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FINITE-THRUST ESCAPE FROM AND CAPTURE INTO
CIRCULAR AND ELLIPTIC ORBITS
by Edward A. Willis, Jr,

Lewis Research Center

SUMMARY

Finite-thrust escape and capture trajectories are considered which lead from a cir-
cular or elliptic orbit to a specified hyperbolic excess velocity vector located at the
gravitational "*'sphere of influence. !* Each trajectory consists of a powered maneuver
initiated at the parking orbit and a coasting arc from the cutoff point to the sphere of in-
fluence. The powered maneuver is accomplished with constant, continuous thrust and con-
stant jet velocity. Tangential steering and optimum thrust-initiation points are used to
obtain very nearly minimum characteristic velocity increments.

These near-optimal finite~-thrust trajectories are analyzed in dimensionless terms
and compared with equivalent impulsive ones. The minimal characteristic velocity ratio
(that is, the ratio of the actual propulsive effort, f a dt, to the equivalent impulsive veloc-
ity increment), the optimum characteristic central angle (measured from a reference
position on the parking orbit to the asymtotic direction at the sphere of influence), and
the optimum initial true anomaly for departing from an elliptic orbit are found for a wide
range of planetocentric trajectories. These results are presented as functions of the
dimensionless hyperbolic velocity, acceleration, and jet velocity parameters. The di-
mensionless arguments may be easily scaled to any particular case of interest - for ex-
ample, a specific planet, parking orbit, propulsion system, and hyperbolic velocity.

The data ranges were chosen primarily to correspond with high- to medium-thrust sys-
tems, such as chemical rockets and various types of nuclear rockets. These resulis
may be conveniently used in combination with ballistic interplanetary trajectory calcula-
tions to obtain a realistic geometric description and accurate propellant fractions for a
great variety of interesting and potentially important space flight missions. Examples
illustrating the use of these data for actual mission problems are also presented.



INTRODUCTION

The dynamic and geometric effects of finite vehicle acceleration must be accounted
for in order to derive accurate propellant fractions (and hence vehicle weight) from bal-
listic interplanetary trajectory data (such as refs. 1 to 3). The velocity increments ob-
tainable from impulsive calculations are useful in preliminary studies but do not always
lead to accurate propellant fractions for vehicles with realistic thrust levels. This is
because of the following:

(1) A reduction in propulsive efficiency (also called a *'gravity loss'') occurs when an
impulse is replaced by a finite-thrust maneuver. As a resuli, the characteristic propul-
sive velocity increment (AV ch) and propellant fraction increase.

(2) There is often a considerable difference between the geometric properties of im-
pulsive and finite-thrust trajectories. This, in turn, may complicate the problem of
matching heliocentric and planetocentric trajectory segments.

The efficiency penalty due to finite thrust may be accounted for by applying a correc-
tion factor (also termed characteristic velocity ratio) to the impulsive velocity increment.
Accurate propellant fractions may then be obtained in a convenient and familiar way from
the classical rocket equation. Prior discussions of this approach (e.g., refs. 4 and 5)
presented some typical velocity correction factors, but no geometric data, and consid-
ered only circular parking orbits and escape maneuvers. An alternative approach
(ref. 6) is to present the propellant fraction directly. In principle, this is equivalent to
the correction factor approach but is less convenient to use because a greater amount of
interpolation is required. A considerable amount of data of this nature is given in refer-
ence 6, which is limited, however, to the case of circular orbits. The present report
includes a wide range of velocity correction factors and geometric data for both escape
and capture maneuvers and for elliptic as well as circular initial orbits. This report is
intended both as a generalization of references 4 and 5 and to complement available and
future ballistic trajectory data. The correction factors and geometric data presented
herein may be used together with ballistic interplanetary data to obtain accurate propel-
lant fractions and realistic overall geometry for many missions of practical interest.

Trajectories that use a single burning period followed by coasting to the sphere of
influence are analyzed herein. The powered maneuver begins at an optimum point on the
initial orbit and proceeds with constant thrust and constant jet velocity until the hyper-
bolic excess velocity attains a prescribed magnitude. After cutoff, the vehicle continues
along a Keplerian arc to the sphere of influence. The final asymptotic direction of the
hyperbolic excess velocity vector is left open. For such trajectories, it is shown that
tangential steering yields very nearly the minimum characteristic velocities and propel-

lant fractions.
Characteristic velocity ratios, optimum initial true anomalies, and final asymptotic



directions are derived from a study of these unconstrained trajectories. The results are
presented as functions of the initial orbit elements and the dimensionless hyperbolic ve-
locity, jet velocity, and acceleration parameters. The significance of each dimensionless
variable is discussed, and scaling rules are developed to apply the generalized data to
any specific case of interest. As a sample application, the scaling procedures are used
to generate a set of specific working data curves that describe typical nuclear rocket ma-
neuvers near Venus, Earth, and Mars. Further examples illustrate the use of the pres-
ent results in solving representative mission analysis problems such as the selection of
an advantageous parking orbit radius and optimization of the initial thrust to weight ratio.

SYMBOLS

A acceleration
a dimensionless acceleration
e eccentricity of conic section

thrust

|

characteristic velocity ratio or correction factor, AV ch/AVimp

acceleration due to gravity

dimensionless acceleration due to gravity
angular momentum

dimensionless angular momentum
auxiliary function, defined in equation (A1)
specific impulse, sec

structural mass frac;cion, see equation (43)
mass

mass fraction

semilatus rectum

dimensionless semilatus rectum
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polar radius

radius ratio

o+

time



u angle of attack
v velocity
v dimensionless velocity

AV velocity increment

Av dimensionless velocity increment
o trajectory path angle
7 efficiency
8 trajectory central angle
ch characteristic central angle
u planet gravitational constant
v parking orbit true anomaly at thrust initiation (escape maneuver) or at thrust
termination (capture)
T dimensionless time
Y adjoint variables, defined in equation (A2)
0O denotes differentation with respect to 7
S denotes mean value
Subscripts:

act actual

as acceleration sensitive
bo burnout
c circular

cap capture

ch characteristic
cst coasting

esc escape

g gross

i initial

imp  impulsive

i jet



k,n general numerical indices
g payload

m mean

max maximum

min minimum

opt optimum
P propellant
pl planet

po parking orbit
pr propulsive
ps propellant sensitive

pwr powered

ref reference

sc spacecraft

ts thrust sensitive

o sphere of influence
o Earth

Q Venus

d Mars

ANALYSIS

The initial mass of a space vehicle Mi is a useful criterion for interplanetary mis-
sion studies. A major step in computing Mi is to determine the propellant fraction m
for each propulsive maneuver. The propellant fractions are derived in turn from a study
of the flight trajectory, which is illustrated in typical form in figure 1(a). The flight
path consists of alternate planetocentric arcs (view A) and heliocentric arcs (view B),
which are matched at the spheres of influence as indicated in view A; that is, -

—

Voo, planetocentric trajectory ~ (Vsc - Vpl)helio centric trajectory (1)
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Either type of arc may contain a propulsive maneuver. For all but very low-thrust
systems, the propulsive effort or Avch of a heliocentric maneuver (used as a midcourse
correction or, as in ref. 3, to reduce the total AV) may be determined accurately by im-
pulsive methods. Values of mp are then given by the familiar formula

~AV.
m_=1-exp __mp (2)
p \

i

Planetocentric trajectories (illustrated in figs. 1(b) to 1(d)) join a parking orbit and
must produce a '"hyperbolic excess velocity" vector 900 (as defined by eq. (1)) at the
sphere of influence. Relative to the parking orbit, V_  is represented by its magnitude
V. and direction 0 ch These two parameters together with the parking orbit elements de-
fine boundary conditions for each end of the planetocentric trajectory. Impulsive maneu-
vers to satisfy these boundary conditions (fig. 1(b)) can be easily computed, but they often
lead to erroneous values of m_. The effects of finite thrust and other neglected items can
be lumped into a '"'correction factor" fV, which will be so defined that accurate propellant
fractions for finite-thrust maneuvers (figs. 1(c) and 1(d)) can still be obtained from an ex-
pression of the same simple form as equation (2); that is,

I AV,
mp =1 - exp v imp &)

The quantity fV Avim may be recognized as the actual propulsive effort or character-
istic velocity AV . for the finite-thrust maneuver. Thus fV is defined, for compu-
tational purposes, as

£ = = dt )

v
AVimp AVimp 0

and is termed the characteristic velocity ratio.

