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SUMMARY 


Finite-thrust escape and capture trajectories a re  considered which lead from a cir­
cular or elliptic orbit to a specified hyperbolic excess velocity vector located at the 
gravitational "sphere of influence. * ?  Each trajectory consists of a powered maneuver 
initiated at the parking orbit and a coasting a rc  from the cutoff point to the sphere of in­
fluence. The powered maneuver is accomplished with constant, continuous thrust and con­
stant jet velocity. Tangential steering and optimum thrust-initiation points a r e  used to 
obtain very nearly minimum characteristic velocity increments. 

These near-optimal finite-thrust trajectories a re  analyzed in dimensionless terms 
and compared with equivalent impulsive ones. The minimal characteristic velocity ratio 
(that is, the ratio of the actual propulsive effort, s a  dt, to the equivalent impulsive veloc­
ity increment) , the optimum characteristic central angle (measured from a reference 
position on the parking orbit to the asymtotic direction at the sphere of influence), and 
the optimum initial true anomaly for departing from an elliptic orbit are found for a wide 
range of planetocentric trajectories. These results a r e  presented as functions of the 
dimensionless hyperbolic velocity, acceleration, and jet velocity parameters. The di­
mensionless arguments may be easily scaled to any particular case of interest - for ex­
ample, a specific planet, parking orbit, propulsion system, and hyperbolic velocity. 
The data ranges were  chosen primarily to correspond with high- to medium-thrust sys­
tems, such as chemical rockets and various types of nuclear rockets. These results 
may be conveniently used in combination with ballistic interplanetary trajectory calcula­
tions to obtain a realistic geometric description and accurate propellant fractions for a 
great variety of interesting and potentially important space flight missions. Examples 
illustrating the use of these data for actual mission problems are also presented. 



INTRODUCTION 

The dynamic and geometric effects of finite vehicle acceleration must be accounted 
for in order to derive accurate propellant fractions (and hence vehicle weight) from bal­
listic interplanetary trajectory data (such as refs. l to 3). The velocity increments ob­
tainable from impulsive calculations a r e  useful in preliminary studies but do not always 
lead to accurate propellant fractions for vehicles with realistic thrust levels. This is 
because of the following: 

(1) A reduction in propulsive efficiency (also called a "gravity loss??)occurs when an 
impulse is replaced by a finite-thrust maneuver. A s  a result, the characteristic propul­
sive velocity increment (AVch) and propellant fraction increase. 

(2) There is often a considerable difference between the geometric properties of im­
pulsive and finite-thrust trajectories. This, in turn, may complicate the problem of 
matching heliocentric and planetocentric trajectory segments. 

The efficiency penalty due to finite thrust may be accounted for by applying a correc­
tion factor (also termed characteristic velocity ratio) to the impulsive velocity increment. 
Accurate propellant fractions may then be obtained in a convenient and familiar way from 
the classical rocket equation. Pr ior  discussions of this approach (e. g., refs. 4 and 5) 
presented some typical velocity correction factors, but no geometric data, and consid­
ered only circular parking orbits and escape maneuvers. An alternative approach 
(ref. 6) is to present the propellant fraction directly. In principle, this is equivalent to 
the correction factor approach but is less convenient to use because a greater amount of 
interpolation is required. A considerable amount of data of this nature is given in refer­
ence 6, which is limited, however, to the case of circular orbits. The present report 
includes a wide range of velocity correction factors and geometric data for both escape 
and capture maneuvers and for elliptic as well as circular initial orbits. This report is 
intended both as a generalization of references 4 and 5 and to complement available and 
future ballistic trajectory data. The correction factors and geometric data presented 
herein may be used together with ballistic interplanetary data to obtain accurate propel­
lant fractions and realistic overall geometry for many missions of practical interest. 

Trajectories that use a single burning period followed by coasting to the sphere of 
influence are analyzed herein. The powered maneuver begins at an optimum point on the 
initial orbit and proceeds with constant thrust and constant jet velocity until the hyper­
bolic excess velocity attains a prescribed magnitude. After cutoff, the vehicle continues 
along a Keplerian a r c  to the sphere of influence. The final asymptotic direction of the 
hyperbolic excess velocity vector is left open. For such trajectories, it is shown that 
tangential steering yields very nearly the minimum characteristic velocities and propel­
lant fractions. 

Character istic velocity ratios , optimum initial true anomalies, and final asymptotic 
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directions are derived from a study of these unconstrained trajectories. The results are 
presented as functions of the initial orbit elements and the dimensionless hyperbolic ve­
locity, jet velocity, and acceleration parameters. The significance of each dimensionless 
variable is discussed, and scaling rules are developed to apply the generalized data to 
any specific case of interest. As a sample application, the scaling procedures are used 
to generate a set of specific working data curves that describe typical nuclear rocket ma­
neuvers near Venus, Earth, and Mars .  Further examples illustrate the use of the pres­
ent results in solving representative mission analysis problems such as the selection of 
an advantageous parking orbit radius and optimization of the initial thrust to weight ratio. 

SYMBOLS 

A acceleration 


a dimensionless acceleration 


e eccentricity of conic section 


F thrust 


fV 
characteristic velocity ratio or  correction factor, AVch/AV.Imp 


G acceleration due to gravity 


g dimensionless acceleration due to gravity 


H angular momentum 


h dimensionless angular momentum 


8 auxiliary function, defined in equation (Al) 


I specific impulse, sec 


k structural mass fraction, see equation (43) 


M mass 


m mass fraction 


P semilatus rectum 


P dimensionless semilatus rectum 


R polar radius 


r radius ratio 


t time 
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Av 
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J/ 

( ) r  
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angle of attack 


velocity 


dimensionless velocity 


velocity increment 


dimensionless velocity increment 


trajectory path angle 


efficiency 


trajectory central angle 


characteristic central angle 


planet gravitational constant 


parking orbit t rue anomaly at thrust initiation (escape maneuver) or at thrust 
termination (capture) 

dim ensionless time 

adjoint variables, defined in equation (A2) 

denotes differentation with respect to T 

denotes mean value 

Subscripts: 

act 

as 

bo 

C 

cap 

ch 

cst 

esc 

g 

i 

k P  


j 
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actual 


acceleration sensitive 


burnout 


circular 


capture 


characteristic 


coasting 


escape 


gross 


initial 


impulsive 


j et 
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m 

max 

min 

OPt 

P 

Pl 
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Pr 

PS 

Pwr 

ref 

s c  

ts 
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? 
o f  

genera1 numerical indices 


payload 


mean 


maximum 


minimum 


optimum 


propellant 


planet 


parking orbit 


propulsive 


propellant sensitive 


powered 


reference 


spacecraft 


thrust sensitive 


sphere of influence 


Earth 


Venus 


M a r s  


t 


ANALYSIS 


The initial mass of a space vehicle Mi is a useful criterion for interplanetary mis­
sion studies. A major step in computing Mi is to determine the propellant fraction m

P
for each propulsive maneuver. The propellant fractions are derived in turn from a study 
of the flight trajectory, which is illustrated in typical form in figure l(a). The flight 
path consists of alternate planetocentric a rcs  (view A) and heliocentric arcs (view B), 
which are matched at the spheres of influence as indicated in view A; that is, ' 

- -c 

va, planetocentric trajectory = (vsc - 'pl'heliocentric trajectory 
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- Elements of patched conic trajectories. 



Either type of arc may contain a propulsive maneuver. For all but very low-thrust 
systems, the propulsive effort or AVch of a heliocentric maneuver (used as a midcourse 
correction or, as in ref. 3, to reduce the total AV) may be determined accurately by im­
pulsive methods. Values of mP are then given by the familiar formula 

Planetocentric trajectories (illustrated in figs. l(b) to l(d)) join a parking orbit and-
must produce a "hyperbolic excess velocity" vector V, (as defined by eq. (1))at the 

+ 
sphere of influence. Relative to the parking orbit, V, is represented by its magnitude 
V, and direction OCh. These two parameters together with the parking orbit elements de­
fine boundary conditions for  each end of the planetocentric trajectory. Impulsive maneu­
vers to satisfy these boundary conditions (fig. l(b)) can be easily computed, but they often 
lead to erroneous values of m

P' 
The effects of finite thrust and other neglected items can 

be lumped into a "correction factor" fv, which will  be so defined that accurate propellant 
fractions for finite-thrust maneuvers (figs. l(c) and l(d)) can still be obtained from an ex­
pression of the same simple form as equation (2); that is, 

(3) 

The quantity fv AV. may be recognized as the actual propulsive effort or character­
istic velocity AVch

Imp
for the finite-thrust maneuver. Thus fv is defined, for compu­

tational purposes, as 

f =  Avch -- Thrust dt 
(4)V 

'Vimp 

and is termed the characteristic velocity ratio. 
It is convenient to define AVimp as the minimum AV which will produce the same 

magnitude of V, from the same parking orbit as does the finite-thrust maneuver (with­
out regard to the value of B c h ) .  As is well known, the control policy that minimizes 

AVimp is to apply the impulse tangent to the parking orbit and at periapse if  the orbit 
is elliptic. With this definition, AV.

