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IV. INTRODUCTION 

Flow separation i s  a common f l u i d  mechanical phenomenon occurring 

on many configurations and over a range of conditions from subsonic t o  

hypersonic flow. There have been a large number of investigations, 

both theoret ical  and experimental, of these configurations and the 

conditions causing flow separation. Recent reviews of flow separation 

research are  given i n  references 1 through 3. 

Separation i n  f ront  of an upward deflected ( tha t  is, posit ive deflec- 

t i on  angle) traLling-edge control surface can change considerably the 

performance of a hypersonic vehicle from tha t  predicted by the ideal- 

ized inviscid pressure distribution. In t h i s  thesis ,  only the geometry 

of a f la t  p la te  w i t h  an upward deflected f l ap  w i l l  be considered. 

experimental data a re  compared with predictions from the theory of 

Lees and Reeves ( re f .  4) which i s  a shock-wave boundary-layer inter-  

action theory. 

The e f fec t  of flow 

The 

As the free-stream Mach number increases into the hypersonic flow 

regime, laminar f l o w  generally becomes more prevalent, therefore, 

increased at tent ion has been focused on laminar separation and the 

associated laminar plateau pressure r i s e  (see sketch 1). 

examples of experimental investigations of flow separation on f la t  

plates  w i t h  trailing-edge f laps  a re  found i n  references 5 t o  24. 

Typical 

The purpose of th i s  thesis  i s  t o  present a detailed eqerimental  

and theoret ical  study of the effect  of Reynolds number, f l a p  angle, 

and w a l l  temperature on the surface s t a t i c  pressure, the flow f i e ld ,  

and the heat t ransfer  for  a flat p l a t e  (model) w i t h  a trailing-edge 
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Sketch 1. Comparison of the basic flow models assumed for a. shock 
wave boundary layer interaction and flat plate with 8 trailing 
edge flap and their associated laminar pressure distribution. 
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f lap.  The tests were conducted fo r  w a l l  t o  t o t a l  temperature ra t ios  

of 0.14, 0.43, and 0.74, and f l ap  angles of loo, 20°, and 30°, f o r  a 

un i t  Reynolds number range of per foot. 6 6 t o  4.3 x 10 R = 0.22 x 10 

Pressure and schlieren studies were made f o r  a l l  three wall-temperature 

ra t ios ,  while the heat-tranafer studies were made only f o r  a w a l l  t o  

t o t a l  temperature r a t io  of 0.43. The separation point, the  separation 

shock angle, and the separation flow deflection angle data were 

obtained from the schlieren studies. These angles and distances 

agreed qual i ta t ively with the results indicated by the pressure 

studies. The pressure data f o r  w a l l  t o  t o t a l  temperature ratios of 

0.43 and 0.74 showed the  extent of the  interaction and separated 

region, the plateau pressure leve l  and the f l ap  pressures fo r  a uni t  
6 6 Reynolds number range of R = 0.22 x 10 t o  10.9 x 10 per foot. 

Separation and reattachment points were also measured by oil-flow 

studies T Tt = 0.43) fo r  loo, 20°, and 30' f lap  angles k d  uni t  

Reynolds numbers ranging from 0.22 x 10 t o  4.3 x 10 pes foot. The 6 6 
( w l  

trend i n  the movement of the separation point with a change i n  uni t  

Reynolds number found from the oil-flow study c l a r i f i e s  the  apparent 

contradictory results' previously obtained fo r  a much narrower range 

of Reynolds numbers ( refs .  7 and 16). 

the interaction region when the separation goes from pure laminar type 

separation t o  a t ransi t ional  type of separation, with an increase i n  

uni t  Reynolds number, is  shown. Reattachment pressures were determined 

from plots  of  the pressure distributions and the  point of reattachment 

found from oil-flow studies. 

The effect  on the movement of 
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The Lees and Reeves' theory w a s  used t o  compute the pressure 

r ise from the  beginning of the interaction region t o  the end of the 

first pressure plateau region. The local  s imi la r i ty  theory ( re f .  25) 

w a s  used t o  calculate the upstream boundary layer. The Lees and 

Reeves' solution w a s  joined t o  the upstream boundary-layer solutian 

by matching the  value of the physical momentum thickness at the 

beginning of the Lees and Reeves' interaction region. Detailed 

resu l t s  of these calculations are  presented herein. 

The Lees and Reeves' theory for  the adiabatic wall 

and cool w a l l  i s  compared t o  the experimental case of 

T T = 0.74 and T Tt = 0.43, respectively. The agreement between 
W I  t .I 

the pressure dis t r ibut ion,  as predicted by the  Lees and Reeves' 

theory, and the experimental pressure data i s  good over a large range 

of Reynolds numbers. The heat-transfer prediction, by a modified 

Lees and Reeves' method, shows a trend which agrees qual i ta t ively w i t h  

the  experimental heat-transfer data. 
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V. LIST OF SYMBOLS 

a speed of sound; also velacity prof i le  parameter, 

L o  I =Q 3 

for  separated Slow fo r  attached flow; 

D defined by equation (A.-14) 

e enthalpy integral  s,"' s ay - 

f defined by equation (A-13), a lso  stream function, eqU€LtionS 

(1) and ( 2 )  

h defined by eqmtion (A-L2), a lso  enth4py 

H 

J 

e.  1 pt* 

L 

L' normalizing factor  for  the theoretical  solution, equal t o  

length of f la t  plate  portion oT the  model, 10 inches 

1 foot 

m defined by eqwtion (A-6) 

M Mach number 

P pressure 

P wall shear stress function, - 
U 

c 
e - 

q heating rate 

R dissipation function, - 2  - - 
- U e - 
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R Reynolds number per foot (unit Reynolds number) 

am Mm 8%" 
Reynolds number, 

Re6t* vm 

S total enthalpy function - 1  

T* 
e 

enthalpy function, E S 6 * 
I w t  

T temperature 

U? v 

U 

velocity component parallel and normd to surface 

Stewartson' s transformed velocity, equation (C-4) 
- - 
XI Y 

- x, 4 
coordinate parallel and norma1 to surface 

Stewartson's transformed coordinates, equation ( C - 2 )  
- 

c -  
Z velocity integral, 6K 

e _. 

U defined by equation ( 3 )  

B pressure gradient parameter 

7 

6 boundary-layer thickness 

ratio of specific heats, C C 
PI 

trailing- edge flap angle 

transformed boundary-layer thickness 
sf 

'i 

%* boundary-layer displacement thickness, LBi (. - k)dy - 
-e 

transformed displacement thickness, Si* -i- e %* 
stagnation enthalpy ratio, h h 

t/ te 
c 
rl similarity variable, equation (C-5) 
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‘i 

Bi* 

0 

IJ 

V 

P 

boundary-layer momentum thickness, LEi k(l. - :)dy i- 

-e 

local angle between streamline at y = 6 and x-=is, 

viscosity 

Prandtl-Meyer angle; a lso  Kinematic viscosiZ;y, (u/p> 

density 

Subscripts 

e 

i transformed conditions 

P1 plateau value 

R reattachment value 

t stagnation conditions 

W w a l l  conditions 

X aong the plate 

0 

03 free-strew conditions 

A prime indicates differentiation wikh respeGt to 

local conditions external to the boundary layer 

at the beginning of the interaction 

’1 



Pescription of t he  Models Used 

The pressure model used f o r  the  tests at all three w a l l -  

temperature conditions is  shown i n  figures 1 and 2. The i n s t m e n t a -  

t i on  extends from 4.75 inches aft of the leading edge t o  0.281 inch 

ahead of the t r a i l i n g  edge of the flap.  

edge of about 0.001 inch thickness; the f la t -p la te  portion of the model 

was 7.75 inches wide and 10.0 inches long. 

The model had a sharp leading 

A 2.0-inch-long t ra i l ing-  

edge flap,  which may be positioned at  angles pf) of oo, lo9, eo0, 

and 30' ( re la t ive  t o  the f la t -p la te  portion of the model) extends 

across the  back of the model. 

plates  which extended back from the leading edge at  an angle of 

approximately 6' as indicated by the  l i n e  labeled "side plates" i n  

figure 1. 

The model w a s  a lso run with upper side 

The heat-transfer model is  shown i n  figures 3 and 4. The same 

leading edge piece, as used for  the pressure model, was used on the 

heat-transfer model; the heat-transfer and pressure models were 

geometrically identicaJ. on the upper t e s t  surface. 

Instrumentation 

The pressure model w a s  instrumented with 23 pressure or i f ices  of 

0.070 inch inside diameter as shown i n  figure 2. 

measured with e l ec t r i ca l  hot-wire pressure gages (with a range of 0 

t o  20 millimeters of mercury) and e l ec t r i ca l  wire strain-gage pressure 

gages. 

The pressures were 

The pressure range of the strain-gage type varied from 0 t o  1 



and 0 t o  7.5 psia. 

considered to  be b.05 millimeter of mercury, while the accuragy of 

the strain-gage pressure transducer i s  considered t o  ba 0.79 percent 

of ful l -scde deflection, 

extremely nanl%neqr, thus they must 'be calibrated with a high 

The accuracy of the hot-wire presswe gage i s  

The c d i b r a t i o n  o$ the  hot-w9re gage ia 

resolution ( o r  a, large number of points) i n  the lower pressure range, 

The strain-gage .transducers are l inear  i n  calibration over t ha i r  rated 

gresswe range. 

Pressure tests a t  Tw Tt = 0.43 and 0.13 

electricaj, hot-wire type of pressure gages mounted inside the body of 

the model, as shown i n  figure 5 .  For pressure tests a t  T Tt = 0.43 

tbe strain-gage transducers were used also; these were mounted inside 

were made with the 

W 

the model vacuum chamber injection box below the tunnel test section, 

as shown i n  figure 6.  

tubing were used for  a l l  pressure leads, 

Stainless-steel  tubing and plasWo vacuum 

For the pressure t e s t s  a t  

Tw Tt = 0.74, both the electrical. hot-wire and e l ec t r i ca l  w i r e  s t ra in-  

gage types were used. However, f o r  tests at Tw Tt = 0.74 t h e  gages 

were mounted outside of the tunnel, wrapped i n  a polpthalene bag, 

and immersed i n  an ice  bath so t h a t  the gages cwld  be kept a t  a 

constant temperature. 

The instrumentation Tor the  heat-transfer model (shown i n  f ig .  4) 

consists of 50 gaQe (0.010 inch diameter) thermocsuple wire mqunted 

on an 0.029-inch-thick skin portion of the model. 

junctions were made by spot welding individual thermocouple wires on 

The thermocouple 

the inside surface of .the model skin. The thin-skin portion was 

fabricated by milling a groove of 0.4-inch-wide i n  Ghe 1-inch-thick 
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p la t e  as indicated on figure 4. 

stainless-s teel  plate.  

The f l a p  w a s  made from 0.030 inch 

A cover was put on the bqck of the  f l ap  t o  

shield i - b  from any extraneous back-side heat inputs. 

T e s t  Apparatus and Procedures 

The tests reported i n  th i s  thesis  were conducted i n  the Langley 

Mach 8 Variable Density Hypersonic Tunpel. 

a nomin& Mach number of 8 over a Reynolds number (per foot)  range of 

0.20 x 10 t o  12.0 x 10 . A calibration of t h i s  f a c i l i t y  can be 

This tunnel operates a t  

6 6 

found i n  reference 26 and a f'urther description is  given i n  

reference 27. 

of attack r@sul.ting i n  a range of l oca l  Mach number on the p la te  from 

Throughout the  t e s t s  the model w a s  s a t  a t  0.5' angle 

about 7.4 t o  7.8. 

The pressure tests fo r  T T = 0.43 were made w i t h  the  model 
W I  c 

at essent ia l ly  room-temperature conditions since the data were taken 

a t  about 1/2 second after the model was positioned i n  the test 

section. 

1/2 second was required f o r  the pressures t o  reach an equilibrium 

v a u e  over the range af t e s t  conditions. Equilibrium pressures were 

reached i n  approximately the sane time lapse as fo r  the higher 

pressure range, i n  th i s  pressure range the s ize  of the gages required 

tha t  they be mounted outside the  model ( f ig .  6) 

When the gages were instal led inside the  mQdel l e s s  than 

Tests conducted at T T = 0.14 were carried out w i t h  the model 

coolea by l iquid nitrogen. The small hot-wire type gages were mounted 

inside the  model - as shown i n  figure 5 - and were sprayed w i t h  l iquid 

nitrogen. 

W I  t 

The leading-edge piece had two passages d r i l l ed  through it 
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fo r  l iquid nitro$en coolin@;, as shown i n  figure 2. The pressure-gage 

cavity (fig. 3 )  and the f l ap  also were sprayfad with li 

When the  model reached an isothermal temperature, of 

190' R, the model w a s  injected into the tunnel and the pressure data 

were recorded 1/2 second after the model was positioned i n  the test 

section. The cold w a l l  temperature of the model was measured by 

thermocouples mounted on the inside surface of the  model at a point 

aft of the leading edge where the skin thickness was approximately 

3/16 of an inch thick. 

surface of the  model during the cool-down period t o  prevent the 

formation of f r o s t  on the  model surface. This cover w a s  removed jus t  

pr ior  t o  the inject ion-of  the model for  a subsequent test. 