It is convenient to define Avim as the minimum AV which will produce the same
magnitude of V_ from the same parking orbit as does the finite-thrust maneuver (with-
out regard to the value of 6 ch)‘ As is well known, the control policy that minimizes
Avimp is to apply the impulse tangent to the parking orbit and at periapse if the orbit

is elliptic., With this definition, Avimp can be easily computed in closed form. Since



Avimp is minimal, £ = 1 (it will be shown later that f, -is also bounded below 3. 0 in
the case of circular orbits).

On the other hand, AV ch is obtained by numerical integration, thus accounting for
finite thrust and jet velocity, possible geometric constraints on 0 ch? and actual (as op-
posed to optimal) control policies in addition to V_ and the parking orbit elements.
Consequently, fv reflects these same factors.

For impulsive trajectories, the characteristic angle consists only of a coasting arc
eimp as figure 1(b) illustrates. When finite thrust is used, 6 ch consists of a powered
central angle 6 wr plus a coasting arc 0 cst 35 indicated in figure 1(c). The sum of
these two contributions is generally larger than the coasting angle 0 imp’ which corre-
sponds to an impulsive trajectory. Thus, the power-on point must be advanced in the
finite-thrust case in order to attain a prescribed direction of Voo in inertial space.

The quantities fV and 0 ch define the essential properties of finite-thrust trajec-
tories that begin or end in circular or elliptic orbits. The values of m_ obtainable
from precomputed fv data by means of equation (3) are more accurate than those which
could be obtained if m_ were plotted directly (as in ref. 6). This is because AV1mp
is always maintained as the first approximation to Avch' For the same reason, the
present approach is often more convenient to use; in many cases, constant ''typical'*
values of tv can be chosen that will yield acceptably accurate values of mp without

laborious interpolation.

Assumptions

The following assumptions have been introduced in order to simplify the numerical
calculations:

(1) As previously mentioned, an overall trajectory consists of successive two-body
arcs joined at the planet®s gravitational sphere of influence.

(2) Each arc lies in a plane determined by ‘7'00 and the center of force, and the
gravitational attraction along each arc is represented by an inverse square central force
field.

(3) The propulsion system operates with constant continuous thrust and constant jet
velocity. The thrust is considered finite, but large enough that the necessary magnitudes
of \700 can be attained within the sphere of influence. The radius of the sphere of in-
fluence is assumed to be much larger than that of the initial planetocentric orbit.

(4) The sphere of influence boundary condition is taken to be the magnitude ]V |
only. The characteristic angle 8 ch? which defines the orientation of the initial orbit rel-
ative to V. «» 1S not constrained but is treated as a dependent variable. Therefore, for
given V_ and parking orbit elements, the factors that primarily affect 6 ch? namely the

8
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power-on or -off point Yvo (cf fig. 1(d)) and the steering control policy u(t) (i.e., the
angle of attack program), can be chosen solely to minimize AVch and hence fv' Tra-~
jectories of this kind will be termed ''optimum-angle'® trajectories herein. Such trajec-
tories can always be used with a circular orbit since any necessary direction of -\;oo in
inertial space can be attained, without changing fv’ by selecting the appropriate power-
on or -off point. The optimum angle can also be used for one maneuver based on a given
elliptic orbit. If an elliptic orbit is used at the destination planet of a round-trip mission,
it must be reoriented between arrival and departure in order to use optimum-angle tra-
jectories for both capture and escape. Several effective methods of reorienting an elliptic
orbit are described in references 7 and 8; these methods would permit optimum-angle
trajectories to be used for both escape and capture maneuvers.

(5) Tangential steering (i. e., zero angle of attack) is used to approximate the optimal
steering policy. If 6 ch is not constrained, tangential steering yields the minimum pro-
pulsive effort in the limit of impulsive thrust. In reference 9 it was shown that, with
6 ch not constrained, the penalty for using tangential rather than variational steering for
constant acceleration escapes to parabolic energy (V?o = 0) from a circular orbit is quite
small (under 1 percent) regardless of the mangitude of the acceleration. In appendix A,
the analysis of reference 9 is generalized to include constant thrust, constant jet velocity,
hyperbolic burnout energy (V_, > 0), and elliptic as well as circular orbits. It is shown
that the maximum penalty for tangential steering is still under 1 percent of AV, under
these more general conditions, and it decreases rapidly as elliptic orbits of increasing
eccentricity are considered.

Equations of Motion

When the foregoing assumptions are used, a simple set of differential equations may
be constructed to describe the rocket's motion.

Coordinate system and dimensionless variables. - The trajectory is represented in
plane polar coordinates as indicated in figures 1(b) to 1(e). The position of the rocket R
is described by the polar radius R and central angle 0 (fig. 1(e)); the velocity V is
denoted by its magnitude V and path angle «a relative to the local horizontal. Similarly,
the acceleration A is described by its magnitude F/M and angle of attack u (relative
to -\;) Gravity G is represented by its magnitude pu /R2 and is directed toward the
center of force.

In order to obtain general results, it is necessary to normalize the variables just
described. The resulting dimensionless variables (denoted by lower case symbols) are
obtained by dividing radii, velocities, accelerations, and time, respectively, by the
radius, circular velocity, local gravity, and circular radian period corresponding to a



reference position on the initial orbit. Polar angles (6) are also measured relative to the
reference position. For circular orbits, the reference position is the power-on or -off
point, but for elliptic orbits the periapse is the reference point. The dimensionless vari-
ables, which will be used henceforth, are related to their dimensional counterparts by

r(r) = E@ (5a)
ref
vir) =—Y® (5b)
c,ref
atr) = =0 (5c)
“/Rref
A
r=_Cs ref t (5d)
Rref
g = -——G'—i—— = —15 (5e)
#/Rieg T
G_I
vi=—2 (51)
Vc, ref
2
V
2 =)
ve = - (52)
c, ref

Basic equations. - With the normalization just described, the first-order vector

equations of motion are

?

=V (6a)

=

t

v =% +E (6b)

The components of equation (6) for r, v, @, and 6 are then

10



r'=v sin o (7a)

sin o

vt = a\cgs u - —2— (7b)
r
a,=asinu+<v2__1_>cosa (70)
v r/ rv
9v=Y cos a (7d)

r
The characteristic velocity AV ch which is needed to define fV is given by

AV, = a(7) (8)

Since the vehicle operates with constant thrust and jet velocity, the acceleration a(r) is
given, for an escape maneuver, by

a(r) =— PO og=r=7
esc bo
1- ap07/v].
=0 Tho < T (coasting flight) (92)
where apo =a,, the initial acceleration at the power-on point.

Capture maneuvers, on the other hand, are integrated backward in time, that is, be-
ginning at the desired power-off point on the orbit. This is done only for computational
convenience (to avoid the iterative search that would otherwise be required) but has the
consequence that the acceleration term for capture maneuvers is given by

A, =B g=r=1
cap
1+apo'r/vj

bo

=0 Tho <7 (coasting flight) (9b)

In this case apo is to be interpreted as the acceleration at burnout rather than the initial

one. For either escape or capture maneuvers, the initial and burnout accelerations are
related by

11



i i
a = = (10a)
bo
1- mp i 2o
Y
or
a; = %o _ ab;’d (10b)
T
1+ “bo’bo 1+—2
Vj Mbo

Boundary conditions. - In terms of the present dimensionless variables, the initial

(r = 0) conditions for a circular orbit are

r(0) =1 (11a)
v(0) = 1 (11b)
@(0) = 0 (11c)
8(0) = 0 (11d)

For an elliptic parking orbit, the initial conditions are given in terms of the eccentricity
of the orbit e 0o and the true anomaly of the power-on or -off point v o by the well-
known conic equations

r(0) = po_ (122)

1/2
v(0) = L-%a) —(1-e pO)J (121)
2 (0) = a1 epor(O)sin 8(0) (120)
1=+ epo
0(0) = v, (12d)

12



With these initial conditions and a known form for the steering control law (for ex-
ample, u(r) = 0), the equation of motion may be integrated (numerically) to obtain r, v,
a, and 6 as functions of 7 with Vpo, €0’ Voor 2507 and v. as parameters. Thrust is
terminated at the burnout time Tho? at which time the desired energy or hyperbolic veloc-
ity has been attained (cf eq. (1)), that is, when

—r —r 2
Ve - Vil
r(r
bo at sphere of influence Vc, ref

Once 7,  has been determined, equations (8) and (9) may be evaluated as a definite inte-
gral; that is,

Tbo 1
AVch(’rbo) A a(r)dr = Y] n a.T
0 1-_Lho

M

(14)

The properties of the remainder of the trajectory, that is, the coast from burnout to the
sphere of influence, may finally be calculated in closed form from the well-known conic
equations.

