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I. SUMMARY

The mixing of a subsonic, one-centimeter-diameter

argon arcjet with a coaxial flow of cold helium in a 3~-inch-

diameter duct has been studiei visually by schlieren photography

and quantitatively with a 0,075-inch~diameter calorimetric
and sampling probe. Measurements of temperature, velocity
and composition of the mixing field were made for an initially
laminar argon jet having a mass flow of 0.3 am/sec, an exit
plane peak temperature of 20,000°R, and an exit plane peak
velocity of 600 ft/sec, The effects of cold coaxial helium
flow velocities of 0, 0.27, and 2,7 ft/sec.on jet mixing
characteristics were studied; as well as the effect on the
flow field of varying the argon jet flow from 0.2 to 1.4 grams
per second at a fixed coaxial helium velocity of 0,27 ft/sec.
Tne data have been correlated with previous experi-rn
mental and theoretical investigations for a free argon arcjet
at similar initial conditions, mixing with stagnant helium
at 1 atmosphere, The results are in excellent aqreement with
this earlier work., The principal effect of the controlled
ducted coaxial flow has bemn to hasten mixing by causing
earlier transition of the arcjetto turbulence. The dominant
mixing process for both the free and ducted jets was found
to be the inflow of helium into the argon jet, the effects
of radiation and ionization being negligible., This results
from the hiqgh specific heat and high diffusion coefficient
of helium at arcjet temperatures. In cases where turbulence
is present, the dominant mixing process is still the

inflow of helium, although the rate of this inflow



is substantially auamented by turbulence.

The experiments with variable argon mass flow showed
that at increased argon mass flows the rate of mixing of the
jet is retarded, a phenomenon commonly observed in other types
of jets.

The results indicate potential feasibility of the
coaxial gaseous-core nuclear rocket.' The observed mechanism
of jet cooling and mixing, which consists principally of an
inflow of light helium atoms rather than the dispersion of
the heavier argon atoms, is consistent with the requirements
for retention of gaseous nuclear fuel in this concept, In the
rocket, however, the coaxial light gas velqQcity is substantially
greater than the core velocity, and it is this case which will
be investigated in future work with the object of detemining
whether the light-gas inflow mechanism will continue to be

observed under these conditions.

II. INTRODUCTION

A, Purpose

The purpose of this program, as defined in Reference 1,

was;“to investigate the mixing and heat transfer characteristics
of a hot, high-molecular-weight gas jet injected into a bounded
annular flow of a surrounding cool, low-molecular-weight gas.
Of specific interest are the axial pressure distribution, the
effect of outer-stream turbulence on transition of the inner
jet, and the effect of heat-release via ion recombination in

the inner jet,"




In detail, again quoting from Reference 1,

"l, Data from measurements,,are for use with an analysis
made at NASA Lewis., The system is basically a plasma jet
injected into an outer, room-temperature qgas.

2, The outer gas shall be of low molecular weight
(helium) and the plasma of high molecular weight (argon).

3. The light gas shall be contained within a channel
whose diameter is approximately five times that of the plasma.
4, The plasma shall be injected into the light gas
at velocities down to the same as that of the light gas,

as limited by experimentally obtainable conditions.,

5. The results shall be presented as measured values
of concentration, temperature, and velocity taken at various
radial positions., These radial profiles shall be measured
at various distances downstream from the point of injection
of the inner gas.

6. The above measurements shall be made over a range
of gas flow rates such that Reynolds numbers of the inner
stream shall be between 100 and 1,000, and the Reynolds
numbers of the outer stream shall be between 50 and 10,000,

as limited by experimentally obtainable conditions."

B. Background
Knowledge of the nature of the flow processes
occurring in the coaxial-gecmetry gaseous-core nuclear rocket2

is required in order to properly evaluate the feasibility of this

propulsion concept. Although analytical models and analyses
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have been formulated for both 1aminar3 &nd turbulent4'5 flows,

it was necessary to obtain some experimental indication of their
validity. The equipment previously developed at Princeton6'7
for more generalized studies of high-temperature, partly-ionized
gas interactionss’9 appeared to be well suited to this purpose,
and with comparatively minor additions and modifications, was