A t i gh t  f i t t i n g  cover was placed over the 

For tests at  T T = 0.74, the model w a s  heated, p r ior  t o  i ts  

0 
4 t 

exposure t o  the  supersonic stream, t o  approximately 1000 R by blowing 

heated air  over it. 

p le te  when the  temperature of the model was  close t o  the adiabatic 

w a l l  temperature f o r  a laminar-flow recovery factor.  

test ,  when the model was  i n  the suFersonic s t r e w ,  the model tempera- 

tu re  se t t led  at  an eqzlilibrium value which gave a w a l l  t o  t o t a l t em-  

per i ture  r a t i o  of approximately 0.74. 

perature of the model ranged from 950' R t o  1200' R, from the lowest 

t o  the highest Reynolds number tests, respectively. The same ther- 

mocouples as described above f o r  the cold-wall tests were used t o  

dete?mine the surface temperature of the model f o r  the hot-wall tes t .  

The period of  model heating was considered com- 

Durlng an actual 

me actual- surface t e s t  t em-  

Pata were recorded j u s t  pr ior  t o  the time when there was a breakdown 
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of the supersonic flow i n  the tunnel. 

t o  flow breakdown, w a s  approxiVLately 60 seconds. 

The length of a test  run, up 

The heat-transfer tests were made with the model i n i t i a l l y  a t  

room tmperature.  

from a vacum chamber (fig. 6) which had been evacuated t o  test  

s s c t l w  s%ream s t a t i c  pressure. Approximately Q,Og second w a s  

required $or the model t o  leave the chamber and enter the uniform test 

flow region, and the heat-transfer data were taken 1/2 second after 

the  moael w a s  positioned i n  the  test  section. 

The model w a s  injected into the  tunnel test  section 
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V I I .  A REVIEW OF THEoRE*rICAsI LITERAm 

The problem of flow separation has been investigated theoret i -  

ca l ly  since the t i m e  of Frandtl 's  ear ly  works, published i n  reference 

28, In recent times one of the  first e f for t s  toward an analysis of 

supersQnic separation w a s  made by Chapman ( r e f .  21) i n  which the 

resu l t s  of h i s  mixing layer  analysis ( r e f .  29)  were used. Chapman's 

axlazysis represents a l imiting case f o r  separation with the assumption 

tha t  the boundary-layer thickness is  zero a t  Che point of separatlon. 

The Karman-Pohlhausen method was used by Gadd, Curle, and 

Savage, i n  references 30 .t;o 32, respectively, without a great deal 

0% success primarily because the assumed velocity prof i les  i n  the 

region of separation did not give the  reverse flow found i n  

experiment. 

method which depends on the r a t e  of entrainment of f lu id  from the 

Crocco and Lees ( re f .  33) developed a semiempirical 

eldernal stream into the boundary layer. Results from the Crocco-Lees' 

method were only i n  qual i ta t ive agreement with experimental data. 

The Crocco-Lees' method, modified by Glick (ref .  34) predicted resul ts  

t ha t  were i n  good agreement with pressure data as obtained from 

experiment. This method uses the  concept of the  dividing streamline; 

however, empirical daha are  required fo r  i ts  application. The 

CrQcco-Lees' method was also used by Bray, Gadd, and Woodger (ref. 35) 

and me% w i t h  reasonable success. 

Tani ,  i n  reference 36, used an analysis similar t o  tha t  of 

Wieghardt (ref.  37) and Walz (ref. 38) i n  that  his solution for an 

attached flow w i t h  an adverse pressure gradient used the f i rs t  moment 
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of mmentwn i n  addition t o  the zeroth moment and continuity equations. 

Tan$ w e d  a quartic representation f o r  the velocity prof i les ,  however, 

the boundary condition which required tha t  the momentum equation at 

the  w a l l  be sa t i s f i ed  w a s  dropped, 

neglected the resul t ing one parameter, which characterizes the family 

When t h i s  boundary condition w a s  

of velocity prof i les ,  was not d i rec t ly  related t o  the static-pressure 

dis t r ibut ion bu$ was d i rec t ly  proportional t o  the  shear 6tress  at 

the w G l .  The one parameter descrtbing the family of velocity 

prof i les  w a s  obtained from the simultaneous solution of the zeroth 

moment of mamentum and the first moment of momentum equations. 

results of Tani's analysis have been found t o  be i n  good agreement 

The 

with exact solutions of the boundary-layer equations. Poots, i n  

reference 39, extended Tani's method by adding the energy equation t o  

the continuity and two momentum equations. 

Abbott, Holt, and Nielsen, i n  reference 40, studied the separated 

flow problem by using the continuity equation, the zeroth an4 the 

first moment of momentum equation, and the energy equation w i t h  a 

fourth degree polynomial expression fo r  the velocity and temperature 

prof i les  and with one undetermined parameter per prof i le .  

result ing separated flow pressure distributions did not have the 

The 

correct trends primarily because of the use of polynomials f o r  the 

velocity and temperature prof i les .  Lees and Reeves, i n  reference 4, 

developed a method f o r  the shock-wave boundary-layer interaction 

problem where i n  the continuity equation, the momentum equation, and 

the first moment of momentum equatlon are solved shul taneously with 
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a one-parmeter family of velocity and enthalpy prof i les .  Lees and 

Reeves used the Cohen and Reshotko prof i les  f o r  the h i  co 

wall c@ses and added the Stewartson prof i les  f o r  the adiabatic wall 

cases, as found i n  references 41 and 42, respectively. This method 

gives good agreement with experimental pressure data f o r  both adia- 

ba t i c  and cooled w a l l s  T T = 0.6 , however, f o r  the highly cooled 

w a l l  case T T = 0.2 and fo r  quantitative heat-transfer predictions 

the methoa i s  inadequate. The most promising method f o r  predicting 

both pressure and heat t ransfer  under highly cooled w a l l  conditions 

is  tha t  of Holden (ref. 43) who adds the energy equation t o  the 

conservation of mass and the  zeroth and f irst  moment of pomen%um 

equations. Holden's method of solution i s  similar t o  t h a t  of Lees 

and Reeves i n  tha t  he uses the  velocity and enthalpy prof i les  from 

the  upper and lower branches of the Cohen and Reshotko (ref. 41) 

.I t 

w l  t 

solution. However, Holden's family of velocity and, enthalpy prof i les  

a re  determined by two parameters, one of which deflnes the  velocity 

prof i le  and the  other defines the enthalpy prof i le .  

and Lees and Reeves i n  their  methods of solution uncouple the boundary- 

layer velocity prof i les  from the pressure-gradient parameter associated 

with the Cohen and Reshotko solution. For the Lees and Reeves' 

method of solution, once the velocity prof i le  is determined there is  

Both Holden 

only one enthalpy prof i le  associated w i t h  the given velocity prof i le .  

On, the  other hand, Ln Holden's method the enthalpy prof i le  i s  uncoupled 

from both the pressure-gradient parameter and the  velocity prof i le  

and w i t h  inclusion of the  energy equation the enthalpy prof i le  
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parameter can be determined. 

well with his "highly cooled" wall experimntal heat %ransf 

pressure data ( re f .  43). 

The results of Holden's method agree 
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VIII. !P.KF!ORETICAL APPROACH 

A t  the  t i m e  the present experimental tests were conducted, the 

mat promising theoretical  approach t o  the f la t -plate  traili 

f l ap  problem w a s  the Lees and Reeves' theory of reference 4. 

Consequently, the method of Lees and Reeves' was programed, Tor use, 

(In the IBM 7090 and approximately 120 case studies were calculated to  

check fo r  agreement with experimental data. The first se t  of theo- 

r e t i c a l  calcuZations were made for T T = 1.0, which corresponded 

appraximately t o  the Tw/Tt i= 0.74 t e s t  conditioqs (appendix A ) .  

Additiowl boundary-layer parmeters  were calculated for  the 

Tw/Tt = 0.6 case (appendix B) and the result ing predictions were 

compared with both the eqerimental  pressure and heat-transfer data 

(appenaix 6 )  n 

.I t 

The method of joining the Lees and Reeves' solutlon t o  the 

upstream boundary layer as used herein deviates s l igh t ly  from t h e  

method indicated i n  reference 4. 

Reeves' theory the boundary layer upstream of the Lees and Reeves' 

interaction region w a s  calculated 

caloulation took into aceount the favorable pressure gradient due 

t o  the induced boundary-layer effects .  

thickness, from the results of the upstream boundary-layer caLcu- 

la t iw,  was matched t o  the Lees and Reeves' value of momentum 

thickness at  the beginning of the interaction region; where t h i s  

location for  the start of the interaction region (from the upstream 

solution) w a s  taken from experimental pressure data. The method of 

I n  order to  apply the Lees and 

This upstream boundary-layer 

The value of momentum 



matching the momentum thickness of the upstream solution to the Lees 

apd Reeves' solution was used because the complete Lees and Reeves' 

solution, from the beginning of the interaction to the undisturbed 

Plow qownstream of the reattachment point, could not be matched to 

the physical. size of the model. Specifically, the calculation from 

the hinge line through reattachment and downstrew to a point where 

the solution reached a Blasius type Of flow yielded a streamwise 

x-distance greater than the 2:-inch-long flap of the model. 

caLculations made by using the Lees and Reeves' theory were done with 

The 

the intention bf predicting the initial shape of the pressure curve 

and the level of the plateau pressure. 

T Tt = 1.0 and T T 

the interactton to the point of shock impingement was calculated. 

For the initial 120 cages for 

= 0,6, only the region from the beginning o f  
wl wl t 

The details of the Lees and Reeves' calculations are given in 

appendixes A and B. 

Upstream Boundary-Layer Calculation 

The loca l ly  similar solutions o f  Beckwith and Cohen (ref. 25) 

were used to calcaate this upstream boundary layer with a pressure 

gradient. The boundary-layer equationa, in the similarity coordi- 

nqteg, with the simplifsrlng assumptions of constant c and pp 

and with pr = 1.0, reduce to 
P 

f"' + ff" 4- B(( - P2) = 0 
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and 

where the notation i s  tha t  of reference 25, 

The local  external flow properties for  the upstream boundary- 

lqyer solutions were calculated fkom the induced pressure effects 

Tor the case of w e a k  interaction from the theory of Bertram and 

Blackstock found i n  reference 44. The equation for  the induced 

pressure (at 7 = 1.40) i s  

and 

where 

The loca l  vplues of Mach number, temperature, velocity, and loca l  

Reynolds number per foot at the  edge of the  boundary layer were 

computed from 
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and 

1.812 x lo8 (Te + 2Q1.6 Me Pe 
R/ft = 2 ,,I , , ( 7 )  

Te 

fop 7 = 1.40, 

layer calculat@d ;Prom equations ( 3 )  to (7) , the upstream bondary 
layer was obtained from a numerical solution of equations (1) and (2) 

Thus, with local conditions external to the boundary 

at 35 points along the flat plate. 

The Lees and Reeves' solution. between the beginnipg of the 

interaction region and the shock impingement p0in.t depends only on 

the separation, point value of the transformed displacement thickness, 

assumed l o c a l  conditions at the edge of the boundwy layer, apd 

$he previous upstream history of the boundary layer. Therefore, the 

Lees and Reeves' s;olution, as calculated for  8. shock-wave boundary- 

layer interaction, may be readily applied to a flat plate with a 

trailing-edge flap, Prom the beginnine of the interaction region t o  

the vicinity of the hinge line. 



The regions fr.aaa the  shock impingement point t o  beyond the 

reattachment point, for  the  case of a shock-wqve boundary-layer 

interaction, are analogous t o  cer ta in  regions for a trailing-edge 

n a p  configuration i f  the wedge angle of the shock generator i s  half 

the f l ap  angle since the final t o t a l  compression angle of the inviscid 

flow then would be the same fo r  the two configurations. 

sponding assumed flow models for  Che shock-wave boundary-layer 

interactiop. wid for the Qat plate  with trailing-edge f l ap  a re  shown 

i n  sketch 1. For the shock-wave boundary-layer i n h r a c t i o n  a f l u i d  

The corre- 

element external t o  the bowdary layer and moving para l le l  t o  the 

plate  surface turns through an angle of  6 2 as it passes throGh 

the impinging shock wave. The same f lu id  element external t o  the  

boundary layer i s  turned again by an angle of 6 2 as it passes 

through the reattachment compression fan and then moves downstream, 

paral le l  t o  the p la te  surfaae. For the f lat  plate  with a t ra i l ing-  

edge flap the f lu id  element external to  the boundary layer i s  turned by 

an angle of Sf as it passes over the f lap and through the reattachment 

compression fan. 

of the f l ap  angle the external flow for  both conditions w i l l  

experience the sane t o t a l  compression angle and w i l l  have a similar 

f l 

f l 

Thus i f  the shock generator angle i s  taken as half  

static-pressure history, over the surface, as i s  shown i n  par t  c of 

skekch 1. I n  the flow models assumed for both configurations, the 

increase i n  entropy d o n g  the edge of the boundary layer i s  neglected; 

tha t  is, the compression i s  assumed t o  occur through a ser ies  of we& 

waves rather than by one strong shock wave. 
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Procedure Used fo r  Application of the 

Lees and Reeves' Theory 

Xn figure 7 the  experjmental vaJ,ues of t he  beginning of the 

inkeraction region, as taken from measured pressure distributions,  

are shown f o r  three different wall t o  t o t a l  temperature conditions. 

