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COMPARISON OF PANEL FLUTTER RESULTS FROM 

APPROXIMATE AERODYNAMIC THEORY WITH RESULTS FROM 

EXACT INVISCID THEORY AND EXPERIMENT 

By Sidney C. Dixon 
Langley Research Center 

SUMMARY 

Flutter calculations for simply supported panels by means of both two-dimensional 
static (approximate) aerodynamic theory and linearized three-dimensional, unsteady, 
inviscid (exact) aerodynamic theory a r e  presented and compared. The calculations indi- 
cate that for unstressed panels the results obtained from the approximate aerodynamic 
theory are in good agreement with the results obtained from the exact aerodynamic theory 
for Mach number M Z 1.6 and to even lower Mach numbers for length-width ratios 
2 2- 5 6. For M < 1.6 and 2 < 2 the exact aerodynamic theory predicts single-degree- 
of -freedom instabilities which are not predicted by the approximate aerodynamic theory. 
These instabilities occur at a much lower value of dynamic pressure than is predicted by 
the approximate aerodynamic theory. The limited experimental results for the range of 
M 6 1.6 and a/b < 2 indicate some decrease in the dynamic pressure required for flutter 
from that predicted by approximate aerodynamic theory, but by no means the decrease 
predicted by the exact aerodynamic theory. However, for the values of M and a/b 
where the two theories agree, there is also agreement with experiment. It is then shown 
that application of the exact aerodynamic theory does not remove the discrepancies that 
presently exist between theory and experiment for flutter of stressed panels. The inclu- 
sion of structural damping is found to have a large effect in some instances and can tend 
to eliminate some of the differences between theory and experiment for stressed panels. 
However, it is demonstrated that on the basis of small-deflection theory, damping has no 
effect on flutter of panels which are on the verge of buckling. 

a 
b b 

INTRODUCTION 

Panel flutter is a self-excited oscillation of the external surface skin of a flight 
vehicle which results from the dynamic instability of the aerodynamic, inertia, and elastic 
forces of the system. The emergence of panel flutter as a significant design problem has 
motivated considerable experimental and theoretical research. These investigations have 
indicated the significance of such parameters as flow angularity (refs. 1 to 4), midplane 



stress and buckling (refs. 5 to 7), cavity depth (refs. 8 to lo) ,  initial imperfections 
(refs. 11 and 12), differential pressure (refs. 11 and 13), transverse shear stiffness 
(refs. 14 and 15), edge restraint (refs. 16 and 17), and orthotropic panel properties 
(refs. 3, 4 ,  and 18). It should be noted, however, that most theoretical investigations have 
utilized two-dimensional static aerodynamic theory (both with and without damping) despite 
the fact that two-dimensional theory is considered applicable only for a limited range of 
panel length-width ratio and Mach number. The reason for extended use of this theory 
is that it greatly simplifies the problem and in some cases provides the only practical 
method of solution. 

The present investigation was undertaken in an attempt to assess the useful range of 
the two-dimensional static aerodynamic theory approximation by means of an analysis that 
utilizes linearized three-dimensional potential flow theory for single finite panels. The 
latter analysis, which is by Cunningham (ref. 19), is used to determine the range of Mach 
number and length-width ratio for which the simpler aerodynamic approximation gives 
acceptable results. Results from these inviscid theories are obtained for both stressed 
and unstressed simply supported panels. The results fo r  unstressed panels a r e  com- 
pared with experimental results. 

SYMBOLS 

a panel length in x-direction 

panel width in y-direction 

constants dependent on cross-stream boundary conditions of panel 

Eh3 flexural stiffness of panel, 

Young's modulus 

structural damping coefficient 

panel thickness 

Mach number 

12(1 - v2) 



Mn generalized mass of mode n 

m,n integers 

NX inplane loading in x-direction (positive in compression) 

inplane loading in  y-direction (positive in compression) 
NY 

Nx,cr critical inplane load required for buckling 

generalized aerodynamic force from the pressure due to mode m and the Qnm 
modal deflection of mode n 

q dynamic pressure of airstream 

time varying generalized coordinate of motion for mode n qn 

t time 

V velocity of airstream 

W lateral deflection of panel 

X,Y Cartesian coordinates of panel 

parameters appearing in equations (2) and (3) 

Y mass  density of panel 

- 1 
I.L Yh 

mass density ratio, - Pa 

3 
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V Poisson's ratio 

P mass density of air 

w flutter frequency 

natural frequency of mode n wn 

wr reference frequency, 

ANALYSIS 

The results presented in this investigation were  calculated by utilizing the analyses 
of Hedgepeth (ref. 20), Houbolt (ref. 21), Movchan (ref. 22), and Cunningham (ref. 19). The 
type of configuration considered is shown in figure 1. It consists of a single rectangular 
panel of uniform thickness h mounted in a rigid wall with air flowing over one surface at 
a Mach number M. The panel has a length a and a width b and is subjected to uni- 
form midplane compressive forces Nx and Ny (considered positive in compression). 
The panel edges are either simply supported or  clamped. 

