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ABSTRACT

An investigation has been made of techniques for the measure-
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ment of acceleration in the range i0 to i0 g. In developing an

experimental apparatus, the approach was to seek unconventional mech-

anizations of the various components of a simple, linear, single-axis

accelerometer, with considerable emphasis on system compatibility and

with explicit provision of a means for calibration of the instrument. The

resultant design choices are briefly outlined. Problems encountered in

the design of a superconducting (Meissner effect) test mass suspension

are described, together with results obtained from a feasibility demon-

stration model of the suspension. A laser interferometer was developed

for the displacement detector and design principles for such a device are

discussed. Restoring forces are generated by means of small coils

within the suspension, and calibration is effected by means of controlled

radiation pre s sure.
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CHAPTERI

INTRODUCTION

1. 1 Applications of Very Sensitive Accelerometers

At the present time, devices are available for the reliable measurement of

acceleration down to about 10-6g. Sensitivities approaching 10-9g have on

occasion been claimed, but the calibration and stability of such instruments is

open to serious question.

The development of a capability of making routine acceleration measure-

ments in the micron/sec z (10- ¢g)range-- and below would be useful in a number of

areas, for instance:

i) Inertial guidance of electrically propelled space vehicles. This
-7

requires threshold sensitivities of about i0 g.

ii) Microseismology, including the detection of remote explosions. The

accelerations of interest are of the order of 10-8g, with periods of 1-100 seconds (1)

iii) The levelling of test tables during the precise test and calibration of

other inertial components and the establishment of statistical models for the

errors in such components.

iv) Vertical indication in orbit by active tracking of the gravity gradient.

Thresholds below i0 -I0 required (Z) .g are

v) Various important physical experiments, such as tests of the principle

of equivalence and the detection of gravitational waves (3) .

i. 2. The LLAMA Concept

LLAMA (for Low LevelAcceleration Measurement A__pparatus) is a system

which has been developed in the Experimental Astronomy laboratory of the

Massachusetts Institute of Technology. The object of this program is the investi-

gation of techniques for the construction of an accelerometer with a threshold sensi-

tivity well below 10-6g. While the present system is intended for laboratory use

only, it is hoped that the technology developed will be of use in constructing

operational acclerometer s.

The first application of the system under development will be as a sensor

for use in the dynamic levelling of an inertial test table: i.e. , a component of an

active filter of microseismic disturbances.

In a terrestrial calibration facility, it is extremely difficult to produce

known accelerations of the magnitude of interest here. As an example, tilting a



test table from the horizontal through one arc second gives an acceleration compon-

ent parallel to the table of 5 _g. For this reason, a primary design consideration

in the present program was that the system should be absolute in the sense that it

did not require calibration in terms of a known acceleration input.

The simplest form of accelerometer consists of a damped, elastically sus-

pended test-mass, with some form of readout of the displacement of the mass under

an applied acceleration. For single axis operation, the test-mass must be

supported, in directions perpendicular to the sensitive axis, by means of forces

which are essentially decoupled from the sensitive axis.

Fig. 1. 1 is a diagramshowingthe various components of this type of acceler-

ometer, in an elementary form. As mentioned above, a suitable calibration sys-

tem (shown schematically by the balance pan and weights at the right in the figure)

is of fundamental importance if the instrument is to be of use at very low acceler-

ation levels.

The design approach used in the LLAMA program is to take each component

of a simple accelerometer of this type and seek a new mechanization which will sub-

stantially improve performance.

1.3 General Design Considerations

It is a relatively simple matter to design a very sensitive accelerometer

for use under free-fall conditions, as long as it is also possible to conduct any

required test and calibration of the instrument under zero-gravity conditions. For

a laboratory system, however, it is necessary to support the test-mass in the

gravitational field of the Earth: as it is hardly possible that one could devise a

support system with an adequate vertical stability, this implies that the instrument

should be sensitive to horizontal acceleration only.

Microseisms constitute a background noise in all terrestrial acceleration

measurements. Typically, the peak activity in the horizontal plane consists of a

vibration with an amplitude of a few microns and periods of the order of a few

seconds, giving rms accelerations of about 10-7g. Because of this problem, the
-6

initial LLAMA system is being designed for operation in the vicinity of 10 g, so

as to check the feasibility of the techniques used without undue complication of the

test appratus. The instrument is, however, theoretically capable of operation at

much lower levels.

1.4 Support of the Test-Mass

The primary goal in the design of a test-mass suspension for an accelero-

meter is control of the interaction between support forces and the dynamics along

the sensitivie axis. In general, the following types of force-coupling may occur:

i) Threshold effects, static friction, etc. Any threshold which is present

clearly imposes a lower limit on the attainable sensitivity of the instrument. For
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the purposes of LLAMA, such effects must bekept below 10 -9 dynes, if at all

possible.

ii) Conservative (position-dependent) forces: Assuming that no sharp non-

linearities (e.g., mechanical hysteresis) are present, the level of force of this

type which is acceptable depends on the expected amplitude of displacement. For

instance, if the displacement is kept within 1 micron of the null position, an initial

"spring constant" due to the suspension of 0. 1 dynes/cm would allow operation at

least down to the 10-6g range. For high sensitivity of the instrument, a trade-off

must be made between the difficulty of providing low conservative forces along the

sensitive axis and the difficulty of detecting very small displacements.

iii) Dissipative (velocity-dependent) forces: It is, of course, essential

that any motion of the test-mass in directions other than the sensitive axis be

reasonably well damped. A small amount of natural damping of motion along the

sensitive axis is also acceptable, although a fixed time constant means that the

test-mass will be more than critically damped at sufficiently low acceleration

levels.

For the present purposes, force-coupling corresponding to higher time

derivatives of the test-mass displacement may be ignored.

Because almost any conceivable mechanical suspension would exhibit thres-

hold and/or hysteretic effects beyond the stringent LLAMA tolerances, it was

decided that some form of electromagnetic suspension would be used.

1.4. 1 Magnetic Suspension

It can be shown quite generally that no configuration of permanent magnets

is capable of stably supporting a magnetised test mass (Earnshaw's theorem).

However, a ferromagnetic object may be suspended in a magnetic field if the field

intensity be controlled by feedback from the position of the object. This principle

has been used (4) to suspend models in wind tunnels, so as to avoid interference

from support structures.

This technique is quite complex and expensive, and it is difficult to create

sufficient spatial homogeneity of the fields along the sensitive axis for use in a

low- level acceleromter.

A variant of this method is the magnetic resonant suspension {5) commonly

used in floated inertial instruments. While avoiding the complexities of suspen-

sion feedback loops, this system suffers from the same type of field homogeneity

problem, and in addition it is difficult to damp oscillations in directions other than

the sensitive axis.

1.4. Z ]Electric Suspension

The electrically suspended gyro (ESG) demonstrates the feasibility of this

type of support for inertial instruments {6). For use in an accelerometer, a typical
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design is shown in Fig. I. 2_. A light conducting cylinder of radius a, constxtutmg

the test-mass, is contained within an outer electrode cylinder of radius b. The

outer cylinder consists of four electrodes, numbered I to 4 in the figure.

Application of a voltage between any adjacent pair of electrodes produces a

stress at the surface of the test-mass which is given by 0. 442_ E 2 microdynes/cm2.,

where E is the voltage gradient at the surface in volts/cm, attracting the float to

the excited electrodes. It is clear that, in order to support a float of reasonable

weight in the ]Earth's gravitational field, quite high voltage gradients are required.

The clearances around the float must therefore be very small, of the order of 25

microns, and the System must operate ina high vacuum {I0 -8 torr or better) so

as to prevent electrical flashover.

As in the case of the magnetic suspension, this device is inherently

unstable: the float height must be stabilized by feedback techniques. A convenient

error signal may be obtained by comparing the capacitance between one pair of

adjacent electrodes with that of the opposite pair in a high frequency bridge. For

horizontal and vertical stabilization, two servo loops are of course required.

A resonant suspension technique is also possible in this case, the main dis-

advantage being the difficulty of providing adequate damping.

The dissipative forces in this type of suspension are extremely low, being

mainly due to drag from residual gas in the system. I/ the outer cylinder be suf-

ficiently long, so that end effects may be ignored, the only source of axial conser-

vative forces is geometrical imperfection of the electrode and float cylinders. In

particular, because of the very small separation between the float and the electrodes,

surface roughness may produce axial forces which are significant at the levels

under consideration for LLAMA.

While electric suspension is quite attractive {especially for use in the space

environment, where the low support forces required allow much larger clearances),

rather elaborate facilities are needed in order to construct the device. In the first

place, the float should have as low a density as possible; beryllium is the usual

choice, despite the machining problems introduced. Secondly, the tight dimen-

sional tolerances make a pressurized clean room mandatory for construction.

1.4.3 Charged- Particle Suspension

In the electric suspension systems described above, the test-mass carries

no net charge, the support forces being generated by polarization of the float under

an applied electric field. It is also possible to support a charged particle in an

electric field (7)' if some provision be made so that the charge does not leak away

too rapidly.

Apart from the difficulty of adequate position detection, support of a charged

particle by servo control of an applied electric field is a relatively simple matter.
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A more interesting possibility is that of a semi-passive suspension,using alternat-
ing fields.

The equationof motion of a chargedparticle in analternating electric field
is a variant of Matthieuts equation. Givensomedamping,quasi-stable solutions
are possible, in whichthe particle executesa small oscillation abouta stable
meanposition.

I. 4.4 Cryomasnetic Suspension

A superconductor is perfectly diamagnetic {the Meissner effect): it is

repelled by at magnetic field. It is therefore possible for at small permanent mag-

net to be stably suspended over a superconducting surface, without requiring any

ancillary stabilization equipment. This phenomenon provides the basis for a sim-

ple and effective suspension system.

Despite the difficulty of operation at cryogenic temperatures, it was con-

sidered that this type of suspension offered the simplest mechanization and also

the best compatibility with the other LLAMA components of all the possible field

supports. Later chapters of this report describe the development of this concept

into an operational system.

I. 4.5 Displacement Detection

Starting from rest at 10-6g 0.45 seconds are required to move through a

distance of one micron. For a given acceleration, the bandwidth of an accelero-

meter depends strongly on the sensitivity of the displacement detection system. In

order to maintain an adequate bandwidth, an accuracy of 0. I micron was set as the

design goal for the displacement detector in LLAMA.

An additional reason for limiting the test-mass displacement to very small

values is that this minimises the effects of spatial non-linearity of any axial forces.

It would otherwise be necessary to obtain a calibration curve for the instrument

over the whole range of displacements.

The precision r.equired of the displacement detector is such that interfero -

metric methods offer the most practical solution. A specialized Twyman Green

laser interferometer has been designed for LLAIV£A, in which, by means of a

folded optical system, interference is obtained between light beams reflectedfrom

stoat1, optically flat and parallel mirrors attached to either end of the test-mass.

This technique gives twice the displacement sensitivity of a conventional interfero-

meter and also allows the design of a system which is insensitive to the inevitable

small oscillations of the test-mass about transverse axes.

1.4.6 Restorin 8 Force Generation

At the acceleration levels for which LLAMA is designed, the maximum

restoring force required is of the order of one microgram, for a test-mass of



about one gram. Since the test-mass is a permanent magnet, the easiest technique

is to control its position by means of currents in suitably placed small coils, and

this approach has been adopted in the initial LLAMA system.

1.4.7 Calibration

As noted in Section i. 2 a primary consideration in the design of LLAMA

was that it should not require an externally applied acceleration for calibration.

The alternative, is of course, to apply a known small force directly to the test-

mass. The most convenient source of such a force is radiation pressure from a

mercury arc lamp. The maximum power needed in the calibration beam is of the

order of one watt.

1.4.8 Damping

In the LLAMA suspension as finally developed, an adequate damping of

transverse motion of the test-mass is provided by eddy-current generation in a

surrounding copper jacket. The same mechanism gives some axial damping, which

may be increasing by suitable filtering in the restoring force generation servo {see

below).

1.4.9 S_rstem Aspects

Fig. 1.3 shows the manner in which the components described above are

combined in the LLAMA system. The test-mass is a small permanent magnet,

which is freely suspended inside a superconducting tube. Small optically flat mir-

rors are attached to the ends of the magnet, to form the fundamental mirrors in an

interferornetric displacement detection system. The interferometer produces an

output signal whenever the test-mass is displaced from the null position in the

center of the tube, and this signal is used to control the differential current in two

small coils inside the superconducting tube, so as to provide a restoring force

which keeps the test-mass very close to the null position. The ouput of the acceler-

ometer consists of a measurement of the differential current in the coils, in the

steady state.

Provision is made to calibrate the instrument periodically by allowing the

beam of light from a mercury arc lamp to fall directly on the test-mass and noting

the resultant output. The calibration and displacement detection beams are dis-

tinguished by color separation. The interferometer uses a helium-neon CW laser

at 6328 A: the mercury arc has a low output at this wavelength, which is further

reduced by a rejection interference filter centered on the laser wavelength.
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CHAPTER [l

THE MEISSNER EFFECT SUSPENSION

Z. I Superconductivity and the Meissner Effect

The phenomenon of superconductivity was discovered by H. Kamerlingh-

Onnes at the University of Leiden in 1911 (8), when he observed that the electrical
o

resistance of mercury disappeared at a temperature of 4. 15 K. While of course

it cannot be stated categorically that a superconductor exhibits truly zero resist-

ivity, an upper limit of 10 -23 ohm. cm has been established (9).

A total of Z4 elements and a great number of alloys and compounds (I0) are

now known to exhibit superconductivity. For bulk samples of pure metals, the

change from the normal to the zero-resistance state is abrupt as the temperature

is reduced (see Fig. Z. I), at least in the absence of a magnetic field, and the tran-
o

sition temperature is characteristic of the material, ranging from 0.35 K for

hafnium (although lower transition temperatures will undoubtedly be found as
o

cryogenic technology allows lower temperatures to be explored) to about 18 K for

certain alloys of niobium and zirconium.

The transition temperature of a given sample is strongly affected by the

magnitude and direction of any applied magnetic field. For a given specimen shape

and orientation with respect to the the field, the critical field (defined as that field

above which the material is in the normal state) has an approximately parabolic de-

pendence on the temperature:

He _ H° c

where T c is the transition temperature at zero field and H °

is the critical field at zero temperature.

Because superconductors are perfectly diamagnetic (see below), when a

given specimen is inserted into a constant field the actual field intensity at the

surface will vary in a way which is dependent on the specimen shape and it orien-

tation with respect to the field. The actual critical field is then given by

H = (l-n) H (Z. Z)
e c

where H c, the maximum possible critical field for a given

temperature and material, is obtained when the specimen is a long cylinder oriented

11
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parallel to the applied field (i. e. , n= 0 for this case). For a cylinder perp_i_dicuL_r

to the field, n= I/Z; for a sphere, n= I/3; this parameter is known as the demag-

netizing coefficient for the specimen.

When the field is between H e and Hc, the specimen is in a complex state

wherein some regions are superconducting and some are normal(l I)

For the purpose of suspending a magnet over a superconducting surface,

these complexities may fortunately be ignored. It is sufficient to state the the

field due to the magnet at the surface of the superconductor must not exceed Hc,

which is of course related to the temperature by an equation similar to (2. I), with
!

H ° replaced by H ° , the critical field at zero temperature and demagnetizing coef-

ficient.

Fig. 2.2 shows H versus temperature for severalmaterials.
c

Apart from the above magnetic effects, until 1 933, it was assumed that the

magnetic properties of a superconductor were those of a perfect conductor. In

that year Meissner and Ochsenfeld found that all magnetic flux is expelled from the

interior of a superconductor as it makes the transition from the normal state (12).

The Meissner effect was a radical discovery, which could not be predicted on the

basis of any previous experiments. The implication for the present purpose is

that any external magnetic field has a zero normal component at the surface of a

superconductor, so that it behaves like a perfect diamagnet.

There have been many attempts at theoretical explanations of superconduc-

tive phenomena. One result from the Londons' theory (13) which is of interest in

the present context is that the magnetic field inside a superconductor is not identi-

cally zero, but decreases from the surface according to

v2_ = H/>2 (2.3)

If supercurrents are flowing, the current density obeys a similar law:

V23_ = J_/_ 2 12.4)

For bulk specimens, these equations lead to an exponential decrease of

magnetic field and current density with distance from the surface. The penetration

depth )t is of the order of 10 -5 to 10 -6 cm, depending on the material.

For the present application, the significance of this result is that the super-

conducting sheet used in the test-mass suspension must be at least several microns

thick. This fact can be of importance when the use of a thin superconducting plat-

ing over a normal base is considered {see Section 5. 2).