Imp 
can be easily computed in closed form. Since 
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AVimp 
is minimal, f 

V 
2 1 (it will be shown later that fv .isalso bounded below 3.0 in 

the case of circular orbits). 
On the other hand, hVch is obtained by numerical integration, thus accounting for 

finite thrust and jet velocity, possible geometric constraints on and actual (as op­
posed to optimal) control policies in addition to V, and the parking orbit elements. 
Consequently, fr reflects these same factors. 

For impulsive trajectories, the characteristic angle consists only of a coasting arc 

eimp as figure l(b) illustrates. When finite thrust is used, 8,h consists of a powered 
central angle O

PWr 
plus a coasting arc Qcst as indicated in figure l(c). The sum of 

these two contributions is generally larger than the coasting angle Oimp, which corre­
sponds to an impulsive trajectory. Thus, the power-on point must be advanced in the 
finite-thrust case in order to attain a prescribed direction of F, in inertial space. 

The quantities fv and Och define the essential properties of finite-thrust trajec­
tories that begin or end in circular or elliptic orbits. The values of m

P 
obtainable 

from precomputed fv data by means of equation (3) are more accurate than those which 
could be obtained i f  mP were plotted directly (as in ref. 6). This is because AV.Imp
is always maintained as the first  approximation to Av,h. For the same reason, the 
present approach is often more convenient to use; in many cases, constant fftypicalfr 
values of fv can be chosen that will yield acceptably accurate values of m without

P
laborious interpolation. 

Assumptions 

The following assumptions have been introduced in order to simplify the numerical 
calculations: 

(1)As previously mentioned, an overall trajectory consists of successive two-body 
arcs joined at the planet ?sgravitational sphere of influence. 

(2) Each arc lies in a plane determined by Gm and the center of force, and the 
gravitational attraction along each a rc  is represented by an inverse square central force 
field. 

(3) The propulsion system operates with constant continuous thrust and constant jet 
velocity. The thrust is considered finite, but large enough that the necessary magnitudes 

-c 

of V, can be attained within the sphere of influence. The radius of the sphere of in­
fluence is assumed to be much larger than that of the initial planetocentric orbit. 

(4) The sphere of influence boundary condition is taken to be the magnitude l?,l 
only. The characteristic angle QCh, which defines the orientation of the initial orbit rel­

-c 

ative to V,, is not constrained but is treated as a dependent variable. Therefore, for 
given V, and parking orbit elements, the factors that primarily affect BCh, namely the 

8 

.-- __."..I -1.-1-.1 11.111. I 11111. I I111 1111 11111111 1 . 1 1 1 1 1 1 1 1 . 1 1  11111111 



Y 
t 

power-on or -off point v (cf fig. l(d)) and the steering control policy u(t) (i.e., the 
angle of attack program),

po
can be chosen solely to minimize AVch and hence fv. Tra­

jectories of this kind will be termed ?toptimum-anglet?trajectories herein. Such trajec­
tories can always be used with a circular orbit since any necessary direction of Gm in 
inertial space can be attained, without changing fv, by selecting the appropriate power-
on or -off point. The optimum angle can also be used for one maneuver based on a given 
elliptic orbit. If an elliptic orbit is used at the destination planet of a round-trip mission, 
it must be reoriented between arrival and departure in order to use optimum-angle tra­
jectories for both capture and escape. Several effective methods of reorienting an elliptic 
orbit a r e  described in references 7 and 8; these methods would permit optimum-angle 
trajectories to be used for both escape and capture maneuvers. 

(5) Tangential steering (i. e. , zero angle of attack) is used to approximate the optimal 
steering policy. If Och is not constrained, tangential steering yields the minimum pro­
pulsive effort in the limit of impulsive thrust. In reference 9 it was shown that, with 
Qch not constrained, the penalty for using tangential rather than variational steering for 
constant acceleration escapes to parabolic energy (V, 2 = 0) from a circular orbit is quite 
small (under 1 percent) regardless of the mangitude of the acceleration. In appendix A, 
the analysis of reference 9 is generalized to include constant thrust, constant jet velocity, 
hyperbolic burnout energy (V, > 0), and elliptic as well as circular orbits. It is shown 
that the maximum penalty for tangential steering is still under 1percent of AVch under 
these more general conditions, and it decreases rapidly as elliptic orbits of increasing 
eccentricity are considered. 

Equations of Motion 

When the foregoing assumptions a re  used, a simple set of differential equations may 
be constructed to describe the rocket's motion. 

Coordinate system and dimensionless variables. - The trajectory is represented in. - -

plane polar coordinates as indicated in figures l@)to l(e). The position of the rocket E 
is described by the polar radius R and central angle 8 (fig. l(e)); the velocity ? is 
denoted by its magnitude V and path angle a! relative to the local horizontal. Similarly, 
the acceleration is described by its magnitude F/M and angle of attack u (relative 

-c 

to V). Gravity E is represented by its magnitude p/R 2 and is directed toward the 
center of force. 

In order to obtain general results, i t  is necessary to normalize the variables just 
described. The resulting dimensionless variables (denoted by lower case symbols) are 
obtained by dividing radii, velocities, accelerations, and time, respectively, by the 
radius, circular velocity, local gravity, and circular radian period corresponding to a 
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reference position on the initial orbit. Polar angles (0) are also measured relative to the 
reference position. For circular orbits, the reference position is the power-on or -off 
point, but for elliptic orbits the periapse is the reference point. The dimensionless vari­
ables, which will be used henceforth, are related to  their dimensional counterparts by 

7 =  
vc, ref 

( 5 4  
Rref 

Basic equations. - With the normalization just  described, the first-order vector 
equations of motion are  

The components of equation (6) for r, v, a, and are then 
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r*= v sin a! 

sin av' = -0s u -­
2r 

a' = 
V 

The characteristic velocity AVch which is needed to define fv is given by 

AV& = a(7) 

Since the vehicle operates with constant thrust and jet velocity, the acceleration 
given, for an escape maneuver, by 

< T (coasting flight)= o  7 b ~  

where aDo= ai, the initial acceleration at the power-on point. 
Capture maneuvers, on the other hand, a r e  integrated backward in time, that is, be­

ginning at the desired power-off point on the orbit. This is done only for computational 
convenience (to avoid the iterative search that would otherwise be required) but has the 
consequence that the acceleration term for capture maneuvers is given by 

t o  T bo < 7 (coasting flight) (9b) 

In this case a
PO 

is to be interpreted as the acceleration at burnout rather than the initial 
one. For either escape or capture maneuvers, the initial and burnout accelerations are 
related by 
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or 

ai = 330 -- 330 


1 +  abo'bo Mp 

Boundary conditions. - In terms of the present dimensionless variables, the initial 
(T = 0) conditions for a circular orbit a r e  

For an elliptic parking orbit, the initial conditions are given in terms of the eccentricity 
of the orbit e

PO 
and the true anomaly of the power-on or -off point vPO by the well-

known conic equations 

l + e  

r(0) = P o - (12 4  


r(0)sin e(0)Ja(0)= tan-l [PO1 + epo 

e(o) = v
PO 
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With these initial conditions and a known form for the steering control law (for ex­
ample, U(T) 9 0), the equation of motion may be integrated (numerically) to obtain r, v, 
a, and 8 as functions of T with vPo, epp, v,, aPo' and v- as parameters. Thrust is

J
terminated at the burnout time T ~ at,which time the desired energy or hyperbolic veloc­
ity has been attained (cf eq. (l)), that is, when 

2 
(13) 

at sphere of influence vc, ref 

Once Tbo has been determined, equations (8) and (9) may be evaluated as a definite inte­
gral; that is, 

The properties of the remainder of the trajectory, that is, the coast from burnout to the 
sphere of influence, may finally be calculated in closed form from the well-known conic 
equations. 

Trajectory Solutions 

There a r e  no known general closed-form solutions to the equation of motion described 
above. As has been previously mentioned, accurate values of Avch, Och, and other tra­
jectory parameters can only be obtained by numerical integration. Impulsive solutions, 
which can be obtained in closed form, are required to define values of Avimp and thus 
of $.. Low-thrust limiting solutions are also studied to derive an upper bound for f

V 
and to obtain insight into the behavior and significance of this function. 