adaptable to the purposes described above,

IJII. DESCRIPTION OF TEST PROGRAM
A, Apparatus
The entire ‘experimental apparatus is diagrammed in
Figure 1, It consists of a plasma generator mounted so as to
eject a partly-ionized gas jet horizontally into a test chamber,
t he test chamber itself forming part of a 1,000-gallon tank.
For the purposes of these tests, a series of ducts could be
mounted which permitted the injection of a coaxial flow of
cool gas, concentric with the plasma jet axis, Instrumentation
consisted of a schlieren system for visual studies, a calori-
metric probe6 and drive systems suitable for pressure, composi-
tion and enthalpy mapping of the entire duct interior, and
miscellaneous instrumentation related to the arc generator and
duct. Details of each major component are described in the
ensuing paragraphs.
1, Plasma Generator
The initial visual studies, as originally
planned, were made with a Plasmaflame Model F-80 Arcjet manu-

factured by Thermal Dynamics, Inc., (Figure 2). This generator




-——— e ———— —— e

was available at Princeton, and for the purpose of these tests
utilized a 3/8"~diameter straight-bore water-cooled nozzle,
whose exterior was tapered so as to provide smooth-entry
mixing with the annular light-gas flow {(Figure 3).

The torch was powered by a marine diesel generator
driving four Westinghouse RA~-2 rectifiers, one of which was
provided with remote current adjustment, having a total DC
capacity (after power factor and lead losses) of approximately
75 kw., A water-cooled, copper-tipped prod was used for
torch starting, and operation was controlled from a modified
Thermal Dynamics console. The torch, nozzle and leads were
cooled with 300 psi water from a Pesco gear pump., Calori-
metric measurement of the rate of heat extraction from the
torch by the coolant was available.

As described below, it was later found visually
that the laminar jet obtained with the Thermal Dvnamics torch
was too unstable for probe profile measurements, A new
plasma generator was procured for use in a complementary
Air Force research program. This new generator, (Figure 4)

manufactured by Creare, Inc., was adaptable to the existing

power supply, ducts, and test chamber. 1Its principal advantages

were (a) micrometer adjustment of radial and axial cathode
position; (b) a sectioned straight-line nozzle consisting of
a series of thin insulated segments, one of which could be
grounded so that the anode arc contact point could be pre-

selected and maintained. This generator provided excellent
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laminar stability under nearly all operating conditions,
and was used to collect the probe test data described later.

An adapter and light-gas injection plate
compatible with the duct were designed and installed for
this generator (Figure 5). The injection plate,which
covered the entire duct inlet,was uniformly drilled with
small holes to provide approximately uniform flow of the
light gas.

The test gases used were argon for the hot gas and
helium for the cool gas. Several test runs were also made
using nitrogen for the cool gas for reasons to be discussed
later,

~ 2, Duct and Test Section

The test section consisted of a rectanqular parallele-
piped 18" square by 3 feet long, opening into a 1,000-gallon
commercial gasoline tank internally braced for vacuum operation
(see Figure 6). The test section was equipped with quartz
windows for viewing either the open plasmajet exhaust or the
duct. The plasma generator and duct were mounted on opposite
sides of the test section endplate, as shown in Figure 6, with
the duct fully contained within the test section. Two con-
ventional mechanical vacuum pumps connected to the tank could
provide test section pressures down to about 1® Hg absolute.
The tank pressure was prevented from exceeding one atmosphere
(absolute) by a large flapper. A telescope mounted in the far
end of the tank, opposite the duct and arcjet, provided

capability for viewing the arc during operation.
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Three different ducts were used for this test
program. A cylindrical Vycor duct (Figqure 7) was first
constructed to provide visual indication of the nature of
the jet mixing region. Although this was suitable for direct
viewing, the curvature of the Vycor precluded the use of
schlieren photoqgraphy, Consequently, a metal duct of square
cross~section having approximately the same dimensions (3")
and fitted with flat quartz windows (Fiqure B) was used for
photographic recording of the mixing region, as will be
described in Section 1II-B. Correlation between the two
ducts is also described later.

Detailed flow-parameter surveys were made in a
brass calorimetric duct (Figure 9) designed to provide two-
dimensional coverage of the entire duct interior by the
calorimetric probe, This duct was water-cooled, permitting
measurement of the overall heat transfer to the duct walls,

< 3+ Instrumentation

The two unique items of instrumentation required
for the subject program were the schlieren system and the
calorimetric probe, Other more or less standard items,
which included those necessary for measurements of arcjet
power, gas flow rates, tank pressures, etc.,, are not described
in detail here.

