HOUSTON RESEARCH INSTITUTE, INC.

DESIGN AND ENGINEERING DIVISION OF HOUSTON RESEARCH INSTITUTE, INC., 6001 GULF FREEWAY, HOUSTON, "EXAS 77023, 713 WA 8-5001

Min CR 65.514,1

FINAL REPORT

DESIGN DATA FOR ABLATORS

HENOL-FORMALDEHYDE

LIBRARY COPY

OCT 101966

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

		75	d		Design and Engineering	
		Å3,	1.5		Research and Development	
					Economics, Marketing and Management Services	
4	\$ (S)	(HC)	(MF)	4		
PRICE	I PRICE	ard copy	licrofiche Wry 85	 	Presented to: NASA Manual Soccessfit Center	/
GPO	CFS1	I	# 663 J	¢ [{	(Contract No. NAS 9-2516)	
					3i Marcn 1965	
			FACILITY FORM 603	6 6. IACCEI	3. 8. 9. 2 4. BBION NUMBER) (PAGES) (PAGES) (CODE) (CODE) (CATEGORY) (CATEGORY)	

HOUSTON RESEARCH INSTITUTE, INC. 5417 CRAWFORD STREET HOUSTON 4, TEXAS

• FINAL REPORT •

DESIGN DATA FOR ABLATORS PART III MATHEMATICAL MODEL FOR DECOMPOSITION OF PHENOL-FORMALDEHYDE ABLATORS

Вy

Charles E. Mauk H. William Prengle, Jr. W. A. Hoppe M. S. Bawa

Presented to:

NASA Manned Spacecraft Center (Contract No. NAS 9-2516)

31 March 1965

Approved:

Copy No. (-19,700)

•

H. William Prengle, Jr. Vice President, Technical Director

TABLE OF CONTENTS

1.7.7.7

1000

NAME OF A DESCRIPTION O

the second s

		Page
	ABSTRACT	٦
T	NOMENCIATURE	Ĺ.
11.	INTRODUCTION AND LITERATURE SEARCH	-
	A. Purpose of the Work	8
	B. The Ablation Phenomenon	8
	C. Literature Survey	10
111.	CHARACTERIZATION OF THE ABLATION SUBSTANCE	
	A. Structure of Phenol-formaldehyde Resin	21
	B. Curing of Phenol-formaldehyde Resin	22
	C. Water and Air Adsorption by Cured Phenol-	
	formaldehyde Polymer	28
	D. Preliminary Characterization of the	
	Epoxy-Novolak	29
IV.	EXPERIMENTAL INVESTIGATION	
	A. Review of Equipment in Literature	32
	B. Operation of Kinetic Equipment	40
	C. Operation of Auxiliary Equipment	47
V.	KINETIC MODEL	
••		
	A. Chemical Reactions in the Solid Phase	52
	B. Solution of the Mass Diffusion Equation	56
	C. Possible Polymer Reactions	62
	D. Oxygen Evolved into the Gas Phase	66
	E. Carbon Evolved into the Gas Phase	69
	F. Hydrogen Evolved into the Gas Phase	70
	G. Total Weight Loss	71
VI.	ANALYSIS OF THE DATA	
	A. Weight Loss Data	73
	B. Solid Phase Property Changes	81
	C. Disappearance of Oxygen and Carbon from	• -
	the Solid	84
	D. Rate and Transport Constants	92
		101
VII.	PF PIROLISIS GAS SPECIES	101
VIII.	CALCULATIONAL MODEL	110
	A. Working Equations	112
	B. Calculated TGA Curves	114
	C. In Situ Decomposition	122

IX.	LITERATURE CIYED	124
	° APPENDIX °	
A.	EXPERIMENTAL PROCEDURES	128
B.	EXPERIMENTAL DATA	132
C.	COMPUTER PROGRAMS	183
D.	CALCULATION OF KINETIC AND DIFFUSION PARAMETERS	2 10
E.	EXPERIMENTAL EQUIPMENT	215

-

Page

-

• -

LIST OF TABLES

TABLE

I. Major PF Decomposition Products

	-	
II.	Product Analysis - Polybenzyl Pyrolysis	15
111.	Translational and Vibrational Energies	19
IV.	Water Adsorption-Desorption on Phenol- formaldehyde Resin	29
V.	Water Adsorption on Epoxy Novolak Resin	31
VI.	Material Balance on C-1 Resin	85
VII.	Experimental Values of λ 's and k's as a Function of Temperature	94
VIII.	Experimental Values of QL's and μ 's as a Function of Temperatures	95
IX.	Temperature Function Parameters for λ 's and $lpha$'s.	99
X.	Comparison of Gaseous Species	108
B-1	Thermal Decomposition Data, PF (378 ⁰ C)	133
B-2	Thermal Decomposition Data, PF (387 ⁰ C)	133
B- 3	Thermal Decomposition Data, PF (382 ⁰ C)	134
B-4	Thermal Decomposition Data, PF (436 [°] C)	138
B- 5	Thermal Decomposition Data, PF (533 ⁰ C)	138
B- 6	Thermal Decomposition Data, PF (571 [°] C)	138
B – 7	Thermal Decomposition Data, PF (498 ⁰ C)	139
B- 8	Thermal Decomposition Data, PF (605 ⁰ C)	141
B-9	Thermal Decomposition Data, PF (666 [°] C)	145
B-10	Thermal Decomposition Data, PF/Q (388 ⁰ C)	146
B-11	Thermal Decomposition Data, EPN (316 ⁰ C)	148
B-12	Thermal Decomposition Data, EPN (388 ⁰ C)	150

Page

12

邂

	Page
B-13 Tar Analysis, PF Runs	152
B-14 Analysis of Residual Gas, PF Runs	154
B-15 Physical Properties of Solid (PF)	156
B-16 to Mercury Porosimeter Determination of Pore B-40 Volume, Surface Area, and Permeability (incl.)	157-181
B-41 Magnitude of Diffusivities	182

LIST OF FIGURES

FTCUPE		
FIGURE		
1.	Infrared Spectrogram of Phenol-formaldehyde Film	24
2.	Infrared Spectrogram of Powered Phenol- formaldehyde Resin	26
3.	Phenol-formaldehyde Characterization Plot	27
4.	Epoxy Novolak Characterization Plot	30
5.	Kinetic Equipment (flow diagram)	41
6.	Kinetic Equipment (overall photo)	42
7.	Pyrolysis Furnace Interior (photo)	44
8.	Vacuum Desorption Apparatus (photo)	48
9.	Karl-Fisher Apparatus (photo)	49
10.	Winslow Mercury Porosimeter (photo)	51
11.	Visualization of the Porous Solid	53
12.	Diffusion Attenuation, $\eta(a, au_{ extsf{m}})$	61
13.	Weight Loss, PF Resin	74
14.	C/H/O Loss Distribution, PF (382°C)	75
15.	C/H/O Loss Distribution, PF (498°C)	76
16.	C/H/O Loss Distribution, PF (605°C)	77
17.	Effect of Quartz Fibers on PF Decomposition	78
18.	Weight Loss, EPN Resin	79
19.	C/H/O Loss Distribution, EPN (316°C)	80
20.	Physical Properties of Solid (function of weight loss)	8 2

Page

1 4

:

教育ShataShurdha

ailer Aller

FIGURE

.

nig might a filleda kui an un an an an an

Page

•

. . . .

21.	Pore Size Distributions	83
22.	Oxygen Disappearanc e	86
23.	Oxygen Disappearance Mechanism	88
24.	Carbon Disappearance	89
25.	Carbon Disappearance, by the Model	91
26.	Rate and Transport Parameters, Oxygen Disappearance	96
27.	Rate and Transport Parameters, CH ₂ - Disappearance	97
28.	Rate and Transport Parameters, Ring Disappearance	98
29.	Gas Species Distribution, 382°C	102
30.	Gas Species Distribution, 498°C	103
31.	Gas Species Distribution, 605°C	_104
32.	Solid and Gas Phase Reaction Mechanism	105
33.	Visualization of the Ablation Process	111
34.	Effect of Heating kate on TGA Curve	119
35.	Effect of Adsorbed Water on TGA Curve	120
36.	Effect of Quartz Content on TGA Curve	121
37.	Flow Chart for HRI65R002	185
38.	Flow Chart for HRI65R003	193
39.	Flow Chart for HRI65R004	196
40.	Flow Chart for HRI65R005	204
41.	Gas Chromatograph (photo)	216
42.	Pyrolysis Furnace (photo)	217
Dwg.	C-1001-19,700 Karl Fisher Apparatus	218
Dwg.	C-1002-19,700 Vacuum Desorption Apparatus	220

HOUSTON RESEARCH INSTITUTE, INC.

5417 CRAWFORD STREET HOUSTON 4. TEXAS

FINAL REPORT

DESIGN DATA FOR ABLATORS

PART III

MATHEMATICAL MODEL FOR DECOMPOSITION

OF PHENOL-FORMALDEHYDE ABLATORS

31 March 1965

ABSTRACT

An experimental study is described, the overall purpose of which was to arrive at a mathematical model for future design calculations which describes the chemical decomposition of phenol-formaldehyde (PF) ablators.

In order to determine the mechanism of pyrolysis the experimental work was accomplished at isothermal conditions. Data were obtained over a range of temperatures from 382 - 666°C (712-1199°F) for PF polymers. The effect of quartz fibers on the decomposition of PF polymers was determined. Also, several preliminary low temperature isotherms (316 and 388°C) were determined for epoxy-novolak resins.

Conclusions from the study as pertains to phenol-formaldehyde ablators are as follows:

1. Adsorption of water and air from the atmosphere by PF polymers cannot be neglected since it can amount to as much as 11 w%. Such amount has an important effect on the weight loss characteristics during the initial stages of decomposition.

2. In order to achieve maximum cross-linkage of the PF polymer, the curing procedure is important. A thin-film combination vacuum-heating curing procedure was found to give satisfactory and reproducible results; chain-ending alcoholic-OH was reduced to a minimum.