Figure 1.- Rectangular panel and coordinate system. 
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Approximate Aerodynamic Theory 

I€ the aerodynamic loading is represented by the two-dimensional static aerody- 
namic approximation, the governing partial differential equation is (ref. 20) 

The closed-form solution to equation (1) has been obtained by Hedgepeth (ref. 20) for  all 
edges simply supported and by Movchan (ref. 22) and Houbolt (ref. 2 1) for  the leading and 
trailing edges simply supported or  clamped, with the other two edges simply supported. 
In addition, Houbolt has obtained an approximate solution for  all edges clamped. In his 
analysis, Houbolt assumed an approximate mode shape in the cross-stream direction in 
order to reduce the partial differential equation to an ordinary differential equation. The 
solution to the resulting ordinary differential equation, however, is exact. It should be 
noted that the aerod-pamic loading term used by Houbolt and Movchan (if aerodynamic 
damping is neglected) differed from that used by Hedgepeth in that p was replaced by 
M. The use of the Ackeret value (p)  does not give significantly different results from the 
use of the "piston" theory (M) except when M approaches 1.0. 

The details of the solutions are in references 20 to 22 and only the appropriate 
stability equations necessary for  solutions are presented herein. 

When the leading and trailing edges are simply supported, 

k 2  + 62)2 + 4 2 ( 6 2  - ~ 2 1 s i n  6 sinh E = 8&6(cosh E cos 6 - cosh 2a) 

When the leading and trailing edges are clamped, 

466 (cash 2a! - cosh E COS 6) = 2 (-E + + 4~t?)~inh E sin 6 

- 
where a, 6, and E are related to X, A, and E by 

(3) 
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The flutter parameter A, the frequency parameter B, and the length-width-ratio mid- 
plane load parameter 
eters and 53 depend on the boundary conditions at the side edges. Expressions for 
these constants for any value of rotational restraint are given in reference 17. For 
simply supported and clamped edges these parameters become (for a single half-wave in 
the y-direction): 

For  side edges simply supported, 

are defined in the list of symbols. The constants in the param- 

For side edges clamped, . 

The expressions for x and 
slightly from those given by equations (6) because he used 1 1 - cos 

assumed shape in the cross-stream direction, whereas the expressions in equation (6) 
were obtained from the fundamental clamped-clamped beam mode. 

obtained by Houbolt (ref. 21) for  clamped edges differ 
for  the 2 ( ) 

The eigenvalue E can be computed for fixed values of X and by varying a! 

until equations (2) and (3) are satisfied and then using the last of equations (4) to deter- 
mine E. The resulting solutions can be shown in the form of plots of X as a function 
of E for various values of x. Such plots reveal that the critical value of x (for no 
damping) occurs when the two lowest frequencies coalesce at the peak of the llfrequency 
loop." 

Movchan (ref. 22) noted that the stability equation (2) fo r  simply supported panels is 
identically satisfied if 

m = l , 2 , 3 , .  . . 

6 = am77 

E =2a! 

6 



Substitution of equations (7) into the first two of equations (4) and solving for X yields 
the following simple algebraic expression (for m = 1): 

Equation (8) has been referred to as the preflutter solution (ref. 22). The value of X 
given by equation (8) falls on the frequency loop but below the peak; thus the te rm "pre- 
flutter." It is shown in reference 23 that equation (8) gives results in very close agree- 
ment with results obtained from equation (2) for unstressed panels for a > 1.0. 

b 

Exact Aerodynamic Theory 

Cunningham (ref. 19) has considered the flutter of a single finite panel on the basis 
of exact three-dimensional linearized supersonic potential flow (hereafter referred to  as 
exact aerodynamics). 
equal size boxes. 
calculated and used in a modal-type flutter stability analysis. 
of the problem, the analysis has been programed for solution on a digital computer. 