Trajectory Solutions

There are no known general closed-form solutions to the equation of motion described
above. As has been previously mentioned, accurate values of Av ch’ Gch’ and other tra-
jectory parameters can only be obtained by numerical integration. Impulsive solutions,
which can be obtained in closed form, are required to define values of AV, and thus
of fv Low-thrust limiting solutions are also studied to derive an upper bound for fv
and to obtain insight into the behavior and significance of this function.

Impulsive thrust. - For tangential steering (u(7) = 0), only the velocity equation (7b)
contains a. For sufficiently high thrust, and/or for very low local gravity, the dimen-
sionless acceleration a tends toward infinity during the powered maneuver, but the dura-

tion of the maneuver bo tends toward zero. Inthe impulsive limit, v changes discon-
tinuously across the maneuver, but r, o, and 6 remain constant. The velocity equa-
tion (7b) can then be integrated in closed form to yield the ''classical rocket equa-

tion'' (2). The appropriate value of Avimp(= Vbo " Vi) may then be derived from equa-

13



tions (12b) and (13) when it is recalled that the impulse is not only tangential but is to be
applied at the periapse if the orbit is elliptic; that is,

>1/2 5

Avimp = (v?o + 2) 12 - (1 + epo

This is the value which enters the definition of fv (eq. (4)).
The remainder of the planetocentric trajectory consists of a coasting arc (i.e., a hy-

perbola) whose periapse is at the impulse point and whose asymtotic branch extends to
the sphere of influence (recall fig. 1(b)). Since the sphere of influence is considered very
large compared to the parking orbit, the characteristic angle 6 ch is well approximated
by the asymtotic true anomaly of the hyperbola; that is,

- eog-1 1\
Gch, lmp = COS <‘e——> = Bcst (16)
bo

where
2
€0 = Veo * 1 1)

Finite thrust. - The powered portion of the trajectory is integrated numerically to
obtain values of r, v, @, and 6 at the burnout time 7, in addition to a value of AV ch
for use in equation (4). The remainder of the trajectory, that is, the coast from the burn-
out point to the sphere of influence, is again a conic arc whose elements may be computed
in terms of the burnout conditions Tvo’ Vbo' %bo’ and 9b o The semilatus rectum Pho

is given by

(18a)

2 .2
rbovbo Cos— ay,

Ppo

and the eccentricity €0 by

)2 (181)

_ 2
®ho = (1 * PyoVeo

Then the coasting contribution (6 cst) may be computed from the conic equation and added

to 9b0 to obtain

14



- - /Ty, = 1
6 , =6, +cos 1/.1 ). cos 1 M_. (19)
ch bo e e

bo bo

Very low thrust. - A useful approximate solution may be obtained in closed form for
maneuvers with very low but finite thrust. It is assumed that

a(r) << L @) v =0 (202)
2
but that
1 2
a(r) >> - (1) v, >0 (20b)
r

That is, escape (vi = 0) is attained at a very great radius, and further energy is then
added in a field-free region. If the initial orbit is circular it will remain nearly circular,
that is, a spiral of low pitch. This means that o is small and moreover that «a' = 0.
Equation (7c) then yields, for tangential steering, the condition

o @21)
r

Combining this relation with equations (7a) and (7b) yields
(Avg)' = vt + - (22a)
v =v'+ a

r
or
_ 2

d(Avch) =dv +d <$> (22b)

Integrating term by term and applying initial condition (11) and the terminal conditions

(Tpo) = =
(23)
V(Tho) = Voo

yield the result that

15



AVch, very low thrust, ~ Vo ~ Vi +\/? \/i-__ = Ve +1 (29)
circular orbit 1 bo

so that

v, +1

fv,very low thrust, ~ )1 /2' (25)

circular orbit Vo + 2 -1

It will be shown in the next section that Avch is directly proportional to the change
in vi that occurs in going from the initial orbit to the burnout point; that is,
AV, & v2 - v2 ) This suggests that Av ch for an elliptic orbit departure should

©, bo o, po
be approxin;ately the same as for a departure from a circular orbit whose energy is equal

to the energy of the ellipse. Since

2 ~1=vy2 =1 (26)

Voo, elliptic po = ®po ” © = Voo, equivalent .
circular po c, equivalent

the radius of this equal-energy circular orbit is

_ 1
I‘c, equivalent ~ 1-e (27)
po

If (27) is used in place of (11a), equation (24) becomes

AV Ve o * (L - epo)l/2 (28)

ch, ellipse, =~ Ve
low thrust

and the corresponding value of fv is

1/2
po (29)
1/2

Voo, bo * (17 -e

fv,very low thrust, ~

1/2
s 2
elliptic po (voo bo * 2) -1+ ©p 0)

]

It may be seen by inspection of equation (25) that fV for a circular orbit has a maxi-

16
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mum value of 3 where v =0.5. This is the desired upper bound. For elliptic orbits,
it may be seen from (29) that the upper bound is an increasing function of epo. It
o = 0.9, for instance, the maximum value of fv is about 10.6 (rather than 3) and oc-
curs when v ~ 0.15. It will be demonstrated in the RESULTS that equations (25) and
(29) not only yield valid upper bounds for fv but also provide an accurate qualitative de-
scription of how £ v varies with v_ for low-thrust systems.

Mean value solutions. - A formal solution for Av .y useful in interpreting the behav-
ior and significance of fv may be derived by converting the velocity equation (7b) into an

energy equation. Multiplying by v and using equation (7a) yield

]

vvt+I-=vacosu (30a)
r2
or (recalling eq. (13)),
1.2V, _
Py (Voo) = a(v cos u) (30b)

This may be formally integrated, using the law of the mean, to obtain the symbolic result

2 2
\4 -~V
AV, =—2P0 PO (31)
¢ 2(v cos u)

where (v cos u) is the mean tangential velocity obtained by averaging v cos u with re-
spect to Avch. When the same argument is applied to an impulsive trajectory, it is seen
that

Av (vcosu),
£ A ch _ ' imp (322)
Avimp (v cos u) actual

That is, fv may be expressed as the ratio of the mean tangential velocity for an impulsive
maneuver to that of the actual finite-thrust maneuver. In principle, f, may be deter-
mined by comparing the velocity and steering histories of actual and impulsive maneuvers.
(Examples of this will be given in the DISCUSSION.) For a given value of Avgo , the
parameters apo’ v., and Vp o only affect % by their influence on v.

On the other hand, the steering control u(r) enters fv explicitly, as is clearly
shown in (31) or (32a). It is evident that tangential steering (u(r) = 0) will produce the

17



maximum instantaneous value of v cos u. Improvements in the mean value (v cos u) by
means of variational steering can only come about by increasing v at the expense of

cos u. These opposing trends explain the fact, demonstrated in appendix A, that there is
little to be gained by using variational rather than tangential steering for optimum-angle
trajectories. If tangential steering is used, (32a) becomes

_imp (32b)
(v) actual

Thus, the selection of the power-on point v o to minimize fv is in accordance with the
intuitive principle that energy can be added most efficiently in a region of high velocity.
In fact, it is easy to see that fv is a direct measure of the mean propulsive efficiency

defined by

1 2

= Mbo AV
n _2 A Energy added to final mass (33)
pr, m Iy V_Z " Useful energy liberated by propulsion system
9 P

Then, the ratio of 7 r.m for an actual maneuver to that for the equivalent impulsive
b
manuever is (assuming equal M, O)

(T’pr, m) M

actual _

p

If equations (2) and (3) are used for Mp, 1/fp may be expressed as

Av, 2f - .
= £, 1+f"'1 Vimp) | , Zv 3 (2Vimp (35)
2 6 \%

Therefore,

18



o1 ("pr, m) imp (36)
v fp (npr ) m) actual

to the first order in (Avimp/vj). Thus, f v varies inversely with the mean propulsive ef-
ficiency.

fv as a "'gravity loss''. - It is evident from equation (31) that fv contains both dy-

namic effects (i.e., Avgo) and geometric effects ((v cos u)), neither of which depends ex-
plicitly on the presence or absence of a gravitational field. In the general case, fv can
represent '"'steering losses'' as much as gravity losses. For the optimum-angle trajec-
tories which are of primary interest, however, there are no steering losses as such;
therefore, fv may be interpreted as a gravity loss in the sense that it accounts for dy-
namic phenomena (reduction of (v) and 7 pr, m) that are caused in turn by the gravity
field. As here defined and used, however, f, cannot be directly related to a kinematic
gravity loss of the form

A

Voravity loss ~ 5 dr (37
0 r

When tangential steering is assumed in (7b), it may be seen that

AVoravity loss = AVch ~ AV (38)
while the loss associated with fv is
AVoss, £, = AVimp(gr - 1) =Avy, - AVimp (39)

A definition of fV based on equation (37) would not necessarily represent a loss of
energy since it would apply to coasting (constant energy) orbits as well as to powered
maneuvers. Furthermore, such an interpretation cannot be used to explain the fact that,
in the low-thrust limit, fv continues to increase beyond v_ = 0. At this point (r -~ «) all
of the gravity field has been left behind, but as may be seen from equation (25), fv in-
creases from 2.414 to 3.000 as v_ increases from 0 to 0.5. It will be shown in the
DISCUSSION that this typical behavior can be adequately explained in terms of (v).
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RESULTS

The equations of motion and auxiliary formulae indicated in the preceding section
were programed for numerical integration on a high-speed digital computer. Values of
fv and 6 ch were then obtained which correspond to a wide range of propulsive maneuvers.