3. The degassing or outgassing of PF polymers over extended periods of time, observed by numerous investigators, is due in a substantial measure to the above mentioned adsorbed water and air and chain-ending alcoholic -OH groups. 4. For purposes of decomposition kinetics the PF polymer structure may be visualized as,

or
$$[(CH_2)_{3/2} - (C_6H_2) - (OH)]_m$$

5. A six-step decomposition model, including a single desorption step and characterized by four rate constants, was found to describe satisfactorily the breakdown or pyrolysis of PF polymer. The model first visualizes breakout of phenolic-CH from the structure, followed by breakout of the -CH₂ bridges and then ring fragments. At low temperatures, phenolic-OH fracture is fastest but at higher temperatures the -CH₂ breakout becomes more rapid. Rate constants for the reactions follow the Arrhenius equation. The threshold or incipient reaction temperature is about 233°C (387°F).

6. At low temperatures, reaction first occurs rapidly on the surface of the solid (in the pores), but then becomes rate limited by solid phase diffusion of the product species from the bulk to the surface; the effect is quantitatively described and characterized by diffusivities of the expected magnitude - this is probably the most significant discovery made in the study.

At high temperatures, the transport effects are reduced by higher diffusivity values.

7. Once the product species have diffused from the bulk solid phase to the surface, transport is further limited by a concentration buildup at the surface, since there is insufficient sweep gas to keep the concentration at a low value.

8. At low temperatures the product species are H_20 , CO, CO₂, and a trace of H_2 ; attaining these molecula: configurations by further reaction of OH, CH₂, H in the solid and gas phases.

9. At high temperatures the same product species appear and in addition, CH_4 , C_2H_6 , C_3H_8 , monoaronatics and polyaromatic appear; the latter by fragmentation of the PF structure.

10. TGA curves can be computer calculated using the model for different heating sates, water content, quartz content,

- 2 -

and different temperature ranges. The calculated curves appear to be excellent simulations of experimental data.

11. Measurements of the physical characteristics of the PF solids (undecomposed refin and chars) indicate that the pores are large and the surface area is small compared to catalyst substances. Properties of the charred material are not substantially different than the undecomposed resin.

12. The addition of quartz fibers either during the curing process or after curing to produce a mixture has little or no chemical effect on the decomposition. The addition can be visualized as a dilution effect only.

Preliminary results on epoxy-novolak ablators indicate that, water adsorption is much less than for PF polymers, and is not a factor in the initial decomposition; and decomposition is much faster and occurs at lower temperature than for PF polymers.

NINA I

, and

.

manage - and within the second strategies, the second

I. NOMENCLATURE

andarium Φε΄ αδιεία na tanı, αφη λαφι⊂ηζαρολαφματη το από του του του του του

The following is a listing of the nomenclature, symbols, and dimensional units used in the subsequent sections of this report.

a contraction of a contraction of the contraction o

Upper Case:	
A, B, C, S, R	Symbolic designations for parts of the polymer, equation (V-25)
Α _{λi} , Α _{μi} , Α _{αi}	Arrhenius constants for $\lambda_i, \mu_i,$ Q i equations, min ⁻¹
E _{λi} , E _{Ai} , E _{Ci}	Activation energies for $\lambda_i, \mu_i,$ Q i equations, cal/g. mole
A	Surface area of pores, cm ²
C _i	Concentration of "i" th compon- ent, g. moles/cm ³
С _р	Heat capacity, c.l/gram
D	Diffusivity, cm ² /sec
ĸ	Permeability, cm ²
L ·	Thickness of heat shield, cm
м	Molecular weight, grams/g. mole
R	Gas constant; 1.987 cal/g. mole - ^O K; 82.06 atm-cm ³ /g. mole - ^O K
S	Surface area of solid element, cm ²
Т	Temperature, ^O K
То	Initial temperature, ^O K
Tr	Threshold decomposition tempera- ture defined by equation (VI-11); also reaction zone temperature, K
Ts, Tcc, Tc, Tm s	Temperature of surface, carboni- zing char, char, metal surface, respectively, K
v	Volume, cm ³
v _T , v _P	Total pore volume, cm ³ /gram

W	Weight, gram
Wo	Initial weight, gram
(W/ _{Wo})	Dimensionless weight
$\left(\frac{W_{PF}}{W_{O}}\right)$	Dimensionless weight of phenol- formaldehyde
$\left(\frac{W_{OX}}{W_{O}}\right)_{g}, \left(\frac{W_{C}}{W_{O}}\right)_{g}, \left(\frac{W_{H}}{W_{O}}\right)_{g}$	Dimensionless weight of elemental oxygen, carbon, and hydrogen re- spectively in the gas phase.
$\begin{pmatrix} W_{ash} \\ \hline W_{o} \end{pmatrix}$	Dimensionless weight of ash
$\begin{pmatrix} W_{CO} \\ W_{O} \end{pmatrix}, \begin{pmatrix} W_{CO_2} \\ W_{O} \end{pmatrix}, \begin{pmatrix} W_{H_2O} \\ W_{O} \end{pmatrix}, \begin{pmatrix} W_{H_2O} \\ W_{O} \end{pmatrix}, \begin{pmatrix} W_{H_2O} \\ W_{O} \end{pmatrix}$	Dimensionless weight of carbon, carbon monoxide, carbon dioxide, water, and hydrogen respectively.
$\begin{pmatrix} W_{CR} \\ W_{O} \end{pmatrix}$, $\begin{pmatrix} W_{LAR} \\ W_{O} \end{pmatrix}$, $\begin{pmatrix} W_{LHC} \\ W_{O} \end{pmatrix}$	Dimensionless weight of condensed rings, light aromatic rings, light hydrocarbon rings, respectively
x	Co-ordinate, cm
Z	Compressibility factor
R	Heating Rate, $dT/d\theta$, ^o C/min.
P	Dimensionless pressure
Lower Case:	
a i	Chemical activity of species "i", dimensionless
d	Mean pore diameter, $\overline{d} = 4V_p/S$, microns
^k i	Kinetic rate constant for "i" th reaction, g. moles/sec - cm ³
k i	$\frac{Effective kinetic rate constant,}{k_i = k_i \bigvee_{j,g. moles/sec - cm^3}}$
k s	Thermal conductivity of the solid, <u>cal/sec-cm²</u> <u>cm - F</u>

- 5 -

37

-

1, £	Half thickness of solid element, cm
n, n _t	Number of moles, total moles
ⁿ ABC _o , ⁿ o	Initial moles of resin
ⁿ sro	Initial moles of water in resin
r	Kinetic rate, g. moles/sec-cm ³
t	Temperature, ^o C
u, w, x, y, 2, η	Moles, in reaction material balances
Greek Letters:	
α, =	$(1^{2}\lambda_{i}/D)^{\frac{1}{2}} = (\lambda_{i}/\mu_{i})^{\frac{1}{2}}$
$\beta_1, \beta_2, \beta_3,$	Defined by equation (VIII-2)
γ_{j}	Activity coefficient of "j" com- ponent
€	Porosity
η,	Diffusion attenuation, defined by equation (VIII-6)
θ	Time, min.
(Dimensionless time
λ =	\overline{k} V/n _o , reaction parameter, min ⁻¹
μ=	$D/1^2 s^2 \rho^2 D$, diffusion parameter, min ⁻¹
ξ _i	Conversion function, defined by equation (VIII-3), (V-20), dimensionless
ξ°	Ideal conversion, if all solid were on a surface, defined by equation (V-7)
π	Total pressure, atm.
ρ	Density, skeletal density, gram/cm ³

•

· - ·· ...

_

P.	Bulk density, gram/cm ³
- Ag	Gas density, P_g = M T /ZRT, gram/cm ³
٩s	Density of the solid, $gram/cm^3$
ρ _{so}	Initial density of the ablation material, gram/cm ³
T	Dimensionless temperature, T/To
τ _m =	$\mu heta$, diffusion time, dimension-less
τ _k =	\mathcal{M} , kinetic time, dimensionless
¢125	Defined by equation (VIII-2), (V-59)
χ =	X/L. dimensionless

.

- 7 -

.

£

II. INTRODUCTION AND LITERATURE SURVEY

A. PURPOSE OF THE WORK:

The overall purpose of the study was to arrive at a mathematical model for future design calculations, which describes the chemical decomposition of phenol-formaldehyde (PF) ablators.

At the outset, it is important to note that the experimental approach was to study the decomposition under isothermal conditions; ample justification exists for this type of approach when studying kinetics and mechanisms, and the approach has proved successful once again.

Specifically, it was desired to:

- develop a suitable kinetic model for the primary decomposition of the polymer, including both chemical and physical phenomena; describing the weight loss of the solid and evolution of the gaseous species.
- 2) determine the rate constants as a function of temperature.
- 3) determine the transport parameters involved.
- 4) develop a method for calculating a variable temperature (TGA) decomposition curve for the solid.
- 5) determine the changes in the physical characteristics (density, pore volume, pore size, surface area, permeability, etc.) of the solid phase.
- 6) determine the effect of quartz fibers on the degradation.
- 7) conduct a preliminary decomposition of epoxy-novolak (EPN) polymer.

B. THE ABLATION PHENOMENON:

Numerous reports and papers have been, found in the literature which describe the ablation phenomenon; good summaries are given by three papers: Sutton (51), Scala (41), and McAllister (33). Sutton's paper is outstanding for its experimental evaluation of several ablative materials with various reinforcements under simulated hypervelocity conditions. Scala presents mathematical models of each of the char regions and combines them to obtain an approximate overall solution. McAllister gives a very comprehensive description of ablation, but the unique contribution is the collection of photomicrographs of the char structure. The general consensus throughout the literature is that an ablative material affords the best heat protection, and a phenolic resin with a silica type material used as reinforcement is an outstanding candidate for the . best ablator.