The Londons' theory, in common with most other more-or-less successful

descriptions of superconductive phenomena, was phenomenological in that rather
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arbitrary assumptionswere madein order to explain experimental results, it is

only quite recently that several microscopic (i. e. quantum mechanical) theories

have been proposed which hold promise of explaining the observed effects in a

detailed and self-consistent way. Of these, probably the most successful is the

BCS theory (so called because it was developed by Bardeen, Cooper and

Schrieffer (14) at the University of Illinois in 1957), which makes a basic advance

in that it recognises the importance of electron-phorxminteractions. In a pure con-

ductor, the conduction electronics are fermions (i. e. , have hal-f-integral spin), so

that they obey Fermi-Dirac statistics, at least at normal temperatures. If one

considers the conductionelectrenics to be a gas of Coulomb-repulsive fermions

("Fermi sea") with negligible interaction with the crystal lattice of the metal, no

explanation of the onset of superconductivity is forthcoming. At low temperatures,

however, as the average momentum of the electronics decreases, lattice interact-

ionsbecome increasingly important, leading to an attractive two-electron

(FrShlich) interaction by phononinterchange (i. e. , energy exchange via crystal

lattice vibrations) . An attractive interaction can of course lead to a bound two-elec-

tron state,but the decisive step in modern theories is the demonstration that the

appropriate concept, for an ideal metal at very low temperatures, is instead a

"pairing" of single-electron states; the pair of state behaves in some respects

like a quasi-molecule in particular exhibiting integral spin, so that the electron

gas can be considered as being composed of bosons, obeying Bose-Einstein statis-

tics instead of the Fermi-Dirac model. As was shown long ago by Einstein (15),

such particles exhibit an anomalous condensation into the single-particle ground

state at low temperatures. Furthermore, it can be shown that an ideal Bose-

Einstein gas, below its condensation point, exhibits a Meissner effect (1 6)

An adequate description of modern quantum theories of superconductivity

is beyond the scope of this report, but several excellent texts have been recently

published(17).

2. 2 The Floatin_ Magnet

Consider a small permanent magnet placed over a large, horizontal super-

conducting plane. As was first demonstrated by Arkadiev (18), the diamagnetism

of the superconductor may produce a repulsion which is sufficient to overcome

the weight of the magnet, causing it to be stably suspended.

A more pictorial way of thinking of this phenomenon is the following: At

this macroscopic level, the small penetration of the field into the superconductor

may be neglected. The lines of force near the superconductor must therefore be

parallel to the surface. The resulting field distribution is identical to that which

would be produced (without the superconductor) by the magnet together with an

"image" of the same sign an equal distance below the surface. The height at which
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the magnetwill float over the superconductoris therefore equal to half the height

at which it could just be supported by an identical magnet.

When the magnet moves over the superconducting surface, the image moves

with it. The system is therefore neutrally stable with respect to horizontal dis-

placement, and constitutes an essentially "stictionless" suspension.

Once a means of establishing a suitable superconducting surface has been

provided, the Meissner effect suspension is extremely simple, as compared with

the systerr_ discussed in Sections 1.4. I to I. 4.3, because it does not require feed-

back techniques to ensure vertical stability. In addition, quite substantial float

heights (at least I cm) may be obtained, minimising forces due to surface rough-

ness, etc.

Z. Z. I The Cryogenic Gyro

A considerable amount of effort has been devoted during the last decade to

the application of the Meissner effect as a frictionless bearing for gyros and small

instrument motors. In general, the approach has been the converse of that

suggested for LLAMA, in that a superconducting body has been levitated in a mag-

netic field.

The advantage of this technique, of course, is that one is not limited by

the flux densities available from a permanent magnet, so that fairly heavy bodies

may be floated. For example, Harding and Tuffins (19) have experimented with a

niobium sphere weighing 300 gm: as the low friction support allows such rotors to

be spun at speeds in excess of 20,000 rpm, the potentialities for gyroscopic appli-

cations are obvious.

For stable support of a spherical rotor, a mechanical potential minimum

must be exhibited, which is quite simple to arrange with a suitable array of coils.

For the LLAM.A application, however, it is very difficult to obtain a sufficiently

homogeneous field, in the direction of the sensitive axis of the accelerometer,

using this technique.

An even more serious difficulty arises because the suspended body is very

effectively thermally isolated from its surroundings, including the cooling system,

so that any radiant heat influx may cause it to go normal. In fact, Simon(Z0)found

that too low a gas pressure in a superconducting ball bearing of this type caused

his suspended ball to cease superconducting, due to a lack of convective dissipation

of the small heat influx through an observation port. In general, a compromise

must be found between low gas drag on the one hand and adequate cooling of the

suspended body on the other.

In the LLAMA system, it is proposed to use radiation pressure for cali-

bration, with a consequent power influx to the test-mass of up to one watt. It is

most unlikely that it would be possible to obtain sufficiently reflective end mirrors
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and sufficiently good radiative and/or convective cooling to maintain a supcrconduc-

tire test-mass under these circumstances. However, as discussed in the next

Section, it may be desirable to abandon radiation pressure calibration in some

applications of LLAMA, in order to be able to use a test-mass consisting of a

small coilof superconducting wire, carrying a high supercurrent and arranged so

as to simulate a permanent bar magnet, as far as its externalfield is concerned.

Z. 3 Choice of Magnet

The most powerful permanent magnetic material readily available in the

form of small bars is Alnico V, which has an attainable BH product of 0. ZI ergs/cc.

Cylindricalmagnets of diameter 0.318 cm (I/8") were chosen. From the manufac-

turer's published data, magnets witha permeance coefficient of 20, corresponding

to a length to diamter ratio of 5, exhibit the maximum value of BH product.

The data preeented by the manufacturer a11ow the calculation of the flux

density at the center of a given bar magnet. However, the pole strength, and hence

the expected float height, is not derivable directly from these data. In addition,

once cannot be certain that the magnets being used are actually magnetised to

saturation.

In order to evaluate realistically the height at which the magnet could be

expected to float, as a function of its length, bars cut to various lengths in pairs

were obtained. These were freshly magnetised, and the jig shown in Fig. Z. 3 was

used to determine the height at which each magnet would just support its mate. In

these experiments, the upper magnet was raised very slowly until the lower one

dropped, the separation at this time being twice the float height at the bar undez

test. The results are plotted in Fig. Z. 4.

It is apparent that the float height does not depend very critically on magnet

length. In order _o minimise the power required in the calibration light beam, the

test mass should be as light as possible, so bars of length I. 6 cm and mass 0.9 gm

were chosen.

As a roupL check on this choice, a shallow lead dish was placed in a trans-

parent dewar, as sketched in Fig. Z. 5 The inner vessel was filled with liquid

helium, and the chosen magnet was lowered into the dish by means of non-magnetic

tongs. It was observed that the magnet floated at a height of about I cm over the

lead surface. Boiling of the helium caused the little bar to dash about at random

in the dish.

2.4 Suspension Geometry

The superconducting plane discussed so far allows the magnet to move

freely in two dimensions. In order to make a single-axis device, a superconduct-

ing trough may be used. The magnet then encounters a restoring force on dis-

placement in any direction except along the axis of the trough.
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Unfortunately, the imageconceptusedin discussing the superconducting
plane is not applicableto this case. Qualitatively, however, one might expect that

the float height would be greater in the case of a trough of semicircular cross-

section than in the case of the plane.

For discussing qualitatively the behavior of the floating magnet, another

simple mental picture may be used to replace the image concept. Since the energy

stored locally in the magnetic field is proportional to the square of the field

strength, the magnet tends to move in such a way that the lines of force are separ-

ated as widely as possible, this being the minimum-energy configuration. The

magnet therefore behaves as though there were a repulsion between the lines of

force in its field.

In particular, this concept allows a discussion of edge effects. When the

magnet is near an edge of the superconducting surface, some of the field "spills

over", forcing some of the lines of force to double back on themselves, as

sketched in Fig. Z. 6. The repulsion between the lines then has a component paral-

lel to the surface of the superconductor, and the magnet is attracted to the edge.

A finite plane therefore gives a suspension which is unstable in the horizontal

direction.

In a semicircular trough of small radius, the magnet may float near or

even above the axis. Because of the edge effect, the suspension is then unstable

with respect to transverse horizontal displacement, and the magnet will be ejected.

The obvious solution to this problem is to use a superconducting tube rather than

a trough.

A tubular geometry has two incidental advantages as compared with a trough:

(a) the suspension is "tighter" with respect to transverse displacements, so _hat

transverse oscillations have a higher frequency and hence may be damped more

readily, and (b) since the magnet is almost completely surrounded by superconduc-

tor, of permeability zero (which of course what is meant by perfect diamagnetism),

it is well shielded from external fields.

Topologically speaking, a tube is a doubly-connected structure, which

means that any motion of the magnet will set up persistent currents, so that sup-

port itself will develop a magnetic moment. A singly-connected tube may be con-

structed by introducinga barrier consisting of a narrow slit along the upper sur-

face of the tube *. A small amount of flux from the magnet will then leak out

through the slit, and variations in the width of the slit will produce axial forces,

which cannot be tolerated. The slit must therefore be made with great care.

The magnet will of course always float at a lower height in a tube than in a

trough of the same radius of curvature. Indeed, for a tube with a slit of negligible

#
A possible use of a multiply-connected suspension is discussed in Chapter IX.

21



t

Semi- infinite _ _

Note: This figure is not intended to be an accurate representation o:

the field, but simply to give a qualitative impression of why a floati

magnet is drawn to the edge of a superconducting surface.

Fig. 2.6 Field Distortion at Edge of Superconducting Plane

22



width, the magnet will always float below the axis, regardless of the radius, since

it would,by symmetry, float on the axis in the absence of gravity.

A slitless tube creates sufficiently simple boundary conditions for analytical

treatment (see Appendix), but the introduction of a slit complicates the field dis-

tribution considerably. Because of the compression of the field inside the tube,

there is a strong tendency for flux to be "squeezed" out through even a narrow slit.

This produces a levitating force on the magnet, so that, as far as float height is

concerned, there exists an optimum slit width.

Because of the end effects, a tubular suspension is normally axially unstable,

and some means must be found of compensating the inherent axial forces. The

introduction of a slit greatly complicates the situation, but, for the purposes of

discussion, it will be assumed that the end effects produce axial forces which vary

with the displacement in the manner prescribed by Eq. (A. 33) of the Appendix:

F = cr sinh ZClX (Z. 5)

where x is the displacement, c 1 is a constant equal to 3.83

divided by the radius of the tube, and _ is to be regarded as an experimentally

determined cortstant.

Z. 5 End-Effect Compensation

Several different end-effect compensation techniques were conceived during

the development of LLAMA. Because of their simplicity and flexibility, stabiliza-

tion is achieved by means of small coils inside the suspension in the first model

of the instrument. These coils also serve as the source of restoring force in

closed-loop operation.

A permanent magnet may be attracted or repelled by a current-carryingcoil

depending on the sense of the current relative to the orientation of the magnet, if

coils are placed on either side of the center of the suspension, with their axes

coincident with the axis of the tube, and fed with an appropriate current, it is pos-

sible to overcome the forces due to the suspension and produce a mechanical

potential minimum. This implies that the magnet is repelled by the coils, which

normally would give rise to a rotationally unstable situation; however, reaction

from the sides of the tube prevents this problem from arising in normal operation.

This effect does limit the current which can be used to fairly small values, but

effective end-effect compensation is quite possible.

According to Eq. (A. 37) of the Appendix the force produced by a pair of

stabilizing coils is of the form

F c = -_ I sinh ClX (Z. 6)
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It is only possible to produce exact compensation for displacements which

are so small that both (2.5) and (2.6) are effectively linear. For a tube of radius

I. 2.5 cm, this condition holds within 0.02% up to a displacement of 60 microns, and

within I% to 400 microns. If the displacement can be held within one micron, as is

expected when the entire LLAMA system is operational, the maximum uncompen-

sated end effect force would, according to this model, be no more than 3 x 10 -11

dynes. This is so small that in practice essentially perfect compensation may be

achieved.

The non-linearity of these equations does however have some important con-

sequences in the test of the suspension (Section 7. 2).

2.6 The Flux-Trap Problem

The the discussion so far, it has been tacitly assumed that the superconduc-

ting surface was continuous. This is only true if certain precautions are taken

during the cooling process.

Suppose that a sheet of superconducting material, in the normal state, is

immersed in a magnetic field, which for simplicity is taken to be normal to the

surface. If there exists a local maximum of field intensity, the region near the

maximum will remain normalafter the rest of the sheet is superconducting, as the

sheet is cooled uniformly, because of the dependence of transition temperature on

the applied field (Section 2. I). There will thus be a "hole" in the superconductor

with flux passing through it. As the magnetic field cannot penetrate the supercon-

ductor, there is no way for this flux to escape. As the sheet is cooled further, the

size of the hole will decrease, but the same amount of flux will pass through itl the

field intensity in the hole will increase until it reaches the critical field correspon-

ding to the temperature of the sheet.

If now the source of the field be removed, a current will be induced around

the hole. Since there is no resistance, Faraday's law gives (in m.k.s, units)

dl dO {2.7)
V = L _-_ = - d-"_

where L is the seLf-inductance of the circuit around

the hole and @ is the flux due to the external source.

Thus, by the definition of seLf-inductance, the flux in the hole due to the

induced current is

_, = LI = e_ -_ (2. s)
o

which is just sufficient to maintain the total flux at the

value it had before the source was removed: _ .
o
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Onceflux has been trapped by a superconductor, there is thus no way to

eliminate it short of raising the temperature above the zero-field transition value

and recooling.

The conclusion, then, is that there must be no closed contours of magnetic

field intensity surrounding maxima on the surface of the superconductor at the time

that it is cooled. If it is desired to have the test-mass magnet in the vicinity of

the suspension during the cooling process, it m_tst be located so that the nearest

part of the superconductor is an edge of the surface.

A similar problem arises if the cooling is not uniform. If a sheet of super-

conductor be immersed in a uniform field and cooled fromthe edges, the peripheral

region will superconduct first, trapping the flux passing through the center of the

sheet. Thus the cooling technique must be such that no local maximum of tempera-

ture occurs at any time.

The influence of these phenomena on the design of the LLAMA suspension is

discussed in Chapter V.

2.7 Preliminary Experiments

In order to gain some familiarity with the problems of cryogenic suspension

operation, a series of experiments were performed in the transparent glass dewar

sketched in Fig. Z. 5 Because this dewar was unsilvered, there was a large radiant

influx of heat from the surroundings, with the result that the liquid helium boiled

away quite rapidly, limiting the duration of each experiment to about ten minutes.

The boiling helium produced rather turbulent conditions inside the dewar, so that it

was difficult to make estimates of the forces on the floating magnet. In addition,

the rapid efflux of cold helium from the top of the dewar caused a heavy fog, which

at times prevented photography or even observation of the interior.

For these reasons, the experiments were generally rather qualitative;

however, a great deal of experience and some quite significant information was

obtained.

The first experiment consisted simply of a demonstration that a small mag-

net would indeed float over a lead dish, as described in Section 2.3.

For the next experiment, a lead tube was constructed, as shown in Fig. Z. 7.

The upper edges were separated by a sliver of cardboard, so as to make the super-

conductor singly connected. In order to keep the magnet in the tube, the ends were

closed with a grid of (non-superconducting) wires. The magnet was prepared by

attaching to the ends lucite discs, about a centimeter in diameter, to simulate the

mirrors which would be present in the actual device.

The magnet was then inserted into the cylinder, and the whole assembly

lowered on strings into the dewar full of liquid helium. As the lead cooled, the mag-

net did not lift itself off, but it was possible to get it tloating by flicking it with a
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bent probe lowered into the dewar. However, the float height was very disappoint-

ing i the lucite discs barely cleared the surface. It was found that by shaking the

tube, it was possible to start the magnet spinning about its long axis, which showed

that it was freely suspended.

The reason for the poor float height in this experiment was, of course, the

flux-trapping problem discussed in Section Z. 6. This hypothesis was confirmed by

a later experiment (see below).

A new tube was now constructed, as shown in Fig. 2.7. A lucite tube of

suitable diameter was cut in half lengthwise, and a wide slot was cut m the top,

near the center. Lucite discs were glued to the inside of this semi-cylinder, the

purpose being to keep the magnet in the low-force region near the center of the sus-

pension. The device was completed by attaching to the outside a sheet of niobium
o

formed into a section of a cylinder, with a gap about 60 wide at the top.

This assembly was suspended on strings inside the dewar of helium. When

it was certain that the niobium was superconducting, the magnet was lowered with

non-magnetic tongs and inserted into the support through the slot in the lucite.

The magnet floated just below the axis, and moved very easily between the

lucite discs when the tube was tilted slightly. While it was not possible to make a

quantitative estimate of the axial forces, this experiment did indicate that there

were no unexpected gross phenomena which might prevent the operation of the

system.

In order to confirm the importance of the flux-trapping effect, this experi-

ment was repeated, with the magnet placed in the tube before it was inserted into

the dewar. It was observed that the magnet did not lift off the superconduc,_ing sur-

face, and when it was flicked with a probe, it floated with a very small clearance.

Movement of the magnet in the axial direction was very sluggish.