Dimensionless Data

The quantities fv and 9 ch’ which describe the overall dynamic and geometric char-
acteristics of optimum-geometry trajectories, are plotted against the dimensionless hy-
perbolic velocity parameter v_. Both escape and capture maneuvers are considered
over a range of values of the dimensionless variables ap o and Vj'

Results pertaining to maneuvers leading from or to a circular orbit are presented in
figure 2. The dependent variable (i. e., fv or ¢ ch) and the range of dimensionless agru-
ments covered by the figure are listed in table I. It has been previously noted that any
desired orientation of ‘700 inertial space can be attained without changing fv simply by
selecting the appropriate thrust-initiation point on the ciruclar orbit. Consequently, the
value of 4 ch is of little concern for circular orbits and 9 ch data are presented for only
two cases - figures 2(b) and 2(i).

As indicated in table IT (p. 29), the corresponding results for elliptic orbits (with
e =0.9) are presented in _f}gure 3. In this case, 8 ch defines the required orientation of
the ellipse with respect to v_. If may be recalled by again referring to figure 1(d) that
reference conditions for an elliptic orbit are defined by the periapse radius vector. The
characteristic central angle ¢ ch is measured from periapse regardless of the initial
power-on point (v o)' The reference impulsive Av (eq. (3)) used in defining f, is com-
puted at periapse even if the actual trajectory begins at some other position (up o7 0) on

the ellipse,

Conversion of Dimensionless Data to Dimensional Form

The preceding dimensionless results can be applied in any case of physical interest.
That is, the reference values Rr of? Vc, ref’ etc. are known once the planet and the park-
ing orbit have been selected, while V_ and/or Avimp 2are known as a result of inter-
planetary calculations. The dimensionless variables v_, a o’ and v corresponding to
the maneuver may then be found by means of equation (5) and used with figures 2 and 3 to
determine values of fV and 6 ch’

In some interplanetary studies (ref. 1), the results are presented in the form of

values of v for each trip. Other studies, such as references 2 and 3, present the
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TABLE I. - KEY TO POWERED ESCAPE AND CAPTURE TRAJECTORY DATA,

CIRCULAR PARKING ORBITS, AND DIMENSIONLESS ARGUMENTS

Figure

2(a)
2(b)

2(c)
2(d)

2(e)
2(f)

2(g)
2(h)
2(i)

2())
2(k)

2(2)
2(m)

Depen- Maneuver Jet Dimensionless | Hyperbolic
dent velocity acceleration velocity
variable parameter, at parking parameter,

vj orbit, Vo
apo
fv Escape and capture oo 0-5.0 -1-20
gch Escape and capture o 0-5.0 -1-20
f, Escape 5 0-5.0 -1-20
fv Capture 5 0-5.0 -1-20
fv Escape 2.5 0-5.0 -1-20
fv Capture 2.5 0-5.0 -1-20
fv Escape 1.0 0-1.0 -1-10
fv Capture 1.0 0-5.0 -1-10
6ch Escape and capture 1.0 0.01-1.0 -1-10
fv Escape 0.5 0-0.75 -1-10
fv Capture 0-5.0 -1-10
fv Escape 0.25 0-0.4 -1-10
fv Capture .25 0-10.0 -1-10
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TABLE II. - KEY TO POWERED ESCAPE AND CAPTURE TRAJECTORY DATA

[Elliptic parking orbits; parking orbit eccentricity, 0.9; optimum values of op-

timum orbital true anomaly, v

3 optimum trajectory deflection angle, 0 ch‘]

po’
Figure | Dependent Maneuver Jet Dimensionless | Hyperbolic
variable velocity acceleration velocity
parameter, at parking | parameter,
vj orbit, v°2°
250

3(a) f, Escape and capture o0 0-1.0 0-20
3(b) Behs Ypo Escape and capture 0 0-1.0 0-20
3(c) fv Escape 5.0 0.01-1.0 0-20
3(d) bene Po Escape 5.0 .01-1,0 0-20
3(e) f, Capture 5.0 .01-1,0 0-20
3(f) 0 Yo Capture 5.0 .01-1,0 0-20
3(g) i, Escape 2,5 0.01-1.0 0-20
3(h) 6o Po Escape 2.5 .01-1,0 0 - 20
3(i) £, Capture 2.5 .01-1,0 0-20
3(j) . Ypo Capture 2.5 .01-1.0 0-20
3(k) £, Escape 1.0 0.01-1,0 0-12
3(1) ech, P, Escape 1.0 .01-1.0 0- 12
3(m) f, Capture 1.0 .01-1.0 0- 12
3(n) 8en Vpo Capture 1.0 .01-1,0 0-12
3(0) fv Escape 0.5 0.01-1.0 0-12
3(p) Ocons Yoo Escape .5 .01-1.0 0-12
3(q) f, Capture 5 .01-1.0 0-12
3(r) 8t Ypo Capture .01-1,0 0-12

3(s) £, Escape 0.25 0.01- 0.2 0-8

3(t) R Yoo Escape .25 .01- .2 0-8

3(u) £, Capture .25 .01 -10.0 0-38

3(v) Oon Vpo Capture .25 .01-10.0 0-8
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.equivalent impulsive velocity increment AVim necessaryzto leave or enter an assumed
circular parking orbit at 1.1 planet radii. In figure 4(a), v, is plotted as a function of
AVi (in miles/sec) for each planet of the solar system, with R po = 1.1 Rpl' Figure
4(b) gives the conversion between AV and v_ in EMOS (i. e., in units of the Earth's
mean orbital speed, 18.5058 miles/sec). In figure 4(c), 250 is shown in terms of A

(in units of Earth surface gravity, 32.17 ft/secz), again assuming R =1.1 Rpl' The

dimensionless jet velocity parameter \ is shown in figure 4(d) as a function of specific

impulse I (in sec).

As an example, suppose that it is desired to attain a value of V_ = 0.2 EMOS from
a circular Earth-centered parking orbit (R po = 1.1 R®) using a chemical rocket with
I1=385 secgnds and A, (= Apo) = 9 feet
Planet — / / y per second” or 0,27 GeB, g From fig-
Mercury — ol ures 4(a) and (b) it may be seen that

Venus . = h . ) .
ver / _ the corresponding value of AV, p 18

Mars
Jupiter
Saturn

20

16

,/ about 3 miles per second and vozo is
approximately 0.7. Also, apo = 0.3
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Uranus / and v, ~ 0.5, as noted in figures 4(c)
Neptune / / /// and (d). If these values (vgo =0.7,
/(/ // Apo = 0.3, vy = 0. 5) of the dimension-
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Dimensionless acceleration, a

d / study escape maneuvers with given
values of Abo’ it is necessary to solve
equation (10) by iteration. For instance,
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Figure 4. - Concluded, . .
Dimensional Data

For studies which involve repetitive

but similar calculations, it is convenient
to perform the previous conversion, interpolation, and iteration in advance. This yields
working charts that apply to a specific planet and parking orbit, and to ranges of Ai
(or Ab O) and I which are of particular interest. As an example, the preceding dimen-
sionless circular orbit data have been used to generate a series of working charts that
describe nuclear rocket maneuvers near Earth, Venus, and Mars (figs. 5, 6, and 7, re-
spectively). Values of fv are plotted against AV, o assuming a circular orbit radius
of 1.1 planet radii for values of Ai ranging from 0.1 to 1.0 G4 and specific impulses
of 900 seconds (solid curves) and 700 seconds (dashed curves). Part (a) of each of these
figures represents escape maneuvers while captures are shown in part (b). It is noted
that the captures are correlated on the basis of the initial acceleration Ai'
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Characteristic velocity ratio, f, = AVch/AVimp
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Characteristic velocity ratio, f, = AVcp/AVip,
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Characteristic velocity ratio, f, = AVch/AVimp
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DISCUSSION

The preceding results define the essential dynamic and geometric properties of a
very wide range of optimum-angle finite-thrust trajectories. This section is intended to
interpret the behavior of these results by examining the role of each of the independent
variables. The effects of v?o, a_, and v, are first considered in terms of circular
orbits. The additional variables (v, and e 0) associated with elliptic orbits are then
discussed, and finally the circular and elliptic orbit results are compared.

