 /11	269 308 294 308 285 293/17	1 1 1 1
Tensile St	6) 50% 50%	Elong.	108 96 128 104 117 111/14	129 134 120 136 127 12977	151 184 168 183 161 169714	
Ten.	(a 25%	Elong.	80 60 96 55 73	92 96 87 92 89 91/4	108 126 117 125 113 118/8	507 - 591 - 549/74
Time	Test	(days)	•	0	2	4
	m ²)	E>8.1Mev	0	1.7(12)	5.7(12)	6.3(13)
posure	Neutrons (n/cm^2)	E<0.48ev E>2.9Mev	0	3.8(13)	1.7(14)	2.0(15)
Radiation Exposure	Neu	E<0.48ev	0	6.0(12)	4.1(12)	3.5(13)
Ra	Garma Dose	ergs/gm(C)	0	1.8(8)	8.8(8)	9.7(9)
nent.		Tester	Instron et 20.0 in./win	Instron et 20.0 fn./min	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment		Test	Air	Atr	Air	Air
Env	Irrad-	iation	1	Air	Air	Air
	Specimen	Jac. nu	107-11A 107-12A 107-13A 107-14A 107-15A	107-26A 107-27A 107-28A 107-29A 197-30A	107-36A 107-37A 107-38A 107-39A 107-40A	. 107-46A 107-47A 107-49A 107-50A

*Values given as: average value/standard deviation on an individual basis.

Table 8.4

094-002 Sealent (Lap Shear) Summary Table of Test Results

		······································			······································
AVZ.	Press. (corr)	. 092	760	760	760
Avg.	Temp.	75	75	75	12 5
%	Adh	2 avg	55 avg	75 avg	95 avg
Ultimate Tensile	Shear Strength a (psi)	484 385 478 491 486 465/46	384 393 431 204 235 329/55	228 267 153 267 157 214749	- 144 148 98 183 143/41
Time Until	Test (days)	ı	8	8	m
) E>8.1 Mev	0	4.6(12)	5.7(12)	3.4(13)
Exposure	Neutrons (n/cm ² ev E>2.9 Mev	0	1.4(14)	1.7(14)	1.1(15)
Radiation Exposure	Neu E<0.48 ev	O	6.1(12)	4.1(12)	5.5(13)
	Gamma Dose [ergs/gm(C)]	0	5.7(8)	8.8(8)	5.2(9)
ent	Tester	Instron at 0.05 in./min	Instron et 0.05 in./min	Instron et 0.05 in./min	Instron at 0.05 In./min
Environment	Test	Air	Air	Air	Afr
Envi	Irrad- iation	1	Air	Air	Afr
Snectman	Number	94A-11 94A-12 94A-13 94A-14 94A-15	94A-31 94A-32 94A-33 94A-35	94A-36 94A-37 94A-38 94A-39 94A-40	94A-41 94A-42 94A-43 94A-44 94A-45

*Values given as: average value/standard deviation on an individual basis.

Avg.	Press. (torr)	4.6(-6)	4.6(-6)	2.0(-6)
Avg.	Temp.	145	145	125
F.9	Adhesive Failure	5 e v8	80 avg	80 60
Ultimate Tensile	Shear Strength (psi)	414 330 358 387 315 361/43	260 273 269 300 343 289/36	155 138 116 168 131 141/22
Time Until	Test (days)	54	24	vo
Radiati) E>8.1 Mev	2.5(13)	6.7(13)	4
	Neutrons (n/cm ² ev E>2.9 Mev	6.6(13)	1.8(14)	6.8(14)
	Neu E<0.48 ev	7.2(12)	1.6(13)	7.8(13)
	Gamma Dose [ergs/gm(C)]	5.4(8)	1.2(9)	5.3(9)
	ster	Instron et 0.05 in./min	Instron et 0.05 in./min	Instron fr 0.05 fn./min
Environment	Test	Air	Air	Air
Envi	Irrad- iation	Vac	Vac	V & C
Specimen	Number	94A-61 94A-62 94A-63 94A-64	94A-66 94A-67 94A-68 94A-69 94A-70	944-71 944-72 944-74 944 75

BLANK PAGE

IX. ELECTRICAL INSULATION AND DIELECTRIC MATERIAL TEST METHODS AND RESULTS

Table 9.1 Outline of Electrical Insulation and Dielectric Materials Tests

Material	Type of Test	Irradiation Environment	Nominal Gamma Dose [ergs/gm(C)]	Materials Tester	ASTM Test Method	Test Date
Duroid 5600	Dynamic	Vac-Cryo	1(10)	Cryomechanical	D-638-61T, Hod.	T,E,S
]	Dynamic	LH ₂	5(9),1(10)	Cryotensile	D-638-61T, Mod.	T,E,S
Estane 5740X1	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
į	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
Epon 828/2	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
i	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
H-Film	Static	Air	3(10),1(11)	Instron	D-882-61T	H,T,E
Kel F-81	Dynamic	Vacuum	3(9)	Low-Force	D-790-63, Mod.	[F
Kynar 400	Scatic	Air	5(8),1(9),5(9),1(10),3(10),1	(11) Instron	D-638-61T, Mod.	T,E
!	Static	Vacuum	5(8),1(9),1(10)	Instron	D-638-61T	T,E
1	Dynamic	Vacuum	1(10)	High-Force	D-638-61T, Mod.	
1	Dynamic	LN ₂	5(9),1(10)	Cryotensile	D-638-61T, Mod.	T,E,S
1	Dynamic	LH ₂ Vac-Cryo	5(9),1(10)	Cryotensile Dielectric	D-638-61T, Mod. D-150-59T, Mod.	DC,DF
1	Dynamic Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10) 1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
i	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC DF
1	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
Lamicoid 6038E	Static	Air	1(11)	Instron	D-638-61T, Mod.	T,E,S
Damiteoto COSOB	Static	Vacuum	1(10)	Instron	D-638-61T, Mod.	T,E,S
	Dynamic	Vacuum	1(10)	High-Force	D-638-61T, Mod.	T,E,S
1	Dynamic	Vac-Cryo	1(10)	Cryomechanical	D-638-61T, Mod.	T,E,S
1	Dynamic	LH ₂	1(10),3(10)	Cryotensile	D-638-61T, Mod.	T,E,S
l	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
1	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
i	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
1	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
Lexan	Static	Air	5(8),1(9),1(10),3(10),1(11)	Instron	D-633-61T, Mod.	1,8
1	Static	Vacuum	5(8),1(9),5(9),1(10)	Instror	D-638-61T, Mod.	T,E
İ	Dynamic	Vacuum	5(8),5(9)	Low-Force	D-790-63, Mod.	F
1	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
1	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
1	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
i	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
Marlex 6001	static	Air	3(10),1(11)	Instron	D-638-61T	T,E
Marlex 6002	Static	Vacuum	1(10)	Instron	D-638-61T	1,E
i i	Dynamic	Vacuum	1(10)	High-Force	D-638-61T, Mod.	T,E,S
Mylar 100C	Static	Air	5(8),5(9),1(10),3(10),1(11)	Instron	D-882-61T	M,T,E,S
	Static	Vacuum	5(8)	Instron	D-882-61T	M,T,E
ł	Dynamic	Vacuum	[5(8),5(9)	Low-Force	D-882-61T, Mod.	M,T,E,S
Plaskon CTFE X2204	Static	Air	1(9),5(9)	Instron	D-638-61T	T,E
	Static	Vacuum	1(9),5(9),1(10)	Instron	D-638-61T	T,E
RTV 501	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric.	D-150-59T, Mod.	DC,DF
1	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
Silastic 950	Static	Air	5(8),1(9),5(9),1(10)	Instron	D-412-62T	M,T,E
I	Dynamic	LN ₂	5(9),1(10)	Cryotensile	D-638-61T, Mod.	M,T,E,S
	Dynamic	LH ₂	5(9),1(10)	Cryotensile	D-638-61T, Mod. D-412-62T	M,T,E M,T,E
Silastic 1410	Static	Air	5(8),1(9),5(9),1(10)	Instron	D-412-62T	M,T,E
1	Static	Vacuum	5(8),1(9),5(9)	Instron	D-638-61T, Mod.	M,T,E
{	Dynamic	LH ₂	5(9),1(10)	Cryotensile	D-638-61T, Mod.	M,T,E,S
	Dynamic	LN ₂	5(9),1(10)	Cryotensila Instron	D-575-46	LD
Sylgard 182 (DC 93-022		Air	5(8),1(9),1(10)	Instron	D-575-46	LD
	Static	Vacuum Vac-Cryo	1(10) 1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC DF
1	Dynamic Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
1	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC DF
i	Dynamic	Air	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R
Teliar	Static	Air	3(10),1(11)	Instron	D-882-61T	8,7,H
Teflon FEP	Static	Air	1(9),5(9),1(10)	Instron	D-882-61T	M,T,E
(2-mil)	Static	Vacuum	1(9),5(9),1(10)	Instron	D-882-61T	H,T,E
Teflon FEP	Static	Air	1(9),5(9),1(10)	Instron	D-882-61T	M,T,E
(19-mil)	Static	Vacuum	1(9),5(9),1(10)	Instron	D-882-61T	M,T,E
reflon FEP	Static	Air	1(9),5(9),1(10)	Instron	D-412-62T	H,T,E
(40-mil)	Static	Vacuum	1(9),5(9),1(10)	Instron	D-412-62T	M,T,E
reflon TFE-7	Static	Air	1(7),5(7),2(8),5(8)	Instron	D-882-61T	M,T,E
(2.5-mil)	Static	Vacuum	5(7),1(8),5(8),1(9)	Instron	บ-882-61T	M,T,E
Toflon TFE-7	Static	Air	1(7),5(7),2(8),5(8)	Instron	ν-882-61T	M,T,B
(5-mil)	Static	Vacuum	5(7),1(8),5(8),1(9)	Instron	D-882-61T	M,T,E
Teflon TFE-7	Static	Air	1(7),5(7),2(8),5(8)	Instron	D-882-61T	M,T,E
(10-mil)	Static	Vacuum	5(7),1(8),5(8),1(9)	Instron	D-882-61T	M,T,E
1	Dynamic	Vacuum	3(9)	Low-Force	D-882-61T, Mod.	M,T,E
Teflon TFE-7	Static	Air	1(7),5(7),2(8),5(8)	Instron	D-882-61T	M,T,E
(20-mil)	Static	Vacuum	5(7),1(8),5(8),1(9)	Instron	D-882-61T	H,T,E
Teflon TFE-7	Static	Air	1(7),5(7),2(8),5(8)	Instron	D-412-62T	M,T,B
(40-mil)	Static	Vacuum	5(7),1(8),5(8),1(9)	Instron	D-412-62T	N,T,E
Teflon TFE-7	Dynamic	LH ₂	1(9),5(9)	Cryotensile	D-638-61T, Mod.	T,E,S
(125-mil)	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-150-59T, Mod.	DC,DF
	Dynamic	Vac-Cryo	1(7),1(8),1(9),1(10)	Dielectric	D-257-61, Mod.	R

, 5

[#]T - Tensile Strength at Rupture

R - Biongation at Rupture

S - Stress-Strain Curve

DC - Dielectric Constant

Dissipation Factor

R - Resistivity (volume)
M - Modulus
F - Flexure
LD - Load Deflection

IX. ELECTRICAL INSULATION AND DIELECTRIC MATERIAL TEST METHODS AND RESULTS

This section of the report contains all of the data obtained during the current period on electrical insulations and dielectric materials. The Program Summary table at the front of this report lists all of the materials tested under this category during the first two annual and current biennial periods. The reports containing the data are referenced in the summary table.

Table 9.1 (facing page) lists the test conditions, environments, doses, and materials tested during the current period. As the table shows, the materials were subjected to a variety of radiation exposures and environments. Background information, test methods, and results for each material tested are discussed in each of the subsections that follow below. Data tabulation and summary stress-strain plots are presented at the end of this section.

Both mechanical and dielectric properties were determined for materials under control and irradiation conditions. The test equipment and procedures used are discussed in Sections II and III.

Various materials within the category of electrical insulations were subjected to mechanical property tests under the following conditions: 1. In air after air irradiation

- The the green of the course of the Million was a second

- 2. In air after vacuum irradiation
- 3. In vacuum after vacuum irradiation
- 4. In LN2 before and after irradiation in LN2
- 5. In LH₂ before and after irradiation in LH₂

Dielectric properties measured were dielectric constant, k_n (normalized), dissipation factor, and volume resistivity. The measurements were made in accordance with ASTM D-150-59T, "A-C Capacitance, Dielectric Constant, and Loss Characteristics of Electrical Insulating Materials," and ASTM D257-61, "Electrical Resistance of Insulating Materials."

Dielectric tests were conducted under the following four conditions:

- 1. At ambient temperature and pressure before irradiation.
- 2. At ambient temperature and pressure during and after irradiation.
- 3. At cryotemperature and vacuum before irradiation.
- 4. At cryotemperature and vacuum during and after irradiation.

Dielectric property values are given in Tables 9.2 through 9.9. The tabulated dielectric constants (k_n) are the true dielectric constants normalized to a value of 1.0 for initial room-

temperature atmospheric-pressure unirradiated conditions. Each value represents an average of two specimens. The test frequency was 1000 cps.

New specimens of the materials tested during the previous period in the dielectric tester in vacuum and cryotemperature were retested this year in the modified Dielectric Tester. Retesting of the cryotemperature specimens was necessary because of the excessively high temperatures encountered during the previous periods. The air test was not repeated during this test program, and only the one test condition was used with these materials.

9.1 Duroid 5600

The specimens for this test were cut from new sheets of Duroid 5600 material received during the current period. Tests included one control test and two radiation exposure tests in LH₂ (-423°F) and one control (-250°F) and one radiation exposure (-290°F) at cryotemperatures while in a vacuum. The radiation exposures and subsequent testing at cryotemperatures were accomplished with the Cryomechanical and Cryotensile Testers. These testers are described in Sections 2.5 and 2.8, respectively.

Mechanical property tests were performed in accordance with ASTM D-638-61T, Modified. The modification of this test standard

was concerned with an alteration in the test specimens necessary to adapt them for remote testing in the Cryotensile and Cryomechanical Testers. The test specimens were of the wide-gage type described in Section 4.1. Average stress-strain curves are shown in Figures 9.1 and 9.2, and tabulated test data are given in Table 9.10. The test specimens used in the current period showed no change in color after the various environmental exposures and all specimens broke in the gage length.

This material was previously tested in environments of air and LN₂ and reported in Reference 4. The LN₂ tensile-strength values of 7100 psi for controls and 5800 psi at 1.4 x 10^{10} ergs/gm(C) are higher than the air control value of 2700 psi and the air-irradiated value of 700 psi at 1.2 x 10^{10} ergs/gm(C). The LH₂ values of 9200 psi for the control and 7200 psi at 8.6 x 10^9 ergs/gm(C) are higher than the respective LN₂ values and represent a 22% decrease in tensile strength. The vacuum-LN₂ control values of 7600 psi and irradiated values of 7500 psi at 1.1 x 10^{10} ergs/gm(C) show the smallest radiation-effects change.

9.2 Estane 5740X1

The test specimens were taken from the same lot as used in the dielectric tests conducted in a previous period. The dielectric properties for Estane are presented in Table 9.2. The initial true dielectric constant measured at room temperature and pressure was 7.5.

Estane showed significant increases in k_n after irradiation in air but not during or after irradiation and testing in a vacuum-cryotemperature environment. No significant changes were observed in the dissipation factor or volume resistivity in postirradiation tests on specimens in a vacuum-cryotemperature environment. However, when measurements on these parameters were made during irradiation in a vacuum-cryotemperature environment, significant increases in dissipation factor were observed and the volume resistivity decreased by two orders of magnitude.

9.3 Epon 828/Z

The Epon specimens were prepared by casting a fresh stock of liquid Epon 828 resin and Z catalyst in polished circular molds. The dielectric property values for Epon are presented in Table 9.3. The initial true dielectric constant measured at room temperature and pressure was 4.5.

Epon showed significant increases in $k_{\rm n}$ after irradiation and testing in the air and in the vacuum-cryotemperature environments. Small increases in dissipation factor and decreases in volume resistivity were observed in postirradiation tests on specimens in a vacuum-cryotemperature environment. However, when measure-

ments of these parameters were made during irradiation in a vacuumcryotemperature environment, the dissipation factor was about an order of magnitude higher and the volume resistivity was about two orders of magnitude lower.

9.4 <u>H~Film</u>*

Herilm was subjected to two radiation exposures in air with postirradiation testing being accomplished in the Instron under standard laboratory conditions. These specimens, cut from the same roll as that used in previous tests, were 0.002 in. thick, 0.5 in. wide, and 6.0 in. long. Testing was conducted in accordance with ASTM De882-61T. The test data are presented in Table 9.11

The H-Film tensile strength at break began to show a change at $3.3 \times 10^{10} \, \mathrm{ergs/gm}(\mathrm{C})$, and there was noticeable damage at $1.7 \times 10^{11} \, \mathrm{ergs/gm}(\mathrm{C})$. The change was even more apparent in the values obtained for elongation. The initial control value in air of 109% decreased at the low dose to 66% and at the high dose to 28%. There was no apparent color change during these tests.

9.5 Kel F-81

Kel F-81 was subjected to only one radiation exposure in vacuum with postirradiation testing being conducted in vacuum in

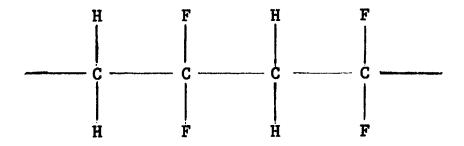
^{*}DuPont has recently changed the trade name to Kapton.

the Low-Force Tester. This material was tested for flexural properties in accordance with ASTM D-790-63, with the exception that the span of the flexural test positions on the Low-Force Tester was 2.0 in. instead of the ASTM-specified value of 1.5 in. The test specimens were 0.094 in. thick, 1.0 in. wide, and 4.0 in. long.

Table 9.12 presents the environmental conditions and results from control and postirradiation tests for this material. Figure 9.3 contains stress-strain plots for the data. Because of a malfunction of the tester, several data points were lost.

9.6 Kykar 400

9.6.1 Material Background Information


The fluorocarbon plastics have received wide acceptance as materials for aerospace service, but so far they are considered to have relatively low nuclear-radiation tolerance. This is based, mainly, on air irradiation of Kel F and Teflon.

Pennsalt Chemicals Corporation has developed a new halo-carbon, Kynar, that has seen service in the Centaur vehicle in many applications. Kynar is a totally new fluorine-containing thermoplastic resin. It is unlike any other resin currently available, being a crystalline, high-molecular-weight polymer of vinylidene fluoride, CH₂=CF₂. Kynar contains 59% fluorine with

a linear chain structure similar to ethylene, except that alternate carbon atoms have fluorine instead of hydrogen atoms attached.

Teflon and Kel F have no hydrogen.

There is a plausible explanation of the apparent improved radiation stability of the vinylidene fluoride over that of the other halocarbon structures. Below is a typical structural formula of Kynar:

The energy required to break the C-F side-chain bonds is greater than that needed to break the C-C main-chain bonds, while that required to break the C-H side bonds is less. The relatively weak C-H bond in the Kynar thus results in hydrogen splitting off from the carbon chain in a radiation field, resulting in cross-linking between adjacent molecules rather than chain cleavage. This should give a more radiation-stable configuration than the chloro-trifluoro- and tetrafluoro-ethylene compounds that have no hydrogen atoms in the molecule.

Kynar was tested in a previous period in vacuum in accordance with ASTM D-882 and in the form of straight-film tensile specimens 1 in. wide and 6 in. long. However, the test results were inconclusive because the control values of 8.7% elongation were very low when compared to the vendor-published value of 300%. It was assumed in the data analysis that this batch of Kynar was not representative of the material. The ultimate tensile strength increased slightly when irradiated in ambient air at 1.4×10^9 ergs/gm(C). The vacuum irradiation to 9.4×10^8 ergs/gm(C) produced essentially no change in ultimate tensile strength. The elongation changed very little under these same conditions, except that the control values were lower than normal, as already explained.

Information on the radiation resistance of Kyrar was reported by L. A. Decker (Ref. 5) in 1962. He tested several plastics for possible use as electrical insulators and spacers in an electrolytic dissolver (nitric acid-nitrate salt solution) used for processing irradiated nuclear fuels. The radiation program was carried out in the Materials Test Reactor (MTR) gamma facilities at the National Reactor Testing Station. Out of a group of 19 plastics carefully selected for corrosion and radiation stability, Kynar was one of the top four that were recommended.

Pennsalt Chemicals Corporation states in their sales brochure (Ref. 6) that the resistance of Kynar to gamma radiation is exceptional for a fluorocarbon. At a dose level exceeding 3×10^8 r (Co⁶⁰ source), Kynar showed no change in tensile strength or elongation, though a darkened color was observed.

Although its stiffness increases sharply at extremely low temperatures, Kynar retains a moderate degree of impact strength at -300°F (Izod unnotched value of 3.2 ft-lb/in.) and should be serviceable in many applications at cryotemperatures. The Kynar weight loss in vacuum is similar to that of Teflon, Kel-F, and Halon (Fulk and Horr, Ref. 7), which are all very low.

9.6.2 Test Methods and Results

Kynar 400 was one of the most extensively tested materials in the current period. Table 9.1 lists the test conditions, environments, and doses to which this material was subjected.

The material was tested for tensile properties and dielectric properties. The tensile specimens were of the wide-gage type described in Section 4.1 and were tested in accordance with ASTM D-638-61T. The dielectric specimens that are described in Section 4.2 were tested in accordance with ASTM D-150-59T and ASTM D-257-61. Stress-strain plots are given in Figures 9.4 through 9.7, and the environmental conditions and test results

of this material are presented in Tatle 9.13.

The dielectric property values for Kynar are presented in Table 9.4. The initial true dielectric constant measured at room temperature and pressure was 7.7.

No appreciable changes were observed in k_n except for temperature effects, but significant increases in dissipation factor were observed in postirradiation tests and during irradiation. Decreases of several orders of magnitude were observed in the volume resistivity in postirradiation tests and in tests during irradiation on specimens in an air environment. Decreases were also observed during the vacuum-cryotemperature tests, but they were of much less magnitude.

In the series of static air irradiations there was a definite decrease in the ultimate tensile strength and percent elongation when Kynar 400 reached a dose of 1.7 x 10^{11} ergs/gm(C). At doses up to and including 3.3 x 10^{10} ergs/gm(C) no significant change was noticed. The data agree roughly with data from other facilities.

The static vacuum-irradiation tensile data did not show a threshold of damage at the maximum dose of $8.5 \times 10^9 \, \text{ergs/gm}(\text{C})$. However, there was a slight decrease in the elongation at maximum states.

In the dynamic vacuum tests the Kynar control specimens pulled satisfactorily in the High-Force Tester, but after irradiation the four specimens failed within the long doubler section; the aluminum doublers had separated from the Kynar. Dynamic control values agreed with the Instron static air and static vacuum values for tensile strength and elongation. When pulled in air or vacuum, the Kynar "necked" to produce a uniform ultimate tensile strength. However, at break it showed a wide variation in both tensile strength and percent elongation, depending on the degree of necking. This discrepancy is shown in the curves of the vacuum-control dynamic test (Fig. 9.4) and the vacuum-irradiation dynamic test (Fig. 9.5).

l

In the cryotemperature environment the Kynar exhibited a completely different behavior from that in air and vacuum. The majority of the specimens did not break in the standard gage section of the dumbbell tensile specimens but in the section near the edge of the doublers, with some of the Kynar specimens breaking up in the doubler section. Since these breaks at cryotemperatures were brittle fractures, the ultimate tensile strength and tensile strength at break were virtually identical. The irradiation reduced the tensile strength and elongation of Kynar in progressive steps, with the stress-strain curves retaining

essentially the same slope. Curves are presented in Figures 9.6 and 9.7 for LN_2 and LH_2 control and irradiation tests. Note that the initial tensile strength and elongation changed drastically at these temperatures relative to values obtained in the air and vacuum tests.

In all irradiations the specimen color progressively changed from light cream to yellow, to tan, and then to dark brown. For the cryotemperature irradiations, aluminum doublers were replaced with Kynar doublers. The aluminum doublers bonded with Epon 934 separated from the Kynar when the specimens were submerged in LN2. The Kynar was not chemically treated for bonding, but both doublers and specimen ends were sanded until rough before applying the adhesive.

All the air and vacuum static specimens progressively changed break pattern and color at each successive radiation level. Controls were flexible specimens which were cream-colored and which necked extensively in the gage section during tensile tests. Air-irradiated specimens became progressively more brittle and darker in color with increasing dose. However, all breaks were "A" type within the gage section.

For the cryotemperature specimens, the color change was less intense than for the air-irradiated specimens. Break patterns

of specimens irradiated in LN_2 were uniform and consistent "C" breaks for both control and irradiated specimens. The LH_2 specimens had multiple breaks, being combinations of "A," "B," "C," and "D."

9.7 Lamicoid 6038E

The test conditions, environments, and doses to which this material was subjected are listed in Table 9.1 at the beginning of this section. It is noted in the table that ASTM D-638-61T was modified. This modification changed the tensile-test specimen configuration so that it was adaptable to the testers. The specimens tested in the Cryomechanical Tester were of the narrow-gage type described in Section 4.1. The specimens tested in the Instron, Cryotensile Tester, and High-Force Tester were also of the narrow-gage type, but some of the Instron-tested specimens did not have doublers. Table 9.15 presents the environmental conditions and test results of this material. The stress-strain plots are given in Figures 9.8 through 9.11.

The dielectric property values for Lamicoid are presented in Table 9.5. The initial true dielectric constant measured at room temperature and pressure was 6.6.

No significant changes were observed in k_n except for temperature effects. Significant increases in dissipation factor were observed only during irradiation. Very significant decreases in volume resistivity were observed when measurements were made during irradiation in air, but no significant changes in this property occurred during vacuum-cryotemperature-irradiation testing. Significant decreases were also observed for volume resistivity in postirradiation tests on specimens in air.

The Lamicoid static air irradiation at the high dose of $1.7 \times 10^{11} \, \mathrm{ergs/gm}(C)$ produced a very slight decrease in tensile strength and elongation. Even in the static vacuum irradiation of $9.7 \times 10^9 \, \mathrm{ergs/gm}(C)$, values were reduced very little. The curves in Figure 9.8 for the air and vacuum static irradiations clearly show that there was very little damage. The vacuum dynamic test in the High-Force Tester produced minimum changes, as shown in the curves of Figure 9.9.

All the specimens in the air and vacuum environmental tests had good "A" breaks in the narrow-gage section. However, some splitting and delaminating occurred at high doses for specimens in static air, static vacuum, and dynamic vacuum tests. The doublers either came off or partly separated in the High-Force

Tester, but the rivets held the doublers sufficiently to obtain good test data.

とてはない。 かっとり はちが繋びがった カランバー

A comparison of the curves for vacuum dynamic tests in Figure 9.9 with those for vacuum-LN₂ dynamic tests in Figure 9.10 show that the low temperature increased both the elongation and tensile strength at break for the Lamicoid 6038E control and irradiated specimens. For the controls, tensile strength increased over 100% (60,000 psi to 128,000 psi) and percent elongation increased from about 4 to 7%. Irradiation to 1.2 x 10¹⁰ ergs/gm(C) increased the percent elongation slightly but reduced the tensile strength to only 111,000 psi, which is in the same ratio as the tensile-strength reduction under the two vacuum dynamic test conditions. The breaks continued to be in the gage section, with very irregular separations of the fiberglass at the breaks. Every ply of fiberglass delaminated (separated from resin) within the entire gage section, with some delaminations extending almost to the doublers in certain specimens.

For the LH₂ dynamic tests on Lamicoid, a rough average of the stress-strain values shown in Figure 9.11 was used because of the wide variation in values above 4% elongation. This situation in data scatter is indicated by the dashed lines in Figure 9.11 for the irradiated LH₂ dynamic tests. Actual data points

and specimen failures are listed in Table 9.14. Dashed sections of curves should be interpreted as trend lines rather than reliable design information because of the specimen behavior in the extremely cold (~423°F) temperature. A visual analysis of specimens revealed several causes for the wide scatter of tensile data, other than the delaminations, and accounted for the data loss of certain specimens. Of the four control specimens, two separated in the gage section and two within the doublers; for the low dose of 1 x 10¹⁰ ergs/gm(C), there were three pulled out in the doublers with only one specimen breaking in the gage section; yet, for the high dose of 3 x 10¹⁰ ergs/gm(C), there were three "A" gage section breaks and only one failure in the doubler area.

The break in the resin-fiberglass bond was fan-shaped and composed of the individual fiberglass plies. Where the adhesive bond failed on a few specimens, the loose doublers were held during the tensile pull by the rivets.

No change in color could be detected by visual inspection of the specimens tested in any of the environments. After irradiation and warmup of the specimens, there did not seem to be any permanent damage to the melamine laminate. It is inferred here that the major effect was the cryotemperature environment and that radiation damage was not severe. Since the melamine-

glass combination had good strength in LH_2 and other environments up to at least a tensile strength of 8000 psi, its qualification as a dielectric laminate can be based strictly on its electrical properties.

9.8 Lexan

9.8.1 Material Background Information

It was recommended that a polycarbonate be included in the current testing period, starting with the vacuum and dielectric tests. The factors that influenced its selection are radiation stability, polymer structure, engines and properties, and applications.

The polycarbonate plastics have been irradiated by several investigators. The radiation resistance of Lexan (General Electric polycarbonate regin) has been investigated by Harrington (Ref. 8), Giberson (Ref. 9), Barker (Ref. 10), Golden (Ref. 11), and Decker (Ref. 5). Fritz (Ref. 12), at the Fort Worth Division, reported on Merlon (Mobay Company polycarbonate regin). Decker investigated Lexan as a part of the same program already reported on Kynar (Sec. 9.6). Lexan was not as reliable under some conditions as Kynar, but it still had good radiation stability. A radiation dose of 1 x 10¹⁰ ergs/gm(C) produced a brittleness and darkening of the Lexan specimens, although they did retain some

transparency. A dose of 1×10^{11} ergs/gm(C) caused swelling, cracking, severe embrittlement, and general disintegration. This is to be expected for plastics at this high dose, however.

The Merlon (Fritz, Ref. 12) was exposed to radiation from the GTR at room temperature in air to five levels of radiation, the highest being $1.2 \times 10^{10} \, \mathrm{ergs/gm(C)}$. The material showed an excellent postirradiation retention of various mechanical properties. No significant changes in ultimate tensile strength or shore-D hardness were observed up to an absorbed dose of $1.5 \times 10^9 \, \mathrm{ergs/gm(C)}$. The yield-point stress, however, was found to decrease stead. With dose. At about $1 \times 10^{10} \, \mathrm{ergs/gm(C)}$ no definite yield point was apparent and the mode of fracture had changed from ductile to brittle. All irradiated samples turned progressively darker brown in color with increasing doses. No significant changes in the dc volume and surface resistivity were noted.

Fritz reviewed the irradiation studies referenced above and concluded that further study was needed. Some of these irradiations were in vacuum and some used thin films but none were in a cryotemperature environment. Furthermore, there seems to be disagreement between the investigators as to the relative in-

fluence of oxidation reactions on the radiation stability of the polycarbonates.

the confidence of the figure stepped on the contract of

According to previous tests, polycarbonates such as Lexan should have a critical threshold of between 1×10^9 and 1×10^{10} ergs/gm(C). This apparently depends on such variables as environment, property tested, and polymer structure.

The polycarbonate structure is a point in favor of its selection. This resin is prepared from bisphenol A and has the phenyl groups in the main chain, which structure as a rule increases the radiation stability of organic polymers.

Another influential factor in the selection of the polycarbonate is its unusual combination of physical, mechanical, and electrical properties. This plastic is an excellent electrical insulator. It may be processed in most of the common forms by methods generally employed in plastics processing. Also, the polycarbonate thermoplastics have rapidly expanded in structural-component applications, including new fiberglass laminates. A better knowledge is needed of its radiation stability in the environments being investigated under this program.

9.8.2 Test Methods and Results

Lexan was subjected to the environments and tests shown in Table 9.1. The modification to ASTM D-638-61T changed the

standard tensile specimen. Although Lexan was not tested for tensile properties on any of the dynamic testers, the tensile specimens were fabricated in the same configuration as the specimens that were. The specimens were of the wide-gage type described in Section 4.1.

Lexan was also tested for flexural properties in the LowForce Tester in accordance with ASTM D-790-63, with the exception
that the span of the flexural test positions on the Low-Force
Tester is 2.0 in., and according to the standard it should be
1.5 in. for specimens with a nominal thickness of 0.095 in. The
test specimens were 0.103 in. thick, 1.0 in. wide, and 4.0 in.
long. The test results and radiation environments are presented
in Tables 9.16 and 9.17.

The dielectric property values for Lexan are presented in Table 9.6. The initial true dielectric constant measured at room temperature and pressure was 3.0.

No significant changes were observed in k_n except for temperature effects. Significant increases in dissipation factor were observed both during and after irradiation in a vacuum-cryotemperature environment. Increases in dissipation factor observed from measurements made during irradiation in air were very significant, but postirradiation tes:s indicated insignificant changes.

Very significant decreases in volume resistivity were observed from measurements made both during and after irradiation in an air environment. Insignificant changes in this property (except for temperature effects) were observed from measurements made during and after irradiation tests on specimens in a vacuum-cryotemperature environment.

In the static air tests, the Lexan polycarbonate was exposed at room temperature to five levels of radiation, the highest being $1.7 \times 10^{11} \, \mathrm{ergs/gm(C)}$. As the radiation level increased, the ductility decreased, color darkened, and polyling characteristics changed from extensive necking and stretching to clean brittle breaks. The damage threshold for specimens irradiated in air was between 1×10^9 and $1 \times 10^{10} \, \mathrm{ergs/gm(C)}$.

The irradiation in vacuum, with testing in air, produced essentially the same tensile-strength values as those in the air irradiations, but ultimate elongation was higher in all the vacuum series of irradiations. Table 9.16 shows values of elongation that were 20 to 40% higher for the same dose levels.

The vacuum dynamic test results are presented in Figure 9,12 as stress-strain curves for the flexure specimens. Table 9.17 presents all the data, including the tangent modulus of elasticity and outer-fiber stress at 5% strain. Information was incom-

clusive at these dose levels. Some flexural data were not available, since the travel did not reach 5% strain in the Low-Force Tester. At the dose levels selected for vacuum static irradiations with subsequent testing in air, the flexural specimens did not reach a damage threshold.

9.9 Marlex 6001

This material was subjected to two radiation exposures in air. Postirradiation testing was conducted on the Instron in accordance with ASTM D-638-61T. Table 9.18 is a tabulation of environmental conditions and test results.

Marlex 6001 is a high-density polyethylene of the ASTM D1248-63T classification Type III, Class A, Grade 3. The irradiations decreased the elongation at maximum stress from 11.4% for controls to 8.8% at 3.3 x 10¹⁰ ergs/gm(C) and 7.6% at 1.7 x 10¹¹ ergs/gm(C). The same specimens had a reversal of tensile strength at maximum stress, starting at approximately 4500 psi for controls, increasing to 6100 psi at the low dose, and decreasing to 4100 psi at the high dose. Visual analysis of the specimens after testing showed a change from extreme stretching and necking for controls to clean breaks after irradiation.

Irradiation changed the color of the material from white to a light tan at the low dose and to a dark tan at the high dose.

Since elongation and tensile strength vary with crosshead pull speed for polyethylenes, the control and irradiated specimens need to be compared at similar pull speeds when feasible.

9.10 Marlex 6002

This material was subjected to two radiation exposures in vacuum. Subsequent testing of the specimens for one exposure was accomplished in the Inctron at standard laboratory conditions. These test specimens were fabricated and tested in accordance with ASTM D-638-61T. Postirradiation testing of the specimens subjected to the other exposure was conducted on the High-Force Tester in vacuum. These test specimens were of the wide-gage type described in Section 4.1. Testing was accomplished in accordance with ASTM D-638-61T at a crosshead speed of 0.05 in./min. Stress-strain plots are given in Figure 9.13, and the environmental conditions and test results are presented in Table 9.19.

The 5000-psi tensile strength and 85% elongation at 2 in./min (vendor table) changed to 5157 psi and 54% after irradiation in vacuum to a dose level of $8.5 \times 10^9 \, \mathrm{ergs/gm}(C)$. These values imply that vacuum irradiation varied the average molecular chain length without an appreciable change in degree of crystallinity. These specimens necked slightly in the gage

section before breaking. Color changed from the characteristic polyethylene milky white to a light tan.

The Marlex 6002 tensile specimens in the High-Force Tester were exposed to $9.2 \times 10^9 \, \mathrm{ergs/gm}(C)$ and then tested dynamically in vacuum. Tensile strength and elongation at maximum stress decreased from the control values; the tensile stress decreased from 3800 to 3100 psi and the elongation decreased from 8.5% to 6.0%.

Ultimate values could not be compared since the tensile control specimens did not break before the pull assembly reached the maximum travel. These trends are indicated by the dashed curves in Figure 9.13.

9.11 Mylar 100C

Test specimens for these tests were cut from the same roll of Mylar 100C film as was used in previous tests. This material was subjected to the test conditions, environments, and doses shown in Table 9.1. The test specimens were thin-film specimens 0.001 in. thick, 1.0 in. wide and 6 in. long. The specimens were tested in accordance with ASTM D-882-61T, with the exception of the specimens tested in the Low-Force Tester. These specimens were tested at a speed of 0.5 in./min, while those in the Instron were tested at the ASTM standard crosshead speed of 20 in./min.

The reasons for this necessary compromise in testing speed are given in the discussion of testing for O-rings in Section VII.

The second secon

The air-irradiation test data in Table 9.20 show a detectable increase in mechanical properties at a low dose of 5.7×10^8 ergs/gm(C), but degradation started before 9.7×10^9 ergs/gm(C) and continued until at 3.3×10^{19} ergs/gm(C) and 1.6×10^{11} ergs/gm(C) the film was too brittle to test. The vacuum irradiation with testing in air (Table 9.20) produced only small changes in the mechanical properties at doses of 8.5×10^9 ergs/gm(C).

Average stress-strain curves are presented for the seven test conditions of the Mylar 100C in Figures 9.14 and 9.15. Each data point represents an average of three or more specimens. For the static air control test, nine specimens were tested in the Instron to establish an average control value, and a smooth average curve was drawn. The ultimate elongation varied from 25% to 114%, and the tensile strength ranged from 17,000 psi to 28,000 psi. This wide variation in test results was also observed during testing of the irradiated specimens in both the Instron and the Low-Force Tester. Nine specimens were tested in the Instron for each condition and the average test values plotted. The dynamic Low-Force Tester has the capability of testing only three films at each condition.

The dashed lines in Figure 9.15 represent trends indicated by the widely varying data obtained from specimens in the Low-Force Tester. The reason for this diversity of elongation values lies in the test method and the nature of the material. Necking and creeping are characteristic of Mylar film and, while being pulled in the Low-Force Tester, this creeping transmitted itself through the jaws toward the ends of the specimen. Consequently, the elongation values are not considered representative of the material. The ultimate tensile strength values, however, are considered reliable. These values are in Table 9.20; all specimens broke in the gage length, except as noted.

9.12 Plaskon CTFE X2204

As shown in Table 9.1 this material was subjected to two radiation exposures in air and three radiation exposures in vacuum. Postirradiation testing was conducted on the Instron. The specimens were fabricated and tested in accordance with ASTM D-638-61T.

The Plaskon CTFE X2204 reached a threshold of damage in the static air irradiations between 8.8×10^8 and 5.2×10^9 ergs/gm(C). In the static vacuum irradiations the threshold was between 7.0×10^8 and 5.3×10^9 ergs/gm(C). The vacuum environment during irradiation improves the radiation resistance of the material specimens slightly, but not sufficiently as shown in Table 9.21.

9.13 RTV-501

The state of the s

The dielectric property values for RTV-501 are presented in Table 9.7. The initial true dielectric constant measured at room temperature and pressure was 7.5.

RTV-501 showed no significant changes in k_m except for temperature effects. Significant increases in dissipation factor were observed during and after irradiation and testing in a vacuum-cryotemperature environment. Volume resistivity measurements made during irradiation and testing in a vacuum-cryotemperature environment showed very significant decreases.

9.14 Silastic 950

9.14.1 Material Background Information

There has been considerable irradiation information generated on the Dow Corning Silastic 7-170 (a methyl silicone rubber). In reviewing materials for the current cryotemperature irradiations, this item seemed, at first, to be a logical choice. However, Dow Corning is phasing this formulation out of production. It contains a mercury compound as a low-compression-set additive that prevents it from being handled easily by fabricators. In spite of its radiation qualifications, there is, therefore, no reason for continued testing of this particular rubber compound.

Of the four high-phenyl, high-strength, extreme-low-temperature silicone-rubber formulations considered (Silastic 651, 675, 950, and 960) Silastic 950 seems to have the best balance of properties as presented in the selection guide; how-ever, cryotemperature behavior is not available for these silicones.

9.14.2 Test Methods and Results

This material was fabricated in two forms of test specimens for tensile-property testing. The specimens that were subjected to the air-irradiation exposures, shown in Table 9.1, were Die C specimens as described by ASTM D-412-62T. Postirradiation testing of these specimens was done on the Instron in accordance with this standard.

Specimens that were subjected to a radiation-cryotemperature environment and then tested at cryotemperatures were of the wide-gage type described in Section 4.1. Testing of these specimens was in accordance with ASTM D-638-61T. The stress-strain curves are plotted in Figure 9.16 and the test results are presented in Table 9.22.

The irradiation of the Silastic 950 silicone elastomer Die C specimens to $5.2 \times 10^9 \, \mathrm{ergs/gm}(C)$ in air produced an appreciable decrease in tensile strength and elongation (Table

4.22). At the highest dose of 9.7 x 10⁹ ergs/gm(C), the elongation decreased further; however, tensile strength increased slightly. These results established the threshold at 1 x 10⁹ ergs/gm(C) for static air irradiations. A progressive stiffening of the elastomer occurred at successively higher radiation levels, yet the color remained gray.

Since the Silastic 950 brittle point is at -178°F, the specimens remained rigid and brittle during the dynamic cryotemperature irradiations. Tensile strength and percent elongation for cryotemperature control specimens are entirely different from air control values; comparison of control and irradiated specimens in the same environment is required to indicate the degree of radiation damage. The variation in the tensile strength, elongation, and break pattern of individual specimens is such that relative effects of temperature and radiation are not discernible or readily analyzed. When available information is surveyed, the damage in LN2 seems to be less severe than at comparable doses in air.

The specimens did not break in the gage section but broke near the doublers at one or both ends, with some separation of doublers from the rubber. The Silastic showed many small stress cracks within the doubler sections. Irradiated LN₂ specimens

turned tan and were slightly stiffer than the controls. These changes indicate some deterioration. The curves in Figure 9.16 indicate relative trends and changes for the LN₂ tests.

The tensile specimens of Silastic 950 did not pull satisfactorily in the Cryotensile Tester when submerged in LH₂, either
as controls or after irradiation. The extremely low temperature
was too severe an environment for these silicone rubbers. However,
visual inspection of all specimens after irradiation in LH₂ indicated no change in color. The LH₂ specimen breaks were similar
to those in LN₂ in which the gage section remained unbroken; the
specimens broke near the doublers.

9.15 <u>Silastic 1410</u>

9.15.1 Material Background Information

This material is a high-grade, high-strength, heat-shrink, silicone rubber that is being used as insulation on umbilical cable, spacecraft wiring, harnesses, etc. It passed the screening test with practically no change in tensile strength after a 2.6 x 10⁹ ergs/gm(C) gamma irradiation in ambient air. Elongation decreased 58.8%, but its application does not require very high elongation characteristics when installed for service involving tensile stress.

9.15.2 Test Methods and Results

and the second s

with the exception of being subjected to two vacuumradiation exposures, this material was subjected to the same
test conditions and procedures as Silastic 950. The test specimens of this material that were subjected to the vacuum-radiation
exposures were fabricated and tested in the same manner as the
static air specimens. The test results are presented in Table
9.23; the stress-strain curves are plotted in Figure 9.17.

The maximum radiation level of $9.7 \times 10^9 \, \mathrm{ergs/gm(C)}$ decreased the Silastic 1410 air static tensile strength to only 43 psi below the control value of 1335 psi. On the other hand, for the same series of specimens, the 503% elongation of the controls changed to 299% at $8.8 \times 10^8 \, \mathrm{ergs/gm(C)}$, to $52\% \, \mathrm{at} \, 5.2 \times 10^9 \, \mathrm{ergs/gm(C)}$, and to $26.4\% \, \mathrm{at} \, 9.7 \times 10^9 \, \mathrm{ergs/gm(C)}$.

The changes in the break and pull characteristics of the specimens followed the elongation changes, namely, (1) the controls stretched on pulling and, after breaking, remained extended and flexible; (2) at 5.7×10^8 ergs/gm(C) the specimens stretched the same as the controls; (3) at 8.8×10^8 ergs/gm(C) the specimens stretched but not as much as at the low dose; (4) at 5.2×10^9 ergs/gm(C) the specimens had clean breaks with no stretching and little suiffness; and (5) at 9.7×10^9 ergs/gm(C)

the specimens had clean breaks and were much stiffer. These specimens had some color change at the two high doses, going from the gray to a yellow cast. These observations and test data established an elongation dose threshold in air of $1 \times 10^9 \, \text{ergs/gm}(C)$.

Vacuum-radiation specimens followed the same general pattern of behavior as the air specimens described above. Silicones are not sensitive to air or ozone and, as expected, the vacuum environment did not materially affect the radiation resistance.

The cryotemperature-radiation results followed the same general behavior as Silastic 950. In LN₂ the tensile strength decreased at each dose level, with considerable variation in the specimens. The LH₂ test did not give sufficient data to consider the radiation effects. Temperature was a major environmental factor in the behavior of Silastic. Stress-strain curves for the trends in LN₂ are presented in Figure 9.17.

9.16 Sylgard 182 (DC 93-022)

9.16.1 Material Background Information

This material is a clear, pourable, low-temperature-curing, electronic potting and encapsulating resin. It is used to provide extreme-environment protection to electronic packages. For example, when a need arose recently to protect an electrical harness and plug assembly from moisture during vacuum irradiations,

the Sylgard 182 was used with excellent results (the Sylgard was in the radiation field but outside the vacuum chamber). It was irradiated in ambient air in this application. Good response was also noted in radiation screening tests.

9.16.2 Test Methods and Results

The state of the s

This material was subjected to the radiation exposures
listed in Table 9.1. Load-deflection tests in accordance with
ASTM D-575-46 were performed on compression buttons before and
after the exposures in air and vacuum. Dielectric specimens
were tested in the Dielectric Tester in air and the triple radiation-vacuum-cryotemperature environment. The environmental
conditions and compression test results are presented in Table
9.24. The test specimens for both compression buttons and dielectric tests were cut from sheets of the Sylgard that had been
poured and cured by the manufacturer according to test specifications.

The dielectric property values for Sylgard are presented in Table 9.8. The initial true dielectric constant, k_n , measured at room temperature and pressure was 2.9. Significant decreases in k_n were observed after irradiation and testing in a vacuum-cryotemperature environment. However, when measurements were made during irradiation, very significant increases in dissipation

factor were observed. Significant decreases in volume resistivity were observed during and after irradiation and testing in air but not during or after the vacuum-cryotemperature-irradiation tests.

In the static air irradiations the strength at 25% compression increased as the radiation level increased. Starting with controls at 143 psi, the values increased to 841 psi at _ne high level of radiation. The flexible, transparent, encapsulating material remained clear at low doses; however, it yellowed and stiffened with increasing radiation exposure. With sufficient radiation it eventually becomes a hard, glassy solid, but this state was not reached in these tests. Data from air irradiations indicated a threshold dose of between 1 x 10⁹ and 5 x 10⁹ ergs/gm(C).

After the vacuum irradiation, the Instron compression test in air showed that the specimens followed the general behavior of silicones. Vacuum does not materially improve the radiation resistance of the Sylgard: after irradiation in vacuum to $8.7 \times 10^9 \, \text{ergs/gm}(\text{C})$ the average compression strength measured 904 psi, a small increase over the value of 841 psi measured after irradiation in air to $9.7 \times 10^9 \, \text{ergs/gm}(\text{C})$.