2.8 The LLAMA Devcar

The overall configuration of LLAMA, together with the lessons learned in

the preliminary experiments, dictated the following requirements for a dewar

which would permit quantitative performance measurements:

i) The suspension itself should consist of a superconducting cylinder, with

an axial slit along the top to prevent circulating supercurrents.

ii) The inside of the cylinder, where the magnet would float, should be

evacuated to at least 10 -6 torr, to prevent radiometer effect from interfering with

light-pressure calibration of the instrument {18 )

iii) Optically flat windows should be provided at the ends of the cylinder,to

allow access of the light used in the calibration and in the interferometric displace-

ment detector.

iv) Some means should be provided for storing the magnet externally to
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the suspensionduring the cooling process, to avoidflux-trapping.
v) The ratio of liquid helium capacityto total heat input shouldbe suchthat

operationfor at least two hours wouldbepossible, to allow time for careful mea-
surements.

vi) No magnetic materials shouldbe usedin the constructionof the dewar.
The constructionof a dewarmeetingthesespecifications is examinedin

detail in ChapterV. However, a brief description of theapparatusis givenhere.
A cross sectionof the metal dewar is shownin Fig. Z.8. A thin walled

coppercylinder (O.D. Z.Zcm.) is inserted lengthwisein a hollow copperblock,
attachedto the bottomof the inner vessel of the dewar. The superconductoris a
sheetof niobium wrappedaroundthe outsideof this cylinder, so that it is in con-
tact with liquid heliumwhenthe dewar is filled. An axial gapis left at the top of
the superconductorto prevent super currents. The endsof the cylinder are open
to the dewar vacuum. In operation, the test mass floats just belowthe center line
of the cylinder, (SeeFig. Z. 9). To avoid the flux trapping, the magnet is stored in

a room temperature evacuated ante-chamber before cooling takes place. Whenthe

niobium is superconducting, the magnet is inserted into the suspension by means

of a lucite spoon which can be manipulated from outside the dewar via a vacuum

feedthrough.

The dewar is equipped with windows opposite the ends of the cylinder, which

are used for observation of the test mass and for access by the displacement detec-

tion system. A photograph of the dewar is shown in Fig. Z. i0.
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Fig.  2.9 T:i agiiet F l sa t ing  in  Suspension 

30 



Fig. 2.10 The LLAMA Dewar  (early model) 



CHAPTER III

DI SP LACEMENT DETECTION

3. 1 General

Very small axial displacements, on the order of a fraction of a micron, of

the magnet must be detected in order to preserve an adequate bandwidth at low
-6

acceleration levels. For example, if the acceleration is 10 g the time taken to

move, say, I mm is about 14 seconds or 0.45 seconds for a displacement of I

micron. When lower acceleration levels are considered, say, 10-9g, the time

taken to move 1 micron is 14 seconds. Other reasons for desiring high sensitivity

displacement detection are (a) to tolerate a larger axial suspension spring con-

stant and (b) to avoid non-linearities in the suspension and in the detector.

3.2 Displacement Detector Design Goals

The ideal displacement detector for LLAMA is a device that:

(a) is capable of sensing axial displacements way below I micron.

(b) is insensitive to displacement along or tilts about other axes.

(c) is linear.

(d) does not exert any force on the magnet.

(e) maintains its sensitivity for long periods.

(f) is compatible with the LLAMA system.

3.3 Interferometric Displacement Detector (IDD).

At present, the test mass is a permanent magnet which must be inserted

inside the superconducting cylinder after the temperature of the niobium has

dropped below its critical value, as explained in Chapter If. This imposes yet

another restriction on the design of the displacement detector.

Several methods of displacement detection have been considered and an

interferometric scheme was found suitable and highly compatible with the rest of

the LLAMA system. An interferometric scheme does not depend on fixtures

mounted inside the superconducting cylinder which might hamper the insertion or

the withdrawal of the magnet. In addition, the IDD allows the null position of the

magnet to be varied as desired which is useful in the early stages of experimenta-

tion.

3.3. I The Michelson Twyman-Green Interferometer

Interferometric principles may be illustrated _ with the aid of Fig.3. 1.

One part of a collimatedmonochromatic beam of light of frequency v, passes
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through a beam splitter BS, is reflected from mirror M1, normal to the beam, and

then impinges on a screen S after reflection at the beam splitter. Similarly, the

other portion of the beam is reflected from mirror MZ, also normal to the beam,

so that the two portions of the beam overlap at the screen S.

The intensity at S of beam # 1 in the absence of beam # 2 is given by

c zIi : _r4-_'

or

11 = k < EI2_

_i Z _ is the time average of the square of the arnplitude of the electricwhere

field vector at S; c, _, are the permittivity and permeability of free space and c

is the velocity of light; k is a constant which equals

G ene rally,

_(l_, t, : Real_A(_)e -iZ1rVt] : _I [_A_--_(r)e-iZ1rv t ÷ _*(_) e÷iZ_rvt]

-_ ig
where A = ae is the amplitude vector for a linearly polarized wave and a is the

amplitude and g is the spatial phase angle.

Then,

_1 1 _ * 1Z_ : "Z AI AI = : AI " AI

Now when the two beams are superposed, the total electric field vector becomes

E = E 1 + 1_ 2

and

--_ _ Z --_
<_Z_> = <El z ÷ Ep_ + ZEI • EZ_

hence the total intensity I is given by

I = II + Iz + JIZ
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where I 1

J
12

._A 2 -_ Z
= k (Ep _ and= k < E 1 _ ; Ig

__A -.A

= Zk ( E 1 E Z

k C_ --_ # --_ * -A= -_- I AZ + A1 A2)

a -igg -xgl= k_Z 1 e Igl ag e + a I e a Z e igg )

k
g a I a 2 cos

where ¢, =

#1 and # Z.

Hence

gl - gz difference in optical path length traversed by beam

I = k [-Z (El E1 + _ (E2 ) + a la z cos %]

1 2 1 2
= k[-f al +_ a z + a 1 a z cos %V ]

i Z
But _ ka 1 = I 1, etc.

•". total intensity l is given by

I[I = Ii + [2 + Z QT_2 cos 4]

It is evident that I varies between

Ima x = I 1 + l z + Z for lap [ = O, gw, ...

and

Imi n = lI + IZ - Z q-[_g forI*I--

In the case where the intensities in the two beams are equal i.e.I 1 = IZ; then

I = 2. I 1 + 2 I 1 cos

z_
= 4 l 1 cos 7
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then
Ima x = 4I 1

I = 0
min

Fig. 3.2 illustrates the variation of intensity with path length difference for

I 2 and for I I = I z.

In terms of path length difference A x,

Ax

"_= gl-gz = z._ _'o

where k o is the wavelength of the monochromatic light so that

7-IT

I = 211 + 2 I 1 cos "_o Ax (3.1)

Eq. (3. I) states that for a collimatedmonochromatic light the intensity at the

screen S varies from dark to bright as the path length difference Ax is varied, in

other words, as M I is moved relative to M 2 in the direction of the beam.

C
where k -

In terms of frequency V o' o v
0

( Vo )IVo = 2 11 + ZI 1 cos 21r --_ Ax

Now if this frequency v ° does not remain constant but changes to, say, v ° + Av,

then

[_ (Vo + Av) Ax]IAv = 2 11 + 211 cos _ c

This change in frequency can be interpreted as a change in A x given by

-- !2_(v° + AV) Ax 2_v° Ax
c C

where Ax -Ax : c = change in Axdue to Av

(v° + Av) Ax-Ax

Vo

AV
.'. e - Ax (3.z)

Vo

Eq. (3. 2) indicates that a change in frequency can only cause an error if

there is a finite path length difference. For example, if A V _ 10-7
Vo
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[ for a typical non-stabilized laser] and &x = 10cm then e = I0 -Z microns.

Now the path length difference that causes the interference pattern to change
ko

from dark to bright (i.e. one fringe) corresponds to Ax =0-'2-" or a mirror dis-
A x ko

placement of "Z" = -'4- _ 0.15 micron, for ko = 6000 A. _ in this case is about

0.03 of a fringe.

The visibility of the fringe is defined by

v=
1 -I
max rain

Ima x + Imi n

Z Qi-llz cos 2v A_..y_VcAx

II + IZ

Fig. 3.3 illustrates the influence of A V on fringe visibility. A full treat-

ment of interference with partially coherent light is given by Born and Wolf. (Z3)

The effect of tilts of the reference mirrors will now be examined. Fig. 3.4

shows mirror Ni I tilted by angle 8 about its center. The beam reflected by M 1 will

be rotated by Z 0. The interference at the screen S will no longer be a uniform field

and will only take place over the area of overlap of the two spots. If O is large the

spots will no longer overlap and hence all interference information will be lost.

For small O it can be noticed from Fig. 3.4 that one part of the beam

reflected from M 1 will traverse a longer path than for O = 0 and another part of

the beam will traverse a shorter path.

Consider a ray in the beam situated at a distancey above the axis of the

beam.

Let d I = AB, d 2 = BA, d 3 = AD and

I I ! I ! I I

d I = AB d 2 = BA , d 3 = A D

The change in path length of this ray is given by

! ! I

Ady = d I + d z + d 3 - (d I + d z + d3)

It can be shown that

I 1
Ady = (d I + d 3) (I-cos--6-6-Z_ ) + y tanS(l + cosZ-------_

The displacement of the ray along the screen is given by
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ASy = (d I + d 3 - ytan0) tan 2 0

= (d 1 + d3) tan 2 e -ytanetanZO

For interference, ASy must be less than Z_where Z_ is the diameter of the

co]lirnatedbeam. Therefore for interference to take place

w

___Z___
0 <_ (d I + d3 )

For 2_ = 4 ram.and d I + d 3 = I00 cm, then 0 < 2 x 10 -3 rads.

Another limit on 0 is imposed by the sensitivity desired. If Ady

< Ko
less than one hundredth of a fringe, i.e. , A dy _ then

must be

Ad
0 < m

_.oFor a beam ofdiameter4mm, and Ad = _ or 1/100 of a fringe, ko = 6000

then

0 < 0.75 x 10 -6 radians

Generally, therefore, the limit on 0 imposed by sensitivity desired is usuallymore

stringent than that imposed by spot overlap.

3.3.2 Interferometric Configurations for Detection of Displacement

Several interferometric configurations may be examined for the detection of

the displacement of a test mass such as that in LLAMA. One scheme is illustrated

in Fig. 3.5(a), where a plane mirror attached to one end of the magnet serves as

the second reference mirror in the interferometer discussed above. The distance

ko
moved by the test mass, corresponding to a shift of one fringe, is "-4- " This con-

figuration subjects the reference mirrors to different environments which makes a

stable interference pattern difficult to achieve. In addition, any tilts of the magnet

will cause an opticalwedge to be set up between the reference mirrors. Insteadof

a uniform field the interference pattern will now exhibit an intensity gradient. With

increase in the angle of tilt, straight line fringes will appear in the interference

pattern.

In Fig. 3.5(b) two interferometers are shown, one for each end of the mag-

net. Although this set up is twice as sensitive as that in Fig. 3.5{a), it suffers

from the same problems. Fig. 3.5(c) shows a configuration that subjects both

reference mirrors to the same environment, has double the sensitivity of (a) and

uses only one light source and one detector. However, this scheme still suffers
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from a wedge effect that is caused by slight tilts of the magnet.

It will be shown later that if the image of one of the reference mirrors in

Fig. 3.5(c) is optically completely reverted, top to bottom and left to right, the

beams will not be misaligned by any tilt of the magnet. The beams will remain

superposed but willmove together over the surface of the detector, preserving the

interference pattern in spite of magnet tilts.

3.3.3 LLAMA Interferometer Displacement Detector

Because the test mass in LLAM.A has six degrees of freedom and controlis

only exerted along the sensitive axis, the output of any displacement detector must

be sensitive only to displacements along this axis. The interferometric configura-

tion adopted is that shown in Fig. 3.6 and will now be analyzed.

Optically flat mirrors are attached to the ends of the magnet so that they

are parallel and concentric with the magnet axis. Any displacement of the magnet

will change the intensity of the uniform field interference pattern with twice the sen-

sitivity of a normal interferometer, since both reference mirrors are on the test

mass. As one path gets shorter, the other gets longer. The intensity I after inter-

ference, assuming equal intensity I I in each arm of the interferometer is given by

E, x)-tI = 2 11 + cos _-_ 2 A

Since the test mass is operated in a null configuration and the path lengths

in each arm of the interferometer can be made equal, there is no error due to

change in frequency when at null.

The distance the test mass has to move to cause the interference pattern to

ko
go from dark to bright (i.e., one fringe) is now T or .075 micron for ko =6000/_

It should be possible to detect from I/10 to 1/I00 of the change between dark to

bright so that displacement thresholds as small as 7.5 x 10 -4 micron can be detec-

ted using suitable readout techniques, (see Sec. 3.3.4).

Because the reference mirrors are parallel any displacement of the magnet

vertically or laterally does not change the interference pattern. Similarly, any

rotation of the test mass about its longitudinal axis does not cause an error. However,

any rotation or tiltof the magnet about a transverse axis causes a wedge effect

which in this case would be twice that given in Section 3.3.

The problem of rotation and its compensation will now be analyzed with the

aid of Fig. 3.7. Let A, B and C, D represent the extremities of the two reference

mirrors which are attached to the test mass. Let x be the difference in path length

between the two arms of the interferometer. A clearer representation is shown in

Fig. 3.7{b). Simplifying still further, A, B can be reflected in the beam splitter so

that A, B and C, D are on the same side. The separation between these lines

is x, but in Fig. 3.7 x is assumed zero for clarity.
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Now if the magnet rotates about a transverse axis normal to the paper by an
[ I I I

angle 8. The mirror extremities will now move to A , B and C , D This is

represented in Fig. 3.7(b) and the wedge effect is clearly seen.
] ]

To avoid this wedge, A , B have to be inverted with respect to axis ZZ to
W n I ] W II

obtain A , B C , D are now parallel to A , B and the wedge has been removed.
! !

The inversion of A , B may be achieved by means of a dove prism as shown in
I I

Fig. 3.7(c). For rotations about the other transverse axis C , D are reverted in

a similar way by means of another dove prism oriented with its axis rotated through
o

90 with respect to the first dove prism. By placing a dove prism in each arm the

path lengths are again equal. If the path lengths are not equal a second order effect

in e will affect the interference but this is neglected here.

With the use of dove prisms, rotation of the test mass will result in the

interference beams moving together over the surface of the detector but the inter-

ference pattern is preserved.

Analysis of Fig. 3.8 shows that the limit on angle of rotation in a scheme

with dove prisms is that due to spot overlap. If the path lengths in each arm are

exactly equal, i.e. , x = 0 then complete overlap will result irrespective of tilt

angle. However, when a difference in path length x exists, the limit on tilt angle is

given by

e<z__
Zx

where 2._ is the beam diameter. For Z_ = 4 mm. and
o

x = i0 cm., e < 3

Another method of eliminating rotation effects is to attach corner cubes to

the ends of the magnet instead of parallel plane mirrors. A corner cube has the

property that an axial incident beam is reflected back along the same direction inde-

pendent of any rotations of the corner cube about its apex. For a non-axial beam,

the reflected beam is parallel to but laterally displaced from the incident beam.

This displacement varies with rotation about the apex. If rotation is not about the

apex then the incident and reflected beams are no longer parallel.

3.3.4 Readout Scheme

A suitable readout scheme should provide information as to phase and mag-

nitude of the displacement of the test mass. For operation within a fringe, the

position of the test mass is set so that the intensity of the interference pattern is

half-way between dark and bright. The sense of the displacement of the magnetwill

be indicated by a decrease or increase in intensity. The extent of the change in

intensity represents the magnitude of the displacement.

A suitable intensity reference for this setup can be derived from the inter-

ferometer light source as shown in Fig. 3.9, rather than from an external stable

voltage source.
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This makes the null position independent of intensity fluctuations in the light

source. For a given displacement from null, any fluctuations in the intensity of the

light changes only the amplitude of the error signal. This is of little consequence

in a null-operation scheme.

By choosing a beam splitter with a suitable transmission-reflection ratiothe

intensities of the interference beams and the reference beam at the detector can be

made as desired. A chopper can be used to interrupt the beams alternately so that

only one photo detector need be used. The signalfrom the detector is then fed into

a phase sensitive demodulator to get a d.c. signal proportional in magnitude and

phase to the displacement of the test mass. The use of the chopper greatly enhances

the sensitivity of the readout because a.c. coupling in the detector circuits mini-

mizes drift and noise problems.

The sense of the displacement depends on which side of the interference

pattern the null position happens to be. There is a sign reversal every half of

awave of the interference pattern. This ambiguity is taken care of in the servo. If

the magnet happens to be at null but on the wrong slope of the interference pattern,

the error signals fed into the servo due to slight displacement will drive the magnet

away from null instead of restoring it back. The magnet moves to the next null

position, a half of an interference wave further away, where there is a reversal

in sign of the error signal and the servo will stabilize the magnet around this new

null position.