The beginning of the interaction region, (X/L) is  selected as the  
0' 

point where the pressure begins t o  r i s e  above the undisturbed upstream 

values due t o  the adverse pressure gradient feeding forward from the 

f lap.  A t  .this (X/L), location the Legs and Reeves' aolution is  

joined t o  the upstream boundary-layer solution. 

boundmy-layer momentum thickness is shown i n  figures 8 and 9 f o r  

a pLa%e 10 inches l w g  a t  values of TWITt = 1.0 and T T = 0.6, 

respectively. 

un i t  Reynolds number range of' 0.22 x 10 t o  4.7 x 3-0 per foot.  

(The Mach number and uni t  Reynolds number actual ly  varied s l igh t ly  

The upstream 

W I  t 
The calculations for  figures 8 and 9 Were made f o r  a 

6 6 

along the p l a t e  according t o  the weak interaction equations.) The 

value of the momentum thickness a t  the beginning of $he intemction,  

from the Lees and Reeves' solution and f o r  the various test 

Reynolds numbers, i s  plotted against %he assumed loca l  Mach number 

at the point of separation, (Me)s, as shown i n  figures 10 "ana 11. 
Specific eases were calculated using the Lees and 

6 6 
uni% Reynolds numbers of 0.22 x 10 t o  4.3 x 10 

Mach numbers a t  separation from 6.5 t o  7.5 at 0.1 

me waisturbed f la t -p la te  Mach number was varied 

correspond t o  the  change i n  the test-section Mach 

Reeves' theory f o r  

per foot,  and loca l  

intervals  i n  (Me)s- 

from 7.4 t o  7.8 t o  

number w i t h  the  
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change i n  free-stream un i t  Reynolds number. 

against 

i n  flgw?e I2 fo r  vwious values of unit  Reynolds number 

Typical plots  of pressure 

x from the  beginning of the  interaction region are shown 

The first s tep i n  the  application of t he  Lees and Reeves' theory, 

as used In t h i s  thesis ,  was t o  obtain, from f igure 7, f o r  a, given 

Tw/Tt and unt t  Reynolds number, t he  (X/L,, value f o r  the  beginning 

of the interaction. This value of (X/L,, is then used t o  f ind  the 

value of the  momentum thickness a t  the  beginning of t he  interaction, 

Bo, for  the upstream solution, from figures 8 and 9.  

Bo i s  then uaed t o  enter figure 11 o r  32, at the  given T T and 

R values, t o  obtain the corresponding value Qf (Me)s  which, i n  

turn,  i s  used t o  specify the par t icular  Lees and, Reeves' aolutipn pnd 

pretjsure dis t r ibut ion f o r  the given, tes t  cooclitions. 

This value of 

w/ t 

'Plne technique fo r  selecting the par%icular solution t o  be used 

i s  best  i l l u s t r a t ed  by following the dashed l ine i n  figure 11. lh 

this instance the  flat-plate value of momentum thickness is  
6 

0.20 x low3 f t  and the  uni t  Reynolds ;umber i s  0.65 x 10 per foot; 

t h i s  gives a value of 

solu.tion fo r  t h i s  value of 

wri tb  the  experimental data was selected t o  correspond t o  

t h a t  tls, t o  the  l e f t  of where the dashea l i n e  i n  figure 12 strlkes 

the  abscissa. 

(Me)s =: 6.641. 

(Me)s  

Rather than calculate a new 

the solution used f o r  a comparison 

(Me), = 6.6, 

It can be seen i n  figure 12, for all values of un i t  Reynolds 

number, that as the  Mach number at separation increase$, the  rate of 



the  presswe increase (with distance) decreases , for  a sizable 

distance, before the pressure begins .to climb toward a plateau vaXue. 

This slow rate o f  increase i n  preasure occurs i n  the  region between 

p/po = 1.00 and p/po F 1.XO; Chis makes it diPfi,cult t o  deternine the 

beginning of the  interaction region. 

theory w i t h  experimental data, t h i s  d i f f i cu l ty  was overcome by 

l inear ly  extrapolating the slope of the curve a t  

(X/&' ) 

For the  purpose of comparing 

p/po = 1.10 t o  the 

abscissa 8s is  shown (typically) by the dash-dot l i n e  i n  figure 12 fo r  

R F 0.22 x 10 (Me)s = 6.8. 6 per foot and The point where the  extrapo- 

lated Xpnes crossed the  X/L' axis was considered t o  be the  theoret ical  

point f o r  the beginning of the interactiop region; t h i s  was matched 

t o  the experimental va7;ue of the  beginning of the  interaction region. 

Thus the %heoretical and experwental techniques op determining the 

beginning of the interaction regton were consistent, i n  t h a t  botb 

methods used a sudden pressure rlse t o  define the beginning aP the  

interaction region. 

beginntng of the  interaction region has been previously discussed 

(The experimental technique f o r  detemining the 

with figure 7. ) 

It should be no$ed i n  figure 12 tha t  a t  the separation point - f o r  

the Tw/Tt E 0.6 case - the  pressure r a t io  curves have a d is t inc t  

discontinuity i n  slope. When the theoret ical  curves were compared 

with the  experbental  data the discontinuities i n  slope were faired 

t o  give a smooth pressure rise. 

the slope of the  pressure curves a t  the point of separation i s  

The reason f o r  the discontinuity i n  
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believed t o  be due .Oo the  change i n  slope of the separated and 

attached prof l l e  parameters; (6ee appendix B) upstream and downslxeam 

of hhe point of separation. 

3% fdgure 13 a comparison i e  shown between the  growth of the 

momentum and displacement thicknesses f o r  the upstream similar 

solution boundary layer, and fo r  the  downstream Gees an4 Reeves' 
6 solution, at a unl t  Reynolds number of 0.22 x 10 per foot.  The 

ups t rew 'boundary layer  is  joined t o  the Lees and Reeves' calculation 

a t  an X/& vtiLue of 0.317. It can be seen tha t  both the momentum 

thickness and the displacement thickness match a t  the point where tihe 

t w o  solutions are joined. 

show i n  figure 13, indicate %hat the momentum thickness changes l e s s  

than the  displacemenC thickness i n  the  presence OP an adverse pressure 

gradient for  the interaction and separated regions. 

The resul ts  of t h e  typic41 calcula;tion, 

Plots of loca l  Mach number a t  s q a r a t i o n  versus the plateau 

pressure, as obtained from the Lees and Reeves' theory, for wit 
6 6 Reynolds numbers from 0.22 x 10 to 4.3 x 10 per foot,  are shown 

f o r  TWITt = 0.6 md 1.0 i n  figures 14 and 15, respectively. The 

Lees and Reeves value of the plateau pressure was taken from theo- 

r e t i c a l  T T = 0.6 and T T = 1.0 curves of figure 12. The 

dashed l i n e s  represent the theoret ical  values of plateau pressure, 

basad, on the  experimntal value of the beginning of the interaction 

as Towa i n  figure 7. 

W I  w l  t 

I n  adaition t o  figure 7, figures 8 through 11 

were used t o  obtain the proper value of t he  Local Mach number a t  

separatiion (as discussed previously) fo r  the dashed l ines  of  figures 
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14 and 15. 

and 19 a m  conflned t o  a narrow band which decreases s teadi ly  w i t h  

an IncreaBe In unit  Reynolds number. 

The predicted values of plateau pressures i n  figures 14 
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IX* TFSTRE3ULTS 

Tranaltion Polnt Data 

Transition can affect  the exten4 of separation as w e 1 1  as the 

pressure levels  associated with separation; therefore, the 1acs;tion 

of trans%V.o-n ~n the  model w a s  studied i n  order to deternine at what 

wit Reynolds numbers ' t ransit ion begins, and the location of i t s  

beginning 

The 1ocat;lon of %he. transstion point was determined f r o m  heat- 

transfer data obtained by set t ing the flap at  a zero angle of deflec- 

ticm and testsng the heat-transfer model ELS i f  1% were a flat plate.  

These kea*-transfer data were plotted along the length of the model 

i n  terns of the Stan-bon number tizlles the  square root of the  loca l  

Reynolds number (St G). 
undisturbed laminar boundary layer over a flat  p h t e  of S% Fx is 

approximately 0.40Q. 

d8ta began t o  rise qbove the 0.40 value of St 6 was taken as 

the  loca,tlon fqr the beginning of t r h i t i o n .  A summa~y of thesje 

It i s  knm t ha t  the value f o r  the  

The point a t  which th i s  flat-plate heat -transfer 

f la t -plate  t ransi t ion data is  shorn i n  table I. 

TABLE I. - FLATmPLATE TWSIT1ON POZNT DATA 

Local t ransi t ion 
Reynolds number (Rex) 

Distance from 
leading edge t o  the 

t rans i t ion  point ( in)  

Unit Reynolds 
number (per foot )  

6 2-63 x io6 
3-43 x io6 
4.3 x io6 
1079 x 10 

9 * 0  
8.0 
7.5 
T * 5  

6 1.99 x io6 
2 4 0  x io6 
2.69 x i o 6  
5.28 x 10 
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The effect  of f l ap  deflection is t o  increase the loca l  Reynolds 

number s l igh t ly  i n  the separated region apd t o  a larger  extent on, the 

flag. For example, at  a un$t Reynolds number of 1.46 x 10 per foot 

the heat-transfer data f o r  Bf = 0' indicate nq trg3lsiCim on the  

p la te .  

per foot )  w i t h  a 30' f l a p  deflection (6f = 30') the  pressure w i l l  

4 

6 For the  test  a t  the  same wit Reynolds number (R = 1.46 x 10 

incrqasa over the en t i r e  f lap,  with a peak increase of a factor  of 4, 

over the f la t -plate  value, occurring near the t rq i l i ng  edqe of the 

f lap.  This increase i n  pressure on the f l a p  should give a high enough 

unit  Reynold6 number t o  cause t ransi t ion t o  occur i n  the separated 

region i n  the neighborhood of the point of reattachment, 

%o the pressure disturbance t h s t  the f l a p  causes, the very nature of 

the separated shear layer woul4 also increase the possibi l i ty  of 

t ransi t ion.  

o f  extenelve separation t h a t  the  t rans  it ion Reynolds number (based 

on free-6tream conditions and distance t o  t rans i t ion  point)  was less 

by a factor of agproxlmaee3-y 4 than the t raqsi t ion Reynolds number 

for  which there was no separation. Futhermore, the separated shear 

In addition 

Becker and Koqcinski ( r e f .  22) found tha t  i n  tbe  presence 

layer could be considered analogous t o  a wake flow which i s  inherently 

unstable and w i l l  give earlier t ransi t ion than would be expected f o r  

a given uni t  Reynolds number. Thus it can be seen tha t  even though 

t ransi t ion first occurs on the f la t  plate at a unit Reynolds number of 

2.65 x 10 
6 

per fooe tha t  when there is extensive f&ow separation 

t ransi t ion can occur i n  the separated layer at  a lower uni t  Reynolds 

number. 
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The effect of the deflection of the  f l a p  cm the location of the  

point oP t ransi t ion is shown by a comparison of the appa 
6 of t ransi t ion ( for  a unit  Reynolds number of 2.69 x 10 per foot )  f o r  

0 the  9, = 0' and Bf = 30' cases. The €if =i 0 case shows, from 

T@,ble I, tha t  t ransi t ion i s  9 inches from the  leading edge; while the 

bf = 30 

sepsra$ed regiQn has ihoved forward t o  7.75 inches from the  leading 

e e e .  The loca l  Reynolds number a t  t ransi t ion based on these 

lengths fo r  the af = 0' and Sf = 30' configurations are 1.99 x 10 

and 2.148 x lo6, respectively. The Reynolds number f o r  the Sf 3 30' 

case was based OD a measured pressure i n  the  region of separation, 

a case shows, from heat-transfer d&a, t h a t  t ransi t ion i n  the 

X 
6 

"he determination of the exact point of ?xan$ition on the  f lat-  

plate  model w i t h  a trailing-edge f l a p  deflected is  quite d i f f i c u l t  

due t o  the complex flow f i e l d  which is  present, If transi t ion occurs 

on the f l ap  of the model it is very d i f f icu l t  t o  d e t e w n e  where 

t ransi t ion occurs, from the heat-transfer data, due t o  the rapid rise 

i n  the heating rs;te on the flap.  

the hinge l ine,  i n  the separated flow region, the location of the  

If t r w s i t i o n  occws upstream of 

a a t w l  poiP% i s  further complicated by the low heating rate and the 

reverse flow i n  the separated region. 

tes t  wthods ( o i l  flow, pressure, and heat t ransfer) ,  is  tha t  the 

f l ap  deflection w i l l  increase the loca l  Reynolds number and w i l l ,  i n  

turn, mve the t ransi t ion point upstream. 

In general, the trend, by a l l  
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Room-Temperature Wall-Pressure Tests 

The pressure t e s t a  with the w a l l  at 

with the model shown i n  figures 1 and 2. 

t e s t s ,  f o r  TW /T = 0.43 at f lap  angles 

s4om i n  figures 16(a), 16(b), and 1 6 ( ~ )  

room temperature were run 

The resu l t s  of the pressure 

of LO', 20°, and 30' are  

f o r  a Reynolds number per 
6 6 foot ranging frpm 0.22 x 10 t o  4.3 x 10 . The resul ts  from t e s t s  

run w i t h  side plates are  shown i n  f igure 16(d),  for f l ap  angles of 

6 10°, 209, and 30°, and Reynolds numbers per foot of 1.06 x 10 

2.65 X 10 . 
measured pressure at  the beginning of the interaction region. All 

the pressure data i n  f igure 16 are compared t o  the Lees and Reeves' 

and 
6 

The pressures, from figure 16, have been ratioed t o  the 

theory ( re f .  4) f o r  a T = 0 ~ 6 ,  and with the beginning of the 

interaction region determined as described i n  the Theoretical Approach 

section. 