9.17 Tedlar

The first of the transfer of the state of th

Test specimens of Tedlar film were cut from the same roll. of tape as used in previous tests. This material was subjected to only two radiation exposures in air, and subsequent testing was accomplished in the Instron in accordance with ASTM D-862-61T. The 2-mil test specimens were thin-film specimens that were 0.002 in. thick, 1.0 in. wide, and 6.0 in. long. The results of the postirradiation testing are presented in Table 9.25.

It was predicted that the high doses would severely damage the material. The test results confirm this and show that the dose range in which damage occurs has been bracketed.

9.18 Teflon FEP

This material was subjected to the radiation exposures shown in Table 9.1 for the three thicknesses listed. The 2-mil and 10-mil films that were 1.0 in. wide and 6.0 in. long were tested on the Instron in accordance with ASTM D-882-61T. The 40-mil sheet was Die-cut into "A" specimens and tested on the Instron in accordance with ASTM D-412-62T. The summary tables containing environmental results are presented in Tables 9.26 through 9.28.

A comparison is given in Figure 9.18 of the ultimate elongation values for Teflon FEP and Teflon TFE (Section 9.19)

for static-vacuum and static-air irradiation tests. This figure shows that the thickness of the material affects the ultimate values in air and vacuum by a factor of 2. In vacuum, 10-mil-thick Teflon FEP film retains the elongation property for a factor-of-10-higher radiation exposure than does Teflon TFE. In air, the Teflon FEP is a factor of 16 more resistant than Teflon TFE. It can be seen from the data that Teflon FEP retains the elongation property to a factor-of-2-higher dose in vacuum than in air.

9.19 Teflon TFE-7

Several thicknesses of Teflon TFE were irradiated in vacuum and air and tested in air to obtain more information on the relationship between thickness and damage. As pointed out in Reference 3, the material showed a trend in the damage-thickness relationship. The various nominal radiation exposures are listed in Table 9.1.

Tensile properties were measured for six different thicknesses, and the dielectric properties were measured for one
thickness. The 2.5-mil, 5-mil, 10-mil, and 20-mil specimens
were straight-film specimens 1.0 in. wide and 6.0 in. long. They
were tested on the Instron in accordance with ASTM D-882-61T.
One set of the 10-mil specimens was also subjected to radiation

in vacuum and tested in the Low-Force Tester in vacuum. They were also tested in accordance with ASTM D-882-61T, with the exception that the testing speed was 0.50 in./min instead of 20.0 in./min as specified in the standard. The 40-mil test specimens were Die "A" specimens fabricated and tested in accordance with ASTM D-412-62T. The summary tabulations containing the environmental conditions are presented in Tables 9.29 through 9.34.

The 125-mil-thick specimens that were tested in LH₂ were fabricated in accordance with ASTM D-638-61T, modified as shown in Figure 4.2. This thickness of material was also tested in the Dielectric Tester at vacuum-cryotemperature conditions, but was not the same stock as the tensile specimens.

The dielectric property values for Teflon TFE are presented in Table 9.9. The initial true dielectric constant measured at room temperature and pressure was 2.0. A somewhat unusual response for \mathbf{k}_n was observed for this material. Irradiation and postirradiation tests in air indicated an initial decrease and then an increase. A very significant increase in \mathbf{k}_n was observed when measurements were made during irradiation in a vacuum-cryotemperature environment. Postirradiation tests in a vacuum-cryotemperature environment indicated an initial increase and then a decrease. Teflon TFE showed no significant changes in \mathbf{k}_n when

tested under a normal temperature and pressure environment after irradiation in a vacuum-cryctemperature environment.

Significant increases in dissipation factor were observed in postirradiation measurements and measurements made during irradiation in a vacuum-cryotemperature environment. Significant decreases in volume resistivity were observed from measurements made during and after irradiation in a vacuum-cryotemperature environment.

Inspection of the Tefl.n TFE specimens irradiated in LH₂ showed no color change and all specimens had good "A" breaks. The specimens showed a brittle-type break, which accounts for some variation in data values. The average curves in Figure 9.19 that are drawn as solid lines show that the data are consistent and the values are considered to be reliable. The dashed portion of the curves represent trends in the data and are not numerical averages. This was used in cases where the ultimate values varied widely, and they are considered to be an area where additional testing of a larger number of specimens will produce more reliable information.

Figure 9.18 is a summary plot of the elongation values for the film-type specimens irradiated in vacuum and air. Results for both Teflon TFE and Teflon FEP are presented to show the effects of material thickness in the two environmental conditions. These results show that the material thickness is an important parameter in radiation damage evaluations. It influences the results more for the vacuum data than for the air data for Teflon TFE. These curves show that both the thickness and environment affect the ultimate elongation values by a factor of 2 to 3. These results also show that this trend is not predictable.

9.20 General Discussion of Results

P. Tarket Mater Starte Start

In general, the dielectric-constant values showed no significant changes during testing in a vacuum-cryotemperature environment after irradiation. Significant changes were observed from measurements made during irradiation in both vacuum-cryotemperature and air environments. Significant changes were usually observed after irradiation and testing in an air environment. Significant increases in dissipation factor and decreases in volume resistivity were observed both during and after irradiation and testing in vacuum-cryotemperature and air environments. Kynar showed a marked degradation in loss characteristics when tested during and after irradiation in an air environment. However, the degradation was much less when tested during and after irradiation in a vacuum-cryotemperature environment.

ment. Similar effects were observed for Lexan.

The tabulated results (Tables 9.2 through 9.9) show that in some cases the dielectric properties changed progressively with increasing radiation dose and then showed a reversal when measured after the final irradiation. It is probable that an annealing effect and recovery occurred during a temperature rise of the specimens caused by gamma heating, since the specimens were exposed to a maximum dose rate for a relatively long period.

A summary discussion that compares the tensile test results of the electrical insulation and dielectric materials as a group is not feasible because the materials cannot be placed in a specific category such as adhesives or laminates. Furthermore, the materials have not been tested under the same environmental conditions. Because of these reasons, a separate discussion of results is presented for each material in Sections 9.1 through 9.19. The comments in this summary section concern materials that have characteristics in common.

The 1- to 2-mil DuPont plastic dielectric films - Mylar, Tedlar, and Kapton (H-Film) - are radiation resistant to 1×10^9 ergs/gm(C) in air (Ref. 3). After 3×10^{10} ergs/gm(C) in air, there is a marked change in the relative resistance of these films to the effects of radiation. Kapton is the lost stable,

undergoing very little change in tensile strength or percent elongation; Tedlar decreases about 40% in tensile strength; while Mylar is too brittle to test in the Instron. The H-Film (Kapton) is qualified for high doses, while Mylar and Tedlar will perform excellently below $1 \times 10^9 \, \text{ergs/gm}(\text{C})$.

ha signed have the control of the signed of the second of the second of the second of the second of the second

A well-defined reduction in ultimate tensile strength after static irradiation occurred for Kynar $\varepsilon t = 1.7 \times 10^{11} \text{ ergs/gm}(C)$ for Marlex at 3.3 x 10^{10} ergs/gm(C), and for Lexan at 9.7 x 10^9 ergs/gm(C). The corresponding percent elongation was greatly decreased at these radiation levels; however, the percent elongation at rupture did not follow the same trend. Kynar had a percent elongation change at 8.8 x 108 ergs/gm(C) and Lexan underwent such a change at $9.7 \times 10^9 \text{ ergs/gm}(C)$. Therefore, in a radiation environment the allowable changes in critical properties in a specific application determine the recommended threshold. It may be concluded from these tests that Kynar, Lexan, and Marlex have a critical air dose of 1 x 109 ergs/gm(C) and that beyond this dose a careful analysis is required. Vacuum irradiations did not show any major change in radiation resistance for these three thermoplastics. When Kynar was irradiated in LN2 and LH2, the radiation effects were masked by the cryogenic effects. The rigid nature of these materials

in the cryogen and the multiple breaks of the tensile specimens indicate that these materials are really not suitable for extreme low-temperature service unless the application is in a confined, static installation.

Silicone elastomers (Silastic 1410 and 950) after ambientaix irradiations began changing tensile properties at the low dose of 6 x 10⁸ ergs/gm(C). A dose of 5 x 10⁹ ergs/gm(C) was required to produce a marked reduction in percent elongation at rupture and a significant increase in tensile strength at 25% elongation. These results indicate that the silicone elastomers have slightly less radiation stability than the three thermoplastics, based on the relative changes in the tensile properties. But, here again, allowable radiation levels will be determined by the actual application and environmental conditions. The cryotemperature irradiations of the silicones were inconclusive because the cryogenic effects on the silicones overshadowed any radiation effects. However, postirradiation visual inspection after warm-up could detect no hardening, color change, or stiffening of the tensile specimens.

The Lamicoid 6038E should be an excellent dielectric laminate in the nuclear space environmental applications. It was not changed by irradiation in air or vacuum up to the maximum

available radiation dose of $1.7 \times 10^{11} \, \mathrm{ergs/gm}(C)$. Although the low temperature of the crycgens changed the initial control values, the nuclear radiation at cryotemperatures seems to have little effect up to $1.2 \times 10^{10} \, \mathrm{ergs/gm}(C)$. The bonding properties of the laminate were altered, but it should be serviceable as a dielectric laminate when tensile strength and flexibility are not critical.

he that the same with the second of the

The data show that the Duroid 5600 was not significantly affected by the space-simulation tests imposed in this program. This plastic had good radiation stability at cryotemperatures, both when submerged and when cooled to ~250°F in vacuum. Tensile strength at the cryotemperature is much higher after irradiation than is normal for ambient-air temperature controls. Duroid is recommended for further consideration in nuclear environmental applications. The reinforcement of the tetrafluoroethylene plastic increased the radiation resistance.

Since the variations in Teflon are discussed in detail in Sections 9.18 and 9.19, only a summary of the findings will be presented here. The Teflon thickness is an important parameter in radiation-damage evaluations; FEP (fluorinated ethylene propylene) is more radiation resistant than TFE (tetrafluoroethylene) in air; vacuum and temperature are very important in

the overall behavior of Teflon; and, furthermore, manufacturing procedures and processes seem to be a major factor in the results obtained in various tests conducted on the TFE and the FEP.

Table q.2

Dielectric Property Values for Estane 5740X1

Gamma Dose [ergs/gm(C)]	Pressure (torr)	Temperature (OF)	*u	Dissipation Factor	Volume Resistivity
	VA	VacinimaCrvotemberature	ature Control	Tests	
0	092	+ 75	1.0000	0600°	1(12)
0	2(6)	-170	.5317	0900°	1(17)
0	2(~6)	-290	.4802	.0052	>5(17)
o	3(=6)	-310	8694°	.0031	>5(17)
		Air-Irradi	Air-Irradiation Tests		
c	760	82	1.00	***	****
	0 9 7	7 () (444	44444
✓ °	00/	16	00°	£ .	6
4.0(8)	09/	200	T .08	**	****
\smile	09/	136	1,15	***	***
1.1(10)	760	167	1.22	***	***
	Vacu	Vacuum-Cryotemperature-Irradiation	ure-Irradiati	on Tests	
0	760	+ 75	1 . 0000	8600°	5(12)
0	1(~6)	-318	.4703	°0024	>5(17)
•	$\overline{}$	9318	°4780	°0050	
,	\smile	-319	.5137	.023	
7.0(8)	5(~7)	~272	.4751	020°	
ŝ	\smile	-254	.5321**	**00°°	
Ŝ	J	-319	.4762	0022	
δ,	760	+ 75	.9513	° 0092	
*K. is the no	normalized diele	dielectric constant	(see text)	 ***Not reported	ed
ues obt	durin	إسهو	-		g e
	0				

Out to the the state of the second of the se

ARE SOME SECTION OF SE

rate。

Table 9.3

Dielectric Property Values for Epon 828/Z

Gamma Dose [ergs/gm(C)]	Pressure (torr)	Temperature (^O F)	* u	Dissipation Factor	Volume Resistivity (ohm-cm)
	Ve	Vacuum-Cryotemperature	ature Control	Tests	
000	760 2(-6) 3(-6)	+ 75 -167 -320	1.0000 .8822 .8063	.0091 .0050 .0020	4(14) >5(17) >5(17)
		Air-Irradiation	ation Tests		
0 9.5(7) 7.0(8) 6.4(9) 1.8(10)	760 760 760 760 760	78 91 165 119 130	1.00 .97 .98 1.10 1.20	* * * * *	* * * * * * * * * * * * * *
	Vacuum	um-Cryotemperature-Irradiation	ure-Irradiati	on Tests	
0 7.1(6) 6.7(7) 7.6(8)	760 5(-7) 6(-7) 6(-7) 4(-7)	+ 75 -314 -310 -318 -290	1,0000 ,8177 ,8421 ,8834 ,9181	.0066 .0021 .010 .017	5(14) 7(16) 6(15) 5(15) 5(15)
	3(-7) 1(-7) 760	-298 -318 + 75	.9232** .8480 1.0409	.025** .0027 .0089	3(14)** 5(16) 1(13)
Values obtained during irradiation	the normalized diele obtained during irr	dielectric constant (see girradiation at maximum	(see text). Lmum dose	*Not reported	rted Ired

Table 9.4

Dielectric Property Values for Kynar 400

Gamma Dose [ergs/gm(C)]	Pressure (torr)	Temperature (^O F)	*u	Dissipation Factor	Volume Resistivity (ohm=cm)
	Va	Vacuum-Cryotemperature	ature Control	l Tests	
00	\sim	+ 76 -128	1.0000	.0041 .0265	6(14) 8(15)
0 0	2(-6) 2(-6)	_219 _312	.6195 .5885	,0056 ,0018	1(16) 1(16) 1(16)
		Air-Irradiation	ation Tests		
0	09/	55	1.0000	.0038	8(14)
2.3(7)	092	61	1.0070	.0049	5(14)
2.1(8)	760	77	1.0115	.0049	4(13)
2.1(9)	760 760	101	1.041	9600°	2(12)
2.1(10)	760	65	,9994	9500°	< 1(10)
	Vacuum-		Cryotemperature - Irradiation	lon Tests	
0	760	9/ +	1.0000	.0042	4(15)
0	2(6)	-314	.5756	0014	9
(9)6°7	1(~6)	-275	.5764	。0022	വ
4.7(7)	1(~6)	-296	.5819	8700°	>3(15)
4.9(8)	1(~9)	-309	.5877	T900°	6
1.7(9)	2(~9)	-250	°,6154**	.0251**	1(14)
(6)9°9	2(~6)	-315	.5845	° 0075	√ 6 (15)
(6)9°9	160	56	.9880	.0100	5(13)
*K is the no	normalized dielo	octato constant	600 4000		

***Values could not be obtained during irradiation because of the low resistance of the *Kn is the normalized dielectric constant (see text).
**Values obtained during irradiation at maximum dose rate.

samples.

Table 9.5

Dielectric Property Values for Lamicoid 6038E

	3.				
Gamma Dose [ergs/gm(C)]	Pressure (torr)	Temperature (^O F)	, п	Dissipation Factor	Volume Resistivity (ohm-cm)
	Vac	Vacuum-Cryotemperature	ature Control	Tests	
00	~	+ 75	1.0000	.0020	1(14)
00	3(-6) 3(-6)	- 85 -195	.9710 .9093	.0043	5(15) 6(15)
0	, ~	-302	.8561	0014	>6(15)
		Air-Irradiation	ation Tests		
0	092	55	1.0000	.0026	6(14)
<u>.</u> ع	09/	09	1.005	.0032	5(14)
2.1(8)	09/	78	1.007	.0021	2(14)
°1(9	09/	152	1.025	0028	2(14)
1,4(10)	09/	126	1.028**	**8700°	4(10)**
11.	760	63	.9992	.0032	2(12)
	Vacuum		-Cryotemperature-Irradiation	on Tests	
0		+ 75	0000°1	.0019	_
	V	-305	.8632	.0013	_
و	J'	-272	.8641	.0013	_
4.7(7)	1(-6)	-273	.8783	.0037	3(15)
ٽ ر	~ ⁰	291	. 8838	1.000	•
` ;	~	-268	**0 2 06.	.0161**	-
9,	-	-316	.8661	.0018	~
9.	760	+ 57	0066.	.0017	_
*K is the no.			(200 4000)		

*Kn is the normalized dielectric constant (see text).
**Values obtained during irradiation at maximum dose rate.

Table 9.6

Dielectric Property Values for Lexan

Gamma Dose ergs/gm(C)	Pressure (torr)	Temperature (^O F)	*u	Dissipation Factor	Volume Resistivity (ohm-cm)
	Va	Vacuum-Cryotemperature	ature Control	l Tests	
00		+ 75	1.0000	,0016 0100	8(14)
00	2(~6) 2(~6)	-174	.9915 .9762	.0024 .0003	5(16) 6(16) >5(17)
		Air-Irradiation	ation Tests		
0	092	55	1.0000	.0015	2(15)
2.3(7)	760	92	1.0025	.0035	9(14)
) (1,	09/	130	.9952	.0014	2(14) 4(13)
1.4(10)	760	125	1.024**	.093**	6(10)**
	2			.0013	2(17)
	Vacuum	um-Cryotemperat	-Cryotemperature-Irradiation	ion Tests	
0	09/	+ 75	1.0000	°0015	_
0	Ų	\$318	.9577	<.0002	
ى ئ	~ ⟨	-271	.9560	.0014	
4°/(/) 4°9(8)	(°°)]	2	9619	. 0022	6(15)
1		-303	.9739**	**************************************	~ ~
ô		-320	.9612	.0019	
9°	760	+ 56	.9802	۵014	

Table 9.7

Dielectric Property Values for RTV-501

Gamma Dose [ergs/gm(C)]	Pressure (torr)	Temperature (OF)	ж ж п	Dissipation Factor	Volume Resistivity (ohm-cm)
	Vacuu	uum-Cryotemperature	ture Control	Tests	
000	760 1(-5) 3(-6)	+ 75 -150 -317	1.0000 .9568 .9386	.0059 .0022 .0008	1(14) >5(17) >5(17)
		Air-Irradiation	tion Tests		
0 %	760 760	82 90	1.00	* * *	* * * * * * * * * * * * * * * * * * *
4.0(8)	760	157	emi 0 emi e emi e	***	***
	09/	157	1.22	* * *	K **
	Vacuum-C	m-Cryotemperatu	ryotemperature-Irradiation	on Tests	
0 0	092	+ 75	1.000	. 0024	1(14)
7.1(6)	(-) (-)	-295 -318	. 8942 . 9004	.0019	>5(17)
6.7(7)	6(-7)	-310	.9261	.014	$\frac{2(15)}{2(15)}$
ー、	4(~7)	-273	.9721	.016	15)
9.5(9)	3(-7)	-266	. 9804 ************************************	.029**	6(12)**
9.5(9)	760	+ 75	.9852	.0038	2(14)
*K _n is the no	*Kn is the normalized dielectric cor **Values obtained during irradiation	tric constant (see	(see text). imum dose	***Not reported	I

Table 9.8

Dielectric Property Values for Sylgard 182 (DC 93-022)

2(14) 2(14) 1(14) 3(13) 7(10)** 4(12) 7(15) 2(15) 2(15) 1(15) Resistivity (ohm-cm) >3(15) >3(15) >3(15) 8(15) 9(15) 2(14) 7(14) Volume >8(15) Dissipation .0084 .0090 .0575** Factor .0015 .0012 .0045 .0035 .0017 .0030 .0012 0015 0018 .0017 0003 .0027 0017 0011 Vacuum-Cryotemperature-Irradiation Tests Vacuum-Cryotemperature Control Tests Air-Irradiation Tests 1.0034** 1,0481** 1.0653 1.0000 .9938 .9863 .9905 1.0000 1.0948 1.0363 1.0030 1,0115 1.0000 .9727 1.0286 1,0165 9984 Temperatura - 55 -180 -310 67 61 98 68 -313 -285 (OF) -285 -298 -309 57 61 -317 Pressure (torr) 3(-6) 2(-6) 2(-6) 1(~6) 1(~6) 2(~6) 2(~6) 2(--6) (9-) 760 760 760 760 760 09/ 09/ Gamma Dose [ergs/gm(C)] 2.1(9) 1.4(10) 2.1(10)2.1(8)4.9(8) 1.7(9)6.6(9)(9)6°7 4.7(7) (6.6(9)0000 0

**Välues obtained during irradiation at maximum dose rate. is the normalized dielectric constant (see text). * Z

Table 9.9

Dielectric Property Values for Teflon TFE-7

Occume-Cryotemperature Control Tests Occume-Cryotemperature Control Tests Occume-Cryotemperature Control Tests Occume-Cryotemperature Control Tests Occume-Cryotemperature-Irradiation Tests Occume-Cryotemperature-Irradiation Tests Occume-Cryotemperature-Irradiation Tests Occume-Cryotemperature-Irradiation Tests Occume-Cryotemperature-Irradiation Tests Occume-Cryotemperature-Irradiation Tests Occume-Cryotemperature-Irradiation Coccupe Occupe O	Gamma Dose [ergs/gm(C)]	Pressure (torr)	Temperature (^O F)	* u	Dissipation Factor	Volume Resistivity (ohm-cm)
760 + 75 1.000 0.002 0.5(17) 2(-6) -154 1.001 0.002 0.5(17) 2(-6) -260 1.006 0.002 0.5(17) 2(-6) -260 1.008 0.0002 0.5(17) 3(-7) 760 18 1.01 0.76 0.7		Va	cuum-Cryotemper			
9(-6)	0		+ 75	1.000	<.0002	>5(17)
4(-6) -180 1.006 > 5(17) 2(-6) -260 1.008 < 0.0002 > 5(17) 2(-6) -260 1.008 < 0.0002 > 5(17) 3(-7) 2.0002 > 5(17) 5(-7) -209 1.01 **** ***** 760 100 0.76 **** ***** 760 118 1.01 **** ***** 760 125 1.00 < 0.002 > 5(17) 5(-7) -299 1.015 < 0.002 > 5(17) 6(-7) -296 1.057 < 0.002 > 5(17) 6(-7) -296 1.057 < 0.002 > 5(17) 6(-7) -296 1.057 < 0.002 > 5(17) 6(-7) -296 1.057 < 0.003 4(15) 6(-7) -296 1.019 < 0.026 > 5(17) 6(-7) -296 1.019 < 0.0026 > 5(17) 6(-7) -295 1.235** 0.43** 1(14) 760 + 75 0.9977 0.0045 > 5(17) 100 100 0.0045 > 5(17) 101 1019 0.0045 > 5(17) 102 103 0.9977 0.0045 104 104 104 104 104 104 104 104 105 105 105 105 105 105 106	0	\mathbf{C}	-154	1.001	<.0002	>5(17)
2(-6)	0	J'	-180	1.006	<.0002	>5(17)
Air-Irradiation Tests 760 80 1.00 *** 760 100 0.76 *** 760 118 1.01 *** 760 118 1.01 *** 760 125 1.00 *** Table 1.01 *** The normalized dielectric constant (see text). Air-Irradiation at maximum dose Air-Irradiation Tests **** **** Air-Irradiation Tests **** **** **** Air-Irradiation Tests **** **** Air-Irradiation Tests **** **** **** Air-Irradiation Tests **** **** Air-Irradiation Tests **** **** **** Air-Irradiation Tests **** **** **** ***** Air-Irradiation Tests **** **** ***** **** ***** Air-Irradiation at maximum dose ***** **** Air-Irradiation at maximum dose ***** Air-Irradiation at maximum dose **** **** Air-Irradiation at maximum dose **** Air-Irradiation at maximum dose **** Air-Irradiation at maximum dose	00	しし	-260 -305	1.008 1.016	<.0002 <.0002	>5(17) >5(17)
760 80 1.00 *** 760 100 0.76 *** 760 100 0.76 *** 760 118 1.01 *** 760 125 1.06 *** 760 125 1.00 *** 760 + 75 1.000 <.0002 >5(17) 5(-7)			Air-Irradi			
760 100 0.76 **** **** ***** 760 165 0.70 *** **** 760 118 1.01 *** ***** 760 125 1.06 *** ***** 760 + 75 1.000 <.0002 >5(17) 5(-7) -299 1.015 <.0002 >5(17) 6(-7) -296 1.067 .023 4(15) 6(-7) -296 1.067 .036 5(15) 6(-7) -296 1.092 .043** 1(14) 5(-7) -255 1.235** .043** 1(14) 5(-7) -255 1.235** .043** 1(14) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 >5(17) 1,019 1.019 .0026 .0026 >5(17) 1,019 1.019 .0026 .0026 .0026 .0026 .0026 1,010 1.010 .0026	0	760	80	1.00	***	***
760 165 0.70 **** 760 118 1.01 **** Nacuum-Cryotemperature-Irradiation Tests 760 + 75 1.000 <.0002 >5(17) 5(-7) -299 1.015 <.0002	•	09/	100	0.76	***	***
) 760 118 1.01 *** **** (accum=Cryotemperature=Irradiation Tests 760 + 75 1.000 <.0002 >5(17) 5(-7) -299 1.015 (.002 >5(17) 6(-7) -294 1.147 (.036 5(15) 6(-7) -294 1.147 (.035 5(15) 7(-7) -255 1.235** (.043** 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 >5(17) 7(14) -301 1.019 (.0026 -5(17) 7(15)	Ō,	260	165	0.70	***	****
Vacuum=Cryotemperature=Irradiation Tests	.4(09/	118	1.01	***	****
Vacuum-Cryotemperature-Irradiation Tests 760	•	09/	125	1.06	***	****
760 + 75 1.000 <.0002		Vacu	um-Cryotemperat	ure.Irradiati		
5(-7)	0	760	+ 75	1.000	<.0002	_
(6(-7) -296 1.067 .023 4(15) (6(-7) -294 1.147 .036 5(15) (6(-7) -230 1.092 .035 5(15) (1,019 .043** 1(14) (25(-7) -255 1.235** .043** 1(14) (27) -301 1.019 .0026 >5(17) (20) + 75 0.9977 ****Not reported the normalized dielectric constant (see text). *****Not measured obtained during irradiation at maximum dose *****Not measured		2(-1)	-299	1.015	<.0002	~
0	ij	('-)9	-296	1.067	.023	~
5(-7)	\ \ !		-230	1.092	. 035	
the normalized dielectric constant (see text). 3(-7) -301 1.019 .0026 >5(-7)	.5(_255	1.235**	**670.	(14)
the normalized dielectric constant (see text). ****Not reported obtained during irradiation at maximum dose *****Not measured	.5(3(~7)	-301	1.019	.0026	· 🖳
the normalized dielectric constant (see text). ***Not obtained during irradiation at maximum dose ****Not	.5(760	+ 75	0.9977	° 0045	
obtained during irradiation at maximum dose ****Not	the		ic	1		ted
	obt	durîn	ation at			red

rate.

Table 9.10

Duroid 5600 Electrical Insulation Summary Table of Test Results

	Avg.	Press. (torr)	760	760	760	. 2 02	.1307
		Temp. (F)	-423	-423	-423	-250	-290
Remorning 8	Elongation	(%)	1.10 1.27 1.14 1.09 1.14/.08	1.24 .99 1.11 1.04	.73 .92 1.00 1.22 .91/.24	1.34 1.45 1.41 1.41 -	1.68 1.28 1.57 1.57
At Run	Tensile	Strength (psi)	9074 10,491 8709 8466 9185/983	9194 9105 8476 8546 8830/349	6848 7294 6982 7818	5758 7662 6438 6922 11,309 7618/2386	6747 7037 8517 6183 9163 7529/1281
Time	Until	(days)	•	4 .	1	1	•
		E>8.1 Mev	0	ı	ı	o	•
xpositre	Neutrons (n/cm ²)	5>2.9 Mev	0	7.9(14)	1.5(15)	· o	1.5(15)
Radiation Exposite	Neutron	E<0.48 ev	0	1	•	0	5.9(13)
	Garma Dose	[ergs/gm(C)]	0	4.4(9)	8.6(9)	•	1.1(10)
pt		Tester	crr at 0.05 in./min	crr at 0.05 in./min	cTT at 0.05 in./min	CMT at 0.05 in./min	CMT at 0.05 in./mt
Environment		Test	LH2	LH2	LH2	Vac- LN2	Vac- LN ₂
Env	rrad-	iation	1	LH ₂	LH ₂	ı	Vac- LN ₂
	Specimen Number		21-111 21-112 21-113 21-114	21-121 21-122 21-123 21-124	21-126 21-127 21-128 21-129	21-136 21-137 21-138 21-139 21-140	21-141 21-142 21-143 21-144 21-145
					·		

*Values given as: average value/standard deviation on an individual basis.

Table 9.11

H-Film (2 mil) Electrical Insulation Summary Table of Test Results

AVg.	Press. (torr)	760	09/	
AVE.	Teno (F)	75	170	200
Elonga-	tion at Rupture	130 65 112 142 152 114 81 96 96	95 90 78 33 70 70 81 41 42 66/21	32 33 22 23 30 28 28 28 28 28 28 44
(psi)	G Rupeure	23,500 20,000 22,600 24,500 25,800 20,000 22,200 21,800 1,953	21,800 22,000 19,000 20,700 22,700 19,500 19,500 22,500 20,400 11,137	17,800 18,400 19,100 17,600 18,500 18,900 18,990 18,536/ 561
trength	িও 130% Elong.	0 22,000 0 1,800 0 22,000 0 22,800 0 22,800 0 - 0 - 0 - 7 22,2207 430	1111111111 000 00 0 K	1 1 1 1 1 1 1 1
Tensile S	.ଜ 50% ଅନ୍ଦେଶ୍ୱ	19,100 17,200 17,100 19,500 19,600 19,600 19,500 19,500 18,767/ 875	19,200 20,000 20,000 19,500 20,200 19,700 19,767/	
Ten	ල 25% Elong.	17,800 18,300 17,700 18,000 18,500 17,300 18,200 18,200	18,200 18,500 18,700 18,700 18,700 19,000 19,500 19,500 19,500 18,600 18,600	17,500 18,000 18,500 - 18,300 17,700 - 18,000/ 430
Tine	Uncil Test (days)	•	7	21
	m ²) 5>8.1Mev	0	•	
Expusure	Neutrons (n/cm	0	5.4(15)	2.5(16)
Radiation Ex	E<0.43	0	•	
Ка	Gamma Dose [ergs/gm(C)]	0	3.3(10)	1.7(11)
ter		Instron at 20.0 in./win	Instron at 20.0 in./win	Instron at 20.0 in./win
Environment	Test	Air	Air	Air
En	Irrad- iation	•	Air	¥ .
	Specimen Number		•	

*Values given as: average value/standard deviation on an individual basis.

Table 9.12

Kel-F-81 Electrical Insulation (Flexure)
Summary Table of Test Results

	Specimen Number						
En	Irrad- iation		Vacuum Vac				
Environment	Test	Vac	Vac				
ment	Tester	Low Force Tester at 0.05	Low Force Tester at C.05 in./min				
Re	Gamma Dose [ergs/gm(C)]	O vi a	2.1(9)				
Radiation Ex		0	4.5(13)				
ion Exposure	Neutrons (n/cm ²) E<0.48ev E>2.9Mev E>	0	3.9(14)				
	m ²) E>8.1Mev	0	1.4(14)			····	
	Until Test (days)	1	t				* In ** * * * * * * * * * * * * * * * *
Outer Fiber	Stress at 3% Strain ^a (psi)	4,500 4,400 4,450/89	5,970				
Outer Fiber	Stress at 5% Strain ^a (psi)	6,840 6,180 6,510/585	7,800				
Tangent	Modulus of Elasticity (psi.)	169,425	180,050				
	Avg. Temp. (F)	75	100				
	Avg. Press. (torr)	1.0(-3)	1.4(-6)	1800 hair - 1800 hair - 1800 hair - 1800 hair - 1800 hair - 1800 hair - 1800 hair - 1800 hair - 1800 hair - 1800	····		

Values given as: average value/standard deviation on an individual basis.

Table 9.13

Kyner: 400 Electrical Insulation Summary Table of Test Results

1	•					
AVG.	Press.	760	760	760	760	760
Avg.	Temp.	75	75	75	100	140
Rupcure &	Elorga- cion (%)	110 35 160 57 91/6 7	60 110 25 90 100 77/37	40 20 30 40 40	9 15 12 11 10 11.4/2.6	14 8 5 7 7 1 1
Ac Rup	Tensile Strength (psi)	- 4738 4562 4579 4479 4619/111	4661 4594 4573 4583 4637 4610/38	6979 7016 6781 6725 6725	7594 7449 7703 7665 7747	7698 7665 7456 7684 6454 7391/535
a ce a	Elonga- cion (%)	- 10 10 11 11 10.6/0.9	10 10 10 10 10 10/0	10 10 10 10 10/0	8 11 11 10 9 9	14 8 5 7 1 7.0/5.6
Ultimate &	Tensile Strength (psi)	7419 7169 7310 7375 7318/121	7570 7426 7555 7458 7458 7560	7617 - 7668 7586 7588 7615/40	7751 7725 7819 7816 7826 7787/43	7698 7665 7456 7684 6454 6454
Time	Until Test (days)	•	8	8	m	m
	1 ²) E>8.1Mev	0	4.6(12)	5.7(12)	3.4(13)	6.3(13)
Exposure	Neutrons (n/cm ²) ev E>2.9%ev E>	0	1.4(14)	1.7(14)	1.1(15)	2.0(15)
ation	Neur E<0.48ev	0	6.1(12)	4.1(12)	5.5(13)	3.5(13)
Rac	Garma Dose [ergs/gm(C)]	0	5.8(8)	8.8(8)	5.2(9)	9.7(9)
.ent	Tester [Instron at 2.0 in./min	Instron at 2.0 in./win	Instron fr 2.0 in./min	Instron at 2.0 In./min	Inscron ht 2.0 In./min
Environment	Test	Air	Air	Air	Atr	Ä
vn3	Irrad- iation	•	Air	H	Air	Air
	Specimen Number	96-11 92-12 96-13 96-14 96-15	96-31 9/-32 96-33 96-34	96-36 96-37 96-39 96-40	74 77 77 77 77 77 77 77 77 77 77 77 77 7	96-46 96-47 96-49 96-50

AValues given as: average value/standard deviation on an individual basis.

· 1985年 · 1985年 - 1986年 - 198

AVE.	Press. (torr)	760	760	760	(9-)9-	4.6(-6)
Avg.	·	140	170	200	120 4	120 4
Rupture	Elonga- tion (%)	13 11 9 10 11 10.8/1.7	10 12 13 10 8	5 3 4 4 5 4.2/0.9	5 40 45 75 38 41/30	30 25 25 25 25 29/6
At Rup	Tensile StrenCth (psi)	7757 7813 8024 7869 7943 7881/115	7564 7275 7269 7570 7525 741/129	5480 3122 4890 5521 6076	4346 4497 4533 4398 4517 4458/80	4545 5021 4980 5705 4536 4536
ite	Elonga- tion (7)	13 11 9 10 11 10.8/1.7	10 12 11 9 8	0.9	3 18 18 21 18 16/8	15 14 14 17 15/1
Ultimate	Tensile Strengt: (psi)	757 7813 8024 7869 7943	7564 7275 7410 7631 7525 7481/153	lo	7075 3298 7276 7416 7298	6739 7407 7470 7386 7298
Time	Until Test (days)	m	17	17	21	51
	n ²) E>8.1Mev	6.3(13)	•	•	2.9(12)	6.2(13)
osure	Nautrons (n/cm ²) ev E>2.9Mev E>	2.0(15)	5.4(15)	2.5(16)	7.5(13)	1.7(14)
Radiation Exposure	Neut E<0.48ev	3.5(13)	ı	ŧ	9.0(12)	1.7(13)
Rac	Garma Dose [ergs/gm(C)]	9.7(9)	3.3(10)	1.7(11)	5.0(8)	7.6(8)
ent	Tester [Instron at 2.0 in./min	Instron at 2.0 in./min	Instron at 2.0 in./min	Instron at 2.0 in./min	Instron at 2.0 in./min
Environment	Test	Air	Afr	Air	Air	Air
n3	Irrad- iation Test	Air	Air	Air	Vac	Vac
	Specimen Number	96-464 96-47A 96-48A 96-49A 96-50A	96-1 96-3 96-5 96-5	96-6 96-7 96-8 96-9 96-10	96-61 96-62 96-64 96-65 96-65	96-67 96-67 96-69 96-70

Avg.	Press.	(torr)	2.0(-6)	1.0(-3)	2.0(-6)	760	. 260
Avg.	Temp.	(F)	140	75	140	-320	-320
Rupture	Elonga-	tion (%)	20 26 15 15 20 20	70.8 27.7 26.6 39.2 41.1/21.5	6.75 - 6.16 5.96 5.22/0.47	1.95 1.52 1.74 1.78 75/0.21	1.38 0.90 1.30 2.18 .44/0.62
At Rup	Tensile	Strength (psi)	7968 7547 8082 8443 8103 8029/385	9.23 4763 8.80 753 9.33 3671 8.90 2755 9.07/0.262986/1948	4008 - 4162 4131 4131	22,938 19,167 21,396 19,049 20,6397	15,837 9,160 13,666 20,923 14,897/ 5713
ate	[2]	(%)	14 13 14 12 13/1	9.23 8.80 9.33 8.90 9.07/0.26	1 1 1 1	1 1 1	
Ultimate	Tensile	Strength (psi)	8267 8316 8206 8463 8400 8330/110	7391 6340 6944 6227 6726/565			
Time	Until	(days)	^	1	1	•	t
	12)	E>8.1Mev	•	o	ı	0	1
osure	Neutrons (n/cm ²	E>2.9Mev	1.7(15)	0	1.5(15)	0	6.9(14)
Radiation Exposure	Neut	E<0.48ev	1.0(14)	0	1.1(14)	0	•
Ra	Gamma Dose	ergs/gm(C)]	8.5(9)	0	9.2(9)	0	3.9(9)
nent		Tester	Instron at 2.0 in./win	High Force Tester at 0.05 in./min	High Force Tester at 0.05	crr at 0.05 in./min	CII mt 0.05 in./min
Environment		Test	Air	Vac	Vac	ra S	FR 2
En	Irrad-	iation	Vac	•	Vac	•	LN ₂
	Specimen	Number	96-76 96-77 96-78 96-79 96-80	96-81 96-82 96-83 96-84	96-86 96-87 96-88 96-89	96-91 96-92 96-94	96-96 96-97 96-98 96-99

Avg.	Press.	(torr)	760	760	760	
Avg.	Temp.	<u>.</u>	-320	423	-423	423
Rupture	124	tion (%)	1.65 1.65 1.25 1.08 1.41 0.28	1.77 2.46 2.33 1.98 2.14/ 0.34	1.65 2.06 1.88 1.63 1.81/ 0.21	1.46 1.53 1.19 1.43/ 0.17
At Ru	Tensile	Strength (psi)	16,726 14,956 11,633 8,763 13,020/	17,594 22,864 21,169 19,175 20,2017 2559	14,744 19,482 16,135 14,791 16,288/ 2278	14,012 15,570 13,180 10,714 13,351 2358
ate	(2)	tion (%)				
Ultimate	Tensile	Strength (psi)			1111	1 1 1 1
Time	Until Test	(days)	0	•	0	0
	,2)	E>8.1Mev	1	o	•	•
osure	Neutrons (n/cm^2)	E. 2.9Mev	1.4(15)	0	7.1(14)	1.4(15)
Radiation Exposure	Neut	E<0.48ev	•	•	ı	•
Rad	Gamma Dose	ergs/gm(C)]	7.8(9)	0	4.0(9)	7.9(9)
nent		Tester	CII at 0.05 in./min	CTT at 0.05 in./win	cff at 0.05 in./min	cII mt 0.05 in./min
Environment		Test	LIE 2	197-	EH 2	<u> I</u>
Env	Irrad-	iation	13 Z	1	Ë	THE THE THE THE THE THE THE THE THE THE
	Specimen	Number	96-101 96-102 96-103 96-104	96-111 96-112 96-113 95-114	%-121 %-122 %-123 %-124	96-126 96-127 96-128 96-129

Table 9.14

Results of a Visual Inspection of Kynar Specimens

Test Conditions (Irrad-Test)	Gamma Dose [ergs/gm(C)]	Tensile Break Type	Specimen Color	Specimen Condition At Break
Air-Air Air-Air Air-Air Air-Air Air-Air Air-Air	0 5.8(8) 8.8(8) 5.2(9) 9.7(9) 3.3(10) 1.7(11)	444444	Cream Light yellow Light tan Light brown Dark brown Very dark brown Extremely dark brown	Flexible, significant necking Flexible, slight necking Flexible, slight pinch Flexible, clean breaks Stiff, brittle breaks Rigid, very brittle Extremely brittle
Vac-Air	5.0(8)	A A	Light yellow	Flexible, significant necking
Vac-Air	7.6(8)		Yellow	Flexible, slight necking
Vac-Air	8.5(9)		Dark brown	Stiff, brittle breaks
Vac-Vac	9.2(9)	A	Cream	Necked, then broke
Vac-Vac		D	Dark brown	Doublers pulled off
LN2~ LN2 LN2~ LN2 LN2~ LN2	3.9(9) 7.8(9)	ပပပ	Cream Brown Brown	Clean break Clean break Clean break
LH2~ LH2	0	C	Cream	Clean break
LH2~ LH2	4.0(9)	B/C/D	Brown	Clean break
LH2~ LH2	7.9(9)	A/C/C	Brown	Clean break

Lamicoid 6038E Electrical Insulation Summary Table of Test Results

	Avg.	(torr)	760	760	2.0(-6)	1.0(-3)	2.0(-6)
	Avg.	(F)	7.5	200	140	75	140
Rupture	Elongation	(%)	2.24 2.32 2.22 1.95 2.18/0.18	2.21 2.00 1.97 2.15 2.14 2.09/0.10	1.75 1.56 1.70 1.54 1.60 1.6370.09	3.58 4.29 3.80 3.84 3.88/0.34	4.42 4.66 4.00 4.42 4.38/0.32
At Rup	Tensile	Strength (pst)	54,290 59,610 57,300 59,770 57,743/2760	54,330 53,540 54,440 54,310 55,340 54,392/774	50,451 45,249 53,141 49,178 53,827 50,269/3689	51,440 55,732 55,945 54,548 54,416/2188	61,018 63,010 56,469 59,062 59,890/3177
Tine	Uncil	(duys)	1	17	ω	t	•
		E>8.1 Mev	0		6.3(13)	0	6.3(13)
Exposure	ns (n/cm ²)	E>2.9 Mev	0	2.5(16)	2.0(15)	0	2.0(15)
Radiation 1	Neutrons	E<0.48 ev	0	t	3.5(13)	0	3.5(13)
	Garma Dose	[ergs/gm(C)]	0	1.7(11)	9.7(9)	0	9.7(9)
nt		Tester	Instron at 0.05 in,/min	Instron at 0.05 in./min	Instron at 0.05 in./min	High- Force Tester at 0.05 in./min	High- Force Tester at 0.05 in./min
Environment		Test	Afr	Air	Afr	Vac	Vac
Env	Irrad-	iation	•	Afr	Vac	•	Vac
	Specimen Number		40-11 40-12 40-13 40-14	40-6 40-7 40-8 40-9 40-10	40-76 40-77 40-78 40-79 40-80	. 40-81 40-82 40-83 40-84	40-86 40-87 40-88 40-89

 $^{\text{a}}_{\text{b}}$ Values given as: average value/standard deviation on an individual basis. Value not included in average or standard deviation.

•	Env	Environment	nt		Radiation Exposure	Exposure		Time	At Rup	Rupture		
Specimen Number	Irrad-			Garma Dose	Neutrons	$ns (n/cm^2)$		Until	Tensile	Elongation	Avg.	Avg.
	iation	Test	Tester	[ergs/gm(C)]	E<0.48 ev	E>2.9 Mev	E>8.1 Mev	(days)	Strength (psi)	(%)	remp. (F)	(torr)
40-111 40-112 40-13 40-13	ı	LH ₂	cTT at 0.05 in./min	0	0		0	1	117,725 91,527 b 109,098		-423	760
40-126 40-127 40-128 40-129	LH2	. EB2	CII at 0.05 in./min	6.2(9)	•	1.1(15)	ı	1	113,412/7,648 124,909 102,833 115,807 117,850/13,569	8.19 5.26 9.13 7.53/2.29	-423	760
46-131 40-132 40-133 40-134	Ħ	LH2	CTT at 0.05 in./min	2.3(10)	1	4.1(15)	•	1	106,538 115,892 102,789 114,179 109,850/6363	6.02 9.22 6.04 8.38 7.42/1.55	-423	760
40-136 40-137 40-138 40-139 40-140	ı	Vac- LN2	CMT at 0.05 in./win	c	0	0	0	1	115,953 126,336 119,974 139,504 133,926 127,138/8396	6.49 7.20 6.66 7.93 7.47 7.15/.76	-250	.202
40-141 40-142 40-143 40-144 40-145	Vac- LN ₂	Vac-	CMT art 0.05 in./win	1.2(10)	8.4(13)	9.4(14)	ı	ı	122,397 92,299 118,689 104,106 107,408 108,980/12,939	7.51 7.60 7.06 6.06 8.57 7.36/1.08	-290	.1307

Lexan - Riectrical Insulation Summary Table of Test Results

AVO	Press.	(torr)	760	760	760	760
Ave	Temp.	(F)	75	75	75	140
Rupture	Elonga-	tion (%)	105 50 50 100 76/27	45 44 44 44 44 44 44 44 44 44 44	90 75 92 95 88 88/9	2.0 2.5 2.5 1.0 1.0
At Ru	Tensile	Strength (psi)	9130 7436 7411 9460 8359/995	898 2 8414 8316 8550 7618	7790 7420 7075 7129 7246 73327307	3513 3131 3789 3458 3800 3538/288
ate a	ш		5 5 5 5/0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.0 2.0 2.5 1.0 1.0
Ultimate	Tensile	Strength (ps:)	9704 9726 9743 9800 9743/47	9462 9432 9386 9412 9454 9430/33	9211 9260 9150 9180 9180 9180	3513 3131 3789 3458 3800 3538/288
Time	Until	(days)		2	~	2
	12)	E>8.1Mev	0	4.6(12)	5.7(12)	6.3(13)
Exposure	Neutrons (n/cm^2)	E>2.9Mev	0	1.4(14)	1.7(14)	2.0(15)
Radiation Exp	Neut	E<0.48ev	0	6.1(12)	4.1(12)	3.5(13)
Rac	Gamma Dose	[ergs/gm(C)]	0	5.7(8)	8.8(8)	9.7(9)
ment		Tester	Air Instront at 2.0 in./win	Instron at 2.0 in./win	Instron at 2.0 in./min	Instron at 2.0 in./min
Environment		Test	Air	ALF	Air	Air
En	Irrad-	iation Test	ı	ALE	Afr	Air
	Specimen	Tagmou	97-11 97-12 97-13 97-14 97-15	97-31 97-32 97-33 97-34 97-35	97-36 97-37 97-38 97-39 97-40	97-46 97-47 97-48 97-49 97-50

*Values given as: average value/standard deviation on an individual basis.