Other schemes using mirrors of various shapes on the ends of the magnet

may be considered. Because the magnet weighs only one gram, severe weight lim-

itations are placed on any attachments to the magnet. The scheme using plane end

mirrors and dove prisms seemed feasible and least complicated and preliminary

experiments were carried out using this scheme.

Different methods for test mass tilt compensation have been suggested by

Scott (Z4) and Steel (25) Both schemes involve out of plane tilt compensation

which tends to complicate the setting up and alignment of the interferometer. The

dove prism method used in LLAMA is generally a one plane scheme, which simpli-

fies alignment procedures.

3.3.5 lnterferometer Light Source

The interferometric scheme described above assumed a highly collimated

beam of light, i.e., a beam with a plane wavefront. The resulting interference

pattern when using such a beam and assuming that there is no wedge effect between

the reference mirrors is a uniform field, modulated in intensity by motion of the

test mass. The readout scheme for such an interference pattern is thus relatively

simple as discussed in Section 3.6.

Lack of collimation of the beam complicates the pattern. For example, a

beam with a sphericalwavefront causes an interference pattern with the familiar
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concentric rings of bright and dark fringes. (Strictly speaking, this pattern becomes

a uniform field when the optical path lengths in each leg of the interferometer are

exactly equal. )

A gas laser in the TEMoo mode is clearly a good source for this applica-

tion. The high frequency stability(better than one part in 107 for the common free

running gas laser) enables high contrast fringes to be obtained with unequal path

lengths. This greatly simplifies the setting up of the interferometer and the loca-

tion of the fringes. The high spectral intensity of the laser beam coupled with a

uniphase wavefront makes the fringes readily visible and simplies the method of
readout.

Transverse modes in the laser beam distort the interference pattern only ff

there are non-symmetrical rotations of the wavefronts of the beams in each arm of

the interferometer.

The laser used was a Perkin Elmer model 5200, helium neon, 0.5 mw

optical power TEM mode, with a cavity in a hemipsherical configuration.OO

In order to increase the sensitivity of the interferometer even more, say,

to less than one thousandth of a fringe, a means of modulating either the displace-

ment of the magnet or one of the optical paths could be incorporated. If the fre-

quency of modulation is chosen outside the frequency range of the 1/f noise then a

virtually noise free output can be obtained where the only significant source of noise

is the Poisson noise of the photons arriving at the detector.

It is clearly impractical to oscillate the test mass at frequencies in the

kilocycle range, but the optical path length could be modulated at a high frequency,

for example, by inserting a rotating wedge in the optical path.
3.4 Spot Occultation Displacement Detector (SODD)

Although the interferometric displacement detector (IDD) discussed above

is capable of sensing displacements within a fringe (or k-_-), it is not able to remem-

ber where the null position with respect to the superconducting tube must be, unless

large capacity fringe counters are used. A coarse detector, the Spot Occultation

Displacement Detector (SODD) has been designed which can position the magnet

within a few microns from the desired null and can bring the magnet back to this

position for excursions not exceeding two centimeters. When the magnet is brought

to the desired position, the IDD takes over for operation within a fringe.
A schematic diagram of the SODD is shown in Fig. 3.10. The principle of

operation is based on the occultation of a beam of light by the magnet, so that the

received intensity depends on the position of the magnet. Fig. 3.10 shows an inci-

dent beam of light reflected across the magnet by means of a mirror mounted inside

the superconducting tube. If the magnet is not present the entire beam is reflected

back on to a photodetector. One end of the magnet is allowed to occult the beam so

that at "null", half the beam is reflected back to the detector. Any displacement of

the magnet from null will modulate the received intensity. Any rotation of the
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magnet about a transverse axis will reduce the intensity because the projected area

perpendicular to the beam is always increased and hence more occultation.

To eliminate rotation effects, the other end of the magnet is used to occult

another beam in a similar way. This two-ended scheme gives twice the sensitivity

because as the intensity in one beam is increased the other is reduced. At null

this differential signal is zero. Now if rotation takes place when at null, the differ-

ential output remains zero because the intensities in both beams are reduced bythe

same amount.

To eliminate the use of two detectors, both return beams are brought toget-

her onto one detector as shown in Fig3.10. In order to extract the sense of the dis-

placement the incident beams are chopped alternately so that the detector views

each beam separately. The output of the detector is fed into a phase sensitive

demodulator so as to obtain a signal proportional in magnitude and phase to the

displacement of the magnet.

Any variation of the brightness of the light source does not affect the position

of null because both beams are affected equally.

Using a test mass suspension simulator, see Chapter V, an output voltage

vs. displacement plot was obtained, see Fig. 3. I I, The linear range of the detec-

tor was found to be 0.62 mm and the peak signal to noise ratio was 160. This indi-

cates that the uncertainty range of the SODD is ± 2 microns.

A helium-neon laser was used as the light source.

A reduction in the uncertainty range may be achieved by preceding the phase

sensitive demodulator by a tuned amplifier tuned to the chopping frequency, so as

to reduce noise and the effect of harmonics.

Another way of increasing the sensitivity is to reduce the diameter of the

beams at the magnet. Control of the size of the beam, however, affects the extent

of the linear range.

An early form of the SODD was used in preliminary experiments, see

Chapter VII, and this is shown in Fig. 3. 12. This displacement detector was a one

ended SODD which was sensitive to both rotation of the magnet and to intensity vari-

ations in the light source. The linear range was around one millimeter.

3.5 Inte6ration of $ODD With IDD

It is highly desirable to choose a configuration for the SODD that shares as

much of the IDD optics as possible. The triangular layout of the LDD is also suit-

able for the SODD. Ideally, the beam splitter and the two side mirrors can be used

for both detectors. However, in practice, it is necessary to make adjustments in

the SODD that are independent from the IDD and vice-versa. Two small adjustable

beam splitters are added on either side of the main beam splitter solely for the

SODD as shown in Fig. 3.12.
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The size of the IDD optics is dictated by the tolerance allowed for the rota-

tion of the test mass about transverse axes and the path length in each arm. The

optical components close to the test mass are smaller than the ones further away.

For a ±I degree rotation of the test mass the size of the main beam splitter must

be at least 3 cm x 3 cm for a magnet-beam splitter separation of 100 cm. Experi-

ments showed that rotation angles were less than ±I ° so that smaller size optics

can be used. The SODD requires smaller size components because the beams are

fixed in position. The detectors for each displacement detector are separated as

shown in Fig. 3.13.
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CHAPTER IV

TEST MASS CONTROL

4. 1 General

The LLAMA test mass is operated in a null configuration. Information about

any displacement of the test mass is used to control a force that can restore the

test mass to the null position.

At low acceleration levels (10 -6 -10 -9 g) restoring forces of i0 -3

dynes are required to maintain the 1 gm. test mass at null.

4. Z Magnetic Restoring Force

Sources of low level force have been investigated in Ref. (18). It was evi-

dent that the simplest way of controlling the test mass was by magnetic force

exerted by means of two coaxial coils inside the superconducting cylinder, one on

either side of the magnet. The two coils can be used for both end effect compensa-

tion as well as test mass control. The force exerted on the magnet by the coils

according to the Appendix is of the form

F c = -/3l sinh c I x

when the coils carry equal currents, [.

[n order to maintain the magnet at null ( x= 0) in the presence of accelera-

tion, unequal currents must flow in the coils and the force becomes

Fc = -_Z [(l+ AI) eCl x -(l-Al) e-Cl x ]

= -,8 [ sinh ClX -,8 A[ cosh ClX

where [+A[ is the current in one coil and I-AI is the current

in the other coil. If l iskept constant, A l can be varied at will according to the

gain in the feedback system.

That part of the magnetic force due to l, i.e., -_ I sinh ClX is termed the

common mode force because l flows in both coils. The force due to A [, i.e.,

-/_ A[ cosh ClX is termed the differential mode force.

The common mode force is free from dynamics since [ remains constant.

The differential mode force is associated with a lag due to the inductance of the

coils.

57



Becauseof the complexfield inside the superconductingcylinder anaccurate
estimation of the restoring force is not possible anda meansfor calibration is
required; seeChapterVIII.

4.3 Length of Stable Reglon

End effect compensation was discussed in Section 2. 5. A sketch of the

uncompensated axial suspension force and the compensating effect of the coils for

small displacements from null is shown in Fig. 4. I. For a suitably chosen com-

mon mode current in the coils, a small region exists around null where the magnet

is axially stable; outside this region the suspension is unstable. The length of this

stable region (taken as the distance between the peaks, e.g., p-p' in Fig. 4. I) cor-

responding to a desired spring constant at null is shown in Fig. 4. Z. The smaller

the desired spring constant, the shorter the stable region and hence the more sensi-

tive the displacement detector has to be. One way of lengthening the stable region

for a given spring constant is to reduce the inherent suspension spring constant as

illustrated by the dotted curves in Fig. 4. Z.

4.4 Block Diagram for Preliminary Accelerometer

Using the information developed in preceding chapters for the various com-

ponents, an overall block diagram for an accelerometer is presented in Fig. 4. 3.

An input acceleration, a, acts on the mass of the magnet, m, to produce a

force, ma. This force causes the magnet to displace from nu11which calls into

play suspension forces, and common mode magnetic force due to a constant stand-

ing current, I. The displacement is sensed by the displacement detector which puts

out an output voltage. After amplification, this voltage generates a differential

mode magnetic force due to a differential current AI, in the coils. This force

tends to drive the magnet back to null.

The suspension damping, common mode, and different ial mode forces are

all summed at one junction together with ma and a tilt component mg 0 due to a tilt

angle 8 of the superconducting tube.

This model of the accelerometer has many nonlinear elements--including

the fact that the displacement detector has a finite range.

Since, for closed loop behavior, only smalldisplacements are dealt with,

the accelerometer model may be linearized and simplified by absorbing the minor

feedback loops as shown in Fig. 4.4.

The open loop transfer function for the linear model is

Ka I<d IKc Tn

(S+ -_-) + im ( Z oe c) ('r d S+I) (TcS+l)
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m = massof magnet

kf = suspensiondampingcoefficient

kc = gain of coils

ka = qain of amplifier

k6 : gain of displacementdetector

v¢ = time constantof diff. modeforce

Vd = time constant of displacementdetector

I = standing current in coils

g = tilt error angle (small)
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With the absence of damping Kf and suspension and common mode magnetic

forces, the transfer function would be that of a type-Z servo, which is inherently

unstable. Including Kf and the other forces neglected above, the system becomes

stable only for very low gain. Clearly then, some form of compensation is needed.

If a pure lead compensation is incorporated, the root locus diagram is modified by

the lead network zero on the negative realaxis to give a system that is stable for

higher gain than previously. The open loop transfer function becomes

!
_Z Ka Kd Kc m (T L S+ I)

[ ]SZ +--m S +--m ( C -Z_ c) (TdS+l) (Tc S+1)

where T L = lead compensation time constant

The steady state displacement error for a step input is given by

X

SS

A

I
9 KaKdKa _

so that x can be small for a high loop gain. If the steady state error is to be zero,

a pole at the origin has to be added and this brings another stability problem.

The differential current in the coils is a measure of the applied accelera-

tion.

The output of the accelerometer is obtained by measuring this current or

less accurately, by measuring the voltage output of the amplifier in the loop.

4.5 Effect of Rotation of Test Mass

The excitation of rotary oscillation of the test mass is possible, see

ChapterVII, and is partly due to the magnetic axis of the test mass not coinciding

with its principal axis. This causes the axial restoring force from the coils to

apply the torque to the magnet. If the displacement detector is sensitive to rotation,

an oscillatory condition can exist.

Fig. 4. 5 shows the coupling of the oscillatory mode for a given detector

rotational sensitivity a I' and a torque/differential current ratio IK. The only

place where compensation is feasible is in the servo blockAGz(s), in the main

accelerometer loop.

By reducing the detector rotational sensitivity a 2' see Chapter III, the pro-

blem of oscillatory modes may be eliminated.
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CHAPTER V

HARDWARE DESIGN

5.1 Dewar DesiGn

The dewar design is a modification of a standard type made by the Janis

Research Co., of Stoneham, Massachusetts. The brass block with the superconduc-

ting assembly and the window assemblies were made by EAL (See Fig. 5. I).

The dewar weighs about 35 pounds (empty) and has a helium capacity of

about 3 liters. Except for the magnet, no magnetic materials were used in the

dewar.

The heat of vaporization of helium is so low that great care is required in

the dewar design to minimize the inward flow of heat. In Fig. 5. I the inner con-

tainer is for liquid helium and is of thin-walled welded stainless steelconstruction.

The only metallic thermal conducting path for the flow of heat is m the filling neck

at the top. A teflon "bolt" is normally inserted to fill the entire neck. This "bolt"

has a coarse pitched thread so as to lead the cold escaping helium gas in a helical

path in intimate contact with the filling neck. This technique removes much of the

heat flowing down the stainless filling tube.

The bottom of the helium flask has a I /Z " thick copper disk silver soldered

to the stainless steel cylinder. This disk has a i/Z" wide by 4" long through slot to

allow liquid helium to fill the brass block, A recess is cut around the slot so that

the superconducting assembly in the brass block can be soft soldered to this disk

to obtain a helium tight joint with good thermal contact. This design--a relatively

large mass suspended a substantial distance below a flexible joint--is a crude pen-

dulum, To eliminate any unwanted oscillations a vertical 3/8" diameter pin is

attached rigidly to the bottom of the brass block and it is fitted to a lucite bushing

which is rigidly attached to the bottom plate of the radiation shield. Care has been

used in the design to minimise thermal conduction.

A copper shield is used external to and concentric with the helium flask to

minimise radiative heat transfer. This shield is not pressure tight and a common

vacuum exists on both sides to prevent conductive heat transfer. This subassem-

bly is also pendulous and Z similar 3/8" vertical pins are used to prevent relative
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motion between the radiation shield and the outer shell. The outer shell is a vac-

uum tank made of heavy gauge stainless steel. The axis of the flanged holes is in

the same horizontal plane as the axis of the superconductor but the two axes are
o

displaced Z about the tank vertical center line. A hermetically sealed electrical

feed through plug and an "O" ring sealed safety relief cap are also used.

As far as practicalall stainless surface are buffed and polished and the

outermost surface is chrome plated and polished to minimise the radiant transfer

of heat. The insulation of the dewar is such that the outer shell reaches a temper-
o

ature of about 5 C below room temperature.

The dewar manufacturer advised against using a liquid nitrogen cooled radi-

ation shield because the increased cost, weight, and complexity of operation would

not be justified. The manufacturer estimated that the dewar would cause about 1

liter of helium to boil off in Z hours but if the windows were omitted I liter should

last 6 to 8 hours. By contrast, the liquid nitrogen shielding 25 liter helium storage

dewars will boil off liquid helium at about I liter in 48 hours. It is apparent that

most of the heat comes in via the windows in the form of radiation. The use of

infrared reflecting coatings on the optically flat windows needs to be investigated.

For reasons explained under "operating procedures" it is considered neces-

sary in the setup to have the floating test mass 4" above the surface plate. To

accomplish this an aluminum plate i/Z " inch thick by 16" square is bolted-with

spacers- to the dewar base. The dimensions are chosen so that the superconducting

axis would be a nominal 4. ZZ inches above the surface plate. This plate has 3

height adjusting and leveling screws. The screws may be used to tip the dewar

about either of Z orthogonal axes, one-axis normal to but not intersecting the super-

conducting tube axis.

5. Z Superconductin_ Assembly Design

The superconducting assembly is mounted in the brass block which is readily

removable from the dewar by means of a soft soldered joint. (Fig. 5. Z).

Two other designs for a superconducting cylinder were made but they proved

unsatisfacto ry.

The first system consisted of a copper tube and brass block as shown in

Fig. 5. Z except that the inside of the tube was coated with niobium (also known as

columbium). The coating work was carried out by National Research Co. by

vacuum evaporation. The adhesion was not satisfactory and, in fact, niobium par-

ticles could be dusted off. This lack of cohesion was evidentally due to the copper

oxide coating on the copper, even though great care was used to avoid it.

The second system was similar to Fig. 3 except the copper tube was lead

plated about .004" thick on the outside and a 1/8" gap was cut through the lead on

top of the tube. This scheme also failed because the lead coating was not satisfac-

tory.
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The third superconductor design is shown in Fig. 5. Z. The design features

niobium in contact with the lic_uid helium. The temperature tolerance and the

maximum permissible magnetic flux are much greater for niobium than other pract-

icalmaterials. A .006" thick sheet of niobium was wrapped around a copper tube

and a I/8" longitudinal gap was left at the top. The reason for this gap is discussed

in Section Z. 4. The niobium sheet is held in place by 5 equally spaced . 040" dia.

aluminum wire bands wrapped around the sheet and twisted at the top to secure.

It is important that the niobium take the form of part of a perfect cylinder, see

Chapter If. The copper tube has an accurately turned cylindrical outside diameter

and is an integral part of the helium flask. Inside the copper tube a coil is placed

near each end, wound with about 680 turns of enamelled (HF) .005" copper wire.