The panel is considered to  be finely divided into a large number of 
The aerodynamic influence coefficient of each box on each other box is 

Because of the complexity 

The equation used by Cunningham in reference 19 to  express the panel motion, 
which was  derived from application of the Galerkin method, is 

m=l 

The particular expressions for Mn and Qnm a re  given in reference 19. It should be 
noted that equation (9) is valid only when there is no elastic or inertia coupling. 
present investigation equation (9) is used to obtain results only for simply supported 
panels, because for this case there is no elastic or inertia coupling and thus equation (9) 
is valid. The values of wn2 used in equation (9) were obtained from the solution of 
equation (1) for no aerodynamic loading, which gives 

In the 

where 
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As is usually the case with exact air forces, the flutter boundary cannot be com- 
puted directly, and an indirect method of computing and cross-plotting is required. 
necessary procedure for obtaining flutter solutions and other pertinent details is thor- 
oughly discussed in reference 19. It should be pointed out that, in addition to the struc- 
tural damping coefficient g and reduced frequency which appear in reference 19, 

other parameters necessary to obtain solutions based on the exact aerodynamic theory 

‘“la These parameters are related are the mass ratio - and the stiffness parameter - 
to the flutter parameter X appearing in the approximate aerodynamic theory by the 
relation (for simply supported edges) 

The 

V ’  

1 
P V ’  

Io- 

A”3b 
Ti 5 -  

RESULTS AND DISCUSSION 

A p p r o x i m a t e  a e r o d y n a m i c  t h e o r y  

- - - -  E x a c t  a e r o d y n a m i c  t h e o r y  

F I u t t e r  M 

_ _ _ _ _ _ _ _ _  __- - - - - - - - -  - 2.0 
- - - _ _  -----___ 3 .0  

fl 1.3 
_-I - - _ _ _ - -  ------ - - - - - - - - - - - - - - - -_ ___ 

4.0 

NO f l u t t e r  

Unstressed Panels With Length-Width Ratios Greater Than 1.0 

Comparison of theories.- Results for simply supported panels with a 2 1.0 are b -  
and length-width ratio 2 b‘ shown in figure 2 in terms of the flutter parameter A l l 3  

I 1 I 1 I I I I ~= 1 . -  I 
2 4 6 8 IO 0 

a / b  

u 
50 

Figure 2.- Comparison of results obtained for flat unstressed simply supported panels with length-width ratios greater than 1.0. g = 0. 
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The solid curve was  obtained from the closed-form solution (eq. (2)) based on the approx- 

imate aerodynamic theory. These results indicate that A1j3 decreases rapidly with 

increases in a up to approximately 2 or 3. The results also indicate that the dynamic 

pressure required for flutter is essentially independent of length for a greater than b 
about 5 or 6. 

b 

The dashed curves shown in figure 2 represent flutter boundaries calculated by the 
use of Cunningham's analysis (ref. 19) utilizing exact aerodynamic theory for simply 
supported aluminum panels at sea level and for  M of 1.3, 2, 3, and 4. All results for 
a 2 4 were obtained by using the first 12 natural modes of vibration (for a single half- 
b 
wave in the y-direction) in the modal analysis; for a < 4, six modes were used. For b 
these calculations the panels were divided into 400 boxes, 40 in the stream direction, and 
10 in the cross-stream direction. The results based on exact aerodynamic theory nearly 
coincide with the results based on approximate aerodynamic theory for 1 = = < a < 6  and 

M from 2 to 4, and differ only slightly for 2 5 k 5 6 for M = 1.3. For M = 1.3 and 

a < 2 the exact aerodynamic theory indicates that the so-called single-degree-of -freedom b 
instabilities a r e  the critical flutter boundaries. This type of instability, which occurs in 
the low M, low e range, is discussed in more detail in the section entitled "Unstressed 

Panels With Length-Width Ratios Less Than 1.0." 

For > 6 the differences between the two theories can be significant (although the 

agreement is still fair), depending on the Mach number. However, it is not certain that 
these differences are due only to aerodynamic effects as the modal solutions are not con- 
verged for a greater than about 6. The variation of A1/3 i with the number of modes b 
used in the analysis based on the exact aerodynamic theory is shown in figure 3 for : = 6  

and M = 1.3, 3, and 4. Convergence of a Galerkin solution is determined by using more 
and more modes in the analysis until additional modes do not alter the flutter boundary 
significantly. The results shown in figure 3 suggest that the critical mode 2-1 boundaries 
are not fully converged when 12 modes are used. (In this discussion, the flutter bound- 
aries obtained from the exact aerodynamic theory are described by reference to the two 
most predominant vibration modes in the flutter mode shape.) In addition, the rate of 
convergence does not appear to be significantly affected by variations in Mach number. 
The number of modes required for convergence of flutter solutions based on the Galerkin 
method and approximate aerodynamic theory was investigated in reference 4. This 
investigation revealed that 12 modes were  sufficient for convergence for a simply sup- 
ported panel with 

For a of 10, 12 modes gave values of A1/3 

= 5, but that 60 modes were required when a was increased to 10. b 
of approximately 80 percent of the 

b 
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Modes I 
0 2-1 

~ (a) M = 1.3. 

I h ’ / 3 k  2 
0 

0 2-1 

0 4-3 

A 6-5 

(b) M = 3. 

02-1 

h ‘ /3b 
CI 

(c) M = 4. 