	Specimen Irrad-	-i	97-1 Air 97-2 97-3 97-4 97-5	97-6 97-7 97-8 97-9 97-10	97-61 Vac 97-62 97-63 97-64 97-65	97-66 Vac 97-67 97-68 97-69 97-70	97-76 97-77 97-78 97-79 97-80
Envir	ad-	ion Te	<u> </u>	· · · · · · · · · · · · · · · · · · ·			Vac Air
Environment		iation Test Tester	Air Instron at 2.0 in./min	Air Instron ar 2.0 in./min	Air Instron at 2.0 in./win	Air Instron mt 2.0 in./min	r Instron at 2.0 in./min
Ra	Garma Dose	[ergs/gm(C)]	3.3(10)	1.7(11)	5.1(8)	7.8(8)	a 8.5(9)
Radiation Exposure		E<0.48ev	ı	1	1.1(13)	1.9(13)	1.0(14)
posure	Neutrons (n/cm ²	E>2.9Mev	5.4(15)	2.5(16)	8.5(13)	1.2(14)	1.7(15)
	_n 2)	E>8.1Mev	ı	I	3.3(13)	4.7(13)	•
Time	Uncil Test	(days)	17	11	51	12	7
Ultimate	Tensile	Strength (psi)	5 Specimens	5 Specimens	9473 9336 9460 9431 9256	9267 9336 9209 9216 9157	7287 5353 6245 7866 6416 6633/1080
ıte	Elonga-	tion (%)	•	•	13 12 12 12 12 13/3.3	11 12 10 10/5	8.5 7.1 7.5 9.5 7.5 8.0/1.0
At Rup		Strength (psi)	Too Brittle	Too Brittle to Test	7809 7520 8000 8118 7965 7882/257	8416 7539 8103 8020 8588 81337451	7287 5353 6245 7866 6416 6633/1080
Rupture	Elonga-	tion (%)	to Test	to Test	100 100 100 100 100 100	100 100 100 100 100 100	8.5 7.1 7.5 9.5 7.5 8.0/1.0
Avg.	Temp.	(¥)	170	200	120	120	140
Avg.	Press.	(torr)	760	760	4.6(-6)	4.6(-6)	2.0(-6)

Table 9.17

Lexan Electrical Insulation (Flexure) Summary Table of Test Results

Avo	Press.	(torr)	09/	5.0(-7)	2.0(-6)	760	1.0(-3)	5.0(-7)	9.0(-1)	
Ave		(F)	75	08	100	75	75	80	125	
Tangent Modulus of	Elasticiry	(psi)	379,473 360,980 366,990 369,148/ 10,923	354,958 349,398 352,178/ 5,124	351,171 379,925 365,548/ 25,490	372,780	311,706	316,223	290,935	
Outer Fiber	5% Strain	(psi)	14,116 13,841 13,969 13,975/162	13,552 13,184 13,368/326	12,766 12,670 12,718/85	13,250 13,700 13,475/399	13,850 13,850 13,850/0	Did not reach 5%	Did not reach 5%	
Outer Fiber	3% Strain	(psi)	$10,494 \\ 10,356 \\ 10,324 \\ 10,391/100$	9,783 9,924 9,854/125	10,374 10,200 10,287/154	9,900 9,200 9,550/620	10,400 9,100 9,750/1152	10,040 8,660 9,350/1223	10,600 9,700 10,150/798	
Time	Test	(days)	•	52	œ	ı	•	•	•	
	m ²)	E>8.1Mev	0	1.6(15)	3.5(14)	0	0	1.6(13)	3.5(14)	
Exposure	Neutrons (n/cm ²)	E>2.9Mev	0	4.4(13)	9.7(14)	0	0	4.4(13)	9.7(14)	
Radiation Ex		E<0.48	0	5.1(12)	1.1(14)	0	0	5.1(12)	1.1(14)	
Ra	Gamma Dose	[ergs/gm(C)]	0	2.4(8)	5.3(9)	0	0	2.4(8)	5.3(9)	
nent	-	Tester	Instron	Instron	Instron	Low Force Tester	Low Force Tester	Low Force Tester	Low Force Tester	
Environment		Test	Air	Air	Adr	Air	Vac	Vac	Vac	
E E	Irrad-	iation		Vacuum	Vacuum Air	•	•	Vacuum	Vacuum	
	Specimen	Number		97-61A 97-62A	97-71A 97-72A					

*Values given as: average value/standard deviation on an individual basis.

All specimens were tested at 0.05 in./min.

Merlex 6001 Electrical Insulation Summary Table of Test Results

Avg.	Press.	(torr)	760	760	760
Avg.	Temp.	(£)	75	170	200
At Rupture &	Elonga-	tion (7)	500p	11 9 10 8 9.4/1.3	10 7 8 8 6 7.5/1.7
At Ru	Tensile	Strength (psi)	250 0	5976 6003 6105 6002 6061 6061	4221 4175 4258 - 4423 - 3506 4117/394
ate a	121	tion (%)	10 10 12 10 10 15 11.4/2.1	10 8 9 9 8 8 8.8/0.9	10 7 8 8 6 7.6/1.7
Ultimate	Tensile	Strength (psi)	3741b 4514 4411 4433 4909b 4453/61	6051 6065 6105 6090 6061 6061	4221 4175 4258 4423 3506 4117/394
Time	Until	(days)	†	17	a
	12)	E>8.1Mev	0	•	•
osure	Neutrons (n/cm2)	1001	0	5.4(15)	2.5(16)
iation Exposure	Neut	E<0.48ev	0	1	•
Radi	amma Dose	[ergs/gm(C)]	0	3.3(10)	1.7(31)
ent		Tester [Instron at 2.0 in./win	Instron at 2.0 in./min	Instron at 2.0 in./min
Environment			Air	AIF	¥
En	Irrad-	iation Test	•	Air	Air
	Specimen	Number	101-11 101-12 101-13 101-14 101-15	101-1 101-2 101-3 101-4 101-5	101-6 101-7 101-8 101-5 101-10

*Values given as: average value/standard deviation on an individual basis. Value not included in average or standard deviation.

The state of the s

Marlex 6002 Electrical Insulation Summary Table of Test Results

7 5 5 AND 1 2 F

'n	Fress.	(torr)	2.0(-6)	1.0(-3)	2.0(-6)	
Avg	•					
Avg.	Temp	E	140	75	140	
Rupture	141	rion (7)	40 40 58 55 32 45/11	94.5 ^b 95.2 ^b 95.7 ^b 90.4 ^b 94.0/2.6	7.23 - 7.10 4.31 6.21/1.72	
Ac Ru	Tensile	Strength (psi)	4781 4716 4835 4802 4684 4764/65	2677 ^b 2041 ^b 2417 ^b 1693 ^b 2207/478	6.39 6.94 6.20 3.81 3.81 1726 3.99/1.542546/930	
ate	(E)	tion (%)	9 9 9 10 10	9.53 7.65 8.40 8.55 8.53	6.39 6.20 3.81 5.99/1.54	
Ultimate	Tensile	Strength (psi)	51.79 5145 5125 5125 5158 5178	4429 3319 4015 3504 3817/539	3551 3624 2962 2142 3070/720	
Time	Until	(days)	^		•	
	12)	E>8.1Mev	•	0		
osure	Neutrons (n/cm^2)	E>2.9Mev	1.7(15)	0	1.5(15)	
iation	Neut	E<0.48ev	1.0(14)	0	1.1(14)	
Rad	Garma Dose	ergs/gm(C)]	8.5(9)	0	9.2(9)	_
Dent		Tester	Instron at 2.0 in./min	High Force Tester at 0.05 in./min	High Force Tester at 0.05 in./win	_
Environment		Test	Afr	Vec	Vac	
En	Irrad-	iation	Vac	•	V	
	Specimen	Tagman.	98-76 98-77 98-78 98-79 98-80	98-81 98-82 98-83	99 99 99 99 99 99 99 99 99 99 99 99 99	

*Values given as: average value/standard deviation on an individual basis.
Unirradiated specimens did not fracture. Specimen extension exceeded pull rod travel limits.
Values reported are those at maximum extension for High Force Tester.

(

Mylar 100C Electrical Insulation Summary Table of Test Results

A	Avg. Press.	(torr)	760	760	760
-	CH	9	75	25	100
Flomes-	tion at	Rupturer (%)	61 28 88 80 80 60 92 114 114 80/20	59 75 120 85 100 115 71 61 105 115	105 110 108 95 91 113 113 113 70 100/21
(psi) ⁸	9	Rupture	27,800 17,000b 25,300 28,300 19,000 28,600 16,500b 16,500b 1,200 3,439	19,300 27,700 27,700 27,500 27,600 20,300 20,500 26,900 27,000 27,000 27,000 27,000	22,800 23,200 23,000 24,000 22,700 23,800 23,800 23,800 22,910/ 975
Strength (p	(a	Elong.	25,600	24,60c 27,500 25,100 - 26,400 25,000 25,720/ 1,250	22,600 22,200 23,400 22,400 22,500
Tensile St	(a)	Elong.	26,200 19,800 23,300 18,500 18,500 17,600 20,270 3,180	18,500 11,800 11,800 11,800 11,8000 11,8000 11,500 118,500 18,830	18,000 17,500 18,300 18,300 18,300 18,300 18,500 19,000 18,200 500
Ten	9	ы	22,000 16,800 17,200 20,300 16,000 16,000 16,100 15,700 2,190	16,500 16,100 16,200 17,300 16,600 16,600 17,000 16,600 390	16,400 16,400 16,500 16,300 16,300 16,300 16,300 16,300
Time	Until Test	(days)	1	8	4
	n ²)	E>8.1Mev	0	4.6(12)	3.4(13)
sosure	Neutrons (n/cm ²)	E>2.9Mev	0	1.4(14)	1.1(15)
Radiation Exposure	Neu	E<0.48ev	0	6.1(12)	5.5(13)
Re	Gamma Dose	ergs/gm(C)]	0	5.7(8)	5.2(9)
ent	l	Tester	Instron at 20.0 in./mip	Instron at 20.0 in./min	Instron at 20.0 in./win
Environment		Test T	Att	Alt	Alt
Em	Irrad-	tation	•	Air	Air
	Specimen				

Talwes given as: average value/standard deviation on an individual basis. Values not included in average or standard deviation.

<u></u>	·	$\overline{}$					
Ave.	Press.	(corr)	760	092	760	5(-7)	2.0(6)
Ave	Temp.	<u> </u>	140	170	200	08	140
Elonga-	tion at	(%)	71 61 50 92 50 61 82 50 41 95 65/18	test	test t	87 79 96 65 104 102 89/15	71 55 95 108 105 87/23
(pst)	œ	Rupture	19,300 18,100 17,400 19,200 16,600 17,700 19,500 17,300 16,800 18,800 18,160/			24.300 23.300 27.400 21.800 26.500 25.600 24.8177 24.8177	19,000 17,300 20,500 20,500 19,400/
Strength (@ 001	Elong.		too brittle to	too brittle to	25,700 25,100 25,400/ 532	- 20,100 20,200 7 20,150/ 90
Tensile St	ල දි	Elong.	17,700 17,300 17,400 16,800 16,800 17,400 17,400 17,100 17,100	specimens -	specimens -	19,500 19,500 20,500 20,000 19,200 18,600 750	17,260 11,000 16,800 17,000 17,000 17,000
Ten	ම දී	ы	16,200 15,800 16,000 15,500 15,900 15,900 15,700 15,780 260	10 spec	10 spec	17,300 17,200 17,700 17,500 17,100 16,700 17,250/ 395	16,300 15,800 15,600 15,600 15,500 15,760/ 340
Time	Until	(days)	4	•	1		∞
	n ²)	E>8.1Mev	6.3(13)	•	•	1.6(13)	•
Exposure	eutrons (n/cm^2)	E>2.9Mev	2.0(15)	5.4(15)	2.5(16)	4.4(13)	1.7(15)
Radiation Exp	Neut	E<0.48ev	3.5(13)	1	ı	5.1(12)	1.0(14)
Rai	Gamma Dose	ergs/gm(C)]	9.7(9)	3.3(10)	1.7(11)	2.4(8)	8.5(9)
ent	Ì	Test Tester	Instron at 20.0 in./min	Instron	Instron	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment		Test	Air	Air	Air	Air	Air
Env		fation	Air	Air	Air	Vac	Vac
	Specimen	-					

E<0.48ev	1			Environment
0 98		amma Dose Neutrons (n/cm²)	Gamma Dose Neutrons	Gamma Dose Neutrons
0	48ev E>2.9Mev	E<0.48ev E>2.	[ergs/gm(C)] E<0.48ev E>2.	E<0.48ev E>2.
			o •	0 0 0
o .		0	o o a a a a a a a a a a a a a a a a a a	o q
6.4(13)	(12) 4.4(13)		2.4(8) 5.1(12)	2.4(8) 5.1(12)
9.7(14)	(14) 9.7(14)		5.3(9) 1.1(14)	5.3(9) 1.1(14)

*Specimen tore - ultimate values not included in average and standard deviation.

Plaskon CTFE X2204 Electrical Insulation Summary Table of Results

Avg.	Press.	(torr)	760	092	760	4.6(-6)	2.0(-6)	2.0(-6)
-		(F)	75	75	100	120 4	100	140 2.
	ı	tion (%)	70 75 90 /12	25 113 800 /40		45 55 65 55/12	lo	
Rupture	e E10	th tio	78		2 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		444	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
At	Tensile	Strength (psi)	3607 3608 3640 3618/19	3519 3300 3373/129	80 239 259 193/106	3198 3422 3421 3347/132	1183 1421 1410 1338/141	285 62 139 162/132
ate a	12	tion	10 10 10 10/0	10 10 10 10/0	1 1 1/0	14 13 14 14/0.6	1 1 1/0	1/0
Ultimate a	Tensile	Strength (psi)	4351 4706 4560 4539/210	5333 5100 5300 5244/138	80 239 259 193/106	4864 4918 4909 4897/32	1183 1421 1410 1338/141	285 62 139 162/132
Time	Until	(days)	•	8	m	51	^	^
	12)	E>8.1Mev	0	5.7(12)	3.4(13)	5.7(13)	ı	ı
osure	Neutrons $(\mathfrak{n}/\mathfrak{cm}^2)$	E>2.9Mev	0	1.7(14)	1.1(15)	1.5(14)	6.8(14)	1.7(15)
Radiation Exposure	Neut	E<0.48ev	0	4.1(12)	5.5(13)	1.8(13)	7.8(13)	1.0(14)
Rad	Gamma Dose	ergs/gm(C)j	0	8.8(8)	5.2(9)	7.0(8)	5.3(9)	8.5(9)
ent		Test Tester	Air Instron at 2.0 in./min	Instron at 2.0 in./min	Air Instron at 2.0 in./min	Instron at 2.0 in./min	Instron at 2.0 in./min	Instron at 2.0 in./min
Environment		Test	Air	Air	Air	Air	Air	Air
ភ្ន	Irrad-	iation	ı	Air	Air	Vac	Vac	Vac
	Specimen	Number	121-11 121-12 121-13	121-36 121-37 121-38	121-41 121-42 121-43	121-66 121-67 121-68	121-71 121-72 121-73	121-76 121-77 121-78

*Values given as: average value/standard deviation on an individual basis.

Silastic 950 Electrical Insulation Summary Table of Test Results

Press	(1707)	760	760	760	760
		75	22	75	100
tion at	(%)	> 600 ^b 680 680 685 685 675 685	528 520 532 500 515 519/14	390 482 490 475 475 462/43	40 40 44 44 44 44
	Rupture	1588 1538 1538 1514 1514 1518 1539/32	1501 1463 1557 1409 1440 1474/64	1123 1478 1538 1521 1521 1536 1439/178	605 594 603 554 584 588/22
ം 100%	Elong.	133 155 158 124 127	192 196 203 191 194 195/5	222 212 226 235 231 231 225/10	
@ 5 0%	Elong	114 126 126 93 95	130 137 133 128 130 130/4	144 135 144 142 148 148	
	Œ	95 112 113 81 81 82	105 111 108 99 100 105/5	118 - 110 111 116 114/4	416 419 425 422 358 708/29
Until Test	(days)	•	8	8	4
,2)	E>8. LMev	0	4.6(12)	5.7(12)	3.4(13)
rons (n/cm	E>2.9Mev	0	1.4(14)	1.7(14)	1.1(15)
Neut	E<0.48ev	0	6.1(12)	(.1(12)	(ET)\$7.5
Gamma Dose	ergs/gm(C)]	0	5.7(8)	8.8(8)	5.2(9)
ļ	- 1	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./win
		Alr	AIr	Air	4
Irrad-	iation	•	Afr	Afr	Afr
Specimen		93-11 93-12 93-13 93-14 93-15	93-31 93-32 93-33 93-34	93-36 93-37 93-38 93-40	93.41 93.42 93.44 93.44 93.44
	Irrad- Gamma Dose Neutrons (n/cm²) Test 25% 50% 100% @ Direction at Temp.		Trad-	Trrad-	Titted Test Tester Gamma Dose Neutrons (n/cm²) Oset 255 50% 100% Rupture Rupture (48ys) E20.48ev E>2.94ev avalues given as: average value/standard deviation on an individual basis. byalues not included in average or standard deviation.

<u></u>			 · · · · · · · · · · · · · · · · · · ·			
AVØ.	Press.	(torr)	760	760	760	
Ave	Temp.	(F)	140	-320	-320	-320
Elonga-	tion at	Rupture (%)	10 11 11 12 14 14 11.6/1.7		1.49 ^b 0.96 0.96 0.46/0.00	0.80 1.03 0.61 0.58 0.76/0.22
(psi)	ď	Rupture	587 712 634 727 794 691/89	6906 5966 7221 7098 6798,610	- 6863 ^b 1814 3975 2895/ 1916	3709 5765 1784 2388 3412/ 1933
rength	(e 100%	11.7	1 1 1 1	1 1 1 1	1111	1 1 1
Tensile S	ල දර්	50% Elong.		1 1 1 1	1 1 1 1	1 1 1 1
Ten	(a) t	ш	1 1 1 1 1	1 1 1 1	1 1 1	\$ # B
Time	Until Test	(days)	4	•	0	0
	n ²)	E>8.1Mev	6.3(13)	0	1	•
osure	Neutrons (n/cm ²)	E>2.9Mev	2.0(15)	0	4.6(14)	1.2(15)
Radiation Exposure	Neu	E<0.48ev	3.5(13)	0	•	•
Ra	Gamma Dose	ergs/gm(C)]	9.7(9)	•	2.6(9)	6.7(9)
nent	l		Instron at 20.0 in./min	CIT at 0.05 in./min	CIT at 0.05 in./min	CIT at 0.05 in./min
Environment		Test	Air	rn2	LN ₂	LN 2
Env	Irrad-	iation Test Tester	Afr	1	LN2 I	LN ₂
	Specimen	Number	93-46 93-47 93-48 93-49 93-50	93-91 93-92 93-93 93-94	93-96 93-97 93-98 93-99	93-101 93-102 93-103 93-104

	· ·	H			
AVØ			760	760	760
Ave.	Temp.		-423	423	£2 4
Elonga-	tion at	K: prure (%)	.35	. 3 . 20 . 19 . 28 . 20/.07	. 73 1.06 .897.29
psi)	و	Rupture	2702 - - 2702/0	704 674 1181 1971 11327 630	1536 1552 1544/ 14
Strength (psi)	ල 1004	. Elong.	1 1 1 1		
Tensile St	(a	Elong	1 1 1 1		
Ten	ଜ୍ୟୁ	Elong.			
Time	Until Test	(days)	•	0	0
	n ²)	E>8.1Mev	0	•	•
posure	Neutrons (π/cm^2)	E>2.9Mev	0	6.6(14)	1.5(15)
Radiation Exposure	Neu	E<0.48ev	0	•	•
Ra	Gamma Dose	ergs/gm(C)]	0	3.8(9)	8.4(9)
ent	•	Test Tester	CIT at 0.05 in./win	CII at 0.05 in./min	crr ar 0.05 in./win
Environment		Test	LB ₂	LH ₂	£ .
Env	Irrad-	iation	•	1.82	LH ₂
	Specimen	130	93-111 93-112 93-113	93-121 93-122 93-123 93-124	93-126 93-127 93-128 93-129

Silastic 1410 Electrical Insulation Summary Table of Test Results

	Avg. Press. (torr)		**************************************	· · · · · · · · · · · · · · · · · · ·		-	· · · · · · · · · · · · · · · · · · ·
Avg.	Press	(101	760	760	760	750	260
AVg.			75	75	75	100	140
Elonga-	tion at	(%)	492 512 500 515 495 503/10	350 405 410 370 390 385/26	300 310 280 290 315 299/15	58 55 50 55 42 42	30 25 30 22 25 26.4/3.4
(psi)		Rupture	1260 1461 1247 1459 1249 1335/91	1377 1575 1607 1377 1541 1495/99	1245 1304 1206 1223 1234 1254/42	1240 1143 1086 1189 1071 1146/73	1382 1286 1420 1126 1247 1292/ 126
	မ ၂၀၀	Elong.	240 279 235 272 272 238 1 253/19	419 439 435 402 441 427/17	485 493 497 480 476 480	1111	1 1 1 1
Tensile St	ම <mark>ද</mark>	Elong	170 198 153 201 161 177/21	258 296 296 296 258 290 280/16	304 307 309 303 294 303/6	1118 1103 1086 1113 -	1 1 1 1 1
Ten	දැද	- 1	135 146 129 151 140/9	195 222 224 224 189 224 211/15	214 214 217 206 206 211/5	794 764 771 791 803 785/17	1259 1286 1246 - 1247 1206/19
Time	Uncit	(days)	t	8	8	4	4
	, ²)	E>8.1Mev	c	4.6(12)	5.7(12)	3.4(13)	6.3(13)
Exposure	Neutrons (n/cm ²)	E>2.9Mev	0	1.4(14)	1.7(14)	1.1(15)	2.0(15)
Radiation Exp	Neut	E<0.48ev	0	6.1(12)	4.1(12)	5.5(13)	3.5(13)
Ra	Gamma Dose	ergs/gm(C)]	0	5.7(8)	8.8(8)	5.2(9)	9.7(9)
ænt		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment		Test	Air	Air	Air	Air	AIr
En	Irrad-	iation	ı	Air	Air	Air	Air
•	Specimen		92A-11 92A-12 92A-13 92A-14 92A-15	92A-31 92A-32 92A-33 92A-34 92A-35	92A-36 92A-37 92A-38 92A-39 92A-40	92A-41 92A-43 92A-43 92A-44 92A-45	92A-46 92A-47 92A-48 92A-50

*Values given as: average value/standard deviation on an individual basis.

Γ						
Ave.	Press.	(corr)	4.6(-6)	4.6(-6)	2.0(-6)	760
Ave.	Temp.	(1)	120	120	100	-320
Elonga-	tion at	kupture (%)	325 320 290 300 285 304/17	180 180 230 245 198 207/28	31 30 30 20 20 25 27.2/4.7	1.35 1.33 1.17 0.96 1.20/ 0.19
psi)	و	Rupture	1891 1659 1563 1637 1491 1648/172	1735 1206 1577 1855 1509 1576/279	1524 1493 1506 1104 1324 1390/181	8936 8520 8629 7375 8365/758
Strength (psi)	(G 1.007	£14	714 578 614 620 630 625	1041 812 786 896 901 887/110	1111	
Tensile St	ල දිරි	Elong.	503 353 375 280 377 398/64	324 453 476 613 602		
Ten	о 257	ш	383 237 250 275 257 257 280/63	153 253 298 445 427 815/126 4	1294 1274 1260 - 1324 1324 1288/31	
Time	Until. Test	(days)	*	77	v	•
	$_{\rm n}^2$)	E>8.1Mev	2.9(13)	6.2(13)	•	0
Exposure	Neutrons (n/cm^2)	E>2.9Mev	7.5(13)	1.7(14)	6.8(14)	0
Radiation Ex	Neu	E<0.48ev	9.0(12)	1.7(13)	7.8(13)	•
Ra	Gamma Dose	ergs/gm(C)]	5.0(8)	7.6(8)	5.3(9)	0
uent		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	crr at 0.05 in./min
Environment		Test	Air	Air	Air	LM ₂
Env	Irrad-	iation Test	Vac	Vac	o G	•
	Specimen		92A-61 92A-62 92A-63 92A-64 92A-64	92A-66 92A-67 92A-68 92A-69 92A-70	92A-71 92A-72 92A-73 92A-74 92A-75	92A-91 92A-92 92A-94

	.s	£					
Avg.			760	760	760	760	760
Avg.			-320	-320	773	423	7
Elonga-	tion at	Rupture (%)	0.78 0.75 0.78 0.78	1.37 1.44 - 1.43/0.06	. 15 . 23 . 19/.07	.28 .12	
(psi)		G Rupture	5759 4703 3244 4569/ 1486	7539 4469 - 7002 6337/ 1496	505 432 468/65	1600 617 - - 1108/871	. No Date
Strength ((b)	100% Elong.	1 1 1	1 1 1	1 1 1 1	111	Brittle -
Tensile St	<u></u>	50% Elong.				1 1 1	
Ten	(b)	25% Elong.	1 1 1 1	1 1 1	1111	1350	Material Too
Time	Until	(days)	1	•	•	ı	ŧ
		8.1Mev	ŧ	ŧ	0	•	ı
posure	Neutrons (n/cm ²)	E>2.9Mev	7.4(14)	1.5(15)	0	6.6(14)	1.5(15)
Radiation Exposure		E<0.4	ı	ŧ	0	•	
Ra	Gamma Dose	[ergs/gm(C)]	4.2(9)	8.4(9)	0	3.8(9)	8.4(9)
pent	Test Tester		CTI at 0.05 in./min	CIT at 0.05 in./min	CTT at 0.05 in./win	CII at 0.05 in./min	CTT at 0.05 in./min
Environment			I.N ₂	LH ₂	LH 2	H.	H2
En	Irrad-	iation	L.N.2	LN ₂	•	LH2	H 2
	Specimen	Number	92A-96 92A-97 92A-98 92A-99	92A-101 92A-102 92A-103 92A-104	92A-111 92A-112 92A-143 92A-114	92A-121 92A-122 92A-123 92A-124	92A-126 92A-127 92A-128 92A-129

Table 9.24

Sylgard 182 Electrical Insulation (Compression Buttons)
Summary Table of Test Results

	Avg. Press.	(17071)	760	760	760	760	2.0(-6)
	Avg. Temp.		7.5	7.5	7.5	140	140
Strength	Compres-	(psi)	139 134 144 144 155 155	164 183 192 188 180 181/12	232 254 223 217 207 <u>223</u> /12	642 957 1000 760 845 8417154	835 1010 875 880 920 904/75
Time	Until Test	(days)	1	8	8	œ	v
	, ²)	E> 8.1 Mev	•	4.6(12)	5.7(12)	6.3(13)	ı
xposure	Neutrons (n/cm^2)	E > 2.9 Mev	0	1.4(14)	1.7(14)	2.0(15)	ı
Radiation Exposure	Ne	E < 0.48 ev	0	6.1(12)	4.1(12)	3.5(13)	7.6(13)
	Garma Dose [ergs/gm(C)]			5.7(8)	8,8(8)	9.7(9)	8.7(9)
ñ	Toster	Tester Instron at 0.5 in./min		Instron at 0.5 in./win	Listron at 0.5 in./win	Instron et 0.5 in./min	Instron kt 0.5 In./win
Environment	Test		Alt	Afr	Air	Afr	Afr
Env	Irrad-		1	Afr	Air	Air	0 A
	Number						

"Values given as: average value/standard deviation on an individual basis.

これのこと これのこれのことのことのことのことのことのは、これのはないないはないないできますが、これのことのことのことのことのことのことのことのことのことのことのことのできませんできますが、これのことの

Tedlar Electrical Insulation Summary Table of Test Results

	9 1				
Ave.	Press.		760	760	
Avg.			75	170	200
Elonga-	tion at	(Z)	260 290 300 250 281 304 256 232 271 271	7 30 11 30 10 10 10 30 10 10 15.6/7.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(psi) ^a	e	Rupture	5777 6500 6583 5833 6277 6277 5556 6277 5916 61117	3889 3611 3889 3750 3611 3806 4056 4056 3944 3667 3611 37837	3889 4100 4277 4277 3889 40367 167
Strength (1007	Elong.	3611 3417 3611 3611 3417 3417 3417 3444 3534/		
Tensile St	ම දී		3611 3417 3611 3722 3472 3417 3389 3333 35267 131		1111
Ten	@ 24	ш	3611 3889 3611 3722 3472 3472 3750 3833 3806 3889 3731/ 140	3611 3611 - - - 3617 3611 3613/ 3	1 1 1 1
Time	Unt11 Test	(days)	ı	21	21
	n ²)	E>8.1Mev	0	•	•
ogure	Neutrons (n/cm ²)	E>2.9Mev	0	5.4(15)	2.5(16)
Radi_tion Exposure	Neut	E<0.48ev	0	•	•
Re	Gamma Dose	ergs/gm(C)]	0	3.3(10)	1.7(11)
pent		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment		Test	Afr	Air	Air
Env	Irrad-	istion	ı	Afr	Air
	Specimen	Number			

*Values given as: average value/standard deviation on an individual basis.

Teflon FEP 200A (2 mil) wentrical Insulation Summary Table A. Our Results

					· · · · · · · · · · · · · · · · · · ·	
Avg.	Press.	(corr)	760	760	760	
Avg.			75	75	100	140
Elonga-	tion at	Kuprure (7)	153 b 155 b 263 272 302 279/23	13 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.	
(psi)	<u>@</u>	Rupture	2450b 2400b 3400 3500 4300 3733/ 532	1850b 1950 1900 1850 1850 1886/ 49	too brittle to	too briftile to
Strength (1007	Elong.	2300 2300 2200 2200 2200 43	1 (1 1 1	t80 br	100 bit
o l	6 70,7	Elong.	2000 2000 1950 2000 2010/ 64	1950 1850 1900/ 59	specimens	spec Linens
Tensil	9 254	'23	2000 2000 1900 1900 1900 1960/ 43	1900 1825 1860 1862/ 44	S spee	ede s
Time	Until	(days)	•	8	*	*
	n ²)	E>8.1Mev	•	5.7(12)	3.4(13)	6.3(13)
osure	Neutrons (n/cm^2)	E>2.9Mev	•	1.7(14)	1.1(15)	2.0(15)
Radiation Exposure	Neu	E<0.48ev	•	4.1(12)	5.5(13)	3.5(13)
Ra	Garma Dose	ergs/gm(C)]	•	8.8(8)	5.2(9)	9.7(9)
vent		Tester	Instron at 20.0 in./win	Instron at 20.0 in./win	Instron at 20.0 in./win	Instron at 20.0 in./win
Ervironment		Test	Alt	Air	Afr	Atr
Erv	Irrad-	iation	•	Afr	Adr	4
	Specimen	130				

*Values given as: average value/standard deviation on an individual basis. *Specimen broke in grips - rupture values not included in averag and standard deviation.

Salar Office and the design of the salar salar

Gamma Dose [ergs/3m(C)]		-	Radia	Radiation Exp	Exposure		T T	Tent	Tensile Strength		(ps1)	Elonga-	Avg.	Avg.
	980	Dose		Neut	Neutrons (n/cm^2)	ⁿ ²)	Test	9 K	e Ç	@ 1001	· ·	tion at	Temp.	Press.
11	1 1	1 1	(V)	E<0.48ev	E>2.94ev	E>8.1Mev	(days)	Elong.		Elong.	Rupture	Kupture (%)		(torr)
4		8.0(8)		1.5(13)	1.5(14)	5.9(13)	1	1900 1975 1850 1875 1800 1850 1825 1900 1825 1900 1840/431900/54		2125 1950 2000 2050 2025 2025 2030/75	2175 1975 2125 2050 2100 2085/86	186 153 198 166 188 178/19	120	4.6(-6)
7.8		5.3(9) 7.8	Ψ.	7.8(13)	6.8(14)	•	Ŋ	, , , , ,	; 1 1 1 1		2143 2041 1979 2062 2121 2069/71	23 20 20 24 15 20.4/3.9	100	2.0(-6)
1.0(1.0(14)	8.5(9)	30- 11	(41	1.7(15)	8	~	1 3 1 1	, , , ,		689 179 82 214 291/295	777 <mark>7</mark>	140	2.0(-6)

Table 9.27

Teflon FEP 1000A (10 mil) Electrical Insulation Summary Table of Test Results

Avg	Press.	(2027)	760	760	760	760	4.6(-6)
Avg.			75	75	100	140	120
Elonga-	tion at	(%)	310 294 318 300 280 300/13	33 105 102 132 142 103/47	test) <1 <1 <1 <1 <1/> <1/ 1</td <td>test)</td> <td>292 273 250 141 270 245/65</td>	test)	292 273 250 141 270 245/65
(psi)		Rupiure	3333 2844 3434 2864 2900 3075/ 254	1780 1870 1870 1810 1810 18287 39	ittle to 495 287 391/184	Too brittle to	2270 2120 2060 1860 2080 2078/ 176
	ക 100%	Elong.	2121 1972 2172 1954 2130 2070/ 94	1880 1880 1840 1870 19	. Too brittle 495 287 391,	. Too br	1970 1970 1960 1870 1970 43
1 101	50%	Elong.	2020 1881 2071 1864 2030 1973/ 89	1860 1870 1790 1830 1837/ 39	spe¢imens	imens -	1940 1930 1910 1800 18967 60
Ten	ම දීදී	Elong.	1919 1789 1970 1773 1940 18787 85	1800 1820 1830 1760 1800 1800 30	(3 spec	(5 specimens	1900 1280 1870 1780 1860 1858/ 52
Time	Uncil	(days)	•	8	77	21	45
	12)	E>8.1Mev	0	5.7(12)	3.4(13)	6.3(13)	5.9(13)
Exposure	rons (n/cm^2)	E>2.9Mev	0	1.7(14)	1.1(15)	2.0(15)	1.5(14)
Radiation Exp	Neutrons	E<0.48ev	0	4.1(12)	5.5(13)	3.5(13)	1.5(13)
Rac	Gamma Dose	rgs/gm(C)]	0	8.8(8)	5.2(9)	9.7(9)	8.0(8)
ent		Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment		Test	Air	Air	Air	Air	Air
Em	Irrad-	iation	•	Air	Air	Air	Vac
	Specimen	120000				·	

*Values given as: average value/standard deviation on an individual basis.

Ave.	Press.	(rorr)	2.0(-6)	2.0(-6)
Avg.	Temp.	(£)	100	140
Elonga-	tion at	(%)	5 5 5 5/0.9	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
81)	æ	P.pture	1990 2250 2200 1970 2250 2132/ 120	
Strength (ps1)	ම 1007	۳ı		too brittle to 160 - 260 - 86 - 169/103
Tensile St	ම දී දී	m		specimens -
Ten	@ 222	Elong.		(7 + 1 1
Time	Until Test	(days)	'n	ν
	²)	E>8.1Mev	1	1
Exposure	eutrons (n/cm^2)	E>2.9Mev	6.8(14)	1.7(15)
Radiation Ex	Neu	E<0.48ev	7.8(13)	1.0(14)
Ra	Gamma Dose	ergs/gm(C)j	5.3(9)	8.5(9)
ent		Tester	Instroc at 20.0 in./min	Instron at 20.0 in./win
Environment		Test	Air	Air
Env	Irrad-	iation	ı	Vac
	Specimen			

Teflon FEP 4000A (40 mil) Electrical Insulation Summary Table of Test Results

AVR.	Press.	(2022)	760	760	760	760	4.6(-6)
Avg.			75	75	100	140	120
Elonga-	tion at	kupture (%)	362 325 297 300 279 313/36	200 210 250 219 1152 206/42	⊽ ∨ ¢ ¢	test)	308 358 338 370 340
(psi)	<u></u>	Rupture	3844 3955 3582 3619 3626/ 354	1957 1957 2070 2073 1965 20047 50	157 198 92 149/63	too brittle to	2549 2588 2711 2892 2721 26927 147
	1004 1	Elong.	2083 2084 2102 2118 2013 2080/ 45	1919 1875 1893 1932 1940 1940 19127		too br	2206 1873 1980 2005 2017/ 143
1 701	6) 2	Elong.	1984 1956 1995 1995 1914 19697 35	1896 1861 1860 1927 1910 1891/ 29	1 1 1	specinens	2044 1828 1971 1956 1956 1936 93
Ten	o 5	ω	1920 1914 1931 1920 1833 19047	1848 1817 1813 1883 1871 1871 30		(5 spe	2000 1784 1922 1912 1922 1908/
Time	Uncil	(days)	1	5	22	22	5
	1 ₂)	E>8.1Mev	0	5.7(12)	3.4(13)	6.3(13)	5.9(13)
n Exposure	Neutrons (n/cm^2)	E>2.9Mev	0	1.7(14)	1.1(15)	2.0(15)	1.5(14)
Radiation Exp	Neut	E<0.48ev	0	4.1(12)	5.5(13)	3.5(13)	1.5(13)
Rac	Gamma Dose	ergs/gm(C)]	0	8.8(8)	5.2(9)	9.7(9)	8.0(8)
ent		Tester	Instron at 20.0 in./win	Instron at 20.0 in./win	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at. 20.0 in./min
Environment		Test	Air	Air	Air	Air	Air
En	Irrad-	iation Test	1	Air	Air	Air	Vac
	Specimen						

*Values given as: average value/standard deviation on an individual basis.

からからからからしていますがないというというというというというというというというという

AVØ	Press. (torr)	2.0(-6)	2.0(-6)
Ave	Temp.	300	140
Elones-	tion at kupture	22 15 5 20 20 20 16.4/7.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
psi)		1930 2350 1321 1874 1915 18787 442	323 109 184 205/68
Strength (psi)	e 100%		
Tensile St	6 50%	1 1 1 1	1 1 1
Ten	0 25% Figure	, , , , ,	1 1 1
Time	Until Test (days)	v	νn
	m ²) F>8 1Mev	•	r
osure	Neutrons (n/cm ²)	6.8(14)	1.7(15)
Radiation Exposure	Neut E<0.48ev	7.8(13)	1.0(14)
Re	Gamma Dose [ergs/gm(C)]	5.3(9)	8.5(9)
ent	Į .	Instron at 20.0 in./min	Instron at 20.0 in./win
Environment	Test	Air	Air
Env	Irrad- iation Test Tester	Vac	Vac
	Specimen	·	

Teflon IFE-7 (2.5 mil) Electrical Insulation Summary Table of Test Results

	AVB.	(torr)	760	760	76¢	
	Avg.	(F)	75	7.5	22	75
	Elonga-	Repture	243 274 245 245 275 275 256/14	266 306 265 280 310 285/19	27 29 47 36 34 35/9	1 2 1 1 3 3 1.6/0.9
(nsi)	(+86)	(a Rupture	4040 4480 4160 4040 43127 344	1560 2560 2520 2520 2179 2268/ 430	1792 1800 1800 1708 1760 1772/40	1800 1880 1680 1240 1760 275
Strenoth		100% Elong.	2280 2200 2400 2400 2240 2360 2360 86	1320 2240 2160 2160 1929 1962/ 396		
Tensile St) (O)	50% Elong.	2000 1880 2080 1960 2080 2080 86	1200 2080 2080 2080 1786 1786 378	1 1 1 1	
Ten	9	25% Elong.	1760 1680 1880 1760 1880 1792/ 86	1000 2000 2000 1920 1679 1720/ 430	1792 1800 1760 1750 1750 1772/21	
Time	Uncil	Test (days)	1	7	6	2
	2,	m-) E>8.1Mev	0	6.3(10)	3.6(11)	1.7(12)
o dutile o	11000	weutrons (n/cm ⁻) ev E>2.9Mev E>	6	1.7(12)	8.2(12)	3.8(13)
Radiation Exposure	, , , , , , , , , , , , , , , , , , ,	E<0.48	6	2.4(12)	1.7(12)	6.0(12)
88		ergs/gm(C)	•	8.7(6)	4.5(7)	1.8(8)
nent		Test Tester	Instron at 20.0 in./min	Instron at 20.0 in./win	Instron at 20.0 ir./ain	Instron et 20.0 in./min
Environment			Air	Air	Air	Ä.
En	1	iation	•	Air	Air	AK:
	Specimen	Number				

*Values given as: average value/standard deviation on an individual basis.

Avg.	Press.	(rorr)	760	2.5(-7)	2.5(-7)	4.6(-6)	4:6(-6)
Ave.	Temp.	Œ)	75	75	27	120	120
510588-	tion at	kupture (%)		151 190 205 209 218 195/29	155 145 152 130 146/12	103 105 90 99 99/7	69 100 59 76/24
(psi)	G	Rupcure	372 136 540 1000 600	2372 2680 2840 2820 2820 2940 5 27307	2520 2420 2560 2560 2100 223	1960 · 2040 1920 1960 1960 1970/58	2280 2080 1888 2083/ 231
Strength ((e)	121		2164 2200 2160 2160 2160 2140 2145	2160 2160 2200 2000 2130/97	1940 2000 - 1970/53	2380
Tensile St	(i) 10, 12	Elong.		1988 2000 2000 1940 1940 1974/2	1980 1960 2090 1860 1935/97	1840 1880 1820 1820 1840/29	1980 1940 1880 1933/59
Ten	9 12	ш	2 2 2 5 2	1860 1880 1860 1820 1800 1844/34	1880 1860 1900 1732 1.24.3/82	1780 1820 1760 1760 1780/29	1960 1920 1872 1917/52
Time	Until	(days)	7	21	17	\$	45
	1 ₂)	E>8.1Mev	4.6(12)	1	•	3.3(13)	5.4(13)
Exposure	Neutrons (n/cm ²)	E>2.9Mev	1.4(14)	1.1(33)	1.8(13)	8.4(13)	1.5(14)
Radiation Ex	Neu	E<0.48ev	6.1(12)	1.4(12)	1.5(12)	1.1(13)	1.5(13)
Ra	Garma Dose	ergs/gm(C)]	5.7(8)	1.3(8)	2.3(8)	5.1(8)	8.0(8)
aent		Test Tester	Instron at 20.0 in./min	Instron at 20.0 in_/win	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment			Air	Air	Air	Air	Air
En	Irrad-	iation	Air	Vac	Vac	Vac	Vac
	Specimen						•

Table 9.30

Teflon TFE-7 (5 mil) Electrical Insulation Summary Table of Test Results

	Avg.	Press.	(2021)	760	760	760	760	760
	Avg.	Temp.		75	75	75	75	75
	Elonga-	tion at	(%)	333 340 328 318 298 323/18	298 276 312 298 277 292/15	33 30 19 22 10 23/10	4 2 2 2 2.5/1.0	
	(psi)	@	Rupture	5000 5200 5000 4600 4200 4800/ 430	2039 2100 2240 2220 2240 2240 86	1660 1700 1620 1620 1640 16487 34	1800 1780 1780 1780 1780 17857 10	154 168 184 334 366 241/91
	Strength (100%	Elong.	2075 2000 2100 2000 2000 2000 43	1902 1940 1980 1980 2020 51		1111	
			Elong.	1887 1800 1900 1800 1800 1837/ 43	1843 1880 1900 1880 1940 1889/ 42			1111
	uəL	2 2 3 3	ш	1698 1700 1800 1700 1700 1700/ 86	1804 1820 1860 1820 1900 1841/ 41	1700 1720 - 17107 17107	1 1 1 1	
	Time	Uncil	(days)	•	8	8	7	2
Satisfaction and the satisfact		, ²)	E>8.1Mev	0	6.3(10)	3.6(11)	1.7(12)	4.5(12)
31 70 31 70	osure	Neutrons (n/cm^2)	E>2.9Mev	0	1.7(12)	8.2(12)	3.8(13)	1.4(14)
	Radiation Exposure	Neut	E<0.48ev	0	2.4(12)	1.7(12)	6.0(12)	6.1(12)
	Rad	Gamma Dose		0	8.7(ģ)	4.5(7)	1.8(8)	5.7(8)
	nent		Tester	Instron at 0 in./	Instron at 20.0 in./win	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron et 20.0 in./min
	Environment		Test	Afr	Air	AIr	ž.	Afr
	En	Irrad-	iation	1	Air	Atr	Mir	Air
		Specimen						

*Values given as: average value/standard deviation on an individual beas.

in the property of the property of the same

Avg.	press. (torr)	2.5(-7)	2.5(-7)	4.6(-6)	4.6(-6)
AVZ.	Temp.	75	75	120	120
Elonga-	cion ac Rupture (%)	195 195 189 194 174 189/9	133 128 146 154 146 141/11	90 83 76 90 83/5	80 70 55 58 43 61/16
(psi)	G Rupture	2366 2010 2330 2020 2020 2260 2196/ 150	1900 1990 2070 2140 1950 2010/ 73	1720 1710 1750 1740 1800 17447 39	1740 1760 1740 1740 1690 1/34/ 30
	(G 100% Elong.	1860 1880 1870 1860 1860 1866/9	1800 1880 1810 1840 1810 1828/34	1 1 1 1	
Tensile St	ි 50% Blong.	1760 1780 1770 1740 1740 17587	1700 1760 1700 1730 1690 17167 30	1700 1680 1690 1700 1720 1720 1698/ 17	1720 1740 1740 1760 1760 19
Ten	6 25% Elong.	1700 1710 1700 1600 1660 1690/ 21	1660 1720 1650 1680 1640 1670/ 17	1700 1680 1680 1690 1720 1694/ 17	1730 1740 1750 1760 1700 17367 26
Time	Uncil Test (days)	6	6	45	45
	a ²) E>8.1Mev	1	•	3.3(13)	5.9(13)
Exposure	Neutrons (n/cm^2) sev $\boxed{E>2.9 \text{Mev}}$	1.1(13)	1.8(13)	8.4(13)	1.5(14)
Radiation Exp	Neut E<0.43ev	1.4(12)	1.5(12)	1.1(13)	1.5(13)
Rac	Garma Dose [ergs/gn(C)]	1.3(8)	2.3(8)	5.1(8)	8.0(8)
ent	Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./win
Environment	Test	Afr	Air	Afr	Air
n <u>a</u>	Irrad- iation	Vac	Vac	Vac	Vac
	Specimen Number				

Table 9.31

Teflon TFE-7 (10 mil) Electrical Insulation Summary Table of Test Results

	Avg. Press.	(torr)	960	760	760	760
	Avg. Temp.	(£)	75	75	75	75
į	tion at	Rupture (1)	295 318 332 333 344 324/21	113 90 175 140 150 134/37	25 9 19 6 10 14/8	7777 0 17
(pst) ^a		d Rupture	3153 4182 4364 3784 4596 4016/ 620	1956 1702 1920 1769 1622 17947	1618 1683 1514 1532 1514 15727 73	898 909 889 1349 1533 11167 277
Strength (Elong.	1937 2045 2000 1982 2121 2017/ 79	2044 - 1910 1750 1649 1838/ 192		
Tensile St		Elong.	1802 1818 1818 1802 1970 1842/ 72	2089 1808 1930 1787 1676 18587	1 + 1 + 1	1111
Ter	0	P2	1712 1727 1727 1667 1667 1818 1730/ 65	2111 1827 1940 1806 1694 1876/	1618 - - - 1618	
Time	Until Test	(days)	•	8	8	2
	2)	E>8.1Mev	0	6.3(10)	3.6(11)	1.7(12)
ogure	Neutrons (n/cm ²)	E>2.9Mev	0	1.7(12)	8.2(12)	3.8(13)
Radiation Exposure	Neu	E<0.48ev	0	2.4(12)	1.7(12)	6.0(12)
Re	Gamma Dose	[ergs/gm(C)]	0	8.7(6)	4.5(7)	1.8(8)
pent		Tester	Instron at 20.0 in./win	Instron at 20.0 in./min	Instron at 20.0 in./win	Instron at 20.0 in./min
Royl roment	_	lation Test	Air	<u> </u>	Air	i
"	Irrad-	tetion	•	Air	Air	Air
	Specimen	Kumber				

*Values given as: average value/standard deviztion on an individual basis.