.Oheory is, in  general, good Tor the range of unit  Reynolds numbers of 

The agreement between experiment and the Lees and Reeves' 

6 6 Q.22 X 10 per foot and 1.46 x 10 per foot. The test  i n  t h i s  

Reynolds number range are  in  a flow regiae where the separation plateau 

pressure leve l  is  not strongly affected by t rans i t iona l  effects ,  a$ 

was noted i n  the previous section i n  which t rans i t ion  on the f la t  

plate  model did not occur u n t i l  a uni t  Reynolds number of 2.65 x 10 6 

per foot.  It w a s  a lso pointed out i n  the previow section that 

undoubtedly t rans i t ion  was occurring i n  the separated shear layer a t  

unit Reynolds numbers lower than 2.65 x 10 per foot due t o  the f lap  6 

disturbance and the inherent ins tab i l i ty  of the separated shear layer. 

Even though t rans i t ion  i s  undoubtedly occurring i n  the shear layer fo r  
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6 tests run at  uni t  Reynolds numbers less than 2.65 x 10 per foot the  

point of t ransi t ion is  far enough downstream (over the f l a p )  t h a t  i$ 

w i l l  ngt affect  the laminar plateau pressure dis t r ibut ion but w i l l  

hwe an effect  on the extent of the eeparation. When %be t ransi t ional  

effects  become more pronounced at unit  Reynolds numbers; of 2.65 x 10 

per foot and 4.3 x 10 

6 

6 per foot (see previous section) the  Lees and 

Reeves’ theory tends t o  underpredict the leve l  of pressure due t o  a 

rise i n  the pressure abwe the laminar plateau value i n  the area of 

t ransi t ion.  The rise i n  pressure when t ransi t ion occurs i n  the 

separated regioo was previously noted by Chapman, Kuehn, and &arson 

i n  reference 21. The location o f  the point of t ransi t ion on a f lat  

plate  has been previously stated t o  be at 9.0 and 7.5 inches from the 

leaWng edge for  unit  Reynolds numbers of 2.63 x 10 

6 4.3 Y 10 per foot. 
6 

2.67 x 10 

6 per foot and 

For the tests at  a unit Reynolds number of 

per foot, i n  figures 16(a) through 16(d), the rise i n  

pressure above the laminar plateau value occurs a t  approximately 9.0 

inches from the leading edge, with higher f l ap  angles (particularly 

30 ) having the pressure rise above plateau value start at a more 
0 

upstream position than the lower f l ap  angles. 
6 wit Reynolds number of 4.3 x 10 per foot i n  figures 16(a) through 

16(c) the separation is  a l l  turbulent because the t ransi t ion point 

For t he  t e s t s  at a 

is  upstream of the point of separation, thus no agreement would be 

expected a t  R = 4.3 x 10 per foot w i t h  the laminar theory of Lees 

and Reeves. The side plate  data i n  figure 16(d) at a u n i t  Reynolds 

number of 1.06 x 10 

6 

6 per foot show that  as the f l a p  angle increases the 
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l eve l  of plateau pressure a l so  increases and the Lees and Reeves' 

theory tends t o  s l i gh t ly  underpredict f o r  the 20' and 30' f l a p  angles, 

&a wag the case w i t h  no side plates .  A comparison between the 
6 

Bf 3 30°, R F 2.65 x 10 per foot cases i n  1 6 ( ~ )  and 16(d) shows that 

the extent of separation i s ' g rea t e r  f o r  the side-plate t e s t s .  

general, the addition o f  side plates  increases the extent o f  separa- 

t ion  for  a l l  f l ap  angles and flow conditions. 

upstream of .the separation interaction i n  figures 16(a) t o  16(d) agree 

w e l l  with the viscous interaction theory of Bertram and Blackstock 

In 

The pressures measured 

( r R f .  k 4 ) .  

r@,tioed t o  the theoret ical  pressure leve l  a t  the beginning of the 

The theQretica1 viscous interaction curves shown are  

in$eract ion. 

Figure 17 shows the schlieren photographs f o r  t e s t s  a t  a 

= 0.43, a t  f l ap  angLes of 10 , 20°, and 30°, over a Reynolds TW/% 

6 6 number per foot ranging from 0.22 x 10 t o  10.9 x 10 . These pictures 

were used to  determine the angle of the leading-edge shocks, the 

separate4 layer shock, and the deflection ttngle of the separated 

boundary layer. In  addition, the pictures were used t o  determine the 

separaticm point - based on the location where the  separation shock 

wave intersects  the boundary layer. These measurements of the 

separation paint were found t o  be i n  good agreement w i t h  oil-flow 

separation point data. 

Figure 18 shows the room-temperature wall-pressure distribution 

(rakioed t o  the plate  s t a t i c  pressure) as calcaa0ed f o r  the  inviscid 

f la t  plqte msdel s e t  at 1/2O positive angle of attack. The pressure 
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r a t io s  are shown i n  figures 18(a), 18(b) I and 18( e) for flap angles 

o f  ?OD, 2Q0, and loo, respectively, and for  Reynolds numbers per foot 

varying from 0.22 x 10 The side plates pressure data 

also shown i n  figures l8(d) and 18(e) f o r  flap w @ e s  of 30°, 2Q0, 

6 6 
t o  10.9 x 10 

and 3.0'. 

ualculqted from the apparent measured flow deflection angle above the 

Ejeparated layer (fig. 17) and based on the v a u e  of Mach number ahead 

o f  *he intepactios region. 

The separated layer oblique shock theory. i n  figure 18 was 

The value of Mach number ahead of the 

interaction region was calculated from t he  measured value of t h e  

leading-edge shock apgle, above the interaction region, and the free- 

stream Mach number. 

reference k?. 

A l l  oblique shack parameters were taken from 

Also  plotted i n  figure 18 are  the values of the 

beginning of  the interactton, Xo; the separation point 

reat.tachmsnt point, %. 
rea%tachment p0Sn.t (fig. 18) were taken from oil-flow studies. 

Xs; and the 

The values of the separation point and the 

The 

beginning of the  interaction region i s  taken frcm the expanded plots  

of preasyres - i n  the area of the plateau and interaction region - as 

has been previously discussed in  %he Theoretical Approach section. 

The separated layer  oblique shock values of pressure agree, for the 

most part, with the  measured pressure plateau values with the 

exception of a f e w  of the lower unit  Reynolds nwibers where the shock 

pressures tend t o  s l ight ly  overpredict the measured values. 

The peak pressure r a t i o  i n  figure 18(a) for  the SO0 flap a t  
6 R r; 10.9 x 1Q per foot, i s  29.6 compared t o  the inviscid f lap 

oblique shock value o f  28.4. For R = 4.3 x 10 per foot the peak 6 



value i s  41.8 cornpaxed t o  the inviscid value of 28.3; and for  

R = 2.65 x IQ per foot the peak value i s  44.8 which i s  an increase of 

apprQxim%ely 58 percent over the inviscid value. The reason tha t  the 

measured peak presswe exceeds the inviscid shock pressure i s  because 

op the quaairisentropic compression whioh occurs through a ser ies  of 

waves rather than through a single shock. I n  figure 18(b) a a i a l a r  

6 

trend can be seen where for  the 20’ flap,  with ?;he highest unit 

Reynolds purnber of 10.9 x 10 per foot, the value approaches the 6 

inviscid value of 14.2; while at the Reynolds numbers per foot of 

4.3 x 10 

above the inviscid value with a decrease i n  Unit ReynQlds number. 

6 4 and 2.65 x 10 the peak pressure r i s e  increaws t o  a leve l  

The 

rewon for  t h i s  phenomenon is  ggain a quasi-isentropic compression 

tlpmqh a serPes o f  waves rather than a, single shock. 

for  the 10’ flap, the peak pressure r i s e  has a similar trend as that  

exhibited i n  figures 18(a) and l8(b) ,  for the 30’ and 20’ flap, only 

t a  a much lesser  degree. 

I n  figure 18( C >  

Tho t e s t s  made with s ide  plates  are shown i n  figures 18(d) and 

18(e) and are  compared with similar runs made with no side plates.  

The tests for  the 30’ flap,  with side plates, ( f i g .  18 (d ) )  show that  

the pressure r a t i o  i n  the plateau region i s  higher for  the runs with 

side plates; and also, tha t  the extent of separation i s  greater with 

the side plates  as compared t o  the runs d t h  no side plates. The 

side-plate data i n  figure 18(d), i n  general, indicate a slower r i s e  t o  

the peak pressure value on the flap. 

the n a p  with side plates? i s  due primarily t o  the thicker separated 

boundary layer; this i n  turn causes a lag  i n  the turning of the flow 

This l ag  i n  pressure r i se ,  on 
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@ a direction para l le l  t o  the flap.  

20" and 10' f l ap  angles (Pig. 18(e)) again exhibit  a greater extent 

o f  separation than the no-side-plate data and, i n  general, lags the 

no-side-plarte b t a  i n  the rise on the  f lap t o  the peak pressure value, 

The side-plate aata fo r  the 

In f l a r e  19 the measuked values of f low deflection angle Jp 

Prom the plate surface, due t o  the flow separa%ion, and the  result in6 

oblllque shock angle e2 are plotted against unit Reynolds number. 

The angles were measured from the schlieren pictures of figure 17 

(see sketch 2 f o r  a description), 

Sketch 2 

From figure 19 it can be seen tha t  f o r  a given free-stream mi% 

Reynolds number the f l o w  deflection angle, and the corresponding 

sbock-wztve angle, decrease as the f l a p  angle decreases. Figure 19 

also shows tha t  as the unit Reynolds number decreases the flow deflec- 

t ion  and the corresponding shock angle increase. The reason f o r  t h i s  

increase i n  flow deflection angle, w i t h  SL decrease i n  unit  Reynolds 

number, 26 dqe t o  the increase of the rate of growth of the displace- 

sent thickness with a decrease i n  unit  Reynolds number. For example, 

from the Lees and Reeves' calculations, a t  unit  Reynolds numbers of 



6 6 0,22 x 10 I 1.06 x lo6, and 4.3 x 10 per foot,  the linear ra te  of 

growth of the Bisplacement thickness (dQ*/dx) over the separated 

region is 0.2194, 0,063, and 0.0414, respectively. 

%ha+ the resdes phown i n  figure 19 are consister+$ with corpputed 

bcmndary-layer grovbh from the separated flQw analysls o f  Lees and 

&33vas. 

Thus it can be seen 

A comparison of the plateau pressure obtained from oblique shock 

theory a,ppLied t o  data of figure 17, %he Lees and Reeves' theory, w d  

measured static pressure values ( for  no side plates)  i s  show i n  

figure 20. The comparison i s  made f o r  f lap  angles loo, 20°, and 30' 

6 6 t o  4.3 x 10 and fo r  uni t  Reynolds numbers varying from 0.22 x 10 

per foot .  

taken from another plot  of' the individual data points,  

The oblique shock c m e s  i n  figure 20 a re  farred curves 

These fa i red  

oblique shock curves devia-te appro;ximately 2 percent from the indivi- 

dual data points. 

from the flow deflection angles (figure 19) and the lwal  value of 

Mach number jus t  upstream of the interaction point. 

The oblique shock plateau pressures were calculated 

The loca l  Mach 

nwnber was calculated from the leading-edge shock-wave i n c l i n a t i m  and 

the free-stream Mach number. The Lees and Reeves' prediction f o r  the 

plat;eau pressure r a t i o  f o r  f lap  angles of loo, 20°, and 30' was taken 

from figure 14 f o r  the various uni t  Eeynolds numbers. 

plateau pressures #'or f l ap  angles o f  20' and 30' were taken from the 

ploCCed data of figure 16. 

3.0 f l ap  angle are presented since the short length of separated flow 

regiog w a s  80 short i n  length tha-b a pressure plateau could not form. 

The measured 

No experimental plateau pressures fo r  a 
(3 
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been ratioed t o  the pressure The plateau pressures of figure 16 have 

a$ the beginning of the interqction t o  describe a ( ~ / p , ) ~ ~  value. 

Tn general, the oblique shock value of plateau gressure is higher 

t b w  the measured value and the Wes and Reeves' value i s  sligh'bly 

lower, The difference i n  the Lees and Reeves' value of plateau 

pressure between f i g m e  16 and figure x) l i e s  i n  the f a c t  that the 

plateau pressures f o r  figure 20 are taken from figure 14 f o r  an exact 

value of (Me)s, while $he plateau pressure i n  figure 16 was taken 

f r m  $i&um 12 for  a nominal value of (Me), based on the mthod 

discussed i n  the Theoretical Approach section. 

Surface Oil-Flow Studies 

The pressure model ( f ig .  1) was used for  the oil-flow stvdies 

a316 w a s  tes ted with and without side pl9;tas. Pr ior  t o  making an 

oil-flQw test  a pattern of drops, consisting of an oil-lamg black 

mixture, was glaqed on the surface of the p la te  as shown on the l e f t  

i n  figure 21. The viscpsity of the o i l  was  increased with increasing 

wit Reynolds nwnber i n  arder that  a f l o w  gat tern could be established 

in  approximately the same length of t i m e  f o r  a l l  runs. 

rapi@ly injected in to  the wind tunnel's airstream; as soon as the 

rearward movement of the o i l  drops stopped the model w a s  retracted 

frow the stream. 