During ablation, the ablator is normally pictured as being divided into several zones. The first zone is the unreacted material. The second zone, with which this investigation is at present primarily concerned, is the reaction zone in which the initial breakdown of the material is taking place, and the products of which are a carbonaceous char and several types of gases.

The third zone is the char zone from which the gas products have been eliminated. Gases from the reaction zone pass through the char zone on the way to the surface, but the temperature is not high enough to cause further decomposition.

In the fourth zone, the temperature is high enough to decompose the gas molecules into smaller species and as a result of this, carbon in the form of graphite is deposited on the structure of the char. If a silica type reinforcement is used a reaction between silica and carbon to form silicon carbide is possible in this zone. It is expected that this reaction absorbs energy at approximately 5,000 Btu per pound of silicon carbide formed.

At the surface, several things contribute to the loss of material. Carbon may be burning or subliming, silicon carbide may be subliming, or silica may be melting and flowing away under the force of the air flow. If the surface is at the temperature of melting silica, it will be approximately 1710° C; subliming silicon carbide, 2200°C; subliming graphite, 3650°C. Since the radiation of energy is proportional to the fourth power of the absolute temperature, a graphite surface would radiate about twenty times as much energy as a silica surface having the same emissivity. The gas molecules are being injected into the boundary layer; this reduces the energy flow into the ablator. The flow of molten silica, or the deposition of carbon may plug the pores of the char so that the gases cannot escape, and as gas pressure builds up, the surface may be "exploded" away. If the surface is not strong enough, it may be torn away by air flow. It is obvious that some trade off must be made to determine the optimum surface conditions of strength and composition, and this should be the object of some future investigation.

n ann an San Ann an Ann an

C. LITERATURE SURVEY:

1. Decomposition Data - Ablators:

Numerous reports and papers have been examined (see Part I of this report) relating to ablation. A few reports are available which present elemental analysis of char or products, but only where molecular analysis of phenolic decomposition products is given are the results of use in this study. Applicable data can be found in three reports, Ouchi (38), Schmidt (43), and Friedman (3).

Ouchi (38) presents graphical results from pyrolysis of several kinds of phenolic resins which can best be interpreted as rates of production of each of the products at temperatures from 200-1000°C. Actually, the results are the amount of material generated over a 100° temperature increment as analyzed by a mass spectrometer or water absorption. Apparently nothing with a mass number higher than that of CO₂ could be analyzed. Because of the graphical presentation large temperature increments between samples, and no analysis of mass numbers greater than 44, the results are only qualitatively useful.

Schmidt (43) tabulates molecular analyses of pyrolytic products which were summarized from several papers by Madorsky and Straus of the National Bureau of Standards. The CTL 91-LD phenolic was heated in an electric furnace. The time to heat the material to the desired temperature was 2-5 minutes, and the temperature was held for 5-30 minutes. The material volatile at room temperature was analyzed by mass spectrometer. Material which could not be identified made up 50-70% of the products.

Friedmar (3) presents analyses of three fractions of the products from arc furnace pyrolysis of CTL 91-LD glass reinforced phenolic resin and nylon-phenolic resin. The nylonphenolic results are not applicable to the problem, because it is not possible to tell which and how much of the decomposition products come from the nylon. Only three fractions are analyzed, volatile under vacuum at -195° C, -78° C, and room temperature, but this generally accounts for 85-90% of the weight loss. Results are tabulated as mole % averaged over several runs, and analysis was made for components as heavy as C₁₀ aromatics. It is interesting to note that about 6 mole % ammonia was found in the phenolic products; this is thought to result from the decomposition of an additive put in by the manufacturer.

Lee (26) pyrolyzed a phenolic novolak in a flask heated with a heating mantle, and the material which was volatile below 120° C was passed directly into a mass spectrometer. As

- 10 -

would be expected with a novolak, more than 10 mole % of the material identified was formaldehyde (see Section III-A).

10 to 14

Table I shows the fraction of the components in the products from different sources (based on the components which were identified). A comparison of the results from the different reports may not be justified because of the differences of technique involved. Exposure time was a matter of seconds for Friedman, minutes for the results in Schmidt, hours for Ouchi and the time is not known for the results of Lee. The temperatures appear to be comparable, but Friedman had a steep temperature gradient across his sample, while Ouchi's temperature was changing throughout the run. Two of the reports deal with CTL 91-LD phenolic, but Ouchi manufactured his own and Lee used a material which is not very similar to the others. The results of Ouchi must be integrated to compare with the others.

The fact that Ouchi finds twice as much water as Friedman, while Schmidt reports none, seems to indicate that Ouchi's resin was not completely cured, and cross-linking with the evolution of water occurred during the pyrolysis. The hydrogen and carbon monoxide contents seem to be consistant, and except for Friedman, so does the methane; however, if Friedman's acetylene were converted to equivalent methane, the comparison would be much more favorable. The other components are of less importance. Except for the higher mass number products, the results of Ouchi seem quite comparable to those from Friedman or Schmidt. The product distribution shown in Table I emphasizes that the material used by Lee discourages quantitative comparison with the others.

2. Mechanisms - Pyrolysis of PF Resins:

During the investigation of the open literature, two papers were found which were concerned with the pyrolysis of phenolformaldehyde (PF) resins as possible models for the structure of coal. The papers did not attempt to develop a kinetic model, but some mechanisms were proposed based on the experimental work of the authors. These mechanisms are given here for completeness, although their value is doubtful since they were not quantitatively confirmed.

Ouchi (38) deduces the following mechanisms of reaction:

1. Initial reactions of one of the forms,

. ...

$$2(-0H) - 0 - H_0 0$$
 (II-1)

$$-0H + -CH_2 - -CH + H_2 0$$
 (II-2)

TABLE I

MAJOR PF DECOMPOSITION PRODUCTS

	LEE	MOLE	6 OF IDENTI SCHMIDT	FIED COMPO	DNENTS FRIEDMAN	*IHDUO
COMPONENT	450°C	500°C	۵۰۵ ⁰ C	1200 ⁰ C	700 [°] C	700°C
HYDROGEN	0.5	0	. 66.7	6.9	34.7	34.3
METHANE	0.8	27.4	13.9	14.6	6.0	12.1
AMMON IA	0	0	0	0	6.2	0
WATER	10.5	0	0	0	18.9	42.6
ACETYLENE	6	0	0	3.5	6.7	0
CARBON MONOXIDE	40.2	12.8	8.6	3.8	15.4	6.9
CARBON DIOXIDE	30.6	1.4	0.4	1.3	0.6	0.7
ETHANE/ETHYLENE	0.5	0	1.6	2.7	1.9	0.4
PROPANE / PROPYLENE	1.7	0	0.1	0.2	0.6	0
BUTANES/BUTENES	0	0	3.4	0	0	0
ACETONE	0	31,0	0	0	0.3	0
PROPANOL	0	18.9	0	0	1.7	0
BENZENE	0	3.3	0.2	5.5	2.9	0
TOLUENE	1.5	5.2	0.3	0.6	0.7	0

- 12 -

.≱ ●__}

The results of Ouchi are integrated to 700°C to make them comparable.

*

٤.

- - ----

.

2. Assuming that the ring is resistant to heat, the methane is formed from the methylene bridges and the following secondary reactions are proposed,

$$-CH_2 - + H_2 O - CO + 2H_2$$
 (II-3)

$$-CH_2 - + H_2 - CH_4$$
 (II-4)

$$-CH_2 - + -0 - - CO + H_2$$
 (11-5)

$$2(-CH_2) \rightarrow C_2H_4 \qquad (II-6)$$

$$C_2 H_4 + H_2 - C_2 H_6$$
 (II-7)

$$CO + -O - - CO_{0}$$
 (II-8)

In the second step, the benzene nuclei are bonding directly to each other.

Wolfs (53) draws several interesting conclusions from a study of the carbonization of several phenolic resins formed with radioactive formaldehyde (temperature 400-600°C). The initial decomposition is a depolymerization by breaking the methylene bridges, so that the average number of carbon atoms per monomer unit is the same. Some monomer units become richer in hydrogen and polymerize to form "tar". Other monomer units loose bydrogen and go to form "semi-coke". A secondary reaction occurs when the semi-coke decomposes to volatile gases and carbon. Radioactivity indicates that the majority of the carbon in the volatile gases comes from the rings, while the original bridge carbon stays in the solid.

3. Mechanisms - Pyrolysis of Poly-Aromatics:

It is to be expected that a review of the literature on the pyrolysis of polyaromatics should lead to conclusions applicable to the aromatic ring structure of phenolic resins. A study of the pyrolysis of gromatic and polyaromatic compounds should lead to an understanding of the initial decomposition mechanisms of the resins. Outstanding in the literature is a series of papers by Greensfelder, Voge, and Good (16-18), which discuss decomposition products and mechanisms.

a. Pertinent Papers and Reports:

Anderson (2) conducted a TGA, up to 525° C of polybenzyl, the basic structure of which is represented as follows:

Comparison of the structure of polybenzyl with that of phenolformaldehyde indicates that the polybenzyl investigation should have considerable bearing or a phenolic ablation study. Product analysis is shown in Table II.

If there were no preference for the breaking of bridge bonds, the product distribution relative to benzene should be:

	<u>Molar Ratio</u>	
Benzene	1	
Toluene	4	
Xylenes	6	
3 Methyl-groups-per-ring	4	
4 Methyl-groups-per-ring	1	

Since the experimental ratio of toluene to benzene is 3 to 1, the indication is that the bridge carbons are held preferentially in the residue. This idea is reinforced by the fact that 2, 3, or 4 methyl-groups-per-ring molecules are practically non-existent in the liquid product.