	Erry	Environment	ent	Red	Radiation Exp	Exposure		Time	Ten	Tensile Strength		(ps1)	Flones-	Avo	Avo
Specimen	Irrad-			Garma Dose	Neut	Neutrons (n/cm^2)	n ²)	Until	У.	(a)	(a 1007	œ	tion at	Temp	Press.
730000	iation Test Tester	Test	ſ	ergs/gm(C)]	E<0.48ev	E>2.9Mev	E>8.1Mev	(days)	Elong.	:1	Elong.	Rupture	Kuprure (%)	E	(tort)
	Air	Air	Instron at 20.0 in./min	5.7(8)	£.1(12)	1.4(14)	4.5(12)	8	1 1 1 1		1111	117 172 190 142 198 164/35	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	75	760
	Vac	Air	Instron at 20.0 in./min	1.3(8)	1.4(12)	1.1(13)		o.	1810 1840 1800 1730 1680 17727 69	1820 1860 1810 1750 1740 1740 52	1920 1990 1900 1860 1830 1900/ 69	2040 2110 2110 2000 1900 2032/ 90	138 135 158 144 130 141/12	7.5	2.5(-7)
	Vac	Air	Instron at 20.0 in./min	2.3(8)	1.5(12)	1.8(13)	•	σ.	1840 1910 2020 1850 1905/ 87	1870 2030 2080 2080 1910 19727 102	1990 - - 1990	2000 2040 2160 1910 2028/ 121	105 54 77 50 8 72/27	75	2.5(-7)
	Vac	Afr	Instron at 20.0 in./min	5.1(8)	1.1(13)	8.5(13)	3.3(13)	21			1 1 1 1	1770 1730 1790 1710 1780 17567 34	<pre></pre>	120	4.6(-6)
	V	Air	Instron at 20.0 in./min	8.0(8)	1.4(13)	1.5(14)	5.9(13)	51	11511	1111		1790 1850 1800 1700 1784 64	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	120	4.6(-6)

Table 9.32

Teflon TFE-7 (20 mil) Electrical Insulation Summary Table of Test Results

	Press.	(torr)	760	760	760	760
Ave	Tenp.	E	75	75	75	25
F 1 cme s -	tion at	Rupture (X)	382 375 410 374 416 391/18	188 118 58 59 56 96/57	2 2 2 1 2/0.5	1.2/0.5
(psi) ^a	•	Rupture	3689 3585 3571 3301 3632 35567 167	1454 1361 1432 1416 1462 1462 1425/ 43	1787 1818 1804 1682 27737	1264 1306 976 752 1131 10867 238
rength (@ <u>}</u>	Elong	1990 1887 1905 1845 1887 1903/ 62	1673 1423 - - 1548/ 222	1 1 1 1	
Tensile Strungth	@ <u>{</u>	Elong.	1845 1792 1762 1699 1745 1745 63	1724 1562 1502 1466 1548/ 111		1 1 1 1 (
Ten	e !	Elong.	1699 1651 1667 1602 1651 1654 42	1755 1596 1596 1548 1580 16157 89	1 1 1	
a a	Until Test	Gays	1	8	N	84
	2)	E>8.1Mev	0	6.3(10)	3.6(11)	1.8(12)
osure	Neutrons (n/cm ²)	48ev E>2.9Mev	0	1.7(12)	8.2(12)	3.8(13)
Radiation Exposure	Meut	E<0.48ev	0	2.4(12)	1.7(12)	6.0(12)
Red	Game Dose	[(2) =3 /82=[C)]	0	8.7(6)	4.5(7)	1.8(8)
eat		Tester	Instron at 20.0 in./win	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min
Environment		Test	Alr	ALE	Air	Air
1 2	Trrad-	istion	1	Air	Air	Air
	Specimen	Mumber				•

Values given as: average value/standard deviation on an individual basis.

Avg.	Press.	(corr)	760	2.5(7)	2.5(-7)	((-6)	4.6(-6)
-	Temp.	\dashv	75	75 2	75	120 4	120 4
Elonga-	tion at	Kupcure (%)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	223 194 189 190 3 235 206/20	165 149 160 ⁴ 134 152/15	61 13 210 210 210 210 210	
(ps1)	9	Rupture	63 97 104 94 88 89/18	1930 1980 1970 1865 1860 1921/ 52	1675 1620 1595 1725 16547 63	1580 1560 1570 1500 1600 1562/ 43	1750 1625 1450 1750 1570 1629/ 129
Strength (၈ 1001	Elong.		1625 1735 1715 1565 1555 1639/ 77	1560 1540 1510 1670 15707 78		1111
Tensile St	ල දී ල	Elong.	1 ())	1600 1700 1640 1515 1515 15947 80	1510 1530 1485 1605 15337 58	1595	
Ten	В	Elong.	1 1 1 1	1600 1700 1605 1525 1510 1588/ 82	1490 1525 1465 1585 1521/ 58	1660	1 1 1 1
Time	Until	(days)	8	6	σ	15	51
	²)	E>8.1Mev	4.5(12)	•	1	3.3(13)	5.8(13)
Exposure	Neutrons (n/cm^2)	E>2.9Mev	1.4(14)	1.1(13)	1.8(13)	8.4(13)	1.5(14)
Radiation Exp	Neut	E<0.48ev	6.1(12)	1.4(12)	1.5(12)	1.1(13)	1.5(13)
RAC	Garma Dose	ergs/gm(C)]	5.7(8)	1.3(.)	2.3(8)	5.1(8)	8.0(8)
ent		Tester	Inst.on at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./win	Instron at 20.0 in./win
Environment		Test	r T	Air	Air	Air	Air
Em	Irrad-	farion Test	Air	Vac	Vac	Vac	Vac
	Specimen	Tagmin .					

*Extrapolated elongation data.

Table 9.33

Teflon IFE-7 (40 mil) Electrical Insulation Summary Table of Test Results

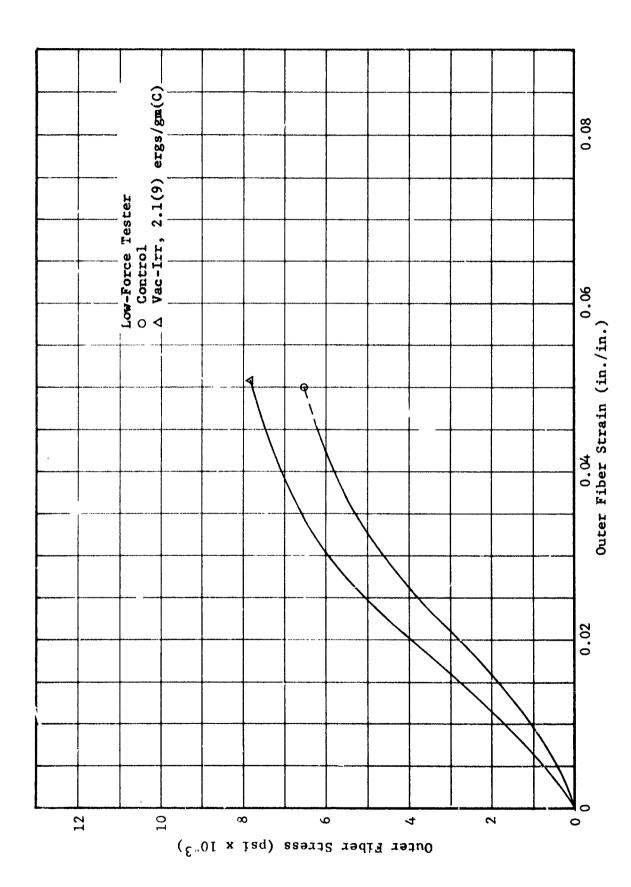
Avg.	Press.	(rorr)	760	760	760	760
AVR.	Temp.		75	75	75	75
Elonga-	tion at	(Z)	329 318 320 314 342 325/12	352 231 259 272 348 292/52	62 60 32 12 23 38/21	3 2 2 2 2/0.9
ps1) ^{2.}		Rupture	4120 3929 3944 3991 4512 4099/ 251	1946 1811 1898 1850 1867 1874/ 58	2480 1403 1527 1569 1569 1567 71	1841 1832 1767 1791 1826 1811/ 32
Tensile Strength (psi)2	1001	Elong.	1991 2098 2113 2113 2047 2072/ 52	1796 1771 1822 1775 1863 1863 40	1111	
sile St	e §	Elong.	1852 1920 1925 1972 1907 1915/ 52	1810 1731 1769 1758 1858 1785/ 55	1520 1443 - - 1482/ 68	
Ten	@ (ы	1713 1741 1784 1784 1767 1758/ 31	1765 1718 1769 1718 1792 1752/ 32	1595 1522 1584 - - 1567/ 43	
Time	Until	(days)	•	2	2	8
	n ²)	E>8.1Mev	0	6.3(10)	3.6(11)	1.7(12)
osare	Neutrons (n/cm ²)	E>2.9Mev	0	1.7(12)	8.2(12)	3.8(13)
Radiation Exposure	Neu	E<0.48ev	0	2.4(12)	1.7(12)	6.0(12)
R	Gamma Dose	[args/gm(C)]	0	8.7(6)	4.5(7)	1.7(8)
pent	ł	lation Test Tester	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.6 in./min
Environment		Test	Air	Air	Air	Air
En	Irrad-	tation	1	Air	Air	Air
	Specimen	Number				

Values given as: average value/standard deviation on an individual basis.

	٠.	\Box					
Avg.	Press.		760	2.5(-1)	2.5(-1)	760	760
Avg.	Te (75	75	75	22	75
Elonga-	tion at	(2)	44444 <u>1</u>	241 241 216 230 234 232/11	173 173 174 196 163 163	115 140 140 155 39 118/50	125 85 79 128 104/24
psi)	e	Rupture	248 280 260 251 265 261/14	2812 2831 2767 2762 2772 2772 30	2460 2564 2500 2614 2455 25197 68	2130 2150 2170 2170 2190 2082/ 181	1900 1810 1860 1840 1853/ 44
Tensile Strength (psi)	a 1007	Elong.	F 1 1 1 1	1916 1931 1945 1891 1926 1927 23	2059 2064 2025 2005 2005 2015 2034/ 21	2025 1920 1930 1875 - 19387 73	1865 - 1800 1833/ 58
ile St	© 2	Elong.	1111	1782 1802 1827 1787 1832 1832 21	1901 1896 1871 1881 1871 1884/ 13	1840 1840 1845 1805 - 1833/ 19	1850 1795 1845 1785 1819/ 32
Ten	@ 224	Elong.	1 1 1 1 1	1708 1718 1777 1678 1747 1747 1747 43	1832 1851 1822 1832 1832 1832 1833 12	1800 1810 1825 1805 1765 18007 26	1900 1810 1825 1800 1834/ 49
Time	Uncil	(days)	8	6	6	45	45
	1,2)	E>8.1Mev	4.5(12)	1	ı	3.3(13)	5.8(13)
Exposure	Neutrons (n/cm^2)	E>2.9Mev	1.4(14)	1.1(13)	1.8(13)	8.5(13)	1.5(14)
Radiation Exp	Neut	E<0.48ev	6.1(12)	1.4(12)	1.5(12)	1.1(13)	1.5(13)
Rac	Garraga Dose	ergs/gm(C)]	5.7(8)	1.3(8)	2.3(8)	5.1(8)	8.0(8)
ent		Terter	Inctron at 20.0 in,/min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./min	Instron at 20.0 in./win
Environment		Test	Air	Air	Air	Air	Air
Env	Irrad-	iation Test	Air	Vac	Vac	Vac	Vac
	Specimen	Tarimori.		-			

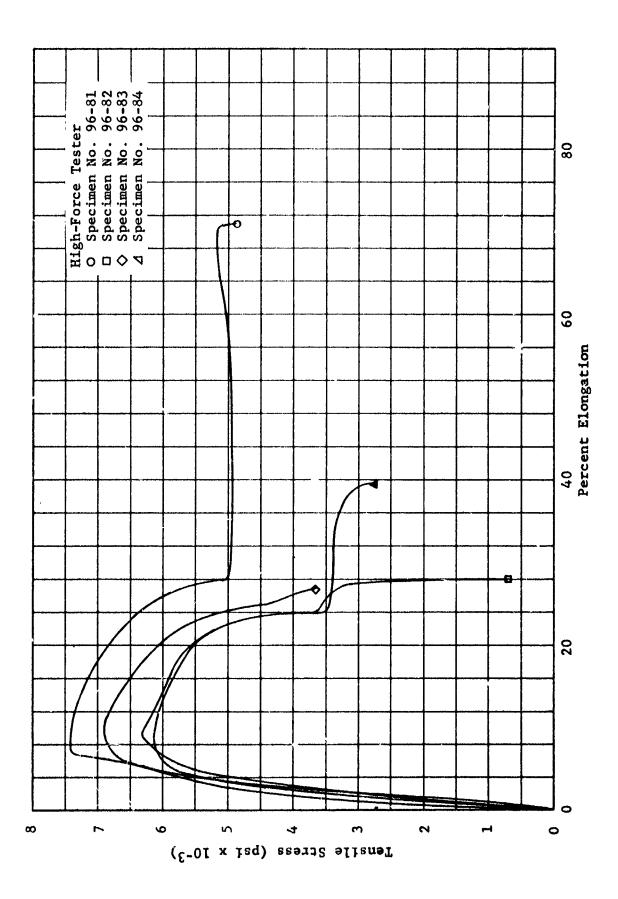
Table 9.34

Teflon TFE-7 (125 mil) Electrical Insulation Summary Table of Yest Results

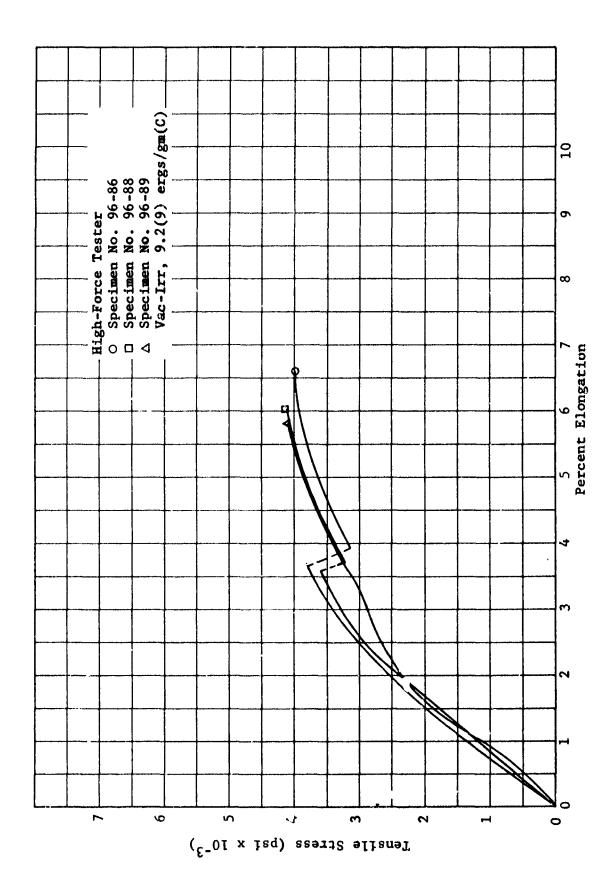

					
	Avg.	(corr)	760	760	
		(F)	-423	-423	-423
Rupture &	Elongation	(%)	1.31 ^b 3.37 3.41 2.95 3.24/0.27	2.26 3.39 2.16 1.86 2.42/0.74	2.03 2.04 2.14 1.66 1.97 / .23
- 1	Tensile	Strengtn (psi)	5,08 ⁷ b 10,703 10,818 13,298 11,606/1533	10,139 10,821 13,061 8,882 10,726/2029	10,387 12,736 13,776 7,565 11,138/3016
Time	Until	(days)	1	t.	•
		E>8.1 Mev	0	1	ı
xposure	1s (n/cm ²)	E>2.9 Mev	0	1.3(14)	7.1(14)
Radiation Exposure	Neutrons	E<0.48 ev	0	•	•
	Gamma Dose	[ergs/gm(C)]	0	7.5(8)	4.0(9)
at.		Tester	crr at 0.05 in./min	CTT at 0.05 in./min	crr in./min
Environment		Test	LH ₂	LH ₂	LH ₂
Env	Irrad-	iation	•	LH ₂	LH ₂
	Specimen		37A-111 37A-112 37A-113 37A-114	37A-116 37A-117 37A-118 57A-119	37A-121 37A-122 37A-123 37A-124

"Values given as: average value/standard deviation on an individual basis. Values not included in average or standard deviation.

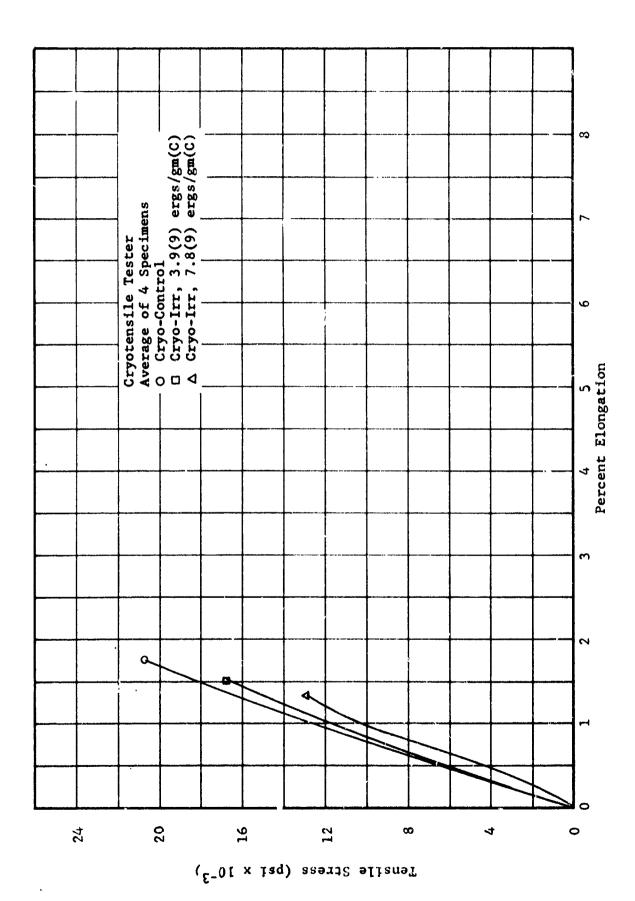
A CONTRACT OF THE PROPERTY OF


Duroid 5600 Stress-Strain Curves: Vacuum/LN2 Irradiation; Dynamic Tests Figure 9.1

Ouroid 5600 Stress-Strain Curves: LH₂ Irradiation; Dynamic Tests Figure 9.2



TO STATE OF THE PROPERTY OF TH


Kel-F-81 (Flexure) Stress-Strain Curves: Vacuum
Irradiation; Dynamic Tests Figure 9.3

283


できています。 ない 一般ない 神経の はないかい かいかいかいかい カルドイン・アントリー

Kynar 400 Stress-Strain Curves: LN_2 Irradiation; Dynamic Tests Figure 9.6

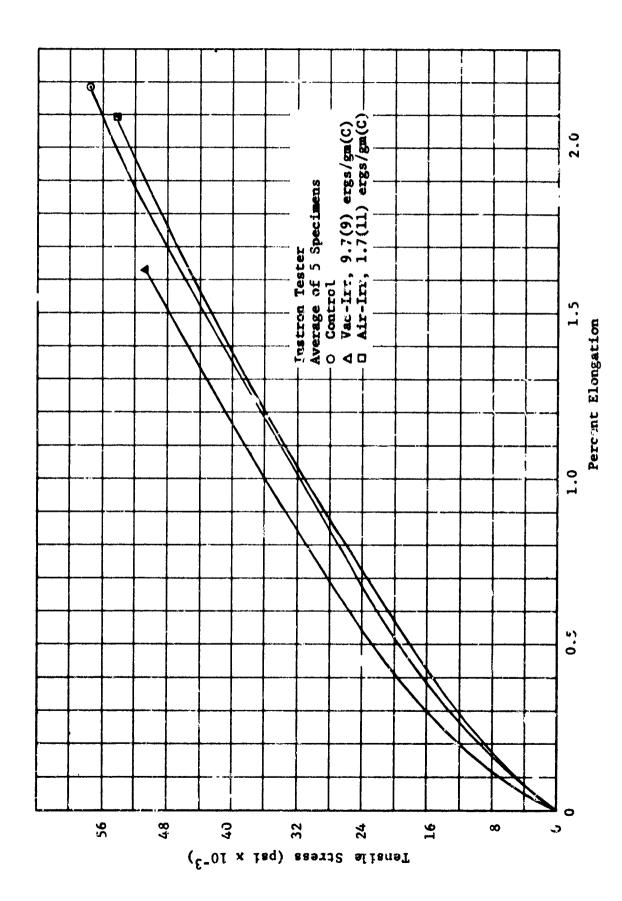
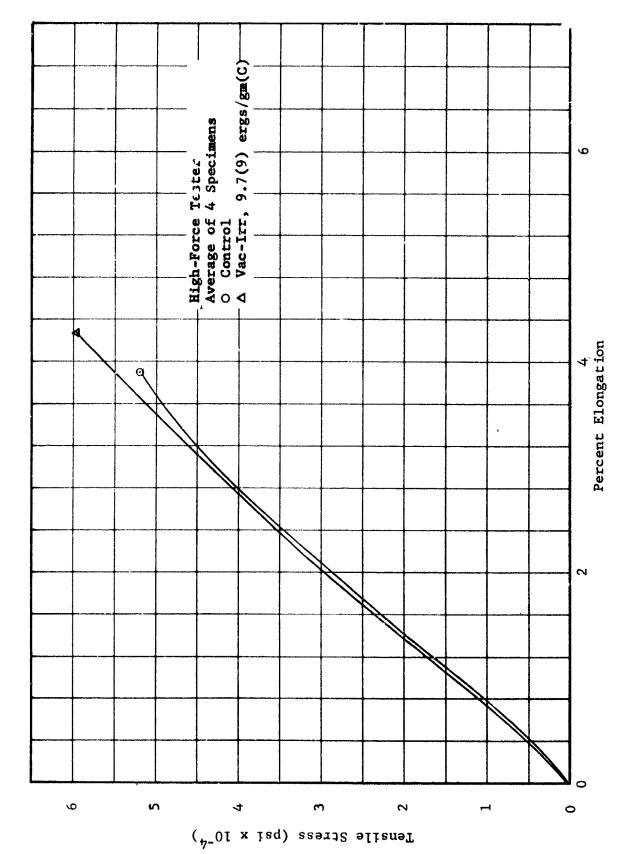
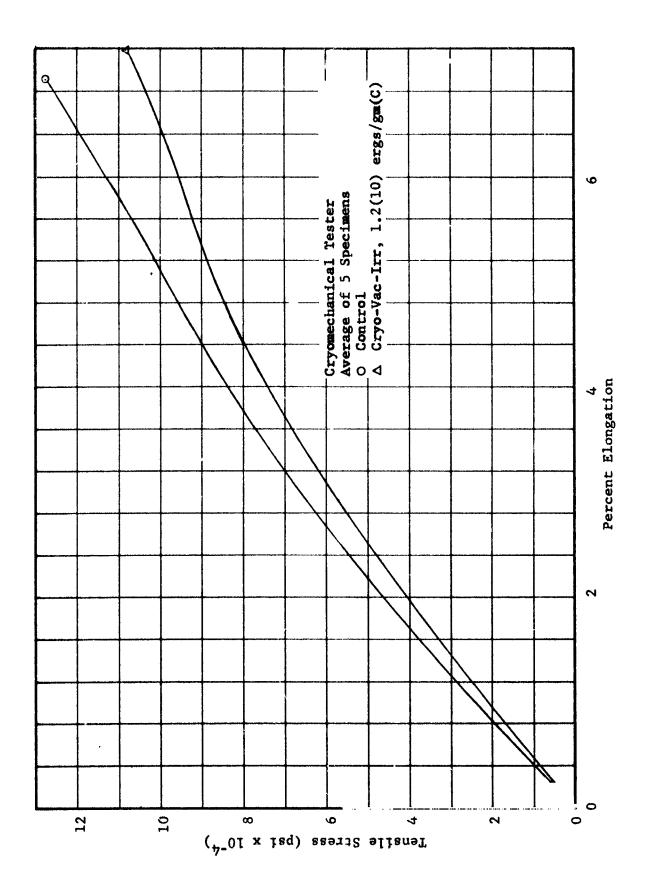

Kynar 400 Stress-Strain Curves: LH₂ Irradiation; Dynamic Tests

Figure 9.7

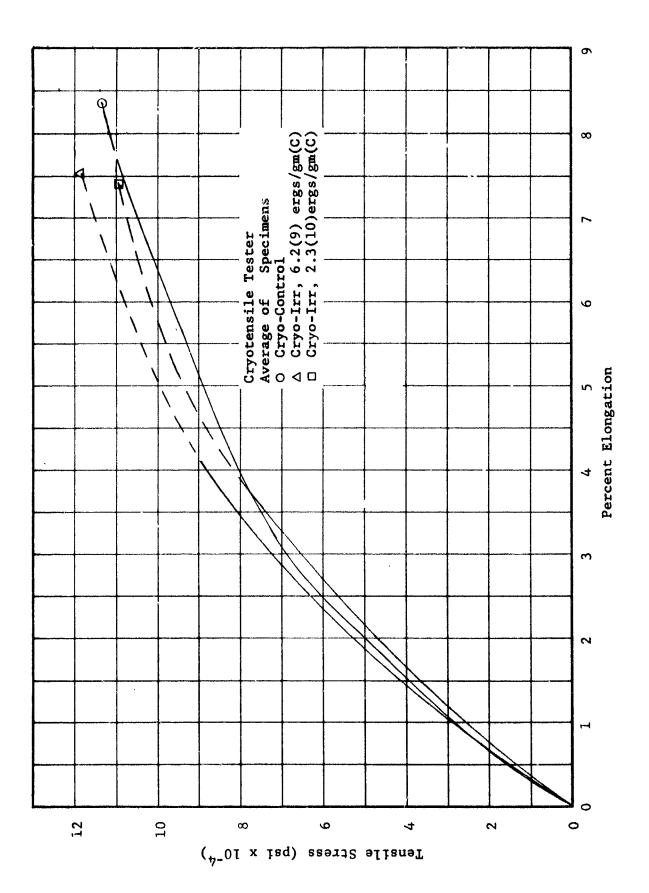


carries in a

286

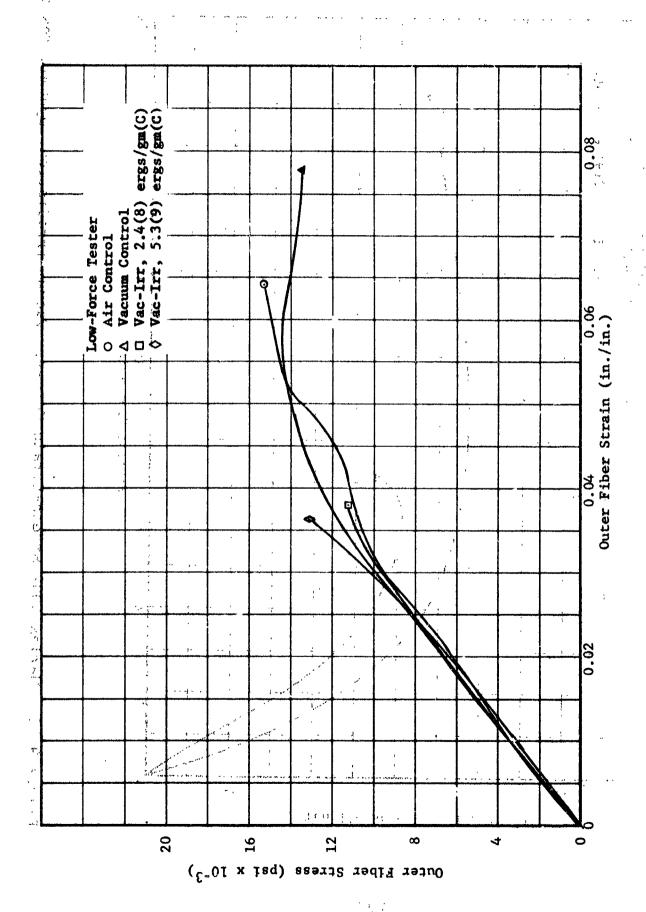


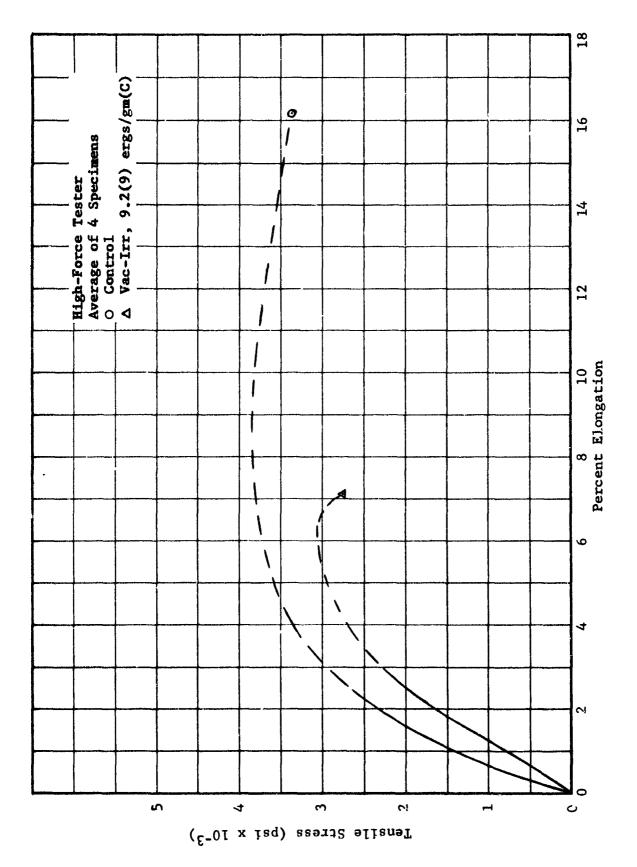
Lamicoid 6038E Stress-Strain Curves: Air and Vacuum Irradiations; Static Tests Figure 9.8



and the selection of the selection to the selection of th

288

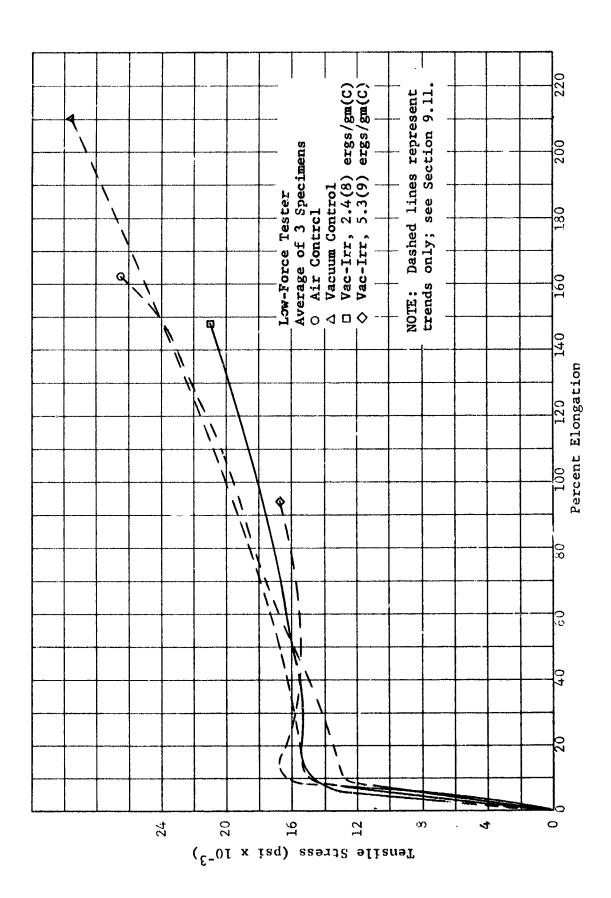

Lamicoid 6038E Stress-Strain Curves: Vacuum/LN2 Irradiation; Dynamic Tests Figure 9.10


La Carrella La Santana Mathagailt an an tha san an an an an tao tao an

、 、 人の変形でいる

290

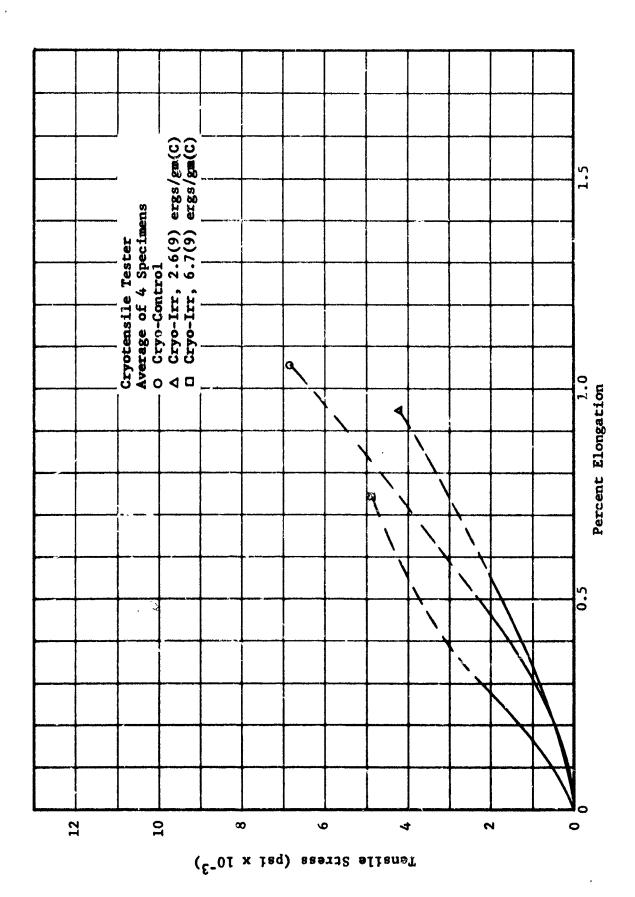
es de la companya de la companya de la companya de la companya de la companya de la companya de la companya de



and the first substitute that the first of the first out to the first of the first

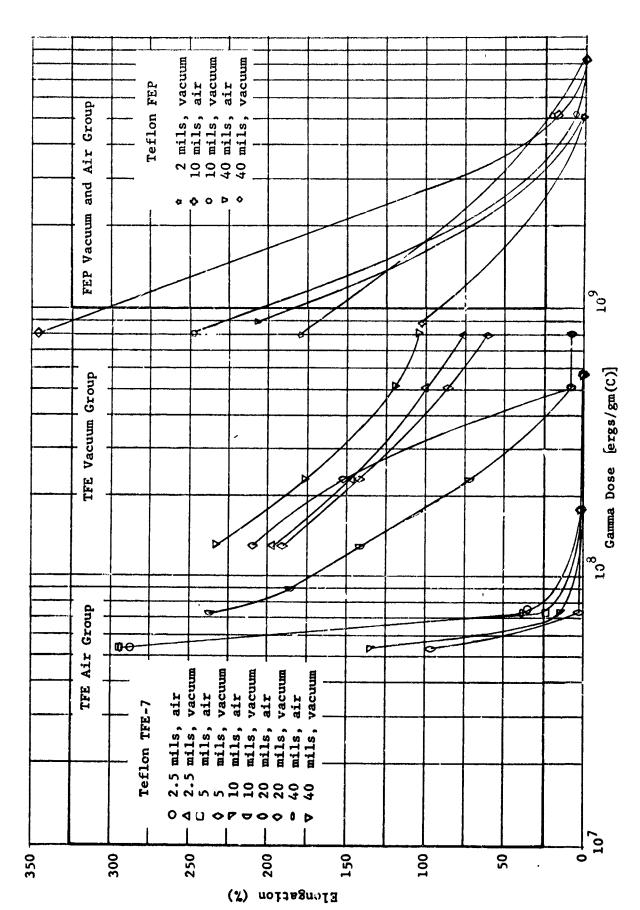
292

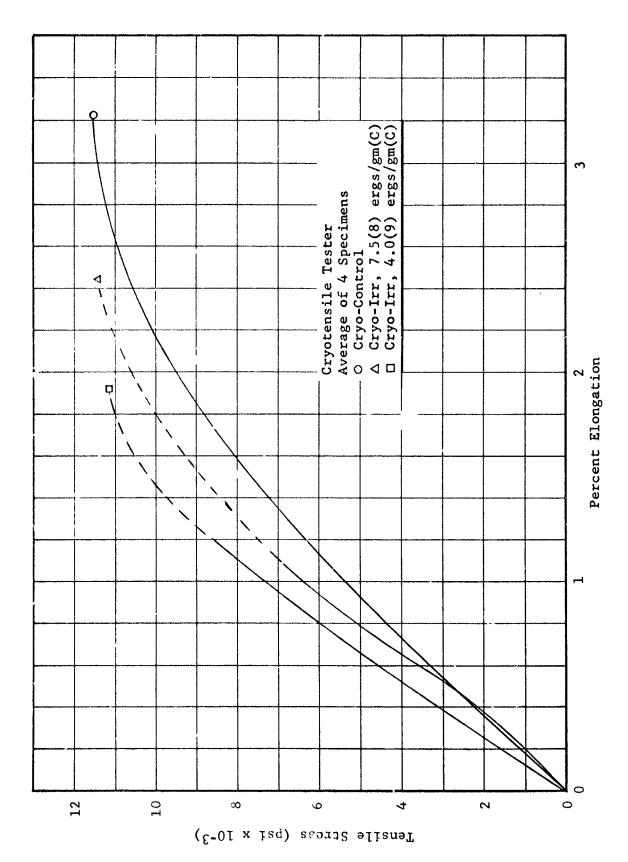
Mylar 100C Film Stress-Strain Curves: Air Irradiation; Static Tests Figure 9.14


Consideration of the property of the constraints of

really refer the filter and the state of the state of the second

Ä


Figure 9.15 Mylar 100C Film Stress-Strain Curves:


LN2 Irradiation; Dynamic Tests Silastic 950 Stress-Strain Curves: Figure 9,16

May a hall the war and the second

LN2 Irradiation; Dynamic Tests Silastic 1410 Stress-Strain Curves: Figure 9.17

Comparison of Ultimate Elongation Values of Various Thicknayses of Teflon TFE and FEP Irradiated in Vacuum and Air Figure 9.18

Teflon TFE-7 (125-mil) Stress-Strain Curves: LH2 Irradiation; Dynamic Tests Figure 9.19

X. THERMAL-INSULATION TEST METHODS AND TEST RESULTS

Table 10.1

Outline of Thermal Insulation Tests

	Type		Nominal		Test Method	poq:	
Material	of	Irradiation	Gamma Dose	Materials	ASTM	Other	Test Data
	Test	Environment	[ergs/gm(C)]	Tester			
CPR 200-2	Dynamic	Vacuum	5(8)	Low-Force	D-1621-		Load-Deflection
					59T Mod.		Compressive Stress-Strain
							Curves
		Air	5(9),1(10)	T/C Units		GD/FW	Thermal Conductivity
		LN2	5(9),1(10)	T/C Units		GD/FW	
		בשיד	2(2),1(10)	1/c ourts		GD/FW	Thermal Conductivity
CPR-1021-2	Dynamic	Air	5(9),1(10)	T/C Units		GD/FW	Thermal Conductivity
	nepelji	LN ₂	5(9),1(10)	T/C Units		GD/FW	Thermal Conductivity
		$ m LH{ m 2}$	5(9),1(10)	T/C Units		GD/FW	Thermal Conductivity
EFS-175	Dynamic	Vacuum	5(8),3(9)	Low-Force	D-1621-		Load-Deflection
					59T Mod.		Compressive Stress-Strain
							Curves
		Air	5(9),1(10)	T/C Units		GD/FW	Thermal Conductivity
		LN ₂	5(9),1(10)			GD/FW	Thermal Conductivity
		LH2	5(9),1(10)	T/C Units		GD/FW	Thermal Conductivity
Stafoam H-1502	Dynamic	Vacuum	5(8)	Low-Force	D-1621-		Load Deflection
					59T Mod.		Compressive Stress-Strain
							Curves
		Air	5(9),1(10)	T/C Units		GD/FW	;
		LN ₂	5(9),1(10)	T/C Units		GD/FW	
		1H2	2(97,1(10)	I/C UNITS		GD/FW	Inermal Conductivity

X. THERMAL-INSULATION TEST METHODS AND TEST RESULTS

Four thermal-insulation materials were tested in the current period. The properties of thermal conductivity, load deflection, and compressive stress-strain were determined. The materials tested, environments, and test methods are shown in Table 10.1 on the facing page. Detailed analyses of the test methods and test results are shown below.

10.1 Test Methods

10.1.1 Thermal-Conductivity Test

The technique for making a thermal-conductivity measurement involved submerging the test unit (see Section 2.10) in cryogen (or exposing it to circulated room air) and applying a regulated dc voltage to the test heater sufficient to establish a differential temperature of approximately 50 Fahrenheit degrees between the inner and outer rows of thermocouples. After temperature stabilization had taken place in the system (two to four hours from time of application of power to the heater), voltage and current values to the heater were recorded along with thermocouple EMFs. The EMFs were converted to OF, and an average of readings was determined for the six inner and the six outer thermocouples. These average readings, along with the

calculated heater power and known diametrical spacing of the thermocouples, were then substituted into the equation

$$k = \frac{q \left[\ln (D_2/D_1) \right]}{2 \pi h(T_1 - T_2)}$$

where

q is the heater power in Btu/hr

- D₁ is the diametrical distance between the two outer thermocouples
- D₂ is the diametrical distance between the two inner thermocouples
- \mathbf{T}_{1} is the average of the six inner temperatures in \mathbf{o}_{F}
- T₂ is the average of the six outer temperatures in o_F

h is the length of the heater in ft

The value of k is given in units of

A derivation of the above equation is given in the last annual report (Ref. 4, App. C).

As was mentioned in Section 2.10, a vacuum of approximately 2000 microns was maintained inside both the room-temperature and cryotemperature test units during operation. This was necessary for units submerged in cryogens (see Section 2.10) and allowed data obtained from the room-temperature-air units to be more accurately correlated with the data obtained at cryotemperatures. Figure 10.1 demonstrates the effect that varying degrees of vacuum within the test units had on thermal-conductivity data. As can be noted, the effect was practically negligible down to absolute pressures of 2000 microns. For pressures below this, however, the measured k-value began to rise rapidly. The actual thermal conductivity of the foam would, of course, be expected to decrease with decreases in pressure beyond 2000 microns, so an investigation of the phenomenon was conducted which led to several observations. First, accuracy of the k-value measurements depends upon the efficiency of heat transfer from the foam materials and gases within the cells to the test thermocouple junction; and with only a portion of the junction, on the average, being in direct contact with solid foam material, the conduction of heat from cell gases to the junction becomes significant. Second, if the combined partial pressures of these gases are reduced beyond a certain point (and a pressure

of 2000 to 3000 microns is the critical level), then heat will be conducted away from the thermocouple junction (through its leadin wire) at a rate approaching that at which it is being deposited. The temperature determined from the inner thermocouple readings will then begin to approach that determined from the outer thermocouples, AT will become smaller, and the calculated value of k will increase. Pressure within units tested in air and in LN2 was therefore maintained between 2000 and 3000 microns, which provided good thermocouple readings and prevented the formation of excess condensate. It should be emphasized, incidentally, that when these foam materials are used in sealed systems to insulate cryogens, some condensation (and some reduction in cell-gas pressure) will take place. So experimental conditions in these tests, from this standpoint, more closely simulate actual application conditions than if no vacuum had been maintained in the units.

10.1.2 Compression Test

いっぱがようななこれがありますのないでき、おきないではないないできます。 かいしょうしゅう

The rigid, organic, foam materials CPR 200-2, EFS-175, and Stafoam H-1502 were fabricated as compression buttons and subjected to the gamma-dose exposures in vacuum given in Table 10.1. The irradiated specimens were tested in the Low-Force tester while still in vacuum. Specimens were also tested under

vacuum-control (unirradiated) conditions.

The test specimens were 1.129-in.-diam by 0.5-in.-high cylinders. During testing, the specimens were compressed at a rate of 0.05 in./min and the load existing at a compression level of 25% was recorded. This test procedure was a modification of ASTM D-1621-59T, since the existing compression test positions in the Low-Force Tester were not exactly adaptable to the specimens described in the standard. The reduced test-specimen size also indicated that in order to obtain more usable data it would be necessary to make the load measurements at 25% instead of the 10% compression specified by the standard.

10.2 Test Results

10.2.1 Thermal-Conductivity Test (CPR 200-2, CPR 1021-2, EFS-175, and Stafoam H-1502)

Data obtained from preirradiation (control) and postirradiation tests over a temperature range of from +90°F to -380°F are given in Table 10.2. The unirradiated control data did not compare closely with that reported by the manufacturers for the temperature range shown above, but the effect of radiation (demonstration of which was, of course, the prime objective of these tests) in this temperature range was established. As can be noted, the effect of irradiation to the maximum

gamma dose level achieved $\left[\sim 3 \times 10^{10} \text{ ergs/gm}(C) \right]$ was small to insignificant for all materials tested.

Both the preirradiation (control) and postirradiation data obtained from units submerged in liquid hydrogen were considered questionable and were rejected completely as a result of conclusions reached concerning conditions within the units at temperatures approaching that of LH₂. As can be seen in Table 10.2, k-values obtained with the units submerged in LH₂ were, for all materials tested, significantly higher than those obtained at higher temperatures. Actually, they were a factor of 4 above that which would be expected from extrapolation of thermal-conductivity-versus-temperature curves obtained for higher temperature ranges.

A consideration of temperatures T₁ and T₂ that were recorded during the LH₂ tests leads to the conclusion that they were both below the condensation temperature of gases within the foam cells. This condition thus resulted in liquefaction of these gases, with consequent reduction of pressure in the units from the desired 2000 to 3000 microns. This reduced pressure would be at a level that would produce a k-value of about 0.40 on an exponential extrapolation of the LN₂ temperature curve shown in Figure 10.1. As stated above, the sharp up-turn of

these k-value curves at low cell-gas pressures is believed to result from inefficient heat transfer from the foam material to the thermocouple junction, with a resultant lowering of T_1 , a smaller value for T_1 - T_2 , and a resulting higher value for the calculated thermal conductivity.

The experimental design and testing techniques used in preirradiation control-test conditions were duplicated for the irradiation and postirradiation tests so that data obtained in the latter would show clearly the effects of radiation on the materials. A review of the postirradiation data leads to the conclusion that within the temperature range of $+100^{\circ}$ F to -280° F, radiation effects were slight to insignificant and that all four materials are qualified for use as thermal insulations in radiation environments to the highest gamma dose achieved in the tests, namely, $3 \times 10^{10} \, \mathrm{ergs/gm(C)}$.

Data obtained in the LH₂ tests, both control and post-irradiation, were considered unreliable. The measured values of thermal conductivity were in the vicinity of 0.35 to 0.45 instead of in the expected range of 0.10 to 0.13. The conclusion is reached that in the temperature range that existed in the test foam with the unit submerged in LH₂, all cell gases froze completely, resulting in partial pressure in the cells of

considerably less than 2000 microns. Effects described in the above discussion concerning the data in Figure 10.1 would then predominate and result in errors in the measured values of thermal conductivity.

からできって、だらくないかのないのできないないがらないからいかいかい こうかいれいしゅうしょう イル・イン・

Although the absolute values of thermal conductivity obtained with the units submerged in LH₂ were unrealistically high, differences between the pre- and postirradiation data thus obtained were insignificant, which strongly suggests that gamma radiation to a level of 5 x 10^9 ergs/gm(C) had no effect on the thermal conductivity of the materials at temperatures in the vicinity of -400° F.

A general conclusion is reached from the experiment that although the use of embedded thermocouple junctions for measuring temperatures in cell ar-foam materials has been the practice in many reported experiments, the approach is unsuitable except within temperature and cell-gas pressure ranges comparable to those maintained in these tests. A catorimetry test method, if compatible with other experimental conditions, would possibly be more reliable.

10.2.2 Compression Test (CPR 200-2, EFS-175, and Stafoam H-1502)

The results of compression tests on three thermal-insulation materials, CPR 200-2, EFS-175, and Stafoam H-1502, are

given in Tables 10.3, 10.4, and 10.5; the stress-strain data are plotted in Figures 10.2, 10.3, and 10.4. Tests were conducted in the Low-Force Tester under both vacuum-control and vacuum-irradiation conditions.

An analysis of the data leads to the conclusion that, for all three materials, the compression strength was reduced as a result of exposure to a combination vacuum and radiation environment. This reduction was in contrast to data obtained in vacuum control tests.

The capabilities of the Low-Force Tester for testing compression specimens are limited. For example, 1.129-in.-diam compression buttons must be used as compared to ASTM-recommended 4-in.-sq blocks. This small specimen size limits the accuracy of data obtained from individual specimens. Also the number of specimens that can be tested in a single loading of the Low-Force Tester is limited, which serves to restrict statistical quality. Because of these factors, the data shown in the tables are considered to be of marginal reliability.