The model was 

The temperature of the model i n  the area of separa- 

t i on  variea f r 9 m  approximately 9'' F t o  100' F f o r  a l l  the oil-flow 

tests. 

8 inches downstream from the leading edge, on *he inside surface of 

the model, a% an area where 

This temperature w a s  measured wikh  a thermocou&? located 

skin is  approximately 3/16 of an inch 
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thick. 

a picture w a ~ j  taken of the oil &ots i n  the wdis-burbed position, and 

then ImcUately after the run a second picture was takes oP the o i l -  

f&w pa$%ern. 

the location of the separat'ion polnt. 

shown i n  f igure 21, f o r  a free-stream uni t  Reynolds number of 4.3 x 10 

per faot  and a flap angle of 20". It can be seen from these oil-flow 

photographs that  the surface streamlines are pa ra l l e l  t o  the inviscid 

flow before the in-keraction region; however, i n  the reverse flow 

region the surface o i l  flow showg the streazm2ines diverge (outward) 

indfcatine tha t  the surface flow i s  three dimensional i n  nature. 

The o i l  drops were placed on the model j u s t  p r ior  t o  the run) 

These pictures were used as a mean6 for determining 

A typical  oil-flow pattern i s  

6 

The 

use of the side plates  considerably reduced the 

i n  the separated region. 

The viscosity of the, 

could not be choserl so  as 

o i l  fZow i n  the separated 

oil f o r  each Reynolds 

t o  insure a clear  and 

region for each m. 

divergence of the flow 

number and f lap  angle 

dis t inc t  pattern of 

For the majority af 

r w s  the o i l  drQplets i n  the reverse flow region were displaced t o  

some extent tovard the separation point due t o  surface shear. 

movement of the o i l  drops could be detected by superimposing the 

negatives taken beforq and a f t e r  the run, 

evaluation technique w a s  extremely helpful i n  determining the location 

of the paint of separakion. 

arrows. 

Any 

??he use of t h i s  oil-flow 

In figure 21thi .s  point is indicated by 

A comparison between the separation point locafiion, as indicated 

by the oil-flow pattern and as obtained from schlieren photographs, 
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shows good agreement when the schlieren separation point in chosen a t  

the Intersection of the shock wave from the separated layer and the 

tqparent outer edge of the boundary layer. 

oil f l q w  and the schleiran separatlon-point Aocatians, for the 30' 

f l ap  and c)vw the Reynolds number r q e ,  w w  a most 1/8 inch. 

a8reemen-b was Pound f o r  the 20' and 10' f l ap  angles f a r  Remolds 

numbers above 0.4 x 1Q 

"hc! fferencq between the 

Similar 

6 6 per fook and 1.0 x 10 per foot, respectively. 

The types of flow separation are  c lass i f ied  i n  reference 21 into 

three d is t inc t  regimes : (1) "laminar, In which t rans i t ion  occurs 

dowqstream of reattachmendc, (2) "transit ional,  " i n  which t ransi t ion 

occup"s between separation and reattachmen*, and (3 ) "turbulent " in 

which t ransi t ion occurs upstream of separation. 

theoret ical ly  the effect  on, the movement 9P the point of separation 

with an increase i n  unit  Reynolds number i n  a regjme where the separa- 

+ion i s  purely laminar, calculations were made using the laminar 

I n  an e f fo r t  t o  show 

separation theory of Lees gnd Reeves ( re f .  4). 

(%@le 11) using the Gees and Reeves' theory, were made foy a constant 

The calculations 

loca l  Mach number at the point of geparation and the wit Reynolds 

nwber wa6 varied from 0.22 x 10 per foot .  6 6 per foot t o  2.65 X LO 
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W R E T I C A Z  La;MINAR SEPARATXON 

(Constant (Me)sep, Lees and Reeves Solution) 

RaynoXds number per foot Distance from leading edge t 9  beginning 
of interaction regian (inches) 

9.5 (.24ll m) 

5.75 ( A 6 0  m) 

6 6 

6 6 
0.22 x 10 (0.72 X 10 /m) 

0.29 x 10 (0.93 x 10 /m) 
6 

6 6 
0.42 x lo6 (1.38 x 10 /m) 

0.65 x 10 (2.13 x 10 /a) 

1.00 (.02$ m) 6 1.06 x lo6 (3.48 x 10 /m) 

0.55 (*OXY$ m) 

0.27 (.oa633 m) 

l , M  x 10 6 (4.79 x 106/m) 

6 6 2.63 x 10 (8.69 x 10 /m) 

The distance from the leading edge t 9  the beginning of $he inter-  

act ion region i n  table  I1 was determined by matching the v&ue of 

diffglacement thickness from a f la t -plate  l o c a l  similarity solution t o  

the value of displacement thicknesg a% the beginning of the Lees 

and Reeves' solutlon. 

show that  as the unit Reynolds, number increases, the interaction 

The resul ts  of - the  laminar theory i n  tab le  XI 

region and, i n  turn, the separation point move upstream. 

from &n experimeptal investigation by Miller, Hijnan, and Childs 

The results 

( ref .  16), i n  which a l l  the data presented w@Te fo r  pure laminar 

separation, showed that as the Reynolds number increased (up t o  a 

value of slppraximately 1 x 10 

upstream. 

6 per foot)  the separation point moved 

Thus both $heoret$cal and experhental  evidenoe show tha t  

for  pure laminar separation the point of separation moves upstream 



with an increase i n  unit Reynolds nuniber, 

experimental b t a  of Chapmn, Kwha, and &arson (ref. 21) showed t ha t  

@t Mach numbers from 2.7 t o  3.5, when the separation went from a pure 

@&mlnw separation $0 .transitIan separation, the point aP separation 

moved downstream. 

a JZrrther increase i n  the uni t  Reynolds number cauged the separation 

tQ 'become turbulent and the separation point mewed further downstream, 

Becker aXrd K~rycinoki ( r e f ,  22) showed the  same effect  on the move- 

men$ OF the p o h t  of separatton with a chaxlge in  unit, Reynolds number 

$ ~ r  laminar, transit ion,  and turbulent separation &s was found in this 

thesis  a d  as was  found i n  the work of Miller, Hidman, and ChiLds 

On the othqr hand, the 

Chapman; Kuehn, and Larsonls data also showed that 

(3;ef. 16) and Chapman, Kuehn, and Larson ( re f .  21). From the  above 

exprimeptal  evidence it appears tha t  f o r  t rans i t iona l  separation 

the sapwation p o W  moves downstream with tm increase in unit 

Reynolds number and for  l w i n a r  separation the movement is in the 

upstream direction for  an increase i n  uni t  Reynolds number, 

The distance fromthe leading edge t o  the poin-t of separation, 

as obtained from oil-fLow data, is  shown i n  figure 22 for free-stream 

unit  Reynolds mmbers from 0.22 x 10 

angles of lQo, 20°, and 3Oo7 and fo r  %he studies with and without side 

plates.  

6 6 t o  4.3 x 10 per foot for f lap  

The results show that the sepgration point moves forward 

appreciably 8s the f l ap  angle is increased an4 generally moves forward 

a6 the unit Reynolds increases - up t o  a value of apgroxima$ely 

0+8 X 10 per foo.1;. 

R 7 0.4 x 10 per foot), for  the 10' and 20' f lap  angles, the rearward 

6 A t  the lower Reynolds nwbers (up t o  

6 
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movement of the separation point wlth increasing Reynolds number is 

at t r ibuted t o  the fac t  tha t  the? th$ck B r layer at the edge 

separated f l o w  passes w e 1 1  above the uppermast porkLon of the 

(2-$.nch*long) deflected f lap.  

photographs (f ig .  17) showed tha t  when the shear layer was deflected 

upward by $he flap,  the separation point began t o  move forward ( for  

laminar separation) on the plate  with lncrectsing Reynolds number, 

as w a s  noted fo r  the 30' deflected f lap.  

i n  reference 16, a% freecstreamMach numbers of 13 and 16, c lear ly  

indicate a forward movemen$ of the separatton point with an increase 

In W i t  Reyrtolds number as discussed i n  the previous paragraph. 

can be seen i n  figure 22 that  f o r  a l l  three f l ap  angles the separation 

point begins t o  move t o  the rear Q$ the plate  q t  a uni t  Reynolds 

6 number of approximately 1.0 x I-9 per foot ,  

An e m i n a t i q n  of the schlieren 

The laminar separation data 

It 

This reversal i n  the 

trend of separation point movement is  attribu-bed t o  the effect  of 

boundary-layer t ransi t ion from laminar t o  turbulent flow occurring i n  

the region o f  separated flow. 

separation, up t o  a wit Reynolds number of approximately l.Q x 10 

per foot, gives laminar separation; and for  .a u n i t  Reynolds number 

above approxims"ce1y 1.0 x LO per foot %he separation is t ransi t ional  - 

For these daCa it i s  apparent tha t  
6 

6 

independent of' the extent of' separation and f l ap  angle. 

rearward movement of the separation point due t o  a t ransi t ion t o  

turbulent flow i n  the separa-bed region w a s  found i n  reference 21 at  a 

Mach nwber of 2,7, a~ discussed i n  the previous paragraph. 

f igure 23 the  results of an Oil-flow study t o  determine the 

A similar 

t 

In 
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reattac2une;nt point on the f l a p  we shown. The reattachment point 

clearly mves t o w r d  Che hinge l ine  as the Reynolds nwber incre 

The Xocation of reattachment on the flap,  f o r  a given unit  Reyno 

number, varies only s l i gh t ly  with a change i n  f b p  angle, 

a$ q unit  Reynolds num'ber o f  1.06 x 10 per foot t h a t  Chare is any 

apprete%able change i n  the porlnt of reattachment wkth a change i n  f lap  

angle. "his change In  the point o f  re&ttach.mRnt - @t a uni t  Reynolds 

number of 1.06 x lo6 

It i s  only 
6 

i s  at2;ribu'ced t o  a delay i n  the Cransitional 

effects  w i t h  a decrease in  f l ap  angle. The sol;ld Unes i n  figure 23 

&re the predicted reattachment points as obtained from a l inear  

efiensSon of the dividing s t r e m i n e  from the point of separation 

(fig, 22) t o  the f l ap  at an angle equal t o  Che f l ~ w  deflec-t;ion angle 

of' f igure 19. The experimental data points are fur ther  downstream 

from. the hinge l ine  at  the lower unit Reynolds numbers khan the values 

based on the l inear  extension of the i n i t i a l  flow deflection angle. 

This indlicates t ha t  the dividing streamline curves upward a8 it moves 

downstrew from the point o f  separation, 

I n  figure 24 the pressure rat ios ,  at  the reattachment point on 

%he? f lap,  are plot ted against Reynolds number per foot. For a givep 

wit Reyxolds number the leve l  af pressure increqses w i t h  an increase 

in f lap  angle, as would be eXpectedj however, the reattachment pres- 

sure levels are considerably lower than the obllque shock inviscid 

pressure levels.  The reason that these reattachment pressure levels 

are SQ much smaller than the inviscid oblique shock values i s  tha t  at  



the  point of reattaohraent the inviscid stream has not yet turned 

para l le l  t o  the f l a p  a d  the csmpression process is j 

Chspmw's analysis f o r  the reattachment pressure r i s e  - as set 

Pox%h i n  reference 21 - gives a ConSCan"c V @ b 2  af (p/po)R O f  

approximately 7.0 f o r  the nominal Mach number 02 these tests. 

d&s show tha t  the reattachment pressure ratdo i s  a strong functioe of 

Reynolds nmber and f lap  angle. 

metse 

Wall-Temperature Effects 

In  order t o  detemalne the wall-temperature e f fec t  on separation, 

s x p e r i m n t a l t e 6 t s  were cwducted at  waLl to  t o t a l  temperature ra t ios  

of 0.14, 0.49, and 0.76. Figure 25 show@ the measured f l a twp la t e  

statio pressure, 5 inches a f t  of the leading edge, ratioed t o  %he 

theoret ical  inviscid flat-plate sta%ic pressure at  1/2O posit ive 

angle of atljack, and the theoret ical  viscous interaction pr'essure 

cffects  of Bertram and Blackstock ( re f .  44) f o r  T T = 0.14, 0.43, 

and 0,74. The results i n  figure 23 show tha t  the T T 5 0.47 and 

0.74 pressure r a t io s  decrease with an increase i n  unit  Reynolds 

number and most of the measured pressure ratios tend t o  underpredict 

tbe theory by approximately 10 percent. 