- 14 -

- 15 -

TABLE II

PRODUCT ANALYSIS-POLYBENZYL PYROLYSIS

COMPONENT	WT.% OF CHARGE	MOLAR RATIO
RESIDUE		
CONDENSATE (IN PYROLYSIS	TUBE) 28.60	
VOLATILE LIQUID	4.00	
BENZENE	0.85	1.0
TOLUENE	3.11	3.1
XYLENES	0.04	

Lewis (27) sums up work with DTA, ESR (electron spin resonance), IR, UV, and x-ray on the pyrolysis products of acenaphthylene to propose a mechanism for its carbonization. the ESR technique was applied to solutions in m-quinquephenyl or biphenyl up to 300°C. The success of the investigation indicates the importance of free radical mechanisms not only in the carbonization of acenaphthylene, but also in the carbonization of several other aromatic compounds previously observed. The mechanism proposed is as follows:

Equation (III-2) shows only the major changes, and free radicals are the intermediate products. It is interesting to note that lattice spacing for this synthetic graphite is 0

3.370 A and that of natural Canadian graphite is 3.361 A.

<u>Meyer (34)</u> performed a pyrolysis of toluene or deuterated toluene in an atmosphere of hydrogen or deuterium at 750° C. The indication was that hydrogen atoms are much more strongly fastened to the methyl groups than to the rings. The benzene, methane, and toluene formed were examined by mass spectrometer and IR. Conversion was about 2%.

Kinney (22) pyrolyzed benzene, naphthalene, anthracene, chrysene, and pyrene in a tubular quartz reaction at 800-1100°C at concentrations less than 5 mole % in mitrogen. Contact times were in the range of 1-50 seconds. Carbon formation is increased from the 1-ring to 2-ring to the 3-ring material, but the 4-ring materials drop off in carbon formation. This is probably because of geometrical consideration for the Packing the reactor with coke increases the condensation. carbon rate for all materials. Packing the reactor with quartz chips increases the production of biphenyl from benzene. Traces of acetylene are produced; a few wt% methane are formed; up to 60 mole % hydrogen is released as H2 for 90 wt% conversion of benzene to carbon. The following mechanism is proposed for the condensation of benzene.

<u>Stehling (50)</u> pyrolyzed several hydrocarbons, each diluted with helium, at temperatures in the range 600-900°C. A cylindrical Vycor reactor was used, and contact time was in the range 4-10 seconds (held constant for a material for runs over the temperature range). Analytical results for acetylene appeared independent of whether the reactor walls were clean, polymer coated, or carbon coated. Other than carbon and hydrogen, benzene is the chief pyrolysis product of acetylene, reaching a peak of 25% of acetylene feed at 800°C; naphthalene is about 5% (carbon basis); ethylene 9%, methane 5%; unconverted acetylene 23%. More hydrogen is produced from an acetylene-benzene mixture than from the components pyrolyzed separately under the same conditions. In the pyrolysis of benzene, decomposition of benzene was not detectable until 800°C, and at 900°C only 43% of the benzene decomposed.

Stehling concludes that:

1. Carbon formation cannot, in general, result from a mechanism of the type acetylenic ----- aromatic ------ carbon.

2. With high temperatures, and free radicals present, carbon formation is more likely to result from ring-opening and fragmentation of aromatics than from condensation.

3. A methyl group substituted on the aromatic rings has more effect on decomposition than a second ring.

Kinney (23) pyrolyzed benzene, acetylene, and diacetylene, 0.1 mole % in helium, at 1200°C in a porcelain tube at contact times up to 112 milliseconds. The major gas products for benzene are acetylene, diacetylene, methane, and hydrogen (not analyzed for) Extrapolation of the data toward zero contact time implies & mechanism of initial decomposition of the form,

$$C_6H_6 \longrightarrow HC = CH + HC \stackrel{1}{\rightarrow} C_- C = CH + H_2$$
 (III-4)

But because at the shortest experimental contact time, 4 milliseconds, the mole % of acetylene is twice that of diacetylene, the mechanism of Equation (III-5) may also be important. This is emphasized by the fact

$$C_6 H_6 - - 3 HC = CH$$
 (III-5)

that benzene was prepared quantitatively from acetylene nearly a century ago; the reverse reaction for Equation (III-5). After 4 milliseconds the diacetylene curve drops away much faster than does the acetylene (benzene pyrolysis products).

Since acetylene is an important product of diacetylene and vice-versa; and more than 90% of the diacetylene was pyrolyzed in 112 milliseconds, but less than 25% of the acetylene was pyrolyzed in the corresponding time period; the obvious conclusion is that the primary decomposition mechanism is the formation of diacetylene, which then decomposes to carbon.

b. Conclusions from Papers in the Literature:

Based on the results and mechanisms proposed in the

foregoing papers, certain conclusions can be drawn. A possible mechanism for the condensation of diacetylene is as follows, and appears justified by the results of Kinney:

Since Stehling found that an olefinic-aromatic mixture had a higher hydrogen production rate (and consequently a higher carbon rate) than the sum of the separate rates, the use of an aromatic structure for the neucleus of condensation seems justified. In summary, it appears that the pyrolysis of aromatics to a graphite type carbon should follow two parallel mechanisms. The first is typified by the condensation of benzene, Equation (III-3), and is dominant at low temperatures, 800-1100°C, where there is less tendency for the ring to crack; or at high densities, where condensed aromatics, stabilized by additional resonant energy, form before the ring has a chance to break. The second mechanism is dominant at high temperatures, above 1100°C, where the ring breaks. The most likely path for the second mechanism is the breaking of the benzene ring to form acetylene, part of which immediately decomposes to form diacetylene and H₂. The diacetylene then condenses around an uncracked benzene neucleus, as shown in Equation (III-6). At the borderline, 1100°C region, both mechanisms may be active.

Below 800°C, benzene is relatively inert unless it is irradiated with light of wavelength less than 20 μ . The near infrared, which is the fundamental bond vibration region, is approximately 2-20 μ , and apparently strong radiation of the proper frequency can so excite the C-C bonds in the benzene ring that some of them break and acetylene is formed. This gives a clue as to why the rings might break at high temperature. One possibility is that the radiation from the reactor wall might be strong at the frequency corresponding to the ring C-C stretch fundamental, but it is more likely that the bond is simply thermally excited to the breaking point. As an example of this, consider the change from 1000°C, where Kinney (1954) found ring condensation, to 1200°C, where Kinney (1960) found ring cracking. Table III compares the fraction energy change per degree of freedom for translation, $\frac{1}{2}$ kT, and for vibration $h\nu_0$ / exp ($h\nu_0$ /kT) - 1. From 1000°C to 1200°C, the C-C stretch increases 27% while the translation energy increases only 16%. Since the C-C bond in the benzene ring is not a single bond or a double bond, but something about halfway between, at 1000°C, a C 1½ C bond would have 0.786 x 10⁻¹³ ergs energy and at 1200°C, 1.040 x 10⁻¹³ ergs. This does not necessarily reflect the activation energy of bond breaking, but it is interesting to note that at approximately the point where ring breaking becomes significant, the vibrational energy of a C 1½ C bond becomes equal to the translational energy of one degree of freedom.

Since there are 6 C-C and 6 C-H bonds in a benzene molecule (plus 18 other bonding and stretching vibrational modes), while there are only 3 translational and 3 rotational degrees of freedom, it can be seen that at high temperatures much more of the energy goes into vibrational modes than translation and rotation.

TABLE III

TRANSLATIONAL AND VIBRATIONAL ENERGIES

ENERGY/DEGREE OF FREEDOM

	800°C	1000 [°] C	1200 [°] C
TRANSLATION (½kT)	0.740×10^{-13} erg	0.879x10 ⁻¹³ erg	1.019x10 ⁻¹³ erg
C-C STRETCHING			
(AROMATIC, 989 cm ⁻¹)	0.480kT	0.543kT	0.594kT
C-C STRETCHING			
(AROMATIC, 1618 $cm^{-1})$	0.280kT	0.351kT	0.427kT
C-H STRETCHING			
(AROMATIC, 3045 cm ⁻¹)	0.045kT	0.081kT	0,120kT

4. Kinetic Models Proposed Previously:

The only attempt at model development for the process appears to be that of Friedman (14). Previous work by other investigators indicated that the weight loss of a strictly subliming polymer was of the expected first order forms,

 $-W = \overline{k}W$

where "W" is the weight of material, and "k" is the reaction rate constant. In his early work, Friedman recognized that in a charring ablation material, the filler and a portion of the material would end up as char and would not be available for reaction. It would therefore be more proper to write the previous equation as,

$$W = \overline{k} (W - W_c)$$

where "W" is the final weight of the char. In his 1961 report, Friedman recognizes that although no one knows in what form the kinetic equations of decomposition should appear, it is very unlikely that the overall or apparent equation would be of first order. He therefore proposed that the overall reaction rate would be of the form,

$$-\left(\frac{\dot{W}}{W_{o}}\right) = \frac{1}{k} \left(\frac{W}{W_{o}} - \frac{W}{W_{o}}\right)^{n}$$

where " W_0 " is the initial weight of material, and "n" is the pseudo order of the overall reaction. He also recognized that the reaction rate constant would be of the Arrhenius form,

$$k = A \exp(- \triangle E/RT)$$

When evaluating the constants for a best fit of the results of a thermogravimetric analysis of fiberglass reinforced phenolformaldehyde resin, A = 1018 hr.¹, $\Delta E = 55,000$ cal./g. mole, and n = 5, were obtained. The final form of the overall kinetic equation, with these values for the constants, gives very reasonable reproduction of the data except for a very early loss of about 5% which occurred up to about 400°C. Incomplete cross-linking in the original material probably caused the initial loss as the cross-linkage was completed and water eliminated. A reaction order greater than three is virtually unknown in reaction kinetics, and Friedman says that the apparent fifth order probably results from a complex mechanism in the solid state of the highly cross-linked material.

Because Friedman's model is the only kinetic model in the literature, many investigators have used it in their overall model. However, to make a significant improvement, it is necessary to develop a kinetic model which describes the molecular processes involved. III. CHARACTERIZATION OF THE ABLATION SUBSTANCE

A. STRUCTURE OF PHENOL-FORMALDEHYDE RESIN:

.