The coils are wound in slots in separate thin walled aluminum tubes which are a

slip fit in the copper tube and are anchored in place with a daub of rubber cement.

The four leads were connected to the electrical feedthrough plug. Each coil has a

room temperature resistance of about 80 ohms and a cold resistance of about 8

ohm s.

Each coil repels the test mass magnet and in combination they may be used

to center the magnet axially in the tube with a spring constant dependent on the coil

currents, suspension geometery, etc. (See Chapter IV). Damping of axial motion

of the magnet is provided by (a) eddy currents set up in the copper tube and (b) the

servo. Other motions of the magnet are satisfactorily damped by eddy currents

only. However,rotation of the magnet about the 1ongi_ axis is not damped so

well. A pendulous oscillation was noticed with periods of 1 to Z seconds and

required from 5 to 10 minutes to dampen out (See Chapter VII). The coil axes are

concentric with the superconductor axis but the magnet with I/4" diameter mirrors

floats about0.Z2 inch below this axis. The longitudinal axis of the SODD displace-

rnent detector was lowered about 1/8" to be more nearly concentric with the mag-
o !

net axis. The reflecting planes of the mirrors were set at 43 55 from the super-

conductor axis by accurately milled locating surfaces in the aluminum mirror

holder. Another lineup requirement--not built in--is that the straight edges of

the mirror must be normal to the dewar base within±Z ° The mirror sleeve is

anchored in the copper tube with rubber cement. Originally, the mirrors were

epoxied in their respective slots but unequal contraction of the glass and aluminum

broke the glass. Now the mirrors are held in place with brass clips and a drop of

epoxy is used at one end of the each mirror. To disassemble, the mirror assem-

bly and coil arbors may be pushed out by hand. If they are too tight they may be

jacked out by an improvised screw-washer-tube assembly in which the reaction

force must be applied against an end of the brass block.

5.3 Antechambers Design

It is required to insert test mass magnets into the copper tube and between
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the restoring coils after the superconducting state has been established. To do

this and to keep both ends free for optical and visual control, it was necessary to use

an offset inserting device. To accomplish this, two aluminum antechambers of

roughly 3-I/4" inside diameter and 4-7/I 6" long were made and spoons on Offset

rods were provided. A test mass may be moved about the inner cylindrical surface

of the antechamber by an external magnet and maneuvered into a spoon lying

against the inner antechamber wa11. With the spoon the test mass is lifted away

from the walland inserted into the superconducting region. The spoon shaft, I/8 'I

diameter, extends through the antechamber cover plate and is sealed by an "(D"

ring which permits rotation, axial motion, and a limited amount of wobble. One

spoon was replaced with an electromagnetic coilwhich serves the same purpose but

is narrow enough to fit between the mirrors. This coil is wound on a relatively

heavy copper core which serves as a heat sink. This coilhas a room temperature

resistance of 45 ohms and may be energized with 350 m.a. for one minute maximum.

The coil current should be shut off quickly in order to drop the magnet without

introducing angular accelerations.

The antechambers are equipped with I /Z I' thick x 3" dia. optically flat glass

windows. These windows and the entire antechambers are skewed in a horizontal

plane Z ° off the superconductor axis to prevent confusing reflections in the inter-

ferometer system. The antechambers are equipped with quick disconnect flanges

to provide ready access to the test area. All separable joints are sealed with "O"

rings.

Additional magnets may be stored about the perimeter of the antechamber.

These test mass magnets can be held in place by external magnets holding through

the 1 /4" aluminum antechamber wall. Experience has shown that the internal mag-

nets are difficult to keep apart and once they touch they can be separated only by

removing the antechamber. The use of only Z or 3 magnets per run is suggested.

5.4 Lessons Learned From Early Experimentation

In the earlier runs some trouble was experienced with the test mass mag-

nets falling into the gaps between the brass block and radiation shield and between

the radiation shield and the outer shell. To prevent this, thin-walled lucite sleeves

were installed in each end. These were anchored to the outer shellflanged holes

with rubber cement and almost touched the superconducting block assembly.

Another difficulty experienced was that of helium leakage. By means of a

mass spectrometer leak detector a leak was found between the helium flask and

the vacuum compartment. The superconducting assembly was resoldered two

times, checked with a leak detector, and tested with a helium run each time. The

tests were repeated twice with the dewar inverted and the base plate and radiation

base removed to check rigorously the brass block assembly for leaks but none
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could be found. The helium leak detector did not indicate a leak because the hehum

was not flowing downward into the deep blind annular hole. Finally, by means of

water traps and leak detectors it was possible to demonstrate that helium was

leaking around the toroidially shaped top of the helium flask. This defect required

replacement of the top at the factory. The manufacturers attributed the leak to

corrosion of the stainless cap due to spilling of the non-corrosive soft soldering

flux--known commercially as "No-Corrode. " Thisdamagedpiece was examined

and on visual inspection no defects could be seen. This half toroid was spun from

a piece of stainless sheet and required very severe cold working and frequent

annealing. This leak had a very deceptive behavior and appeared to be a "cold

leak n. These are supposed to be cracks, etc. , which leak at very cold tempera-

tures only and are notoriously difficult to locate. The leakage of the air and nitro-

gen were not noticed because the mechanical pump was used until liquid helium

was transferred. If helium gas leaks into the evacuated space, however, it does

not freeze but increases the pressure.

A third difficulty which also appeared to be a cold leak was caused by the

cold helium gas flowing downward and freezing the "O" ring in the safety valve.

The cold gas flowed downward because the rags that are wrapped around the top of

the dewar were allowed to hang down near the valve.

At all times, the vacuum pressure was monitored with a National Research

Company model 501 thermocouple vacuum gauge with a useful range of Z to
-3

500 x 10 mm Hg. having essentially the same calibration curve for helium and

air. This gauge may be used indefinitely with high off-scale vacuums.

At one time, a glass antechamber window was replaced by a lucite window

equipped with a National Research Company # 507 ionization pressure gauge. The

pressure with the dewar cooled to the liquid nitrogen temperature and the mechani-

cal pump running was about Z x 10 -3 ram. Hg. but when the pump inlet was closed
-6

and liquid helium added the pressure dropped to 1 x 10 mm Hg. This drop in

pressure is caused by cryopumping: the air in the vacuum chamber and the air

leaking in are frozen on contact with the cold helium flask.

5.5 Optical Systems Desisn

Both optical systems are sensitive displacement detectors and as such they

must be free of all extraneous motions. The dewar and all optical components were

set up on a 1Z00 pound, 4 foot square cast iron surface plate. Each critical opti-

cal component was of heavy steelconstruction and had a 3 point support.

All beam splitting mirrors were specified to have equal transmittance and
o

reflection for 45 incident unpolarized light except the beam splitter closest to

the laser. This beam splitter has a transmission to reflection ratio offourto one.

Protective coatings were not used.
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Fig. 5.3 showsthe combinedlayoutof the spot occultationdisplacement
detector (S,O.D.D.) andthe interferometer system. TheS.O.D.D. systemwas
designedto provide independentbeamsplitting mirrors andto avoid passageof
beamsthroughthe doveprisms. Theanglebetweenthe interferometer axis and

o

the S.O.D.D. axes was fixed by the dewar mirror design at Z I0'. This angle
o

and the design of the chopping wheel for a preferred angle of about 90 limit the

overall configuration to the approximate dimensions and angles shown on Fig. 5. 3.

The light source is a Perkin Elmer model 52.00 gas laser and a model
O

5Z01 power supply. The laser has a wavelength of 63Z8 A, a beam intensity of . 5

milliwatts, and has a collimated polarized beam of . 15 diameter. A plot of inten-

sity distribution across the beam would give essentially a gaussion curve. The

laser is mounted on an aluminum frame and may be rotated and locked in any posi-

tion about its longitudinal axis. The frame also has height and level adjusting

screws. Provision is made for mounting Z microscope objectives, usually 16 ram.

or longer focal length. These lenses give good control over focusing and were

used to obtain a small . 01 inch beam diameter at the points where they were

occulted by the test mass in the S.O.D.D. system. By controlling the beam dia-

meter at these points adjustment of the S.O.D.D. sensitivity may be achieved

_mee Chapter Ill). Next in the opticalpath a beam splitter--mirror assembly was

used to give adjustable separation and relative angle to the interferometer and

S. O. D, D. beams.

In the following assembly a 3"diameter optically flat beam splitter was

used for the interferometer beam and was coated on the side nearer the laser.

This mirror was equipped with horizontal and vertical adjustments which affect

only the reflected beam component. On either side of this 3" beam splitter were

5/8" dia. beam splitters for the S.O.D.D. system. These mirrors were also

adjustable about 7. axes. A motor driven chopping wheel was then used to interrupt

alternately the right and left beams of the S.O.D.D. system at 16 c.p.s, before

they entered the dewar. A small beam splitter and photovoltaic cellwere used in

the right beam to obtain a phase reference. The next optical components are the

two dove prisms--one in the left and one in the right interferometer leg. These

prisms are aligned so that 4 long sides are parallel to and equidistant from the

axes of the beams going toward the dewar. Next, the optically flat mirrors are set
O

up so they are in line with and make a 67 1/Z angle to the superconducting tube

centerline. These mirrors reflect both the incoming and outgoing interferometer

and S. O.D.D. beams. The mirrors have spring loaded conical pivots near the

spot where the interferometer beams are reflected to minimize the axial mirror

motion during angular adjustments. The angular changes are made by Z microme-

ter heads which will rotate the mirror about a vertical and horizontal axis.
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Because rotation of the test mass about transverse axes will cause the

reflected beams to separate in opposite directions (i.e., if one reflected beam

goes up the other comes down) the use of inverting mirrors is required, (see

Chapter III). Originally, two inverting mirror assemblies were made, each with

3 mirrors, for each interferometer leg. These assemblies were mounted so that

their axes were concentric with the interferometer beams going toward the dewar.

This technique worked well as far as keeping the interfering spots superimposed

during test mass rotation but the setting up procedure was too cumbersome. Two

dove prisms about 1" square by 3" long replaced the mirror assemblies and were

found to be adequate.

The light sensitive photovoltaic cells were made by Hoffman Electronics

Corp. and are available in a wide range of sizes. Tests were made on the cells

which showed the output voltage to be relatively independent of spotsize or position

Obviously the . 5 milliwattlaser beam is well collimated and the spot should not be

so small that local heating will become a factor. Permanent damage to the cell
o

will be caused by local temperatures of 100 C. It is suggested that the image be

not smaller than .0Z inch in diamter unless better advice or test results become

available.

The interferometer test results were quite unsatisfactory even when the test

mass simulator was used. It was possible to adjust the simulator to achieve spot

brightness variations but superimposed on the steady state brightness was a random

low frequency intensity modulation.

5.6 Test Mass Desisn

The test masses were made as follows:

Two mirrors 1/4" diameter by . 088" thick and flat to 1/4 wave were alumin-

ized but were not given a protective coating. These mirrors were epoxied onto

the ends of an Alnico V magnet 1/8" diameter by 5/8" long. As the epoxy cured

the mirrors were held against optically flat windows which were accurately spaced

with 3 sets of gauge blocks each stack .8110" high. A fixture was provided which

was a l"diameter x 3/4" high steel cylinder with a 1/8" diameter through hole in

which each endwas counterbored to .Z50"diameter x 5/3Z" deep. The axes of ,these
o

holes were accurately concentric and normal to the cylinder ends. A 90 segment

was cut from this cylinder and as a fixture it was held magnetically to the magnet.

The magnet axis was then normal to the optically flat window, the two 1/4" dia-

meter mirrors were held concentric to the magnet, and enough space was left

about the small mirrors to allow a brass leaf spring to hold them against the

optical windows to obtain accurate parallelism.
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5.7 Test Mass Simulator Design

To calibrate the optical systems two test mass simulators were used in

place of the dewar and test mass. The first simulator, designed to calibrate the

less sensitivie S. O. D.D. system, consisted of a magnet mounted above a heavy

two axis micrometer fed microscope slide. See Chapter III for discussion of

results.

The other simulator has a positioning requirement to detect wave interfer-

ences of about . 0Z wave length.

In effect the sensitivity is doubled (1 mirror advances as the other retreats)

so it is required to move the mirrors through distances as small as 5 x 10 -7 cm.

or, . Z micro inch. When used in the servo the output error signal is effective for
-5

a displacement of about 1. 5 x 10 cm. and cannot distinguish between positions
-5

3 x 10 cm. part.

The test mass simulating mirror was a 1/4 inch diameter by 3/4 inch long

cylinder of glass with the ends parallel, polished, and aluminized to optical flat

standards. This double mirror was mounted on a 3" dia. x 3/8" thick aluminum

platform which had 4 integral legs approx. 5/16" square x 1-3/16" long equally

spaced and enclosed within a Z-1/Z" diameter. The legs were also integral with

a heavy base and in effect the platform could be displaced horizontally with respect

to the base with a very stiff spring constant. A screw and coil spring assembly

were attached to the base in such a way that the spring would exert an adjustable

horizontalforce onthe platform. The spring constants were such that 1 pound would

deflect the platform 5 micro inches and the coil spring 4 x 10 4 micro inches. It

can be shown that the coil spring may be compressed by 1 600 micro inches to

displace the table . Z micro inch. With suitable preloading the mirror may be

moved axially in either direction and the system is free of backlash and hysteresis.

This testing fixture also had a provision for rotating the mirror about a vertical

diarr_er so that test mass wobble could be simulated.

5.8 Liquid Level Sensin_ Devices

A helium level sensing probe was made by soldering a I/8" OD x 30" long

stainless steel tubing to a drawn copper sweat fitting adapter 5/8" LD to i/8" ID.

A .005" thick x 5" square rubber sheet was wrapped over the large end and in"O "

ring was wrung over the 3/4" OD cylindrical diameter so as to hold the rubber tight

and flat over the large end. When the small end of the sensor is immersed in

liquid helium and withdrawn slowly, the rubber diaphragm will vibrate with a large

amplitude at a frequency of about 6 cps. As the tube is withdrawn, the frequency

increases to about Z0 cps and it suddenly stops when the tube end is no longer

immersed in liquid helium.
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The same tube assembly may be used to sense liquid nitrogen levels if the

rubber diaphragm and "O" ring are removed. If the tube is about room temperature

and the small end is lowered slowly into LN Z small drops will fly out the top just

as the tube contacts the liquid surface.

5.9 Electronics

The SODD control loop is shown in Fig. 5.4.

The output of the SODD photo detector, a solar ceil, was fed into a preamp

followed by a power amplifier and a phase sensitive demodulator. The reference to

the phase sensitive demodulator was obtained from the output of the reference photo

detector shown in Fig. 5.3. The output of the demodulator was fed into a variable

gain operational amplifier with variable lead-lag capability. The output of this

amplifier drove a differential transistor stage which controlled the currents in the

coils on either side of the magnet inside the superconducting cylinder. Means are

provided for feeding only one coil and for the external adjustment of the currents in

either coil.

A switch after the servo amplifier allowed open loop or closed loop

ope ration.
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CHAPTER VI

OPERATIONS PROCEDURE

6. 1 Equipment Requirements

For a helium run in the LLAMA dewar the following supplies are required:
-3

1. Mechanical vacuum pump capable of 5 x 10 mm Hg. including a

suitable vacuum hose.

2. National Research Co. #501 Thermocouple pressure gauge.

3. National Research Co. #701 Vacuum gauge control.

4. 25 liters of liquid helium in a storage dewar.

5. 1 5 liters of liquid nitrogen in a storage dewar.

6. Pressurized helium gas in bottle equipped with regulator valve and

pressure gauge to use in the 1-10 psi range.

7. Liquid helium transfer tube. Janis Research Co. #FHT

8. Liquid nitrogen tranfer tube. Janis Research Co. #RHT

9. Liquid helium level sensing tube.

10. Helium storage dewar "reamer. " (3/8" dia. x 3 ft. long alum.tube).

ll. 3 or 4 cotton rags.

12. 1 /4" I.D. x 20 ft. long rubber tubing suitable for 10 psi.

13. Z flashlights.

14. Thermos bottle of 1 to 2 liters capacity with large mouth.

15. 6 Alnico V magnets about I/4" diameter x I- I/4" long.

16. A magnetic compass--cheap pocket type about Z" diameter.

6. Z Preliminary Optical Ali_nment

Both optical systems should be aligned before the dewar is cooled. The

LLAMA dewar must be set up on a large stable platform, preferably a 4 ft. x 4 ft.

or larger surface place, as shown in Fig. 5.3.

The larger (10" diameter)base plate on the dewar and the surface plate

should both be leveled within ± 3 arc minutes in a direction parallel to the supercon-

ductor axis.

The interferometer is more critical and should be aligned first. The re-

flecting test mass mirrors will not be in place and as a substitute the laser beams

entering each end of the dewar must pass through and be coaxial with each other

and parallel with the superconductor axis at an elevation approximately equal to

the floating test mass center line. This requirement is most easily met if all
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interferometer beams are confined to one plane. Another reason to limit the beams

to a plane, is because the overlapping beams would otherwise have a wedge effect.