Impulsive thrust. - For tangential steering (u(T) = 0), only the velocity equation (7b) 
contains a. For sufficiently high thrust, and/or for very low local gravity, the dimen­
sionless acceleration a tends toward infinity during the powered maneuver, but the dura­
tion of the maneuver T~~ tends toward zero. In the impulsive limit, v changes discon­
tinuously across the maneuver, but r, a, and 0 remain constant. The velocity equa­
tion (7b) can then be integrated in closed form to yield the "classical rocket equa­
tion" (2). The appropriate value of Avimp(= vbo - vi> may then be derived from equa­
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tions (12b) and (13) when it is recalled that the impulse is not only tangential but is to be 
applied at the periapse if  the orbit is elliptic; that is, 

This is the value which enters the definition of (eq. (4)). 
The remainder of the planetocentric trajectory consists of a coasting arc (i.e., a hy­

perbola) whose periapse is at the impulse point and whose asymtotic branch extends to 
the sphere of influence (recall fig. l(b)). Since the sphere of influence is considered very 
large compared to the parking orbit, the characteristic angle �Ich is well approximated 
by the asymtotic true anomaly of the hyperbola; that is, 

where 

2ebo = Vm + 1 

Finite thrust. - The powered portion of the trajectory is integrated numerically to 
obtain values of r, v, a, and 0 at the burnout time Tho, in addition to a value of AVch 
for use in equation (4). The remainder of the trajectory, that is, the coast from the burn­
out point to the sphere of influence, is again a conic a r c  whose elements may be computed 
in terms of the burnout conditions rbo, vbo, abo, and Ob0. The semilatus rectum pbo 
is given by 

2 2 2 
b o  = rboVbo ‘Os Obo 

and the eccentricity ebo by 

Then the coasting contribution (ecst) may be computed from the conic equation and added 
to Ob0 to obtain 
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Very low thrust. 
maneuvers with very 

but that 

- A useful approximate solution may be obtained in closed form for 
low but finite thrust. It is assumed that 

1 v2 1 0  
2r 

a(7) <<- (7) 00 

a(7) >>-1 
(7) v: > o  

n 

That is, escape (v: = 0) is attained at a very great radius, and further energy is then 
added in a field-free region. If the initial orbit is circular it will remain nearly circular, 
that is, a spiral of low pitch. This means that a! is small and moreover that a!' % 0. 
Equation (712) then yields, for tangential steering, the condition 

v2 x- 	1 
r 

Combining this relation with equations (?a) and (7b) yields 

(Av ch) '  = V' +- r' 

r 3/2 

or 

d(Avch) = dv + d ($) 
Integrating term by term and applying initial condition (11) and the terminal conditions 

\ 

yield the result that 
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~ V m - V . + - - - = V V , + 12 2 
AVch,very low thrust, l f iGcircular orbit 

so that 

vm + 1 
Mfv,very low thrust, 

circular orbit - 1  

It will be shown in the next section that AVch is directly proportional to the change 
in v,2 that occurs in going from the initial orbit to the burnout point; that is, 

2AVch ('m,bo - vm,po ). This suggests that hVch for an elliptic orbit departure should 
be approximately the same as for a departure from a circular orbit whose energy is equal 
to the energy of the ellipse. Since 

2 = e  - l = v  2 -- -1 
'00, elliptic PO PO m, equivalent 

circular po rc, equivalent 

the radius of this equal-energy circular orbit is 

- 1rc,  equivalent - - e 
Po 

If (27) is used in place of ( l la) ,  equation (24) becomes 

-
"ch, ellipse, - vm, bo + (1 - epo)1/2 

low thrust 

and the corresponding value of fv is 

It may be seen by inspection of equation (25) that fv for a circular orbit has a maxi­
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mum value of 3 where v, = 0. 5. This is the desired upper bound. For elliptic orbits, 
it may be seen from (29) that the upper bound is an increasing function of e

PO' If 
ePo = 0.9, for instance, the maximum value of fv is about 10.6 (rather than 3) and oc­
curs  when v, = 0.15. It will be demonstrated in the RESULTS that equations (25) and 
(29) not only yield valid upper bounds for fv but also provide an accurate qualitative de­
scription of how fv varies with v t  for low-thrust systems. 

.~Mean value solutions. - A formal solution for Avch useful in interpreting the behav­
ior and significance of fv may be derived by converting the velocity equation (7b) into an 
energy equation. Multiplying by v and using equation (7a) yield 

v v ?  +-r?  = va cos u 
2r 

or (recalling eq. (13)), 

1 (vt)  * = a(v cos u)
2 

This may be formally integrated, using the law of the mean, to obtain the symbolic result 

2 - 2 
- V,,bo v",po 

Avch - 2( v cos u)  

where ( v  cos u )  is the mean tangential velocity obtained by averaging v cos u with re­
spect to Avch. When the same argument is applied to an impulsive trajectory, it is seen 
that 

That is, fv may be expressed as the ratio of the mean tangential velocity for an impulsive 
maneuver to that of the actual finite-thrust maneuver. In principle, 6 may be deter­
mined by comparing the velocity and steering histories of actual and impulsive maneuvers. 
(Examples of this will be given in the DISCUSSION. ) For a given value of Avt ,  the 
parameters a

PO' vj7 and vPO only affect fv by their influence on v. 
On the other hand, the steering control U(T) enters fv explicitly, as is clearly 

shown in (31) or (32a). It is evident that tangential steering (u(T) 2 0) will produce the 
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maximum instantaneous value of v cos u. Improvements in the mean value ( v  cos u )  by 
means of variational steering can only come about by increasing v at the expense of 
cos u. These opposing trends explain the fact, demonstrated in appendix A, that there is 
little to be gained by using variational rather than tangential steering for optimum-angle 
trajectories. If tangential steering is used, (32a) becomes 

Thus, the selection of the power-on point v
PO 

to minimize fv is in accordance with the 
intuitive principle that energy can be added most efficiently in a region of high velocity. 
In fact, it is easy to see that 6 is a direct measure of the mean propulsive efficiency 
defined by 

1 2 
- *v~ -- 2 A Energy added to final mass 

17Pr,m 
- M  v.2 - Useful energy liberated by propulsion system 

(33)
1 
2 P J  

Then, the ratio of 7
Pr, m 

for an actual maneuver to that for the equivalent impulsive 
manuever is (assuming equal Mbo) 

If equations (2) and (3) a re  used for M
P’ 

l / f  
P 

may be expressed as 

1 - exp(fv Avimp/vj) - 1 

fP exp(Avimp/vj) - 1 

Therefore, 
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to the first order in (AvimPj) .  Thus, fv varies inversely with the mean propulsive ef­
ficiency. 

fv as a "gravity loss". - It is evident from equation (31) that fv contains bothdy­

namic effects (i.e., Av,)2 and geometric effects (( v cos u)), neither of which depends ex­
plicitly on the presence or absence of a gravitational field. In the general case, fv can 
represent "steering losses" as much as gravity losses. For the optimum-angle trajec­
tories which are of primary interest, however, there are no steering losses as such; 
therefore, fv may be interpreted as a gravity loss in the sense that it accounts for dy­
namic phenomena (reduction of ( v )  and 77 

Pr, 
) that are caused in turn by the gravity 

field. As  here defined and used, however, fv cannot be directly related to a kinematic 
gravity loss of the form 

bo sin a! 
AVgravityloss =IT

r 
T d T  (37) 

When tangential steering is assumed in (7b), it may be seen that 

Avgravity loss = Avch - AV 

while the loss associated with f is
V 

A definition of fv based on equation (37)would not necessarily represent a loss of 
energy since it would apply to coasting (constant energy) orbits as well as to powered 
maneuvers. Furthermore, such an interpretation cannot be used to explain the fact that, 
in the low-thrust limit, $r continues to increase beyond v, = 0. At this point (r -L 00) all 
of the gravity field has been left behind, but as may be seen from equation (25), fv in­
creases from 2.414 to 3.000 as v, increases from 0 to 0.5. It will be shown in the 
DISCUSSION that this typical behavior can be adequately explained in terms of ( v )  . 
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RESULTS 

The equations of motion and auxiliary formulae indicated in the preceding section 
were programed for numerical integration on a high-speed digital computer. Values of 
$I and OCh were then obtained which correspond to a wide range of propulsive maneuvers. 

Dimensionless Data 

The quantities $I and 8,h, which describe the overall dynamic and geometric char­
acteristics of optimum-geometry trajectories, are plotted against the dimensionless hy­
perbolic velocity parameter v,.2 Both escape and capture maneuvers are considered 
over a range of values of the dimensionless variables a 

PO 
and v

j '
Results pertaining to maneuvers leading from or to  a circular orbit are presented in 

figure 2. The dependent variable (i. e.,  fv or e,,) and the range of dimensionless agru­
ments covered by the figure are listed in table I. It has been previously noted that any 
desired orientation of 7, inertial space can be attained without changing fv simply by 
selecting the appropriate thrust-initiation point on the ciruclar orbit. Consequently, the 
value of OCh is of little concern for circular orbits and OCh data a r e  presented for only 
two cases - figures 2(b) and 2(i). 