I 1 1 I .J 

OL h 4 6 8 I O  12 
Number o f  modes 

Figure 3.- Variation of A’”! with number of modes used in 

analysis. = 6. 

converged value. Thus, the results 
shown in figure 2 for 

about 6 must be considered approximate 
because of nonconvergence of the modal 
solutions. For 2 Sa 5 6 the critical 
boundary always corresponded to a 
mode 2-1 boundary, as was the case 
for all values of a for the approxi- 

mate aerodynamic theory. For > 6 

the exact aerodynamic theory indicated 
that higher mode boundaries could 
become the critical boundaries; this 
result is attributed to nonconvergence 
of the solution. For example, fig- 
ure  3(b) shows that the mode 4-3 or  
6-5 boundaries were the critical 
boundaries for a = 6 when less than 

8 modes were used but the mode 2-1 
boundary became the critical boundary 
when more than 8 modes were used. 
For this reason it is assumed that if 
convergence could have been obtained 
at the higher values of a the flutter 

boundary would correspond to the 
mode 2-1 boundary. Thus the results 
shown in figure 2 for > 6 are the 

mode 2-1 results. 

greater than 

b -  

i; 

b 

The results obtained from the 
exact aerodynamic theory were essen- 
tially independent of variations in 
material and altitude, or mass density 
ratio. For example, figure 4 shows 

the variation of A1/3 with - for 

a = 4 and M = 3. The solid curve 6 
represents the mode 2-1 boundary 
obtained from a 6-mode solution; the 
circle at 1 = 0 indicates the value of 

1 
P 

P 
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X1/3 b obtained from the approximate 

aerodynamic theory. As can be seen from 
the figure, varies only slightly 
with i. The intersection of the dashed 
line with the flutter boundary is the flutter 
point for an aluminum panel at sea level. 
For denser materials or  higher altitudes 
the flutter point would be to the left of the 

one shown, but the critical value of A l l 3  p 
would change only slightly. Hence, X1I3 b a 
is essentially independent of variation in 
material and altitude. Such behavior is 
typical of all the converged results 

obtained for 2 1 except for < 2 and 

M = 1.3. Thus the mode 2-1 flutter bound- 
a ry  is essentially described by the single 
parameter X which combines the inde- 
pendent variables w 1  a and - (see 

a 

b -  b 

1 
V P 

Approx imate  / 

aerodynamic  / 

t h e o r y  / 
/ 

/ 

,/-able Mode 2-1 1. /I//// 

boundary  / /  s t a b  I e 
l.1’3b 2 . 5  

a 

/ 
/ 

/ 
/ 

/ 

.<Alum 
/ sea 

/ 

0 

num a t  
l e v e l  

I .2 
1 1 

Figure 4.- Variation of A1/3 with I /p  typical of cases 
where results from exact and approximate aerodynamic 

theories agree. M = 3; a = 4; g = 0. b 

eq. (11)) given by the exact aerodynamic theory. Moreover, the calculations reveal that 
the critical values of were essentially independent of structural damping (up to 

g = 0.025) except for a < 2 and M = 1.3. b 
from the approximate aerodynamic theory with the results of the exact theory, and the 
virtual independence of the flutter parameter A l l 3  $ on variations in material, altitude, 
and damping, suggest that the approximate aerodynamics is useful for theoretical investi- 
gations of the various factors affecting panel flutter. References 9 and 10 present flutter 
results obtained from both the approximate and exact aerodynamic theories for clamped 
panels from which the same conclusion can be drawn. 

The good agreement of the results obtained 

Comparison of theory and experiment. - A comparison of experiment with theoretical 

and a is shown in figure 5. The solid curve is for simply supported 

results based on the approximate aerodynamic theory for a 2 1 in terms of the flutter 
b 

parameter A l l 3  

panels (eq. (2)) and the dashed curve is for clamped panels (eq. (3)). The circles repre- 
sent published (refs. 5, 13, and 24 to 28) and unpublished experimental flutter points 
obtained at a Mach number of 3.0 for essentially flat panels tested under aerodynamic 
heating conditions. These data are for edge restraints between simply supported and 
clamped conditions and were obtained from tests that involved thermal midplane stresses. 

b 

11 
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However, data were  obtained sufficiently close to zero thermal stress that an extrapola- 
tion could be made to get essentially zero stress flutter points. The other symbols 
shown in figure 5 represent flutter points for essentially clamped panels (ref. 9) obtained 
at various Mach numbers from 1.2 to 5. The scatter in the data shown is due in part to 
difficulties in extrapolating to zero stress points (for M = 3.0), variations in panel sup- 
ports, and variations in Mach number. It should be pointed out that the large variation 
of the flutter parameter for the experiments at a of 1.37 and 2.18 did not appear to be 

b 
primarily associated with Mach number as the variation was  of a random nature. (See 