The alignment was made easier by using a mask with a 3/3Z" diameter

clearance hole set at 4" above its base. This mask could be inserted in the beam

path at any one of severalpoints so that one beam would pass through the hole con-

centrically. The other beam approaching from the opposite direction could then be

adjusted to pass through the same hole. Both beams should then be combined so

they are parallel and concentric when they fall on the light sensitive cell in the

interferometer detector, lack of concentricity may be detected by alternately

interrupting each beam and observing whether the spot on the light sensitive cell

appears to jump.

The S. O.D.D. system should then be set up but the micrometer adjusted

mirrors are common to both systems and any angle changes must be compatible

with both.

6.3 Coolin B of the Dewar

Before cooling, the vacuum jackets of the dewar and the liquid helium trans-

fer tube should be evacuated to about I0 microns. The next step is to transfer

liquid nitrogen to the dewar for precooling. The input end of the liquid nitrogen

transfer tube is immersed in the liquid nitrogen L.N Z storage dewar and the neck

of the dewar is sealed to the outer jacket of the transfer tube with a rubber hose.

The output end is inserted in the LLAMA dewar and the storage dewar may then be

pressurized with about 4 psi of helium gas. The flow of L. N Z will start and should

be cor_tinued until the dewar is at least half full--5" deep. This transfer requi_-es

about 4 to 6 minutes and as there is no visible indication of the dewar nitrogen level

we watch for drops of L.N Z to spill out the top of the de_var. This begins when

about I liter has been transferred. The filling should continue for another minute

or so then the flow of L.N Z should be shut off. This is accomplished by turning

off the helium gas supply and venting the storage dewar to atmosphere. We find

that the L. N Z level may be estimated by using the liquid nitrogen level sensing

probe as described in Chapter V.

The L. N Z should then be allowed to remain in the dewar for at least half an

hour and may then be removed by reversing the transfer tube end for end. The

LLAMA dewar may then be pressurized and the process repeated. This reverse

transfer wiU still leave about 100 cc. of L.N Z in the brass block assembly. To

remove the remaining liquid a vigorous blast {6-10 psi) of gaseous helium imping-

ing on the slot will be helpful. Next the valve on the dewar leading to the vacuum

pump should be closed and the vacuum hose removed. The pressure gauge should
-3

still be operative and the indicated pressure should remain below about 5x10 am.

Hg. for the entire run.
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It should be noted that any air finding its way into the L. He dewar willfreeze.

For this reason, the helium dewar reamer, an aluminum tube 3/8t! diameter by

5 ft long, is used to clear the neck of frozen substances before each transfer. The

operator should also be aware of the possibility of the transfer tube becoming ob-

structed by frozen particles. Neither the liquid helium nor liquid nitrogen storage

dewars should ever be exposed to internal pressures greater than I0 psi gauge. It

is considered good practice to blow helium gas through the transfer tube to mini-

mize the amount of air trapped in the flexible tubing convolutions and to check for

obstructions.

The input end of the helium transfer tube should then be inserted in the

helium storage dewar and the sliding sleeve sealed to this dewar with rubber tubing.

This sleeve should be adjusted so the input end of the transfer tube is about 1iv above

the bottom of the dewar. About 3 psi of helium gas pressure is then applied to the

storage dewar to cause the liquid helium to flow. It is helpful to immerse the out-

put end of the transfer tube in a large mouthed thermos bottle so the flow of 'L_I-le

may be confirmed b'efore inserting the tube into the LLAMA dewar. If the outside
o

of the transfer tube should reach a temperature more than about I0 C below

ambient the vacuum is not sufficient for good thermal insulation.

When the liquid helium flow through the transfer tube has been confirmed

the output end is then inserted into the LLAMA dewar. Rags should then be wrapped

tightly about the dewar-transfer tube joint.

No outward indication exists for the amount of liquid helium in the dewar.

A t first a thin white smoke-frozen water vapor-will rise as the cold helium gas

passes through the rags and cools the surrounding air. After about 5 minutes a

dense white smoke made up of frozen particles of air will appear. The transfer

should be continued for another 4 to 5 minutes. After shutting off the helium gas

supply and venting the storage dewar to atmosphere to stop the liquid helium flow,

the transfer tube should be removed from the LLAMA dewar and the liquid helium

level sensing probe used to find the liquid depth. Three inches of depth represents

one liter which should maintain the superconducting state for about 1-i/Z hours.

Normally, about 10 liters of liquid helium are required to charge the dewar to

this level. Finally the Teflon Nbolt" is inserted in the LLAMA dewar filling neck

and the dewar is ready to use.

6.4 Test Mass Insertion

It was found in practice that the insertion of the test mass into the operating

position is a difficult process. It should be emphasized that the polarity of the test

mass magnet must be compatible with each coil. The adopted convention was that

the operator looking at the electrical feedthrough side of the dewar would always

have the north pole of the test mass magnet pointing toward the right end of the
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dewar and the confining coils and the electro magnetic inserting device would have

their north poles pointing to the left. Each test mass had a daub of yellow or white

paint near its north pole end.

If both confining coils are energized the magnet will have 3 stable axial

positions. The normal position is equidistant between the Z coils and the magnet is

repelled by both. The other Z positions are the central position in each coil. To

insert a magnet from one end first block the opposite end with the unused spoon or

coil, and energize the farther confining coil with about 40 m.a. The spoon contain-

ing the magnet is then pushed gently inside the superconductor about l/16" less

than its limit. The exposed end of this loading spoon is then tapped to kick the mag-

net out and the nearer coil is then energized immediately with about 40 m.a. to

capture the floating magnet between the coils. The electromagnetic inserting de-

vice may be used in a similar fashion except the magnet may be inserted close to

the axial center of the superconductor. Both confining coils may then be energized

to about 40 m. a. each and the inserting device may then be de-energized with a

switch. It is important.to open this coil circuit quickly so both ends of the magnet

will drop at the same time.

Experience has shown that a magnet approaching a repelling coil with suf-

ficient speed may flip over end-for-end or become wedged crosswise in the tube.

A flipped magnet should be removed to an antichamber, reversed end-for-end with

an external magnet and re-inserted. To minimize the above difficulties both ends

of the superconducting tube were blocked with the spoons and by using minimum

coil current and manual amplitude and balance controls, it was possible to center

and stabilize the magnet.

The spoons may then be withdrawn and the servo position controls turned on.

The servos will not operate if the spoons block the optical sensing paths.

6. 5 Final Optical Ali_nment

Two possibilities for leveling the superconductor axis now are available:

One the leveling of the LLAk4.A dewar; and the other the leveling of the entire sur-

face plate including all optical components. The floating test mass magnet should

be centered with the S.O.D.D. position sensing system by means of the dewar

leveling screws when both coil currents are equal and have an amplitude of about

I0 m.a. If the magnet now has alongitudinaltilt the interferometer beams cannot

be contained within a plane unless the entire surface plate is tipped and the dewar

tipped an equal angle in the opposite direction to maintain the superconducting axis

level.

Fig. 6. 1 is a photograph of the latest verison of the LLANiA dewar and

Fig. 6. Z shows the dewar with one ante-chamber taken out to reveal one end of the

superconducting cylinder and the construction of the lucite spoon.
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Fig. 6. 1 The LLAMA Dewar (present  model) 

8 3  



Fig. 6.2 Dewar-Par t ly  Disassembled 
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Fig. 6. 3 LLAMA Setup 

Fig. 6 .3  is a photograph of the layout of the LLAMA sys t em during 

operation. A c o r n e r  m i r r o r  at bottom right i s  not shown in the photograph. 
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CHAPTER Vll

PERFORMANCE OF THE EXPERIMENTAL SUSPENSION

7. 1 Introduction

The LLAMA suspension dewar, in its present form, demonstrates the feasi-

bility of stably supporting a magnetic test-mass in a superconducting cylinder.

However, the technique used for making the tube (see Section 5. 2) leaves a great

deal to be desired and was adopted only as a simple expedient for checking the

design concepts. It is therefore not to be expected that the present suspension

should approach the theoretical limits derived in Chapter IX. Modifications to im-

prove the performance are also discussedin Chapter IX.

The best method of testing the supsensionwould be to observe the perfor-

mance of the complete LLAM.A system. Pending the availability of the other com-

ponents, an attempt was made to measure the inherent (negative) spring constant of

the suspension. There are some problems in making this measurement, whichwill

be clarified by considering the idealized model discussed in the Appendix.

There is serious doubt as to the applicability of the theoretical model in the

present suspension; however, conclusions drawn from it do prove to be of some

value in interpreting the test data.

7.2 The Effect of Axial Non-Linearity

Since measurements could of course be made only when there was sufficient

current flowing in the coils to ensure stability, the method used to determine the

initial spring constant due to end effects in the suspension consisted of plotting the

square of the observed natural frequency of axial oscillation as a function of the

current, and extrapolating the resultant curve to zero current. The force on the

magnet due to the coils certainly varies linearly with the current, so this method,

on the surface, seemed capable of good accuracy, as long as small oscillations

Were used.

Assuming that the same current is flowing in each coil, and that the coils

are equally displaced from the center of the suspension, the maximum tolerable

amplitude of oscillation in these tests may be estimated by using Eqs. (2.5) and

(2.6). Neglecting damping, the equation of axial motion of the test-mass is

mR + 131 sinh ClX - cr sinh 2c I x = 0 (7. I)
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For small oscillations, the motion is of course simple harmonic, with a

spring constant given by

K ° = cI (/_I -2_) (7.z)

provided that I is sufficiently large for this quantity to be positive.

For larger oscillations, (7. 1) shows that the stiffness of the equivalent

spring at first increases with displacement and then starts to decrease, eventually

becoming negative. By differentiating the restoring force in (7. 1) with respect to

x, it is easy to show that maxima of the force occur when

coshZCl x _ _I coshclX -1 /Z = 0 (7.3)

The force is zero when

cosh ClX = _ (7.4)

and beyond this point is negative, so that this gives an absolute upper

limit on the permissible amplitude of oscillation. In practice, it was found that the

magnet did not necessarily fly out of the suspensionwhenthe displacement exceeded

this limit: the restoring force increased rapidly when the magnet approached one

of the coils (where the assumptions underlying (A. 3.7) of the Appendix become

invalid, even in the idealized model), so that it was possible for three stable posi-

tions of the magnet to exist inside the suspension.

In order to estimate the effect of the amplitude of oscillation on the treasured

value of the initial negative spring constant Ks, consider the average spring con-

stant for an oscillation of amplitude Xo, which is given by (7. 1) as

= x---I (_ I sinh c I Xo - _ sinh Zc I Xo) (7. 5)
O

Use of this parameter of course implies that the motion is sinusoidal,

which is, in general, a very crude approximation, but it will suffice for an order of

magnitude e stimation.

Now from (7. I)

K s =-Za c I (7.6)

and so

-- I I _ sinhClX o sinh 2ClX °= (7.7)
K/ K s Z_ ClX ° ZClX °
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If the measured value of K (i.e., the square of the measured angular Ire°

quency of oscillation) is plotted against I, the intercept of the resulting line with

axis will thus give the correct value of K s if the oscillations are sufficiently small,

but in general it will be in error in the ratio (sinh 2ClXo) /2ClX o.

This expression is plotted in Fig. 7. 1 as a function of x . It is clear that
o

the amplitude of the oscillations must be kept below about 0. 25 cm if this technique

is to give a reasonable accuracy.

The implication of this result is that some form of displacement detector is

a prerequisite for determination of the inherent spring constant, as visual obser-

vation of the test-mass did not allow sufficiently accurate estimation of the oscil-

lation amplitude.

7.3 Experimental Results

In order to make the measurement described above, a simple optical dis-

placement detector was constructed and attached to the dewar, see Chapter Ill.

The output characteristics showed a linear range of approximately 1 mm. The

axial position of the null inside the suspension was determined by the location of a

small prism assembly mounted inside the copper tube.

The prisms were moved until the output null was as close to the center of

the superconducting tube as possible. The stabilization coils were fixed in position

near the ends of the suspension: when the magnet was inserted, it was found that

a coil current of 11 mA was the minimum for stability. The levelling of the base

of the dewar was then adjusted, causing the magnet to move into the linear range

of the detector, until an output close to null was obtained.

The test mass was displaced to one end of the linear range by bringing an

external magnet near one of the dewar windows and then released. The output of

the detector due to the resultant damped axial oscillation was recorded, and the

experiment repeated for several different values of the coil current. A typical

record is shown in Fig. 7. 2.

The first parameter that could be determined from these tests is the damp-

ing due to eddy current generation in the copper tube. The amplitudes of success-

ive cycles of the oscillations are plotted in Fig. 7.3 as functions of the time. The

time constant was found to be approximately 3 seconds.

Secondly, the spring constant corresponding to each record (i. e. , me 2)

was computed and plotted as a function of the coil current, as shown in Fig. 7.4.

The inherent suspension spring constant was found to be approximately- 15 dynes/cm.

From Eqs. (7.6) and (7.2), the values of the constants in Eq. (7. 1) are

_ 2.5 dynes
(7.8)

_ 0.5 dynes/mA
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SECONDS

Fig. 7.2 A Typical Test Record
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Fig. 7.3 Damping of Axial Oscillation
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Two more simple tests were preformed as an aid in evaluating the suspen-

sion. In the first of these, the base of the de_ar was suddenly tilted through 12 arc

seconds, with a current of 15 rnA flowing in the coils. It was found that this pro-

duced a very easily observable change in the detector output, as shown in the record

of Fig. 7.5. The record was to some extent corrupted by noise due to shaking of

the test fixture, but it was estimated that a tilt of Z arc seconds, corresponding to

10-5g. would be well above the threshold, even without the rest of the LLAMA

system.

As a check on this result, the current in one of the coils was increased sud-

denly, when the magnet was floating near null. From Eq. (A. 36), the force on the

magnet was due to a step _I in on___eeof the coils is _ &h it was found that a change

of 0.05 rnA was readily observable, corresponding to a force of 0.013 dynes, equiv-

alent tolZ x 10-6g. The agreement with the preceding result wassurprisinglygood.

The results of the tests are tabulated in Table 7. 1, for ready reference.

It is also clear that the present suspension incorporates a very useful

amount of damping, which should make it a relatively simple matter to close the

restoring force feedback loop.

7.4 Interpretation of Test Results

The observed initial spring constant, Ks, is of the same order as that

which would be obtained if the magnet were placed in free space between two verti-

cal soft iron plates, separated by the length of the LLAI_tA suspension. It is con-

sidered that the numerical value observed does not have great general significance,

as it is undoubtedly greatly affected by the width of the slit along the top of the sus-

pension. However, the observed conditions for stability do lend some support to

the belief that the displacement dependence of the axial forces does follow the hyper-

bolic form derived in the Appendix.

In any case, the end-effect compensation coils performed extremely well,

as evidenced by the low acceleration threshold when the suspension was used as an

elementary accelerometer. It is quite surprising that the present instrument,

which was designed for checking feasibility, not for high performance, should do

so well, without any of the other components of LLAMA.

7.5 Closin 8 the Loop

In order to close the loop around the magnet, the output of the displacement

detector was fed into a variable gain operational amplifier, see Fig. 7.6. The

amplifier output drove a dLfferential transistor stage. The two coils were connected

in series across the two collectors of the transistors and the point between the coils

was connected to a variable voltage supply.

In the open loop mode, the input to the amplifier was grounded by closing

switch S I and the input to the differential stage was also zero. The common mode

current in the two coils was adjusted by means of the applied voltage at the center

position between the coils.
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Fig. 7.5 Response to Steps in Input Acceleration
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In the closed loop mode, switch S 1 was opened so that a displacement detec-

tor output would cause a differential current in the coils.

Starting with the same procedure as for Section 7.3, the magnet was brought

into the linear range of the detector and the loopwas closed.

The output of the displacement detector was monitored on a recorder. The

output clearly indicated the presence of a limit cycle shown in Fig. 7.7 due to the

limiting property of the detector. Turning the gain down only reduced the frequency

of the oscillation.

By applying some lead compensation and adjusting the gain, the oscillation

began to damp out, see Fig. 7.8, as was predicted in Chapter IV. However, before

the loop was stabilized completely, the magnet was excited into another mode of

oscillation--about a horizontal axis normal to the tube, as shown by the sudden

appearance of a high frequency oscillation, which will be investigated later in

this section. This mode of oscillation was eliminated by the application of a

low pass filter in the feedback loop, and the loop was finally stabilized. The mag-

net was quite stationary, with the usual slight oscillation about the sensitive axis

since damping is not provided for this mode in the present suspension.

The application of dewar tilt angles of about 50 seconds of arc gave notice-

able change in the detector output but an accurate closed loop response to step

acceleration inputs has yet to be determined.