The literature indicates that the first step in the reaction of phenol with formaldehyde is the formation of phenol alcohols,

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \end{array} + \left(\begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\\ \end{array}\right) = \left(\begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\begin{array}{c} \\ \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\end{array}) = \left(\begin{array}{c} \end{array}\right) = \left(\begin{array}{c} \end{array}\right) = \left(\end{array}) = \left(\end{array}) = \left(\begin{array}{c} \end{array}) = \left(\begin{array}{c}$$

with the relative amounts of the mono-, di-, and tri-alcohols determined by the relative amounts of phenol and formaldehyde initially present. The next step in the series is a reaction such as,

$$\begin{array}{c} \partial H \\ \partial H$$

which is repeated to form a linear chain of ring structures connected by methylene bridges. In an acid catylized reaction, there is also the possibility of forming a methyl ether bridge,

$$\int_{\mathbb{T}}^{\infty} CH_{1}OH + HOCH_{1}OH - \int_{\mathbb{T}}^{\infty} CH_{2} - O - CH_{2}OH + H_{2}OH +$$

however, with strong heating later in the cure, the methyl ether bridge decomposes to form a methylene bridge and a formaldehyde molecule. The linear polymer is fuseable and soluble in organic solvents, but three dimensional configurations of three bridges per ring are formed as the reactions progress and these formations are infuseable and insoluble. The final stage might be visualized by the following two dimensional representation of the three dimensional structure:

If an acid catalyst was used, then some of the methylene bridges, $-CH_2$ -, will be methylene ether bridges, $-CH_2$ -0- CH_2 -, and only in an ideal case will there be three bridges on each ring. Some of the rings will have two bridges and either an alcohol group, $-CH_2OH$, or a hydrogen atom at the third position. Experimental evidence concerning the basic structure of the resin is reviewed by Cashwell (5).

B. CURING OF PHENOL-FORMALDEHYDE RESIN:

The "A" stage resin is made up essentially of the alcoholic condensation products of phenol and formaldehyde and is water soluble.

The "B" stage resin is made up of linear chains of alternating rings and methylene bridges and is fuseable and solvent soluble.

The "C" stage resin is essentially all cross linked and is infuseable and insoluble.

The stages are not clearly separated, but overlap so that the "A" stage resin will have not only phenol alcohols, but also some higher condensation products. In the "B" stage, some phenol alcohols will still be present, and an appreciable amount of cross linked material may be present. From 3 to 6% of the "C" stage resin may still be removed by extensive extraction with acetone.

To obtain a resin which has the best thermal stability, it is obvious that cross-linkage should be as extensive as possible. - 23 -

N. Mark

The phenol-formaldehyde used in this investigation is EA-466 Phyophen (90-087), furnished by Reichhold Chemicals, Inc. (Carteret, New Jersey), which is a purple water solution of phenol alcohols (A stage). The initial proportion is 12 moles of formaldehyde to one mole of phenol, which is the correct proportion for three bridges attached to each ring, plus a small amount of fixed alkali catalyst. Although this material is chosen to give the most complete cross-linkage possible for phenol-formaldehyde, three bridges per ring, the bridges may not all form if the curing is not carried out properly. Some measure of the extent of cross-linkage may be obtained by determining the amount of "alcoholic" hydroxide (-OH groups attached to the methylene groups as opposed to being attached directly to the ring). A titrametric method of determining alcoholic OH by acetylation with acetic anhydride is described in Appendix A. If the resin is polymerized and cured at 150° F for 12-24 hours, the solid material is relatively soft and the alcoholic OH is approximately 15% by weight (this corresponds roughly to one unformed bridge for each ring); but after "complete" curing, the resin is very hard and the alcoholic OH is less than 0.5% by weight. Since the complexity of the geometric structure prevents 100% cross-linkage, the alcoholic OH can never be reduced to zero.

Because of the possibility that the alcoholic OH analysis was indicating phenolic OH (hydroxide group attached directly to the ring) as well, the question arose as whether the 0.5%OH value resulted only because the extreme curing conditions had actually caused decomposition and loss of the phenolic OH (normally greater than 15% by weight). The question can be resolved by infrared spectroscopy. Figure 1 shows a spectrogram of a thin film of resin cured under relatively mild conditions, and a large adsorption peak occurs at the characteristic frequency for OH stretching, approximately 3300 ${m \mathcal V}$. When the same film is subjected to additional curing under the more adverse conditions, substantially no change appears in the OH adsorption peak. This establishes that the alcoholic OH analysis does not include phenolic OH and that the phenolic OH is not lost under the most extreme conditions of curing which were used. Figure 1 also indicates the vibrational modes which have been assigned to the more important vibrational adsorption peaks.

It is very difficult to form a uniform resin film of the proper thickness to have the required degree of transparency, and when such a film is formed, it is very delicate. A method which is more practical with respect to physical manipulation involves grinding the solid material to a fine powder, mixing with potassium bromide, and pressing in a hydraulic press to

INFRARED SPECTROGRAM OF PHENOL-FORMALDEHYDE FILM FIGURE 1.

form a pellet (described in more detail in Appendix A). The spectrogram of such a pellet is shown in Figure 2. The quality of the pellet spectrogram is almost as good as that of the film, but the practicality of the pellet technique justifies its use, particularly for the study of charred material.

•••• [*

, Application and an and the second

Elemental analysis (described in Appendix A) is a method of obtaining the amounts of carbon and hydrogen in a sample directly and the amount of oxygen by difference. In principle, the comparison of the elemental analysis with the theoretical values calculated from the structural formula should give an indication of the degree of cure, but in a practical case, direct comparison of numerical values is not helpful until the cure is advanced as far as it can go. For relatively uncured material, the comparison should be made by means of a characterization plot, such as that given for phenol-formaldehyde in Figure 3. The apex of all the lines corresponds to the theoretical analysis of the resin; the lines to the right of this point correspond to decomposition of the resin and loss of the molecules with which the lines are labeled; this type of plot can be used to study the pyrolysis if the products are few and The lines to the left correspond to adsorption (absimple. sorption, chemisorption) of the indicated molecules on the cured resin, and in the case of the uncured resin, the H2O line corresponds to H and alcoholic OH which would be formed (and removed) as the cure progresses. In actual case this is found to be true, the analysis of the mildly cured resin falls along the H2O line; and as the cure progresses, the analysis moves toward the theoretical point.

It is now possible to define the criteria for completely cured resin,

a. Elemental analysis to correspond to the theoretical structure, and

b. Alcoholic OH equal to zero.

Because of the random distribution in the geometrical structure, complete cross-linkage can not be achieved. The best alcoholic OH which could be obtained during this investigation was 0.43 weight %, and this could be reached only after curing under vacuum. The average elemental analysis of the resin (on an ash free basis) is: carbon 78.09 w% (80.32); hydrogen 5.47 w% (5.40); oxygen 16.44 w% (14.28). The values in the parentheses are the 'heoretical values based on the structure shown by Equation (III-4). The ash content is 2.60 w%.

This investigation has determined the following curing cycle to be adequate. The water solution of the resin is pored into

HOUSTON RESEARCH INSTITUTE, INC.

INFRARED SPECTROGRAY OF POWDERED PHENOL-FORMALDEHYDE RESIN FIGURE 2.

- 26 -

100 ╎╷╷ ┙┙┙┙ ř. 7 **F** b Ŧ 06 ; •. ; <u> 9</u> 92 E Contraction . 9 WZC 30-H ╷╷╷╷╷╷╷╵╵╵ ┇┲┍┙╝╝╝┍╖╝╝ **T T T** 80 TOPE CHILL 1 Ŧ -------+--7 -----ABDITION OF Nu · · · · · · 1 Т 1 -Ť <u>...</u>. ----+ 20 1 + ł 1109 I 60 Q HZW ŝ . ~ 4 3 N

FIGURE 3 - PHENOL-FORMALDEHYDE CHARACTERIZATION PLOT

4

- 27 -

a shallow container to form a thin liquid film. This is heated at 310-330 F for 1/2 - 1 hours. The thin film of solid which results is crushed, then ground to pass through a 60 mesh screen. The fine particles are heated under vacuum (1-3 mm Hg absolute) at 350-400 F for about 24 hours or until the elemental analysis and the alcoholic OH analysis no longer improve.

C. WATER AND AIR ADSORPTION BY CURED PHENOL-FORMALDEHYDE POLYMER:

At an early stage of this investigation, it was found that the experimental results from the pyrolysis determinations were not consistent with what was expected. The difficulty was traced to the ability of the cured resin to adsorb appreciable amounts of water and/or air. A quantitative investigation of the magnitude of the phenomenon was attempted, and the results are as shown in Table IV. The freshly dried material was exposed at room temperature to an atmosphere saturated with water vapor for the indicated time, and the weight gain was noted. Dry sand exposed under the same conditions showed no gain in weight. Some of the samples were heated in an ordinary laboratory oven, and it was found that quantitative desorption could be accomplished in one hour at 212°F. A sample exposed at room temperature and an average relative humidity of 56% for 5 hours gained 7.68 weight % (dry basis).

A typical char was approximated by mixing together equal parts of pyrolysis residue from 25 min., 60 min., and $16\frac{1}{2}$ hours runs at 497°C. The weight gain was found to be 15.49 wt. % (dry basis) at 715 min. exposure to 100% relative humidity at room temperature; 15.90% at 1250 min., and 16.28% at 2155 min.

Future work should include a more detailed investigation of the adsorption phenomenon, but because of time limitations this investigation could only attempt to minimize the effect. The technique found to be most effective is to place the freshly dried resin in a small bottle having a rubber stopper and a teflon stopcock. Samples are removed through the stopcock, and between samples, the bottle is stored in a desiccator. While in use, the resin is frequently re-dried under vacuum, but between dryings, the adsorbed material builds up on the resin surface. In one case, where the exposure to atmosphere is thought to be more extensive than usual, the resin lost 2.12 wt. % (dry basis) on being vacuum dried. Because of the difficulty of maintaining the resin free of all adsorbed materials, it was decided to keep the material as uniform and consistent as possible and allow for adsorbed material by the kinetic model (see Section V).