' 

f 
0.96  
i .37 
2 . 0 0  
2. 18 
2. 50 
2 . 9 0  
3.30 
3.70 
4.00 
4.12 

I O . ' O O  

Theory 
E d g e s  s i m p l y  s u p p o r t e d  

- - - -Edges c l a m p e d  

Reference 

24 
9 
13 
9 

26 
26 
( * )  
( * I  

25, 28 
9 

5, 27, 28 

M 

0 2 . 0  - 4.0 
A 1.2 - 5.0 Experiment 

0 2 . 0  - 4.5 

F I u t ter 

A 0 

No f l u t t e r  

I I I 
2 i 6 8 I O  + 

Figure 5.- Comparison of experiment with approximate aerodynamic theory for E 2 1.0. Nx = N Y -  - 0. 

*Previously unpublished results obtained from investigation similar to the one described i n  reference 26. 
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ref. 9.) Such scatter is fairly typical of panel flutter experiments when data are obtained 
from a variety of configurations. The scatter in the data at a of 2.18, 4, and 10 indi- b 
cates that the theory can give unconservative predictions of the value of A1/3 required 
for flutter by as much as 25 percent. However, when the entire range of a from 1 to 10 b 
is considered, the agreement between theory and experiment appears to be reasonable. 
It should be noted that the flutter points at a of 10 were obtained from arrays of panels. b 
In addition, one of the flutter points at of 10 was obtained from wind-tunnel tests of a 

full-size component of an existing vehicle (ref. 28). Thus, the flutter of an a r ray  of 
panels (4 bays in cross-stream direction) was adequately predicted by theoretical results 
for a single panel. 

Unstressed Panels With Length-Width Ratios Less Than 1.0 

Comparison of theories.- Results obtained from both the exact and approximate 

aerodynamic theories for a 5 1.0 a r e  shown in figure 6 in terms of the flutter param- b -  
eter A1/3 and the panel length-width ratio 3. The solid curve was obtained from the 

approximate aerodynamic theory. 
parameter A1/3 decreases rapidly as E decreases from 1 to 0.75 but decreases only 
slightly fo r  a < 0.75. The dashed curves were obtained from the exact aerodynamic 

theory by using 6 modes for aluminum panels at sea level for M = 1.3, 1.5, 1.6, 2, and 3. 

b 
The approximate aerodynamic theory predicts that the 

b 

A p p r o x i m a t e  a e r o d y n a m i c  t h e o r y .  
M F l u t t e r  

_ _ _ _  E x a c t  a e r o d y n a m  i c t h e o r y  -- 1.6 - -  2 . 0  
. .  . ~ 3.0 _ _ _ _ _ _ _  - - - - -  - -  

I 

0 
I I 

.25 .50 

f 

I 1 

75 I .oo 

Figure 6.- Comparison of results obtained from exact and approximate aerodynamic theories for flat unstressed simply supported 
aluminum panels with length-width ratios less than 1.0. g = 0: sea level. 
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I 
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- 
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Figure 7.- Variation of A l l 3  with the  mass-ratio parameter 
l /v.  Al l  results obtained from 6 mode analysis. M = 1.4; 

= 1.0; g = 0. 

The results obtained from the exact aero- 
dynamic theory for M 2 1.6 show the 
same trend as the results obtained from the 
approximate aerodynamic theory and are in 
excellent numerical agreement; the critical 
boundaries were  the mode 2-1  boundaries. 
For M < 1.6 the exact aerodynamic theory 
predicts the so.-called single-degree-of - 
freedom instabilities that a r e  not predicted 
by the approximate aerodynamic theory. 

The single-degree-of -freedom insta- 
bilities a r e  characterized by the fact that 
the flutter mode shape and frequency essen- 
tially correspond to one of the natural 
modes of the panel. Typical single-degree- 
of-freedom flutter boundaries a r e  shown in 
figure 7 in te rms  of the flutter param- 
eter A1/3 and the mass density ratio 

P b 
Three flutter boundaries a r e  

parameter -. 1 The results are for a = 1.0, 

M = 1.4. 
shown, the coupled mode 2 - 1  boundary, and 
the mode 3 and mode 4 single-degree-of- 
freedom boundaries. As can be seen from 

figure 7, the single-degree-of -freedom boundaries are double valued and indicate large 
variations of A1/3 with 1. Calculations indicate that the unstable regions shrink with 

increasing structural damping coefficient g and may vanish sometimes for extremely 
small values of g. It is interesting to note that the mode 2 - 1  boundary is essentially 
independent of 1 (and also of g) and is very close to the value of A l l 3  given by the 

CL 
approximate aerodynamic theory. More detailed discussions of single-degree-of -freedom 
instabilities a r e  presented in references 9, 19, 29, and 30. 