Tw/Tt = 0.14 at the two lowest uni ts  ReynQlds numbers (R = 0.29 x 10 

an@ 0,42 x 10 per foot) cpnsiderably wderpredict  the theory while the 

w l  t 
w l  t 

The pressure data at 
6 

6 

reminlng values of pressure r a t i o  at the higher Reynolds numbers 

s t i l l  underpredict the theory but only by approximately LO percent 

or  less. The large discrepancy between data and theory, fo r  



Tw/Tt = 0.14, at the t w g  lowest uni t  Reynolds numbers may be cauned 

by a s h i f t  in the  gage calibration due t p  a, Dempsrature e f fec t  On %'he 

"hot-w$sen gage, 

t iqn,  whioh wcluld cfgusc= &1x error i n  the absolute value of the maswed 

pre@swe, the pressure-ratio (p/po) dis t r ibut ion over the  model 

shoat2 be reasonably aocure&e 

In sp i t e  of' the  pof fs ib i l i ty  of a s h i f t  i n  ca l ip  

The experimental, pressure tests, conducted at Tw Tt = 0.14, 

The measured 
I 

Q.43, and 0.74, are shown i n  figures 26 through 31. 

pressure6 f o r  the three walI temperatures have been ratioed t o  the 

measured pressure at  the beginning of the interaction region, The 

gressurc data i n  figures 26 t o  31, for the temperature ra t ios  of 

0.k3 and 0.74, are compared t o  calculations based on Lees and Reeves' 

%heory fo r  wal l ,  conditions o f  Tw Tt =i 0.6 and T Tt 5 1.0, 

respactively. 

f l a b p l a t e  viscous interaction theory of Ber t ram and Blackstock 

(ref. 44), are  calculated (wad plotted.) for  w a l l  t o  t o t a l  temperature 

I 4 
In, addition, pressure distributions,  based on the 

ra t ios  of 0.43 and 0.74% 

me wall-temperature effects  at  sf * loo, 
good qgreeaent w i t h  the  Lees and Reeves' theory 

numbers of 0,42 x 10 to 1.46 x 10 per foot. 6 6 

i n  figure 26, show 

f o r  unit  Reynolds 

The effect  of 

Znereased w a l l  cooling tends t o  inereage %he pressure r a t i o  over the 

flap,  part;icul@rly f o r  Tw Tt 5 0.14, and t o  reduce the extent of 
6 6 separation. and 2,63 x 10 

I 
A t  uni t  Reynolds numbers of 1.46 x 10 

~ e r  foot the effect of increased w a l l  coollng is  t o  considerably 

decrease the extent of separation. 



The: decrease 

nwnbw~ is  caused 

to a t ransi t ional  

in the eectlon on 
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i n ,  the extent of separation at the  higher Rqjno;Lds 

by the  flaw going from a laminax type of separation 

type of separation, a6 was previously pointed out 

oil-flow s%udies, The addlCional effects  of wall 

cooling at the higher BeynoXds number8 is t o  fur ther  reduce the 

extent of separation, as sham Zn reference 46, fo r  a cone-cylinder 

flare at  Nach 5 at a siwLlar uni t  Reynolds number range. 

combined effects  of t rans i t iona l  separation and w a l l  cooling tend t o  

reduee significantly the extent of separation with the increase i n  

unit Reynolds number (above 1.46 x 10 

Thus the  

6 per foat). 

The resu l t s  shown in  figures 27( a) and (b ) f a r  the 20' f l ap  

6 6 Indicake that f o r  unit  Reynolds numbers of 0.29 x 10 and 0.42 x 10 

per foot  conditions at  T T fir 0.15 have a greater extent of 

Geparation and B higher plateau pressure value than e i ther  the 

TW/!L'% T 0.43 OT the T T = 0.74 case. The Tw/Tt = 0.74, fo r  

figurea 27(a) and (b), falls  beliween the Tw/Tt = 0.17 and 0.k3 

w l  t 

.I t 
cases in  both the extent of separation ana the leve l  of 

pressure, For uni t  Reynolds numbers from 0.67 x 10 t o  

per foot i n  figwrss 27(c) ,  (d) ,  and ( e )  indicate o a y  a 

6 

due t o  wall. temperature i n  the plateau pressure region, 

plateau 

1.46 x IO6 

small influence 

but indicate a 

decrease in  flap pressure r a t io  with an increase in  wall-temperature 

6 6 r a t i a .  and 4.3 x 10 

pqr foott i n  figures 27(t') and (g), tndicake a marked decrease In the 

The higher unit  Reynolds nmibers of 2.65 x LO 

extank of separakion with a decrease i n  the wall-temperature ra t io ,  
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and also show a decrease i n  the flap pressure r a t i o  with an increase 

i n  the wall t o  t o t a l  temperature ra t io .  

For the 30' f lap angle the results OF the  wal~-fxmpera;twre 

egfect on the pressure data (in figures 28(a) and 28(b)) for  a unit 

Reynold6 nmber of 0.29 x 10 and 9.42 x 10 pqr foot show a higher 6 6 

plateau p~essu rg  leve l  and greater extent of separwbion fo r  the 

= 0.15 r a t i o  than e i ther  f o r  T T = 0.45 o r  0.74 cases. The 
Tw/lrt w l  t 
Tw,/Tt = 0.71 case, i n  figure 28(a), falLs between the 0.11 and 0.48 

Oemperatw ra t ios  I n  both the level  of pressure rwtio and the  
6 exbent qf sepqration. A t  a unit Reynolds nwtiber of 0.42 x 10 per  

Paot, i n  figyrs 28(b), the pressures masured at T T p 0.43 and 0.74 

are i n  reasonably close Bgreement and are below the pressure leve l  f o r  
wlt 

Tw/Tt = 0.14, The resul ts  i n  figures 28(c), 28(d), and 28(e), for 

wit Reynolds numbem from 0.65 x LO per foot, show 

ornay a small effect  in the interactrlon and plateztu region due t o  w a l l  

tsapsrature; however, the f l ap  pressure ra t ios  show a decrease w i t h  

6 6 t o  1.46 x 10 

an increase i n  the w a l l  t o  t o t a l  tewperature ra t io .  AgaSn, as i n  the 
6 6 2QQ $lap .tests, fo r  unit Reynolds number of 2.65 x 10 and 4.3 x 10 

par fook;, the  effect  of w a l l  cooling significantly reduces the extent 

of separation, as shown i n  figures 28(f)  and 28(@;). This decrease 

In %he extent af separation at  the two highest wit Reynolds numbers, 

*th a decrease i n  -13. temperature, I s  at t r ibuted 40 the combined 

effect  of w a l l  cooling and t rws ih ion  i n  the separated region; th i s  

has been discussed previgusly. In figures 28(f) and 28(g) - a8 in 



the prevtow high Reynolds number fitpxres v the pressure raOio on the 

Pl8p decreased w5th an Increase in wall t o  t o t a l  tgmperatwre ratis. 

The tes ts  %n figures 29, 30, and 31 were made w i t h  s ide plates  

per foot for f l ap  deflection angles of loo, 20°, and 30'. 

ths resul.0s of figures 29, 30, avd 31 show a s l igh t  decreage i n  the 

I n  general, 

exbent of separation with w a l l  cooling a+ a unit  Reynolds number of 

1.06 x 10 

with w a l l  coollng at  a uni t  Reynolds nuTnber of 2.65 X 10 per foot. 

Figuxes 29 t o  31 also show a deorease i n  flap pressure r a t i o  with an 

increase i n  the w a l l  t o  t o t a l  temperature r a t i o  f o r  both uni t  Reynolds 

numbers. 

6 per foot, and a marked decrease i n  tbe extent of separation 

6 

Xn general,, the coaar i son  between experimental and theoret ical  

data i n  Pigwas 26 t o  31 shows good agrement with the Lees and Reeves' 

theory ( r e f .  4) and wikh the Bertram and Blackstock vi5;eous inter-  

action theory (ref .  44). 

figure 26 shows tha t  as the w a l l  t o  t o t a l  temperature r a t i o  decreases 

the pressure gradient from the beginning 6f Che in.0erac.tion region 

t 9  approximtely the hinge l i n e  becomes s l igh t ly  steeper. 

Cions by the Lees and Reeves' theory shw tha t  the T d T t  = 0.6 w a l l  

condition had a steeper pressure gradient from the beginning of the 

interaction t o  the pressure plateau (value) than did the T T = 1.0 

waIJ condition. 

An inepectlon of the experimental data of 

Calcula- 

w l  t 
Curle and Gadd (refs .  31 and 47) theoret ical ly  

preaicted that the pressure gradient at separation should be kve r se ly  

proportional t o  the w a l l  temperature. This prediction agrees with the 
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results of calculations by the  Lees aad Reeves' theory at w a l l  

temperatye ratios of T T = 1.0 and 0.6; Gadd experimentally 

showed Ohia ef fec t  o f  the  wax1 temperature on the pressure gradient, 
4 

and reporbed it i n  reference 48. 

oalcaal;ted by the  Zees and .Reeve@' theory, 8,na campar@d t 9  experi- 

For the  majority af the cases 

rqental h t a ,  the plateau value f o r  the bot-wall, c w e  (T Tt = 1.0) 

was slight$y higher than the cool-wall case (T /T = 0.6) when the 

qx$eqt o$ separation was long enough t o  allow the hot-wall case 

(Tw/Tt 
calqulations, wing  the theory of Lees and Reeve5, give a higher 

plateav pressure can a l so  be seen from figure 31, and by a comparison 

4 
w t  

1,Q) .to rqach a plateau value. The f ac t  tha t  the T T = 1.0 w l  -t 

It should be noted tha t  the absolute value of expertmental 

pl&eau pressure fo r  hot-wa13, cases ( T W P t  = 0.74) i s  higher than the 

0001-wall cases (Tw/Tt 5 0,43). However, when the absolute values 

of plateau pressure are  ratioed t o  the  value of the pressure at  the 

bag:innlng of the interaction region, 

ra t ios  at T, I T +  = 0.43 and Tw/Tt = 0.74. are! brought f g i r l y  close 

togekhar. Thls can be seen from an inspection Qf figure 25 and the 

resul ts  of figures 26 t o  31. 

values o f  the plateau pressure 

The schlieren photographs at w a l l  t o  t o t a l  temperature ra+ios 

of Q.14, 0.43, and 0.74, and f o r  f l ap  angles of 20' and 30°, are  shown 

i n  Figwe 32 .  These photographs were used t o  determine the w a l l -  

temperature effect  upon the f l o w  deflection, angles, the shock-wave 

angles, and the separation points over a uni t  Reynolds number range 



6 6 of 0.22 x 10 t o  4.3 x 10 per foot. The result8 of the schlieren 

analysis show tha t  the flow deflection angle ( f ig ,  

wave angle, megsured from the point Qf separation, decrease con- 

tinvously with increasing uni t  Reynolds nwnber f o r  aAl t 

tempqra%upe rat ios .  The ef fec t  of w a l l  temperature on flow deflection 

and shock angle i s  not large; however, it shoqld be noted that the 

hiahly cooled w a l l  (T T = 0.14) and the hot-wall condition 

(Tw/Tt = 0.74) have s l igh t ly  higher values of deflection and shock- 

wave angle than does the room-temperature wall condition (T T 

This fact  was reflected i n  the measured pressures and has been brought 

out i n  the d iscuss iw of figure 25 and figures 26 t o  31. 

w l  45 

= 0.43). 
w t  I 

It should be noted, from figures 18(a), 18(b), and 18(c), that 

the pressure rise gn the f lap  only approached a peak value of pressure 

for  @ unit  Reynalds nwber greater than 1.46 X 10 per foot. The 

reasgn that the pressure$ did not reach a peak value on the flap, f o r  

6 

6 wi$ Reynolds nwbers of 1.46 x 10 per foot and below, was because 

the length of flap was so short that it did not allow the flow t o  

a t t a l n  undisturbed flat-plate conditions: The short length of f lap  

wd0ub"cdl.y had s9me effect on the length of separation; however, t o  

what deeree the f l a p  length affecte4 the e d e n t  of separakion would 

require a separate investigation. I n  general, it was dekermined from 

the resu l t s  of the separation point d@ta (figs. 22 and 341, and the 

reattachmeqt point data (Pig. 23), t ha t  above a unit  Reynolds mml~er 

of 6 1 x  10 per foot the short length of f l ap  had a small effect  on 

the extent of separation. 1% was observed experimentally that f o r  
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T W P t  5 0.43 an increase i n  unit  Reynolds number, up t o  a value o f  

approximtely 1.0 x 10 per f oo t  will move the sspar 

forward. 

Reynslds numbers below l x  10 per foot, is at t r ibuted t o  the  f lap 

length being too short. 