A s  indicated in table II (p. 29), the corresponding results for elliptic orbits (with 
ePo = 0.9) a r e  presented in figure 3. In this case, Och defines the required orientation of 
the ellipse with respect to G,. It may be recalled by again referring to figure l(d) that 
reference conditions for an elliptic orbit a r e  defined by the periapse radius vector. The 
characteristic central angle Qch is measured from periapse regardless of the initial 
power-on point (vPO

). The reference impulsive Av (eq. (3)) used in defining fv is com­
puted at periapse even if  the actual trajectory begins at some other position (v f 0) on 

PO
the ellipse. 

Conversion of Dimensionless Data to  Dimensional Form 

The preceding dimensionless results can be applied in any case of physical interest. 
That is, the reference values Rref, 'c, ref' etc. are known once the planet and the park­
ing orbit have been selected, while V, and/or AVimp 2are known as a result of inter­
planetary calculations. The dimensionless variables v,, aPO' and v.

J 
corresponding to 

the maneuver may then be found by means of equation (5) and used with figures 2 and 3 to 
determine values of fv and Och' 

In some interplanetary studies (ref. l), the results are presented in the form of 
values of v, for each trip. Other studies, such as references 2 and 3, present the 
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TABLE I. - KEY TO POWERED ESCAPE AND CAPTURE TRAJECTORY DATA, 

CIRCULAR PARKING ORBITS, AND DIMENSIONLESS ARGUMENTS 

Depen- Maneuver Jet Dimensionless Hyperbolic 
dent velocity acceleration velocity 

rariable arameter, at parking parameter,
2V.

J 
orbit, vm 
aPO 

f V 
Escape and capture 00 0 - 5.0 -1  - 20 

'ch Escape and capture 00 0 - 5.0 -1  - 20 

f V  
Escape 5 0 - 5.0 -1 - 20 

f V  
Capture 5 0 - 5.0 -1 - 20 

~ 

f V 
Escape 2.5 0 - 5.0  -1 - 20 

f V  
Capture 2.5 0 - 5.0 -1 - 20 

f V  
Escape 1.0 0 - 1.0 -1 - 10 

f V  
Capture 1.0 0 - 5.0 -1 - 10 

'ch Escape and capture 1.0 0.01 - 1.0 -1 - 10 

f V  
Escape 0. 5 0 - 0.75 -1 - 10 

fV 
Capture . 5  0 - 5.0 -1 - 10 

f V 
Escape 0.25 0 - 0 . 4  -1 - 10 

fV 
Capture .25 0 - 10.0 -1 - 10 
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- at parking orbit, 

Hyperbolic velocity parameter, v& 

(a) Velocity correction factor; 	 jet velocity parameter, m. (b) Trajectory deflection angle; jet velocity parameter, m. 

Figure 2. - Properties of escape and capture maneuvers. Circular parking orbit. 
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(c) Escape maneuver; jet velocity parameter, 5.0. (d) Capture maneuver; jet velocity parameter, 5.0. 


Figure 2. - Continued. 
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TABLE II. - KEY TO POWERED ESCAPE AND CAPTURE TRAJECTORY DATA 

kl l ipt ic  parking orbits; parking orbit eccentricity, 0.9; optimum values of op­
timum orbital t rue anomaly, v

PO' - optimum trajectory deflection angle, ech.] 

Pigure Dependent Maneuver Jet Dimensionless Hyperbolic 
variable velocity acceleration velocity 

V.
1 

larameter , at parking 
orbit, 

?arameter 
2 

VW 

PO
a 

-

f V  
Escape and capture W 0 - 1.0 0 - 20 

'ch' 'PO Escape and capture 03 0 - 1.0 0 - 20 
~ 

fV  
Escape 5.0 0.01 - 1.0 0 - 20 

fV 

'ch'po Escape 
Capture 

5.0 
5.0 

.01- 1.0 

.01- 1.0 
0 - 20 
0 - 20 

'ch' 'PO Capture 5.0 .01- 1.0 0 - 20 

fV  Escape 2.5 0.01 - 1.0 0 - 20 

f V 

'ch, 

'ch7 "PO 

Escape 
Capture 
Capture 

2.5 
2.5 
2.5 

.01- 1.0 

.01- 1.0 

.01- 1.0 

0 - 20 

0 - 20 
0'-20 

fV  Escape 1.0 0.01 - 1.0 0 - 12 

'ch' Escape 1.0 .01- 1.0 0 - 12 

f V  
Capture 1.0 .01- 1.0 0 - 12 

'ch' 'PO Capture 1.0 .01- 1.0 0 - 12 
~ 

fV  
Escape 0.5 0.01 - 1.0 0 - 12 

'ch' 'PO Escape .5 .01- 1.0 0 - 12 

f V Capture . 5  .Ol - 1.0 0 - 12 

'ch' 'PO Capture .5 .01- 1.0 0 - 12 

fV 
Escape 0.25 0.01 - 0.2 0 - 8  

'ch' 'PO Escape .25 .Ol- . 2  0 - 8  

f V 
Capture .25 .Ol - 10.0 0 - 8  

'ch' 'PO Capture .25 .01 - 10.0. 0 - 8  
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m 

V 

a, 

n 

.equivalent impulsive velocity increment AV. necessary to leave or enter an assumed 
Imp 2circular parking orbit at 1 . 1  planet radii. In figure 4(a), vo3 is plotted as a function of 

AVimp (in miles/sec) for each planet of the solar system, with R = 1. 1 RPI' Figure 
4(b) gives the conversion between AV.

Imp 
and vo3 in EMOS (i.e. :'in units of the Earth's 


mean orbital speed, 18.5058 miles/sec). In figure 4(c), aPO is shown in terms of APo2 
(in units of Earth surface gravity, 32.17 ft/sec ), again assuming RPo = 1 . 1  Rpl. The 
dimensionless jet velocity parameter v

j 
is shown in figure 4(d) as a function of specific 

impulse I (in sec). 
As  an example, suppose that it is desired to attain a value of V, = 0 . 2  EMOS from 

a circular Earth-centered parking orbit :RPo = 1 . 1  R,) using a chemical rocket with-
I = 385 seconds and A. (= A ) = 9 feet

1 P o  
per second2 or 0.27  G,,,. From fig­
ures  4(a) and (b) it may be seen that 
the corresponding value of AV.

1pP 
is 

about 3 miles per second and v,z is 
N>* 

i approximately 0 . 7 .  Also, a
PO 

= 0 . 3aJ c
aJ 
z and v
j 
= 0. 5, as noted in figures 4(c) 


L
n and (d). If these values (v: = 0 . 7 ,
>1c

0 
-
> 

aPo = 0 . 3 ,  v
j 

= 0. 5) of the dimension­
.-U- less arguments are used, the corre­
? 
aJ 	 sponding value of $ may be found inx 
I figure 2(j) (p. 25) - that is, fv = 1.037.  

Thus, the actual characteristic veloc­

ity increment is AVCh = 1.037 X 3 or 
3 . 1 1  miles per second, and the propel-

(a) Hyperbolic velocity parameter. lant fraction is 

m = 1 - e x p  -3 .11  X 5280 
P 385 X 32.17 

or 0.735.  Exactly the same procedure 
would be used for a capture maneuver 
with a specified value of Abo (rather 
than Ai); when figure 2(k) is used, the 
value of fv for the arguments enumer­

0 2.5 5.0 7.5 10.0 12.5 15.0 ated above is seen to be fv = 1.230. 
Impulsive velocity increment, AVi, mileslsec On the other hand, if it is desirable(b) Hyperbolic excess velocity. 

Figure 4. - Scaling of dimensionless parameters for planets of the to study capture maneuvers on the 
solar system. basis of given values of 4, or to 
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study escape maneuvers with given 
values of Abo, it is necessary to solve 
equation (10) by iteration. For instance, 
to find $ for the previous capture ma­
neuver with pLi = 9 feet per second' re­
quires the following steps: 

(1) The v,2 and v. are as given

1

previously. 
(2) A trial value of aPO(= ab) is 

assumed. 
(3) The fv is found in the data and 

a trial value of m
P 

is computed by 
using equations (3)and (15). 

(4) A new value of a (= abo) is 
computed from equation &a) - compare 
with step (2). 

(5) Steps (2) to (4) are  repeated using 
the new value of ab from (4) until con­
vergence is obtained. 
A similar procedure is used to find the 
characteristics of escape maneuvers 
with given values of Abo. 