IJ. 

The single-degree-of -freedom instabilities gave the critical boundaries in all cases 
for  M 5 1.5. As can be seen from figure 6, the results obtained.from the exact aerody- 
namic theory indicate large decreases in A l l 3  as M is decreased below 1.6. This 
decrease has been attributed in part to the change in flutter mechanism and to "negative" 
aerodynamic damping (see, for example, ref. 9). The results shown in figure 6 a r e  for  
aluminum panels at sea level and for g = 0. For other altitudes, materials, and values 
of structural damping coefficient g, the results could be expected to be significantly dif- 
ferent. Other investigations (refs. 30 and 31) have indicated that for M < 1.5 flutter 
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boundaries are sensitive to boundary-layer effects and the validity of the inviscid theory 
thus may be questioned. Because of the sensitivity of the flutter boundaries to such 
factors as variations in material and structural damping, the boundaries shown in fig- 
ure  6 a r e  probably not useful for design purposes for M < 1.6. They a r e  presented 
solely to indicate the large variations of X1/3 with M as indicated by the exact aero- 
dynamic theory for 3 < 1 and M 5 1.5. b 

i Calculations were  also made by using three-dimensional static aerodynamic theory 
in order to investigate the three-dimensional effects alone (that is, unsteady effects 
neglected). The results were obtained from the flutter determinant of Hedgepeth (ref. 20) 
by using four terms in the stream direction and two terms in the cross-stream direction. 
Calculations were made for M = 1.4, 8 = 0.245 and for M = 1.3, 3 = 0.208. 

cases correspond to values of fig = 4.0. The calculations revealed that the critical 

flutter boundary was the coupled mode 2-1 boundary, that no single-degree-of-freedom 
instabilities existed, and that the critical values.of X1I3 were very close to the values 
obtained from the two-dimensional static aerodynamic theory. Thus, for a < 1 three- 

dimensional effects appear to be insignificant and the unsteady effect appears to be the 
significant factor, as might have been expected from the results of previous investiga- 
tions. 

Both 

b 

(See, for example, ref. 20.) 

Comparison of theory and experiment.- A comparison of experimental results for 
M 2 2 with theoretical results based on the approximate aerodynamic theory for  a < 1.0 b 
in terms of the flutter parameter X1/3 and a is shown in figure 8(a). The solid curve 
is for simply supported panels (eq. (2)) and the dashed curve is for  clamped panels 
(eq. (3)). The experimental results for a of 0.46 and 0.73 a r e  for  panels essentially 

b 
clamped on all edges (ref. 9). 

on the leading edge, simply supported on the trailing edge, and free on the side edges 
(ref. 32). Such a panel would behave essentially like a beam and this two-dimensional 
behavior is assumed representative of semi-infinite panels a - 0 . As can be seen from 

figure 8(a), the agreement between theory and experiment is good for the entire range of 

b 

The result for a = 0 was  obtained from a panel clamped 
b 

(E- ) 
shown; the boundary for simply supported edges gives a lower bound for the experi- r 

mental data. 

3 A comparison of experimental results with theoretical results for M < 2 and 
a < 1.0 is shown in figure 8(b). b 
obtained from panels with various edge restraints at various Mach numbers from 1.1 to 
1.6 (refs. 9, 33, 34, and 35). The results for = 0 were  obtained from panels with f r ee  

side edges. As can be seen from figure 8(b), the theory based on the approximate aero- 
dynamics is in only fair to good agreement with experiment for < 1 and M < 1.6 as 

The symbols represent experimental flutter points 
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Figure 8.- Comparison of experiment with approximate aerodynamic theory for < 1.0. 

I 

I . o  

the experimental data are not bounded by the theoretical boundaries. The data indicate 
the theory can give unconservative predictions of the value of X1/3 required for flutter 
by as much as 20 percent. 

the exact aerodynamic theory fo r  a < 1 and M < 1.6 because the theoretical results 

are very sensitive to variations in structural damping coefficient g. However, such 
comparisons have been made in other investigations (for example, refs. 9, 19, and 33). 
These comparisons have revealed that for no structural damping (g = 0) the results a r e  in 
poor quantitative and qualitative agreement with experiment. The inclusion of structural 
damping tends to improve the agreement. However, the boundaries obtained from the 
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Figure 8.- Concluded. 

exact aerodynamic theory are extremely sensitive to structural damping and the appropri- 
ate value of g to use for calculations generally is not known. Thus the usefulness of the 
exact aerodynamic theory, as presently employed, fo r  predicting flutter for the low range 
of and M may be limited. E 

The discrepancies that now exist between experiment and exact aerodynamic theory 
have been attributed to several factors such as transonic nonlinearities (ref. 9) and 
boundary layer (ref. 33). In addition, Dowell and Voss (ref. 9) have suggested that another 
possibility fo r  the discrepancies between theory and experiment is that the theoretical 
flutter solution is incomplete. That is, at present only neutral stability boundaries have 
been computed. It is possible that the complete solution would indicate that the most 
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critical boundaries calculated from the exact aerodynamic theory for low M and low a b 
would prove to 'be very weak instabilities and, perhaps, insignificant. 