The variation in the frequency of the damped oscillation in Fig. 7.8 may be

explained as follows: for small amplitudes, well within the linear range of the dis-

placement detector, the frequency was about 2. 5 c/s due to a fairly tight loop with

an effective spring constant of ?-50 dynes/cm. As the amplitude increased, the

curvature of the detector output, Fig. 3. II, had the effect of decreasing the net

gain in the loop thus decreasing the spring constant and hence the natural frequency.

The excited mode of oscillation was most probably caused by the detector

being sensitive to rotations and displacements about other axes, as explained in

Section 4. 5.

When the improved version of the SODD, Fig. 3. 10, was used the loop was

closed without any noticeable excitation of other modes of oscillation. The thres-

hold acceleration was below 10 -6g, limited by the present test environment.

When the interferometer displacement detector was used with the floating

magnet several problems came to light. Because rotation of the magnet about the

sensitive axis is very lightly damped, magnet rotation about this axis never quite

damped out and any slight inherent misalignment of the principal mirrors on the

magnet prevented the interfering spots from overlapping on the screen. Extra care

was then taken in attaching the mirrors to the magnet so that they were as concen-

tric as possible with the magnet. Pendulosity effects which caused the oscillations

about the sensitive axiswere reduced in this way.
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Ideally, it would be desirable to have the principal mirrors integral with

the magnet. Grinding the ends of the magnet flat and parallel to act as mirrors is

worth exploring. The pendulosity effect that would remain in this case would be

that due to the separation of the center of gravity of the magnet from its magnetic

axis.

On several occasions spot overlap of the IDD spots was possible but the

interferogram was not stable due to noisy environment. Very quiet conditions are

extremely important in the test of a suspension of this kind.

At the present stage of development, LLAMA has shown considerable pro-

mise of exceptional sensitivity. There is little doubt that the value of the measured

acceleration threshold is determined by the limitations of the displacement detector

used and the stability of the test fixture rather than by the suspension itself. It is

expected that use of the interferometer and creation of a more stable environment

by mounting the instrument on a suitable seismic pier would enable the threshold

to be lowered by several orders of magnitude, even without improving the rather

primitive arrangement of the superconductor.

Table 7. 1: Characteristics of Experimental Suspension

Initial inherent suspension spring constant (Ks) .... -15 dynes/cm

Force constant of suspension (a) .......... 2.5 dynes

Force constant of stabilizing coils (_) ........ 0.5 dynes/mA

Natural axial damping time constant ......... 3 seconds

Threshold as an elementary accelerometer ..... 10 -5 g

99



CHAPTER VIII

CALIBRATION

8. l General

As was mentioned earlier, the force generated by the restoring coils can-

not be accurately determined. The steady state differential current in the coils,

when in closed loop operation, is a measure of the applied acceleration. For the

purpose of calibration, an external force of known magnitude is exerted on the mag-

net and the corresponding differential current recorded. This can be repeated for

other magnitudes of the force to obtain a calibration curve.

Since the mass of the magnet is 1 gram, an external force of 10 -3 dynes

corresponds to an acceleration of 10-6g.

Considering the methods of generating small forces outlined in Ref. Z2,

and keeping in mind that the range of interest extends below 10-6g, the photon

force provides a feasible solution.

Possible methods for generating a suitable photon force for LLAMA applica-

tion are examined in the following sections.

8.2 Rec_uirements for Application of Photon Force

The force F available from electro-magnetic radiation is given by (22)

EA (l+r) cos 20 x 107
F =

C

F = force exerted by beam of light in dynes.

]E = power in incident beam in watts.

1010c = velocity of light = 3 x cm/sec.

r = reflectivity of surface on which the beam is incident.

@ = angle of incidence of beam on surface.
2

A = area of surface in cm

The magnitude of this force is 0.66 x 10 -3 dynes if the energy in the beam

is 1 watt falling normally on a perfectly reflecting surface.

Several requirements have to be met for the application of photon force.

{a) The available surface area dictates the power density in the beam.

In LLAMA, because of float height limitation in the present setup, the available

surface is a disc 1 cm in diameter or an area of 0.78 cm 2. The area of the largest
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Zsquare incribed in the disc is 0. 51cm To generatelow forces is simple. To
-3

generate10 dynesrequires 1.5 watts, (seeSection3. 3.1 of Ref. ZZ)fora per-
fectly reflecting surfaceandthe powerdensity is Z-3 watts/cmZdependingon the
cross-section of the beam. Possible sourcesare discussedin Section8.3.

-5(b)A highvacuumbelow10 torr must prevail to avoid thermal effects,
(seeSectionZ.3.3 of Ref. ZZ). The vacuumsurroundingthe liquid helium inner
bottle is excellent sinceafter a short period of time only helium gascanexist in
this region, sinceall other gasesliquify dueto the cryopumpingaction of the
liquid helium. To ensurethe absenceof helium gas, the enclosurecanbe flushed
with, saynitrogen. However, in the present system, air which is rich in helium
dueto the evaporationof liquid helium from the inner bottle, can leak in from out-
side via the "O" ring feed throughs and a helium atmosphere can build up. If found

necessary, a low pressure pump can be permanently incorporated so as to keep

the vacuum as low as desired.

(c) The surface must have a high work function so as to reduce the genera-

tion of photo-electronics (see Section 3.3. Z. of Ref. ZZ).

(d) The surface must have high reflectivity to maximize the force and min-

imize heat absorption.

8.3 Criterion for Choice of Source

A good source of photons is a light source. Sources of light vary in bright-

ness, size of source, spectraldistribution of the radiated energy, the direction of

the radiation and so on.

In the case of LLAMA, the photon beam not only has to be squeezed on to

an area less than 1 cm Z, but also has to meet a beam angle requirement imposed

by the geometry of the suspension.

In order to develop a criterion by which various sources may be judged, a

simple opticalconfiguration is assumed, (see Fig. 8. 1) where

LENS

SOURCEal __IMAGE a2

: S 1 S2 -

Fig. 8.1 Optical Configuration for Comparison of Sources
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aI = projected area of source normal to optical axis

aZ = projected area of imagenormal to optical axis

8 = angular semi-aperture of lens from source

_5 = angular semi-aperture of lens from image

s I = distance of source from lens

s Z = distance of image from lens

Assuming the source emits equally in all directions, i. e. , a Lambert's Law

radiator, the flux collected by an elemental ring at the lens is given by

where

6F = B 1 a I cos 9 5¢o

B 1 = brightness of source

F = flux collected by lens

and

- angle subtended by ring

5_ = solid angle subtended by ring

r = distance of any element of ring from source

_W
_ ZTrr singr 5 4

Z
r

The total flux collected by the lens is

m ---

8
A

Zlr Bia 1 /- sin_ cos_
Jo

Z

B 1 a I sin 0

d_
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Now substituting for sin 8 and noting that

Z

a Z s Z

Z
al s 1

tanZ _ (8. i)

F = _r Bla I al
-- + tan Z
a Z

The flux collected by the image is FT where T is the transmission factor of the

lens, provided the image is smaller or equal to the available image area.

For a given _5, Eq. (8. I) showsthatF is increased if the product Bla I is

al 1

maximized and az (magnification) 2 is minimized.

For a given lens, there is a definite limit on the magnification for each

value of qb. Fig. 8. Z shows the magnification for different values of q5 for an f/l

lens. Another limit on the magnification is the size of the target area.

Using Eq. (8. I), the limitation on magnification from Fig. 8. Z, and assum-

ing a target area of 0. 25 cm Z, three promising sources were compared. All

three were high pressure mercury arc lamps and their characteristics are given

in Table 8. I:

Source

II

Ill

Power

Watts

I00

ZOO

500

Source

Dimensions

mm

0.Z5 x 0. Z5

0.6xZ. Z

1.1 x4.1

Br ightne s s
Z

cdls/cm

170,000

33,000

30,000

Table 8. 1

104



u')

I I I I

UU -NOILVZ)I=IINOVW _tV3NI1

- O

I I
I I -
I I
I,I
I I
I I
I I

o
u.= I:_

O =
,,. .o

I o
°gO

u'_ t_0

O

u3

O

105



Fig. 8.3 shows a plot of the flux collected by an f/1 lens (in arbitrary units)

against q_ for the three sources.

With a 5 cmdiameter f/1 lens, the LLAMA geometry dictates a _ less than
o

6 Fig. 8.3 shows that the 100 watt lamp collects the most flux in the region

where _ is below 6 degrees.

8.4 Force Available From 100 Watt Arc Lamp

The optical configuration for the measurement of the power from the 100

watt arclamp is shown in Fig. 8.4. The lamp was an Osram HB0-109 mercury arc

lamp.

The radiation from the lamp was collected by an f/1 lens and focussed on a

thermopile Z0 cm away after attenuation by a neutral density filter. The back radi-

ation was made use of by plaaing a spherical reflector with the source at its center
Z

of curvature. The image size was less than 0. 25 cm and the measured power

was 3.5 watts. (This takes into account the attenutation of the filter.)

The lens used was uncoated and made from ordinary lens glass. A coated

quartz lens would have increased the power by reducing the reflection at the lens,

and the ultra violet absorption by the lens. The line spectra of the lamp extended

to below Z900 2k.

To increase the power even more, a good quality aluminized elliptical
1

reflector with an equivalent speed of f/ _- can be used with the lamp at one focus

and the target at the other focus.

Already the measured power of 3. 5 watts is equivalent to more than Zx 10 -3

dyne s.

A UV source is preferred so as to minimize the heating effect inside the

cryogenic environment to conserve the helium.

Another advantage for using a UV source is its compatability with the

63Z82k wavelength of the helium-neon laser that is proposed for use in the inter-

ferometer. The filtering problem is eased when the wavelengths of the sources

are widely separated.

Other sources that can give a slightly higher power density in a beam angle
o

of less than 6 are available in the form of high intensity carbon arc lamps that

consume around 14,000 watts.

8.5 Measurement of Photon Force

By measuring the power in a photon beam, the force it can exert can be

calculated from Eq. (8. 1).

The ideal detector is one that has a flat response for all wavelengths in the

beam, a high signal to noise ratio and a short time constant.

Quantum detectors such as photo-electric, photo-conducting and photo-

voltaic cells where the incident photons change the detector characteristic directly
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exhibit different sensitivities for different wavelengths. This property is undesir-

able unless the beam is monochromatic.

Thermal detectors, such as a thermopile, absorb the radiation in a black

surface and detect the temperature rise in the surface by the Peltier Effect. A sur-

face such as lamp black absorbs equally over a wide range. One disadvantage with

thermal detectors is the inherent time constant of the order of a second which can

become troublesome when the beam is modulated. The noise level is neglibile

since the signal is high.

8.6 Modulation of Photon Force

The search for a simple nonmechanical method for the control of the inten-

sity of a photon beam is intense.

Electro optical techniques, however, do exist using the Kerr cell(Z6)or the

Pockels effect where the light is first polarized by a 0 ° polarizer, passes through

00--+90 ° variable polarizer and finally through a 90 ° polarizer. By varying the

angle of the polarization(Z7)in the middle polarizer, the intensity of the beam can

be modulated. The maximum transmission is about Z5%.

Mechanical shutters are numerous and can be used either as aperture con-

trollers or as choppers. A suitable method for generating pulses of varying widths

from a constant beam can be achieved using a stepping motor. (Z8)

Sources such as flash tubes can be easily controlled by varying the flash

rate but the average power output for a period time is below 1 watt with present

devices.

The application of lasers is discussed in the next section.

8.7 Laser Application

Injection lasers are idealfor the generation of photon force. The beam is

narrow, intense and can be electronically modulated. The radiation need not be

highly monochromatic or coherent for this application.

Present injection lasers havereadaed an output power of 3 watts (Zg) continu-

ous--but these devices are still in the experimental stage.

The cryogenic cooling that is required for the lasers presents no problem

in this ease since liquid helium and nitrogen are already available for the suspen-

sion. (30)

Presently, molecular gas lasers such as the Nz-CO Z laser are generating

powers of the order of tens of watts (cw) and promise even more. So far, molecu-

lar gas laser frequencies are in the far infrared and great care would have to be

taken not to introduce excessive heat input into the dewar.

8.8 Possible Calibration Method

To generate a low level force of 10 -3 dynes and less of known magnitude is
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one problem, to use this force for calibration on earth is another problem.

Assuming ideal conditions where the outside interference is negligible during

the time needed for calibration, a possible method is shown in Fig. 8. 5.

The photon beam is directed at an aluminum deposited disc attached at one

end of the magnet. A well-calibrated beam splitter deflects 1','_ of the beam onto a

thermopile. This deflected beam is made topass through identical windows, rejec-

tion filters, and so on as those in the main beam for compensation. The intensity

of the beam can be varied by neutral density filters and the differential current

required to keep the magnet at null is recorded so as to obtain a calibration curve.

If the differential current is too small, the number of turns in the coils can be

reduced.

If the isolation is not ideal, an alternating force can be applied by chopping

the photon beam. The frequency has to be chosen so that it can be easily filtered

out. The choice of frequency depends on the statistical behavior of the interference

for the particular environment selected and on the bandwidth of the accelerometer.

A survey of various disturbances and a means for building an isolation platform

is given in Ref. (31).
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CHAPTER IX

FUTURE DEVELOPMENTS OF THE LLAMA SYSTEM

9. 1 Ultimate Limits of Performance

The most significant feature of the LLAMA suspension is that there is no

mechanism present which might cause "stiction". The threshold sensitivity which

might conceivably be attained is therefore limited by other factors, such as the sen-

sitivity of the displacement detector and the geometric perfection of the supercon-

ducting surface.

One possible limiting factor is thermal fluctuation of the test-mass position

(i. e., Brownian motion of the test-mass). If the threshold sensitivity of the dis-

placement detector is x cm, and it is required to detect an acceleration of
O

a cm/sec- then it is clear that +_ maximum spring constant of the accelerometer

(whether it be generated by feedback or by open-loop forces) is given by

ma
K - ox (9.1)

0

The mean amplitude x of Brownian oscillation of the test-mass is then
n

given by the equipartition theorem as

2
ma x

o n kT
2x - 2 (9.2)

0

where k is BoltzmannVs constant, 1.38 x 10 -16 ergs /degree, and T

is the absolute temperature.

Assuming that measurement is possible when the amplitude of the Brownian

oscillation is one half the displacement threshold, the acceleration threshold is

given by

4kT

ao - mx (9. B)
O

The implication of this equation is that this limit is minimised by allowing

a large Xo; but unfortunately the natural period T, and hence the settling time of the

instrument, is proportional to _x o. The limitation is therefore likely to be the

patience of the observer (or perhaps the supply of helium!). Putting x = I micron
O
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and T = 10 in (9.3) gives

a = 5x10
O

-IZ cm/sec Z (9.4a)

T --

From (9. I),

8 hours (9.4b)

T = Zw (9.5)

so that (9.3) may be written

Zw j t4kT_}'ao = -4-- -- (9.6)

Thus the acceleration threshold imposed by thermal fluctuation varies

inversely as the allowable natural period. Increasing x ° to 1 mm would improve

the value of a ° given in (9.4a) by a factor of one thousand, but it would also increase

the natural period to about one year. For most cases, then, I0 -IZ cm/sec Z maybe

taken as a practical limit on the sensitivity.

Another possible limit is imposed by thermal fluctuation of the current in

the restoring coils, which is given by

JAI = (9.7)

where R is the output resistance of the current supply, and T is now

room temperature. Because of (9.6) there is no point in having a large value of the

bandwidth B.

For small displacements, the corresponding change in the spring constant

is given by ( 2. 6) as

AK = Cl/3AI (9.8)

in the experimental suspension, Cll] = 1. 5 dynes/cm/mA (see Section 7.3).

Taking as an example B = 0.001 c/s, R = 10k_, Eqs. (9.7) and (9.8) give for this

case

A K = Z. 10 -7 dynes/ca (9. 9)

For comparison, the spring constant in the Brownian motion limited case of

(9.4) is given by (9. I) as

K = 5. 10 -8 dynes/cm (9. I0)

114



It shouldnot bedifficult to decreaseAK by two orders of magnitude, by in-

creasing R and decreasing fl (according to (A.37) of the Appendix, _ decreases

exponentially with separation of the coils). The conclusion is therefore that therrral

fluctuation of the spring constant imposes a sensitivity limit which is of the same

order as that imposed by the Brownian motion effect.

The limitation imposed by distortion of the superconductor is not expected

to be significant at the above levels. Large scale distortion (buckling) simply modi-

fies the inherent spring constant of the suspension, at least for small displacement_

and hence may be compensated by adjusting the current in the stabilizing coils.

Surface roughness is averaged over a distance of the order of the float height, so

that, again for small displacements, it too is seen simply as a variation of the

spring constant. If the surface finish is held to (say) S microinches, these effects

should be negligible.

Finally, the experimental suspension is grossly overdamped for operation

at the levels considered in this section. This is due to eddy current generation in

a copper liner inside the superconducting tube. In the ideal case of a magnet float-

ing inside a superconducting tube, with no other metal present, the only damping

would be due to eddy current generation m the m=tal of the magnet itself, since eddy

currents in a superconductor can dissipate no energy. The resistivity of Alnico V

is Z500 times that of copper, so that it is expected that a suspension of this type

would not be limited by damping at the levels considered.