Dimensiona I Data 

For studies which involve repetitive 

but similar calculations, it is convenient 


to perform the previous conversion, interpolation, and iteration in advance. This yields 
working charts that apply to a specific planet and parking orbit, and to ranges of Ai 
(or Abo) and I which are of particular interest. A s  an example, the preceding dimen­
sionless circular orbit data have been used to  generate a series of working charts that 
describe nuclear rocket maneuvers near Earth, Venus, and M a r s  (figs. 5, 6, and 7, re­
spectively). Values of $ are plotted against AVimp, assuming a circular orbit radius 
of 1.1planet radii for values of Ai ranging from 0.1 to 1.0 G,  and specific impulses 
of 900 seconds (solid curves) and 700 seconds (dashed curves). Part (a) of each of these 
figures represents escape maneuvers while captures are shown in part (b). It is noted 
that the captures are correlated on the basis of the initial acceleration Ai. 
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DISCUSSION 

The preceding results define the essential dynamic and geometric properties of a 
very wide range of optimum-angle finite-thrust trajectories. This section is intended to 
interpret the behavior of these results by examining the role of each of the independent 
variables. The effects of v,,2 a and v. are first considered in terms of circularPo’
orbits. The additional variables (v, and 

3 
e d associated with elliptic orbits are then
P

discussed, and finally the circular and elliptic orbit results are compared. 

Circular  Orbits 

Effects of hyperbolic velocity parameter v,.2 - The characteristic velocity ratio fv 
is shown as a function of v, (and apd in figure 2(a) (p. 21) for escape or capture maneu­
vers with v.

J 
= 03 (for instance). The uppermost curve on this graph is the low-thrust 

limiting solution expressed in equation (25). This curve gives the upper bound for $r as 
a function of v,; the peak value of $r = 3 occurs at v, = 0.25, and thereafter $r de­
clines as v, increases. For trajectories with intermediate thrust, the fv function be­
haves in qualitatively the same way. The peak value of fv, however, decreases and oc­
curs  at higher values of v,2 as aPO is increased. For instance, with aPO = 0.01,2 
fv, max = 2 at v, = 0.65. A s  a 

Po 
approaches the high-thrust regime, the peak be­

comes low, very broad, and occurs at high values of v,.2 Although not shown on the fig­
ure, C -L 1.0 for all values of aPo when v,2 

-L -1 (i.e., when Avimp -c 0). 
The characteristic central angle 8,h is also influenced by v i  as illustrated in fig­

ure 2(b) (p. 21). For impulsive thrust (a
PO 

= ,), Qch is given by equation (16); it varies 

downward from a maximum of 180’ at v: = 0, asymtotically approaching a lower bound 
of 90’ for large v:. For finite values of a the behavior is similar; the greatest 

PO’value of 8,h corresponds to vt = 0, with a rapid approach to a lower bound as v,2 in­
creases. The larger values of 8,h at low v,2 a r e  due to the fact that low energy tra­
jectories remain within the sphere of influence a longer time and thus a r e  more strongly 
influenced by gravity. 

Effects of orbit acceleration parameter aDo. - Although 8,h is a bounded function 

of v, for given a
PO’ 

it is not a bounded function of a
Po 

for given v,. This may be 
inferred from figure 2(b) and is further illustrated in figure 8, in which 8,h is plotted 
directly against aPO for several typical maneuvers. The large values of 8,h at low 
aPo are due to the large value of 8bo associated with low-thrust spiraling. 

The behavior of fv as a function of a
Po 

is illustrated in figure 9 for several typical 
maneuvers. It is clear that fv is bounded between the impulsive (fv = 1) and ultra low-
thrust limits. The asymptotic value in the latter case is given in terms of v i  by equa­
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a 

VI 

tion (25). It may be observed that fv varies most rapidly with a
PO 

in the range 
0.03 IaPo5 0.3. This range includes the thrust to weight ratios that a r e  normally of 
interest for vehicles using nuclear rocket propulsion and low parking orbits. 

The characteristic behavior of F may be understood by considering how the mean 

* P o  and v,.2 (For tangential thrust,tangential velocity component ( v  cos u )  varies with a 
only ( v )  need be considered.) When equation (32) is used, the maximum value of fv, 
with given v,,2 occurs for minimum ( v )  . Figure 10 depicts the velocity history of a 
typical set  of tangential-thrust maneuvers (escapes from a circular orbit with v.1 = I). 
The path velocity v during the thrusting phase is plotted against the cumulative mass 
ratio Mi/Mbo on the logarithmic scale, and against AVch on the linear scale. Each 
solid curve represents maneuvers with a given value of aPo' The upper straight line 
represents impulsive maneuvers, while the lower curve denotes the zero-thrust limit. 
Loci of constant v, a r e  shown in dashed lines. For high but finite acceleration, v in­
creases monotonically with hVch, although not as rapidly as in the impulsive case. At 
low acceleration, however, v actually decreases initially, and only begins to increase 
again after a fairly high value of 
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value of v,, ( v )  decreases as aPo decreases and this accounts for the fact that fv in­
creases as a decreases. 

POThe location and magnitude of the peak value of $r as a function of v,2 may be pre­
dicted by determining ( v )  (for example, by graphical means) from figure 10. For in­
stance, in the low-thrust limit (lowest curve in fig. lo), it is readily verified that the min­
imum value of ( v >  (XO.417)1 occurs when Avch I. 5 and v, x 0 . 5 .  These values in 
equation (4) yield fv = 3 in agreement with both equations (25) and (32). 

Effects of jet velocity parameter 
... 
v

j. 
- Variations in v i  and aPo have similar ef­

fects on escape and capture maneuvers. The effect of v
j’ 

however, is qualitatively dif­
ferent for the two types of maneuvers when they are compared on the basis of equal values 
of a

PO’ 
as shown in figure 11. The reason for this behavior can be found by inspection of 

equations (Sa) and (9b). That is, for finite v
j’ 

a(7) increases continuously during an es­
cape maneuver; the lower the values of v.

J 
the greater the increase of a(7). As v

j 
-L 0 

in an escape maneuver, fv therefore approaches the impulsive limit. On the other hand, 
a(7) decreases steadily during the backward integration of a capture maneuver so that as 
v.

J 
-L 0, fv approaches its low-thrust limit. For high values of v

j’ 
a(7) for both types of 

maneuvers is nearly constant, and the values of fv approach a common asymptote. 
From a physical viewpoint, however, the difference between escape and capture ma­

neuvers is more apparent than real. When escapes and captures a r e  compared on the 
basis of equal initial acceleration, the values of $r are similar. This may be recalled 
from figures 5 to 7 and is further illustrated by the lower dashed and solid curves in fig­
ure  11. 

‘Recall that ( v )  is found by averaging v with respect to Avch. Thus, in figure 10 

W X= 
area under curve a - x 

Avch, x 

In the low thrust limit, the v - Avch characteristic consists of straight line segments; 
then with vx = v = 0. 5, for instance, 

- 7  x 

Similarly, 

( v )  imp = 1 + P=1.25 
2 
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Figure 11. - Asymtotic comparison of escape and capture maneuvers. 
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Elliptic planetocentric parking orbits a r e  of interest because they offer a significant 
reduction in propulsive AV for a given value of v,, as suggested by letting ePo -L 1 in 
equation (15). The reduction can approach 41.4 percent of Vc, ref; it is thus most signif­
icant for low periapse orbits about the major planets. At Jupiter, for instance, the sav­
ing can be as high as 10 miles per second, while at Mars  it cannot exceed 0.8 mile per 
second. 

Characteristic velocity ratios (fJ and geometric data (uPO and Och) were presented 
in figure 3 for optimum-angle trajectories using an elliptic orbit with ePo = 0.9. This 
value of ePO was selected as a compromise between AV savings (cf eq. (15)) and or­
bital period considerations. 

It may be seen in figure 3 that the $r data for elliptic orbits are similar in appear­
ance to those for circular orbits. The effects of v,,2 aPO' and v.

1 
follow the same qual­

itative trends as in the circular orbit case. The two additional variables vPo and ePo
introduced by the consideration of elliptic orbits are now discussed. 

Effects of initial true anomaly uPo' - For the optimum-angle trajectories considered 

herein, the power-on or -off point on the ellipse vPo is simply chosen in order to mini­
mize fv for given values of v,, 

2 
aPo' and v

1. 
The characteristic angle 8,h is re­

garded as a dependent variable; optimum values of Och (i. e., corresponding to minimum 
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Figure 12. - Effect of t rue  anomaly at ell iptic parking orbit on escape 
or capture maneuver. Parking orbit eccentricity, 0.9; hyperbolic 
velocity parameter, 0.25; jet velocity parameter, m. 

fv) are presenter The process of selecting vD0 to minimize fr is shown graphica 9 
in figure 12. The quantities fv and are blotted against v for maneuvers where 
ePo = 0.9, v,2 = 0.25, and v

j 
= 00. Impulsive and finite-thrust a = 0.1) maneuvers a r e?Po


represented by the solid and dashed curves, respectively. 
For the impulsive maneuver, the minimum value of = L O  occurs at the periapse 

(vpo = 0); this choice obviously yields the maximum value of ( v )  . The corresponding op­
timum value of Och is 142'. The increase in fv for nonoptimum angles represents the 
effect of a geometrical constraint alone on the propulsive efficiency and mean velocity. 