Table 10.2

Thermal Conductivity Test Data

			Thermal Conductivity	ductivity	(Btu-in./hr-ft	:-ft ² -°F)
Test Material	Test Environment	Average Temperature, $(T_1+T_2)/2$	Preir. Control	Ir [at doses	H	lues gs/gm(C)
		(OF)	Value	5(9)	1 {	3(10)
CPR-200-2	Room Air LN2 LH2	+1.06 -275 -410	0.245 0.167 0.458	0.239 0.176 0.416	0.250 0.176	0.179
н-1502	Room Air	+103	0.251	0.240	0.255	
	LN2 LH2	-273	0.170	0.186	0.186	0.202
EFS-175	Room Air	+104	0.234	0.214	0.235	- 0
	LH2	-27.5 -403	0.379	0.261		007.1
CPR 1021-2	Room Air LN2	+ 89 -271	0.411 0.175	0.436	0.442	0.179
	LH2	-405	0.364	0.423	ı	ŧ

Table 10.3

CPR-200-2 Thermal Insulation (Compression Buttons) Summary Table of Test Results

	Avg. Press.	(1001)	760	1.0(-3)	5.0(-7)
	Avg. Temp. (F)		75	75	08
Strength at 25% Compres-		sion (psi)	31.8 31.25 31.5/0.5	39.5 41.2 40.4/1.5	36.8 37.2 37.0/0.4
Time	Uncil Tesc (days)	(6(45)	1	ı	
	2)	E> 8.1 Mev	0	0	1.6(13)
xposure	Neutrons (n/cm^2)	E>2.9 Mev	0	0	4.4(13)
Radiation Exposure	Nei	E < 0.48 ev	0	0	5.1(12)
	Gamma Dose [ergs/gm(C)]		0	0	2.4(8)
t	Tester		Low Force Tester at 0.05 in./min	Low Force Tester at 0.05 in./min	Low Force Tester at 0.05 in./win
Environment	Test		Air	Vac	Vac
Env	Irrad- iation		ı	ı	Vac
Cocioco	Number				•

*Values given as: average value/standard deviation on an individual basis.

Table 10.4

EFS-175 Thermal Insulation (Compression Buttons) Summary Table of Test Results

The was the same of the same o

,	Avg. Press. (torr)		766	1.0(-3)	5.0(-7)	1.4(-6)
•	Avg. Temp.	(g)	75	75	08	125
Strength	Compres-	(isd)	30.5 25.75 28.1/4.2	31.6 33.5 32.6/1.7	28.5 28.3 28.4/0.2	22.4 25.4 23.9/2.7
Time	Test	(44)5)	•	•	•	•
	2)	E> 8.1 Mev	0	0	1.6(13)	1.4(14)
Exposure	Neutrons (n/cm^2)	E>2.9 Mev	0	0	4.4(13)	3.9(14)
Radiation Ex	Net	E<0.43 ev	0	0	5.1(12)	4.5(13)
	Garma Dose [ergs/gm(C)]		0	0	2.4(8)	2.1(9)
rt.	Fester		Low Force Tester at 0.05	low Force Tester at 0.05 in./min	Low Force Tester at 0.05 in./min	Low Force Tester at 0.05 in./min
Environment	Test		Air	Vac	Vac	Vac
Επι	Irrad- iation		ı	1	Vac	Vac
, OOC 0	Specimen Number i					

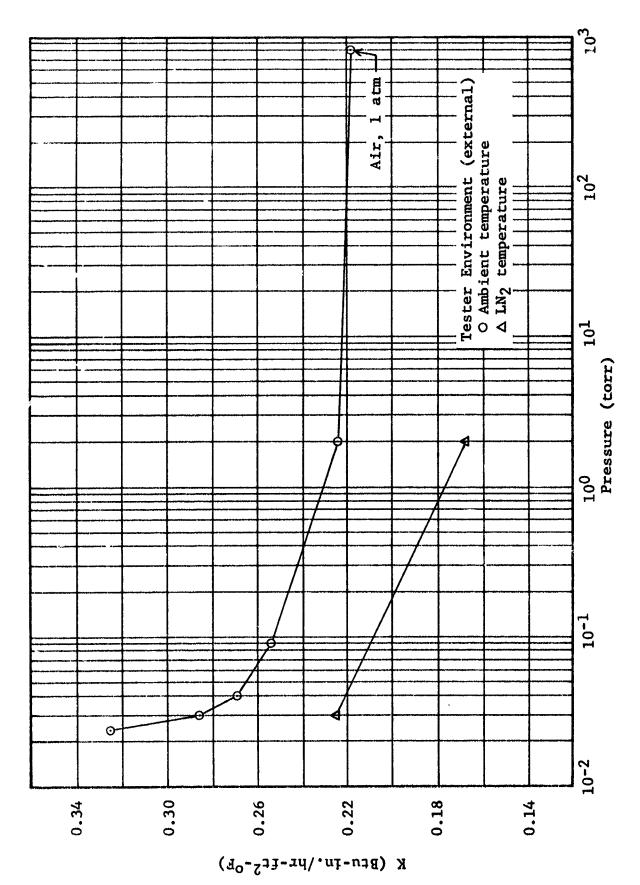
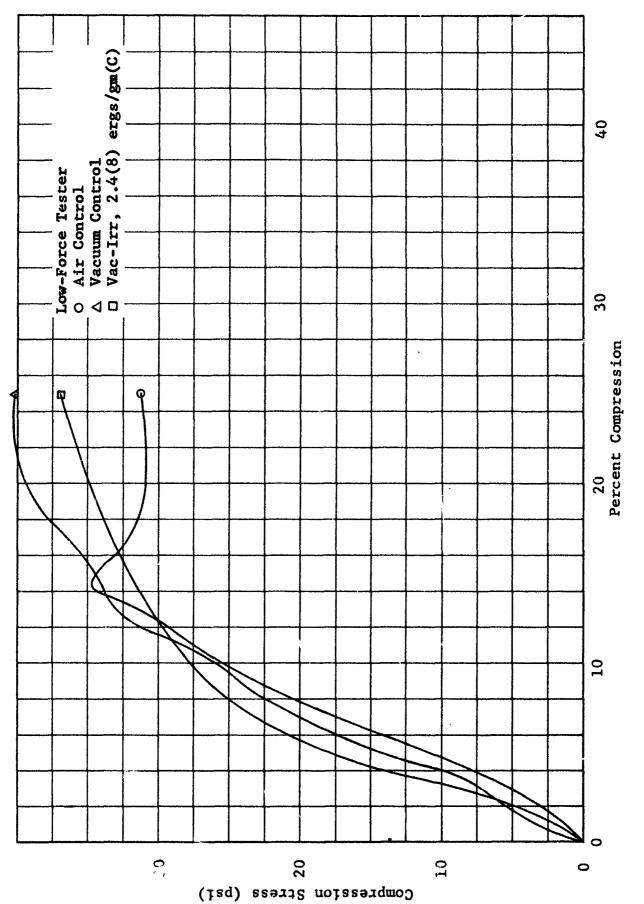
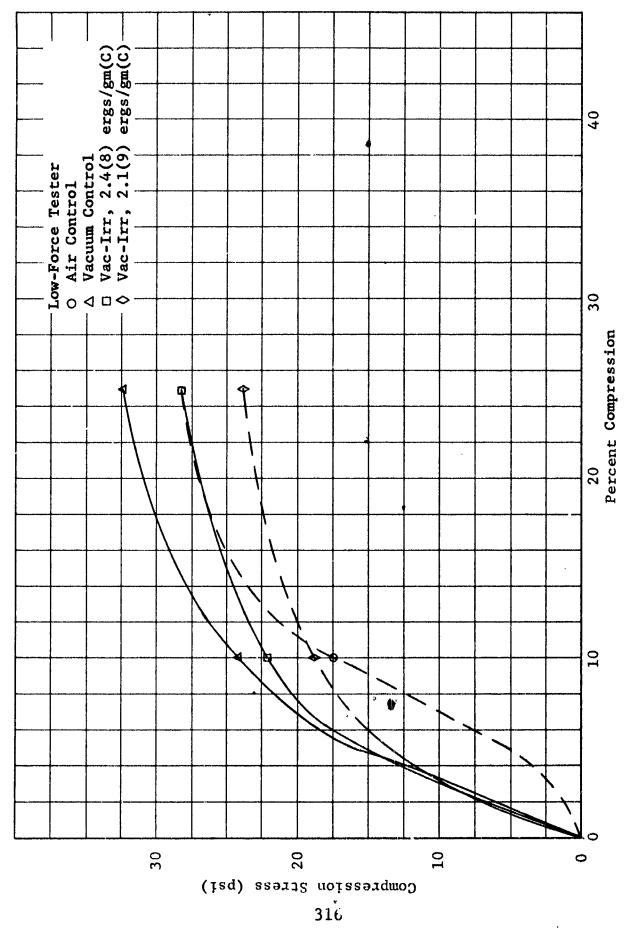

*Values given as: average value/standard deviation on an individual basis.

Table 10.5

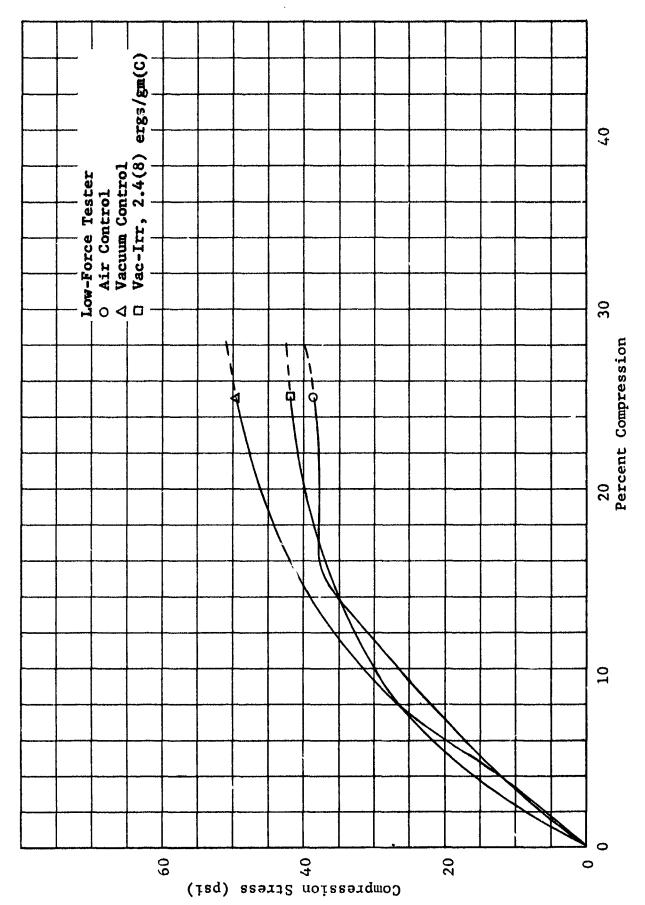
Stafoam H-1502 Thermal Insulation (Compression Buttons)
Summary Table of Test Results


	Avg. Press. (torr)		760	1.0(-3)	5.0(-7)
	Avg. Temp. (F)		75	75	,
Strength	Compres-	(psi)	40.5 36.9 38.7/3.2	53.0 46.5 49.7/5.76	38.0 45.7 41.9/6.8
Time	Until Test	(44)3)	1	•	
	2)	E> 8.1 Mev	0	o	1.6(13)
xposure	Neutrons (n/cm^2)	E>2.9 Mev	0	0	4.4(13)
Radiation Exposure	Ne	E<0.48 ev	0	0	5.1(12)
	Gamma Dose [ergs/gm(C)]		•	•	2.4(8)
ń	Tester		Low Force Tester at 0.05 in./win	Low Force Tester at 0.05 in./min	Low Force Tester at 0.05 in./min
Environment	Hest t		Air	Vac	A A B C
Env	Irrad- iation		ı	1	ე 8 7
i con	Specimen Number i				

*Values given as: average value/standard deviation on an individual bazis.



and the second of the second o


Thermal Conductivity of CPR-200-2 Foam at Various Internal Pressures and Temperatures Figure 10.1

CPR-200-2 Compressive Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests Figure 10.2

EFS-175 Compressive Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests Figure 10.3

Stafoam H-1502 Compressive Stress-Strain Curves: Vacuum Irradiation; Dynamic Tests Figure 10.4

BLANK PAGE

XI. LUBRICANT TEST METHODS AND RESULTS

Material	Type of Test	Environment	Nominal Gamma Dose [ergs/gm(C)]	Motor Speed and Power Input
Almasol SFD-238	Dynamic	Vacuum Control Air Irradiated Vacuum Irradiated	Continuous to 1(10) Continuous to 1(10)	6000 rpm Low Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input
DC-705	Dynamic	Vacuum Control Vacuum Control Vacuum Control Air Irradiated Vacuum Irradiated	Continuous to 1(10) Continuous to 1(10)	6000 rpm High Power Input 3000 rpm High Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input
Duroid	Dynamic	Vacuum Control Vacuum Control		6000 rpm High Power Input 6000 rpm Low Power Input
Electrofilm 66-C	Dynamic	Vacuum Control Vacuum Control		6000 rpm High Power Input 6000 rpm Low Power Input
ETR-H	Dynamic	Vacuum Control Vacuum Control		6000 rpm High Power Input 6000 rpm Low Power Input
FS-1265	Dynamic	Vacuum Control Vacuum Control		3000 rpm High Power Input 6000 rpm Low Power Input
GE F-50	Dynamic	Vacuum Control Vacuum Control		6000 rpm High Power Input 6000 rpm Low Power Input
Kynar (filled)	Dynamic	Vacuum Control Vacuum Control Vacuum Control Air Irradiated Vacuum Irradiated	Continuous to 1(10) Continuous to 1(10)	6000 rpm High Power Input 3000 rpm High Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input
Minapure	Dynamic	Vacuum Control Vacuum Control		3000 rpm High Power Input 6000 rpm Low Power Input
MLF-5	Dynamic	Vacuum Control Vacuum Control		6000 rpm High Power Input 6000 rpm Low Power Input
OS-124	Dynamic	Vacuum Control Vacuum Control Vacuum Control Air Irradiated Vacuum Irradiated	Continuous to 1(10) Continuous to 1(10)	6000 rpm High Power Input 3000 rpm High Power Input 5000 rpm Low Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input
Polymer SP-F	Dynamic	Vacuum Control Vacuum Control Vacuum Control Air Irradiated Vacuum Irradiated	Continuous to 1(10) Continuous to 1(10)	6000 rpm High Power Input 3000 rpm High Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input 6000 rpm Low Power Input

^aGeneral Dynamics developed bearing test method.

XI. LUBRICANT TEST METHODS AND RESULTS

Tests were conducted to determine the operational lubrication performance of several types of oils, greases, solid films, and retainers. The Program Summary table shown at the beginning of this report lists all of the bearing lubricants tested during the three contractual periods in the program (two annual and one biennial), and applicable reports covering each lubricant are referenced. Table 11.1 (facing page) contains a summary of the test conditions, environments, and doses for each lubricant tested under this category in the current period.

The essential parameters measured in the tests are operating time, motor coastdown time, and motor speed during coastdown. The bearings were examined with a binocular microscope after completion of the various tests.

A test plan, outlined below, was devised for each of the environmental conditions:

• Control Run in Vacuum, Low Power Input - The motors were operated in vacuum at the minimum electrical power required to sustain 6000 rpm during the total operating time of the lubricant. Several tests were required to evaluate all of the lubricants selected in the program. Not all lubricants were run to failure.

• Control Run in Vacuum, High Power Input - The motors were operated at full-rated power to phase 1 and minimum power to phase 2 to control the speed. This standard method, recommended by the vendor, proved to generate too much heat for good bearing service.

the to be not been a simple for

- Irradiation in Air, Low Power Input The motors were operated in air for approximately 1½ hr before irradiation, then for 11 hr in air while being irradiated. The reactor was operated at a power level of 500 kw for the first hour, then at 3 Mw for the remainder of the exposure, except when it was stopped for data cycles. After the irradiation, the motors were operated until bearing failure or for a maximum of 787 hr.
- Irradiation in Vacuum, Low Power Input While in an uninterrupted vacuum environment, the motors were operated for 2 hr before irradiation, for 21 hr during reactor radiation, then for 620 hr after irradiation. The reactor was operated at a power level of 500 kw for 1½ hr, then at 3 Mw for the remainder of the exposure, except when it was stopped for data cycles.

The vacuum was maintained at between 10⁻⁶ and 10⁻⁷ torr. The contractual requirement of operating the motors for a minimum of 250 hr during each run was exceeded in every case. The motors were operated to failure, or to the maximum time allowed in the radiation schedule.

The vacuum control tests were conducted on the same lubricant materials as were tested last year (Ref. 3). The same test method was also used. This method, recommended by the vendor of the motors, requires applying full-rated power to phase 1 and adjusting the power to phase 2 to control the speed. This method provided good speed control, but the dissipation of approximately 25 watts of power in the motors generated too much heat. The test results presented in Tables 11.2 and 11.3 show that this power overheated the bearing and resulted in a very short operating life.

A control test was run at 3000 rpm to evaluate the effects of reduced speed on bearing life. These results are presented in the data tables.

The method of operating the motors for the remainder of the test program was altered to provide a lower power input. The voltages to each phase of the motors were set equal and lowered to a minimum value to operate the motors at the desired speed. This method proved to be more efficient, and the motors could be operated at approximately 5 watts. As can be seen in Table 11.2, this increased the operating life of the lubricants.

The results of the bearing-lubricant tests are shown in Figures 11.1 through 11.49 and Tables 11.2 and 11.3. All tests were conducted at low-power input at 6000 rpm, unless otherwise indicated. Bearing failures were considered to have occurred when the servomotors stopped the first time.

A post-test calibration check of the motor field currents reported in Reference 3 showed the meter readings to be in error. The original and corrected values are shown in Table 11.4.

11.1 Almasol SFD-238

والمراوي والمحاوية ويهده ويهده والراقص والمراوي ويها الماري والمحاوي والمراوية

11.1.1 Vacuum Irradiation

One set of bearings lubricated with Almasol operated for 21 hr in a vacuum-radiation environment and for an additional 23 hr in vacuum before failure. Another set of bearings lubricated with Almasol failed prior to irradiation. In Figure 11.1, the very significant decrease in coastdown time prior to failure is evident in the 43-hr-operating-time curve. The temperature rise of the bearings was not significant, but the current required for operation of the servomotors at 6000 rpm almost tripled in value.

Post-test examinations of the bearings revealed the following:

- The bearings were full of debris.
- The bearings were binding in their races.
- The races were worn and pitted.
- Most of the lubricant was worn off.

11.1.2 Air Irradiation

One set of bearings operated for 10 hr in an air-radiation environment and for an additional 335 hr in air before failure.

The other set of bearings operated during irradiation, but only for about 60 hr after irradiation. Figures 11.2 and 11.3 show the speed during coastdown for the two sets of bearings. No significant changes in temperature were observed, but the coastdown times of Motor 11 decreased significantly prior to failure.

Post-test examinations of the bearings revealed the following:

- Considerable debris was in the bearings of Motor 10; one of the bearings was locked; and the retainer was worn in half.
- The bearings from Motor 11 were clean, but the retainers showed considerable wear.

11.1.3 Vacuum Control

·特殊學學學學學學學

One set of bearings (in Motor 9) operated for 410 hr in vacuum before failure, but the other set (in Motor 10) failed after 35 hr (Figs. 11.4 and 11.5). The mode of failure of Motor 9 consisted of a decrease in coastdown time, followed by an increase in coastdown time prior to failure. Examination of both sets of bearings showed that:

- · The bearings were considerably worn.
- · There was no evidence of a lubricant coating remaining.
- The balls and races were pitted.

11.2 <u>DC-705</u>

11.2.1 Vacuum Irradiation

One of the two sets of bearings operated satisfactorily during a 21-hr vacuum irradiation, but failed after only 38 hr of postirradiation operation in vacuum. It was possible, however, to restart this motor (No. 5) and the bearings operated for the duration of the test (644 hr) with only two additional stops. The other set of bearings (in Motor 6) operated without failure during the 21-hr vacuum irradiation, then for 623 hr in vacuum. The curves showing speed during coastdown are given in Figures 11.6 and 11.7. A 622-hr coastdown curve is not shown for Motor 5. It is comparable to the one shown for Motor 6, but had a coastdown time of 2.6 min.

Post-test examination of the bearings revealed the components of all the bearings to be bright and shiny with no signs of wear. Sufficient oil remained in all bearings, but it had turned from the original water-clear color to a straw color. No cause of the operating discrepancy between the two bearing sets was apparent; it is possible that one of the bearings in Motor 5 was a little tight.

11.2.2 Air Irradiation

Both sets of bearings operated without failure for 11 hr in an air-radiation environment, then for 787 hr in air. The speed-during-coastdown curves are shown in Figures 11.8 and 11.9.

Post-test examination of the bearings showed them to be in good condition with sufficient oil remaining and no signs of bearing wear.

11.2.3 Vacuum Control

Both sets of bearings operated for 750 hr in vacuum without failure. The speed-during-coastdown curves, presented in Figures 11.10 and 11.11, show that little change occurred.

Post-test examination of the bearings showed them to be in very good condition with a sufficient amount of lubricant remaining.

11.2.4 Vacuum Control, High Power to Phase 1

Bearing operation was unsatisfactory during tests conducted at 6000 rpm and 3000 rpm with high power to phase 1 of the motors. The two sets of bearings operating at 6000 rpm failed after 22 and 64 hr, and the set operating at 3000 rpm failed after only 2.5 hr.

It is believed that the failures were caused by excessive bearing temperatures that resulted from a rise in the motor

temperatures due to inefficient motor operation (high power to phase 1) and from poor heat transfer due to vacuum insulation.

Post-test examination of the bearings showed that:

 Black, carbon-like deposits were on the inside of the shields, races, and retainers.

- The lubricant had a dark color.
- The bearing races showed excessive wear and the balls and races were pitted.

11.3 Duroid

11.3.1 Vacuum Irradiation, High Power to Phase 1

These tests were condicted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.3.2 Air Irradiation, High Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.3.3 Vacuum Control

These bearings, with Duroid retainers, were operated in vacuum for 437 hr without failure. Very significant increases in coastdown time can be seen from Figures 11.12 and 11.13. The motor field currents decreased from 30 ma to approximately 17 ma for 6000-rpm operation. Post-test examination of the bearings showed them to be in good condition.

11.3.4 Vacuum Control, High Power to Phase 1

These bearings, with Duroid retainers, failed after approximately 1 hr of operation. Significant increases in indicated bearing temperature were observed (75°F to about 140°F). This is in sharp contrast to the continuously cool (65°F) operation in vacuum with low power to the motors.

Post-test examination of the bearings showed some damage.

Failure is believed to have been caused by a combination of wear and unequal expansion of the bearing parts as they became heated.

After failure, the motor could be operated for short periods of time when allowed to cool.

11.4 Electrofilm 66-C

11.4.1 Vacuum Irradiation, High Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.4.2 Air Irradiation, High Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.4.3 Vacuum Control

One set of bearings operated for 437 hr in vacuum without failure, while the other set failed after 145 hr. The coastdown-speed-versus-time curves in Figure 11.14 of the

bearings that failed show that the coastdown time initially increased, then progressively decreased to failure. The curves for the other set of bearings are shown in Figure 11.15. Because of instrumentation difficulties that precluded obtaining coast-down data during the latter portion of the test, curves of coast-down data taken in air before and after the operation-in-vacuum period are also presented in Figure 11.15.

.

The second secon

Post-test examination of the bearings from the motor that failed revealed the following:

· One bearing would not turn.

The state of the same of the s

- Retainers appear to have been dragging on the outer races and were severely worn.
- Severe wear in channels and loss of lubricant occurred in the inner and outer races.
- The balls were rough and pitted.

Post-test examination of the bearings from the motor that was stopped after running 437 hr revealed the following:

- Some wear was evident on the ball pockets of the retainer.
- The dry film was worn through in spots on the outer race.
- The balls showed slight surface roughness.

11.4.4 Vacuum Control, High Power to Phase 1

One set of bearings failed almost immediately in vacuum, and the other set failed after approximately 1 hr of operation.

A significant bearing temperature rise (75°F to about 140°F) was observed. The bearings would operate for a very short period after cooling off; after the test, operation was possible in an air environment. These bearings apparently failed from a combination of bearing wear and bearing seizure due to elevated temperature.

11.5 ETR-H

11.5.1 Vacuum Irradiation, High Power to Phas 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.1 of this report.

11.5.2 Air Irradiation, High Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.1 of this report.

11.5.3 Vacuum Control

The bearings lubricated with this Shell grease operated for 437 hr without failure. Only small changes in the coastdown characteristics occurred, as shown in Figures 11.16 and 11.17. Post-test examination of the bearings showed them to be in very good condition with plenty of grease remaining and no signs of wear.

11.5.4 Vacuum Control, High Power to Phase 1

Both sets of bearings operated for 270 hr without failure.

ETR-H demonstrated the most satisfactory performance of all the lubricants tested under this condition. The speed-during-coastdown curves (Figs. 11.18 and 11.19) show an initial decrease followed by an increase in coastdown times. Post-test examination of the bearings showed them to be in good condition with no signs of wear.

11.6 FS-1265

11.6.1 Vacuum Control

The bearings lubricated with FS-1265 operated for 752 hr without failure. Increases in coastdown time with test duration are shown in Figures 11.20 and 11.21. Post-test examination of the bearings showed them to be in very good condition with sufficient lubricant remaining.

11.6.2 Vacuum Control, High Power to Phase 1

One set of bearings failed after 45 hr, and the other set of bearings failed after 22 hr of operation. Post-test examination showed signs of lubricant deterioration from excessive temperatures, as evidenced by black deposits on the shields and a darkened color of the lubricant.

11.7 GE F-50

11.7.1 Vacuum Irradiation, Aigh Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.7.2 Air Irradiation, High Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.7.3 <u>Vacuum Control</u>, <u>Phenolic Bearing Retainers</u>

Of the two sets of bearings that contained phenolic retainers, one operated for 1000 hr without failure and the coast-down times progressively increased, as shown in Figure 11.22. The other set of bearings failed after operating for 514 hr; the decrease in coastdown time prior to failure is shown in Figure 11.23. Post-test examination of the bearings showed them to be in good condition with no appreciable wear. No cause of failure could be accertained.

11.7.4 Vacuum Control, Standard Ribbon Retainers

Both sets of bearings operated for 437 hr without failure. Little change occurred in the speed-during-coastdown curves, as shown in Figures 11.24 and 11.25. Post-test examination showed the bearings to be in very good condition with sufficient lubricant remaining.

11.7.3 Vacuum Control, - High Power to Phase 1

the was the the few man to the test of the second south a second man and the second

Bearing failures occurred after 13 hr of operation for one set and after 23 hr of operation for the other set (Figs. 11.26 and 11.27). A significant bearing temperature rise (75°F to about 150°F) was observed during operation. After the failures, the bearings would operate for short periods of time after they had cooled. One of the bearing sets would operate satisfactorily in air after the test. Post-test examination of the bearings indicated that the probable cause of failure was a combination of lubricant deficiency and bearing seizure due to the elevated temperature.

Visual inspection of the motor that operated for 14 hr revealed that:

- A black carbon-like deposit was visible throughout the bearings.
- The balls were worn and pitted.

Visual inspection of the motor that operated for 23 hr revealed that:

- · Very little lubricant was left in the bearings.
- The balls were clean and bright and showed no signs of wear.

11.8 Kynar (filled)

11.8.1 Vacuum Irradiation

One set of bearings with Kynar retainers operated for 644 hr without failure; this included 21 hr of initial operation in a radiation environment. The other set of bearings, however, failed after only 6 hr of postirradiation operation for a total of 27 hr. The speed-during-coastdown curves are shown in Figures 11.28 and 11.29.

Post-test examination of the bearings that failed revealed the following:

- · Considerable debris was in the bearings.
- · The outside races were pitted and worn.
- · The inner races were worn, discolored, and rough.
- The balls were pitted, discolored, and covered with black film.

The bearings that did not fail were similar in appearance, but had suffered less damage. The indicated maximum bearing temperature of $100^{\circ}F$ was not excessive.

11.8.2 Air Irradiation

One set of bearings operated without failure for 10 hr in an air-radiation environment followed by 788 hr of postirradiation operation. The other set of bearings operated during the 10-hr

operation. The speed-during-coastdown curves are shown in Figures 11.30 and 11.31. The field currents of the motor associated with the bearings that failed increased from an initial 43 ma to 57 ma prior to failure; this was in sharp contrast to a decrease of from 44 to 40 ma for the motor containing the bearings that did not fail. The maximum indicated bearing temperature was 99°F.

Post-test examination of the bearings that failed revealed the following:

- The bearings were full of debris.
- The races were worn and pitted.
- The balls had a surface roughness and dark-brown material adhering to them.

The bearings that did not fail appeared to be in fairly good condition in all respects.

11.8.3 Vacuum Control

and the second section of the second section is the second section of the second section of the second section section is a second section of the second section secti

One set of bearings operated for 2014 hr without failure, while the other set failed after 827 hr of operation. The curves of coastdown speed versus time are shown in Figures 11.32 and 11.33. Considerable variation in coastdown times is evident.

There is no evident cause of failure for the bearings retainers that operated for 827 hr. These bearings were worn to

about the same degree as the set that operated for 2014 hr without failure. The wear in the retainers was in the ball pockets, the original round shape having been worn into an oval shape. The performance of the bearings that did not fail was better from the start than those that failed.

11.8.4 Vacuum Control, High Power to Phase 1

Both sets of bearings failed after only 1½ hr of operation. Cause of failure was attributed to excessive localized heating of the bearings, which caused the Kynar retainers to soften. The failure of the Kynar was very evident upon post-test examination of the bearings.

11.9 Minapure

11.9.1 Vacuum Control

Both sets of bearings operated for 1000 hr without failure. Typical speed-during-coastdown curves are shown in Figures 11.34 and 11.35. These curves show the increases in coastdown times as the test progressed. Post-test examination of the bearings showed them to be in very good condition with no evident loss of lubricant.

11.9.2 Vacuum Control, High Power to Phase 1

One set of bearings failed after 20 hr of operation, while the other set failed after 65 hr. Cause of failure is attributed of the bearings. Post-test examination of the bearings showed the lubricant to be very coarse in texture, resembling fine white sand. 11.10 MLF-5

11.10.1 Vacuum Irradiation

The the total and the same that the same is the same of the same o

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.10.2 Air Irradiation, High Power to Phase 1

These tests were conducted in the previous period (Ref. 3).

The results are summarized in Table 11.2 of this report.

11.10.3 Vacuum Control

One set of bearings operated for 437 hr without failure, while the other set failed after 342 hr of operation. Typical speed-during-coastdown curves are shown in Figures 11.36 and 11.37. Because of instrumentation difficulties that occurred with Motor 6 during the latter half of the test in vacuum, curves of coastdown data taken in air before and after the vacuum run are also shown in Figure 11.36.

Initial operation of the bearings that failed was not as good as the other set of bearings, and the field currents of the motor (No. 5) containing the bearings that failed increased from

25 to 38 ma. Post-test examination of these bearings revealed the following:

- · One of the bearings had seized.
- A considerable amount of debris was in the bearings.
- The races and retainers were slightly pitted.
- Most of the dry-film lubricant appeared to have worn off.
- · The balls had a slight surface roughness.

11.10.4 Vacuum Control, High Power to Phase 1

One set of bearings failed after 4 hr of operation and the other set after 1 hr. The indicated bearing temperatures rose rapidly from 75°F to 150°F. After the failures, it was possible to operate the bearings for short periods of time after they had cooled. After the test, it was possible to operate the bearings in air.

The cause of the failures is attributed to bearing seizure caused by excessive localized heating and wear of the solid-film lubricant. Post-test examination of the bearings revealed the following:

- The bearings were full of debris.
- · The balls were very rough.
- The outside races were rough.

11.11 OS-124

11.11.1 <u>Vacuum Irradiation</u>

This polyphenyl-ether lubricant demonstrated outstanding performance. Both sets of bearings operated for 644 hr without failure. The initial 21 hr of operation was in a vacuum-radiation environment followed by 623 hr in vacuum. Typical speed-during-coastdown curves are shown in Figures 11.38 and 11.39. Post-test examination of the bearings showed them to be in very good condition with sufficient lubricant remaining in the bearings.

11.11.2 Air Irradiation

Both sets of bearings operated for 10 hr in an air-radiation environment followed by 788 hr of operation in air without failure. Some typical speed-during-coastdown curves are shown in Figures 11.40 and 11.41. Post-test examination of the bearings showed them to be in very good condition with sufficient lubricant remaining in the bearings.

11.11.3 Vacuum Control

Both sets of bearings operated for 752 hr without failure. Typical speed-during-coastdown curves are shown in Figures 11.42 and 11.43. The coastdown times of Motor 3 were significantly higher than those of Motor 4; this is attributed, at least partly,

to the larger quantity of lubricant remaining in the bearings of Motor 3. Post-test examination of the bearings showed them to be in very good condition.

11.11.4 Vacuum Control, High Power to Phase 1

Both sets of bearings operated satisfactorily for 92 hr at 6000 rpm, after which they were operated at 3000 rpm to failure.

Failure occurred after 9 hr for one set and 16 hr for the other.

The cause of the failures is attributed to excessive localized heating and lubricant deterioration. The indicated bearing temperatures rose rapidly to approximately 150°F. Post-test examination of the bearings showed the existence of black deposits and a darkened color of the lubricant.

11.12 Polymer SP-F

11.12.1 Vacuum Irradiation

Both sets of bearings operated satisfactorily in a vacuumradiation environment for about 22 hr. In vacuum, after the
irradiation, one set of bearings failed after 119 hr and the
other set failed after 47 hr of operation. Very significant decreases in coastdown time can be seen from the typical curves
shown in Figures 11.44 and 11.45.

Post-test examination of the bearings revealed the following:

- The bearings were full of debris.
- · The retainers were worn completely through.
- The races showed considerable wear and pitting.

 Indicated bearing temperatures during the test were about 105°F or less.

11.12.2 Air Irradiation

Both sets of bearings operated for 798 hr without failure. The initial 11 hr was in an air-radiation environment, followed by 787 hr of postirradiation operation. Speed-during-coastdown curves are shown in Figures 11.46 and 11.47. Post-test examination of the bearings revealed the following:

- · The bearings showed some wear.
- · The bearings contained some debris.
- The races showed a small amount of pitting.

11.12.3 Vacuum Control

One set of bearings operated for 420 hr without failure, and the other set failed after 255 hr of operation. The speed-during-coastdown curves presented in Figures 11.48 and 11.49 show increases in coastdown times followed by decreases prior to failure. The maximum indicated bearing temperature was about 90°F. Post-test examination of the bearings revealed the following:

- The retainer ball pockets were severely worn by as much as three-fourths of the distance to the next pocket.
- · The balls were only slightly pitted.
- The races were worn a negligible amount.

11.12.4 Vacuum Control, High Power to Phase 1

During the 6000-rpm operation, one set of bearings failed after 37 hr of operation, and the other set failed after 64 hr. During the 3000-rpm operation, one set of bearings failed after only $3\frac{1}{2}$ hr, while the other set operated for 72 hr prior to failure.

Post-test examination of the bearings containing the Polymer SP-F retainers revealed the following:

- The ball pockets were heavily worn.
- Black powder was highly concentrated on the inner and outer races.
- The outer races were worn excessively.
- The balls were worn and the races were channeled.
- · Plastic and copper adhered to the balls.

It is believed that the failures were caused by the flaking off of small pieces of the retainer, which finally jammed the bearing. The bearings experienced a significant temperature rise, from 75° F to about 140° F.

11.13 General Discussion of Results

The polyphenyl-ether lubricant OS-124 demonstrated outstanding performance. No failures occurred in either air or vacuum environments during or after irradiation to gamma doses of about 1 x 10¹⁰ ergs/gm(C). Test durations were approximately 800 hr in air and 650 hr in vacuum. A 750-hr control run in vacuum was also satisfactorily completed.

The bearings lubricated with the silicone fluid DC-705 demonstrated superior performance, even though one set of bearings failed shortly after the vacuum-radiation 1 do. It was possible to restart the motor that failed and operate the bearings for the duration of the test. The other set of bearings operated without failure for about 650 hr and received a gamma dose of about 1 x 10 do ergs/gm(C). No failures occurred during or after air-environment testing to a gamma dose of about 1 x 10 do ergs/gm(C) and a postirradiation-test duration of about 800 hr. Two other sets of bearings operated for 750 hr without failure during a vacuum control run.

The vacuum control tests conducted with high power to phase 1 of the motors indicate that failures observed previously (Ref. 3) during vacuum-radiation tests were probably caused by excessive localized heating. With the exception of the Shell

grease ETR-H, the bearing failure times for the vacuum control runs were all less than the vacuum-radiation failure times. The bearings lubricated with ETR-H probably failed from a combination of radiation damage and overheating of the motors. The bearings operated for 270 hr in vacuum without failure, but failed in approximately 25 hr during the vacuum-radiation test. Two sets of bearings also operated without failure for 200 hr during the air-radiation test. A similar situation occurred during tests of bearings with Polymer SP-F retainers, which were conducted with low power to phase 1 of the motors. These bearings operated in air for about 800 hr without failure after being irradiated, but failed after an average time of only 105 hr during the vacuum-radiation test. In addition, they failed after an average time of 337 hr during the vacuum control test.

Table 11.2 Bearing Lubricant Test Results

		Operating	Time (hr)		Gamma [ergs/	Doseg gm(C)]
Lubricant	Vacuum (Control		_		
	High Input	Low Input	Air ^f Irradiated	Vacuum ^f Irradiated	Air Irradiated	Vacuum Irradiated
Almasol SFD-238		410F 35F	345 F 70 F	0 F 44 F	6.7(9) 6.0(9)	0 6.8(9)
DC-705	22 F 67 F 2.5F ^a	752 752	798 798	59 F 644	6.7(9) 6.0(9)	7.6(9) 6.8(9)
Duroia	1 F 1 F	437 437	23.95F ^b 61.87F ^b	10.6F ^b	1.1(10) 1.1(10)	1.8(9)
Electrofilm 66-C	0 F 1 F	168F 437	26.48F ^b	7.3F ^b 7.4F ^b	1.1(10) 1.1(10)	6.3(8) 6.6(8)
ETR-H	270 270	437 437	200 ^b 200 ^b	29.6F ^b 21.1F ^b	1.1(10) 1.1(10)	1.1(10) 6.3(9)
FS-1265	45 F ^a 22 F ^a	752 752				
GE-F50	23 F 13 F	514F ^e 1000 ^e 437 437	25.15F ^b 48.20F ^b	20.9F ^b 15.5F ^b	1.1(10) 1.1(10)	6.1(9) 3.0(9)
 Kynar 	1.5F 1.5F 0.9F ^a	2014 ^c 827F	393 F 798	27 F 644	6.7(9) 6.0(9)	4.6(9) 6.8(9)
Minapure	20 F ^a 64.5F ^a	1000 1000				
MLF-5	' F	342F 437	75.67F ^b 82.51F ^b	21.0F ^b	1.1(10) 1.1(10)	6.2(9)
os-124	9 F ^d 16 F ^d 92 92	752 752	798 798	644 644	6.7(9) 6.0(9)	7.6(9) 6.8(9)
Polymer SP-F	71.5F ^a 3.5F ^a 64 F 37 F	255F 420F	798 798	141 F 69 F	6.7(9) 6.0(9)	7.6(9) 6.8(9)

fire or consumption of

g Total dose at failure or at end of irradiation

a Operated at 3000 rpm
b High power to phase 1
c Includes 300 hr. at 10,000 rpm
d Operated at 3000 rpm after 92 hr. at 6000 rpm

² Phenoli: retainer

f faiture denoted by: F

Table 11.3

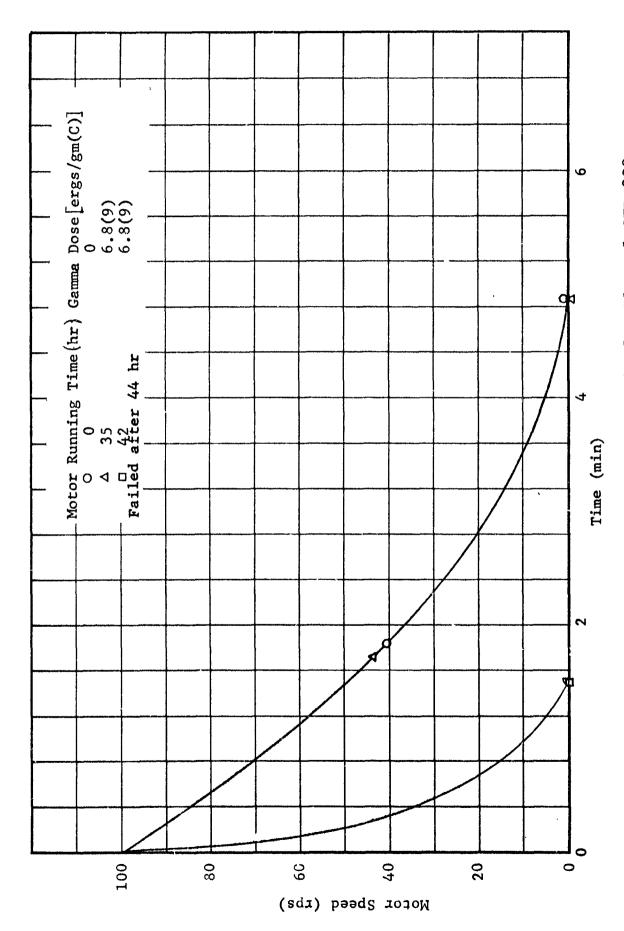
Summary of Bearing Lubricant Test Data

<u>.</u>	H H	~ ~ ~			0			
Play k 10°	After Test	11.7	3.6	· · · · · · · · · · · · · · · · · · ·	3.0	33.27		3.4 1.0
End fn.)	Before Test	3.8 4.0 1.1	33 33 35 37.62 00		3.4 3.4 3.5	3.4 1.5 1.5	kugagin nepunun penuntakkan	3.2 3.7 1.8 1.6
Play 10-4	After Test	4 E 4 E	ဆမာဇာ	4.5 5.4 4	6.5 6 10 12	10 9 10 10		6 11 9
Radial Play in. x 10-4	Before Test	17 3 14 18	2-5 2-5 7 7 6	8 9 3.5 7	11 10 5.5 5.5	α ν.ν.ν ν.ν.ν.		04 L N
n X	Temp (°F)	87 91 98 92	93 90 89 117 75 99 110 101	135 137 63 63	138 138 63 86	146 150 68 68	113 98 147 130	92 93 142 150 66
Final	(B.B.)	n) 38 60 41	78 31 15 80 57 78	30 37 19 16	30 24 24	38.33	11 28 28 5	19 16 33 33 29
E	(F)	22 38 diation) 56 37 41	78 70 156 143 199 40 57 88	200 200 19 16	cuum Run) 200 52 24	200 39 34	113 54 198 180	19 16 200 200 33
Initial	(na)	18 39 24 38 41	71 68 29 15 53 56 74 76	30 37 32 31	to Vacu 30 35 34	30 27 36 36	61 61 61	47 41 29 34 34
Int	(m)	40 39 rior to 24 37 40	71 68 156 139 198 43 50 78	200 32 31	Prior to 200 35 35 34	200 34 36	95 60 224 206	47 41 200 200 34 33
Coast-	Time (min)	8.71 6.70 (Failed P. 1.51 1.40	1.32 1.29 1.17 0.27 1.66 1.65 1.14	0.65 0.40 6.30 10.20	(Failed F 0.65 1.13 5.53	1.65 2.00 2.60 2.70	0.80 1.88 0.20 0.43	3.14 5.65 2.05 0.65 3.50 4.23
Initial Coast-	Time (min)	5.23 4.10 4.87 3.69 3.73	1.33 1.02 2.00 0.73 1.33 2.20 1.52 1.52	0.65 0.40 1.30 2.20	0.65 2.45 2.85	1.60 1.80 1.80 2.35	0.90 1.10 0.83 0.60	2.12 2.10 2.20 3.30 3.20
g g	Time (hr)a	410F 35F 0 44F 345F 70F	752 752 22F 67F 2.5F 59F 644 798	1F 1F 437 437	0 1F 145F 438	270 270 437 437	752 752 45F ^C 22F ^C	514F 1000 25F 14F 437 437
Snec	No.	панана	-0-0-10-0-0	1212	H 2 H 2	1010	- 2 - 2	1 2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
₽- 6-	Method	Low Power Low Power Low Power Low Power Low Power Low Power	Low Power Low Power High Power High Power High Power Low Power Low Power Low Power Low Power	High Power High Power Low Power Low Power	High Power High Power Low Power Low Power	High Power High Power Low Power Low Power	Low Power Low Power High Power High Power	Low Power Low Power High Power High Power Low Power Low Power
Environment		Vacuum Control Vacuum Control Vacuum Irradiated Vacuum Irradiated Air Irradiated	Vacuum Control Vacuum Control Vacuum Control Vacuum Control Vacuum Control Vacuum Irradiated Vacuum Irradiated Vacuum Irradiated Air Irradiated	Vacuum Control Vacuum Control Vacuum Control Vacuum Control	Vacuum Control Vacuum Control Vacuum Control Vacuum Control	Vacuum Control Vacuum Control Vacuum Control Vacuum Control	Vacuum Control Vacuum Control Vacuum Control Vacuum: Control	Vacuum Control Vacuum Control Vacuum Control Vacuum Con. rol Vacuum Control Vacuum Control
Lubricant		Almasol SFD-238	DC-705	Duroid	Electrofilm 66-C	ЕТК-Н	FS-1265	GE-F50

7

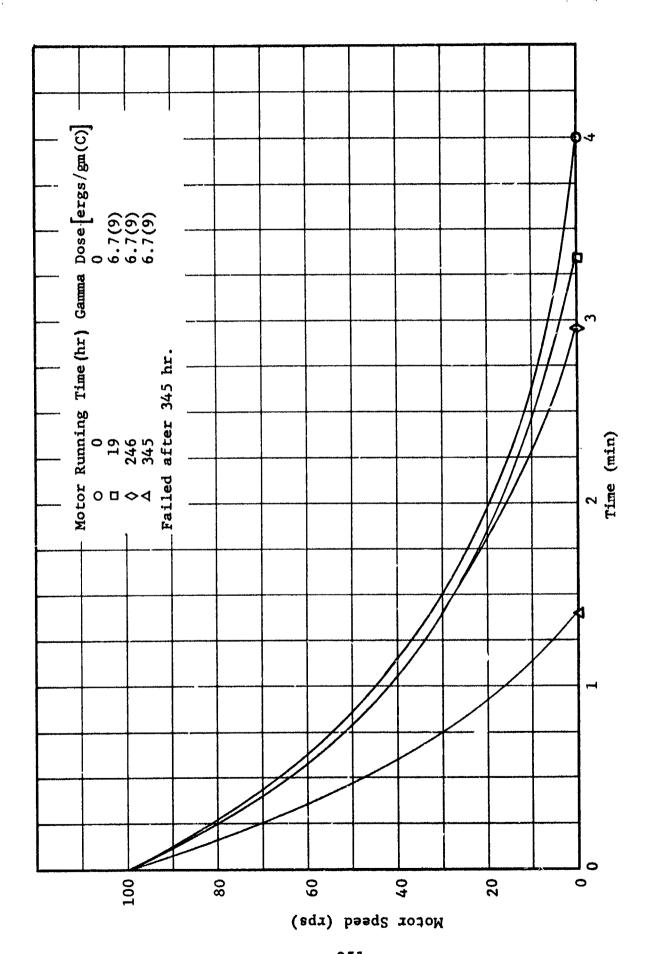
	<u> </u>					
Play x 10-3	After Test			6.0 8.0 4.0	0.0 3.6 3.6	
End 1 in. x	Before Test			4.1 3.0 4.3	3.55 2.88 1.88 1.88	
l Play 10-4	After Test	22 18 28 15		12 9 14 20	8977	24 7 18 12
Radial in. x	Before Test	7-11 7-11 9 13 7 20		12 9 11 10	21-2 23-5 33-5 8	7-11 7-11 5 5 5 10
ا و ع	·····	87 87 93 94 96 100 96	93 94 98	153 75 67 66	99 92 105 102 115 115 97	90 90 100 70 81 72 101 109 95
م	(ma)	11. 20 48 48 22 35 57 60	50 55 19 19	38 38 22 38 38	107 90 69 74 74 65 110 88	35 117 118 118 115 115 42 42 42
Final	(mg)	11 20 144 138 22 22 35 56	50 55 176 187	200 200 22 22	107 90 184 180 74 65 110	35 17 189 216 139 131 52 88 38 42
Initial	(mg)	21 25 48 40 40 44	24 54 54 54	35 28 25 20	115 71 60 66 81 82 86	230 230 300 244 244 244 244
In	æ	21 25 149 142 30 40 43	32 41 210 211	200 200 25 20	15 138 138 84 61 86	30 23 208 208 138 152 36 44 44 58
Coast-	Time (min)b	15.45 5.81 6.01 1.23 9.10 3.30 2.05 2.05	3.45 2.73 1.03 0.67	3.05 4.10 2.90 7.30	0.47 0.77 0.37 0.46 0.65 1.10 0.29	2.10 0.63 3.42 0.60 6.36 0.97 0.40
Initial Coast-	gown Time (min)	2.13 3.06 6.01 1.23 3.42 1.31 2.63	3.20 2.59 0.83 0.93	3.05 4.10 3.85 5.60	0.46 1.22 0.63 0.40 0.47 0.76 0.50	2.23 2.70 2.43 3.59 3.59 3.00 4.86 3.10
ë	Time (hr) ^a	2014 827F 1.5F 1.5F 27F 644 393F	1000 1000 20F ^C 65F ^C	4F 1F 342F 437	752 752 101F 108F 644 644 798	255F 419F 72F 3.5F 64F 37F 141F 69F 798
Spec	No.	1e 2 1 2	4242	7777	7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2121212
E-		Low Power Low Power High Power Low Power Low Power Low Power Low Power Low Power	Low Power Low Power High Power High Power	High Power High Power Low Power Low Power	Low Power Low Power High Power Low Power Low Power Low Power Low Power Low Power	Low Power Low Power High Power High Power High Power Low Power Low Power Low Power Low Power Low Power
Fourtrament	ZIIA TEOUMENT	Vacuum Control Vacuum Control Vacuum Control Vacuum Control Vacuum Irradiated Vacuum Irradiated Air Irradiated Air Irradiated	Vacuum Control Vacuum Control Vacuum Control Vacuum Control	Vacuum Control Vacuum Control Vacuum Control Vacuum Control	Vacuum Control Vacuum Control Vacuum Control Vacuum Irradiated Vacuum Irradiated Air Irradiated	Vacuum Control Vacuum Control Vacuum Control Vacuum Control Vacuum Control Vacuum Control Vacuum Irradiated Vacuum Irradiated Air Irradiated
tracional traces	Luvileant	Kynar	Minapure	MLF-5	0S-124	Polymer SP-F

eIncludes 300 hr at 10,000 :pm Last 9 hr of operation at 3000 rpm Blast 16 hr of operation at 3000 rpm

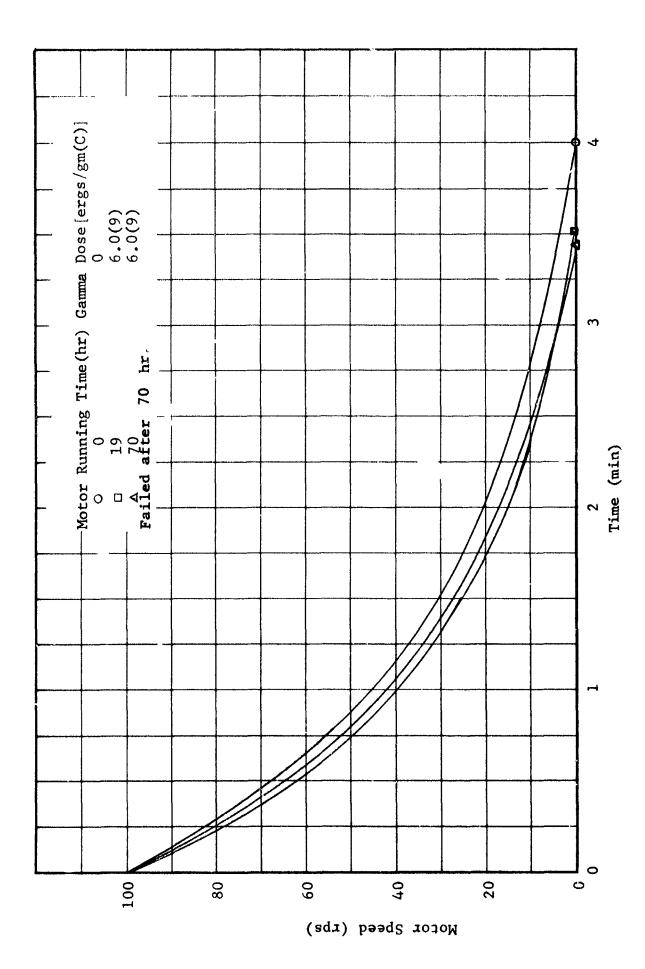

ί.

