A QUASI-THREE-DIMENSIONAL METHOD FOR CALCULATING BLADE SURFACE VELOCITIES FOR AN AXIAL FLOW TURBINE BLADE

by Theodore Katsanis and Lois T. Dellner
Lewis Research Center
Cleveland, Ohio

GPO PRICE $__________
CFSTI PRICE(S) $__________
Hard copy (HC) $2.00
Microfiche (MF) $.50

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D.C. - 1966
A QUASI-THREE-DIMENSIONAL METHOD FOR CALCULATING BLADE SURFACE VELOCITIES FOR AN AXIAL FLOW TURBINE BLADE

by Theodore Katsanis and Lois T. Dellner

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
A QUASI-THREE-DIMENSIONAL METHOD FOR CALCULATING BLADE SURFACE VELOCITIES FOR AN AXIAL FLOW TURBINE BLADE

by Theodore Katsanis and Lois T. Dellner

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

SUMMARY

The aerodynamic design of turbine stator or rotor blades requires accurate determination of the velocity distribution on the blades. For axial flow turbines a quasi-three-dimensional compressible flow analysis has been used successfully for many years. The analysis is based on two methods, one to obtain a blade-to-blade variation of velocity, and the other to obtain the radial variation in velocity. A combination of the methods gives a quasi-three-dimensional compressible flow analysis. Most of the calculations have been incorporated into a program. This report gives a description of the quasi-three-dimensional flow analysis and the FORTRAN IV computer program.

INTRODUCTION

The aerodynamic design of axial flow nozzles and turbine blades requires accurate determination of the velocity distribution on the blades. In the flow analysis, three-dimensional flow effects are of importance. Methods for accomplishing this type of analysis for blade designs of medium or high solidity have been developed at Lewis Research Center (refs. 1 to 4).

Reference 1 gives a method for determining the variation of velocity from hub to tip on a mid-channel stream surface, and reference 2 gives a method for determining the blade-to-blade variation velocity. A combination of the two methods gives a quasi-three-dimensional flow analysis. Weight flow calculations are then based on a two-dimensional integration across a passage cross section. Most of the basic calculations needed for this analysis have been incorporated into a computer program to facilitate practical turbine design. The program is referred to as CTTD (Compressor and Turbine Division Turbine Design program).

The purpose of this report is to give a complete description of the quasi-three-dimensional flow analysis and of the use of the CTTD computer program. This technique has been used at Lewis Research Center for 14 years and the program has long been available to industry for their own use in turbine design. The original work of developing the analysis method and the CTTD program was done by the staff of the Compressor and Turbine Division at NACA Lewis Flight Propulsion Laboratory.
SYMBOLS

a parameter, eq. (A1) and (A2)
b parameter, eq. (A1) and (A2)
c curvature of streamlines on blade-to-blade surface, 1/ft
g gravitational constant, ft/sec²
m distance along meridional streamline, ft
n distance along orthogonal to streamline, ft
n₀ distance along orthogonal to streamline on blade-to-blade surface from suction to pressure surface, ft
p pressure, lb/ft²
r radius, ft
r_c radius of curvature of streamline in radial-axial plane, ft
R gas constant, (ft)(lb)/(lb)(°R)
T temperature, deg R
V absolute velocity, ft/sec
w weight flow, lb/sec
W relative velocity, ft/sec
z axial coordinate, ft
α angle of meridional streamline with the axial direction, deg.
β angle of streamline on blade to blade surface with the axial direction, deg. (see fig. 3)
γ specific heat ratio
ρ density, lb/ft³
ω rotational speed, radians/sec
The objective of the analysis method is to calculate the quasi-three-dimensional velocity distribution satisfying continuity at a given channel orthogonal surface (see fig. 1). The weight flow may be specified in the calculation, or the calculation may continue until the maximum (choking) weight flow for that channel orthogonal surface is determined. The velocity variation on the orthogonal surface is calculated from radial equilibrium (ref. 1) and stream filament theory (ref. 2). When this is done for several orthogonal surfaces, a velocity distribution over the blade surface is determined. The velocity distribution can thus be obtained for the guided channel formed by the portion of the passage where the blade-to-blade orthogonals extend from suction to pressure surface. The guided channel will not cover the entire suction surface. To obtain a velocity on the uncovered portion of suction surface some method must be used to estimate the location of the pertinent stagnation streamline. Since these velocities depend critically on the location of the stagnation streamline, unreliable results may be obtained on the uncovered portion of the blade.
The basic simplifying assumptions used in deriving the equations used are:

1. The flow relative to the blade is steady.
2. The fluid is a perfect gas.
3. The fluid is a nonviscous gas.
4. The fluid velocity has no radial component. (The projections of the streamlines on a radial-axial plane are straight lines parallel to the axis.)
5. The mid-channel line is a streamline, hereinafter referred to as the mid-channel streamline.
6. (a) The gas has a constant entropy from hub to tip at the mid-channel streamline at a fixed axial coordinate. This assumption is used in calculating the mid-channel velocity variation (ref. 1).
 (b) The gas has a constant entropy blade-to-blade along an orthogonal to the streamlines. This assumption is used in calculating the blade-to-blade velocity variation (ref. 2).
7. A line connecting the midpoints of the hub, mean, and tip orthogonals at a fixed axial location in the channel is a straight radial line. This assumption is used in calculating the mid-channel velocity variation (ref. 1).
8. The meridional streamline curvature varies linearly from hub to tip. (By assumption 4, meridional streamline curvature would be zero; however, the effect of wall curvature on radial equilibrium may be considered.)
9. There is free vortex velocity distribution at the inlet to the blade; that is, \((rVe)\) is a constant from hub to tip. This assumption is used in calculating the mid-channel velocity variation (ref. 1).
10. Uniform inlet absolute total temperature, \(T_i\). This assumption is used in calculating the mid-channel velocity variation (ref. 1).
11. An additional assumption is necessary to calculate the velocity variation from blade-to-blade along an orthogonal. An option is provided for this assumption in the program. The usual assumption is that there is a linear variation of streamline curvature along an orthogonal. An alternate assumption is that there is a linear variation of radius of curvature along an orthogonal. There is no particular reason why one assumption is preferred over the other. For high solidity blading, it makes very little difference which assumption is chosen.

Another possibility is provided in the program. In this case the blade surface velocities are calculated as above based on the assumption of linear variation of either curvature or radius of curvature. Then for the weight
flow calculation, density and velocity along the orthogonal are computed by assuming a linear variation of static pressure along the orthogonal. This is not consistent with the assumption of linear variation of either curvature or radius of curvature and should be used with caution.