Circular Orbits
2

Effects of hyperbolic velocity parameter v_ . - The characteristic velocity ratio fv

is shown as a function of v_ (and a po) in figure 2(a) (p.21) for escape or capture maneu-
vers with vi=e (for instance). The uppermost curve on this graph is the low-thrust
limiting solution expressed in equation (25). This curve gives the upper bound for fv as
a function of v_; the peak value of fv =3 occurs at v = 0.25, and thereafter fv de-
clines as v, increases. For trajectories with intermediate thrust, the fv function be-
haves in qualitatively the same way. The peak value of fv, however, decreases and oc-
curs at higher values of vozo as apo is increased. For instance, with a o= 0.01,
fv, max = 2 at v?o =0.65. As apo approaches the high-thrust regime, the peak be-
comes low, very broad, and occurs at high values of v_ . Although not shown on the fig-
ure, f, -~ 1.0 for all values of 20 when vozo - -1 (i.e., when A%’im - 0).

The characteristic central angle 9 ch is also influenced by v, as illustrated in fig-
ure 2(b) (p.21). For impulsive thrust (apo = ), 0., is given by equation (16); it varies

downward from a maximum of 180° at v?o = 0, asymtotically approaching a lower bound

of 90° for large vi. For finite values of a o’ the behavior is similar; the greatest
value of 6 ch corresponds to vi =0, with a Iéapid approach to a lower bound as vozo in-
creases. The larger values of 0 ch at low v,  are due to the fact that low energy tra-
jectories remain within the sphere of influence a longer time and thus are more strongly
influenced by gravity.

Effects of orbit acceleration parameter apo' - Although 9 ch is a bounded function

of v oo for gii}eh a o it is not a bounded function of a for given v_. This may be
inferred from figure 2(b) and is further illustrated in figure 8, in which 0 ch is plotted

directly against a5 for several typical maneuvers. The large values of 6 ch at low
a are due to the large value of ebo associated with low-thrust spiraling.

The behavior of fv as a function of a is illustrated in figure 9 for several typical
maneuvers. It is clear that fV is bounded between the impulsive (fV =1) andzultra low~
thrust limits. The asymptotic value in the latter case is given in terms of v, by equa-
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Characteristic velocity ratio, fy= AVch’AVimp
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tion (25). It may be observed that fv varies most rapidly with a o in the range
0.03=a__ = 0.3. This range includes the thrust to weight ratios that are normally of
interest for vehicles using nuclear rocket propulsion and low parking orbits.

The characteristic behavior of fv may be understood by co;sidering how the mean
tangential velocity component (v cos u) varies with a and v_ . (For tangential thrust,
only (v) need be considered.) When equation (32) is used, the maximum value of fv’
with given v?o, occurs for minimum (v). Figure 10 depicts the velocity history of a
typical set of tangential-thrust maneuvers (escapes from a circular orbit with v]- = 1).
The path velocity v during the thrusting phase is plotted against the cumulative mass
ratio Mi/Mbo on the logarithmic scale, and against Avch on the linear scale. Each
solid curve represents maneuvers with a given value of a__.. The upper straight line
represents impulsive maneuvers, while the lower curve denotes the zero-thrust limit.
Loci of constant v are shown in dashed lines. For high but finite acceleration, v in-
creases monotonically with Av ch’ although not as rapidly as in the impulsive case. At
low acceleration, however, v actually decreases initially, and only begins to increase
again after a fairly high value of vi has been attained. It is clear that for any final
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Figure 10, - Velocity to mass ratio history for dimensionless escape. Jet velocity parameter, 1.0,
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value of v_, (v) decreases as a__ decreases and this accounts for the fact that f, in-

creases as apo decreases. 0

The location and magnitude of the peak value of fv as a function of v, may be pre-
dicted by determining (v) (for example, by graphical means) from figure 10. For in-
stance, in the low-thrust limit (lowest curve in fig, 10), it is readily verified that the min-
imum value of (v) (=0. 417)1 occurs when Av,y ~ 1.5 and v, ~ 0.5. These values in
equation (4) yield fv = 3 in agreement with both equations (25) and (32).

Effects of jet velocity parameter vj. - Variations in v and a 00 have similar ef-
fects on escape and capture maneuvers. The effect of Vi however, is qualitatively dif-
ferent for the two types of maneuvers when they are compared on the basis of equal values
of a__, as shown in figure 11, The reason for this behavior can be found by inspection of
equations (9a) and (9b). That is, for finite Vi a(7) increases continuously during an es-
cape maneuver; the lower the values of v. the greater the increase of a(r). As vi— 0
in an escape maneuver, fV therefore approaches the impulsive limit. On the other hand,
a(7) decreases steadily during the backward integration of a capture maneuver so that as
Vi~ 0, f, approaches its low-thrust limit. For high values of ML a(t) for both types of
maneuvers is nearly constant, and the values of fv approach a common asymptote,

From a physical viewpoint, however, the difference between escape and capture ma-
neuvers is more apparent than real. When escapes and captures are compared on the
basis of equal initial acceleration, the values of fv are similar. This may be recalled
from figures 5 to 7 and is further illustrated by the lower dashed and solid curves in fig-

ure 11,

1Recall that (v) is found by averaging v with respect to Avch. Thus, in figure 10

(v, = area under curve a - X
X
AV

ch, x

In the low thrust limit, the v - Av ch characteristic consists of straight line segments;
then with v, = voo, <= 0- 5, for instance,

_0.5(1)(1) + 0.5(0.5)(1.50 - 1) _
(v) low thrust ~ 1. 50 = 0. 417

Similarly,

AV,
(V) jmp = 1 +—;m1?= 1.25
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Elliptic Orbits

Elliptic planetocentric parking orbits are of interest because they offer a significant
reduction in propulsive AV for a given value of v_,, as suggested by letting epo -1 in
equation (15). The reduction can approach 41. 4 percent of Vc, ref’ it is thus most signif-
icant for low periapse orbits about the major planets. At Jupiter, for instance, the sav-
ing can be as high as 10 miles per second, while at Mars it cannot exceed 0. 8 mile per
second.

Characteristic velocity ratios (fv) and geometric data (Vp o and 6 ch) were presented
in figure 3 for optimum-angle trajectories using an elliptic orbit with e __ = 0.9. This
value of €0 was selected as a compromise between AV savings (cf eq. (15)) and or-
bital period considerations.

It may be seen in figure 3 that the fv data for 2e1]iptic orbits are similar in appear-
ance to those for circular orbits. The effects of v_, apo’ and v]- follow the same qual-
itative trends as in the circular orbit case. The two additional variables Vpo and epo
introduced by the consideration of elliptic orbits are now discussed.

Effects of initial true anomaly Vpo' - For the optimum-angle trajectories considered

herein, the power-on or -off point on the ellipse Vpo is simply chosen in order to mini-
mize fv for given values of vi, 3507 and v.. The characteristic angle 0 ch is re-
garded as a dependent variable; optimum values of 9 ch (i. e., corresponding to minimum
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fv) are presented. The process of selecting Vpo to minimize fv is shown graphically
in figure 12. The quantities fv and 6 ch are plotted against v o for maneuvers where
e =0.9, Vi = 0.25, and ;= o Impulsive and finite-thrust &po = 0.1) maneuvers are
represented by the solid and dashed curves, respectively.

For the impulsive maneuver, the minimum value of iv = 1.0 occurs at the periapse
(Vp . 0); this choice obviously yields the maximum value of (v). The corresponding op-
timum value of 6 ch is 142°. The increase in fv for nonoptimum angles represents the
effect of a geometrical constraint alone on the propulsive efficiency and mean velocity.

For the maneuver with a__ = 0.1, the minimum value of fv =1.03 occurs at point a
where v = -47°, This choice maximizes (v) for equation (32) during the powered ma-
neuver; it distributes the thrusting arc into roughly equal central angles ahead of and be-
hind the original periapse. The associated optimum value of 4 ch (point b) is about 1430,
only slightly different from the impulsive value (1420). It may be noted that 9 ch ¢an be
varied between 132° and 150° in this example for % = 1.10.

Effect of parking orbit eccentricity epo' - While v po was selected in every case to

yield minimum fv, the choice of ep o is based primarily on mission objectives. Prob-
ably the highest value of e__ would be used which is compatible with the observations,
experiments, and operations that constitute the purpose of the mission. Although the
value of e 0= 0.9 is believed to be a good compromise, it is quite possible that lower
or higher values may be required in particular cases.