For the maneuver with aPo = 0.1, the minimum value of fr = 1.03 occurs at point a 
where v

PO 
= -4'7'. This choice maximizes ( v )  for equation (32) during the powered ma­

neuver; it distributes the thrusting a r c  into roughly equal central angles ahead of and be­
hind the original periapse. The associated optimum value of ech (point b) is about 143O, 
only slightly different from the impulsive value (1429. It may be noted that 8,h can be 
varied between 132' and 150' in this example for fr 5 1.10, 

Effect of parking orbit eccentricity eP' - While v 
PO 

was selected in every case to 
.~ 

yield minimum fv, the choice of e
PO is based primarily on mission objectives. Prob­

ably the highest value of ePo would be used which is compatible with the observations, 
experiments, and operations that constitute the purpose of the mission. Although the 
value of e

PO 
= 0. 9 is believed to be a good compromise, it is quite possible that lower 

or higher values may be required in particular cases. 

2 
The effect of other values of e 

PO 
is illustrated in figure 13 for the same maneuver 

(v, = 0.25, a
PO 

= 0.1, v.J = m) as was discussed previously. The minimum values of fv 
and the corresponding optimum values of v

PO 
and are plotted against e

Po' 
The 
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Parking orbit eccentricity, epo 

Figure 13. -Effect of parking orbit eccentricity on optimum tan­
gential th rus t  maneuvers. Hyperbolic velocity parameter, 
0.25; jet velocity parameter, a; dimensionless acceleration at 
parking orbit, 0.1; optimum orbital t rue  anomaly chosen for 
minimum characteristic velocity ratio. 

points a and b at e
PO = 0.9 represent the values of $r and ech corresponding to the 

optimum vPO as shown in figure 12. 
It may be noted first that BCh varies little with e

PO' More important is the fact 
that $ decreases almost linearly with increasing ePO' Further examples-(not illus­
trated here) indicate that this behavior is typical for maneuvers where a > 0.01. 

P O
Therefore, in this medium- to high-thrust regime, values of Q for eccentricities be­
tween 0.0 and 0 .9  can be estimated without major e r ror  from a linear formula such as 

fv, e
P O  

= (l - Wfv, 0.0 + xsr, 0. 9 

where 

Comparison of Elliptic and Ci rcu lar  Orbit Results 

A s  was mentioned previously, the elliptic orbit data presented in figure 3 have the 
same general character as the circular orbit data of figure 2. There are, however, sig­
nificant numerical differences. It was pointed out before that in the medium- to high-
thrust regime (%. 5 0.01) $ tends to decrease with increasing ePO' The reason for 
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this may be understood by recalling that the optimization of v amounted to placing asPO
much of the maneuver as possible in a region of high velocity, that is, near the periapse. 
Hence, for short burn times (i.e. , high accelerations and/or low velocity increments), 

( v )  act ( v )  imp- For elliptic orbits, the velocity increment and hence the burn time are 
lower than they are for a circle; therefore, a lower acceleration can be tolerated before 
fv begins to increase sharply. 

Very low-thrust systems, on the other hand, require such long burning times that 
only a relatively small part of the maneuver can be placed near the periapse. For the 
first few revolutions at least, the greater proportion of time will be spent in the vicinity 
of the apoapse, and this results in a low value of (v). Therefore, as predicted by equa­
tion (29) and shown in figure 3(a) (p. 30), the low-thrust values of fv  can become quite-
1. These high values cannot be reduced significantly by the use of vari-

P O
ational steering control. They are therefore an inherent feature of the trajectories being 
large as e 

considered and cannot be attributed to the assumed tangential steering law. 
For these reasons it may be concluded that the AV savings predicted for elliptic 

parking orbits are actually enhanced by the finite-thrust effects if  aPo 7 0.01, but they 
a r e  degraded for very low-thrust systems. That is, the elliptic orbits are relatively 
more advantageous for high-thrust systems. 

APPLICATION TO MISSION PROBLEMS 

The foregoing discussion indicated the significance, interpretation, and use of the 
characteristic velocity correction factors (fv) and geometric data that have been pre­
sented. This section will illustrate, by typical examples, the application of the data and 
procedures already described to actual mission problems. 

Hohmann Transfers to A l l  Planets 

The minimum AV transfer between planets which lie in circular coplanar heliocen­
tric orbits is the well-known Hohmann (180°, contangential) trajectory. In view Of equa­
tion (3), the Hohmann transfers will also yield low propellant fractions. 

Table III lists the pertinent trajectory parameters for Hohmann transfers from the 
Earth to the other planets (except Pluto) of the solar system. The planets a r e  assumed 
to lie in circular coplanar heliocentric orbits, and the transfers begin and end in circular 
planetocentric parking orbits at 1 . 1  planet radii. Representative values of I (900 sec) 
and Ai (0.2 G@)were assumed for the purpose of computing fv. The circular parking 
orbits at 1 .1  planet radii were chosen quite arbitrarily for the sake of comparison. 
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TABLE m. - IMPULSIVE VELOCITY CORRECTION FACTORS AND OTHER PROPERTIES 

FOR HOHMANN TRANSFERS FROM EARTH TO OTHER PLANETS 

[Specific impulse, I, 900 sec; initial thrust to weight ratio, Ai, 0.2 Ge.] 

Parameter Destination planet 

Mercury Venus Uranus Neptunf
0 9 6 F 

Departure from Earth 

Hyperbolic excess velocity 4.66 1. 56 1.85 5.46 6.38 7.02 7.26 
at Earth departure, 
V,, e, miles/sec 

Circular velocity at Earth 4.69 4.69 4.69 4.69 4.69 4.69 4.69 
parking orbit, 
R =l.lRe
Po.Gravity at Earth parking 

orbit, ft/sec 2 
29.6 29.6 29.6 29.6 29.6 29.6 29.6 

Impulsive velocity incre- 3.42 2.13 2.19 3.90 4.50 5.00 5.14 
ment to depart Earth, 
AVe, miles/sec 

Hyperbolic velocity param-
eter, v,2 

3. 987 0.111 0.155 1.351 1.850 I .  239 2.391 

Dimensionless acceleration 3.242 0.242 0.242 0.242 0.242 I .  242 0.242 
at parking orbit, aPo

Jet velocity parameter, v.
J

Characteristic velocity 
1.169 
1.107 

1.169 1.169 
1.052 1.054 

1.169 
1.119 

1.169 
1.132 

1.169 
1.140 

1.169 
1.142 

ratio, fv 

Arrival at planet 

Travel time (Earth to 106 146 259 1000 2200 5900 11 200 
planet), days 

Hyperbolic excess velocity 5. 94 1. 58 1.65 3. 51 3.37 2.92 2. 51 
at planet arrival, 
V,, miles/sec 

Circular velocity at planet 1.75 4.29 2.05 25.2 15.1 8.89 9.77 
parking orbit, 
R = 1.1R 
Po. PI

Gravity at planet parking 9.6 22.9 10.65 70.2 31.2 24.2 27.4 
orbit, ft/sec 2 

Impulsive velocity incre- 4.69 1.94 1.29 0.45 6.40 3.95 4.28 
ment to arrive at planet, 
AVpl, miles/sec 

Hyperbolic velocity param- 11.50 0.368 0.647 0.0194 0.0498 1.108 0.066 
2eter, v, 

Dimensionless acceleration 1. 585 0.406 0.769 0.69 0.706 I. 562 0.532 
at parking orbit, aPo

Jet velocity parameter, v.
.l 

3.130 1.277 2.673 0.218 0.363 I. 616 0.561 
Characteristic velocity (1.01 1.040 1.021 1.05 1.052 1.041 1.042 

ratio, G :extrap-
Ilated) 

53 




-. . 

The hyperbolic excess velocity, the circular velocity, the local gravity, the impul­
sive velocity increments, the dimensionless parameters, and fv are listed for both ter­
minals of each Hohmann transfer. For Earth, Mars ,  and Venus, fv was found from fig­
ures  5 to 7. For the capture maneuvers at the other planets, the previously described 
iterative procedure based on equation (10) was used with figure 2 to find aPo, v,,2 v and

j’
thence fv. 