HOUSTON RESEARCH INSTITUTE, INC.
TABLE IV

PHENOL-FORMALDEHYDE RESIN					
Minutes Exposed	% Adsorbed* at 100%	% Desorbed* in			
to Humidity	Relative Humidity+	1 Hour @ 212 [°] F			
20	1.43	1.43			
40	2.97	2.97			
50	3.21	3.28			
120	5.70	5.64			
450	10.55				
640	10.30				
700	10.72				
770	11.02	11.05			
1320	11.00				
1320	10.95				
* Weight % based	on dry resin				
+ Room Temperatur	e				

WATER ADSORPTION-DESORPTICN ON PHENOL FORMALDEHYDE RESIN

As part of the elemental analysis, the Karl Fisher apparatus (Section IV-C) is used to determine moisture in the resin and in the chars. The moisture varies with the amount of exposure to the atmosphere and the degree of humidity. For the resin, the maximum value found was 0.43 wt. %, but 0.21% is a more typical value. The chars sometimes have moistures as high as 2.5%, but usually stay in the range of 0.3-1.0%.

D. PRELIMINARY CHARACTERIZATION OF THE EPOXY-NOVOLAK:

The epoxy-novolak used in this investigation is 40.9 w% epoxy-novolak, 43.5 w% polysebacic anhydride, 7.3 w% 4-vinylcyclohexene dioxide, and 7.7 w% methyl NADIC anhydride, all co-polymerized together, with 0.5 w% catalyst, tridimethyl amino methyl phenol, in the form of a dark yellow, glassy slab. The slab was machined along one edge, and the resulting shavings were ground to pass through a 60 mesh screen, then vacuum dried at 1 mm Hg absolute pressure and 240°F for about 16 hours.

The elemental analysis on a dry, ash free basis for the epoxy is: carbon 69.5 wt. % (69.3); hydrogen 8.23% (7.26); and oxygen 22.3% (23.5); where the values in parentheses are the theoretical values calculated from the composition. The ash content is 0.18 w%. A characterization plot for the epoxynovolak is given in Figure 4, but is not as useful as for the phenolic, because the structure can not be defined. Each of

and the second s

the anlydrides can polymerize with each of the epoxy compounds, thus giving four different types of linkage, each of some unknown amount. In addition, there is no elimination of molecules during curing of the epoxy as there is with water from the phenolic, so that the curing can not be followed by elemental analysis. The assumption is made that the curing is complete as received.

The epoxy is much less adsorptive than the phenolic, as indicated by the epoxy adsorption values in Table V; phenolic material has a great many hydroxide groups and these tend to hydrogen-bond to water and possibly also to oxygen and nitrogen. The epoxy has only trace amounts of hydroxide from the catalyst, and consequently adsorption due only to the surface effects, which are much less than the hydrogen-bonding effects. The net result is that after the pyrolysis runs of the epoxy-novolak were completed, the unused material would desorb only 0.37 wt. % under vacuum (3 cm Hg abs.) at 240 F for 21 hours. In addition, the moisture by the Karl Fisher analysis never exceeded 0.11%.

TABLE V

Exposure	Relative Humidity (Room Temperature)	Weight % Gain*
25 min.	80.3%	0.74
7월 Hrs.	100%	0.84
* No addition.	al gain was observed for a	dditional exposure

WATER ADSORPTION ON EPOXY-NOVOLAK RESIN

time.

Shavings of epoxy machined from a slab and ground up were a chalk white, loose, flakey powder. This powder darkened to a very light tan after vacuum drying. After pyrolysis at 569°F, the epoxy residue turned a straw color and formed a loose cake which could be easily broken up to the original texture. After pyrolysis at 730°F, the epoxy residue formed a dark brown cake of more tenacity, but which could still be broken up without much effort to form a powder of finer texture than the original.

などできたいたいではなななななななないのでのはないないであるとないである

- 31 -

IV. EXPERIMENTAL INVESTIGATION

A. REVIEW OF EQUIPMENT IN LITERATURE:

An evaluation of some of the techniques and equipment which have been used to more accurately define the ablation phenomenon of plastic materials indicates that the equipment can be divided into three broad categories: 1) Chemical Kinetic Equipment, 2) Physical Property Equipment, and 3) Reentry Simulation Equipment.

The chemical kinetic equipment is used to investigate the nature of the chemical reactions involved in the degradation of ablation materials (i.e. determination of orders of reaction, activation energies, heats of reaction, chemical species formed, etc.). There has been very little detailed work in this area.

The physical property equipment is used to produce detailed information on the properties of the virgin materials and the chars formed during ablation. The equipment is divided into two general categories: 1) Thermal Properties Equipment (i.e. heat capacity, thermal conductivity, thermal diffusivity, etc.), 2) Basic Physical Property Equipment (i.e. density, surface area, pore size distribution, structural properties, etc.) The information is required to adequately define the heat and material balances and physical configuration of the mass during the ablation process.

Simulation equipment is used to reproduce or simulate as near as possible the actual conditions that are experienced during re-entry. By far, this is the largest group of experimental equipment which exists today. Simulation has been very necessary to provide quick approximations of designs for spacecraft heat shields, but the work is virtually useless when making a detailed kinetic study. Therefore, an evaluation of this equipment has not been made.

The purpose of the literature review was to determine the experience and equipment developed by others on chemical kinetic studies of ablation. From such information and our experience in reaction kinetic studies, a kinetics apparatus design was evolved.

The literature survey has revealed approximately nine basic methods of determining the reaction kinetic parameters of ablative systems. They are as follows:

- 1. Xenon Flash Lamp Pyrolysis
- 2. Transpiration Cracking in Char
- 3. Thermogravimetric Analysis, TGA

HOUSTON RESEARCH INSTITUTE, INC.

- 4. Differential Thermal Analysis, DTA
- 5. Isothermal Furnace Pyrolysis
- 6. Commercial Aerograph Pyrolyzer
- 7. Radio Frequency Apparatus
- 8. Electron Spin Resonance
- 9. Fluid Bed Pyrolysis

A CANADA TO A LANCE AND ADDRESS AND ADDRESS OF A

Certain general articles presented by D. L. Schmidt (42-44), Nelson (37), and Schwartz (45, 46) indicate that most if not all of the basic methods which are currently being used are included in the above list. 3**6**+-

赣

an batens

. .

おくき

A K MANY

1. Kinetics Equipment

Xenon Flash Lamp Pyrolysis: This is one of the а. relatively newer techniques for investigating pyrolysis of plas-tics and has been described by Nelson (37) of Bell Telephone Laboratories; Martin (30), Rudkin (40), and Lincoln (28) of the U. S. Naval Radiological Defense Laboratory; Friedman (7, 32) of General Electric Space Sciences Laboratory; and Wacks (52) of National Bureau of Standards. The echnique can be very valuable when determining reaction kinetic data over periods of one second to one millisecond. It has been used by Wacks, Friedman, and Martin in conjunction with either a time-of-flight mass spectrometer or a two-stage gas-liquid partition chromatograph to identify the pyrolysis products of ablative plastics. The system is apparently easy to calibrate for energy input (cal/cm²) from calorimetric data on graphite or silver. This can be converted to rate of heat input by knowing the area of exposure and exposure time. Herein lies some of the problems of use. 1) The electrical circuit must be carefully designed and calibrated to produce a uniform, usable light pulse. 2) To reach very high temperatures the sample must be very finely divided - and a determination of the area exposed must be made. 3) With ablative materials, the change in chemical species and their unknown reaction rates make it extremely difficult to determine the temperature of reaction.

The technique has been used very successfully to determine the heat capacity, thermal conductivity, and thermal diffusivity of materials up to their decomposition temperature, and has been especially valuable in the field of ceramics at high temperatures. It was concluded that this technique was not ideally suited to the chemical kinetic study being contemplated.

It should be noted that the two analysis techniques discussed later (i.e. TOF or a conventional mass spectrometer and GLPC) can be used on any type of kinetics apparatus.

b. Transpiration Cracking in Chars: This apparatus was developed by the General Electric Space Sciences Laboratory (49) and is used to study the <u>secondary</u> reactions that occur in the char layer of an ablating plastic. (i.e. methane cracking down to pyrolytic graphite and hydrogen). In basic principle, the method can be very useful in studying secondary pyrolysis reactions, but has numerous operating problems. Preliminary results indicated a very efficient cracking of the primary products, which was to be expected from general kinetic theory and what is known about thermal cracking of hydrocarbons.

c. Thermogravimetric Analysis (TGA): This is one of the most widely used kinetics apparatus. Its utility has been described by Schmidt (43) and has been discussed in detail by Coffman (6), Kotlensky (24), and Boguist (3). The method yields loss of weight data versus temperature profile data. During analysis, plastic samples are heated at a preselected rate of temperature rise (i.e. 3-6 C/min.) through and beyond their decomposition temperatures. Extensive use has been made of the Chevanard Thermobalance.

The technique is not suited for detailed kinetic studies because the temperature is varying with time, kinetic equations are complex even for isothermal data; consequently, the technique can not be used for mechanism studies. Isothermal gravimetric studies, on the other hand, are ideally suited for detailed kinetic studies. To complete the kinetic data required, some type of pyrolysis product analysis would have to be made.

d. Differential Thermal Analysis (DTA): This technique has been used quite extensively to determine the incipient reaction temperatures for ablative plastics. Schmidt (43), Boquist (3), and Mason (31) describe its use.

DTA studies are performed by comparing the temperatures of an inert reference substance (aluminum oxide, etc.) with that of an ablative plastic as the temperature is programmed on a continuous rise through and beyond the decomposition temperatures. Its major value is in defining the zones of temperature which require detailed kinetic study. The results of DTA experiment also indicate whether the reaction is exothermic or endothermic which in itself gives a clue to the type of mechanism involved at any particular temperature.

e. Isothermal Furnace Pyrolysis: This technique has been developed and used by Madorsky (29) of the National Bureau of Standards and the General Electric Space Sciences Laboratory (49). Schmidt (43) describes the details of some of this work.