The effect of other values of epo is illustrated in figure 13 for the same maneuver
(vozo =0.25, a 0= 0.1, v, = ©) as was discussed previously. The minimum values of fV

and the corresponding optimum values of » and @ ch are plotted against epo' The

po
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points a and b at epo = 0.9 represent the values of fv and 6 ch corresponding to the

optimum v 00 as shown in figure 12.

It may be noted first that 4 ch varies little with epo‘ More important is the fact
that fV decreases almost linearly with increasing e 00" Further examples _(_not illus-
trated here) indicate that this behavior is typical for maneuvers where a 0~ 0.01.
Therefore, in this medium- to high-thrust regime, values of fv for eccentricities be-

tween 0.0 and 0. 9 can be estimated without major error from a linear formula such as

i, €00 =@ - X)fv,O.O +XL; 0.9

where

)]

|

™
0
e
© |8

Comparison of Elliptic and Circular Orbit Results

As was mentioned previously, the elliptic orbit data presented in figure 3 have the
same general character as the circular orbit data of figure 2. There are, however, sig-
nificant numerical differences. It was pointed out before that in the medium- to high-

thrust regime (apo S 0.01) fv tends to decrease with increasing epo‘ The reason for
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this may be understood by recalling that the optimization of v o amounted to placing as
much of the maneuver as possible in a region of high velocity, that is, near the periapse.
Hence, for short burn times (i. e., high accelerations and/or low velocity increments),
(VY act ¥V im -~ For elliptic orbits, the velocity increment and hence the burn time are
lower than they are for a circle; therefore, a lower acceleration can be tolerated before
% begins to increase sharply.

Very low-thrust systems, on the other hand, require such long burning times that
only a relatively small part of the maneuver can be placed near the periapse. For the
first few revolutions at least, the greater proportion of time will be spent in the vicinity
of the apoapse, and this results in a low value of (v). Therefore, as predicted by equa-
tion (29) and shown in figure 3(a) (p. 30), the low-thrust values of fV can become quite
large as e o~ 1. These high values cannot be reduced significantly by the use of vari-
ational steering control. They are therefore an inherent feature of the trajectories being
considered and cannot be attributed to the assumed tangential steering law.

For these reasons it may be concluded that the AV savings predicted for elliptic
parking orbits are actually enhanced by the finite-thrust effects if a So. 01, but they
are degraded for very low-thrust systems. That is, the elliptic orbits are relatively
more advantageous for high-thrust systems.

APPLICATION TO MISSION PROBLEMS

The foregoing discussion indicated the significance, interpretation, and use of the
characteristic velocity correction factors (fv) and geometric data that have been pre-
sented. This section will illustrate, by typical examples, the application of the data and
procedures already described to actual mission problems.

Hohmann Transfers to All Planets

The minimum AV transfer between planets which lie in circular coplanar heliocen-
tric orbits is the well-known Hohmann (1800, contangential) trajectory. In view of equa-
tion (3), the Hohmann transfers will also yield low propellant fractions.

Table III lists the pertinent trajectory parameters for Hohmann transfers from the
Earth to the other planets (except Pluto) of the solar system. The planets are assumed
to lie in circular coplanar heliocentric orbits, and the transfers begin and end in circular
planetocentric parking orbits at 1.1 planet radii. Representative values of I (900 sec)
and Ai (0.2 GGB) were assumed for the purpose of computing fv. The circular parking
orbits at 1.1 planet radii were chosen quite arbitrarily for the sake of comparison.
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TABLE III. - IMPULSIVE VELOCITY CORRECTION FACTORS AND OTHER PROPERTIES

FOR HOHMANN TRANSFERS FROM EARTH TO OTHER PLANETS

[Specific impulse, I, 900 sec; initial thrust to weight ratio, A, 0.2 Gg.]

Parameter

Hyperbolic excess velocity
at Earth departure,

Vm, @ Miles/sec

Circular velocity at Earth
parking orbit,

Rpo =1. lRea

Gravity at Earth parking
orbit, ft/ sec?

Impulsive velocity incre-
ment to depart Earth,
AV, miles/sec

Hyperbolic velocity param-
eter, v

Dimensionless acceleration
at parking orbit, a

Jet velocity parameter, vj

Characteristic velocity
ratio, fv

Travel time (Earth to
planet), days

Hyperbolic excess velocity
at planet arrival,
Vw’ ol miles/sec

Circular velocity at planet
parking orbit,
Rpo =1.1R 1

Gravity at planet parking
orbit, ft/sec

Impulsive velocity incre-
ment to arrive at planet,
AV_p miles/sec

Hyperbolic velocity param-
eter, v

Dimensionless acceleration
at parking orbit, a

Jet velocity parameter, v;

Characteristic velocity
ratio, fv

Mercury

Departure from Earth

4.66

4.69

28.6

3.42

0. 987

0.242

1.169
1.107

106

5.94

1.75

9.6

4.69

11. 50

1.585

3.130
<1.01

Venus

Q

1.56

0.111

0. 242

1.169
1.052

146

1.58

4.29

22.9

1.94

0. 368

0. 406

1.277
1.040

Destination planet

Mars
[e)

1.85

4.69

29.6

0.155

0.242

1.169
1.054

Arrival at planet

259

1.65

2.05

10.65

1.29

0.647

0.769

2,673
1.021

Jupiter
Y

5.46

4.69

29.6

3.90

1.351

0.242

1.169
1.119

1000

25.2

70.2

0.45

0.0194

0.69

0.218

1.05
(extrap-

olated)

Saturn
h

4.69

4.50

1.850

0. 242

1.169
1.132

2200

3.37

15.1

6. 40

0,0498

0.706

0.363
1.052

Uranus | Neptune
¥
7.02 7.26
4.69 4.69
29.6 29.6
5.00 5.14
2.239 2,391
0.242 0.242
1.169 1.169
1.140 1.142
5900 11 200
2,92 2.51
8.89 9.77
24,2 27.4
3.95 4.28
0.108 0. 066
0. 562 0. 532
0.616 0, 561
1.041 1.042
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The hyperbolic excess velocity, the circular velocity, the local gravity, the impul-
sive velocity increments, the dimensionless parameters, and fv are listed for both ter-
minals of each Hohmann transfer. For Earth, Mars, and Venus, fv was found from fig-
ures 5 to 7. For the capture maneuvers at the other planets, the previously described
iterative procedure based on equation (10) was used with figure 2 to find apo, vi, v:, and
thence fv'

It is of some interest to note that with the chosen value of A, (0.2 Gg) the correction
factors at the destination planets are only slightly greater than unity (e.g., 1.05 at Jupi-
ter). In fact, they are smaller than for the associated Earth escape maneuver. This
somewhat surprising observation is the result of two effects which together determine

a_ .
po
(a) For capture maneuvers, a__ is related to a by

po

a, _eAvch/GGBI

(AV /G
For the maneuvers under consideration, the mass ratio e ranges from about

2 (at Mars) to about 8 (at Jupiter). Thus Ay, the acceleration at burnout, ranges from
about 0.4 t0 1.6 G, since Ai was given as 0.2 G@'
(b) The 25 is then related to A, , by equation (5¢); that is,

Abo

a. =
po
Gr ef

The gravity ratio GEB/Gr of Tanges from about 1 to 3 for all the planets except Jupiter,
where it is about 0.4, For all planets, the net result is a fairly high value of a o which,
together with the generally low value of vf;, leads to a low fv.

Thus, for a one-way Hohmann trip to Jupiter, the neglect of finite-thrust effects
leads to an error in AVch of 0. 99 mile per second out of 14. 35 miles per second, or

about T percent.

Choosing the Circular Orbit Radius

The low circular parking orbits previously assumed were sufficient for a compar-
ative discussion of the behavior of % at different planets. In an actual mission study,
however, the choice of the parking orbit and the associated approach and departure ma-
neuvers would receive very close attention. The low circular orbits have some definite
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advantages, but it is also possible that more sophisticated orbits and maneuvers will be
used in many cases. The purpose of this section, then, is to illustrate the use of the
present data in finding an optimum parking orbit for a finite-thrust system.

The simplest approach to parking orbit optimization consists of just selecting the cir-
cular parking orbit radius Rp o, opt that will yield the lowest value of AV ch for a given
V. Since the orbit is circular, the necessary hyperbolic direction for both the incoming
and outgoing maneuvers (fig. 1(c), p. 6) can be attained with no AV penalty. Thus, the
geometric effects are not considered in this example.