FLOW CHANNEL LAYOUT AND ENGINEERING DATA

The initial steps in the design, those involving the development of the inlet and outlet velocity diagrams, will not be described (see ref. 5 for further information). It is assumed that these velocity diagrams have been obtained, as well as the basic operating conditions of design weight flow, number of blades, gas to be used, operating speed and inlet and outlet stagnation temperature and pressure. From this information an initial blade shape can be drawn (ref. 6). The following steps are followed to obtain a blade surface velocity distribution.

A. Along a section midway between the hub and tip, a cylindrical development of the blade channel should be accurately laid out to scale several times actual size. Figure 2 shows a typical blade channel - mean section. (This section need not be at constant radius, but the meridional streamline angle, \(\alpha \), should be small enough that \(\cos \alpha \) is approximately 1.) The mid-channel streamline is then drawn midway between the suction and pressure surfaces, as shown in figure 2. This procedure is repeated for the hub and tip of the blade. The axial coordinate locations of the hub, mean, and tip sections relative to each other must be established. For this, an axial coordinate reference line is specified on each of the three blade sections. The relative angular location, \(\Theta \), of the hub, mean, and tip sections is not considered; the effect is usually negligible.

B. Any number of axial locations can now be chosen on the three mid-channel streamlines. The distance along the mid-channel streamline between each axial location should be measured for use in specifying loss distribution. At any given axial location a curve is drawn through the mid-channel streamline from blade-to-blade so as to be orthogonal to each blade surface and to the mid-channel streamline, as illustrated in figure 3. This is done at hub, mean, and tip. The corresponding orthogonals at the three radial blade stations are positioned so that the intersections of the mid-channel streamlines and the orthogonals are located at the same axial coordinate. In general, the intersections of the orthogonals with the suction and pressure surfaces at the three radial sections will not be at the same axial coordinates. These three orthogonals determine a section through the blade passage over which the velocity variation will be determined and across which weight flow will be calculated. The total length of the orthogonal, \(n_0 \), is required as input for the program. Also the blade surface curvatures, \(C_s \) and \(C_p \), must be measured at the ends of the orthogonals. These curvatures should be measured very carefully. The angle \(\beta \) is the angle that the mid-channel streamline makes with the axis, and is considered positive in the direction of rotation, i.e., \(\beta \) is positive if the tangential component of the velocity is in the direction of rotation.

If the inner and outer walls are not straight, the inner and outer wall curvature, \(1/r_0 \), should be measured at each station. This curvature is considered positive if the wall is concave upwards (fig. 4). This curvature is assumed to vary
linearly between hub and tip. The hub and tip radii complete the geometrical data required at each station.

C. Operating conditions must be specified. These include the gas specific heat ratio, \(\gamma \), operating speed, \(\omega \), and design weight flow per channel, \(w \). Also required are \(W_{cr} \) and \(\rho'' \) at the hub, mean, and tip for each orthogonal. The inlet relative critical velocity, \(W_{cr} \), can be calculated using \(V_{\theta,1} \) from the inlet velocity diagram together with the inlet absolute stagnation temperature \(T_i' \).

\[
W_{cr} = \sqrt{\frac{2 \gamma R g \ T''}{\gamma + 1}} \tag{1}
\]

where

\[
T'' = T_i' - \frac{2 \pi \omega \ V_{\theta,1} - (\omega r)^2}{2 \gamma R g} (\gamma - 1) \tag{2}
\]

By assumptions 9 and 10, \(T_i' \) and \(r_i V_{\theta,1} \) are independent of radius, and equations (1) and (2) can be used to determine \(W_{cr} \) at any point in the passage as a function of radius alone.

The inlet relative total stagnation pressure can be calculated from

\[
p_i'' = \frac{p_i'}{T_i'}^{\gamma/(\gamma - 1)} \tag{3}
\]

The exit relative total pressure, \(p_e'' \), can be found in the same manner utilizing the exit velocity diagrams. To allow for losses, the difference, \(p_i'' - p_e'' \), is distributed along the length of the mid-channel streamline. Usually a linear variation is used. Finally, \(\rho'' \) is given by

\[
\rho'' = \frac{p_e''}{RT''} \tag{4}
\]

D. The information determined above in steps B and C is the information for items 12 to 42 and 44 on the Input Data Sheet (fig. 5). One sheet is required for each axial station. The calculation at any one station is independent of any other. It will be noted that the input sheet is designed so that only the numerical values which change from sheet to sheet need to be supplied.

The output from the program includes the blade surface velocities at each orthogonal and the corresponding weight flow. These velocity calculations are made for the initial estimated value of \(W/W_{cr} \) at the mid-channel streamline for the mean blade section. It is possible for the program to determine the velocities corresponding to any desired weight flow (less than choking) or to
determine the choking weight flow. If the velocity distribution corresponding
to the design weight flow or some other operating weight flow is not satisfac-
tory, the blade design should be altered, and steps A to C repeated to determine
the new velocity distribution

DESCRIPTION OF PROGRAM INPUT AND OUTPUT FOR SAMPLE PROBLEM

The Input Data Sheet is shown in figure 5. The quantities filled in are
for a sample problem. The output for this sample problem will be presented
subsequently.

CTED

General Instructions for Filling Out Input Data Sheets

One page must be filled out for each z(axial) station. The basic calcula-
tion at each station is from a value of \(\frac{w}{w_{cr}} \) (hereinafter called \(x \)) to
the corresponding weight flow \(w_{calc} \) and velocity distributions.

1. These are for problem identification and will be printed as the heading of
all \(z \) stations. Thirty-nine characters are allowed on each line, and they
may be alphabetic, numeric, special symbols, or blanks. It is customary to
fill out these two lines on the first page only and write OMIT on these two
d lines on all successive pages. However, if a new heading is desired, a page
which is blank except for the value "9" entered in \(@ = 9 \) must precede the
page on which the new 1 and 4 occur.

2. \(JX = \left(\frac{1}{2} \right) \) if linear variation in curvature is to be assumed in
the calculation of the velocity distributions across the orthogonals.

3. \(JY = \left(\frac{1}{3} \right) \) if linear variation in static pressure is to be used in
the calculation of the weight flow.

4. \(JZ = 1 \) if only the calculation for the one value of \(w_{calc} \) is wanted.
 In this case, \(w_{giv} \) is not used.

5. \(JZ = 2 \) if choke conditions are wanted. (Solve for the value of \(x \) which
gives maximum value of \(w_{calc} \).) In this case \(w_{giv} \) is not used.
 If there is any value of \(x \) for which \(w_{giv} \) is equal to \(w_{calc} \),
there are always two such values.

6. \(JZ = 3 \) if the lesser of these two solutions is wanted. (subsonic)

7. \(JZ = 4 \) if the greater of these two solutions is wanted. (supersonic)
γ, ratio of specific heats

ω, wheel speed, (radians per second)

\(w_{giv} \), weight flow, PER BLADE, (#/sec)

First page.