{(a) Schlieren System

In order to establish the general nature of
the flow within the duct (i.e., length of laminar core, location

of transition, structure and stability of the laminar core flow,
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etc.), the existing schlieren system of Figure 10 was used,
together with the flat-sided duct of Figure 8. The system
was of standard design, employing parabolic mirrors instead
of lenses in order to gain light-path length, and utilizing
a BH-6 microsecond spark source with an open-shutter camera
in order to obtain sufficient illumination to provide
transparency of the intensely luminous arcjet.

The system was adequate to yield good schlieren
photographs when the hot argon jet issued into cold nitrogen.
The quality was barely adequate, however, when the jet was
cooled by helium, since the density of the hot argon was
sufficiently close to that of the coaxial helium so that
the density gradients were at the limits of the systems
resolution.

(b) Calorimetric Probe

The calorimetric probe is an instrument which
measures enthalpy,stagnation pressure, and composition of gases
at temperatures up to at least 25,000°F. It has been used for
some time in arcjet diagnosis, and since it has been described

in detail elsewhere®~ 19

, only its general nature is outlined
here.

The probe confiquration and its associated
instrumentation are diagrammed in Figures 11 and 12, respectively.
The construction of the probe itself is of copper, with a brass

base., Cooling water from a high-pressure source (up to 1,000

psi) enters through the mounting block, passes throuah the outer
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channel to the tip, and leaves via the inner channel,
sheathed, ungrounded thermocouple junctions are located
where the probe cooling water flow enters and leaves the
sampling tube. 2A steady flow of sample gas can be drawn
by a vacuum pump from the probe tip, through the central
tube past a thermocouple junction located in the tube, and
then through the support shaft to valving and instrumentation.
The flow of the hot sample gas in the central tube
causes the probe cooling water to rise in temperature a greater
ampunt than when the gas sample flow is not permitted to flow
through the tube. A flowmeter measures the probe coolant
flow and a critical orifice measures the gas flow. These
measurements are sufficient to compute the enthalpy of the
gas sample at the point where it enters the probe,
The composition of the two-component gas sample
is determined by measuring its thermal conductivity in a

carefully calibrated commercial cell, and stagnation pressure

is measured when the gas sample is not flowing by simply

diverting, through appropriate valving, the gas sample line
from the vacuum pump to a water manometer. Enthalpy can be
converted to temperature, once the gas composition is known,
from an equilibrium theory such as the Saha equation. The
meaéured stagnation pressure is converted to velocity using
the Bernoulli equation, since the gas Mach number is less
than 0.1,

The seﬁsitivity and calibration of the probe under

L . s : 9
similar experimental conditions have been described elsewhere~.
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In previous work, energy and mass balances showed that the
probe's accuracy (standard deviation from the mean) was

about 3 per cent.6

B, Conduct of Tests
1, Visual Studies

The visual studies were undertaken with
the dual objective of (a) establishing the general character
of the jet mixing as a guide to the ensuing probe measurements,
and (b) establishing that the jet was sufficiently stable and
uniform that worthwhile and reproducible probe data could
be obtained. Findings in accordance with this latter objective
resulted in postponing the probe measurements until the new
Creare plasma generator could be installed, as was described
previously. The majority of the visual experiments were made
with the Thermal Dynamics torch, and although the flame was
not sufficiently steady for detailed probing, it was satisfactory
from the standpoint of establishing the general nature of the
flow.

The first series of visual studies was made
in the round Vycor duct, and data were obtained using both
helium and nitrogen as the coaxial gas. The conduct of the
experiments was generally the same for both gases. The test
chamber and the 1000~gallon exhaust tank were evacuated to
about 1/5 atmosphere, since it was found experimentally that
longer laminar flames, and thus greater flame length differences,
could be obtained at reduced pressure. It was believed that

this would not invalidate the visual data, since the purpose
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of the visual study was only to establish trends to be later
verified by probe measurements at one atmosphere,

Once the proper test chamber pressure was established,
the plasma generator was started and adjusted to produce as
long a laminar flame as possible., Most of these tests were
run with an argon flow of about 100 SCFH at a net plasma
generator power of about 19 kw,

With the arcjet thus adjusted, observations were
made of the character of the jet for different coaxial gas
velocities. The typical observation procedure was to first
observe the flame with no coaxial qgas flow, and record the
full length of the laminar portion of the jet, The coaxial
flowwas then initiated,and the new length of the laminar
portion of the jet was observed, together with the flow rate
of the coaxial gas. Observations were continued at increasingly
higher coaxial flows until the laminar jet disappeared and
turbulence was observed at the nozzle exit plane.