Isothermal furnace pyrolysis provides one of the best bases for design of a kinetics apparatus. In kinetics it is important, that the temperature of the reaction be held constant, that the temperature throughout the sample be the same, and that the exact value of the temperature be known. The degree of temperature control and the relatively large heat sink of the electrical furnace make it suitable to fulfill the above conditions.

Combination of a thermobalance (tungsten-spring or electronic) and an electrical furnace would provide weight loss versus time information under isothermal pyrolytic conditions. This information along with component analysis can be used to derive Arhennius-type plots and calculate activation energies of decomposition.

f. Commercial Aerograph Pyrolyzer with Hydrogen Flame Analyzer-JPL: This commercial pyrolyzer utilizes a glowing platinum coil to pyrolyze plastic samples. Its use has been described by Johnson (21) of the Jet Propulsion Laboratory. Its chief disadvantage is the lack of temperature control or method for measuring the temperature. Johnson (21) has used a very sensitive hydrogen flame ionization detector in conjunction with a Perkin-Elmer Chromatograph to identify pyrolysis products. He has indicated the presence of large numbers of pyrolysis products (40 to 50 for polystyrene pyrolysis).

The hydrogen flame detector, of course, will not indicate the presence of hydrogen, which is a distinct disadvantage since hydrogen may be an important product liberated by the condensation mechanisms of phenolic structures.

g. Radio Frequency Apparatus: This technique was developed to study the chemical reactivity effect of atomicnitrogen with plastics in a non-hyperthermal environment. The system, as described by Mathews (10, 32), Lapple (25), and Mixer (35), simulates the hot gaseous air plasma which is highly reactive due to its dissociation into atomic species. The method is highly specialized and would find little use in basic in-depth kinetic studies of ablating plastics. Its value is primarily as a source of ionized species for special atmospheric studies and surface effect studies.

h. Electron Spin Resonance Apparatus: This technique has been used quite extensively by Singer and Co-workers (48) of the National Carbon Company to study the thermal decomposition reactions of organic compounds. The major advantage of the system is that it permits identification of radical intermediates formed during pyrolysis and allows the tracing of the mechanisms of the reactions involved. Its use to date has been limited to pure organic compounds; therefore, it is difficult

1.141 × 4.4 × 1.555 \$51 1441 × 1.4

1 1 442

1.000

to judge what kind of potential value the technique has for determining the mechanisms of pyrolysis of ablative plastics. The complications presented by the polymers, either homogeneous or heterogeneous, could be formidable.

Fluid Bed Pyrolysis: This technique as described i. by Coffman (6) of the General Electric Company can be used only on thermoset resins. Thermoplastic polymers or thermosetting resins will not fluidize under high temperatures. One of its major advantages is the uniform and efficient mixing and heat transfer that is realized experimentally. One of the major disadvantages is the initial time response of the system. It is very difficult to bring the system to a desired temperature rapidly and adjust the fluidization at the same time. Another disadvantage is the time and care required in preparing the resin powder for use. For the most satisfactory fluidization the powder must be smaller than 200 but larger than 325 mesh sieve size (approx. .09mm avg. diameter). Even at this size a relatively large quantity of fluidization gas (helium) is required which makes subsequent analysis of the pyrolysis products difficult.

The method has some advantages, but also has some serious operational disadvantages which limit its usefulness.

2. Physical Propert Equipment

Equipment to determine the physical properties of ablative plastics and their chars has not been discussed to any great extent in the literature. Probably the main reason for this is that equipment developed for use in other fields (i.e. refractory metals, ceramics, etc.) can be adapted for use in this field.

There are two basic areas in which physical property equipment are required (i.e. Thermal Property and Basic Physical Property Equipment); of the two, the thermal property equipment is of primary interest. There are six basic types of physical property equipment discussed in the literature:

- a. Heat Capacity Apparatus SRI
- b. Thermal Conductivity Apparatus SRI
- c. Thermal Diffusivity Apparatus
- d. Mercury Porosimeter
- e. Nitrogen Sorbtometer
- f. Char Layer Pressure Drop Apparatus

Of these, only the heat capacity, thermal conductivity, and thermal diffusivity apparatii are of primary interest. The mercury porosimeter and nitrogen sorbtometer are standard,

HOUSTON RESEARCH INSTITUTE, INC.

commercial units which require no further discussion. The char layer pressure drop apparatus, developed to study spallation of charring ablators is not of primary interest and will not be discussed further.

a. Heat Capacity Apparatus: An apparatus for this type of measurement to 5000°F on refractory materials is described by Howse (19) of the Southern Research Institute. Use is made of a tube-type graphite furnace for heating the materials and an ice calorimeter for heat capacity determinations. This relatively simple system could be applied to any material that is inert at the maximum temperature of the determination. Therefore porous chars could be crushed and compacted for heat capacity measurements of the solid residue, and the effect of various gases taken into account theoretically by knowing the porosity of the original char and the heat capacity of the

b. Thermal Conductivity: There are two basic methods of determining the thermal conductivity of an inert material. The equilibrium method is described by Howse (19) and the transient method by Nagler (36) of the Jet Propulsion Laboratory. The equilibrium method is by far the simplest and most economical method, therefore the discussion will be limited to the former.

A simple, well insulated, electrically heated system is used by Howse and coworkers (19). There are no particular advantages or disadvantages to the experimental technique used. The system is set up to provide measurement of the variables which define the thermal conductivity (i.e. $Q = k A \Delta T / \Delta X$) from Fourier's Equation.

c. Thermal Diffusivity Apparatus: There are two distinct techniques which have been advanced for measuring the thermal diffusivity of materials. They are based on the same principle of the transient heat flow equation which defines the thermal diffusivity as $\alpha = \frac{k}{C_p}\rho$, where k = thermal conductivity, $\rho =$ density, and $C_p =$ heat capacity.

Farmer (11) of the Nonmetallic Materials Laboratory describes the use of an arc imaging furnace as the source of a uniform radiant heat flux whereas Jenkins (20) of the U.S. Naval Radiological Defense Laboratory uses the Xenon flash lamp to accomplish the same thing but in a shorter period of time. The flash method tends to minimize heat losses because of the short period of measurement, but has the disadvantage of raising the front surface temperature to very high values, and makes it difficult to define an "effective temperature" for a measurement.

بينيد ويوجع المرسين الأرام

3. Analytical Equipment

Because of the importance of product analysis to a kinetic study, the more important analytical equipment and techniques were examined. X-ray and electron spin resonance are useful in deciding on mechanisms of reactions, but these techniques do not lend themselves to quantitative analysis. Therefore, they will not be considered further in this section.

Standard laboratory techniques can give important analytical information. Passing the pyrolysis gas through an absorption bulb filled with a drying agent will give the amount of water in the gas as the increased weight of the bulb. Similarly, carbon dioxide can be determined by another bulb filled with ascarite.

Another us ful technique is the combustion of solid material (such as argin ablator or pyrolysis residue) in pare oxygen. From subsequent analysis of the combustion products, the amount of carbon, hydrogen, and nitrogen which was in the original material can be determined. The amount of oxygen in the material must be determined by difference.

In principle, any type of analytical equipment could be used in conjunction with any type of pyrolytic equipment to make a kinetic study. In practice, it is found that the combinations used are rather restricted, not only because a type of equipment may not be suited for a particular type of material, but also because most investigators like to use directly coupled equipment. This imposes another restriction on both analysis and pyrolysis equipment in that the interface must be reasonably convenient.

Gas chromatography has found wide use in the analysis of pyrolysis products of ablative materials. It is possible to make quantitative determinations of compositions not only of that fraction of the products which are gases under normal conditions, but also for components of the liquid fraction which have an appreciable vapor pressure below 250°C, (the maximum operating temperature for most chromatograph columns). The chromatograph does not require a large sample of material, and time required for analysis can usually be made conveniently short. A marked disadvantage is the necessity of calibrating each type of fractionating column to be used to obtain the residence time which is characteristic of cach of the components expected in the sample. Another disadvantage is that a type of column which can distinguish between members of one class of compounds, such as alcohols, will usually lump together indistinguishably the members of other classes, such as light gases or hydrocarbons. The last disadvantage can usually be overcome

- 38 -

by analyzing several identical samples on different columns, or by a series staging of different kinds of columns.

Infrared spectrophotometry has been surprisingly limited in application in the literature, although this may be because a good spectrophotometer plus accessories costs about ten times as much as a good chromatograph. It is possible to obtain spectrograms for the solid residue of pyrolysis as well as the gas and liquid products. The solid material is usually ground with KBr and the resulting mixture pressed into a pellet. Complex gas or liquid mixtures cannot be readily analyzed, but simple mixtures can be analyzed quantitatively.

IRS is outstanding for qualitative analysis. A compound may be identified exactly by comparing its spectrogram with those of pure materials until a match is found, but a skilled interpreter of spectrograms can identify a compound by its characteristic adsorption peaks even though he does not have a known spectrogram for comparison. This is especially useful when a chromatograph column cannot be calibrated with known substances; the unknown sample is injected into the chromatograph and adsorbed in the column, and as each fraction is desorbed from the column, it is collected and identified by obtaining its spectrogram.

An interesting study of the oxidative degradation of phenolic material has been made by Conley (8) using IRS. This was accomplished by forming a thin film of resin on a sodium chloride window (transparent to IR) and then curing the resin in place. A very similar technique could be used if the window and film combination can stand the thermal stresses involved at the higher temperatures necessary for non-oxidative decomposition (200°C maximum for oxidative and 400°C minimum for non-oxidative degradation).