^aFailure denoted by: F blust before failure, or at end of test coperated at 3000 rpm ^dPhenolic retainer

Table 11.4


Field Current of Servomotors During a Bearing Lubricant Test

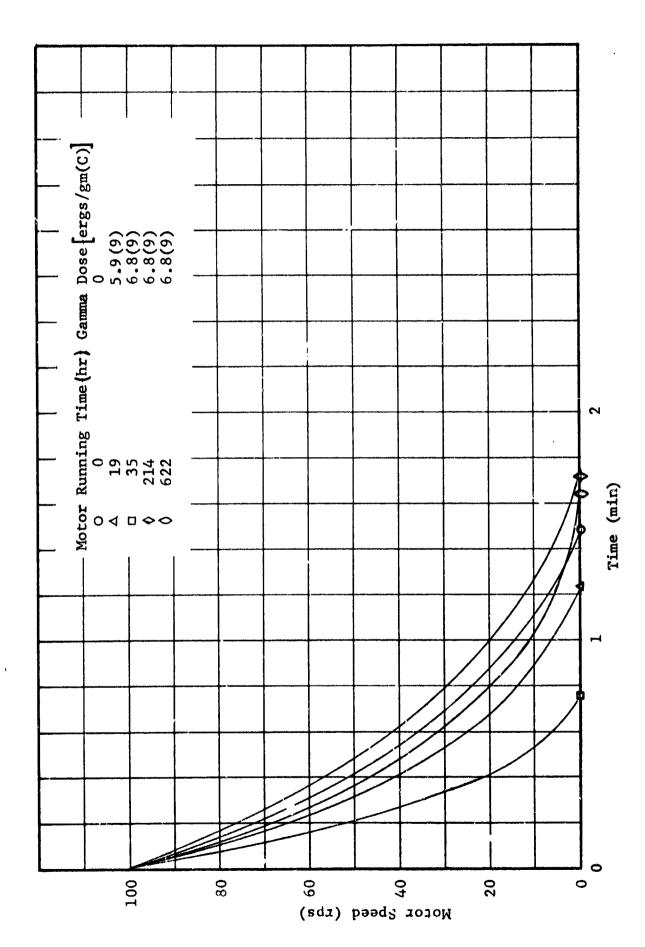
Run No.				Fiel	Field Current (ma	ent (n	ıa)			
and					Motor	. No.				
Field Winding	1	2	3	4	5	9	7	8	6	10
Run 7										
se I	120	132	150	132	132	132	129	0	156	1
Phase I (Corrected)	154	169	192	169	169	169	165	8	200	
Phase II (Original)	39	45	45	36	4,5	45	42	8 0 8		; !
Phase II (Corrected)	20	28	58	95	28	58	54		65	
Kun 9 Phase I (Original)	138	150	141	135	150	150	144	147	162	150
Phase I (Corrected)	177	192	180	173	192	192	184	188	207	192
Phase II (Original)	51	54	54	45	51	54	54	51	57	54
Phase II (Corrected)	65	63	69	28	65	69	69	65	73	69



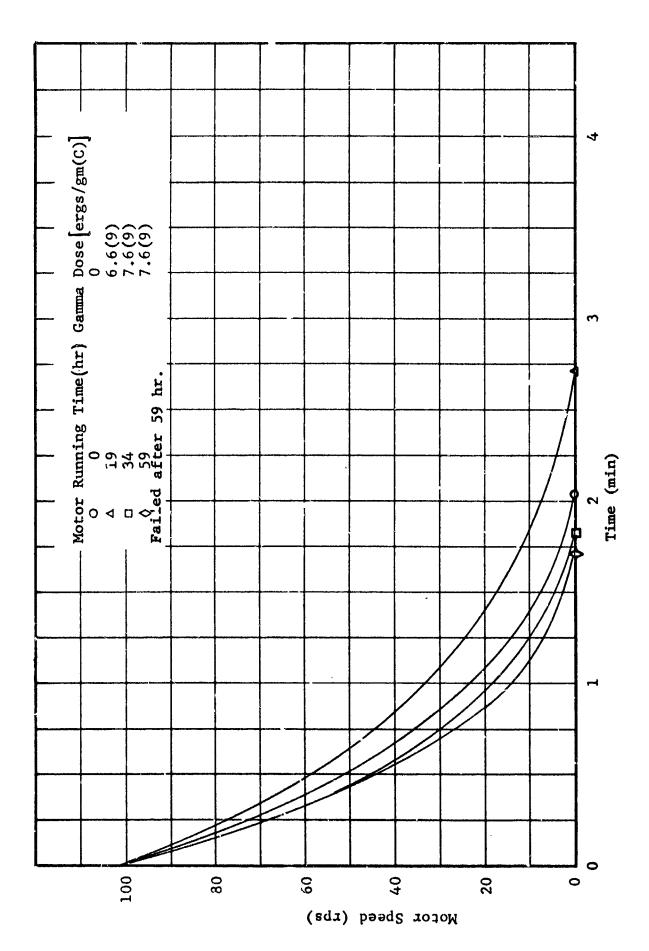
a sittle to the wind of the continue of the

Speed During Coastdown of Motor 10 for Almasol SFD-238: Vacuum Irradiation (Low Power to Phase 1) Figure 11.1

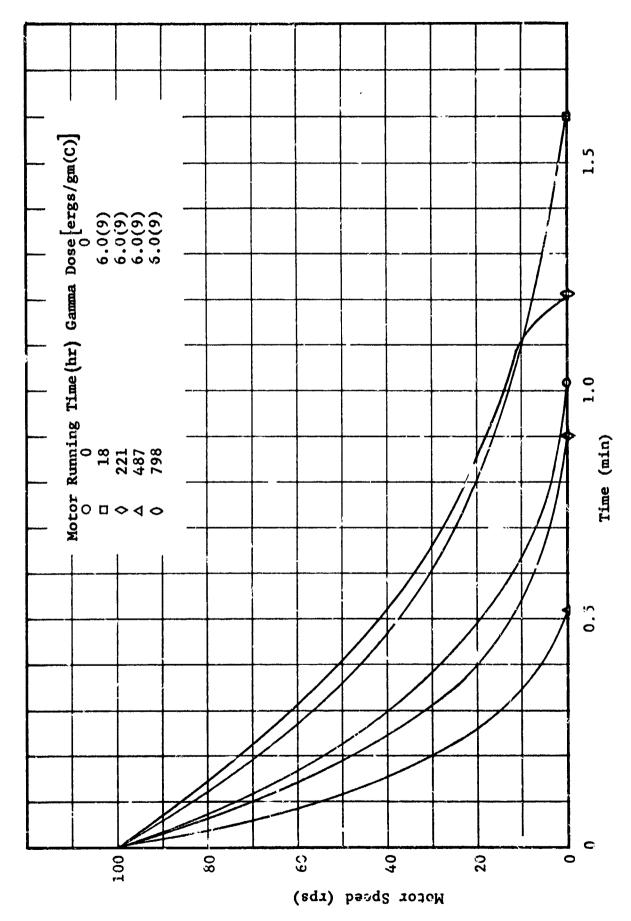
Speed During Coastdown of Motor 11 for Almasol SED-238: Air Irradiation (Low Power to Phase 1) Figure 11.2

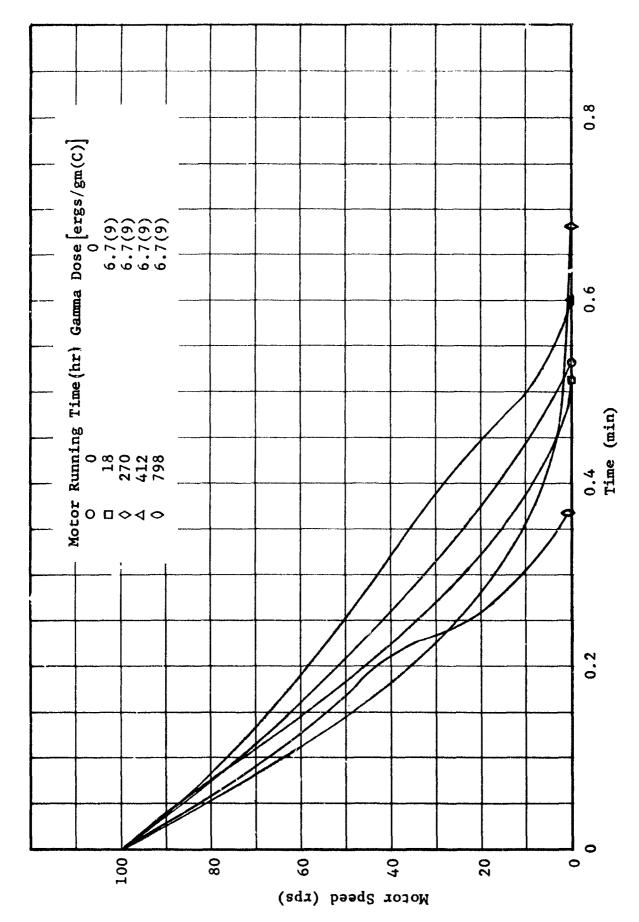


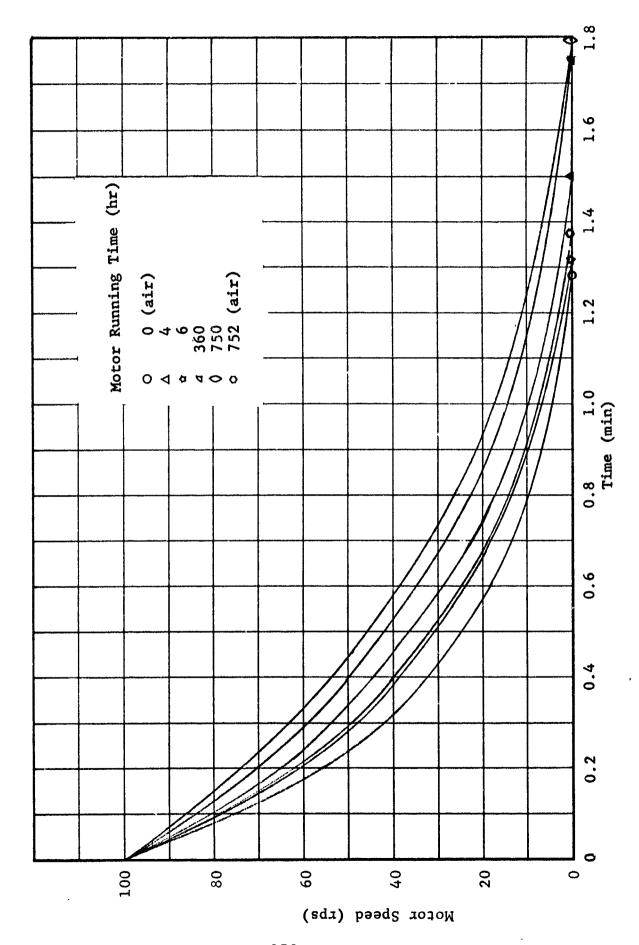
Speed During Coastdown of Motor 10 for Almasol SFD=238: Air Irradiation (Low Power to Phase 1) Figure 11.3

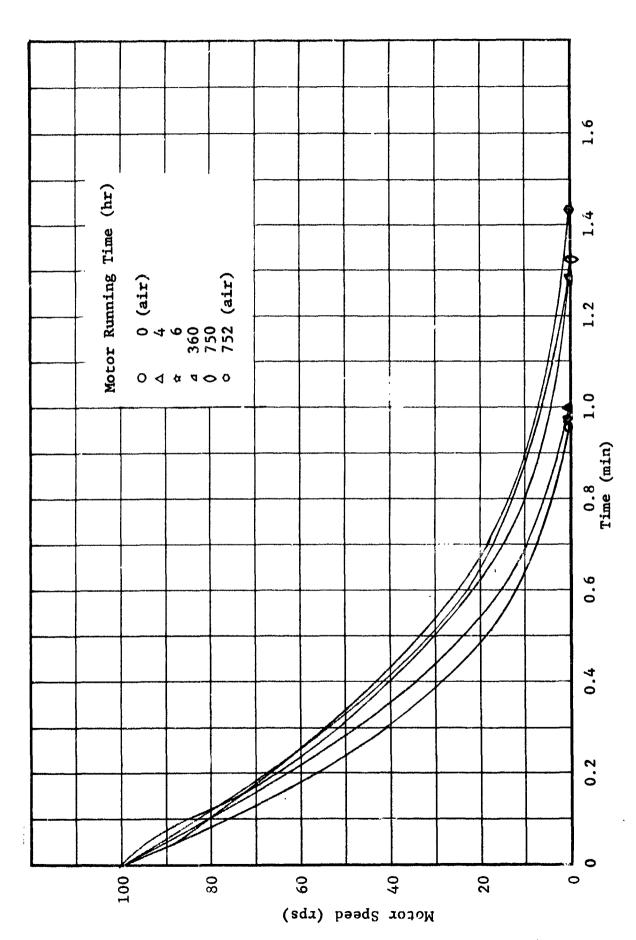

Speed During Coastdown of Motor 9 for Almasol SFD-238: Vacuum Control (Low Power to Phase 1) Figure 11.4

are should be designed that I have a

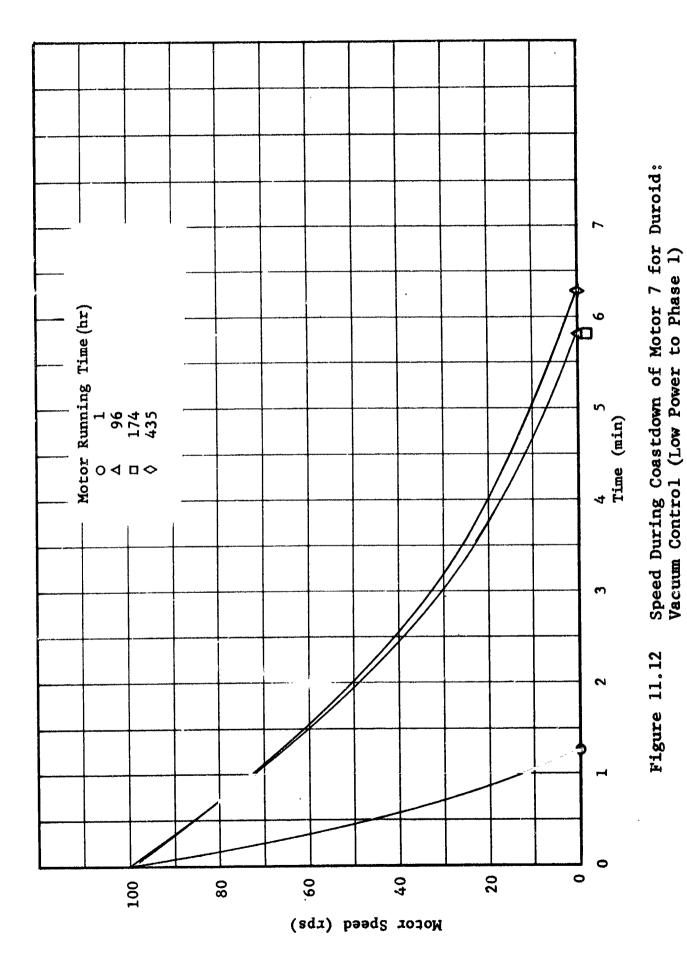

Speed During Coastdown of Motor 10 for Almasol SFD=238; Vacuum Control (Low Power to Phase 1) Figure 11.5


Speed During Coastdown of Motor 6 for DC-705: Vacuum Irradiation (Low Power to Phase 1) Figure 11.6


Speed During Coastdown of Motor 5 for DC-705; Vacuum Irradiation (Low Power to Phase 1) Figure 11.7


Speed During Coastdown of Motor 6 for DC-705; Air Irradiation (Low Power to Ph se 1) Figure 11.8

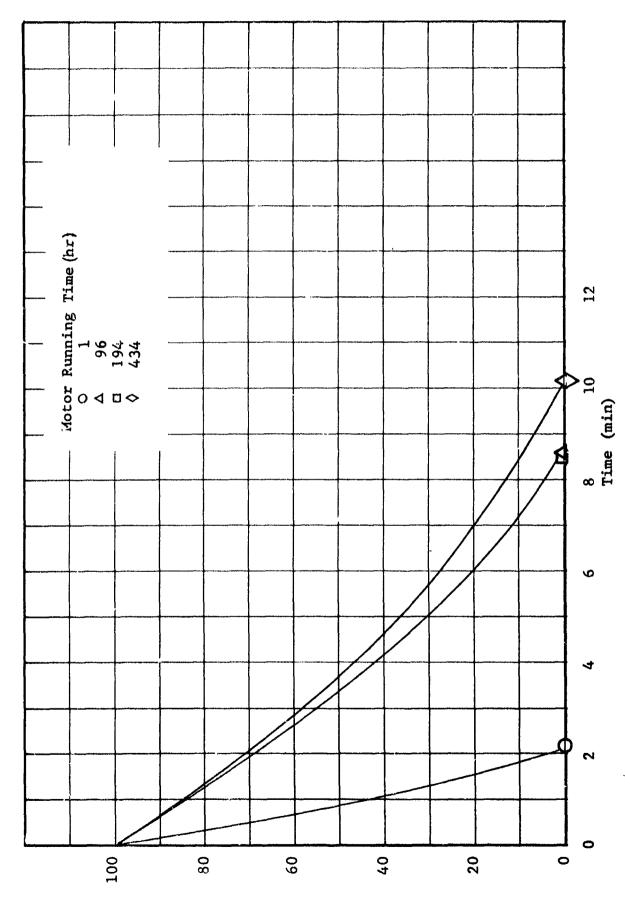
Speed During Coastdown of Motor 5 for DC=705: Air Irradiation (Low Power to Phase 1) Figure 11.9



Speed During Coastdown of Motor 8 for DC-705: Vacuum Control (Low Power to Phase 1) Figure 11.10

いうなおおはないないのでは、 海がないていか しゅうしょうしい

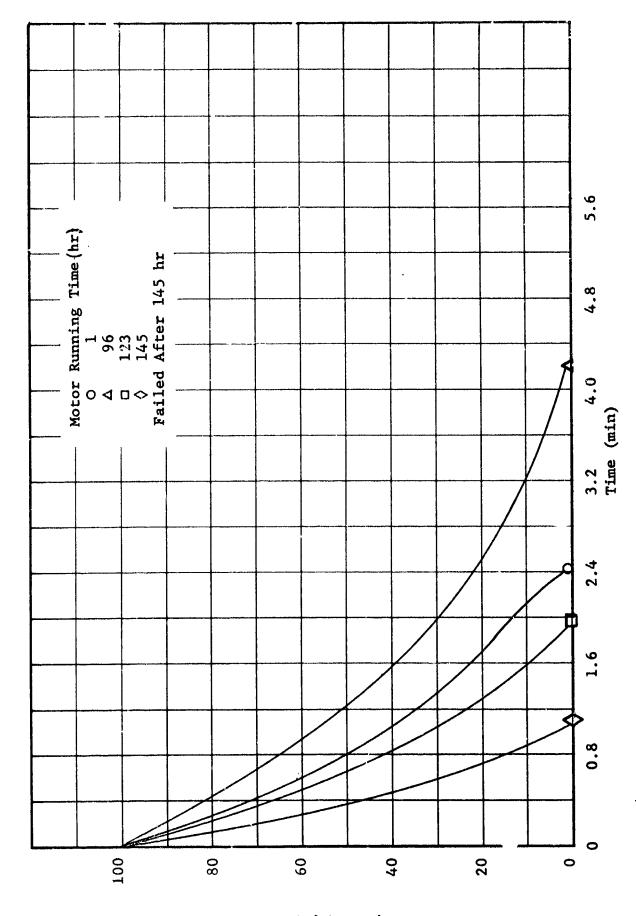
Speed During Coastdown of Motor 11 for DC-705; Vacuum Control (Low Power to Phase 1) Figure 11.11



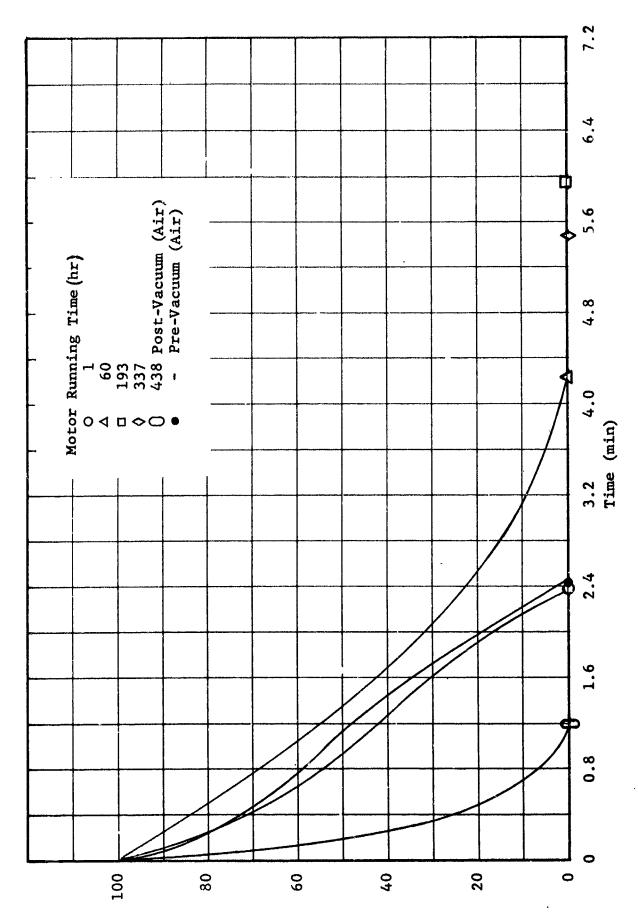
AND THE PROPERTY OF THE PARTY O

THE STATE OF THE PERSON OF THE

Lago, - after early to fresh differ the british was sent on the


361

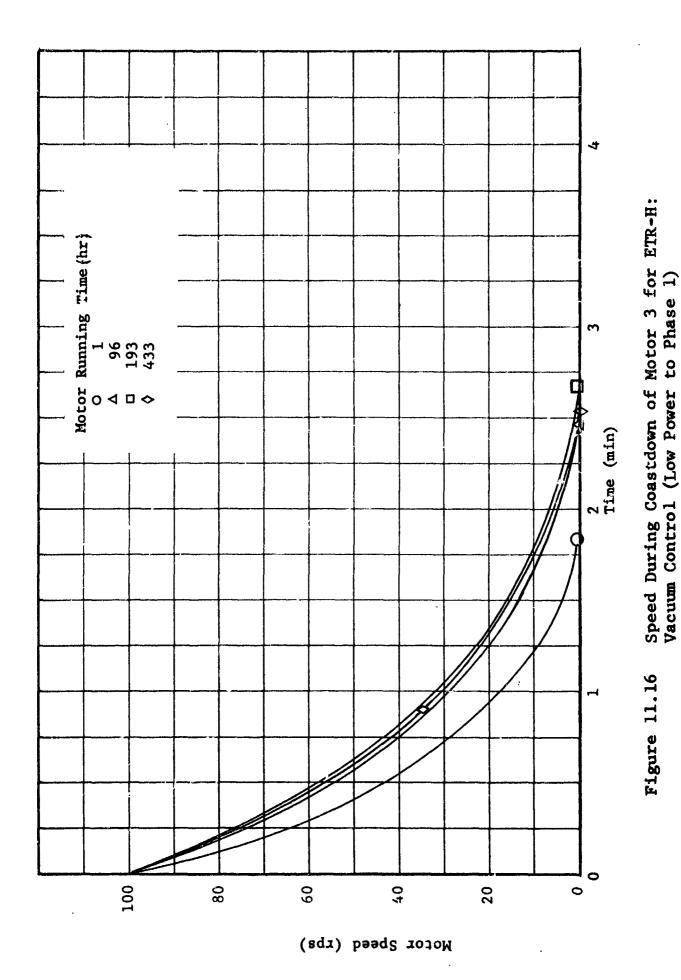
the difference is not a production of the same of the same

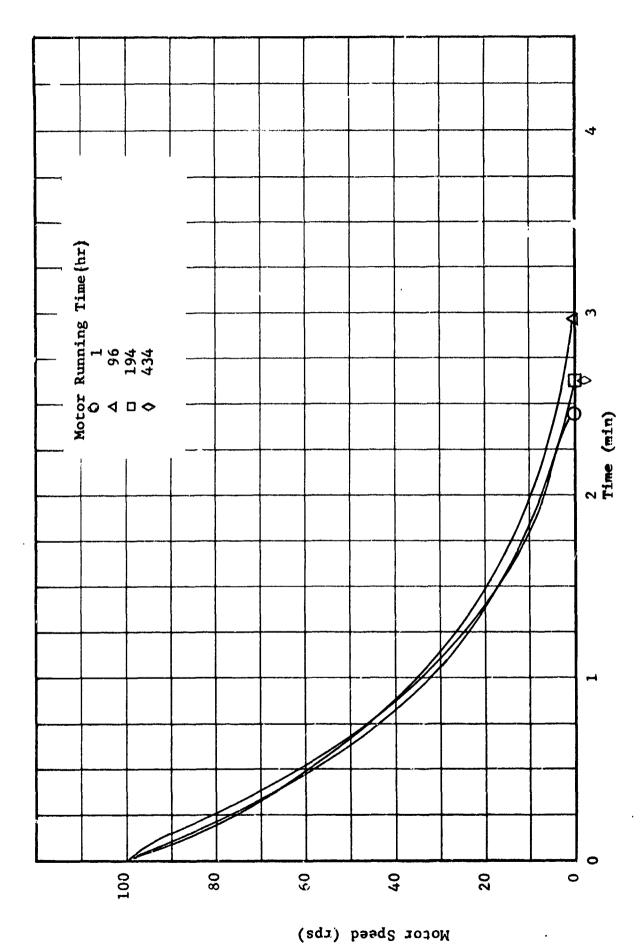

Speed During Coastdown of Motor 8 for Duroid: Vacuum Control (Low Power to Phase 1) Figure 11.13

Motor Speed (rps)

Speed During Coastdown of Motor 9 for Electrofilm 66-C: Vacuum Control (Low Power to Phase 1) Figure 11.14

Motor Speed (rps)

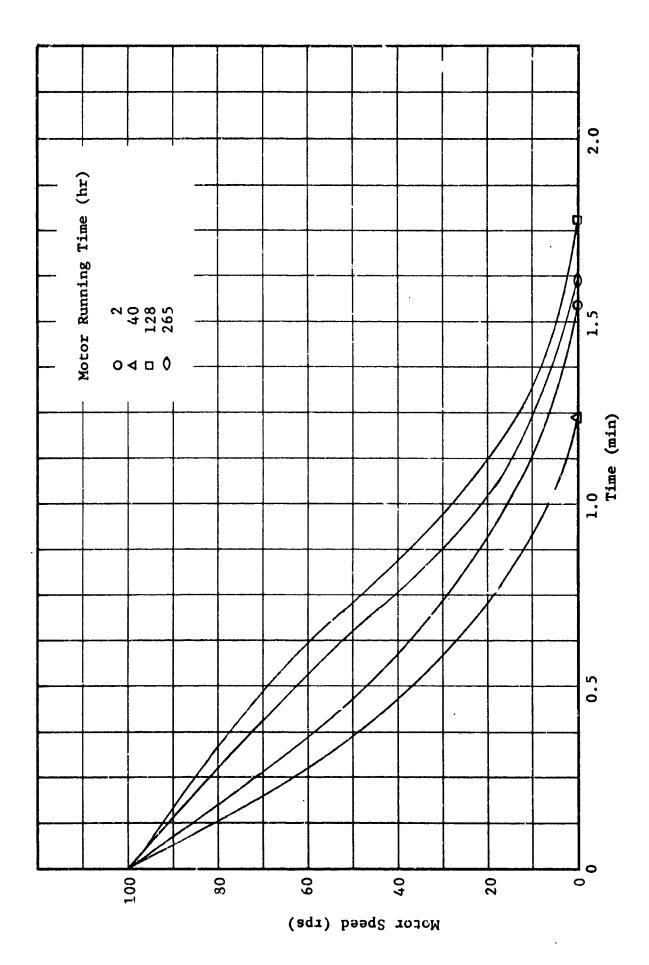


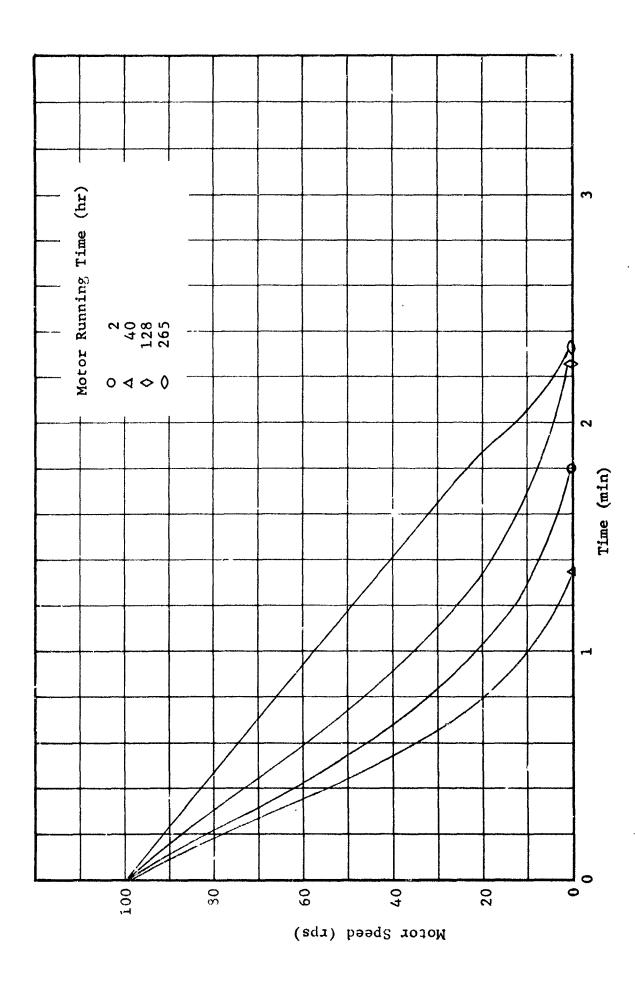

Speed During Coastdown of Motor 10 for Electrofilm 66-C: Vacuum Control (Low Power to Phase 1) Figure 11,15

The second secon

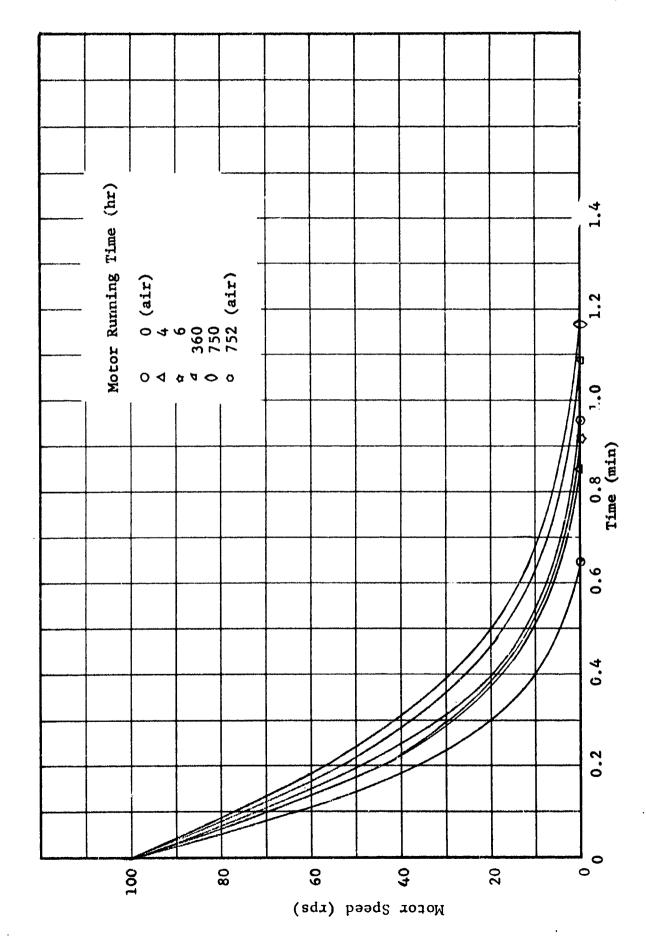
المناهدة والمعرض والمراهدة والمراطقية والمتاهدة والمراطقة

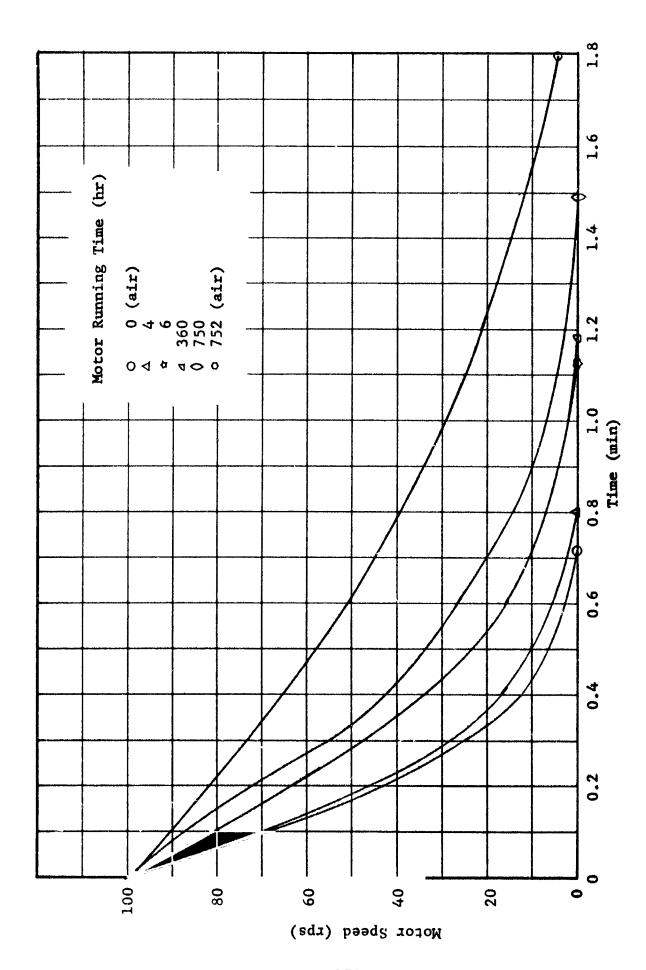
Motor Speed (rps)

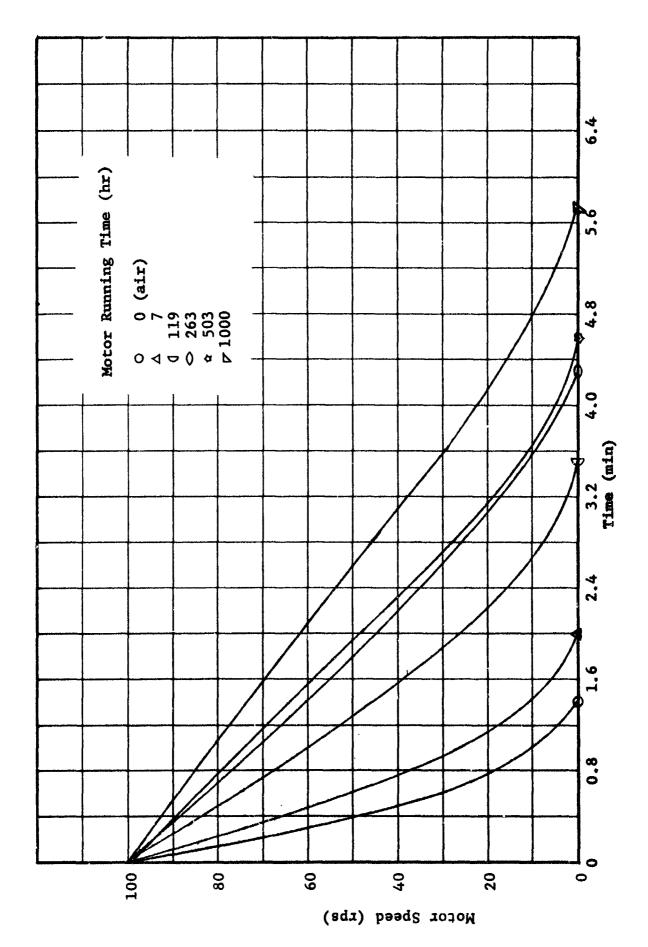



a and statement of the con-

Speed During Coastdown of Motor 4 for ETR.H; Vacuum Control (Los Power to Phase 1) Figure 11.17

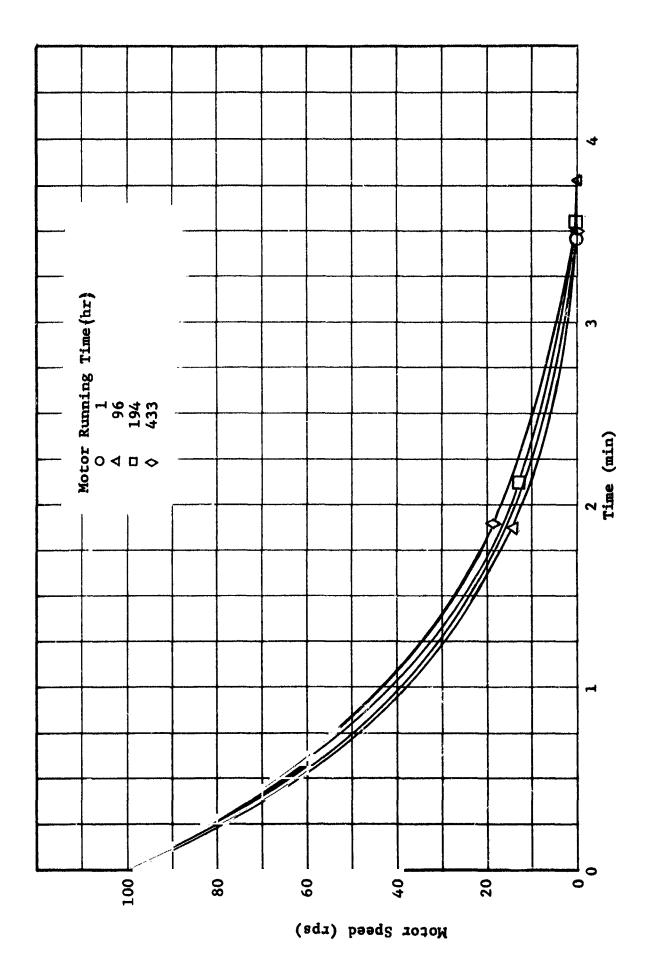

- Charles


Speed During Coastdown of Motor 3 for ETR-H: Vacuum Control (High Power to Phase 1) Figure 11.18

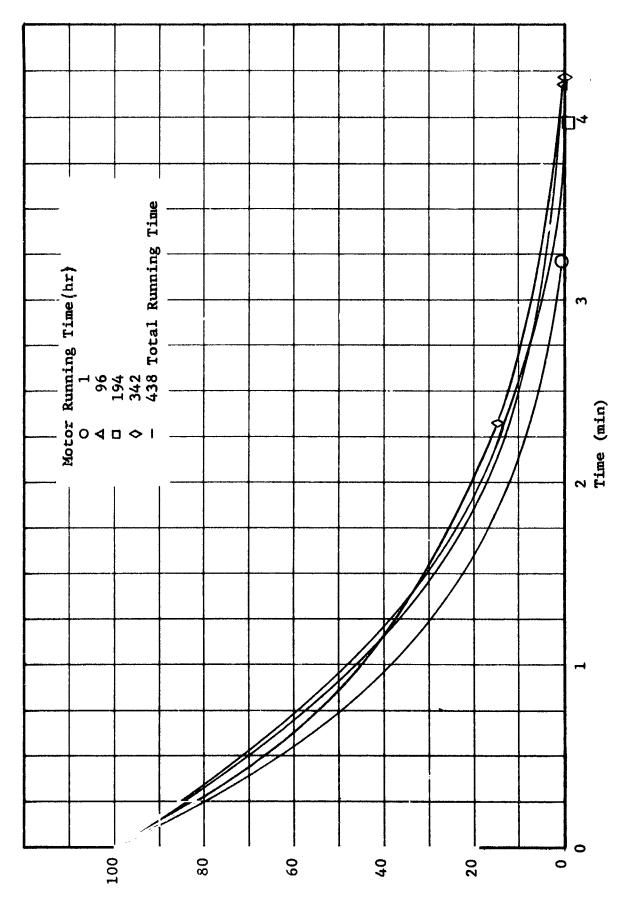

Speed During Coastdown of Motor 4 for ETR-H: Vacuum Control (High Power to Phase 1) Figure 11,19

Speed During Coastdown of Motor 1 for FS-1265: Vacuum Control (Low Power to Phase 1) Figure 11.20

Speed During Coastdown of Motor 2 for FS-1265; Vacuum Control (Low Power to Phase 1) Figure 11.21

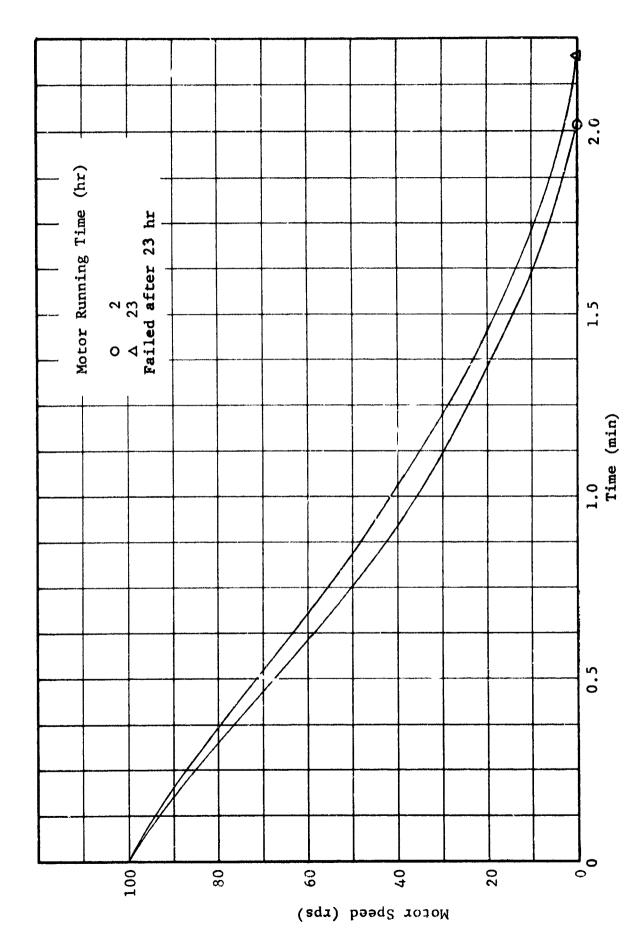


Speed During Coastdown of Motor 6 for GE F-50 (Phenolic Retainer): Vacuum Control (Low Power to Phase 1) Figure 11.22