Fill out 12 → 14 and 8 = KR4 = 1.

On any successive page, if values to be entered in 12 → 14 differ from those in 12 → 14 of the immediately preceding page, KR4 = \(\frac{1}{0} \). If KR4 = 0, write OMIT in 12 → 14.

8 = KR4 = 2 may be entered on an otherwise blank page. See explanation under 1 and 4.

15 \(\frac{1}{r_c} \), reciprocal of radius of curvature at hub, (ft\(^{-1}\))

16 \(\frac{1}{r_c} \), reciprocal of radius of curvature at tip, (ft\(^{-1}\))

17 \(r_h \), radius at hub, (ft)

18 \(r_t \), radius at tip, (ft)

First page.

Fill out 15 → 18 and 9 = KR5 = 1.

On any successive page, if values to be entered in 15 → 18 differ from those in 15 → 18 of the immediately preceding page, KR5 = \(\frac{1}{0} \). If KR5 = 0, write OMIT in 15 → 18.

19, 24, 29 \(n_0 \), length of the orthogonal between suction and pressure surfaces at hub, mean, tip, (ft)

20, 25, 30 \(C_s \), curvature at intersection of orthogonal with suction surface at hub, mean, tip, (ft\(^{-1}\))

21, 26, 31 \(C_p \), curvature at intersection of orthogonal with pressure surface at hub, mean, tip, (ft\(^{-1}\))

22, 27, 32 \(W_{cr} \), relative critical velocity at hub, mean, tip, (ft/sec)

23, 28, 33 \(\rho W_{cr} \), weight flow parameter at hub, mean, tip (#/ft\(^2\)sec)
First page.

Fill in $19 \rightarrow 23$. If values for $24 \rightarrow 28$ and $29 \rightarrow 33$ repeat those of $19 \rightarrow 23$, write OMIT in $24 \rightarrow 33$ and $10 = KR6 = 1$. If values differ, enter them and $10 = KR6 = 0$.

On any successive page, if all values to be entered in $19 \rightarrow 33$ are identical to those in $19 \rightarrow 33$ of the immediately preceding page, write OMIT in $19 \rightarrow 33$ and $KR6 = 0$. If not, follow instructions given above for the first page.

β, relative (rotor) or absolute (stator) flow angle measured from the axis, (degrees), positive in the direction of rotation, mid-channel only.

First page.

If β is constant from hub to tip, fill in 34 only, write OMIT in $35 \rightarrow 42$ and $11 = KR7 = 1$.

If β is specified only at hub, mean and tip, fill in $34, 35$ and 36, write OMIT in $37 \rightarrow 42$ and $11 = KR7 = 3$.

If β variation from hub to tip is specified (nine values), fill in $34 \rightarrow 42$ and $11 = KR7 = 9$.

On any successive page, if all values in $34 \rightarrow 42$ are identical to those of the preceding page, write OMIT in $34 \rightarrow 42$ and $11 = KR7 = 0$. If not, follow instructions given above for first page.

An eight digit numerical code to identify this page uniquely is entered here and will be printed out preceding the output for this z station. (Can be used to code for engineer, case and z-station number.)

$\left(\frac{W}{W_{cr}}\right)_{mid,m}$, critical velocity ratio, (referred to as x immediately below).

Computation of w_{calc} (and the velocity distributions) for this value of x will be performed first. If:

$7 = JZ = 1$, calculation stops, and input data for next station is read.

$7 = JZ = 2$, x is increased automatically and calculations are continued until choking weight flow has been found.

$7 = JZ = 3$, x is modified until subsonic solution is found. (Point at which $w_{calc} = w_{glv}$). Guess as close as possible.

$7 = JZ = 4$, x is modified until supersonic solution is found. Guess LOW.
Description of Computer Output

An example of the output obtained is given in table I. The first output is a listing of the information on the Input Data Sheet. In the sample output these are identified with the numbers corresponding to the numbers on the Input Data Sheet. If nine values of β (equally spaced from hub to tip) are not supplied, the missing values are calculated and printed with the input values. The remaining output is the calculated quantities. The first line is W_S/W_{mid} and W_P/W_{mid}, each at hub, mean, and tip. Next are the values of the parameters a and b of equation (A2), which are labelled LITTLE A and LITTLE B. IK = 1 is the hub and IK = 9 is the tip. ALPHA is equal to $a(r_t - r_h)/16$. M(IK) is the numerical approximation to $\int_r^{r_m} a(\zeta)d\zeta$ and $N(IK)$ is $b e^{-M(IK)}$. PH, PM, and PT are the numerical approximations to $\int_r^{r_m} b(\xi)e^{-\zeta}d\xi$ at the hub, mean, and tip, respectively. QH, QM, and QT are the numerical approximations to $e^{-\zeta}$. The relative velocities ratioed to the relative critical velocity at the hub, mean, and tip, for suction surface, mid-channel and pressure surface are followed by the values of $A(I,K) (\rho W/\rho W_{cr})$. The first line is at the hub at 8 equal intervals from the suction surface to the pressure surface. The second and third line of $A(IK)$ are at the mean and tip, respectively. On the next line N is the number of the iteration for this orthogonal, X is the value of $(W/W_{cr})_{mid,m}$ for this iteration, WT FLOW CALC is the corresponding calculated weight flow, w_{calc}, and D is the measure of error $1 - w_{calc}/w_{giv}$. If more than one iteration is done, the values down to PH, PM, PT, etc., do not change, hence for the second and following iterations only the lines following this are printed. A maximum of 5 iterations is performed. If the convergence criterion is not satisfied, the statement "LIMIT (5) HAS BEEN REACHED" will be printed.

The message CALCULATION OF $A(IK)$ AT ST. NO. 152+5 IN CTTD MP ASKS FOR REMAINING CALCULATIONS THIS ITERATION THEREFORE INVALID. is usually caused by an error in the input cards. If this is not the case, the blade design must be changed.