These visual observations were made with the aid
of schlieren photography, to define as nearly as possible
the exact length of the laminar jet,Figure 13 is a schlieren
photograph illustrating a typical laminar arcjet and its
transition to turbulence in a free environment., Figure 14
is a schlieren photograph of laminar and turbulent jets
taken through the windows of the square three-inch duct.
Although the quality of these latter photographs is not as good
as for the free jet, the difference between laminar and tur-

bulent flows can be clearly distingquished. Note from
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Figure 14 that turbulence can exist riqght at fhe nozzle
exit plane.,

As stated previously, schlieren photographs could
not be taken through the round duct. The photoaraphs taken
in the square duct were therefore used to confirm the round-
duct visual observations. Data were taken with both helium
and nitrogen coaxial flows, in both round and square
ducts, and also with a free jet in nitrogen.

2. Detailed Surveys

The probe measurements were conducted in the
calorimetric duct of Fiqure 9., Radial profile measurements
were taken at the exit plane at guarter-inch intervals to

the point at which the jet had become fully turbulent and

- full mixing of the arcjet with the coaxial aas flow had been

completed,

Profile data were taken under the following

initial conditions for the argon jet:

Plasma generator power 14 kw
Argon Mass Flow Rate 0.323 gm/sec
Jet Temperature at Nozzle Exit* 20,000°R
Initial Jet Velocity* 600 ft/sec
Coaxial Helium Velocity 0,0,27, and 2.7 ft/sec

A second series of runs was taken at an axial

station 1 inch downstream from the nozzle with a coaxial

*Typical centerline values, Profile data given later provide

exact initial condition,
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helium flow of 0.27 ft/sec and a variable argon flow

between 0.24 and 1.34 gm/sec.

IV. DISCUSSION OF RESULTS
A, Visual Studies

The quantitative results of the visual studies are
summarized in Figures 15 and 16, in which the length of the
laminar jet is plotted against Reynolds number and velocity,
respectively. The region of interest in these figures was
originally concentrated on axial locations greater than six
inches, because transition to. turbulence was not expected to
occur much upstream of this location, and the calorimetric
probe, which was used to diagnose the jet in the region near
the nozzle exit, is a more reliable measurement., This was
particularly true in the case of coaxial helium flow, since
the high luminosity of the first few inches of the jet precludes
precise visual observations,

It is quite apparent from the visual results that
the laminar arcjet is very easily disturbed by the coaxial
flow, with the laminar jet being shortened to less than six
inches at coaxial velocities of only one foot per second.
Although some disturbance of the jet by the coaxial flow had
been anticipated, it had not been expected that such small
velocities would be so significant. This led to closer
investigation of the coaxial gas character, and it was observed
that the coaxial gas was introduced with considerable initial

turbulence, as shown in schlieren photograph of Fiqure 17,
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The gquantitative effect of this initial turbulence on
producing transition in the laminar jet is discussed later
(Section IV-C) in connection with results of the calorimetric
probe measurements,
B, Detailed Mapping of Flow Field

Verification of the general nature of the visual
study results, as well as quantitative mixing characteristics,
were established with the calorimetric probe, covering the
region from the nozzle exit plane to the downstream point
at which the initial jet had become fully turbulent. Results are
summarized in Fiqures 18 throuqgh 21, which show jet centerline
values of temperature, velocity, composition, and enthalpy
respectively, and in Figures 22 through 27, illustrating radial
temperature, velocity, and composition profiles at various
axial stations. Also shown on certain of these figures are
both theoretical and experimental data on the mixing of a free
jet. (The free jet work was performed under the Air Force
contract identified previously, but the results reported here
are helpful as an aid to the understanding of the duct mixing.)

From the centerline data of Figures 18, 19 and 20,
it can be seen that the rapidity of mixing, as evidenced by
the rate of decay of the centerline values of temperature,
velocity and composition, is strongly influenced by the velocity
of the coaxial gas flow,as was indicated by the visual studies
discussed above.When the coaxial gas flowwas 2,7 ft/sec, mixing
was fully accomplished at one inch, or about three jet diameters
downstream, At a velocity of 0.27 ft/sec,complete mixing was

not accomplished for three inches, or eight diameters downstream,
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In the case of no coaxial flow in the duct, as well as in
the unbounded jet, mixing was still not completed six inches
(about 20 diameters) downstream,