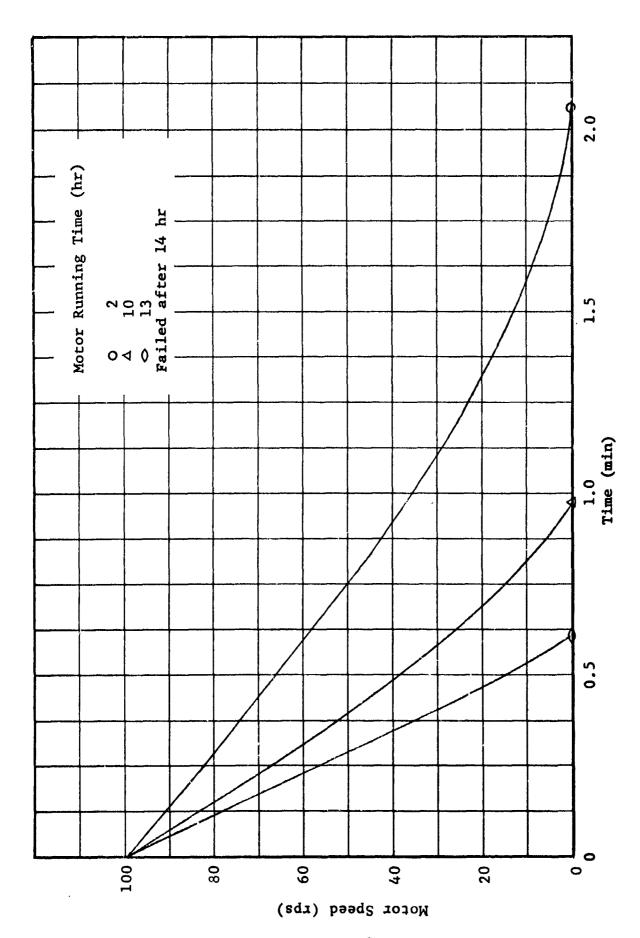

The state of the s

Speed During Coastdown of Motor 5 for GE F=50 (Phenolic Retainer); Vacuum Control (I,ow Power to Phase 1) Figure 11.23

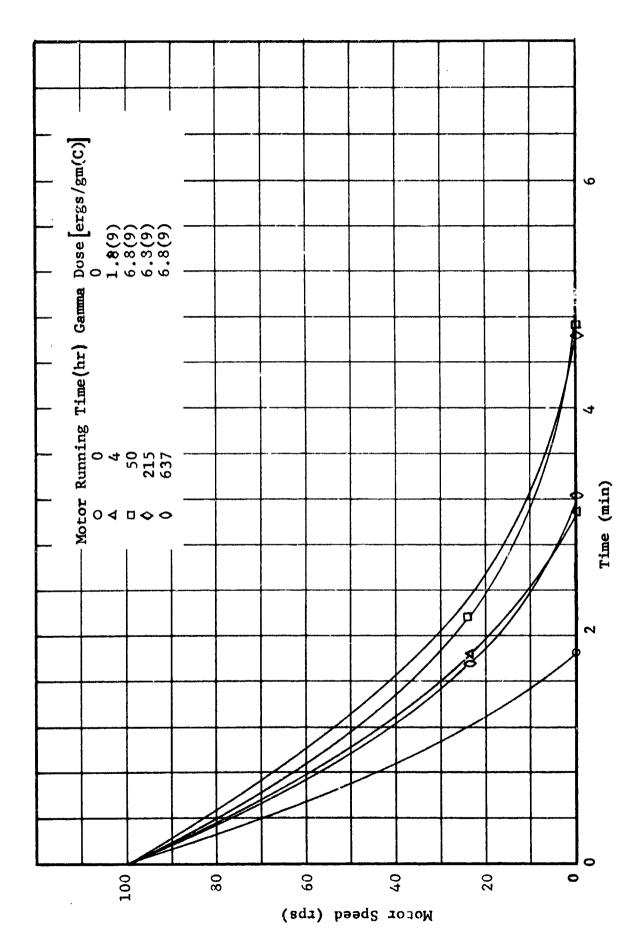
CONTRACTOR OF THE PROPERTY OF



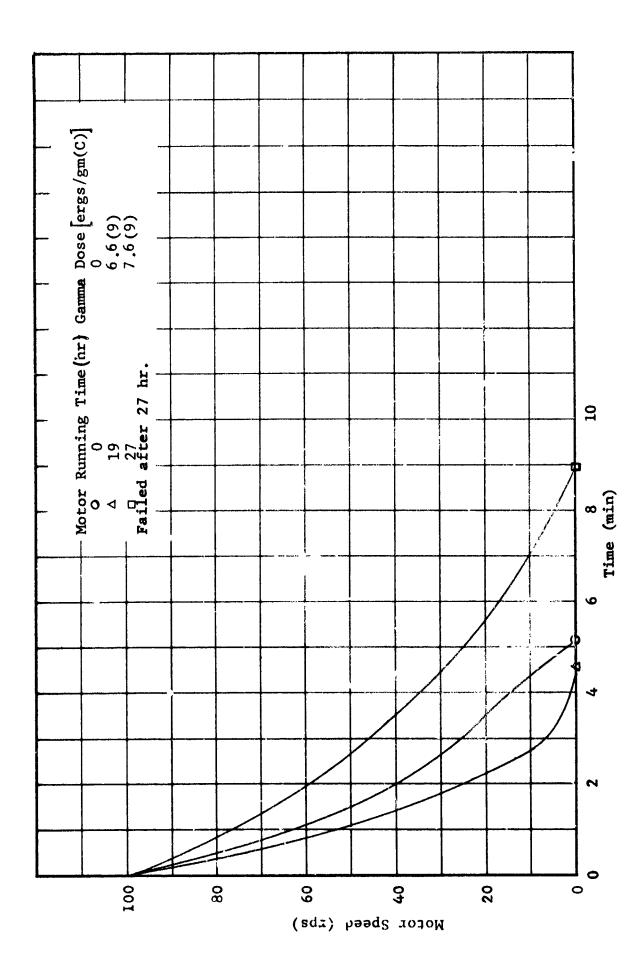
Speed During Coastdown of Motor 1 for GE F-50: Vacuum Control (Low Power to Phase 1) Figure 11.24


Speed During Coastdown of Motor 2 for GE F=50; Vacuum Control (Low Power to Phase 1) Figure 11.25

Motor Speed (rps)

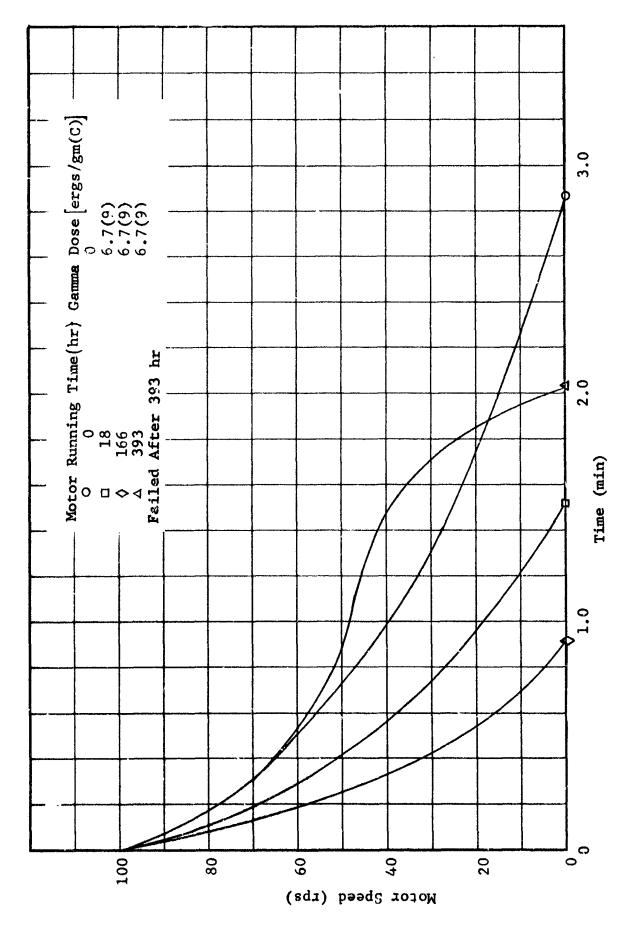


Speed During Coastdown of Motor 1 for GE F-50: Vacuum Control (High Power to Phase 1) Figure 11.26

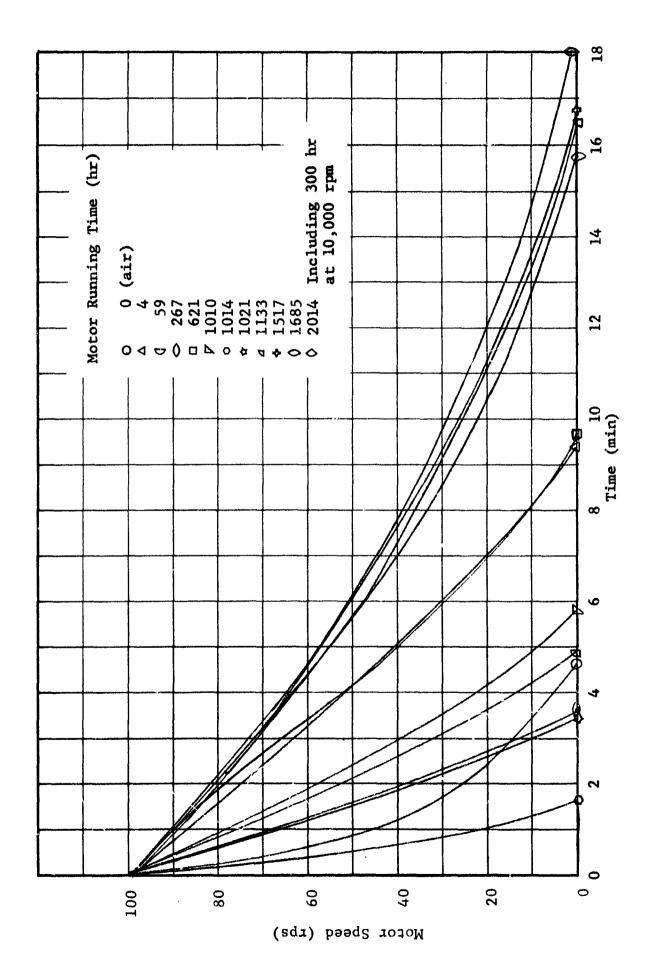

The state of the s

Speed During Coastdown of Motor 2 for GE F-50; Vacuum Control (High Power to Phase 1) Figure 11.27

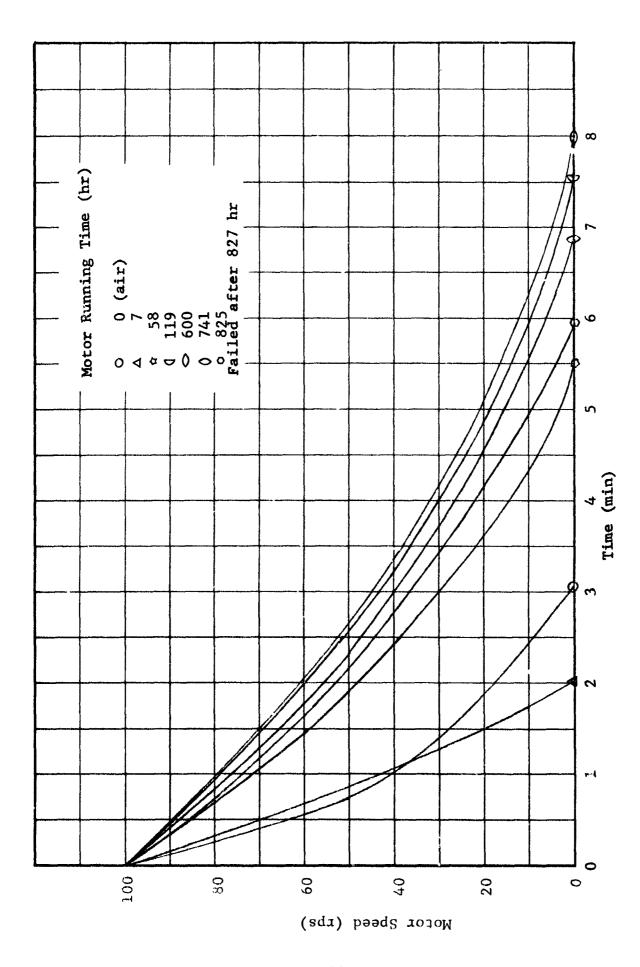
Speed During Coastdown of Motor 8 for Kynar: Vacuum Irradiation (Low Power to Phase 1) Figure 11.28


Speed During Coastdown of Motor 7 for Kynar: Vacuum Irradiation (Low Power to Phase 1) Figure 11.29

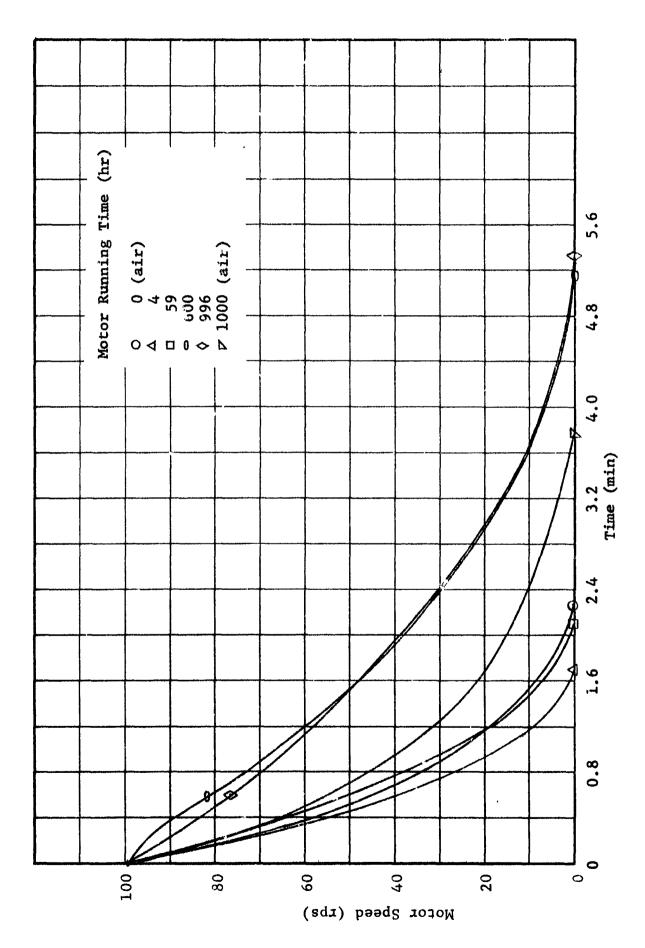
李素な からくとはないかいとうかっていませんないかいかい かっとうしい


Speed During Coastdown of Motor 8 for Kynar: Air Irradiation (Low Power to Phase 1) Figure 11.30

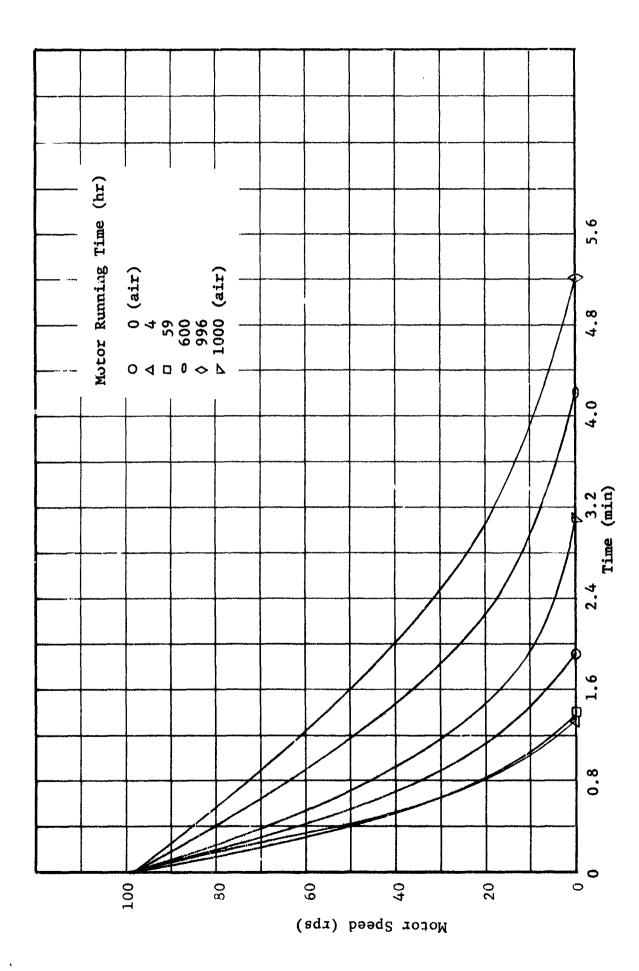
د ماد بالديم يرفي له در د


Motor Speed (rps)

Speed During Coastdown of Motor 7 for Kynar: Air Irradiation (Low Power to Phase 1) Figure 11.31

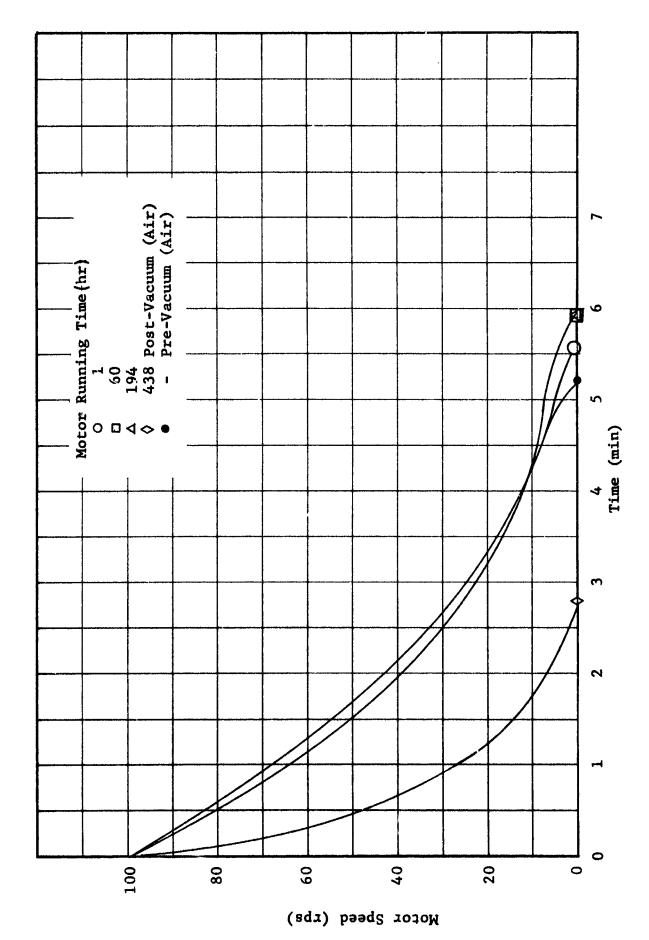


Speed During Coastdown of Motor 7 for Kynar: Vacuum Control (Low Power to Phase 1) Figure 11.32

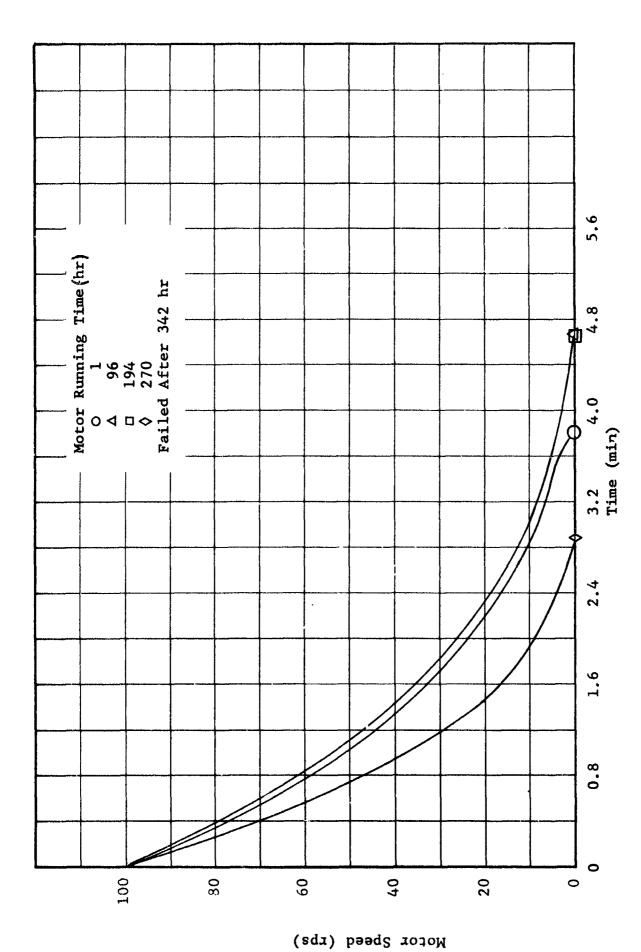


Speed During Coastdown of Motor 8 for Kynar: Vacuum Control (Low Power to Phase 1) Figure 11.33

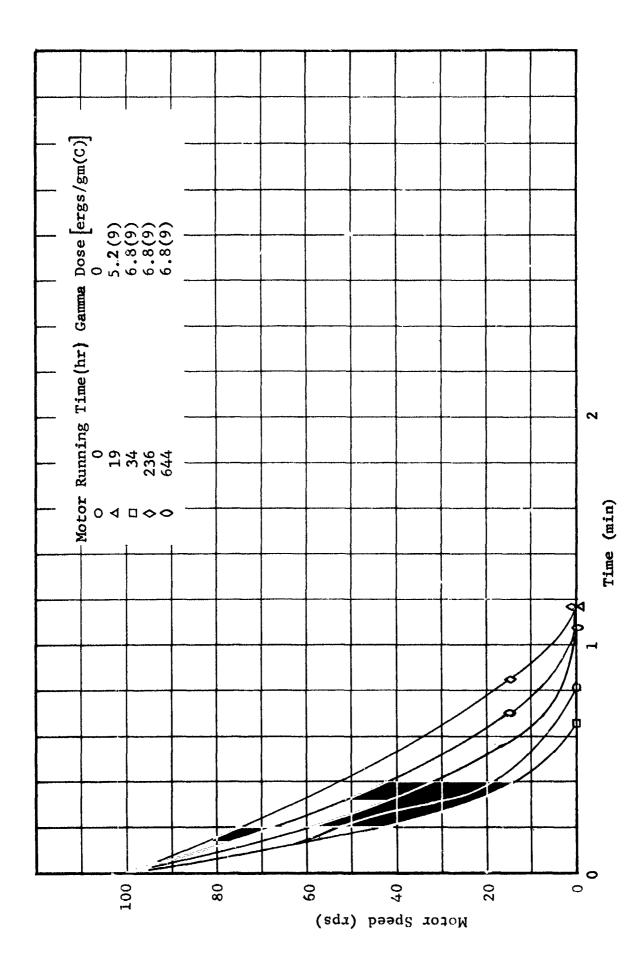
Comment of the State of the Sta



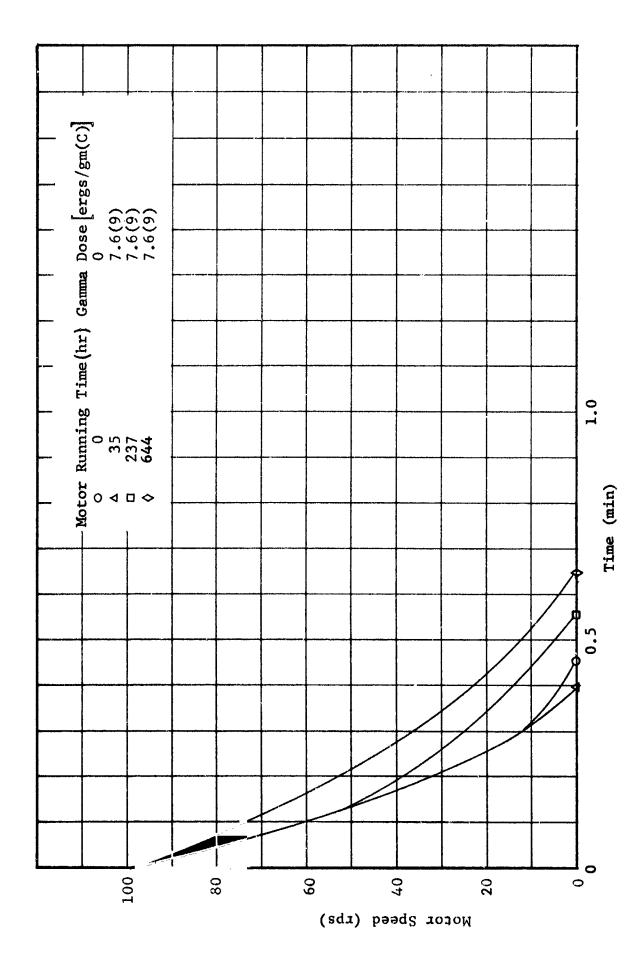
Speed Luring Coastdown of Motor 5 for Minapure: Vacuum Control (Low Power to Phase 1) Figure 11.34

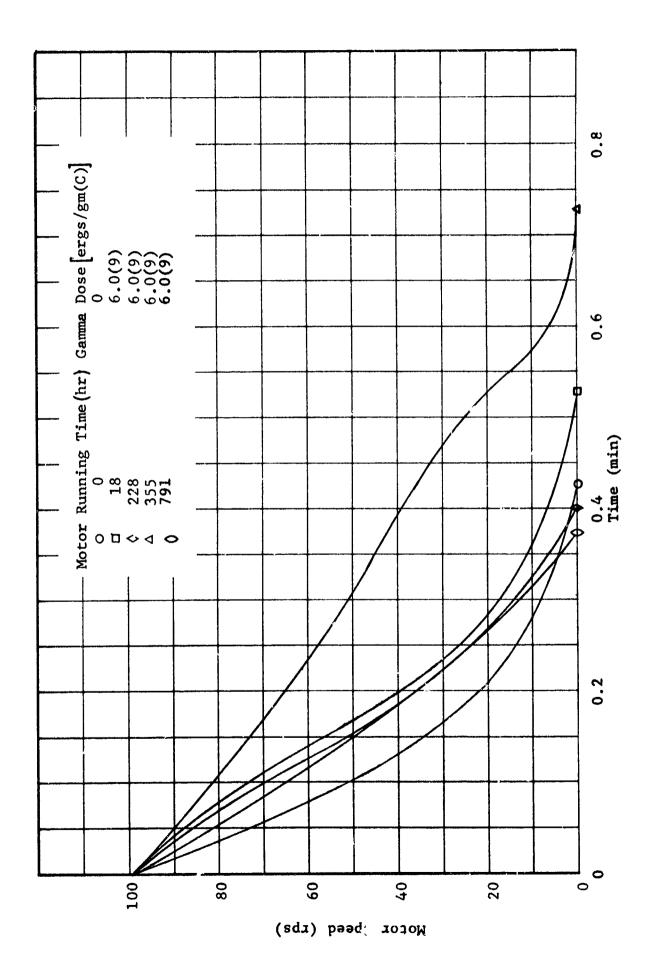

The first property of the second seco

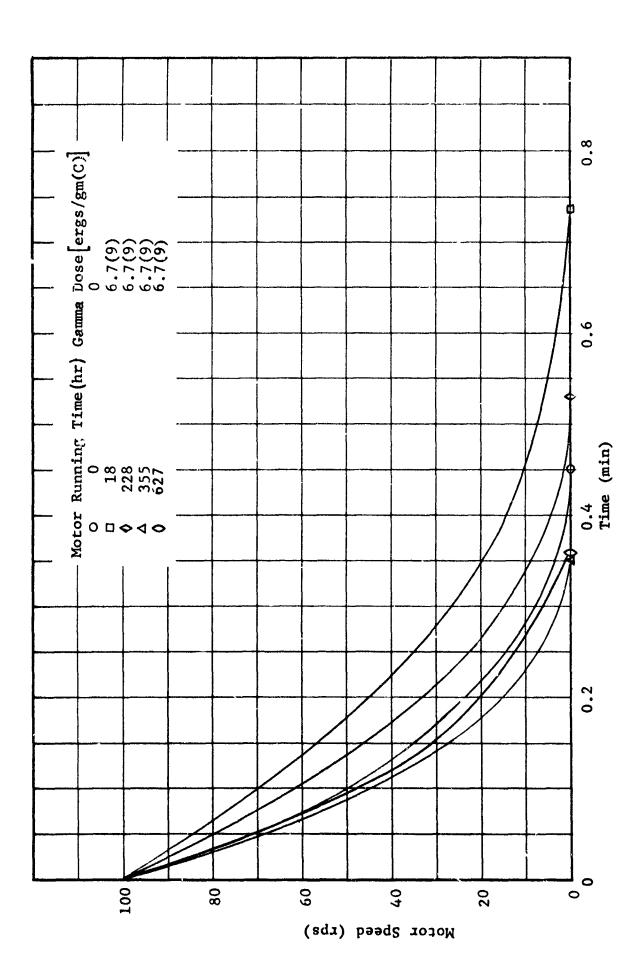
Speed During Coastdown of Motor 6 for Minapure: Vacuum Control (Low Power to Phase 1) Figure 11.35



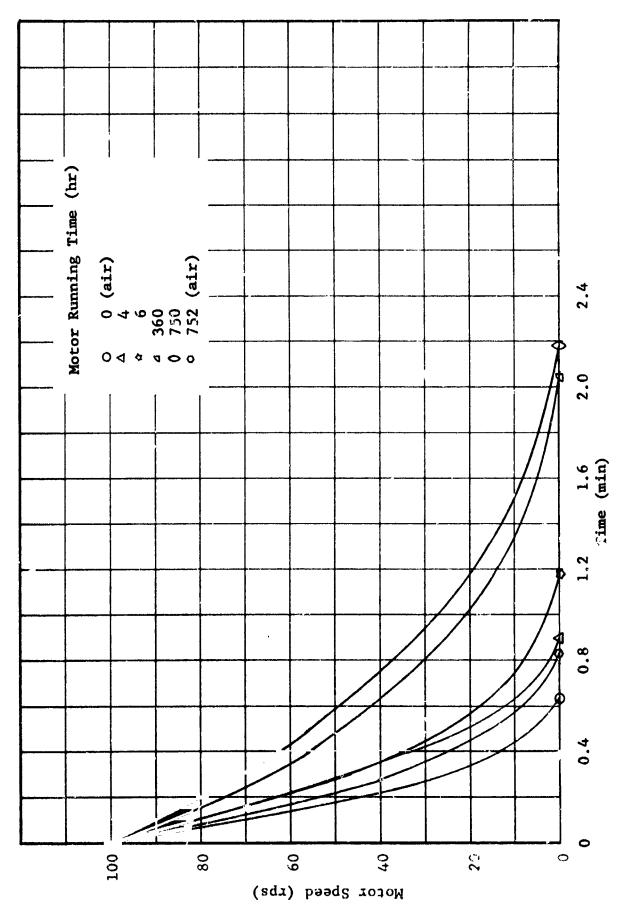
Speed During Coastdown of Motor 6 for MLF-5: Vacuum Control (Low Power to Phase 1) Figure 11.36


and the second s

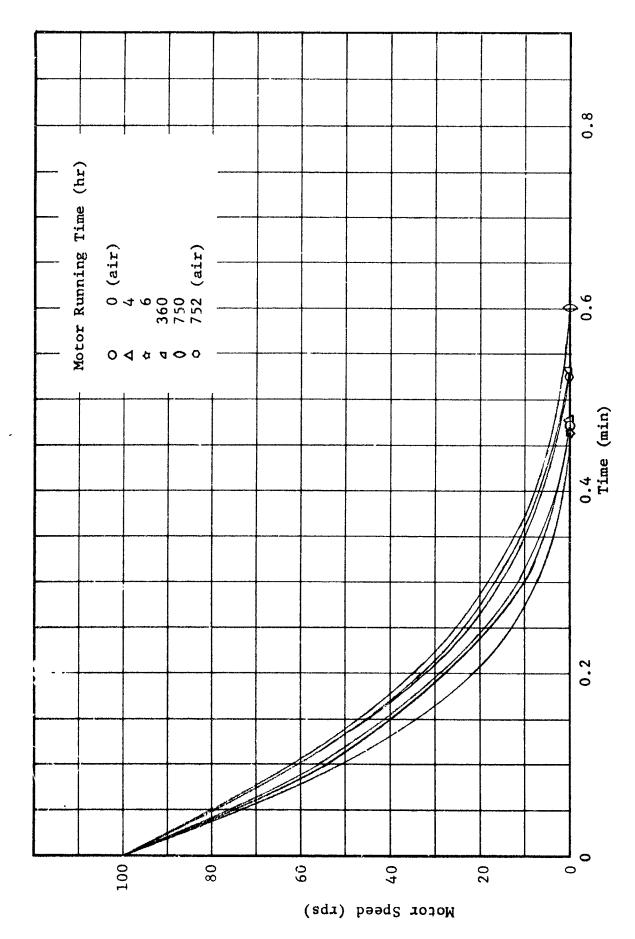

Speed During Coastdown of Motor 5 for MLF-5: Vacuum Control (Low Power to Phase 1) Figure 11.37


Speed During Coastdown of Motor 4 for OS-124: Vacuum Irradiation (Low Power to Phase 1) Figure 11.38

Speed During Coastdown of Motor 3 for OS-124: Vacuum Irradiation (Low Power to Phase 1) Figure 11,39

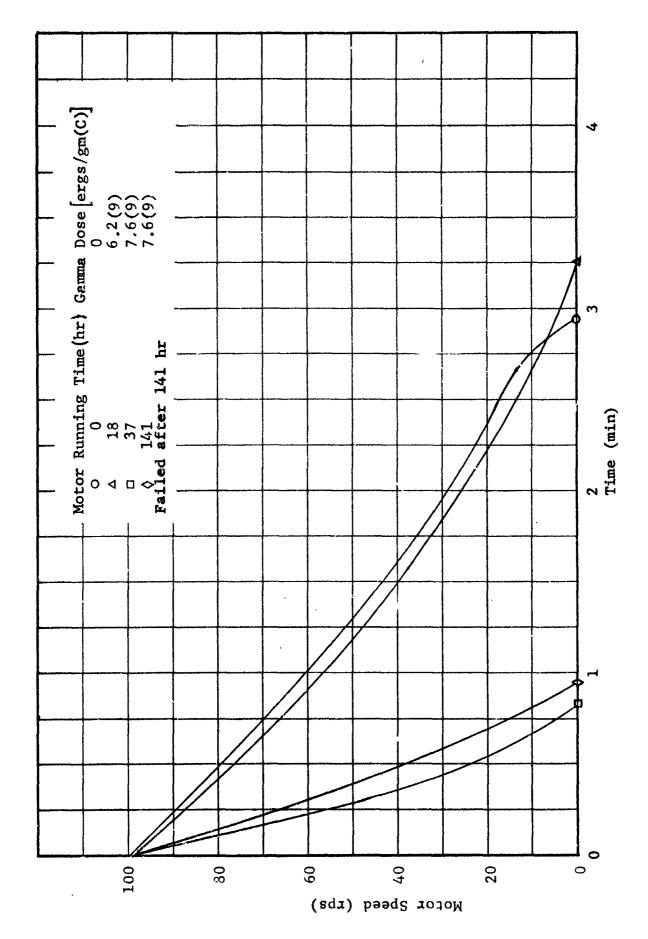


Speed During Coastdown of Motor 4 for OS-124: Air Irradiation (Low Power to Phase 1) Figure 11.40

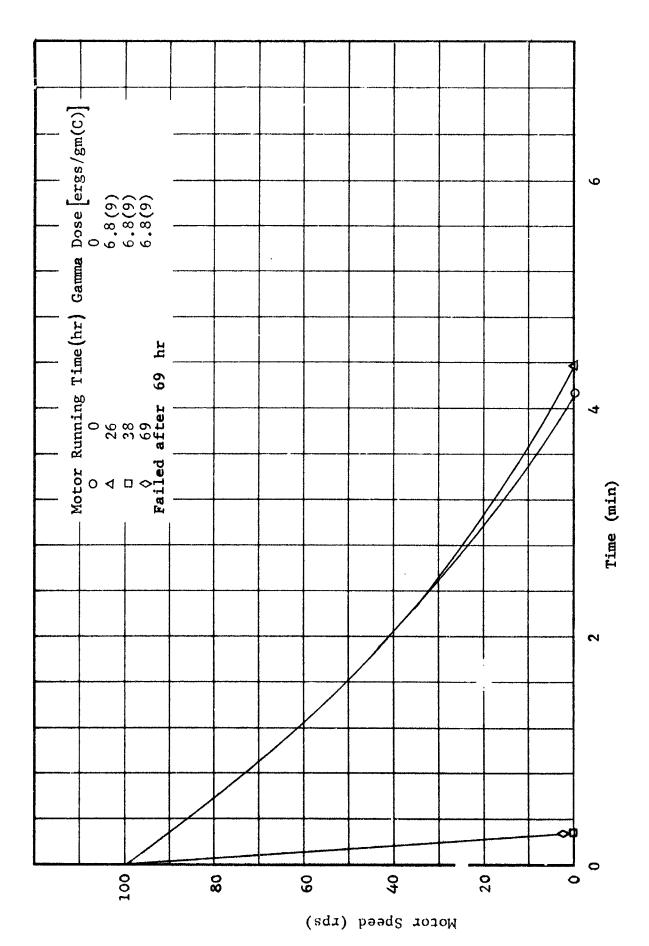


in the section.

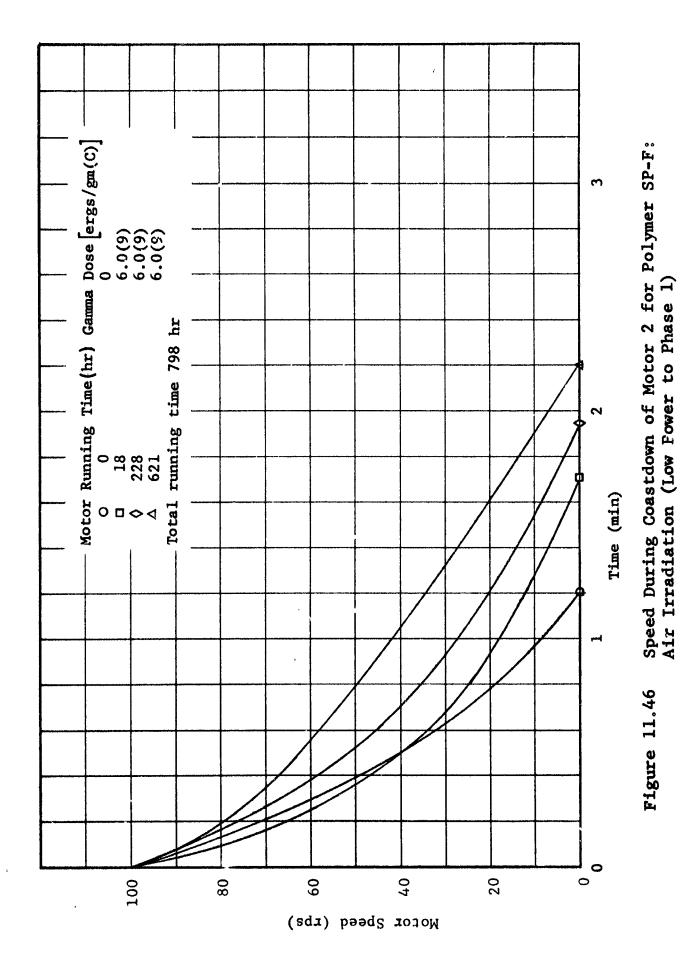
Speed During Coastdown of Motor 3 for OS-124: Air Irradiation (Low Power to Phase 1) Figure 11.41

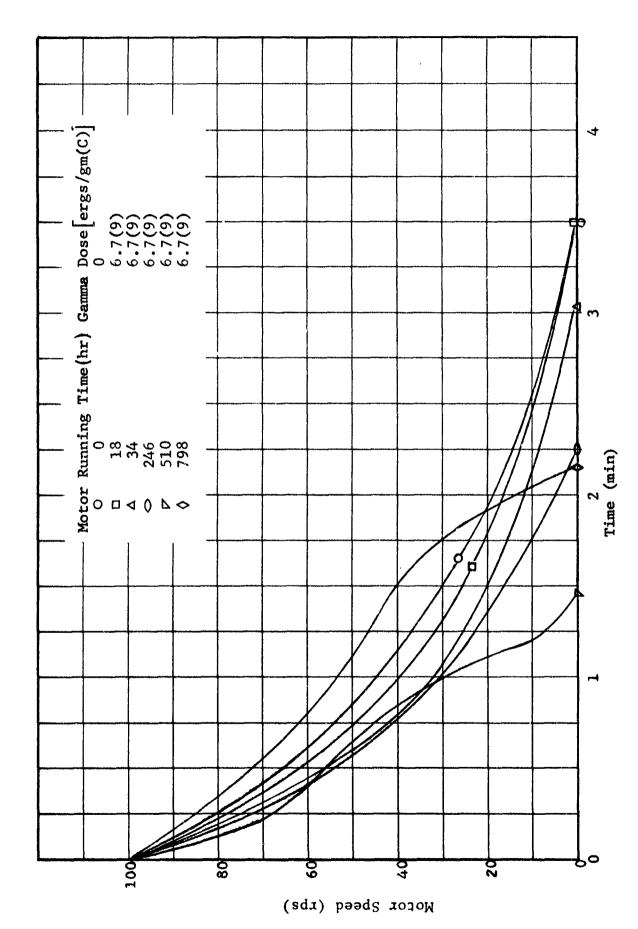


Speed During Coastdown of Motor 3 for 0S-124: Vacuum Control (Low Power to Phase 1) Figure 11.42

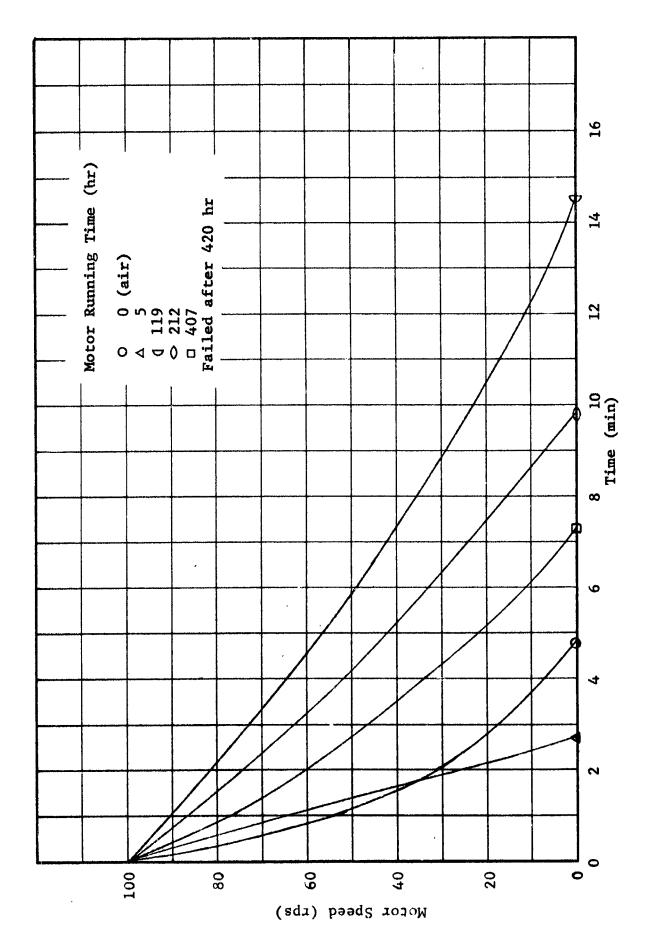


ς.


Speed During Coastdown of Motor 4 for OS-124; Vacuum Control (Low Power to Phase 1) Figure 11,43



Speed During Coastdown of Motor 1 for Polymer SP.F. Vacuum Irradiation (Low Power to Phase 1) Figure 11.44


Speed During Coastdown of Motor 2 for Polymer SP-F: Vacuum Irradiation (Low Power to Phase 1) Figure 11.45

经收益的 医水子 医骨头外性腹腔炎性胸膜炎 医多种性 医多种性 医二种性性

Speed During Coastdown of Motor 1 for Polymer SP=F: Air Irradiation (Low Power to Phase 1) Figure 11.47

Speed During Coastdown of Motor 2 for Polymer SP-F: Vacuum Control (Low Power to Phase 1) Figure 11.48

Speed During Coastdown of Motor 1 for Polymer SP-F; Vacuum Control (Low Power to Phase 1) Figure 11.49

APPENDIX A DESCRIPTION OF MATERIALS IRRADIATED AND TESTED

BLANK PAGE

Table A-1

Materials Used in Structural Adhesive Tests

Section	Trade Name and Source	Material Description and Preparation of Stock Items
5.1	Aerobond 422J	Chemical Class: epoxy-phenolic
	Adhesives Engr. Co. San Carlos, California	Skins of 2024T86 clad aluminum, 0.064 by 4 by 9 in., were cleaned with methyl ethyl ketone, vapordegreased in trichloroethylene, heated in dichrgmate-sulfuric acid etch bath for 10 min. at 150 F, then rinsed in distilled water. A strip of dry-film adhesive was applied to one of the faying surfaces and the two skins placed together with a 1/2-in. overlap. The samples were cured by heating from room temperature to 350°F in 30 min and maintained at 350°F for 1 hr under a bond pressure of 100 psi. The bonded adhesive is olive-green after cure.
5.2	Aerobond 430	Chemical Class: epoxy-phenolic
	Adhesive Engr. Co. San Carlos, California	Cure data: 45 min, 340 ^o F, 25 psi Samples prepared by NASA.

Section	Trade Name and Source	Material Description and Preparation of Stock Items
۳° ۲	APCO 1252 Applied Plastics Co. Inc. El Segundo, Californía	Chemical Class: polyurethane Cure data: 14 days, room temperature, 10 psi Samples prepared by NASA.
5 , 4	Epon 934 Shell Chemical Co. Pittsburg, California	Chemical Class: epoxy (Two Parts: A and B) A - filled epoxy, B - amine curing agent Panels: 2024-T3 clad sheets of aluminum, 0.064 in. width and length to fit Shell Chemical Company bonding jig. Panels furnished by GD Ft Worth Div. Bonding by Shell Chemical, cutting and milling of specimens by GD Ft Worth Div. Surface Preparation: After vapor degreasing in tri- chloroethylene, the panels were dipped in a chromic acid solution at 150°F for 10 min, followed by rinsing the metal thoroughly with distilled water and oven dried at 150°F. Bonding of the Epon 934 panels was done as follows: (1) A thin film of mixed adhesive in the ratio of 100 parts by weight Part A to 33 parts by weight Part B was applied to both fay- ing surfaces in the lap joint area (half- inch). The lapping panels were placed in a fixture. They were clamped at a pressure of approximately 35 pounds per square inch. The panels were then placed in a preheated oven and corted for one hour at 180°F bond

Table A-1 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
5.4	Epon 934 (cont'd)	(2) After the panels were cured and cooled to room temperature, adhesive was applied to the doubler area. All faying surfaces were coated to give a total of 5 mils of adhesive in the bond line. The assembled panels were then placed in a preheated press and cured for one hour at 180°F under 10 psi pressure. The panels were removed from the press while hot.
5.5	Epon 951 (Film) Shell Chemical Co. Pittsburg, California	Chemical Class: epoxy-nylon film adhesive Preparation: The Epon Adhesive 951 panels were handled in a similar fashion to Epun 934, except that a 7-mil dry-film adhesive was used and the curing temperature was 350°F for one hour.
5.6	FM-1000 Bloomingdale Dept., American Cyanamid Company Havre de Grace, Maryland	Chemical Class: epoxy-nylon Panels: 2024-T3 clad aluminum sheets, 0.064-in. thick,furnished by GD Ft Worth Div. Surface Preparation: (1) Acetone-wipe all metal to remove grease and lettering.