It is of some interest to  note that with the chosen value of Ai (0.2 G,) the correction 
factors at the destination planets are only slightly greater than unity (e. g., 1.05 at Jupi­
ter). In fact, they a r e  smaller than for the associated Earth escape maneuver. This 
somewhat surprising observation is the result of two effects which together determine 
a 

PO‘ 
(a) For capture maneuvers, aPo is related to ai by 

ai = aie
Avch/G,l

a =  
Po I - m  

P 

For the maneuvers under consideration, the mass ratio e
(AVch/G,I) 

ranges from about 
2 (at Mars)  to about 8 (at Jupiter). Thus Abo, the acceleration at burnout, ranges from 
about 0.4 to 1.6 G, since Ai was given as 0.2 G,. 

(b) The apo is then related to Abo by equation (5c); that is, 

a =- *bo 

Po ‘ref 

The gravity ratio G,/Gref ranges from about 1to 3 for all the planets except Jupiter, 
where it is about 0.4. For all planets, the net result is a fairly high value of a

PO 
which,

2
together with the generally low value of v,, leads to a low fv. 

Thus, for a one-way Hohmann trip to Jupiter, the neglect of finite-thrust effects 
leads to an error  in AVch of 0.99 mile per second out of 14.35 miles per second, or 
about 7 percent. 

Choosing t h e  C i r cu la r  Orb i t  Radius 

The low circular parking orbits previously assumed were sufficient for a compar­
ative discussion of the behavior of % at different planets. In an actual mission study, 
however, the choice of the parking orbit and the associated approach and departure ma­
neuvers would receive very close attention. The low circular orbits have some definite 
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advantages, but it is also possible that more sophisticated orbits and maneuvers will be 
used in many cases. The purpose of this section, then, is to illustrate the use of the 
present data in finding an optimum parking orbit for a finite-thrust system. 

The simplest approach to parking orbit optimization consists of just selecting the cir­
cular parking orbit radius RPO, opt 

that will yield the lowest value of AVch for a given 
V,. Since the orbit is circular, the necessary hyperbolic direction for both the incoming 
and outgoing maneuvers (fig. l(c), p. 6) can be attained with no AV penalty. Thus, the 
geometric effects are not considered in this example. 

Inspection of equation (6) reveals that AV.Imp is a function of the parking orbit ra­
dius alone for a circular orbit and given V,. It is readily seen that the minimum value 
of AV. occurswhenImp 

or 

2ppl
Rpo, opt = 2 

v, 

This is a well-known result for impulsive maneuvers. In the present case, however, it 
must be remembered that changing R

PO' 
by changing Vc, ref and Gref, will affect the

2
values of v,, a

PO' 
and v

j' 
Thus, the changes of fv as well as of AV.

Imp 
must be 

accounted for in seeking a minimum value of AVch' 
As an example, consider the problem of selecting the optimum parking orbit radius 

for a representative Earth/Venus round trip, which has the characteristics listed in 
table IV. This t r ip  has a total duration of 450 days of which 30 are to be spent in the 

Venus-centered parking orbit. Data were ob-
TABLE IV. - CHARACTERISTICS OF TYPICAL tained from reference 1. 

450-DAY ROUND TRIP TO VENUS (1980) Since the Venus arrival and departure ma­
neuvers involve about the same value of V,, it 

Maneuver Date Hyperbolic excess 
is sufficient to consider only one of them, for(Julian) velocity, 

EMOS example, the departure for which 
(miles/sec) V, = 3.04 miles per second. Figure 14 shows 

Earth departure fv and AVch as functions of Rp/% and Ai 
Venus arr ival  for this maneuver. 
Venus departure In the lower portion, fv is shown for values 
Earth arr ival  

braking) of Rpo/R9 ranging from 1.1 to 16, I = 900 sec­
onds, and initial thrust to weight ratios Ai of 
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-1  I I I I I I I I I I I 03, 0.5, 0.1, 0.05, andO.OlG,. 
In i t ia l  t h rus t  to  It may be noted that fv falls off 

very rapidly as RPo increases; 
even for Ai = 0.05 G,, fv is incon­
sequential when RPo exceeds a few 
Venus radii. This, of course, is 
due to the fact that the te rm Gref 
in the equation (5c) defining 

2aPO (= APO/Gref) falls off as l/Rpo; 
hence for a given value of Ai, a

Po
will become large at a sufficiently 
high radius. 

The upper curve of figure 14 

uIi shows the values of 
AVch = fv AVimp that result when 

10 12 14 the effects of R
PO 

on both fv and 
Parking orbit radius, RpolR9 

''imp are taken into account. The 
Figure 14. -Optimization of c i rcu lar  parking orbit radius for Venus lower solid curve represents impul­

escape maneuver. Hyperbolic velocity, 3.04 miles per second; 
sive maneuvers (Ai = 03); as pre­specific impulse, 900 seconds. 

dicted by equations (33) and (34), the 
/Rminimum value of AV.Imp (2.16 miles/sec) occurs where RP o ?  = 4.4. This radius is 

also nearly optimum for values of Ai as low as 0.1 G,; for smaller values, however, 
the optimum radius is higher. For instance i f  = 0.01 G,, then the minimum value of 
AVch (2.25 miles/sec) occurs at a radius R

Po 
M 10 R?. This is a lower characteristic 

velocity than the low orbit (RPO/R ? = 1.1)impulsive value (2.48 miles/sec), yet the low 
value of Ai implies that a very small and light propulsion system could be used. 

This example not only illustrates the effect of finite thrust on parking orbit selection, 
it also demonstrates a possible a rea  of application for propulsion systems (such as arc 
jets) which might otherwise appear unattractive. 

Optimization of In i t ia l  Thrust  to  Weight Ratio 

Another frequently occurring mission problem that can be solved with the aid of the 
$I data presented here is the selection of the optimum value of Ai. This is an important 
a r ea  of study, not only from the standpoint of minimizing the vehicle gross weight, but 
also because it has a direct bearing on the problem of selecting engine sizes for future 
development. For given values of V, and RPO' a high value of Ai implies a low value 
of m

P 
but a large, heavy engine: a low value of Ai implies a light engine but a high 
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In i t ia l  t h rus t  to weight ratio, Ai, g's 

Figure 15. -Vehic le weights for typical Earth escape maneuver. 
Hyperbolic velocity, 2.43 miles per second; parking orbit radius, 
1.1; specific impulse, 900 seconds; propellant sensitive structure 
fraction, 0.1; specific weight of engine and th rus t  structure, 
0.2; acceleration sensitive structure fraction, 0.01. 

propellant fraction. Thus, it may be anticipated that minimum M will occur for inter­g
mediate values of Ai, when there is a proper balance between propellant- and engine-
related weights. 

This process is illustrated by using the Earth-departure maneuver in table N as a 
final example. In figure 15, the initial space vehicle gross mass in a low circular Earth 
parking orbit is plotted as a function of the initial acceleration. The propellant fractions 
are computed by using equation (3) and figure 5(a) (p. 42), with I = 900 seconds. Gross 
weights a r e  then estimated from 

M = M e  + *m,xkas 
(43)g (1 - mp) - mpkps - Aikts 

where the following arbitrarily assumed parameter values were used: 

Total Earth-departure payload, including upper stages: 

Mp = 500 000 lb 

Propellant sensitive structure fraction: 
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Specific weight of engine and thrust structure: 

- Mts 
kts -F= O. 2o 

Acceleration sensitive structure fraction: 

kas 
-
-

Mas = 0.01 
AmaxMQ 

The upper curve representing M has a minimum value of about 900 000 pounds when g
Ai = 0.225 G,. The corresponding nuclear engine would have a thrust rating of about 
200 000 pounds. The lower curves, which denote, respectively, the propellant and tank­
age weight, engine and thrust structure weight, and inter stage structure weight, indicate 
how M is distributed among these major weight items. 

g 

CONCLUDING REMARKS 

A wide range of data defining the essential dynamic and geometric characteristics 
(fr and Bch) of continuous finite-thrust trajectories has been presented. These results 
a r e  presented in dimensionless form and may be easily scaled to represent any case of 
physical interest. In this way, accurate propellant fractions and realistic trajectory ge­
ometry may be conveniently derived from impulsive interplanetary trajectory data. 

The characteristic velocity ratio fr is interpreted as a measure of the mean propul­
sive efficiency 77 Pr, m along the powered arc. Both fv and 77 

Pr,  m 
a r e  shown to be ex­

plicit functions of the mean tangential path velocity component { v cos u )  . This quantity, 
andhence also fv and 77Pr, 

obviously a r e  directly affected by the steering program 
U(T) that is used, whether a significant gravity field is present or not. Thus, in the gen­
eral  case, fv is as much due to steering losses as to gravity losses. 

Of particular interest in this report is the class of optimum-angle trajectories. 
These are so named because both U(T) and the initial power-on point a r e  chosen only to 
minimize fr (by maximizing ( v  cos u)) without regard to the consequent value of Bch. 
For such trajeetories, it is shown in the appendix that tangential steering yields very 
nearly minimum values of fr, especially in the case of an elliptic orbit. 