CTTD COMPUTER PROGRAM

The program consists of the main program and two subroutines, PABC and VSUBX. PABC calculates the coefficients A, B, and C of the parabola $y = Ax^2 + Bx + C$ passing through three given points. VSUBX calculates the ratio of the velocity at any point on an orthogonal to the mid-channel velocity, using equation (A4) or (A5).
C TTD MAIN PROGRAM
DIMENSION ENO(3), CS(3), CP(3), WCR(3), PWCR(3), VS(3), VP(3), WM(3),
1S(3), BETA(9), ALF(9), EM(9), CAPN(9), A(9), B(9), WS(3), WP(3)

001 EQUIVALENCE(WS(1), WSH), (WS(2), WSM), (WS(3), WST), (WP(1), WPH), (WP(2)
1), WPM), (WP(3), WPT)
DATA NLIM, TLIM/5., 0010/

400 FORMAT (4OH1)
401 FORMAT (4OH)
402 FORMAT (7I1)
404 FORMAT (3E9.5)
406 FORMAT (4E9.5)
408 FORMAT (5E9.5)
410 FORMAT (1HO, 214, E9.5)
412 FORMAT (11HO GAMMA =, E12.5, 11H OMEGA =, E12.5, 12H WGIVEN =,
1E12.5)
414 FORMAT (106HO N ZERO C SUB S C SUB P
1 W SUB CR RHO W CR 1/R SUB C C R)
416 FORMAT (10HO HUB ,7E15.5)
417 FORMAT (10H MEAN ,5E15.5)
418 FORMAT (10H TIP ,7E15.5)
420 FORMAT (17HO BETA)
422 FORMAT (1HO, I7, I4, E15.5, 3I4, I13, 3I1//)
430 FORMAT(1/6HO VSH=, E12.5, 6H VSM= E12.5, 6H VST=, E12.5, 6H VPH=, E12.
15, 6H VPM=, E12.5, 6H VPT=, E12.5, 6H /45HO IK LITTLE A LITTLE
2B ALPHA //)
432 FORMAT (14, 3E15.5)
434 FORMAT (31HO IK M(IK) N(IK))
436 FORMAT (14, 2E15.5)
438 FORMAT (6HO PH=, E12.5, 6H PM= E12.5, 6H PT=, E12.5, 6H QH=, E12.
15, 6H QM=, E12.5, 6H QT=, E12.5)
440 FORMAT (1//9HO WSH =, E12.5, 9H WSM =, E12.5, 9H WST =, E12.5, 9H
1H WSM =, E12.5, 9H WMM =, E12.5, 9H WPM =, E12.5, 9H WST =,
2E12.5, 9H WMT =, E12.5, 9H WPT =, E12.5//)
442 FORMAT (8H A(IK)=, 9E12.5)
444 FORMAT (70N N =, I1, 16H X = WMM/WCR =, E12.5, 18H WT FLOW CALC
1=, E12.5, 7H D =, E12.5)
006 READ(5, 400)
008 READ (5, 401)
012 IF(KR4) 25, 14, 25
014 IF(KR5) 30, 16, 30
016 IF(KR6) 18, 20, 18
018 IF(KR6-1) 42, 34, 42
020 IF(KR7) 22, 66, 22
022 IF(KR7-1) 24, 48, 24
024 IF(KR7-3) 64, 56, 64
025 IF(KR4-9) 26, 6, 26
026 READ (5, 404) GAMMA, OMEGA, WGIV
028 GO TO 14
030 READ (5, 406) RCH, RCT, RH, RT
032 GO TO 16
034 READ (5,408)ENO(1),CS(1),CP(1),WCR(1),PWCR(1)
036 DO 38 K=1,2
 ENO(K+1)=ENO(K)
 CS(K+1)=CS(K)
 CP(K+1)=CP(K)
 WCR(K+1)=WCR(K)
038 PWCR(K+1)=PWCR(K)
040 GO TO 20
042 DO 44 I=1,3
044 READ (5,408)ENO(I),CS(I),CP(I),WCR(I),PWCR(I)
046 GO TO 20
048 READ (5,404)BETA(1)
050 DO 52 IK=1,8
052 BETA(IK+1)=BETA(IK)
054 GO TO 66
056 READ (5,404)BETA(1),BETA(5),BETA(9)
058 DO 60 K=1,5,4
 TEMP=(BETA(K+4)-BETA(K))/4.0
060 CONTINUE
062 GO TO 66
064 READ (5,404)(BETA(IK),IK=1,9)
066 READ (5,410)ID1,ID2,X
068 WRITE (6,400)
070 WRITE (6,401)
072 WRITE (6,412)GAMMA,OMEGA,WGI V
074 WRITE (6,414)
076 WRITE (6,416)ENO(1),CS(1),CP(1),WCR(1),PWCR(1),RCH,RH
078 WRITE (6,417)ENO(2),CS(2),CP(2),WCR(2),PWCR(2)
080 WRITE (6,418)ENO(3),CS(3),CP(3),WCR(3),PWCR(3),RCT,RT
082 WRITE (6,420)
084 WRITE (6,416)BETA(1),BETA(2),BETA(3)
086 WRITE (6,417)BETA(4),BETA(5),BETA(6)
088 WRITE (6,418)BETA(7),BETA(8),BETA(9)
090 WRITE (6,422)ID1,ID2,X,JX,JY,JZ,KR4,KR5,KR6,KR7
100 PM = 0.0
 QM = 1.0
 MPSET = 1
 NC = 1
 KSTAR = 1
 N = 0
 XOLD = 0.0
 TWOOM = 2.0*OMEGA
 C1 = GAMMA-1.0
 C2 = GAMMA/C1
 C3 = C1/(GAMMA+1.0)
 C4 = 1.0/GAMMA
 C5 = 1.0/C1
 DR = RT-RH
 DR6 = DR/6.0
 DR16 = DR/16.0
 DR24 = DR/24.0
 DRC = RCT-RCH
 P=0.0
101 DD 104 I=1,3
 CALL VSUBX (ENO(I),CS(I),CP(I),P,JX,VX)
104 VS(I) = VX
106 P = 1.0
108 DD 110 I = 1,3
 CALL VSUBX (ENO(I),CS(I),CP(I),P,JX,VX)
110 VP(I) = VX
112 WRITE (6,430) VS(1), VS(2), VS(3), VP(1), VP(2), VP(3)
114 P = 0.0
116 DD 120 IK=1,9
 RK = RH+P*DR
 RCK = RCH+P*DRC
 SNB = SIN(BETA(IK)*.01745329)
 B(IK) = TWOOM*SNB
 SNB2 = SNB*SNB
 CSB2 = 1.0-SNB2
 AK = (CSB2*RCK)-(SNB2/RK)
 ALF(IK) = AK*DR16
118 WRITE (6,432) IK,AK,B(IK),ALF(IK)