Stressed Panels 

For stressed isotropic panels, experimental data indicate that the most critical 
portion of the flutter boundary occurs at the transition from the flat unbuckled boundary 
to the postbuckled boundary (for example, ref. 5). However, theoretical results based 
on the approximate aerodynamic theory indicate that the most critical condition can 
occur at values of midplane load considerably less than that required for buckling 
(refs. 6, 36, and 37). It has been suggested that the discrepancies between theoretical 
and experimental results for stressed panels a r e  due in part to the use of static aero- 
dynamics (ref. 36). Thus, some results a r e  considered for s t ressed panels based on 
exact aerodynamic theory which, of course, includes the unsteady effects. 

f 

Comparison of theories for  long panel a = 4.0 .- Theoretical results for a simply 
i - -  (5 

supported panel obtained from both the two-dimensional static and exact aerodynamic 
theories a r e  shown in figure 9. The results obtained from exact aerodynamic theory 
were calculated from a 6 mode solution for aluminum panels at sea level for M = 3.0; 

A p p r o x i m a t e  a e r o d y n a m i c  t h e o r y  

E x a c t  a e r o d . y n a m i c  t h e o r y  

0 g = 0 . 0  
- - -  

- * - - - g  = 0.025 

F I  u t t e r  

Figure 9.- Comparison of results obtained from exact and approximate aerodynamic theories for flat simply supported 
N 

panel subjected to midplane compressive load. M = 3.0; 5 = 4.0, 
the modes that coalesced for flutter. 

= 0. The numbers on  the curves indicate 
NX 
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this value of M corresponds to the value at which most published experimental data for 
stressed panels have been obtained. The results are presented in terms of the flutter - - 

parameter x1/3 and k, the ratio of the midplane compressive load to the critical 
Nx,cr 

value required for buckling for no airflow. 
flutter boundaries obtained from the approximate aerodynamic theory; the numbers on the 
curves indicate the modes that coalesced for flutter. 
boundary obtained from the approximate aerodynamic theory indicates that zero values of 

the flutter parameter occur at values of * of approximately 0.58, 0.71, and 0.89, 
Nx,cr 

and also that the flutter mode changes from a combination of modes 1 and 2 to a combina- 

The solid curves represent the two lowest 

As can be seen from figure 9, one 

? 

I 

tion of modes 3 and 4. The other boundary, which corresponds to a higher mode bound- 
a r y  at the lower values of s t ress  ratio, also indicates zero values of 
in flutter mode as the s t ress  is increased. 

and variation . 
The circles in figure 9 represent flutter points obtained from exact aerodynamic 

theory for no structural damping. 
tative agreement with the results based on the approximate aerodynamic theory except 

As can be seen, these results are in excellent quanti- 

near the critical values of - Nx where the aerodynamic damping, which is included in 
Nx, c r  

the exact aerodynamic theory, eliminated the zero-dynamic-pressure flutter points. The 
exact aerodynamic theory also indicated changes in flutter mode similar to the changes 
given by the approximate aerodynamic theory. Most experimental investigations have 
indicated no apparent variations of flutter-mode shapes with s t ress ,  and the variations 
indicated by theory have been considered a discrepancy (ref. 36). Although a recent 
investigation (ref. 26) reported variations of position of maximum flutter amplitude 
with s t ress ,  additional experimental information is needed to clarify the situation. 

Effects of damping.- The dashed and dot-dashed curves shown in figure 9 represent 
results obtained from the exact aerodynamic theory for values of the structural damping 
coefficient g of 0.010 and 0.025, respectively. As can be seen, structural damping has 
a large effect near regions where the approximate aerodynamic theory predicts zero 
values of the flutter dynamic pressure, but this same trend w a s  observed fo r  the approxi- 
mate aerodynamic theory when damping was added to the analysis (ref. 36). The inclu- 
sion of damping in the analysis tends to smooth out the saw-toothed-like boundary and the 
resulting flutter trends might be considered to be in qualitative agreement with existing 
experimental boundaries. 