Inspection of equation (6) reveals that AVimp is a function of the parking orbit ra-
dius alone for a circular orbit and given V_. It is readily seen that the minimum value

of AVimp occurs when
Bo1 Ve
(AV. ) =V _ = .= (41)
imp/ . c, po
min ’ Rpo, opt 2
or
2p
-_pl
Rio, opt 2 (42)
VOO

This is a well-known result for impulsive maneuvers. In the present case, however, it

must be remembered that changing R 00’ by changing Vc ref and Gr of? will affect the
2 s

values of v_, apo’ and Ve Thus, the changes of fv as well as of AV

accounted for in seeking a minimum value of AV ch

tb
p must be
As an example, consider the problem of selecting the optimum parking orbit radius
for a representative Earth/Venus round trip, which has the characteristics listed in
table IV. This trip has a total duration of 450 days of which 30 are to be spent in the
Venus-centered parking orbit. Data were ob-

LE IV. - CHARACTERISTICS OF TYPICAL .
TABLE IV tained from reference 1.

450-DAY ROUND TRIP TO VENUS (1980)

Maneuver Date Hyperbolic excess
(Julian) velocity,
EMOS
(miles/sec)

Earth departure | 2444330 |0. 131 (2. 43)

Venus arrival 2444450 | . 165 (3.05)

Venus departure| 2444480 | . 164 (3.04)

Earth arrival 2444780 | .298 (Atmospheric
braking)

Since the Venus arrival and departure ma-
neuvers involve about the same value of V_, it
is sufficient to consider only one of them, for
example, the departure for which
V,, = 3.04 miles per second. Figure 14 shows
f, and AV, as functions of Rpo/ Ry and A,
for this maneuver.

In the lower portion, fv is shown for values
of Rpo/RQ ranging from 1.1 to 16, I = 900 sec-
onds, and initial thrust to weight ratios Ai of

55



@, 0.5, 0.1, 0.05, and 0.01 G

5
o C1 o1
S Initial thrust to
g5 . \ weight rati, It may be noted that fv falls off
o328 \ A, very rapidly as R__ increases;
2% 2 ' -
é‘fg’ E RN }gsl even for A, =0.05Gg, f  is incon-
sE SN ] E e 0.00 | Bl sequential when R __ exceeds a few
© p = T Venus radii. This, of course, is
2.0 due to the fact that the term G, .
in the equation (5c) defining
R 2
=] 1.8 = .
£ \ - ( Apo/Gref) falls off as 1/Rp0,
ze T hence for a given value of Ai’ a
*SE L6 \ ' will become large at a sufficiently
o S 1 . .
B2F 4 \ high radius.
& : \ -
=P \ N | The upper curve of figure 14
b L2 _Il\\ \x\o. 01 shows the values of
N | -
.:5 \\\\ .05 ~ || AVch fv AVimp that result when
W—="""7 & & w© 17 u 1 the effects of R,, onboth f and
Parking orbit radius, Ry4/R .
po'™e AVimp are taken into account. The
Figure 14. - Optimization of circular parking orbit radius for Venus lower solid curve represents impul-
escape maneuver. Hyperbolic velocity, 3.04 miles per second; .
specific impulse, 900 seconds. sive maneuvers (Ai = ©); as pre-

dicted by equations (33) and (34), the

minimum value of AVimp (2. 16 miles/sec) occurs where R__ /R, = 4.4. This radius is
also nearly optimum for values of Ai as low as 0.1 G®; for smaller values, however,
the optimum radius is higher. For instance if A1 =0.01 Gy, then the minimum value of
AVCh (2.25 miles/sec) occurs at a radius R__ ~ 10 R,. This is a lower characteristic
velocity than the low orbit (Rpo/RQ_ = 1. 1) impulsive value (2. 48 miles/sec), yet the low
value of Ai implies that a very small and light propulsion system could be used.

This example not only illustrates the effect of finite thrust on parking orbit selection,
it also demonstrates a possible area of application for propulsion systems (such as arc
jets) which might otherwise appear unattractive.

Optimization of Initial Thrust to Weight Ratio

Another frequently occurring mission problem that can be solved with the aid of the
fv data presented here is the selection of the optimum value of Ai’ This is an important
area of study, not only from the standpoint of minimizing the vehicle gross weight, but
also because it has a direct bearing on the problem of selecting engine sizes for future
development. For given values of V_ and R o 2 high value of Ai implies a low value

of mp but a large, heavy engine: a low value of Ai implies a light engine but a high
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Figure 15. - Vehicle weights for typical Earth escape maneuver.

Hyperbolic velocity, 2.43 miles per second; parking orbit radius,

1. L; specific impulse, 900 seconds; propellant sensitive structure

fraction, 0.1; specific weight of engine and thrust structure,

0.2, acceleration sensitive structure fraction, 0.01.
propellant fraction. Thus, it may be anticipated that minimum M _ will occur for inter-
mediate values of Ai’ when there is a proper balance between propellant- and engine-
related weights.

This process is illustrated by using the Earth-departure maneuver in table IV as a
final example. In figure 15, the initial space vehicle gross mass in a low circular Earth
parking orbit is plotted as a function of the initial acceleration. The propellant fractions
are computed by using equation (3) and figure 5(a) (p. 42), with I = 900 seconds. Gross
weights are then estimated from

1+A k
Mg - Mﬂ max as (43)
1- mp) - mpkpS - Aikts

where the following arbitrarily assumed parameter values were used:

Total Earth-departure payload, including upper stages:
M, = 500 000 1b

Propellant sensitive structure fraction:
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Specific weight of engine and thrust structure:

M
kg = —= = 0. 20
F
Acceleration sensitive structure fraction:
M
k =-—23%_ _o9.01
as 5 M
max {

The upper curve representing M_ has a minimum value of about 900 000 pounds when
Ai = 0.225 Gea. The corresponding nuclear engine would have a thrust rating of about
200 000 pounds. The lower curves, which denote, respectively, the propellant and tank-
age weight, engine and thrust structure weight, and interstage structure weight, indicate
how M g is distributed among these major weight items.

CONCLUDING REMARKS

A wide range of data defining the essential dynamic and geometric characteristics
(fv and 6 ch) of continuous finite-thrust trajectories has been presented. These results
are presented in dimensionless form and may be easily scaled to represent any case of
physical interest. In this way, accurate propellant fractions and realistic trajectory ge-
ometry may be conveniently derived from impulsive interplanetary trajectory data.

The characteristic velocity ratio fv is interpreted as a measure of the mean propul-
sive efficiency 7 r, m along the powered arc. Both f and 7 pr, m are shown to be ex-
plicit functions of the mean tangential path velocity component (v cos u). This quantity,
and hence also fV and 7 r, m’ obviously are directly affected by the steering program
u(T) that is used, whether a significant gravity field is present or not. Thus, in the gen-
eral case, fv is as much due to steering losses as to gravity losses.

Of particular interest in this report is the class of optimum-angle trajectories.
These are so named because both u(7) and the initial power-on point are chosen only to
minimize fv (by maximizing (v cos u)) without regard to the consequent value of 9 ch’
For such trajeetories, it is shown in the appendix that tangential steering yields very
nearly minimum values of fv’ especially in the case of an elliptic orbit.

These optimum-angle trajectories can always be used with circular parking orbits,
because any final direction of _‘;oo can be attained without penalty in fV by merely selec-
ting the appropriate power-on point. Optimum-angle trajectories can also be used for any
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one maneuver based on an elliptic orbit by orienting the major axis at an angle 6 ch to
V.. When two maneuvers are based on the ellipse, however (that is, during the capture -
orbit-escape sequence at the destination planet of a round trip), it is generally necessary
to reorient the ellipse (by means of auxiliary maneuvers) before optimum-angle trajecto-
ries can be used for both escape and capture. I remains to be seen whether or when the
steering losses due to optimum constrained angle trajectories would result in a smaller
overall penalty than the auxiliary orbit shifting maneuvers.

By its definition fv is bounded above 1. An upper bound is also derived in the very
low-thrust limit. This upper bound increases monotonically as e increases, ranging
from 3.0 for a circular orbit to 10.6 for e 0= 0.9, and becomes very large as epo -1.0.
Thus for very low-thrust systems (a___ < 0. 001), fv is considerably larger for a maneu-
ver from an elliptic orbit than it is for an equivalent circular orbit maneuver. This par-
tially offsets the AV advantage of elliptic orbits. That is, the saving in the low-thrust
Avch is smaller than the savings in Avim .