120 P = P+.125
122 EM(4) = -ALF(5)-ALF(4)
 EM(3) = EM(4)-ALF(4)-ALF(3)
 EM(2) = EM(3)-ALF(3)-ALF(2)
 EM(1) = EM(2)-ALF(2)-ALF(1)
 EM(6) = +ALF(5)+ALF(6)
 EM(7) = EM(6)+ALF(6)+ALF(7)
 EM(9) = EM(7)+ALF(7)+ALF(8)
 EM(9) = EM(8)+ALF(8)+ALF(9)
 EM(5) = 0.0
123 WRITE (6,434)
124 DD 126 IK =1,9
 CAPN(IK)=B(IK)/EXP(EM(IK))
126 WRITE (6,436) IK,EM(IK),CAPN(IK)
128 PH=-DR24*(CAPN(11)+CAPN(5)+2.0*CAPN(3)+4.0*(CAPN(2)+CAPN(4))
 PT=+DR24*(CAPN(5)+CAPN(9)+2.0*CAPN(7)+4.0*(CAPN(6)+CAPN(8))
 QH =EXP(EM(1))
 QT =EXP(EM(9))
130 WRITE (6,438) PH,PT,QH,QM,QT
140 WM(1) = QH*(X*WCR(2)-PH)/WCR(1)
 WM(3) = QT*(X*WCR(2)-PT)/WCR(3)
 WM(2)=X
 WSH = WM(1)*VS(1)
 WST = WM(3)*VS(3)
 WPH = WM(1)*VP(1)
 WPT = WM(3)*VP(3)
 WSM = X*VS(2)
 WPM = X*VP(2)
142 WRITE (6,440) WSH, WM(1), WPH, WSM, WM(2), WPM, WST, WM(3), WPT
144 DO 166 I=1,3
146 SIGA = 0.0
148 DO 166 I=1,3
150 CPC = CP(I)
152 CSC = CS(I)
154 WMC = WM(I)
152 DO 154 IK = 1, 9
 CALL VSUBX (ENOC, CSC, CPC, P, JX, VX)
 ZK = VX * WMC
 TEMPO = 1 - C3 * ZK * ZK
 IF (TEMPO) 1513, 1153, 153
1153 TEMPO = ABS (TEMPO)
 WRITE (6, 1234)
1234 FORMAT (56H CALCULATION OF A(IK) AT ST. NO. 152+5 IN CTTO MP ASKS
 12341, 60H FOR LOG OF NEG. REMAINING CALCULATIONS THIS ITERATION THERE ,
 12342 13H FORE INVALID.)
 A(IK) = (TEMPO**C5) * ZK
 SIGA = SIGA + A(IK)
154 P = P + 125
156 GO TO 164
158 ELS = (1.0 - C3 * WS(I) * WS(I))**C2
 ELP = (1.0 - C3 * WP(I) * WP(I))**C2
160 DO 162 IK = 1, 9
 CAPJ = ELS + P * (ELP - ELS)
 TEMP = CAPJ**C4
 A(IK) = TEMP * SQRT ((1.0 - CAPJ/TEMP)/C3)
 SIGA = SIGA + A(IK)
162 P = P + 125
164 WRITE (6, 4421) (A(IK), IK = 1, 9)
 TMP = .5 * (A(1) + A(9))
166 S(I) = (SIGA - TMP) * (ENOC/8.0)
168 N = N + 1
 W = DR6 * (S(1) * PWCR(1) + 4.0 * S(2) * PWCR(2) + S(3) * PWCR(3))
 D = 1.0 - (W/WGIV)
170 WRITE (6, 4444) N, X, W, D
172 GO TO (10, 174, 174, 174), JZ
174 IF (NLIM - N) 176, 176, 180
176 WRITE (6, 500) NLIM
500 FORMAT (13HO NLIMIT (=13, 18H) HAS BEEN REACHED)
178 GO TO 10
180 GO TO (182, 186, 198, 198), JZ
182 WRITE (6, 501)
501 FORMAT (19H ERROR STOP AT 180)
184 GO TO 10
186 GO TO (188, 192, 256), KSTAR
188 KSTAR = 2
190 GO TO 210
192 KSTAR = 3
194 GO TO 240
198 IF (ABS(D) - TLIM) 10, 200, 200
200 GO TO (202, 230, 242, 256), NC
202 NC = 2
204 IF (ABS(D) - .05) 206, 210, 210
206 DX = .05
208 GO TO 212
210 DX = .20
212 X1 = X
 W1 = W
 D1 = D
214 IF (D.GT.0.0) X = X + DX
216 IF (D.LT.0.0) X = X - DX
226 GO TO 140
230 NC=3
232 IF(D>D1)238,234,240
234 WRITE (6,503)
503 FORMAT (19H ERROR STOP AT 232)
236 GO TO 10
238 DX =.5*DX
 MPSET =2
240 X2=X
 W2=W
 D2=D
241 GO TO 214
242 IF(D>D2)248,244,250
244 WRITE (6,504)
504 FORMAT (19H ERROR STOP AT 242)
246 GO TO 10
248 MPSET =2
250 GO TO (252,256),MPSET
252 X1=X2
 W1=W2
 D1=D2
 X2=X
 W2=W
 D2=D
254 GO TO 214
256 X3=X
 W3=W
 D3=D
 CALL PABC(X1,X2,X3,W1,W2,W3,APAB,BPAB,CPAB)
260 GO TO (262,266,290,290),JZ
262 WRITE (6,505)
505 FORMAT (19H ERROR STOP AT 260)
264 GO TO 10
266 X =-BPAB/(APAB+APAB)
268 IF(.001-ABS(X-XOLD)1270,270,10
270 XOLD=X
272 IF(W1-W2)274,280,280
274 IF(W1-W3)276,140,140
276 X1=X3
 W1=W3
 D1=D3
278 GO TO 140
280 IF(W2-W3)282,140,140
282 X2=X3
 W2=W3
 D2=D3
284 GO TO 140
290 DISC=BPAB**2-4.0*APAB*(CPAB-WGIV)
292 IF(DISC)294,298,298
294 WRITE (6,506)
506 FORMAT(55H PABC FIT GIVES NEGATIVE DISCRIMINANT, PROBABLY CHOKED.)
296 GO TO 10
298 XPL=(-BPAB+SQRT(DISC))/(APAB+APAB)
 XM=(-BPAB-SQRT(DISC))/(APAB+APAB)
300 GO TO (302,302,306,308),JZ
302 WRITE (6,507)
507 FORMAT (19H ERROR STOP AT 300)
SUBROUTINE PABC
SUBROUTINE PABC (X1, X2, X3, W1, W2, W3, A, B, C)
C9 = X1 + X2
C11 = X1 * X1
C15 = X3 - X1
C18 = (W2 - W1) / (X2 - X1)
A = (C15 * C18 - W3 + W1) / (C15 * C9 - X3 * X3 + C11)
B = C18 - C9 * A
C = W1 - X1 * B - C11 * A
RETURN
END