These optimum-angle trajectories can always be used with circular parking orbits, 
-c 

because any final direction of V, can be attained without penalty in fv by merely selec­
ting the appropriate power-on point. Optimum-angle trajectories can also be used for any 
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one maneuver based on an elliptic orbit by orienting the major axis at an angle OCh to 
+ 


V,. When two maneuvers are based on the ellipse, however (that is, during the capture ­

orbit-escape sequence at the destination planet of a round trip), it is generally necessary 
to reorient the ellipse (by means of auxiliary maneuvers) before optimum-angle trajecto­
ries can be used for both escape and capture. It remains to be seen whether or when the 
steering losses due to optimum constrained angle trajectories would result in a smaller 
overall penalty than the auxiliary orbit shifting maneuvers. 

By its definition fv is bounded above 1. An upper bound is also derived in the very 
low-thrust limit. This upper bound increases monotonically as ePo increases, ranging 
from 3.0 for a circular orbit to 10.6 for e 

PO 
= 0.9, and becomes very large as ePo - 1.0. 

Thus for very low-thrust systems (aPo ? 0. O O l ) ,  fv is considerably larger for a maneu­
ver from an elliptic orbit than it is for an equivalent circular orbit maneuver. This par­
tially offsets the AV advantage of elliptic orbits. That is, the saving in the low-thrust 
Avch is smaller than the savings in AVimp. 

In direct contrast, medium- to high-thrust systems (aPO ? 0.01)have lower values of 
$ for elliptic orbits than they do for equivalent maneuvers from a circular orbit. There­
fore the advantage due to elliptic orbits is actually enhanced in this case (in the sense that 
the saving in characteristic velocity for finite thrust is greater than the saving in AVimp). 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 12, 1966, 
121-30-02-01-22. 
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APPENDIX - COMPARISON OF TANGENTIAL AND OPTIMUM 

STEERING CONTROL FOR ESCAPE FROM CIRCULAR 

AND ELLIPTIC PARKING ORBITS 

Herein the tangential and optimal steering controls are compared for the problem of 
constant- thrust escape from circular and elliptic orbits. Previous work (reported in 
ref. 9) has shown that in the absence of geometric constraints, tangential steering is 
nearly optimal for constant acceleration departure maneuvers from a circular orbit to 
parabolic final energy (v, = 0). These results are now extended to include maneuvers with-
v, > 0, constant thrust, and elliptic parking orbits. 

The Maximum Principle 

The optimal angle-of-attack control program U(T)is defined by Pontryagints maxi­
mum principle (described in ref. 10). According to this, the control U(T) can be optimal 
only if  the function 

~ .attains its maximum with respect to U(T) for 0 5 T 5 T ~ Furthermore, 8 is a constant, 
and its value is zero for an optimum-time trajectory. The state variable derivatives a r e  
given by equations (7) and (8), and the adjoint variables are defined by 

P V  r v  

=+i w = 0 or  q4 = constant 
ae 

% = -
aH = 0 or q 5= constant 

a AVch 
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Since the range of U(T) is not restricted, the maximum condition reduces to 

w 
au 

- = O  1
2 

= < 0  

au2 

and this leads to the optimal steering control law 

tan U(7) = ­+3 

'2v 

Transversa Iity Conditions 

Ten boundary conditions a r e  required to specify the simultaneous solution of equa­
tions (A2) together with the equations of motion (7) and (8). For initial conditions a r e  
specified in terms of v

PO 
by equation (12), and one terminal condition is given in equa­

tion (13). Since the ' ' s  are homogeneous first-order functions, one of the initial values 
can be taken as a scale factor. The remaining four relations a r e  defined by applying the 
transversality condition (ref. 10) at both the initial and final times. 

At the initial time T = 0, 

4 

This condition states that Qi is normal to the one-dimensional manifold defined by equa­
tion (12). 

At the terminal time, the transversality condition yields the final three relations: 

*2,bo- 2 
- rboVbo 

'1, bo 
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Solutions 

The two-point boundary value nature of the problem requires an iterative solution to 
search in values of Qi(0) that will lead, by means of equations of motion (7), the adjoint 
equations (A2), and the maximum condition (A4), to the desired terminal values (13), (A6), 
and (A7). Although five initial values of Qi(0) are needed, all but two of these can be ob­
tained without a numerical search. 

(1) After Ql, - Q4, have been selected, Q5 (a constant) is chosen so as to make 
# =  0. 

(2) In view of (A6) and (A2), Q4 = 0. 
(3) Then, the initial value of Ql is set equal to unity as the scale factor. 

Thus, it only remains to find Q2, and Q3, i. For elliptic orbits, these may be found in 
terms of assumed values of ui and vPo by inverting equations (A4) and (A5): 

Finally, the initial values ui and v
PO 

a r e  used as the independent variables in a two-
dimensional search to satisfy the final conditions (13), (A6), and (A7). The use of these 
bounded, physically significant variables in place of the abstract I,PSresults in a consid­
erable practical simplification of the problem. The values of ui(0) and v

PO 
that corre­

spond to an optimum tangential trajectory (figs. 3(s), (t), (u), and (v) and 4 to 8) provide 
excellent starting points for the search. 

Conditions (A6) and (A7) have the further implication that for optimum-angle trajec­
~ .tories (where Q4 = 0) both Q3,bo and its first derivative vanish at T ~ Thus, 

in view of equation (A4), the final portion of an optimum-angle trajectory is tangential to 
a high order. Any improvement due to optimal steering must therefore be generated in 
the early part of a trajectory. In the high-thrust limit, qb remains bounded and there­
fore Q3 is continuous across an impulse. That is, tangential steering is the optimum 
control for impulsive thrust. Further, the transversality condition (A5) shows that this 
impulse is to be applied at periapse (v = 0) since q3, = Q4, i = 0. 

P O  
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TABLE V. - COMPARISON OF TANGENTIAL AND Numer icaI ResuIts 
OPTIMAL ESCAPES FROM CIRCULAR ORBIT 

Hyperbolic Jet velocity Characteristic velocity ratio, fv 
velocity parameter, 

parameter, V.I 
Tangential escape optimal escape 

2 

vm 

0 m 1.250 al.241 
0 1.0 1.179 1.171 
.10 1.0 1.199 1.190 
.25 1.0 1.225 1.214 
.50 1.0 1.261 1.250 
1.00 1.0 1.300 1.290 

maximum principle when finite thrust 
and nonzero burning times are consid­
ered. Nevertheless, there are two 
reasons to expect that tangential steer­
ing would yield nearly minimum Avch: 

(1) As pointed out before, at least 
the latter part of an optimal trajectory 
must be tangential to a high order. 

(2) Tangential steering, as is well 

TABLE VI. - EFFECT O F  PAFtKING ORBIT ECCENTRICITY 

ON CHARACTERISTICVELOCITY RATIO FOR 

TANGENTIAL AND OPTIMAL STEERING 

[Hyperbolic velocity parameter, v,,2 0.1; dimensionless 
acceleration at parking orbit, aPo’ 0.1; jet velocity 
parameter, 03.1 

Parking orbit Characteristic velocity ratio, fv 
eccentricity, 

e Tangential steering Optimal steering
Po 


0.9 1.011 1.011 
. 8  1.024 1.024 
.6 1.066 1.065 
.333 I. 150 1.147 
.00 1.270 1.260 
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TABLE VII. - EFFECT OF ORBIT ACCELERATION PARAMETER 

ON CHARACTERISTICVELOCITY RATIO FOR TANGENTIAL 

AND OPTIMAL STEERWG 

Orbit acceleration Characteristic velocity ratio, f, 
parameter, 

Tangential steering Optimal steering
% 
0.1 1.011 1.011 
.01 1.481 1.480 
.001 4.261 4.256 
.0001 6.890 6.871 

’ 
e
PO 

increases. That is, tangential steering is a better and better approximation to opti­
mal as e increases.

PO
Finally, in table VII, the effect of a 

PO 
on the comparison of tangential and optimum 

steering is illustrated for an elliptic orbit. From this it may be seen that, for all values 
of a the difference in fv for optimum as compared to tangential steering is a small 

PO’
fraction of 1 percent when an elliptic orbit is used. This is true even for very low accel­
erations for which fv is large. Thus, the high values of f predicted (e. g., by 
eq. (29)) for elliptic orbit departures with low a

PO 
and v t v a r e  a true and inherent fea­

ture of the trajectories being considered; they are not due to any peculiarity of the tan­
gential steering law. 

In summary, it may be inferred from the foregoing discussion that across-the-
board incorporation of optimal steering control would not modify the conclusions nor sig­
nificantly change the data presented in the body of this report. 
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