In direct contrast, medium- to high-thrust systems (apo So. 01) have lower values of
Q, for elliptic orbits than they do for equivalent maneuvers from a circular orbit. There-
fore the advantage due to elliptic orbits is actually enhanced in this case (in the sense that
the saving in characteristic velocity for finite thrust is greater than the saving in Avimp)‘

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, April 12, 1966,
121-30-02-01-22,
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APPENDIX - COMPARISON OF TANGENTIAL AND OPTIMUM
STEERING CONTROL FOR ESCAPE FROM CIRCULAR
AND ELLIPTIC PARKING ORBITS

Herein the tangential and optimal steering controls are compared for the problem of
constant-thrust escape from circular and elliptic orbits. Previous work (reported in
ref. 9) has shown that in the absence of geometric constraints, tangential steering is
nearly optimal for constant acceleration departure maneuvers from a circular orbit to
parabolic final energy (v, = 0). These results are now extended to include maneuvers with
v, > 0, constant thrust, and elliptic parking orbits.

The Maximum Principle

The optimal angle-of-attack control program u(7) is defined by Pontryagin's maxi-
mum principle (described in ref. 10). According to this, the control u(r) can be optimal

only if the function

H = wlr’ + t//zv' + z,b3a' + tp40' + 1[/5 AV(':h (A1)

attains its maximum with respect to u(r) for 0= 1 = Tho’ Furthermore, # is a constant,
and its value is zero for an optimum-time trajectory. The state variable derivatives are
given by equations (7) and (8), and the adjoint variables are defined by

i:-a;#’z- M¢2+ .._2_-_V.. w3005a+ -_K_cosa ¢4
or 3 3 2 2

r rv r r

-~

.e

a . Y, cos o

;p':-ia“jf:- Y, sina+y, [-—P2_Snu, l% ! coSs o +4——
2 1 3 9 9
rv

ov l-mp v2 T r
y O  cos a v 1 . v .
Yh=-—=-<Y v cos a+y, +Pg(—-— (— sin a) + Yy~ (— sin a) > (A2)
da r2 r 2, r
I,Dzl - 0 or 1P4 = constant
06
Y= - A 0 or yg= constant
d Av
ch J
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Since the range of u(7) is not restricted, the maximum condition reduces to

\ (A3)

and this leads to the optimal steering control law

tan u(7) = i:}_ (A4)
wzv

Transversality Conditions

Ten boundary conditions are required to specify the simultaneous solution of equa-
tions (A2) together with the equations of motion (7) and (8). For initial conditions are
specified in terms of v po by equation (12), and one terminal condition is given in equa-
tion (13). Since the y's are homogeneous first-order functions, one of the initial values
can be taken as a scale factor. The remaining four relations are defined by applying the
transversality condition (ref. 10) at both the initial and final times.

At the initial time 7 =0,

cos v, __ +e l+e_ Y
sin v =——1—— 1,D3r2 cos” «a po PO po”4

po
wlrz +x,l/2/v 1+ ©po ®po

(A5)

This condition states that z,l/i is normal to the one-dimensional manifold defined by equa-
tion (12).
At the terminal time, the transversality condition yields the final three relations:

¥3,bo = ¥4,10 = 0 (A6)
1‘l/Z bo 2
—yl/ >— =1 Vo (A7)
1, bo
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Solutions

The two-point boundary value nature of the problem requires an iterative solution to
search in values of :,Di(O) that will lead, by means of equations of motion (7), the adjoint
equations (A2), and the maximum condition (A4), to the desired terminal values (13), (A6),
and (A7). Although five initial values of 1,(/1(0) are needed, all but two of these can be ob-
tained without a numerical search.

(1) After 1,01, i~ 1.D4’ ; have been selected, ¥ (a constant) is chosen so as to make
H=0.

(2) In view of (A6) and (A2), Yy = 0.

(3) Then, the initial value of ¥, is set equal to unity as the scale factor.

Thus, it only remains to find tpz i and z,b3 i For elliptic orbits, these may be found in

terms of assumed values of u; and v o by inverting equations (A4) and (A5):

po
:,bl 1r sin Vpo ll/4 .
Yy ;= — PO — (A8)
’ sin v cosv,__ +e
po _ (rz cosza ) po PO Vv tan u.
v, 1 ! l+e 1 1
i po

1// zpz Vitan (A9)

Finally, the initial values u, and v o are used as the independent variables in a two-

dimensional search to satisfy the final conditions (13), (A6), and (A7). The use of these

bounded, physically significant variables in place of the abstract y's results in a consid-
erable practical simplification of the problem. The values of ui(O) and v o that corre-
spond to an optimym tangential trajectory (figs. 3(s), (t), (u), and (v) and 4 to 8) provide
excellent starting points for the search.

Conditions (A6) and (A7) have the further implication that for optimum-angle trajec-
tories (where t,b4 = 0) both zp ,bo and its first derivative 11/3 bo vanish at Tho Thus,
in view of equation (A4), the fmal portion of an optimum- angle trajectory is tangential to
a high order. Any improvement due to optimal steering must therefore be generated in
the early part of a trajectory. In the high-thrust limit, !,D.Zg remains bounded and there-
fore 1,D3 is continuous across an impulse. That is, tangential steering is the optimum
control for impulsive thrust. Further, the transversality condition (A5) shows that this

impulse is to be applied at periapse (Vpo = 0) since 1,1/3’ i = l,l/4’ i = 0.
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. .
TABLE V. - COMPARISON OF TANGENTIAL AND

OPTIMAL ESCAPES FROM CIRCULAR ORBIT

[Dimensionless acceleration at parking orbit, Ay 0.1.]
Hyperbolic | Jet velocity | Characteristic velocity ratio, fv
velocity | parameter, - -
parameter, v; Tangential escape | Optimal escape
vﬂo
0 w 1. 250 81241
0 1.0 1. 179 1.171
.10 1.0 1.199 1.190
.25 1.0 1.225 1.214
. 50 1.0 1. 261 1. 250
1.00 1.0 1. 300 1.290

2From reference 9; all other values from present analysis.

Numerical Results

It is clear that tangential steering
cannot satisfy the conditions of the
maximum principle when finite thrust
and nonzero burning times are consid-
ered. Nevertheless, there are two
reasons to expect that tangential steer-
ing would yield nearly minimum Av ch’

(1) As pointed out before, at least
the latter part of an optimal trajectory
must be tangential to a high order.

(2) Tangential steering, as is well
known, yields the maximum rate of in-
crease of v at any instant. In

table V, optimal- and tangential-thrust maneuvers are compared for escape from a cir-
cular orbit with apo =0.1. It is clear that in no case does optimal steering reduce fv
by more than 1 percent below the tangential value.
tended to the case of constant thrust as well as constant acceleration and to values of Vo
in excess of zero (parabolic energy).
The effect of the eccentricity of an elliptic parking orbit is next illustrated in ta-
ble VI. Here it is evident that, for the conditions chosen, the difference in fv between
tangential and optimal steering is greatest for circular orbits and decreases rapidly as

Thus, the result of reference 9 is ex-

TABLE VI. - EFFECT OF PARKING ORBIT ECCENTRICITY

ON CHARACTERISTIC VELOCITY RATIO FOR

TANGENTIAL AND OPTIMAL STEERING

[Hyperbolic velocity parameter, vi, 0.1; dimensionless

acceleration at parking orbit, a o
parameter, <, ]

, 0.1; jet velocity

Parking orbit

Characteristic velocity ratio, f v

eccentricity,
e Tangential steering Optimal steering
po

0.9 1.011 1.011
.8 1. 024 1. 024
.6 1. 066 1. 065
. 333 1.150 1. 147
.00 1. 270 1. 260
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TABLE VI. - EFFECT OF ORBIT ACCELERATION PARAMETER
ON CHARACTERISTIC VELOCITY RATIO FOR TANGENTIAL
AND OPTIMAL STEERING

[Parking orbit eccentricity, e_, 0.9; hyperbolic velocity
parameter, vozo, 0.1; jet vellt))?:ity parameter, «.]

Orbit acceleration Characteristic velocity ratio, fv
parameter,
Tangential steering Optimal steering
2po
0.1 1. 011 1.011
.01 1,481 1. 480
. 001 4, 261 4. 256
. 0001 6. 890 6.871

€0 increases. That is, tangential steering is a better and better approximation to opti-
mal as epo increases.

Finally, in table VII, the effect of a o On the comparison of tangential and optimum
steering is illustrated for an elliptic orbit. From this it may be seen that, for all values
of a o’ the difference in fV for optimum as compared to tangential steering is a small
fraction of 1 percent when an elliptic orbit is used. This is true even for very low accel-
erations for which fv is large. Thus, the high values of fv predicted (e.g., by
eq. (29)) for elliptic orbit departures with low A5 and vczo are a true and inherent fea-
ture of the trajectories being considered; they are not due to any peculiarity of the tan-
gential steering law.

In summary, it may be inferred from the foregoing discussion that across-the-
board incorporation of optimal steering control would not modify the conclusions nor sig-

nificantly change the data presented in the body of this report.
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