SUBROUTINE VSUBX
SUBROUTINE VSUBX (EN, CS, CP, P, JX, VX)
700 GO TO (7C2, 706), JX
702 VX = EXP(EN *(CS * (.5 - P) + .5 * (CS - CP) * (P * P - .25)))
704 GO TO 714
706 IF (CS - CP) 712, 708, 712
708 VX = EXP(EN * CS * (.5 - P))
710 GO TO 714
712 VX = (2.0 * ((P * (CS - CP) + CP) / (CS + CP))) * (EN * CS * CP / (CP - CS))
714 RETURN
END
List of Program Variables in Main Program

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>array for nine values of (\frac{\rho^W}{\rho_{Wcr}})</td>
</tr>
<tr>
<td>AK</td>
<td>a</td>
</tr>
<tr>
<td>ALF</td>
<td>array for nine values of (a \frac{(r_t - r_h)}{16})</td>
</tr>
<tr>
<td>APAB</td>
<td>coefficient of (x^2) calculated by subroutine PABC</td>
</tr>
<tr>
<td>B</td>
<td>array for nine values of b</td>
</tr>
<tr>
<td>BETA</td>
<td>array, input, (\beta)</td>
</tr>
<tr>
<td>BPAB</td>
<td>coefficient of (x) calculated by subroutine PABC</td>
</tr>
<tr>
<td>C_1</td>
<td>(y - 1)</td>
</tr>
<tr>
<td>C_2</td>
<td>(\frac{y}{y - 1})</td>
</tr>
<tr>
<td>C_3</td>
<td>(\frac{y - 1}{y + 1})</td>
</tr>
<tr>
<td>C_4</td>
<td>(\frac{1}{y})</td>
</tr>
<tr>
<td>C_5</td>
<td>(\frac{1}{y - 1})</td>
</tr>
<tr>
<td>CAPJ</td>
<td>(\frac{P}{P^*})</td>
</tr>
<tr>
<td>CAPN</td>
<td>array, be(^{-EM})</td>
</tr>
<tr>
<td>CP</td>
<td>array, input, (C_p)</td>
</tr>
<tr>
<td>CPAB</td>
<td>constant coefficient calculated by PABC</td>
</tr>
<tr>
<td>CPC</td>
<td>temporary storage for current value of CP</td>
</tr>
<tr>
<td>CS</td>
<td>array, input, (C_s)</td>
</tr>
<tr>
<td>CSB2</td>
<td>(\cos^2 \beta)</td>
</tr>
<tr>
<td>CSC</td>
<td>temporary storage for current value of CS</td>
</tr>
<tr>
<td>D</td>
<td>(1 - \frac{w_{calc}}{w_{giv}})</td>
</tr>
</tbody>
</table>
D1, D2, D3 temporary storage for various values of D

DISC temporary storage

DR \(r_t - r_h \)

DR16 \(\frac{(r_t - r_h)}{16} \)

DR24 \(\frac{(r_t - r_h)}{24} \)

DR6 \(\frac{(r_t - r_h)}{6} \)

DRC \((1/r_c)_t - (1/r_c)_h \)

DX arbitrary change in x \(\left(\text{value of } \left(\frac{W}{cr} \right)_{\text{mid},m} \right) \) for next calculation of weight flow

ELP \(\frac{P_r}{P} \)

ELS \(\frac{P_s}{P} \)

EM array, \(\int_{r_m}^{r} a \, d\zeta \) (Trapezoidal rule is used)

ENO array, input, \(n_0 \)

ENO C temporary storage for current value of ENO

GAMMA input, \(\gamma \)

I index of most loops executed 3 times (for hub, mean, tip)

ID1 input, z station code, 4-digit number supplied as input and printed out for identification

ID2 input, z station code, 4-digit number supplied as input and printed out for identification

IK index of most loops executed 9 times

J index of an input storage loop

JX input

JY input

JZ input
K index for 2 loops controlling storage of input.

KJ temporary storage $K + J$.

KSTAR switch-controls branching for successive values of x, if choke solution is wanted. Initialized by program and automatically stepped.

MPSET switch-controls branch to continue calculations or call subroutine PABC. Initialized by program and altered as a result of calculations.

N counter for number of times weight flow is calculated. When $N = \text{NLIM}$ calculation for that page of input is stopped and a message written at end of output.

NC switch-controls branching for successive values of x when subsonic or supersonic solution is wanted.

NLIM constant (supplied in DATA statement) limiting number of times weight flow calculation can occur for 1 sheet of input data.

OMEGA input, ω

$P \frac{n}{n_0}$

$PH \int_{r_m}^{r_h} be^{-EM} dr$ (Simpson's rule is used)

$PM \ 0$

$PT \int_{r_m}^{r_t} be^{-EM} dr$ (Simpson's rule is used)

PWCW array, input, $p"W_{cr}$

$QH e^{EM}$ at hub.

$QM \ 1.0$

$QT e^{EM}$ at tip.

RCH input, $(1/r_c)_h$

RCK current value of $1/r_c$.

-19-
RCT input, \((l/r_o)_t\)
RH input, \(r_h\)
RK current value of \(r\)
RT input, \(r_t\)
S array, values of \(\int_0^{n_0} \frac{\rho W}{\rho r W_{cr}} dn\) at hub, mean, and tip
SIGA temporary storage, \(\sum A(IK)\)
SNB2 \(\sin^2 \beta\)
SNB \(\sin \beta\)
TEMP temporary storage
TEMPO temporary storage
TLIM constant (supplied in DATA statement). Calculation is terminated if \(TLIM > \left|1 - \frac{W_{calc}}{W_{giv}}\right|\) whenever subsonic or supersonic solution is sought.
TMP temporary storage
TWOOM \(2\omega\)
VP array, three values of velocity (calculated in subroutine VSUX) for pressure surface at hub, mean, and tip
VS array, three values of velocity (calculated in subroutine VSUX) for suction surface at hub, mean, and tip
VX ratio of velocity to mid-channel velocity
W weight flow calculated for current value of \(\frac{W}{W_{cr}}\) for various values of weight flow
WL,W2,W3 temporary storage for various values of weight flow
WCR array, input, \(W_{cr}\)
WGIV input, \(W_{giv}\)
WM array, mid-channel values of \(\frac{W}{W_{cr}}\) at hub, mean, and tip
WMC current value of WM
WP array, \(\frac{W}{W_{cr}} \) on pressure surface at hub, mean, and tip
WPH WP(1)
WPM WP(2)
WPT WP(3)
WS array, \(\frac{W}{W_{cr}} \) on suction surface at hub, mean, and tip
WSH WS(1)
WSM WS(2)
WST WS(3)
X input, also the current value of \(\left(\frac{W}{W_{cr}} \right)_{\text{mid,m}} \) for which the weight flow is calculated
X1, X2, X3 temporary storage for various values of \(x \)
XMI the lesser of the two values of \(x \) at which the line \(y = \frac{W_{giv}}{W_{cr}} \) intersects the parabola \(y = APAB(x^2) + BPAB(x) + CPAB \)
XOLD temporary storage for a value of \(x \) when choking weight flow is sought
XPL the larger of the two values of \(x \) at which the line \(y = \frac{W_{giv}}{W_{cr}} \) intersects the parabola \(y = APAB(x^2) + BPAB(x) + CPAB \)
ZK current value of \(\frac{W}{W_{cr}} \) at any point
In reference 1 a differential equation is derived for the variation of velocities in a radial direction based on the assumption of a mid-channel stream surface (axial symmetry) which is radial at any fixed axial position (i.e., $\frac{\partial z}{\partial r} = 0$ on the midchannel stream surface). This equation is

$$\frac{dW}{dn} = aW - b$$

where

$$a = \frac{\cos^2\beta}{r_c} - \frac{\sin^2\beta}{r \cos \alpha}$$

$$b = \sin \beta \left(\frac{2\omega}{\cos \alpha} + \tan \alpha \frac{dW_\theta}{dm} \right)$$

The coordinate system is shown in figure 6.