6 

A departure f romth i s  experimental trend, found f o r  uni-h 
6 

The separation-point data, taken from schlieren pictures of 

2, are shown, i n  figure 34. These separation point data f o r  

T /T = 0.43 i n  figure 34, are i n  reasonable agreement with the  

surface oil-flow technique, fo r  separation point aata, at  room- 

qxe w a l l  condition (Tw Tt = 0.43), as discussed fo r  figure 22. 

w t  

I 
As skated previously f o r  the room-terrrper@ture w a l l  conditions it i s  

fel% tha t  separation, up t o  a unit Reynolds number of approximately 

1.0 x 10 per foot, yields a laminar separationj but for  uni t  Reyn9lds 

nvmbers above 

ty-pe, 

room-tsmpera;ture wall (T T = O . k 3 ) ,  and $he hat w a l l  (T T = 0.74), 

show tha t  the separation point moves forward on the plate  with 

Sncreasing unit Reynoldls number up t o  a value o f  approximately 

6 1.0 x LO Ber foot. From t h i s  point, an increase i n  the unit Reynold8 

number for  T T 

t lon point toward the hinge l ine .  

temperature effects for  the laminar separation show tha t  the highly 

cooled w a l l  (T T = 0.14) has the greatest  extent of separatton, 

while the cases have nearly equal extent of' 

separation. men the effects  gf t ransi t ion become significant,  at a 

6 

6 1,O = lo per foot the  separation i s  of a t ransi t ional  

For the 30' f lap angle, the resu l t s  i n  figure 34 fo r  the 

w t  I w t  I 

= 0.43 and Tw Tt; = 0.74 rapidly moves $he separa- 

For a f lap  angle of 30' the  w a l l -  
w t  I I 

w t  I 
Tw Tt = 0.k3 and 0.74 I 
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6 unit  ReWolds I)unber of approximately 1.0 x 10 per faQt,  the effect  

of wal3, coolin& fw a given unit  Reynolds number tends t o  

the extent a f  separation nigniflcantly. 

shown i n  f i t p r e  94 fw Ef = ZOO, is  quite simtlar t o  %he 30' f l ap  

plot w i t h  %he extsnk of lmhar separation being grea$est f o r  the 

highly cooled w a l l  condition (T T = 0.13), the hot-wall. condition 

(Tw/Tt = 0.74) exkent of separation baing next t o  %he greatest;  

and the rwm-temperarture w % l l  condition (T T = 0.43) having the 

swllent e a e n t  of $epara;t$on. Agsin, for  the 20' flqp deflection, 

when the transieional effects  become predominmt a;t a unik Reynolds 

ease 

The wall-tempera2;ure effect ,  

wl  t 

w t  I 

number above apgroxSmately 1.0 x 10 6 per fooC the  w a l l  cooling, for 

a given unit Reynolds nutuber, consisten$ly tends t o  decrease the 

extent of segaiwtian. 

Xn figure g S  the valves o f  plateau pressure rakicrs f o r  

Tw/Tt = 0.14, 0.43, and 0.74, at flap angles of 20' and 30" are shown; 

t@he$e were taken from the  plots  of figures 26 t o  31. 

( f ig .  35) tha t  the leve l  af plateau pressure decreases with an 

It can be seen 

gncrease i n  the unit  Reynolds number f9r  all three wall-temperature 

ratias and both f lap  angles. The highly cooled wall (T T = 0.14) 

and thq hot w a l l  (T T = 0.74) give higher values of plateau pressure 

than the room-temperature w a l l  copdition (T T = 0.43) ,  up t a  a 

unik Reynolds nuzdber of 1.0 x 10 per foot .  A t  a unit  Reynoldg 

number of about 1.0 x 10 per foot the t rans i t iona l  effects  become 

w l  t 

d t 
6 4% 

6 

significant and the p l a t e w  pressure level,  f o r  a given uni t  Reynolds 

nwber, decreases with an Increase i n  w a l l  cooling, 
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Figure 36 shows a correlation of plateau pressure coefficients 

i n  t e r n  of the loca l  Reynolds number apd 1QcalMwh number at 

beginning of the intieraction reglon. !Fhe data points are  f o r  a range 

99 unit Peynolds nwnbers fro4 0.22 x 10 Cg 2.65 x 10 per foa0, and 

w a l l  t o  eotal, Cexnperature ra t ios  Qf 0.14, 0.43, and 0.74. 

flow prqpsrbies were evalwted from the measured wall press&es, 

6 6 

The Local 

shock wgles, and the oblique shock relat ions,  

$nteraction region was determined, from expanded plots  of the pressure 

daCa, fi@wres 15 md 26 t o  31, as the point where the pressure begm 

t o  rise above the PZa-b-plate value. Therje data show reasonable 

agreement w i t h  the expression given by Hakkinen, Greber, and Tr i l l ing  

(re#'. as), bu% falls  s l igh t ly  above the theory of Erdas and Pallone 

(ref. 50). 

( ref .  21) and the data of Miller, R i j w ,  and Chllds (ref', 16) also 

!The beginnineg of the 

The lower Mach number data of Chapman, Kuehn, and Ztarscm 

are hiQher I;hw .the values for (Cp)pl 6ex]1'4 due t o  Eidos and 

Pd-lone ( re f .  50). 

HeabTransfer- Results 

The heat-transfer resu l t s  t ha t  are t o  be presented i n  t h i s  

thesis $re preliminary i n  na-bure. These data weye taken as "typical 

resul-bs" f r q m  approximately. 50 heat-transfer t e s t s  i n  which the f lap  

angle and unit  Reynolds number were varied. A complete presentation 

of the heat-transfer tests wi13. be forthcoming i n  a future paper, 

where the experbental  data w i L 1  be comared with Holden's theory 

( re f ,  43). 
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Three typical  comparisons, of the heat-transfer theory with 

sxperimntal data, are shown i n  figure 37. 

figure 37 i s  presented only for  the region upstream of the hinge l ine.  

I C  caxr be seen (f ig .  37) tha t  the heat-transfer theory, described i n  

d e t a i l  i n  appendix C, predikts the general. downward trend Put does 

ngt f o l b w  the heating r a t io  exactly, 

the measwsd values of 

value pf q st the beginning af *he interac$ion region. The flat- 

plate  value of q was calculated from the local  s imilar i ty  solutions 

of Beckwith and Cohen ( re f .  25); the loca l  s imilar i ty  values of 

The information i n  

I n  the reduction of the data 

q were divided by the theoret ical  f la t -plate  

5 t  f o r  a unit  Reynolds number ranqe of 0.22 X LO 6 t o  4.3 X 10 6 
per foot varied from 0.393 t o  0.405 due t o  changes in  the loca l  flow 

conditions. The f la t -plate  values of q were evaluated at the X/L 

location corresponding t o  the beginning of the interaction region 

found i n  f i v e  7. 

calculated value of q i n  the area of flow upstream OP the interaction 

region. 

There was good agreement between the measured and 

One reason f o r  the lack of be t te r  agreement between the heat- 

t ransfer  theory and experiment is believed t o  be due t o  the l imitation 

i p  the Lees and Reeves' method of a one-par&met;er fami ly  of vebocity 

and enthalpy profiles.  

solution of the shock-wave poundary-layer Interaction, the energy 

equation was added t o  the three basic equations which were used i n  

the Lees a d  Reeyes' method. Holden's method of solution i s  quite 

In  a recent paper by Holden (ref .  43) for  the 



sWlw ho t ha t  of Lees and Reeves; however, his use o f  the energy 

eqwtion, and the use of the two-paramtar method descr the 

velocity and enthalpy profiles, has enabled h i m  t o  obtain good 

thaaretrlcal, agreemen* wi%h the  measured heat-transfer data. 
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X. CORCLUDING REMARKS 

The Lees and Reeves' ( ref ,  4) thsory, for a shockcwavra b o w d w -  

layer  interaction, has beep applied t o  the case of a flat p la te  with 

a relat ively short (20 percent chord) trailing-edge flap.  

lat ions,  by t h i s  theory, were cwr ied  out from the beginning of the 

interaction regton t o  downstreafn of reattachment on the flap; however, 

on ly  the caXculation Tor the region from %he beginning of the 

interaction region t o  the maximum extent of the l d n w  plateau 

Calcu- 

region warjl used. The r e s a t s  for the  flow over the flap were not 

used becEtuse the extent of the theoretic& flow o v e ~  the f l ap  was 

found t o  be considerably longer than the actual  extent of the 2-inch- 

long flap. 

boundary layer  by matching the mamentum thickness of the twp Mow 

regions at the experimentally determined point for the begfnniw of 

The Lees and Reeves' solutions were joined t o  the uBstraam 

the interaction region. 

data and the Lees and Reeves' theory waa found t o  be good. 

Agreement between the separation pressure 

bees and 

Reevea' upper and lower branch boundary-layer parweters, $or a w a l l  

%to t o t a l  temperature r a t i o  of a.6, were calculated from local. 

s imilar i ty  boundary-layer solutions and tberi polynomials were curre 

fit t o  the pasmeter for use i n  the separated flow solution. 

working plots of f la t -plate  momenturn thickness, momentum thickness 

The 

at  the beginning of the Lees and Reeves' solution, and pressure 

d$stributiona, used t o  predict the pressure, are contained herein. 



- 63 - 
The range OF free-stream Mach nwnber, and Wt Reynolds number, fo r  

6 6 
the working p lo ts  i s  7.4 t o  7.8, and 0.22 x 10 t o  4.3 x 10 per 

foot, respectively. 

The results of' an. extensive surface oil-flow stuily, conducted at  

roomtemperature w a l l  condi'tions, showed tha t  for  pure l a m l m  

separation an increase i n  uni t  Reynolds number w i l l  m e  the sepa- 

ra t ion point v.ps.tream; however, when the boundaxy layer 'becomes 

t ransi t ional  an increase i n  unit Reynolds number w i l l  move the 

separation point toward the hinge l ine .  

use of @%de plates  and an increase i n  the s ize  of the flap angLe 

increased the extent of separation. The flap-angle reattachment 

It was also found thah the 

point, according t o  the oil-flQw study, showed tha t  Por a given 

unit Reynolds number the  point of reattachment chtmged very l i t t l e  

with a change i n  flap w$le from 10' t o  30'. 

The pressures measured on the 30' flap at a unit Reynolds 
6 number of 2.65 x 10 per foot indicated a pressure rise o f  approxi- 

mately 58 percent over the oblique shock reattachment value. 

reason for  t h i s  rise i n  pressure i s  believed t o  $e due t o  a quasic 

isentropic compression occurring through a ser ies  of waves rather 

than a single shgck. Similar pressure rises, only t o  a lesser 

degree, a r e  noted for  the 20' flap angles for  unit Reynolds numbers 

from 2.63 x 10 t o  4.3 x 10 per root. 

The 

6 6 

The measured sepaxation flow-deflection angles and shockcwave 

angles, fo r  wa.l.1 t o  t o t a l  temperature r a t io s  of 0.14, 0.43, and 

0.74 - which were taken f r o m  a schlieren study - indicate quali tative 
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Veement with the measured pressures ad the  theoretical  ca;Lculations 

made using the Lees and Reeves' theory. The schlieren phot hs, 

used for these measurements, are contafned herein. 

values of plateau pressuse are, fo r  the most part, slightly less than 

the separated layer oblique shock values and s l igh t ly  more than 

valuers predicted by %he Lees and Reeves' theory (for  pla.t;eau 

The ms;asured 

%he 

pressure) 

The wall-temperature effects  at  w a l l  t o  t o t a l  temperature r a t io s  

of 0.14, 0.43, and 0.74 indicated t h e  following: 

(I) For a flap angle of 10' the wal l - teqerature  effects,  for  

= 0.43 and 0.74, on the pressure rise t o  the plateau, ware 
6 6 

T W I T t  

negligible f9r uni t  Reynolds numbers *am 0.29 x 10 t o  2.65 x 10 per 

Toot, and agreed w e l l  with the theory of Lees and Reeves' for  

Tw/Tt = 1.0 and T Tt = 0.6. 
w/ 

( 2 )  For f lap  angles of 20' and 30' at  uni t  Reynolds numbers of  
6 6 0.29 x 10 per foot and 0.42 x 10 per foot the tests at  Tw/Tt = 0.15 

had the highest plateau pressure level,  the IC Tt E 0.74 the next 

highest level,  and the T Tt = 0.43 the lowest leve l ,  The 

T w P t  = 0.43 data showed the closest agreemFnt $0 the  Lees and 

Reeves' theory for  T T = 0.6 and T Tt = 1.0. 

W I  

w l  

4 t W I  

( 3 )  

of 0.65 x 10 

For flap angles of 20' and 30°, at wit Reynolds numbers 
6 6 and 1.46 x 10 per foot, the  plateau pressure, f o r  all 

three wall-temperature ratios, w a s  nearly the same and is i n  close 

agreement with the  Lees and Reeves' theory for  Tw/Tt = 1.0 and 

T ~ / T ~  = 0,6. 
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(4) For flap angles of loo, 20°, and 30°, at unit Reynolda 
6 6 nwbeys of 2.69 x 10 per foot and 4.3 x 10 per foot, the e 

of wall cooling tends to significantly reduce the extent of 

separation. 
6 ( 5 )  For iz unit Reynolds nuniber range of 0.22 x 10 per foot to 

1.0 x 10 per foot the point of separation, for a 20' flap, shows: 

(a )  that the highly cooled wall T Tt = 0.14) 

extent of separation; (b) the hot wall T Tt = 0.74) has the next 

greatest extent; and (c )  the room-temperature wall T Tt 

has the least extent of separation. 

a study of the schlieren photographs. 

6 

has the greatest ( 4 
( WI 

0.43) ( .I 
These results were taken from 

6 6 ( 6 )  For a unit Reynolds number from 1.0 x 10 to 4,3  x 10 per 

foot an increase in wall cooling markedly decreased the extent of 

separation and a l s o  reduced the level of the plateau pressure. 

The viscous interaction theory of Bertram and Blackstock in 

reference 44 agreed well with the 

T Tt = 0.43 stnd 0.74. .I 
A correlation of the plateau 

number and Reynolds number at the 

experimental flat-plate data for 

pressure with the local Mach 

beginning of the interaction showed 

reasonable agreement with the theory of Ha,k.kinen, Greber, and 

Trilling. 

The effect of side plates on the podel as compared to the results 

with no side plates showed: (1) a reduction in the three dimension- 

ality of the flow in the separated region, (2) a slight increase in 

the plateau pressure level, and ( 3 )  a considerable increase in the 
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extent of eeparation, 

a change i n  mi% Reynolds number wa8 the same for  the 60 

a d  without side plates .  