The results of figure 9 suggest that aerodynamic and structural damping have less  

effect on the flutter boundaries as To determine the validity 

of this apparent trend, additional calculations were made for panels with length-width 
ratios of 2.45 and 1.41. These length-width ratios were chosen as they are the values fo r  

approaches 1.0. 
Nx,cr 
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which the approximate aerodynamic theory indicates A1/3 to be zero for - NX = 1.0 
Nx. c r  

for  the conditions specified all edges simply supported, Ny = 0). These results (and 

the results for a = 4 a r e  shown in figure 10 in terms of the flutter parameter A113 
and the length-width-ratio midplane stress parameter x. The solid curve is the flutter 
boundary obtained from the approximate aerodynamic theory (eq. (2)). The symbols 
represent flutter points obtained from the exact aerodynamic theory for aluminum-alloy 

( 
b ) 

panels at sea level for M = 3 and g = 0.025. These results were obtained for  - NX 
Nx,cr 

from 0 to 0.99 for  each value of 2. For the conditions specified, = 1.41 and 

NX NX - = 1.0 correspond to A = 5, and a = 2.45 and - = 1.0 correspond to 
Nx, c r  b Nx, c r  

A = 13. Comparison of the results shown in figure 10, particularly at 

indicate that the effect of damping does decrease as approaches 1.0. This result 

is attributed to the fact that small-deflection dynamic analyses indicate a zero flutter fre- 
quency at the transition point or end point of the flat-panel boundary. (See ref. 3.) Thus, 
before the effects of damping on panels on the verge of buckling can be investigated, it 
appears necessary to utilize large deflection theory and to include other effects such as 
initial imperfections. Analyses utilizing large-deflection theory and including the effects 

b 

- 
of 5 and 13, 

Nx,cr 

A p p r o x i m a t e  a e r o d y n a m i c  t h e o r y  
a /b 

a 1.417 
0 2.45) E x a c t  a e r o d y n a m i c  t h e o r y  

0 4.00 

F l u t t e r  2o r 

A 

Figure 10.- Effects of structural damping on flutter of stressed simply supported aluminum-alloy panels of various length- 

width ratios. 3 = 0; M = 3.0; g = 0.025. 
N X  
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of initial imperfections (for a two-dimensional panel) are presented in references 11 
and 12. However, the inclusion of damping and of a sufficient number of modes to insure 
convergence of the modal-type solutions for finite panels would prove extremely 
laborious. 

Nx,cr 
a r e  similar to the trends presented -.-. F I utter 
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There was no other effect of variations in Mach number with increases in compressive 
midplane stress. The value of for  the panel considered (e = 4, Ny = 0, simply sup- 

\u 
= 0.5 corresponds to the value for an unstressed square panel. 

The exact aerodynamic theory indicates that at M = 1.4 the flutter boundary for an 
unstressed square panel is given by a single-degree-of -freedom instability. However, 
no such instabilities were  found for the stressed panel. 

t 

CONCLUDING REMARKS 
. 

Results obtained from analyses utilizing both two-dimensional static (approximate) 
aerodynamic and linearized three-dimensional unsteady (exact) aerodynamic theories a r e  
presented and compared. Calculations were made for both unstressed and stressed 
panels by using these inviscid aerodynamic theories. 

The calculations for unstressed panels revealed that the results obtained from the 
approximate aerodynamic theory were in good agreement with the results obtained from 
the exact aerodynamic theory for  Mach number M 2 1.3 and for  panel length-width 
ratios 2 5 f Z 6. For M 2 1.6 the agreement was good for 0 5 2  5 6. 

the exact aerodynamic theory predicted single-degree-of -freedom instabilities for a < 2 b 
that a r e  not given by the approximate aerodynamic theory. The single-degree-of -freedom 
flutter boundaries usually gave much lower values of dynamic pressure required for 
flutter compared to the approximate aerodynamic theory. 

For M < 1.6 b -  

The theoretical results were in reasonable agreement with experimental results 
obtained at various Mach numbers from 1.2 to 5 for 

results were also compared with experimental data obtained at various Mach numbers 
from 1.1 to 5 for 

from the approximate aerodynamic theory were in good agreement with experiment for 
M 2 2, but gave unconservative predictions and were in only fair agreement for M < 1.6. 
However, for this range of M and a experimental results a r e  also in poor agreement 

from 1 to 10. Theoretical b 

from 0 to 1.0. This comparison indicated that the results obtained 

b 
with the predictions of the exact aerodynamic theory (presented in other investigations), 
although the theoretical predictions are conservative. The discrepancies that exist 
between theoretical and experimental results for low values of M and a a re  attrib- 
uted to several factors such as boundary-layer and transonic nonlinearities. 

6 

The application of the exact aerodynamic theory to the flutter of stressed panels 
did not remove the discrepancies that presently exist between the theoretical and experi- 
mental results for  stressed panels. The inclusion of structural damping was found to 
have a large effect in some instances and tended to eliminate some of the differences 

e 
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between theory and experiment. However, it was  shown that on the basis of small- 
deflection theory damping has no effect on flutter of panels on the verge of buckling. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 12, 1966. 
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