With the assumption that α is sufficiently small so that $\cos \alpha$ is nearly 1 and $\tan \alpha$ is nearly zero, we can set $dn = dr$ to obtain

$$\frac{dW}{dr} = aW - b$$

where

$$a = \frac{\cos^2\beta}{r_c} - \frac{\sin^2\beta}{r}$$

$$b = 2\omega \sin \beta$$

An analytical solution of equation (A2) is

$$W(r) = e^{\int_{r_m}^{r} a(\xi) d\xi} \left(W_m - \int_{r_m}^{r} b(\xi) e^{\int_{r_m}^{\xi} a(\eta) d\eta} d\xi \right)$$

(A3)

for the midchannel stream sheet.

$W_{mid,m}$ is computed from the input values $W/W_{cr mid,m}$ and $W_{cr,m}$. With equation (A3) the midchannel velocities at the hub and tip can then be calculated from the value of $W_{mid,m}$. For computing the integration in
equation (A3), the interval r_h to r_t is divided into eight equal intervals. Since the integration is started at the mean radius, only four integration steps are required in each direction. The integration is done numerically using the trapezoidal rule. In the case where β is given as input only at hub, mean, and tip (rather than at all nine stations) linear interpolation is used to determine the values which are not given. The meridional streamline curvature, $\frac{1}{r_c}$, is assumed to vary linearly from hub to tip.

The ratios of surface velocity to midchannel velocity, $\left(\frac{W_s}{W_{mid}}\right)$ and $\left(\frac{W_p}{W_{mid}}\right)$ can be computed based on an assumption of linear variation of either streamline curvature or streamline radius of curvature. These equations are derived in the next section. If linear variation of curvature is assumed,

$$\frac{W}{W_{mid}} = e^\frac{\text{n}}{\text{C}_{\text{p}}-\text{C}_{\text{s}}} \left[\text{C}_{\text{s}} \left(\frac{\text{C}_{\text{p}}}{\text{C}_{\text{s}}} - \frac{\text{n}}{\text{n}_{\text{p}}} \right)^2 \right]$$

(A4)

where n is the distance along the orthogonal from the blade suction surface. Thus, the velocity can be determined at any point on the orthogonal from (A4). If, on the other hand, linear variation of radius of curvature is assumed,

$$\frac{W}{W_{mid}} = \begin{cases} n_0 \left(\frac{C_p - C_s}{C_p + C_s} \right) & \text{if } C_p \neq C_s \\ n_0 \left(\frac{1}{2} - \frac{n}{n_0} \right) C_s & \text{if } C_p = C_s \end{cases}$$

(A5)

By substituting $n = 0$, and $n = n_0$ in equation (A4) or equation (A5), and using the results from equation (A3), the blade surface velocity at hub, mean and tip can be computed.

With the velocities obtained, the weight flow past the orthogonal can be computed. This is calculated from

$$W_{calc} = \int_{r_h}^{r_t} \int_0^{n_0} \rho W \, dn \, dr$$

(A6)

The inner integral is computed at hub, mean, and tip using eight equal intervals from suction to pressure surface, and using the trapezoidal rule. If $JY = 1$ or 2 (linear curvature or radius of curvature variation) the
critical velocity ratios, \(\frac{W}{W_{cr}} \), are computed using the input value of \(W_{cr} \) and equations (A4) or (A5), and (A3). The weight flow parameter, \(\frac{\rho W}{\rho W_{cr}} \), is then calculated from

\[
\frac{\rho W}{\rho W_{cr}} = \left[1 - \frac{1}{\gamma} \left(\frac{W}{W_{cr}} \right)^2 \right]^{\frac{1}{\gamma - 1}} \frac{W}{W_{cr}} \tag{A7}
\]

If \(JY = 3 \) (linear variation of static pressure), then the blade surface static pressures are calculated based on the surface velocities

\[
\frac{p}{p^m} = \left[1 - \frac{1}{\gamma} \left(\frac{W}{W_{cr}} \right)^2 \right]^{\frac{1}{\gamma - 1}} \tag{A8}
\]

and then pressures along the orthogonal are calculated by

\[
\frac{p}{p^m} = \frac{p_s}{p^m} + \frac{n}{n_0} \left(\frac{p_p}{p^m} - \frac{p_s}{p^m} \right) \tag{A9}
\]

then

\[
\frac{\rho W}{\rho W_{cr}} = \left(\frac{p}{p^m} \right)^{\frac{1}{\gamma}} \left[\frac{\gamma + 1}{\gamma - 1} \left[1 - \left(\frac{p}{p^m} \right) \right]^{\frac{\gamma - 1}{\gamma}} \right]^{1/2} \tag{A10}
\]

After computing the inner integral in equation (A6) at hub, mean, and tip, the outer integral is approximated by Simpson's Rule. If \(JZ = 1 \), no further calculations are made.

If \(JZ = 2 \), further calculations are made with new values of \(\left(\frac{W}{W_{cr}} \right)_{mid,m} \) to get the weight flow, \(w \), as a function of \(\left(\frac{W}{W_{cr}} \right)_{mid,m} \).

Using a parabolic approximation, the value of \(\left(\frac{W}{W_{cr}} \right)_{mid,m} \) giving maximum weight flow can be estimated. When two successive estimates of \(\left(\frac{W}{W_{cr}} \right)_{mid,m} \) differ by less than 0.001, the computation is stopped. The maximum weight flow is normally determined within 5 iterations.
If \(JZ = 3 \) or \(4 \) further calculations are made to determine a value of \((W/W_{cr})_{mid,m}\) which will give a weight flow, \(w \), which is close to the input value, \(w_{giv} \). If \(w_{giv} \) is less than choking weight flow, there are two values of \((W/W_{cr})_{mid,m}\) which will give \(w_{calc} = w_{giv} \). If \(JZ = 3 \) the smaller, or subsonic, value of \((W/W_{cr})_{mid,m}\) will be found. If \(JZ = 4 \) the larger, or supersonic, solution will be found. When \(|w_{giv} - w_{calc}| < 0.001 \) \(w_{giv} \) the calculations are stopped. A solution is normally found within five iterations. If \(w_{giv} \) is larger than the choking weight flow no solution exists. In this case calculations are made for five values of \((W/W_{cr})_{mid,m}\) and the choking weight flow can usually be estimated from these values.