The var ia t ion of the extent of aeparatlon with 
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XI* $WMKRY 

An experimental investigation was made of the  flow separation 

on a f la t -p la te  model with a trailing-edge f l ap  deflec.ted at  angles 

of loo, 20°, and 30' relative t o  the  p l a t e  surface. 

were conducted at a nominal. Mach number of 8 and a nominal wit 
6 6 Reynolds number (per foot)  ranging from 0.22 x 10 t o  10.9 x 10 . 

These tests 

Pressure measurements and schlieren studies were made for wall t o  

t o t a l  temperatwe ra t ios  of 0.14, 0.43, and 0.74. 

studies were conducted a t  a w a l l  t o  t o t a l  temperature r a t i o  of 

0.43. 

upstream of the interaction region. 

and separated flow region were calculated usin@; the Lees and Reeves' 

shock-wave boundary-layer interaction theory. The two theories were 

joined at the beginning of the interaction region by matching t h e i r  

Surface oil-flow 

Local s imi la r i ty  boundary-layer calculations were made 

Properties of the  interaction 

boundary-layer momentum thicknesses. 

The resu l t s  showed good agreement between the  experimental and 

calculated pressures f o r  adiabatic and room-temperature W l  

conditions. 

of separation, w i t h  a change i n  unit  ReynoIds number, f o r  both 

laminar separation and t rans i t iona l  separation. The effect  of w a l l  

cooling, f o r  t rans i t iona l  separation, showed a reduction i n  the  

extent of separation. The peak pressure rise, on the flap,  fo r  

conditions where the separated shock impinged on the f lap,  were as 

high as 58 percent above t h e  inviscid f lap  pressure. 

The oil-flow study showed the variation i n  the extent 
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APPENDIX A 

US MQ R33FAElt SO?JJTIOp5 FOR W LAMINAR S B LAm US MQ R33FAElt SO?JJTIOp5 FOR W LAMINAR S B LAm 

The Lees and Reeves ' theory ( re f .  4) gives the  sol;ution f o r  the 

Z~unlrnr boundary layer  i n  which a pressure disturbance i s  propagated 

ugstreasn through a supersonic f l q w .  

generated by q shock wave bpinging on the boundary layer o r  it may 

be caused by a tralking-edge f lap  T the Lees and Reeves' theory may 

be apyliqd t o  e l ther  of the two types of disturbances. The theory, 

slnd i ts  calculations as use6 i n  th i s  thesis ,  applies at the beginning 

A pressure disturbance may be 

o f  the inkeraction region and is used t o  the point of the shock 

impingement (the hinge Irlne) fo r  the cases where the temperature 

= 1.0. The flow f ie ld  on-the f l ap  I Tt 
r a t i o  is, TWITt = 0.6 md Tw 

was determined by t h i s  theory for a f e w  cases but it was found that 

the axbent of the calculated region over the flap was considerably 

longer than the actual. s ize  of the fZap on the model. 

The Lees and Reeves' method requires a solution o l  the  first 

moment of mQmentum, thg  zeroth moment 

conservation of mass equations coupled with 811 inviscid streamline 

and Prandtl-Meyer solution. The method gives the solution f o r  the 

boundary Zayer w d  the flow external t o  the boundary layer within the  

frapmork of a single parameter fasally of velocity prof i les .  

one parmeter determines the velocity and enthalpy prof i le  f o r  

of momentum, and the 

This 
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specified regioas of attached and separated flows; yet it i s  not 

d i rec t@ related t o  the loca l  s t a t i c  pressure gradien-li,, 

pressure gradient i s  determined f ' w m  the l o c s l  invigcid flow 

inclination and the Prandtl-Meyer solution. 

The l oca l  

For %he Tw/Tk = 1.0 conditions the Stewartsoq (ref. 42) and 

the Cohen and Reshotko (ref.  41) boundary-layer Solutions ware used 

t o  eva.luate the integral  parameters used i n  the Lees ana Reeves' 

solution. 

layer  prof i les  were calculated from the loca l  s imi la r i ty  solutions 

with Pr = 1.0, C = canstant: a d  PW = constant. These boundary+,yer 

solutions were used $0 calculake the integral  parameters (see 

appendix €3). 

golynominal oxpressiw) as a function of %he single p&rameter, 

used t o  describe the en t i re  family of velocity p p ~ f l l e s  f o r  both 

attached and separated flows. The f i t t e d  curves, of the integral  

parameters, f o r  T T = 0.6 a re  tabulated i n  appendix B. The loca l  

s imilar i ty  solutions reduce t o  a solution which i s  %he same a$ tha t  

For the case w i t h  heat tranSfer, T T, = 0.6, the boundary- w l  

P 

These integral  psrameters were then curve f i t t e d  (by 4 

a, 

wl t 

o f  Cohen and Reshotko (ref .  42) when a Prandtl 17umber of unity and a 

constant heat capacity are  used. 

The Lees and Reeves' method of calculation starts at  the pain$ 

of separatian and movee upstream u n t i l  a f la t -p la te  (Blasius type) 

solution i s  reached a t  the upstream "end" of the interaction. The 

value of local. Mach number aqd unit  ReynQlds number are fixed at  the 

point of separation and the value of transformed displacement 

thickness at  the point of separation i s  i te ra ted  fo r  until the proper 
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upstream solutiQn i s  found at  the beginning of the interqction region. 

The conditions needed t o  sa t i s fy  the two-point boun&q~-value p p b l  

are (1) the Fate of’ c h q e  wlth respect; t o  the transformed ?r c 

distance of the loccql Mach qumber and (2) %he shape parmeter 

approach zero as the parweter  describing the  family sP ve!Zoci$y 

prof i les  approaches the zero pressure gradien% value for a%tachad 

flow. After the  corTect value of the  displacement thickness, at the 

point o f  separation, is %und t h e  solution moves downstream rlnto the 

separaked f l p w  region. The basic equations used i p  the mel&od are  

noted below. Equa’tiws A 1 %Q A 4 were integrqted by a fourbh- 

order Runge-Kutta integration procedure which ex”erap9lates t o  a aero 

in%emal size as 8. correction factor.  A l l  equations were integrated 

and 
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where 

(A-11) 

(A-12 ) 
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r -  

e =  

c 
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me c? ftt parwters,  for Che boundary-lryrer i4tst~ra3 

pmaneters, in o# uni$y w d  eonstant heat capacity, 

the notat;Son OP reference 2, we: 

The integral 

s," f' (I - ff) drl 
f I s  



Z P  I '  ' fl.s (s-6) s,6 (C - f'> d? 
o f  P, a t  the odge of the bowdasy Xwer, was taken aa 

0.9993 ??or aZ1 calquLatians. 

fj,t.t;ed t o  var%qus order po1ynQmial.s by the methog of least s q w e s ,  

as a $'uwt$.qp of the "a" parameter defined by the Lees and Reeves' 

me$hQd. The Parame%Fars K, J, P, R, !l?, aad Z, listed In tablea 

b A  an4 14, wq defined i n  (B-1) t o  (33-6) (above) while 5 '  

The parmeters (B-1) t o  (B-6) were 

and W 

are  defined i n  appendix C. 

The polynOmial@,, listed i n  tables 1-A and 1-B, occur i n  the 

2 4 6 7 H = A + B a + C a  + D a 3 + E a  +Fa'+ffa + H a ,  

and v q  from 4th order Tor t he  a t twhad f b w  parameter t o  as high 
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The Lees and Reeves' method has been extended, t o  obtain he@$ 

transfer, by using the slope of the enthaJpy profile &t the wall 

(tfW) v coyrespondiq t a  a given velocity pnd entthalpy prof i le  

which are defined i n  %ems of tihe single parmeter "a", 

enthalpy and velocity profiles were calculated f r o m  local siaLlarity 

solutions for an T T = 0.6, Pr = 1, pp, a;nd C 7 eonstwt.  A 

po1ynomb.l for  a$ a function o f  the single pasmeter 'la'' i s  

given in appendix B for  bQth qepaxated and attached flows. 

V I  t P 
t f w  

The heat-transfep wpression i s  derived from the basic definit ion 

o f  the heat trmsfer through a boundary layer t o  a wa;ll; t ha t  is, 

Then, by u s i w  the  Stewartsos transfQmnation, 

wi th  the definit ion of the enthalpy function 

axid a longitudinal velocity description of 

- "oj 

- a  u = - u  
e 



a l o q  with %he definition 

where .. . 

rgs)Utsl i n  the heat-trans$er exprerssion 

(c-6) 

The parameters, c ' ,  and m, which are subslzLtutad in to  

equatioa (C76)? are plotted i p  figures 38 apd 39 as a function of Cha 

Lees and Reeves' pparame.ter "a". The transformed zrpaOreaBa ELOW 

($io;. 40) was used t o  3 ~ 5 n  the  upstream - history with the value 

OP from the Lees and Reeves' solution. The value of ii', frgm 

figure 4.0, was sellacted a t  the X/L posit ion corresponding t o  the 

beginnlag o f  the interact ion rag$on,-obtained from f i v e  7 f o r  a 

- - 

given Bap m@.e and mi$ Reynolds number'. 

of - 
caAculated value or  x 3 

The $ransfomed value 

at %he beginning of the  i n t e r a c t i w r e g i a n  was added t o  the 

from the Gees and Reeves' solution at each 

point o f  ca+lcuJ.a;t;ion, 

used as the va3cue of 

The e3um of these tvo values (of 

X c i n  equation (c-6). 

- - X) was then 
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Figure 6.- Mach 8 tunnel apparatus, showing pressure model 
with upper side plates.  
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Figure 8.- The momentum thickness along a flat plate at  a nominal M&ch 
number of 8 for adiabatic w a l l  conditions a t  various uni t  Reynolds 
numbers 
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Figure 9.- The momentum thickness along a flat plate at a n o m i a  Mach 
number of 8 for cool-wa7-l conditions at various unit Reynolds 
numbers. 
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Figure 10.- The momentum thickness a t  the beginning of the interact ion 
region versus the local Mach number a t  separation for adiabatic w a l l  
conditions at  various unit Reynolds numbers. 
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Figure 13.- A comparison of the growth of the momentum thickness 
and the displacement thickness over a flat plate with f l a w  
separation. 
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Figure 17.- Schlieren photographs of the  flow separation model 
at  Tw/Tt = 0.43 f o r  three f l ap  angles and variaus unit 
Reynolds numbers. 
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pressures at a T T = 0.43 for three flap angles, with and 
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Figure 18 .- Continued. 
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Figure 18. - Continued. 



.3 . 4  .5 .6 .7 . 3  .9 1.0 1.1 1.2 1.3 

 stance fmm leading edge, X 

(a) Side plates. 

Figure 18.- continued. 
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( e )  Side plates. 

Figure 18.- Concluded. 
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Figure 21.- Photographs of oil-flow patterns before and after 
tests a t  a Reynolds number of 4.3 x 106 per foot and a f lap 
angle of zoo. 
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Figure 23.- The effect of Reynolds number and flap angle on the 
. point of reattachment on the flap for  Tw/T% = 0.43. 
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Figure 26.- The effect of w a l l  temperature and Reynolds number on 
the pressure distribution at a flap angle of loo. 



10 

6 

4 

P/p, 

2 

1.0 

.8 

(a) R = 0.29 x 106/f't (0.95 x 106/rn). 

(b) R = 0.42 x 106/ft (l.38 x 106/m). 

10 

6 

4 

P E O  

2 

1 .c 

.E 

Lees and Reeves 

- - -Tw/Tt = 1. O 

-T /Tt= .6 

Bertram and Blackstock i 

W 

.6 -9 1.2 
Distance from leading edge, X/L 

( c )  R = 0.65 x 10 6 /f't (2.13 x lo6/,). 

Figure 27.- The ef fec t  of wall temperature and Reynolds number on 
the pressure dis t r ibut ion at  a f l a p  angle of 20°. 
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Figure 27. - Continued 
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Figure 27.- Concluded. 
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Figure 28. - The ef fec t  of wall temperature and Reynolds number on 
pressure dis t r ibut ion at a f l ap  angle of 30°. 
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Figure 28.- Continued. 
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Figure 29.- The effect of w a l l  temperature and Reynolds number on the 
pressure distribution at a flap angle of 10'. Side plates attached. 
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Figure 30.- 
plates 

(b) R = 2.65*x 106/ft (8.69 x 106/m). 

The effect of w a l l  temperature, Reynolds number, and side 
on the pressure distribution at a flap angle of 20°. 
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(b) R = 2.63 x 106/ft (8.69 x 1 0 6 m ) .  

Figure 31.- The effect of w a l l  temperature, Reynolds nuniber, and side 
plates on the pressure distribution at a f lap angle of 30°. 
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Figure 32.- Schlieren photographs showing wall temperature effects 
various Reynolds numbers and flap angles. 
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Figure 32. - Concluded. 



Figure 33.- The ef fec t  of Reynolds number, w a l l  temperature, and f l ap  
angle on the separation point flow-deflection angle and the 
separation shock-wave angle. 
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Figure 34.- The effect of Reynolds number, w a l l  temperature, and flap 
angle on the location of the separation point on the plate surface. 
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Figure 35.- The ef'fect of Reynolds number, wall temperature, and f l ap  
angle on the vsilue of plateau pressure. 
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Figure 40.- The x coordinate in the transformed plane for a 
flat plate solution at various Reynolds numbers. 