In view of the above results, it is clear that the ultimate limit on sensivity,

at least in a terrestrial installation, will be due to external vibration, microseisms,

etc. It is only in a space application that LLAMA will ever be able to approach its

maximum performance potential.

In this discussion of limits on performance, it has been assumed that the

only variation of the currents in the coils is due to thermal noise. If end effect com-

pensation requires a current which is large compared to the position control (restor-

ing force) currents, it may be impossible to regulate the current sufficiently for

this to be so. This is not regarded as a fundamental limitation, however, since it

is possible to reduce the required stabilizing currents to an arbitrarily low level,

by increasing the length of the suspension or by one of the end effect compensation

schemes discussed in Section 9. Z.

9. Z Suspension Modification for Improved Performance

The test mass suspension discussed in this report was intended only to dem-

onstrate the feasibility of the LLAMA concept, and does not approach the theoretical

performance limits presented in the previous section. There are a number of mod-

ifications which could be made to the system, which would be expected to decrease

susbstantially the measurement threshold of the accelerometer.
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In the first place, the measured value of the (negative) axial spring constant

of the suspension alone (i. e., without end effect compensation) is considerably

higher than the theoretical analysis presented in the Appendix would lead one to

expect. The reason for this is almost certainly buckling of the niobium sheet used

to form the superconducting tube. In order to overcome this problem, it is sug-

gested that a suspension be constructed in which niobium is plated or vacuum-depos-

ited on the outside of a finely-lapped copper tube. This technique would allow much

tighter control of distortion of the superconducting surface, and would also, if

desired, a11ow a non-developable surface to be employed. This latter possibility

may be of interest in connection with one of the end effect compensation schemes

mentioned below.

The following methods of reducing the end effects encountered in the experi-

mental suspension seemworthyof further study: i) At the present time, the super-

conducting surface is singly-connected, which is achieved by leaving a narrow gap

along the top of the niobium tube. It is possible that performance could be improved

by using a multiply-connected surface. For example, if narrow bridges of super-

conductor were placed across the top slit at either end of the tube, the totalfluxes

through the slit and through the ends of the tube would be held constant at the values

which existed at the time of transition of the superconductor. The effect expected

is a repulsion of the floating magnet from the ends of the tube, with a consequent

decrease in the negative spring constant. A variant of this idea is the use of super-

conducting guard rings at each end of the tube, insulated from the superconducting

suspension proper, ii) If the outside of a copper tube were turned to a slightly bul-

bous shape and then plated with niobium, it would be possible, at least in principle,

to produce a suspension with a "'flat" region over a considerable axialdistance near

the center. Determination of the optimum shape would require and extensive study

of the perturbed field equations, together with appropriate experimentation, but

this technique might allow the elimination of other forms of end effect compensa-

tion altogether.

As a general rule, it is preferable to vary the geometry of the supercon-

ducting surface in order to control end effects, instead of using the coils in the pre-

sent apparatus. The primary reason for this is that the force on the magnet due to

an adjacent superconductor is proportional to the square of the magnetic field,

whereas the force from a current-carrying coil is simply proportionalto the field.

The former technique therefore allows matching of the compensation to the end

effect over a larger region. In addition, of course, Joule dissipation in a compen-

sation coil adds to the rate of loss of helium from the dewar.

!Winally, it is recognized that the cryogenic requirements of the LLAMA sus-

pension, which are acceptable in the laboratory environment, would cause consider-

able difficulty in deploying the system for any length of time on a space mission,
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'_rhere many of the most interesting applications of low-level accelerometry occur.

Fortunately, the support forces required in space are generally much lower than in

the terrestrial case, so that a suspension using other diamagentic materials than

superconductors may be feasible. In particular, a thick-walled bismuth tube, of

the same internal diameter as the present suspension, would support the LLAMA

test mass in a transverse field of at least 10-4g. This figure could be improved

by using a smaller diameter tube and a more powerful magnet, such as a platimum-

cobalt alloy rather than Alnico V.

9.3 Sensitive Displacement Detection

So far the LLAMA system has been limited by the external environment and

the spot occultation displacement detector has been adequate for preliminary

evaluation. Interferometeric measurements of displacement, although verified

using a test mass simulator, performed poorly when using the floating magnet

because of the noisy environment.

In order to appreciate the capability of the LLAMA system an elaborate

quiet test facility must be set up. With path length modulation, interferometric

techniques can be used to i-_-_easure di_splacements down to 10 -3 -10 -5 fringe.

More exotic schemes may utilize frequency rather than the phase measure-

ments used in interferometry. For example, each end mirror on the floating mag-

net can be made a part of a Fabry-Perot cavity with an active laser medium

shown in Fig. 9.1. If the two lasers are operated in a single longitudinal mode

then displacement of the magnet would cause the frequency of one laser to increase

and the other to decrease. The beat frequency gives a measure of the displace-

ment. Alkc/s change in the beat frequency corresponds to a displacement of
-7

10 microns for alaser in the visible with a cavity length of 10 cm.

LASER

_MEDIUM _ MIRROR

IEAM /, "t'K

SPL,TTERf_--__R

BEAT
SIGNAL

Fig. 9.1 Exotic Scheme for Displacement Measurement
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1 d _r cl_R) k Zr dr -_ + R = 0 (A.4a)

and

dZz

-kZZ = 0 (A. 4b)

are obtained, where k Z is the separation constant.

Eq. (A. 4a) is a Bessel equation, and (A. 4b) gives trigonometric or hyper-

bolic solutions, depending onwhether k is imaginary or real. In order to specify the

solutions further, it is necessary to consider the boundary conditions.

At the superconducting surface, because the magnetic field cannot penetrate

and because there are no magnetic poles there, the normal component of the field

is

an
H r = _ - 0 {A. 5)

so that homogeneous Neumann boundary conditions obtain on

the curved surface of the cylinder.

As the tube is of infinite length, the boundary condition at the ends is of

course that £2 be zero there.

Strictly speaking, the source of the field is the magnetostatic potential dis-

tribution over the surface of the magnet. Eq. (A. I) should be solved by finding the

Green's function corresponding to a source point r on the surface of the magnet,
--O

weighting this with the potential distribution, and integrating in the source coordi-

nates over the magnet. However, since the diameter of the magnet is very much

less than the diameter of the tube, an adequate approximation is obtained if the

magnet be idealized so that it consists of a pair of poles, of strength ±p at (0,0, ±d).

The Green's function is then a solution of

VZG = -4_ (A. 6)

where 5 is a "volume" delta function at one of the poles (i. e. ,

the volume integral of 5 is unit_)o Note that Gaussian units are employed in this

equation.

The choice of a form for the trial solution of this equation is guided by the

following considerations:

i) As z has an infinite range, and since _ is continuous and has a finite

mean value, a Fourier integral representation of the z-dependence is appropriate.

ii) Because of the radial symmetry, only zero-order cylindrical harmonics

are required. In addition, since f_ must be finite on the z-axis, only Bessel
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APPENDIX

THE FIELD INSIDE THE LLAMA SUSPENSION

A. I Introduction

The purpose of this Appendix is to derive expressions for the field inside

several mathematical models which represent in some sense the LLAMA Meissner

effect test-mass suspension. Because of the rather highly idealized nature of the

models used, the results can be applied to the present suspension only with consid-

erable caution. However, they are useful in the discussion of ultimate performance

limitations in Chapter IX and again in the interpretation of the test results in

Chapter VII.

A. Z A Suspension of Infinite Length

The simplest case tobeconsidered is that of a magnet which is stationary on

the axis of a superconducting cylinder of infinite length (the steady-state case in

free fall). The effects of the slit along the top of the suspension are ignored.

In this static situation, the magnetic fieldHmay be set equal to the negative

gradient of a scalar potential _2 . For the region internal to the tube but externalto

the magnet, _2 is a solution of Laplace's equation.

vz_ : o (A. 1)

subject to the applicable boundary conditions.

Set up a circular cylindrical coordinate system r,@, z with the z-axis along

the axis of the cylinder. Since by symmetry there is no variation of f2 with 0, the

above equation becomes

I 8 _ a Z
--(r_) + -----2- = 0 (A.Z)

r 8r
Oz

technique. Putting

which may be solved by the standard separation of variables

= R(r) Z(z) (A. 3)

the pair of equations
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functions of the first kind will appear.

The trial solution is therefore

0O

G = _s Jo(Cs r) __ As(k ) e-jkz dk
o0

(A. 7)

equation

where, if a is the radius of the tube, c a is the sTM
S

root of the

d
_- Jo(k) = 0 (A. 8)

tor.

thus satisfying the required Neumann conditions at the superconduc-

Inserting {A. 7) in (A. 6) and carrying out the indicated differentiation gives

CO

_sJ°(csr) S_ (kZ÷CsZ)As(k)e-JkZdk = 4_6
oO

(A 9)

which may be solved for As(k ) by making use of the properties of the

Fourier transform and the orthogonality of the Bessel functions. Multiplying both

e jkz
sides of (A. 9) by Jo(csr) and integrating over the volume of the cylinder gives

the result

Z_Za22Zo(Csa) (kZ + CZ)s As(k) = 4Tr e jkd (A. 10)

then gives

where the delta function has been taken at the positive pole. Eq.(A. 7)

2 _ J°(Csr) S_co e-Jk(z-d)
G = _a J_oo(Cs a) 00 (kZ+c:) dk (A. 11)

Thus

The integral is readily evaluated as _- exp(-c s I z-dl ).
S

G = _ _s Cs_°_iS::s a) exp(-CslZ-d ]) (A. 1Z)
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The potential f2 is obtained by summation of the Green's functions corres-

ponding to the two poles, weighted by the pole strengths. Thus

f2 = ± 4__ o0Z J°(csr) e-Csl z Isinh C d (A. 13)

a s= I CsaJo 2(csa ) s

for z > d, where the postive sign is to be used when the nearest

pole is positive, and conversely.

A. 3 A Finite-LenGth Case

The purpose here is to find the way in which the potential distribution of

Eq. {A. 13) is modified when the tube is of finite length, and hence to develop an

approximate expression for the axial force on the test-mass due to end effects.

In order to solve l__place's equation for this case, it is of course necessary

to assign definite boundary conditions at the ends of the tube. If homogeneous

Neumann conditions are chosen (e.g., plane superconducting ends) a configuration

results which is clearly stable with respect to all displacements of the test-mass

from the center. Conversely, homogeneous Dirichlet conditions (e.g., plane high

permeability ends connected by an external low-reluctance path) produce an axially

unstable situation.

The actual end boundary conditions lie somewhere between these extremes,

but their precise nature is unknown. Since the real suspension is unstable, butthe

best approximation available is that of a tube with Dirichlet ends. This is not too

unreasonable, because the lines of force are parallel to the axis of the tube at the

superconducting surface and close to the axis, so that the field emerging from the

ends should be largely perpendicular to the ends, as required by Dirichlet

condition s.

Since the forces due to end effects are not expected to depend very strongly

on the precise height at which the magnet is floating, it is again assumed to be on

the axis of the tube.

A circular cylindrical coordinate system r, e, z is set up, with the origin

at the center of the tube. The magnet is again idealized so that it consists of a

pair of poles of strengh ±p, located at (0, 0, x+d), where x is the axialdisplace-

ment of the center of the magnet.

The development is similar to that in the preceding section except that a

Fourier series, rather than integral, representation of the z-dependence is now

appropriate. The trial solution of (A.6) is therefore now taken as

J sin kw
G = k, s Aks o(Cs r) {_'_'_(z+L))

(A. 14)
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whichgoesto zero at z=±L, the endsof the tube, and satisfies

homogeneous Neumann conditions at the curved surface.

Inserting this expression in (A. 6) gives the result

k, s Aks Jo(Cs r) sin kw (z + L) = 4w 6 (A. 1 5)

This equation is now multiplied by Jo (Csr) sin ['_kl-_L (z + --Ii.jl and integrated
.._A

over the volume of the cylinder, to obtain

oTrLaZJ (Csa) + c Aks = 4_r sin kw (x+d+ (A. 16)

where the delta function has been taken at the positive pole•

• kw
-- sm _ sm _(z L)_

- o \2--_) ' Cs

Then

(A. IV)

As before, the magnetostatic potential is found by taking the weighted sum

of the Green's functions corresponding to the two poles. Using the trigonometric

identity

sin k_(x+L+d_ -sin k_-_(x+L-d)_ =Zcos_L(X+L)_ sinkWdzL

the potential is found to be

(A. 18)

J (Csr) oo sln_.. (z_ + L)-] cos_T.L_(X+ L)- ] . kwd0 S In-_

r. + cs

(A. 19)

where the sum over k has been extended to -00 by virtue of the

evenness of the terms with respect to k.

It is possible, although somewhat involved, to obtain a closed form repre-

sentation of the z-dependence. To simplify the algebra, the products of trigono-

metric functions are first expanded:
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+ cos k_ (x+ sln--_-_-= -_

l

=_

m (2L+x+ +sin (z- sm-2-_-_

k_r
+cos_Z_LZ-X-d)- _ -cos_L (z-x+d)--_'-]

(A. ZO)

The problem has therefore been reduced to evaluating sums of the form

S

oO COS

2L

,k_r Z+ 2
k=- _('_L) C s

(A. Zl)

which may be achieved by use of Poisson's sum formula (21)

O0 oo

n= -oo m= -oc

where _ is the Fourier transform of f.

For the present application, put

f(n) = cosn%
n2+c 2

S

(A. Z2)

(A. z3)

and

11"

2L
(A. 24)

Then

cO

1 __ eJc°ncos no i
¢(_) = _ oo n +C

Z Z dn

S

(e -Csl_°+xl
-2c s Q/_

+ e (A. 25)
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Thus

(e 14Lm +ql -Cs [4Lm- ql)f(kn) - L _ -Cs + e (A 26)
C s m

An examination of (A. 20) shows that, for all the sums of interest, Iql< 4L.

f(kn) - 2Lc + 2coshcsq _ e s
n = -00 s m=l

li -4CsL )le c q e_ 2L s + 2-c°shcsq -4c L

Cs 1 -e s

zT, coshc s (Iql -ZL)
= c sinh 2c L (A. 27)

S S

Substituting the various values of q from (A. 20) and inserting the results in

(A. 19) gives the following expressions for the potential after some algebraic reduc-

tion:

J sinhcsdsinhcs(L-z) coshc (L+x)
12 = 8p ;S o (Csr) s (A. 28a)

at s 2.
CsaJ ° (Csa) sinh 2CsL

for z>x+dand

J sinhcsdsinhc (L+z) coshc {L-x)
= _SPa _s o (Csr) s s (A. 28b)

aJZ(csa ) sinh2c L
CS O S

for z> x-d

Z _- -e.

As a check on the algebra, note that (A. 28a) is zero at z = L and (A. 28b) at

Also, both expressions have the limiting form

Jo(Cs r) -c s Iz-xl

o2 e sinh c d {A. 29)= .+ _ _ CsaJ (Csa)
a S

as L approaches infinity, which is the correct value.

If L >> a, and the magnet is not near one oftheends of the tube, it is clear

from Eqs. (A. 28) that only the first term in the sums over s will be significant.
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At the ends of the tube, the magnetic field of course has only a z-cornponent.

The net force on the end at z = L is given by

1 _ H 2 dS (A.30)
FI = 8-_ z

Js

where S is the area of the end. From {A.28a)

-8 2 sinhZCld coshZCl(L + x)

: _ (A. 31)F1 a'ZJ (cla) sinh z 2c I L
i

Similarly, the force on the other end is

F 2
= 8p 2 sinhZCl d coshZCl (L- x)

(A. 3 Z)

aZJ2o (Cla) sinh22ClL

The net force on the magnet is of course the negative difference of these

forces, or

F 8PZ sinh2 cld
= sinh 2c x

a252 I
o (Cla) sinh 2ClL

(A.33)

A. 4 Forces from Stabilizin 5 Coils

Consider the infinite length tube of Section A. 2, with the addition of single-

turn coils of radius b at z = ± z . The axes of the coils are coincident with the
c

tube axis. With a current of [ amperes flowing in one of the coils, the force on an

element dl of it is given by

dF = I0 [ dl X H (A.34)

where dl is measured in cm and H is the magnetic field of the test-

mass in oersteds.

By symmetry, radial forces will cancel, so the net force on the coil is in

the axial direction:

F = 20Tr IbH (A.35)
Z r

Assuming (z c -x) is fairly large (at least of the order of the tube radius),

H r may be calculated from (A. 13) or (A.33), retaining only the first term ofthe sum
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Thus

-cl IzC -x I80Tr b p d I e (A.36)
Fz = _ ZjZ Jl(Cl b) sinhCl

a o (cla)

If the sacne current is flowing in each coil, the net force on the magnet is

Fc _ aZJzl601Tbp Jl (Clb) sinh Cld e-CllZcl I sinhclX (A.37)
o (cla)
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