Blade to Blade Velocity Variation

The method of calculating blade surface velocities from mid-channel velocities is based on reference 2. The assumptions that the flow is steady relative to the blade, nonviscous, and isentropic along the blade to blade streamline orthogonal yield

\[
\frac{dW}{dn} = -\frac{W}{r_c} \quad (All)
\]

This is equation (1) of reference 2 and can be derived from the force equation.

If it is assumed that the curvature, \(C = 1/r_c \), varies linearly along the orthogonal, the equation can be integrated to obtain
which is equation (7) of reference 2. Since the curvature is assumed to vary linearly,

\[C = C_s + (C_p - C_s) \frac{n}{n_0} \]

(A13)

When equation (A13) is substituted in equation (A12), equation (A4) is obtained.

If it is assumed that the radius of curvature varies linearly, then

\[r_c = (r_c)_s + \left[(r_c)_p - (r_c)_s \right] \frac{n}{n_0} \]

(A14)

Using this in equation (A11) we have

\[\frac{dW}{dn} = - \frac{W}{(r_c)_s + \left[(r_c)_p - (r_c)_s \right] \frac{n}{n_0}} \]

Integrating equation (A15) from the mid-channel gives

\[\log \frac{W}{W_{mid}} = \frac{n}{r_c} \left[(r_c)_s + \left[(r_c)_p - (r_c)_s \right] \frac{n}{n_0} \right] \]

(A16)

Substituting \(r_c = \frac{1}{u} \) into equation (A16) and solving for \(\frac{W}{W_{mid}} \), equation (A5) is obtained when \(C_s \neq C_p \). For the special case where \(C_s = C_p \), \(r_c \) is a constant in equation (A11), and an integration gives

\[\log \frac{W}{W_{mid}} = - \frac{\left(n_0 \right)}{r_c} = C_s n_0 \left(\frac{1}{2} - \frac{n}{n_0} \right) \]

(A17)

which is equivalent to equation (A5) when \(C_s = C_p \).
References

<table>
<thead>
<tr>
<th>N</th>
<th>C</th>
<th>R</th>
<th>G</th>
<th>W</th>
<th>H</th>
<th>T</th>
<th>R</th>
<th>I/R</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.04208E-01</td>
<td>0.19710E-02</td>
<td>0.08800E-01</td>
<td>0.04947E-03</td>
<td>0.47160E-02</td>
<td>0.0.</td>
<td>0.47500E-03</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
</tr>
<tr>
<td>1</td>
<td>0.54504E-01</td>
<td>0.14160E-02</td>
<td>0.08400E-01</td>
<td>0.0.95740E-03</td>
<td>0.49520E-02</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
</tr>
<tr>
<td>5</td>
<td>0.15907E-02</td>
<td>0.12000E-02</td>
<td>0.0.6000E-01</td>
<td>0.0.96660E-03</td>
<td>0.52940E-02</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
<td>0.0.</td>
</tr>
<tr>
<td>1000</td>
<td>0.28000E-00</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
<td>1.1111</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>VSH = 0.13422E 01</th>
<th>VSM = 0.4145E 01</th>
<th>VST = 0.1594E 01</th>
<th>VPH = 0.8010E 00</th>
<th>VPM = 0.7644E 00</th>
<th>WPT = 0.7586E 00</th>
</tr>
</thead>
</table>

IK

<table>
<thead>
<tr>
<th>LIT</th>
<th>R</th>
<th>ALPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.86813E-02</td>
<td>-0.85064E-02</td>
</tr>
<tr>
<td>2</td>
<td>-0.20107E-01</td>
<td>-0.13238E-03</td>
</tr>
<tr>
<td>3</td>
<td>-0.59256E-03</td>
<td>-0.18037E-03</td>
</tr>
<tr>
<td>4</td>
<td>-0.53463E-01</td>
<td>-0.22743E-03</td>
</tr>
<tr>
<td>5</td>
<td>-0.76140E-01</td>
<td>-0.27739E-03</td>
</tr>
<tr>
<td>6</td>
<td>-0.98961E-01</td>
<td>-0.32339E-03</td>
</tr>
<tr>
<td>7</td>
<td>-0.12559E 00</td>
<td>-0.37192E-03</td>
</tr>
<tr>
<td>8</td>
<td>-0.15349E 00</td>
<td>-0.41294E-03</td>
</tr>
<tr>
<td>9</td>
<td>-0.18214E-02</td>
<td>-0.44671E-03</td>
</tr>
</tbody>
</table>

PM

<table>
<thead>
<tr>
<th>PM</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33632E 02</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N = 1</th>
<th>X = WMH/WR = 0.8000E 00</th>
<th>WT FLOW CALC = 0.6144E-01</th>
<th>D = -0.38439E-01</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N = 2</th>
<th>X = WMH/WR = 0.7500E 00</th>
<th>WT FLOW CALC = 0.6012E-07</th>
<th>D = -0.16173E-01</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N = 3</th>
<th>X = WMH/WR = 0.7000E 00</th>
<th>WT FLOW CALC = 0.5940E-01</th>
<th>D = 0.12290E-01</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N = 4</th>
<th>X = WMH/WR = 0.7208E 00</th>
<th>WT FLOW CALC = 0.5917E 00</th>
<th>D = 0.60722E-05</th>
</tr>
</thead>
</table>
Figure 1. - Pair of typical turbine blades with three-dimensional orthogonal surface across flow passage.
Figure 4. - Meridional plane wall curvature.
cttdFin INPUT DATA SHEET

The lowest line in each block displays Roman numerals for card sequence and Arabic numerals for card columns within each card.

[All numerical values (columns 13-22) are entered in nine-column fields; read in with a FORTRAN format specification of *) by *) representing t.xxxx multiplied by 10000.]

<table>
<thead>
<tr>
<th>Sample problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1</td>
</tr>
<tr>
<td>C.C.</td>
</tr>
</tbody>
</table>

Negative reaction turbine

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.C.</td>
<td>1 2-4D(MAY BE ALPHABETIC)</td>
</tr>
</tbody>
</table>

Data Table

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
<th>Column 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
</tr>
<tr>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

Notes

- **C.C.**
- **V1-A**
- **V1-B**
- **V1-C**
- **VII-A**
- **VII-B**
- **VII-C**
- **VIII-1**

Figure 5. - Input data sheet.
Figure 6. - Coordinate system and velocity components.