In the case of the free jet, as well as in that
for the ducted jet with no coaxial flow (except for Figqure 20,
which is discussed below), not only did the data indicate
confirmation of the visual observations, (i.e., that the
jets remained laminar in the region surveyed by the probe)
but there was also rather close agreement with laminar
mixing theory. These results are in good agreement with
studies of laminar mixing of a free arcjet completed recentlylo.
With the free laminar jet it was found that the flow of helium
into the jet was the dominant mechanism for jet cooling and
mixing, and that the effects of radiation and ionization were
negligible., This experimental result, accurately predicted
by the laminar mixing theory, is attributed to helium's high
specific heat and high diffusion coefficients at arcjet tempera-
tures. This mechanism was also experimentally indicated in the
coaxial studies, and accounts for the similarity between the
free and ducted cases at 0.27 ft/sec coaxial flow in the laminar
flow region within one or two diameters (1/2 to 1 inch) of
the nozzle exit plane,

Direct similarities in this region between the free
jet (or the no-coaxial-flow ducted case) and the high~-coaxial-
flow case (2.7 ft/sec) were, on the other hand, not observed,
obviously because of the early transition to turbulence indicated

by Fiqures 15, 18, 19, and 20.
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The large difference in helium concentration
data between the no-coaxial-flow ducted case and the others,
as shown in Fiqures20, 22, 23, etc,, also has a simple
explanation, 1In this case, the equilibrium concentration of
cold helium in the duct is less than 20 per cent (see
Figures 22, 23,24) because most of the helium originally present
is very swiftly swept out with the argon jet, and the ambient
conditions are therefore substantially different than for the
free jet or the higher coaxial-~flow ducted cases. On the
other hand, helium concentration data for the 0.27 ft/sec
- ducted coaxial‘flow,before turbulence is initiated,were found
to be essentially similar tothose of the free jet case because
an ample supply of cold helium was always available at the
jet boundary.

Considerable insight into the mechanism of mixing
is obtained by consideration of enthalpy rather than temperature
decay. Although the various cases differ widely in terms
of temperature, velocity and species concentration, a plot
of centerline enthalpy (Figure 21)indicates that the basic
mixing process is the same in all cases. In this fiqure, it
is shown that the centerline enthalpy decay coincides closely
for all coaxial gas flows. Thus it is necessary to conclude
that radiation and ionization effects are negligible, since
reference to Figure 18 shows that at even small distances
from the nozzle, the jet temperatures differ by many thousands

of degrees. For example, at one inch from the nozzle, the
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temperatures of the jets which were still laminar were about
ll,OOOOR,while that of the turbulent jet, in which mixing
was substantially complete, was only 1,000°R; still, the
enthalpies at the cénterline were nearly equal. Clearly, if
radiation and ion recombination effects were important
mechanisms for jet power loss, the higher-temperature jets
should show lower enthalpies., Furthermore,if there were
substantial dispersion of the argon jet, the centerline
enthalpy of the well-mixed case should be substantially less.

The results of Fiqure 21 therefore indicate that
the principal mechanism for energy transfer (jet cooling)
is the inflow of coaxial helium rather than either the direct
loss of enerqgy (by radiation or recombination) or the outflow
of argon from the core jet.

It may be concluded that while turbulence (of the
degree present in these experiments) substantially increases
the rate of jet mixing, the effect of the turbulence is to
aid the inflow of coaxial helium and not to disperse the argon
jet itself.

C. Effects of Turbulence

The very large effect of turbulence on the rate

~
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in that an apparently small disturbance can cause
the jet to lose its initially laminar characteristics, is a
prominent result of the experimental program.
Unfortunately,understanding of turbulent jet mixing
and the factors causing arcjet turbulence, like all turbulent

phenomena, suffers from the fact that present theories of
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turbulence are inadequate, and most information on turbulence
is empirical. The general character of the observed behavior
is consistent with other forms of turbulent-~flow experience,
however, as is indicated by the summary of results (observed
from both the visual and probe studies) in Table I, In this
table, Reynolds numbers more than one diameter downstream
are based on the length of jet at the point of observation
rather than on the jet diameter. The initial Reynolds number
(at the nozzle exit) is based on jet diameter, and is 450
for all cases.

Table I shows that transition to turbulent flow
did not occur in the free jet until a Reynolds number of
10,000 was reached, while very small disturbances, such as
convective currents resulting from the simple presence of the
duct* or from very small coaxial flows, caused transition at
Reynolds numbers of 4,000 and 3,000 respectively. Furthermore,
a coaxial flow of only 2.7 feet per second of helium produced
transitionin less than one jet diameter from the exit plane at

a Reynolds number of only 450.