Table A-1 (cont'd)

Section	Trade Name and Source	Materia	Material Description and Preparation of Stock Items
5.6	FM-1000 (cont'd)	(2)	Immerse metal for 10-12 min at 170°F-190°F
			In solution: Sprex AN-9 (4 to 6 oz)
			Water (To make one gallon)
~ #		(3)	Remove metal from Sprex solution and
			immediately rinse in hot water, 140°F to
			160% for 2 to 3 minutes.
		(4)	Repeat step 3 using another rinse tank at
			140°F to 160°F. Metal is then rinsed in
			tap water at 140 F and checked for water
			break, finally dried in oven (120°F max.).
		(5)	The metal was then immersed in the follow-
			ing solution for 15 min at 150° F $\pm 10^{\circ}$ F:
			Chromic Acid (142 gm)
			Sulfuric Acid (652 gm)
			Water (To make one gallon)
		(9)	Rinse thoroughly in cold water, check for
			water break, and dry in oven (120°F max.)
		Bonding	Panels:
		(1)	Assembled per GD Ft Worth Div drawings
		(2)	All panels press bonded with the following
			cycle:
			60 minutes heat up rate to 350°F
			60 minutes hold at 350°F with 25 psi.
		(3)	Panels were cooled under pressure to room
			temperature。

Table A-1 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
5.7	HT-424 (film) Bloomingdale Rubber Co.	Chemical Class: epoxy-phenolic (supported film) Aluminum filled on glass cloth. Cure data: 40 min, 340°F, 25 psi
	noctucens that y taild	Samples prepared by NASA.
5.8	Narmco A	Chemical Class: modified epoxy
	Narmco Materials Div.	Cure data: 3 days, room temperature, 10 psi
	Costa Mesa, California	Samples prepared by NASA.

Table A-2

Materials Used in Structural Laminate Tests

Section	Trade Name and Source	Material Description and Preparation of Stock Items
۳. 9	81)	Chemical Class: Phanolic resin Fiberglass cloth 181
	Narmco Materials Division	Cure data Tomination under the fall mission I was designed
	Costa Mesa, California	tions: (1) the laminate was placed in a vacuum
		bag in an air-circulating oven at 150°F; (2) the
		temperature was raised to 200°r in 20 min; and (3) the laminate was held:
		one-half hr at 29 in. Hg at 200°F
		one-half hr at 300°F
		two hr at 350°F
		The physical properties of the "B" stage laminating
		content (6.5%); Flow (17%). Panels were 12- by
		12= by 1/8-in. laminates with plies of fiber= glass clock. The fill and warp direction was
		alternated with each ply.
		Panels prepared by Marmco Materials Division.
		Specimens prepared by GD Ft Worth Div from the panels
		Brownish red color laminate and finished laminate is hard and rigid.
		Name of finished nrodust was shansed during test
		period from Conolon to Narmco by the manu- facturer.

Table A-2 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
6.2	CTL 91-LD	Chemical Class: Phenolic resin Fiberglass cloth 181
	Plastics Co., Los Angeles, California	Special Order: This is a phenolic laminate of 38- inwidth fiberglass 181 cloth, treated with Volan A (Batch No. S7-1) that meets the physical
		requirements of specification MiL-x-9299. It was supplied in 12- by 24- by 1/8-in. sheets. The liquid-resin stock was formulated by Irox-side Resins, Inc., Columbus, Ohio; the fiber-
		giass prepreg was prepared by the Coast Mfg. Co.; and the completed stock item was purchased from the American Reinforced Plastics Co., Los Angeles, California.
		Preparation and Cure: (From Eldon Fibe glass Operation Outline) CTL-91LD-181-Volan-38 in. prepreg per MSS 306, 12 plies, 18 by 36 in.
		Set up mold in press; prepare mold; cut material as shown above in B/M; load (12) plies (stacked) in press and close; cure 1/2 hr at 300°F and 1/2 hr at 325°F with 20 tons on Dake press (applies 150 psi on part); post cure 1 hr at 200°F 1 hr at 300°F, and 2 hr at 350°F. Color is dark reddish-brown, and finished laminate is hard and rigid.

Table A-2 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
6,3	Dow Corning 2104 (DC-2104)	Chemical Class: Silicone resin Fiberglass cloth 181
	Midland, Michigan	Special Order: Fiberglass cloth 181, 38-inwidth, finish 112 Neutral ph., silicone resin content 43.4% (lot C-4554-1), Dow Corning catalyst XY-15. Finished size is 12- by 14- by 1/8-in. for laminate sheets; white in color; laminate is rigid and hard.
		Preparation and Cure: Load 12 plies stacked in press; press-curing condition: 350°F for 30 min at 10 psi; oven-curing condition: 195°F for 16 hr, then 2 hr at each of the following temperatures, 260°F, 300°F, and 390°F.
	-	Resin from Dow Corning Corporation
		Prepreg from Geige Goods
		Laminator or molder was Eldon Fiberglass Mfg. Co., Compton, California.
		Stock item purchased from American Reinforced Plastics Co., Los Angeles, California.

The source of th

Table A-2 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
6.4	Epon 828/A Shell Chemical Co., Houston, Texas	Chemical Class: Epoxy resin Fiberglass cloth 181 The test material was prepared by the Shell Chemi-
		Texas, per the following specifications:
		l. Reinforcement: 181 glass fabric, glass fabric finish
	,	2. Finish: Volan A
		3. Resin: Epon 828 with wet lay-up
		4. Resin Content: 30% by weight
		5. Catalyst: Shell A (diethylaminopropylamine)
سن جا جسمت		6. Press Cure: 30 min at 240°F at 25 psi
		Finished laminate is greenish-yellow, translu- cent hard, rigid and smooth surfaced.

Table A-2 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
6.5	Mobaloy 81-AH7	Chemical Class: Phenolic resin Fiberglass cloth 181
***	Ferro Corporation Mobile, Alabama	The test panels were prepared by the manufacturer per the following general specifications:
		Size: ten 12- by 12-in. 12-ply fiberglass cloth 181 reinforcement laminate about 1/8-in. thick
		Resin: In uncured mixture, volatiles 5.6%, resin 39.7%; the panel resin content was approximately 23.1% in cured sheet.
		Cure data: 60 min, 325°F, 67 psi with no post- cure requirement.
9°9	Paraplex P-43 Rohm & Haas Philadelphia, Penn.	Chemical Class: Polyester resin (Paraplex P-43 is a solution of an unsaturated polyester (70%) dissolved in styrene monomer (30%), that contains an inhibitor to provide adequate storage stability.
		Cure data: 1 hr at 212 ⁰ F

Table A-2 (cont'd)

6.6 Par		material Description and rieparation of Stock Items
	Paraplex P-43 (cont'd)	Reinforcement: 11-ply fiberglass cloth 181
		Prepared by NASA
		Laminate is greenish-white in color.
6.7 Sel	Selectron 5003	Chemical Class: Polyester Fiberglass cloth 181
Pit Hou	Pittsburgh Plate Glass Co. Houston, Texas	Resin: Selectron RS-5003
		Reinforcement: 10 to 12 plies of 181 glass cloth with Volan A finish - used 11 layers
		Panel Thickness: 0.100 to 0.125 in.
		Size of Panel: 12 by 12 in. minimum
		Cured: 1 hr at 143°C, pressec firmly to 0.110 shim
		Resin Content: approximately 34%
		Prepared by NASA

Table A-3

Materials Used in Seal Tests

Section	Trade Name and Source	Materials Description and Preparation of Stock Items
7.1	Buna N (PRP 737-70 FLX)	Chemical Class: Acrylonitile butadiene copolymer
	Precision Rubber Products Corp., Dayton, Ohio	Compound formulation is proprietary. It is an NBR elastomer with 3 parts per hundred FLX antioxidant as an antirad.
		Color: black
		Tested compression buttons and size 215 0-rings of nominal dimensions of 1-1/16- by 1-5/16-by 1/8-in. as prepared by manufacturer.
7.2	Neoprene (PRP-2277)	Chemical Class: Chloroprene rubber
	Precision Rubber Products	Compound formulation is proprietary.
	corp., Daycon, Unio	Color: black
		Tested compression buttons and size 215 0 rings as prepared by manufacturer.
7.3	Polymer SP-1	Chemical Class: Polyimide resin
	E. I. duPont de Nemours Wilmington, Delaware	The SP-1 resin, with no filler, was molded in blocks under high pressure, then sawed into slabs approximately 1/4- by 1-1/2- by 10-in.

Table A-3 (cont'd)

Section	Trade Name and Source	Materials Description and Preparation of Stock Items
7.3	Polymer SP-1 (cont'd)	Color: dark chocolate brown
		Tested dumbbell-type tensile specimens machined from slabs.
7.4	Viton A (V495-7)	Chemical Class: A linear copolymer of vinylidene fluoride and hexa-fluoro propylene
	Rubber Products Division	Compound formulation is proprietary.
		Color: black
		Tested Parker 2-224 0-rings as prepared by manufacturer.
7.5	Viton B (PRP-19007)	Chemical Class: A linear copolymer of vinylidene fluoride and hexa-fluoro propylene.
		Compound formulation is proprietary.
		Color: black
		Tested compression buttons and size 215 0-rings as prepared by manufacturer.

Table A-4

Materials Used in Sealant Tests

Section	Trade Name and Source	Material Description and Preparation of Stock Items
8.1	Dow Corning 92-018 Aerospace Applications Laboratories, Engineering Products Division, Dow Corning Corporation, Midland, Michigan	Chemical Class: One part silicone rubber adhesive/ sealant that air cures in 24 hr. Specimen Preparation: All specimens prepared by Dow Corning. The dumbbell specimens for the tensile tests were cut with a Die C according to ASTM D-412. Lap-shear specimens having a one-half-inch overlap were prepared according to ASTM D-1002. 53T. The aluminum surfaces were thoroughly cleaned with chlorothene and MIBK, primed with Silastic RTV 1200 Primer, and adhesive applied according to manufacturer's recommendations. QQ-A-352 aluminum ailoy plate, Alcad 2024, was us_d in the lap shear specimens. Dow Corning prepared the lap-shear specimens, using .040- by 3-in. aluminum strips rather than the .064- by 4-in. sfrrps designated in ASTM D-1002-53T.
& ci	Dow Corning 94-002 Aerospace Applications Laboratories, Engineering Products Division, Dow Corning Corporation, Midland, Michigan	Chemical Class: One part, room-temperature-curing fluorosilicone sealant. Specimen Preparation: (Same as Dow Corning 92-018) Color: red

Table A-5

Materials Used in Electrical Insulation Tests

Section	Trade Name and Source	Material Description and Preparation of Stock Items
9.1	5	Chemical Class: Tetrafluoroethylene reinforced with fiberglass fibers
a a managanan s	Rogers Connecticut	This pressure board is hard and rigid being similar to Masonite in appearance.
		Color: brown
		Sheets supplied by NASA.
9.2	ane 5740X1	Chemical Class: Polyurethane of the ester type that is a tough, pliable rubber
	Akron, Ohio	Cure data: 15 min at 143° C and 5 min in (preheated) mole at 290° C
		Color: yellow
		Stock sheets supplied by NASA.
9.3	Epon 828/Z	Chemical Class: Epoxy (epichlorohydrin/bisphenol, A-type) without any filler with twhe Z caralyst. The curing agent
		Z is a modified polyamine.

Table A-5 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
6.3	Epon 828/Z (cont'd)	Color: reddish-brown
		Frepared at GD rt Woltin Div
7°6	H-Film (Kapton)	Chemical Class: Polyimide resin
	E. I. duPont dc Nemours	Color: clear yellow
	Wilmington, Delaware	Supplied by manufacturer as film. These tests are on the 1/2-in. stock from a roll.
		Note that the name is being changed by duPont to Kapton for the polyimide films.
9.5	Kel F-81	Chemical Class: Fluorocarbon plastic (chlorotri- fluoroethylene)
	Chemical Division 3M Company St. Paul, Minnesota	Supplier: Tube Turn Plastics, Inc. Garland, Texas
		Standard stock items furnished by manufacturer.

Table A-5 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
9.6	Kynar 400 Pennsalt Chemicals Corp. Los Angeles, California	Chemical Class: A crystalline, high-molecular- weight polymer of vinylidene fluoride Color: light yellowish cream Stock sheets furnished by manufacturer.
9.7	Lamicoid 6038E Mico Division 3M Company Schenectady, N.Y.	Chemical Class: Melamine resin Fiberglass cloth General preparation and cure data not available, but used standard stock item. Color: greyish-tan Purchased from Graco Supply, Fort Worth, Texas Finished laminate supplied by manufacturer.
3.8	Lexan Materials Department Chemical and Metallurgical Division, General Electric Company, Pittsfield, Mass	Chemical Class: Polycarbonate plastic Color: clear, transparent sheets Two sheets (24- by 48-in.) in 100-mil thickness furnished by manufacturer. Standard stock item.

Table A=5 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
6°6	Marlex 6001	Chemical Class: High-density polyethylene
	Chemical Department Plastics Division	Application: Thermoforming applications
		Special Characteristics: This resin combines excellent rigidity and toughness with a high melt strength for very little sheet sag during forming.
		The sheet was fabricated by conventional extrusion using a temperature-controlled three-roll polished stack.
		Color: milky white
		ASTM classification: Type III, Class A, Grade 3
		Supplied by manufacturer from stock at plant.
9.10	Marlex 6002	Chemical Class: High-density polyethylene
	Chemical Department Plastics Division	General-purpose resin for blow molding, sheet and film extrusion, and thermoforming.
	rnilips retroleum co. Bartlesville, Oklahoma	This is an extrusion-grade resin with excellent rigidity and toughness.

Table A-5 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
9.10	Marlex 6002 (cont'd)	Fabricated same as Marlex 6001.
		Color: milky white
		ASTM classification: Type III, Class A, Grade 3
9.11	Mylar 100C	Chemical Class: Polyester film
	Film Department E. I. duPont de Nemours	Type C is a capacitor-grade film used in the capacitor industry.
	withing con, Detaware	Color: clear film (in thin sections)
		Samples cut from 1-inwidth roll, type 100C (1-mil) film supplied by marufacturer from stock.
9.12	Plaskon CTFE X2204	Chemical Class: Stabilized CTFE (chlorotrifluoro-
	Plastics Division Allied Chemical Corp. Edgewater, New Jersey	This is a stabilized version of the Plaskon CTFE 2200 of the ASTM D-1430, Grade 2 type.
		Color: pinkish and translucent-stabilizer is the material that gives the pinkish cast.
		Experimental quantity supplied by manufacturer.

Table A=: (cont'd)

		Material Description and Preparation of Stock Items
6 ° 6	Silastic RTV 501 Dow Corning Corp.	Chemical Class: Silicone elastomer that is a fluid that vulcanized to silicone rubber with catalyst.
	Midland, Michigan	Cure data: 24 hr, room temperature with Silastic RTV 501 catalyst A (dibutyl tin dilaurate)
		Cured Sheet Color: white
		Sheets for testing furnished by manufacturer.
9.14	Silastic 950 Dow Corning Corp.	Chemical Class: Silicone rubber for high strength for gaskets, seals, shock mounts, etc.
	Midland, Michigan	Temperature range: -130 to 480°F
		Color: grey
		Vulcanized sheets supplied by manufacturer.

Table A-5 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
9.15	Silastic 1410 Dow Corning Corp. Midland, Michigan	Chemical Class: Silicone rubber that is heat shrink-able. Usually furnished as a tub-ing. Color: grey Vulcanized rubber sheets prepared by manufacturer to fabrication of tensile specimens. Test
		were prepared.
9.16	Sylgard 182 (DC 93-002) Dow Corning Corp. Midland, Michigan	Chemical Class: Silicone potting and encapsulating resin for electrical applications. It cures at moderate temperatures, and without exotherm. When mixed with the correct amount of curing agent, the resin will cure in 4 hr at 65°C (149°F); cure can be accelerated by using higher temperatures. The rate of cure is constant regardless of sectional thickness, or the degree of confinement. When set up, Sylgard 182 resin needs no further after-bake. Color: nearly transparent Cured sheets of the Sylgard were prepared by the manufacturer for the dielectric and compression test specimens.

Table Acf (cont'd)

Section	Trade Name and Source	"aterial Description and Preparation of Stock Items
9.17	Tedlar	Chemical Class: Polyvinyl fluoride film (PVE)
	Film Department E. I. duPont de Nemours Wilmington, Delaware	Color: transparent Film obtained from manufacturer in l-inwidth roll, 2 mils thick. Film code identification is 200 S G 40 TR.
9.18	Teflon FEP Film Department E. I. duPont de Nemours Wilmington, Delaware	Chemical Class: Fluorocarbon film (fluorinated copolymer of ethylene and propylene) Color: transparent DuPont furnished the Teflon FEP films as follows: 2-mil (200A), sheets (8-1/2-by 11-in.)
		10-mil (1000A), sheets (8-1/2- by 11-in.) 40-mil (4000A), sheet (15- by 36-in.) These films were cut into strips for testing.

Table A-5 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
9.19	Teflon TFE	Chemical Class: Fluorocarbon (tetrafluoroethylene)
	E. I. duPont de Nemours Wilmington, Delaware	Material for 125-mil tensile dumbbell-type specimens:
	John L. Doré P.O. Box 7772 Houston, Texas	electrical grade, molded by performing sinter- ing technique and ram extruded. Since Teflon is difficult to bond to without treatment,
	Dixon Corporation Bristol, Rhode Island	che John L. Dore Company prepared the ends by special treatment sufficient to receive the aluminum doublers used with the tensile specimens. The material was received from Doré as individual slabs ready for preparation of each test specimen with ends already treated.
		Material for Film tests: The 2.5-mil, 5-mil, and 40-mil films are Dixon CMV Controlled Teflon skived tape supplied by Dixon Corporation. The 10-mil and 20-mil are Teflon TFE Grade A, type T-7 supplied by Dore.
		Color: white Test specimens and film strips for testing were prepared at GD Ft Worth Div.

Table A=6

Materials Used in Thermal Insulation Tests

10.1 CPR-200-2* Chemical P Internatio		materiar Description and Freparation of Stock Lems
Torrand	CPR-200-2* Chemical Plastics Research	Chemical Class: Polyurethane rigid foam of the combination of polyether and polyester resins
	International Corporation Torrance, California	Carton dioxide blown
(A) (A)	(A DIVISION OF OPJOIN COLP.)	Density: 2 lb per cu ft
		Color: white
		Rigid blocks were supplied by manufacturer.
10.2 CPR-1021-2	21-2	Chemical Class: Polyurethane rigid foam of polyf.nctional polyether base
Internation of the contract of	Unemical Flastics Research International Corporation Torrance, California	resin Carbon dioxide blown
(A Divi	(A Division of Upjohn Corp.)	Density: 2 lb per cu ft
		Color: white
		Rigid blocks were supplied by manufacturer.

*Referred to as CPR-20 in FZK 188-2 (Ref. 4).

Table A-6 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
10.3	EFS 175	Chemical Class: Epoxy spray foam (rigid, 88% closed cell, halocarbon blown)
	Plastics and Resins Div. Shell Chemical Co. Houston, Texas	Epon Foam Spray 175 (EFS 175) is a liquid, two- component system composed of: (1) Epon foam spray resin and (2) Epon foam spray curing agent. The foam is applied with spray equip- ment by means of repeated passes of the spray gun. Foam may be built up to any required thickness in increments of approximately one inch. Within seconds after deposition, the resin and curing agent react. The resultant heat (exotherm) volatilizes a chlorofluoro- carbon and expands the layer approximately thirty-fold in thickness. Resin is 100 and curing agent 5 to 6 parts by weight.
		Density: about 2 lb per cu ft
		Color: white
		ALBIG DIOCKS Wele supplied by manufacturer.

Table he6 (cont'd)

ev in Magn -

ection	Trade Name and Source	Material Description and Preparation of Stock Items
10.4		Chemical Class: Urethane rigid foam (halccarbon-blown polyether type)
	American Latex Froducts Co. Hawthorne, California (A Division of the Dayton Rubber Co.)	This foam is a modification of the AA 402 tested previously with a finer, closed-cell structure and was recommended to be tested in place of the AA 402. It cures at ambient temperature.
		Density: about 2 lb per cu ft
		Color: cream
		Rigid blocks were supplied by manufacturer.

Table A-7

Materials Used in Lubricant Tests*

Section	Trade Name and Source	Material Description and Preparation of Stock Items
11.1	Almasol SFD-238 Almasol Corporation Fort Worth, Texas	Chemical Class: Dry-film lubricant. MoS ₂ and PbO plus organic binder (binder composition is proprietary) Material applied to bearings by Almasol Corporation.
11.2	DC-705 Dow Corning Corporation Midland, Michigan	Chemical Class: Phenyl silicone Viscosity: 175 cs at 70°F Vapor Pressure: 3 x 10 ⁻¹⁰ torr at 70°F Material supplied by Dow Corning Corporation and applied to bearings by Miniature Precision Bearing Co. (MPB).
11.3	Duroid Rogers Corp. Rogers, Conn.	Chemical Class: Tefion impregnated with MoS2 Teflon Westinguated with MoS2 and reinforced with filterglass. Coefficient of friction: 0.03 at room temperature and pressure. Retainer was machined and furnished by Miniature Precision Bearing Company.

*All bearings are SR-3 type furnished by Miniature Precision Bearing Company, Keene, New Hampshire

Section	Trade Name and Jurce	Material Description and Preparation of Stock Items
11.4	Electrofilm 66-C Electrofilm Incorporated North Hollywood, Calif.	Chemical Class: Assumed to be MoS ₂ plus additive, and with an epoxy-resin binder. Material supplied by manufacturer to MPB who applied lubricant to bearings.
11.5	Shell Oil Co. New York, N. Y.	Chemical Class: Chlorophenylmethyl polysiloxane with indanthrane thickener. Apparent viscosity: 565 poise (at 65°F, shear rate at 20 sec ⁻¹) ASTM penetration at 77°F; Unworked: 314 Worked 60 strokes: 282 Material supplied by manufacturer to MPB who applied lubricant to bearings.
11.6	FS-1265 Dow Corning Corporation Midland, Michigan	Chemical Class: Fluorosilicone Viscosity: 1,000 cs @ 77°F 74 cs @ 212°F Low vapor pressure Material supplied by Dow Corning Corporation and applied to bearings by Miniature Precision Bearing Co.

Section	Trade Name and Source	Material Description and Preparation of Stock Items
11.7	GE F-50 Versilube	Chemical Class: Chlorophenylmethyl polysiloxane
	General Electric Co. Silicone Products Dept. Waterford, N. Y.	Viscosity: 90 cs @ 32 ^o F 40 cs @ 100 ^o F 13 cs @ 210 ^o F
		Material supplied by manufacturer.
11.8	Kynar (filled)	Chemical Class: Vinylidene fluoride
	Pennsalt Chemical Corp. Philadelphia, Pa.	For use as lubricant, material filled with MoS2. Material supplied by manufacturer.
11.9	Minapure	Formulation: Company proprietary
	Miniature Precision Bearing Company Keene, New Hampshire	Material supplied and applied to bearings by manufacturer.
11.10	MLF-5 Midwest Research Inst.	Chemical Class: MoS ₂ plus sodium silicate binder (Dry Film)
	Kansas City, Mo.	Constituency: Parts by Wt.
		10 5 7 50

をなからながらのはのはないのできることできる。

Table A=? (cont'd)

一年 一年 中国

Section	Trade Name and Source	Material Description and Preparation of Stock Items
11.10	MLF=5 (cont'd)	Coefficient of friction
		at 760 mm Hg:
		0.29-0.30 @ 80°F 0.14-0.18 @ 250°F 0.18-0.32 @ 400°F
		at 10 ⁻⁶ torr:
		0.20-0.25 @ 80°F 0.09-0.11 @ 250°F 0.09-0.10 @ 400°F
		Material a ied to bearings by Midwest Research Inst.
11,11	0S-124	Chemical Class: Five-ring polyphenyl ether
	Monsanto Chemical Co. St. Louis, Mo.	Nomenclature of compound; mixed isomers (predom-inately metal of bis (phenoxy-phenoxy) benzene
		Viscosity: 1000 cs @ 80°F 13.1 cs @ 210°F
		Material furnished by manufacturer.

Table A-7 (cont'd)

Section	Trade Name and Source	Material Description and Preparation of Stock Items
11.12	Polymer SP-F	Chemical Class: Polyimide
	E. I. DuPont Co.	"F" class filled especially for these tests.
	wilmington, Deiware	Composition:
		S
		Copper Polyimide Polymer 70
		Material DuPont-supplied and bearing retainers machined by DuPort.

BLANK PAGE

APPENDIX B

REPRESENTATIVE SPECIMEN TEMPERATURES, VACUUM-CHAMBER PRESSURES, AND REACTOR POWER LEVELS DURING STATIC, LOW-FORCE DYNAMIC, AND BEARING-LUBRICANT TESTS

BLANK PAGE

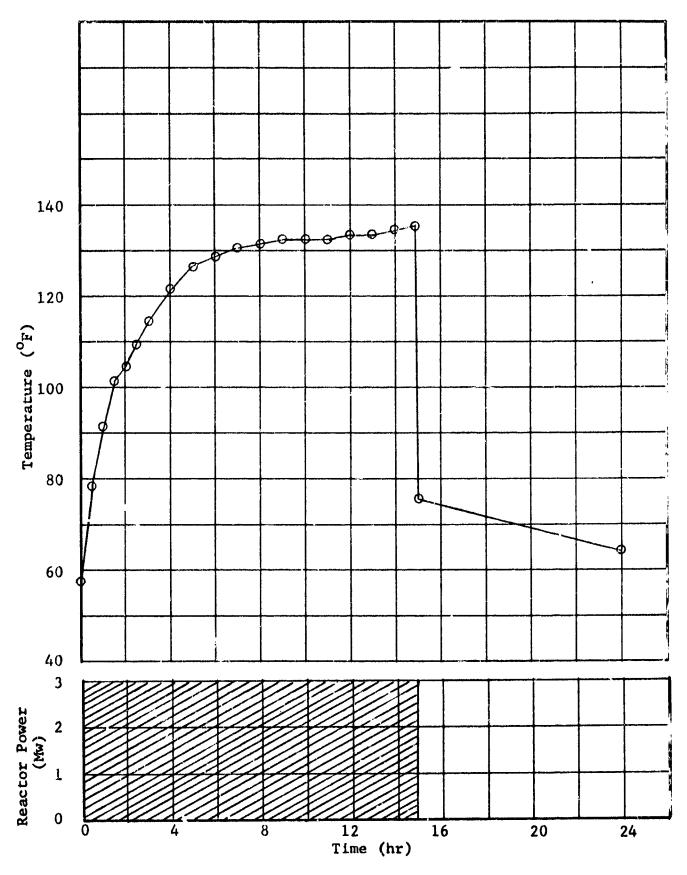


Figure B-1 Temperature History of Mylar 100C Specimen During Low-Force Irradiation Test: Run 5a, East Position

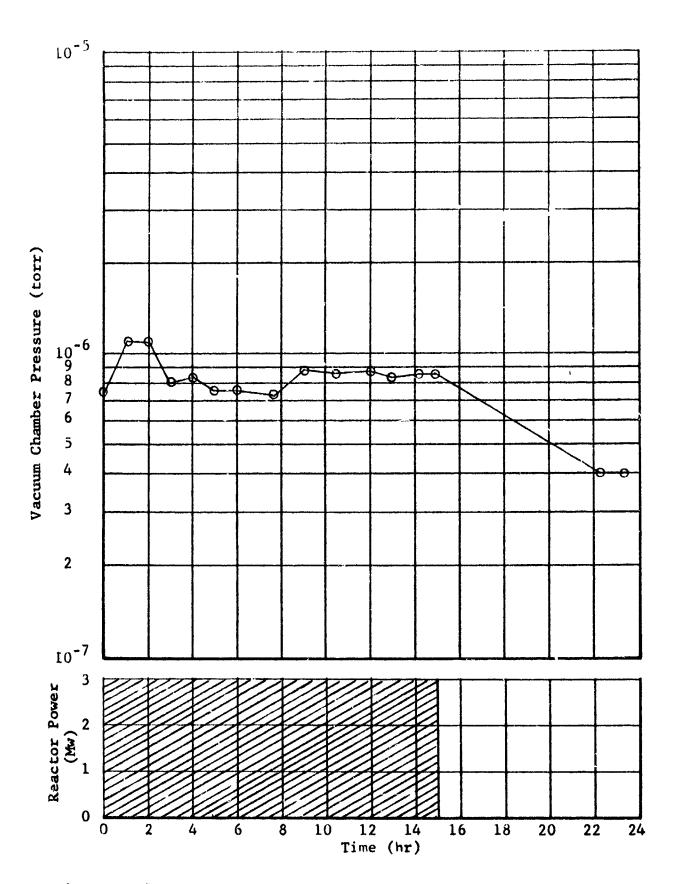
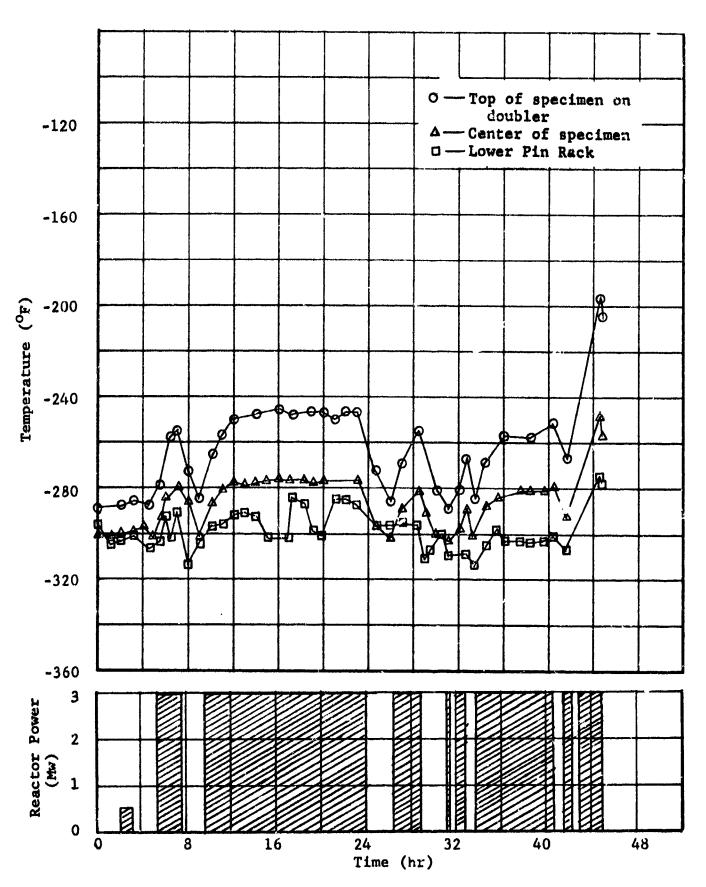
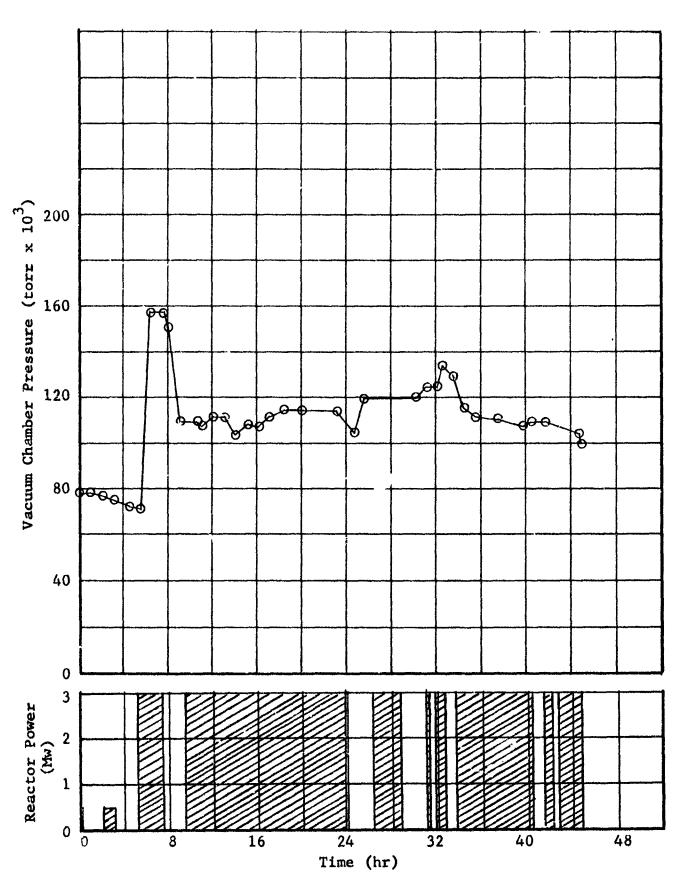




Figure B-2 Vacuum-Chamber Pressure and Reactor Power During Low-Force Irradiation Test: Run 5a, East Position

"b" . " D Try 10, no no .

Figure B-3 Temperature History of Duroid 5600 Specimen During Cryomechanical Irradiation Test: Run 43, West Position

ente destado profesio estado estado como esta a como como estado entento enten

The state of the s

Figure B-4 Vacuum-Chamber Pressure and Reactor Power During Cryomechanical Irradiation Test: Run 4c, West Position

APPENDIX C GTR RADIATION EFFECTS TEST FACILITY

BLANK PAGE

APPENDIX C

GTR RADIATION EFFECTS TEST FACILITY

The radiation source used in these tests was the Ground

Test Reactor (GTR) - a heterogeneous, highly enriched, thermal

reactor utilizing light water as neutron moderator and reflector,

as radiation shielding, and as coolant (Ref. 13). Maximum power

generation is 3 Mw.

The irradiation pool is shown in Figures C-1 and C-2. The reactor (Fig. C-1) is located in an aluminum water-filled tank, and the components to be irradiated are located in the adjacent test cell open to the atmosphere (Fig. C-2). A reactor closet, consisting of an offset in the north tank wall, extends into the irradiation test cell to provide three locations for equipment and specimen irradiations. The corresponding irradiation positions - east, west, and north - are clearly visible in Figure C-2. In Figure C-1, the reactor is in a retracted position on the horizontal positioning mechanism. This mechanism enables the reactor to be positioned at any distance from 2 to 90 in. from the north face of the closet and will traverse the reactor the full 88-in. distance in 1 min, providing an effective source termination time of 10 sec.

The reactor closet is constructed of 1-in. aluminum plate and is partially covered by 1/4-in.-thick boral to attenuate thermal neutrons. The boral extends 36 in. east and west along the north tank wall from the closet and 36 in. up and down from the horizontal centerline of the reactor. The centerline is 57 in. above the cell floor.

Adjacent to the north wall of the irradiation test cell is the equipment handling area. Equipment permanently installed in this area includes a gas-monitoring system, a Davis explosion meter, and environmental conditioning equipment for the Radiation Effects Testing System.

An integral part of the GTR Radiation Effects Testing

Facility is the shuttle system, which is used to move items to

be irradiated into position next to the reactor closet. This

system consists of cable-driven dollies mounted on three sets of

parallel tracks. The tracks extend from the irradiation posi
tions adjacent to the reactor closet, up an incline to the north

wall of the irradiation cell, and to a loading area on the ramp

just north of the handling area. The system can be operated

from either the control room or the dolly motor-drive shed on the

morth ramp. Full-coverage televiewing of the entire shuttle

system is provided by means of a closed-circuit television system

in the control room.

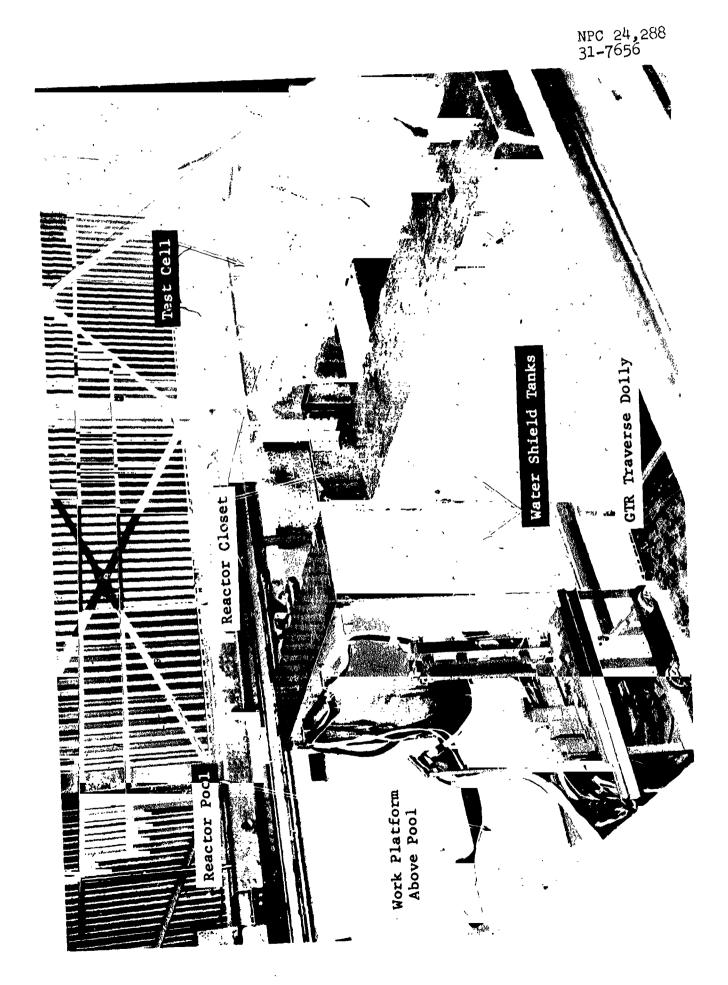


Figure C-2 GTR Irradiation Test Cell

APPENDIX D

DOSIMETRY TECHNIQUES

BLANK PAGE

APPENDIX D

DOSIMETRY TECHNIQUES

Extensive nuclear measurements, made prior to and during this series of irradiations, were used to characterize radiation fields within test systems located at the three GTR irradiation positions. Information thus obtained was used to stipulate equipment geometries required to obtain the various gamma dose levels that were called for in the test specifications.

Nuclear-measurement packets were positioned in strategic locations in each test assembly to monitor the neutron fluxes and gamma doses. Each measurement packet contained a bare and cadmium-shielded pellet (or foil) and a sulfur pellet for determining, respectively, the thermal-neutron flux (E < 0.48 eV) and the fast-neutron flux (E > 2.9 MeV). Each packet also contained a nitrous oxide (N20) or a pair of tetrachloroethylene (TCE) gamma dosimeters, or, in some cases, all three. Gamma and neutron detectors were processed in a routine manner in the NARF Nuclear Measurement Facility. Neutron-flux data were reduced by standard foil techniques, which have been programmed for use on the IBM 7090 computer.

Nitrous oxide (N_2 0) and tetrachloroethylene (TCE) desimeters were used to obtain gamma-dose measurements during the test exposures. The N_2 0 dosimeter measures gamma dose in mixed or pure gamma-radiation fields in the range 10^7 to 5×10^{11} ergs/gm(C). Its operation is based on the radiation-induced decomposition of nitrous oxide gas, for which the overall reaction is:

and the state of t

$$6N_2O \rightarrow 5N_2 + O_2 + 2NO_2$$

The TCE dosimeters are chemical dosimeters which consist of 0.8 ml of tetrachloroethylene over-layered with 0.2 ml of water. The tetrachloroethylene contains 3 gm/liter of Ionol stabilizer; the water contains 16 gm/liter of chlorophenol red pH indicator dye. The chemical reaction which takes place within the dosimeter subjected to radiation resets in the formation of hydrochloric acid, the amount of which is directly related to the total gamma dose absorbed. Readout of the dosimeter is accomplished by means of microchemical titration with dilute sodium hydroxide. The nominal range of the TCE dosimeter is 8.9 x 10⁴ to 8.9 x 10⁹ ergs/gm(C).

As a result of recent research into the response characteristics of the N_2O dosimeter, a sizable increase in the decomposition of the nicrous oxide gas at LN₂ temperature (-196°C)

has been observed in the range of dose between 4×10^8 and 1×10^{11} ergs/gm(C). This results in a commensurate increase of about 70% in the dose measured at LN₂ temperature over that measured at room temperature (+30°C). Where applicable, the gamma-dose measurements shown in the tables in the test results sections reflect a temperature correction.

Although there is little experimental verification, there is reasonable indication that the decomposition of N₂O is greater at LH₂ temperature (-252°C) than at LN₂ temperature (Ref. 12). In order to present the most logical ricture, therefore, measurements of the gamma dose in LH₂ also reflect a temperature correction. The correction factor assumes a linear relationship between the moles of N₂ + O₂ produced in the dosimeter at LN₂ temperature (-196°C) and that produced at LH₂ temperature (-252°C). Since the relationship is linear between +30°C and -196°C, the assumption of linearity between -196°C and -252°C is considered to be correct. Additional research into the response characteristics of the nitrous oxide dosimeter when exposed to gamma radiation at LH₂ temperature is currently in progress.

The radiation exposures presented in the test results sections of this report were based on mapping late and actual measurements made during the irradiations. In order that the most reliable gamma doses might be presented, an analytical approach for data evaluation was used, based upon nuclear measurements made prior to and during this series of experiments. The method is simple and utilizes the following radiation measurements of known reliability: (1) The fast-neutron fluence (E > 2.9 MeV) nvt₁ measured during this series of experiments at the location of interest; (2) nvt₂ and gamma₂ measured previously at the same location.

Then, with the relationship,

The second of th

$$\frac{\text{nvt}_2}{\text{gamma}_2} = \frac{\text{nvt}_1}{\text{gamma}_1} ,$$

the gamma dose at the location of interest (gamma₁) can be calculated:

$$gamma_1 = \frac{gamma_2(nvt_1)}{nvt_2}$$

APPENDIX E

STATISTICAL ANALYSIS OF DATA OBTAINED FROM TESTS ON LAP-SHEAR SPECIMENS OF TWO ADHESIVE MATERIALS

BLANK PAGE

APPENDIX E

STATISTICAL ANALYSIS OF DATA OBTAINED FROM TESTS ON LAP-SHEAR SPECIMENS OF TWO ADHESIVE MATERIALS

The allocation of the experimental material for FM-1000 and Epon 934 adhesives tested during this period was predicated on the number of lap-shear specimens that could be cut from a single panel and the number of specimens that could be tested in the dewars for the various conditions specified. The design matrix and the number of specimen units tested under each condition were as follows:

Test		Radiation Levels		
Environment	Material	R _o (control)	R _{1ow}	R _{high}
Air	FM-1000	5	5	5
	Epon 934	5	5	5
LN ₂	FM-1000	4	4	4
	Epon 934	4	4	4
LH ₂	FM-1000	4	4	4
	Epon 934	4	4	4

Data from past experiments with bonded lap-shear panels show that the specimens cut from the same panel are less variable than specimens cut from different panels. In some cases, the difference between supposedly similar panels was quite large. Therefore,

that all specimens could not be cut from a single panel, an allocation of the specimen units was made to obtain estimates of radiation and temperature effects within panels.

The Fin-1000 panels were sized so that only three specimens per panel were available. For purposes of discussion they are designated as:

Panel A - specimens a a a Panel B - specimens b b b

Panel M - specimens m m m

Allocation of these units to the design matrix was as follows:

Test	Radiation Level		
Environment	R _o	R _{low}	Rhigh
Air	(abc)	(abc)	(abc)
	de	žg	jk
LN ₂	(li±)	(bu)	(hi.)
	de	fg	jk
LH ₂	(lm)	(lm)	(lm)
	de	fg	jk

An analysis of radiation effects is based on specimens cut from panels A, B, and C (air tests); H and I (LN2 tests); and L and M

(LH₂ tests). The specimen designations are the lower-case letters shown in parentheses in the above table. Analysis for temperature effects is based on specimens cut from panels D and E (unirradiated - control), F and G (low dose), and J and K (high dose). Corresponding specimen designations are those in the lower-case letters in the above table that are not in parentheses.

Analysis of variance was used to determine the significance or non-significance of the radiation and/or temperature effects. A combined analysis was not performed because the radiation levels designated as $R_{\mbox{low}}$ and $R_{\mbox{high}}$ were not the same under all temperature conditions.

Enon 934 material was allocated in a similar way as the FM-1000 material. Analysis of variance was also applied to these data.

FM-1000

There were significant radiation effects. Estimated standard deviations and confidence levels for FM-1000 are shown in the following table:

Test	Confidence	Standard	Deviation
<u>Environment</u>	<u>Level</u>	Percentage	Arithmetic
Air	0.90 < CL < 0.95	5.5	340
LN ₂	CL > 0.99	10.5	405
LH ₂	0.90 < CL < 0.95	18.0	401

There were significant temperature effects, for all cases, with a confidence level greater than 0.99.

Epon 934

and the state of the confirmation of the confirmation and the state of the sam

There were no significant radiation effects (confidence level less than 0.90). Estimated standard deviations for Epon 934 are shown in the following table:

Test	Standard Deviation		
Environment	Percentage	Arithmetic	
Air	6.8	190	
LN ₂	6.4	128	
LH ₂	4.6	85	

There were significant temperature effects, for all cases, with a confidence level greater than 0.99.

REFERENCES

- 1. Kerlin, E. E., <u>Investigation of Combined Effects of Radiation</u> and Vacuum and of Radiation and Cryotemperatures on Engineering Materials Annual Report (9 November 1961 through 8 November 1962), Volume I: Radiation-Vacuum Tests, General Dynamics/Fort Worth Report FZK-161-1, 5 January 1963.
- 2. Smith, E. T., <u>Investigation of Combined Effects of Radiation</u>
 and Vacuum and of Radiation and Cryotemperatures on Engineering Materials Annual Report (9 November 1961 through
 8 November 1962), Volume II: Radiation-Cryotemperature Tests,
 General Dynamics/Fort Worth Report FZK-161-2, 5 January 1963.
- 3. Kerlin, E. E., and Smith, E. T., Measured Effects of the Various Combinations of Nuclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials Annual Report (9 November 1962 through 30 April 1964), Volume I: Radiation-Vacuum Tests and Radiation-Vacuum-Cryotemperature Tests, General Dynamics/Fort Worth Report FZK-188-1, 1 May 1964.
- 4. Kerlin, E. E., and Smith, E. T., Measured Effects of the Various Combinations of Nuclear Radiation, Vacuum, and Cryotemperatures on Engineering Materials Annual Report (9 November 1962 through 30 April 1964), Volume II: Radiation-Cryotemperature Tests, General Dynamics/Fort Worth Report FZK-188-2, 1 May 1964.
- 5. Decker, L. A., The Effects of Radiation and Nitric Acid-Nitrate Salt Solution on Some Non-Metallic Materials, Phillips Petroleum Company, Atomic Energy Division Report IDO-14598, December 1962.
- 6. Kynar (Vinylidene Fluoride Resin), Properties, Applications, and Fabrications, Pennsalt Chemicals Corporation, Plastics Department Bulletin VF2R=62 (1963), p. 3.
- 7. Fulk, M. M. and Horr, K. S., <u>Sublimation of Materials</u> <u>Problem in Electronic Packaging for Spacecraft</u>. Ball Brothers Research Corporation, Boulder, Colorado. Presentation at Fourth International Electronic Packaging Symposium, University of Colorado, Boulder, Colorado, 14-16 August 1963.

REFERENCES (Cont'd)

- 8. Harrington, R., and Giberson, R. C., "Chemical and Physical Changes in Gamma-Irradiated Plastics," Modern Plastics 36 (November 1958), 199-221.
- 9. Giberson, R. C., "Gamma-Radiation Effects on Polycarbonate Resin," Modern Plastics 39 (April 1962), 143-146.
- 10. Barker, R. E., and Moulton, W. G., "Irradiation Effects in Lexan," J. Polymer Sci. XLVII (1960), 175-191.
- 11. Golden, J. H., and Hazell, E. A., "Degrading of a Polycarbonate by Ionizing Radiation," J. Polymer Sci. I, Part A (1963), 1671-1686.
- 12. Fritz, E. G., Effects of Nuclear Radiation on the Mechanical, Optical, and Electrical Properties of Merlon Polycarbonate, General Dynamics/Fort Worth Report FZK-9-195 (NARF-63-19T), 3 March 1964
- 13. NARF Facilities Handbook, General Dynamics/Fort Worth Report FZK-185A, March 1964.
- 14. Thornton, H. G., NERVA Materials Irradiation Program, Volume

 3: GTR Test 17 AGC Materials Test, General Dynamics/Fort

 Worth Report FZK-263-3, 30 December 1965, pp. 136-145.