*The convective turbulence caused simply by the presence of the
duct was evidenced by visually-observed motion of dust particles,
and has also been observed in combustion experiments where

the flow conditions were similar}l
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TABLE 1

Effect of Test Conditions on Reynolds Number at Transition

APPROXIMATE APPROXIMATE
TEST CONDITIONS LAMINAR JET REYNOLDS NUMBER
LENGTH, INCHES AT TRANSITION
Free jet, 1 atm, 18 10,000
no coaxial flow
Ducted jet, 1 atm, 5 4,000
no coaxial flow
Ducted jet, 1/5 atm, 18 4,000
no coaxial flow
Ducted jet, 1 atm, 2 3,000
0.27 f£t/sec
coaxial He
Ducted jet, 1 atm, 1/2 450

2,7 ft/sec
coaxial He

It should be remarked that only by basing the Reynolds
number on a linear dimensional quantity can transition data be
obtained which are consistent with the general range in which
it is usually observed. Reynolds numbers based on the jet
diameter remained nearly constant at about 500 for all types
of flow observed,and therefore are not useful as a guide
to transition predictions.,

On the basis of the above results, it ieg helieved
that 1in any practical propulsion device it would be
impossible to maintain laminar fiow for more than a few nozzle
diameters, These devices should therefore be designed to

operate in the turbulent mode,
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D. Variation of Mass Flow in Core Jet

Figures 27 through 29 are profiles of temperature,
velocity, and composition respectively at one inch downstream
from the nozzle exit plane when the argon jet mass flow was
varied from 0,24 to 1,34 g/sec while the coaxial helium flow was
maintained at 0.27 ft/sec. It can be concluded from the
general shape of the profiles that spreading and mixing were
little affected, although a wide variation of mass flow was
experienced. The plasma generator efficiency is significantly
augmented by increased mass flows, and this results in the
higher temperatures and velocities observed at the high mass
flows. The plots do not indicate which profiles represent
laminar flows and which represent turbulent flows, but based
on visual observations the profiles at the higher mass flows
are likely to be turbulent. It is a tentative conclusion,
which must be examined by additional work, that high mass
flow rates tend to reduce jet mixing over a given distance,
even though turbulence may be present, This is, of course,
similar to the phenomena observed in more familiar types of

jets.,

V. CONCLUSIONS

1. Up to about three jet diameters downstream from the
nozzle exit plane there is little difference between the
experimental laminar mixing characteristics of a free jet
and a bounded jet when the coaxial flow of helium in the

duct is sufficient to provide similar ambient helium con-
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centrations, but not so large as to disturb the laminar
character of the jet. 1In this region a theoretical analysis
for a laminar free jet is also applicable to a similar ducted
jet.

2, Very low velocities of an initiglly turbulent co-
axial flow were sufficient to cause transition in an initially
laminar core jet, and increases in coaxial gas velocities
prdauced earlier transition to turbulence.

3. Mixing of the jet was very rapid once turbulence
was initiated, and in one case (the highest coaxial velocity
tested) complete mixing of the jet was accomplished in less
than three jet diameters from the nozzle exit.

4, With increased/core-jet mass flow, mixing of the
jet at three diameters downstream was diminished, even thouoch
the jet may have become turbulent, This is, of course, similar
to the phenomena observed in more familiar types of jets.

5. The most significant process in the mixing of either
a free or a ducted laminar argon arcjet was found to be the
flow of helium into the jet, the effects of radiation and
ionization beinq negligible., This behavior results from
helium's high specific heat and high diffusion coefficient at
arcjet temperatures. The principal effect of turbulence,
in the scale studied in the present experiments, was to
cause augmentation of the helium inflow rather-than dispersion
of the jet.

6. An arcjet Reynolds number based on length rather
than diameter was most useful in correlating the onset of

turbulence, in accordance with conventional laminar free-jet

Practice.
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7. Owing to the difficulty of obtaining and maintaining
stable laminar jets, turbulent models should be used in the
design of practical propulsion devices.

8., The results indicate potential feasibility of the
coaxial flow, gaseous-core nuclear rocket concept, since it
was found that the argon arcjet decayed as a result of inflow
of cool coaxial helium rather than dispersion of the argon
core, even when turbulent mixing was significant. Before
this conclusion can be applied to the coaxial gaseous-core
rocket, however, it will be necessary to examine the mixing¢
mechanism for coaxial gas velocities up to one or more orders
of magnitude greater than the core jet velocity. This study

is planned under a subsequent NASA contract.
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