L'ass spectrometers, both conventional and time-offlight, have found extensive use for the analysis of pyrolysis products, even though a good mass spectrometer may have an initial cost of more than 30 times that of a good chromatograph. The fast response of a M.S. (some can make a mass scan every 100 micro-sec.) make it imperative for the study of the very fast reactions. In general, pyrolysis reactions can be controlled at temperatures where the reaction rate is slow enough that IR or chromatography can be used for product analysis. It seems likely that in most cases where M.S. was used, it was used only because it was available and not because it was the best method of analysis.

A strong disadvantage of M.S. is that the apparatus must be calibrated to obtain a frequent spectrum for even fairly simple molecules. The pattern of cracking depends on sample temperature; and since some mass spectrometers are constructed in a fashion that the sample temperature is not adjusted before a mass spectrum is obtained, it is often necessary to obtain the characteristic mass spectrum of each molecule at several temperatures before an analysis can be completed. When two molecules have the same mass number, int rfcrence occurs, and they can be distinguished only by their cracking patterns.

4. Conclusions From the Literature Concerning Experimental Kinetic Equipment

By far the best piece of analytical equipment to accomplish the required objectives is a gas chromatograph. An infrared spectrophotometer is not well suited for quantitative analysis of a complex mixture, although it is very useful for qualitative analysis. A mass spectrometer is much more expensive and has the advantage only of very fast analysis, but the pyrolysis rate can be controlled by the temperature so that speed of analysis is not critical. The literature indicates that the number of important decomposition products is small enough to allow satisfactory calibration of the chromatograph columns with known compounds or mixtures. In any experimental investigation, it is important that the temperature throughout the sample be the same, and to know the exact value of the temperature. These requirements eliminate all flash techniques (including arc imaging), the Aerograph, and radio frequency induction heating. The fluid bed apparatus has such a large throughput of gas that the decomposition gases are diluted beyond the range convenient for analysis. The pyrolysis equipment therefore appears to be limited to some type of electrical In any apparatus where the temperature is changing, furnace. no matter how uniformly there is always a temperature lag from the furnace to the sample and from the outer portion of the sample to the inner portions. Even when both sample and furnace are small, and the furnace temperature is known very accurately, as in TGA or DTA, the error in temperature may be significant in a kinetic study. Therefore, it is important for experimental reasons, as well as for reasons in kinetic theory, that the electrical furnace be operated isothermally.

B. OPERATION OF KINETIC EQUIPMENT:

A flow diagram of the kinetics equipment is presented as Figure 5, and a photograph of the operational configuration before unitizing appears as Figure 6. The object of the kinetics equipment is to accomplish pyrolysis in a tube furnace and analysis by chromatograph. The furnace and chromatograph themselves are described in Appendix E, where

- 41 -

- KINETICS EQUIPMENT

FIGURE 5

Same a

FIGURE 6 - KINETICS EQUIPMENT

descriptions of other major components occur.

. . . .

Before a run can be made, the various components must be turned on and allowed to warm up. The recorder requires only a few minutes for its electronics to stabilize, but the chromatograph electronics require 1/2 to 1 hour. The tempera ture controller on the thermal conductivity detector oven is normally left activated, and the TCD oven is maintained at 300°C, except during extended shut-downs. The carrier gas is left flowing at a few cc. per minute all the time, but before an analysis is made, the carrier rate is adjusted, and balanced at 120 cc. per minute through each of the chromatograph columns, using the bubble flow meter temporarily attached to the TCD vents. Both nitrogen and helium are available as carriers, although helium is normally used for greater sensitivity in the TCD. The dual flames of the flame ionization detector must be ignited and allowed to reach thermal stability; this requires only a few minutes. The proper restrictors (hypodermic needles) are selected and attached to the vents.of the TCD so that proper sensitivity in the FID can be maintained. The TPC on the column oven can be programmed and, therefore, has very quick response for heating, but 1/4 to 1/2 hour is required to cool the column oven from the high final temperature to the low initial temperature for the next analysis.

The temperature indicating controller on the pyrolysis furnace is left on all the time, and the furnace temperature is held constant, but when the temperature is changed to run a different isotherm, several hours may be required to reach thermal equilibrium at the new temperature. The indicator of the TIC is not sufficiently precise to obtain the temperature of pyrolysis, and it represents the temperature of the furnace, not of the pyrolysis tube. The pyrolysis temperature is determined by the emf from a thermocouple inserted in the tube, measured with a precision potentiometer. The temperature is taken before and after a run and only minor variation is Temperatures could be taken during a run but no observed. significant difference occurs. The sweep gas rate is adjusted to exactly 40 ml. per minute by a precision needle valve and is measured by a bubble flow meter. Both nitrogen and helium are available, but the sweep gas and carrier gas should be the same so that the sweep will not show up during the chromatographic analysis.

When the proper parameters have been preset and equilibrium established, the run can be started. A sample of about 1/4 gram of material is weighed by means of an analytical balance into a boat formed from steel shim stock. The configuration of the boat can be seen in Figure 7. The boat is placed into the cool end of the furnace tube, and the end of the tube is sealed

- - - -

011070

with a soft rubber stopper through which passes a stainless steel push rod. The tube is evacuated to 1 mm. Hg or less to remove any oxygen present, and then flooded with the sweep gas. The adsorption tubes are removed and the initial weights obtained with an analytical balance. The adsorption tubes are replaced, the gas sampling valve positioned properly, the carrier gas is allowed to pass into the gas collection bottle, and the timer for the gas collection is started. The sample and boat are pushed to the center of the furnace tube, the push rod is withdrawn, and the pyrolysis timer is started. The push rod must be of non-magnetic material or the boat may be inadvertently pulled back or tipped over. After the required period of pyrolysis has elapsed, the boat is hooked by the push rod and pulled back into the cool zone of the tube, and the pyrolysis timer is stopped. With practice, the boat may be hooked blindly, but it is safer to open the top of the furnace as in Figure 7, so that the boat is visible and there is less chance for an accident. While the furnace is open, the temperature will drop, but this is so slight that the control temperature can be recovered within a few minutes after closing. The sweep gas is allowed to flow into the gas collection bottle for 10 minutes after the sample is removed from the hot zone to be sure that all of the pyrolysis products are removed from the tube, and the gas collection timer is stopped. When the sample boat has cooled, it is removed from the cool end of the tube and weighed on an analytical balance to determine the amount of residue or char remaining. The adsorption tubes are weighed to determine how much tar, water, and carbon dioxide were formed during pyrolysis.

During the course of the pyrolysis, the product gases are being swept through the adsorption tubes. The first adsorption tube contains only pyrex wool and is used as a trap for low volatility organic material of a tarry nature. To help prevent premature condensation of the tar, the exhaust end of the furnace tube and the side arm of the tar trap can be wrapped with heating tapes. To aid in condensing the tar in the trap, the adsorption tube can be immersed in a water bath, but the bath can not be so cold as to condense the water in the product gas; room temperature has been found to be a satisfactory temperature. The second tube is filled with anhydrous magnesium perchlorate to adsorb the water produced by pyrolysis. The third tube contains ascarite to adsorb the carbon dioxide produced by pyrolysis. From the adsorption tubes, the remaining pyrolysis gas flows through the gas sampling valve and into the gas collection bottle, where it displaces a brine solution. If a run of weight loss only is desired, the gas bypasses the adsorption tubes and exhaust directly into a vent.

The gas sample value is designed so that in one position, the sample gas passes into the valve through the sample loop and out of the valve, while the chromatograph carrier gas passes into the valve, then into the chromatograph. In the other position, the sample gas passes straight through and the carrier gas passes through the sample loop before it enters the chromatograph. This allows the addition of a completely reproducible amount of gas each time, and the sample loops are replacable with sizes from 1/4 ml. to 25 ml. In principle, the gas exiting from the last adsorption bulb could be passed through the sample loop on the way to the gas collection bottle, and several times during the run, a sample could be sent directly into the chromatograph. In practice, this is not too successful, because the cycle time for running samples through the chromatograph is comparable with the average length of a pyrolysis run. However, it is hoped that proper choice of chromatographic parameters would reduce the cycle time to the point where this type of run would be practical.

The pyrolysis gas should not be allowed to sit very long before an analysis is made because the gas will be slightly soluble in the brine. The brine receiver bottle is lifted above the liquid level in the gas collection bottle, and some of the pyrolysis gas is displaced into the GS valve and through the sample loop. When the loop is thoroughly flushed, the GS valve is switched, the gas sample flows into the chromatograph, and the temperature program on the column oven is started. The program used is from 50° C to 275° C at the rate of 16° C per minute. The columns used are 6 ft. of 1/4 inch tubing packed with 60-100 mesh molecular sieve 5A. As each gas fraction reaches the end of the column, it is split, with the major portion going to the less sensitive TCD. During the run, the detector outputs must be continuously monitored and the attenuation controls adjusted to maintain the peaks of the chromatogram between 50-100% of full scale on the recorder chart. As each peak emerges, it is marked with its attenuation value. The mathematical area is the chart area multiplied by the attenuation factor multiplied by the dilution factor. The dilution factor is the sweep gas flow rate multiplied by the total gas collection time divided by the size of the sample loop. Each peak is related to the mass of the material for the peak by multiplying by the calibration factor. The calibration factor for each substance is determined by adding a known amount of material to the chromatograph and dividing the mass by the resulting chart area for the peak and dividing by the attenuation factor for the peak.

Gas analysis and weight loss runs were made at temperatures from 712°F to 1199°F and at times up to 80 minutes which

- 46 -

resulted in weight loss values up to nearly 40% for phenolformaldehyde. For epoxy-novolak, runs were made at 569°F and 730°F at times up to 60 minutes and weight loss values went up to nearly 70% by weight.

C. OPERATION OF AUXILIARY EQUIPMENT:

The vacuum desorption apparatus is shown in Figure 8 and is described in more detail in Appendix E. The operation is very simple. A sample is weighed, if necessary, and placed in the vacuum oven. The oven is turned on and the temperature control set at an appropriate range. The valve between the oven and the atmosphere is closed off. The valve to the vacuum manifold is opened and the vacuum pump started. The oven door must be held closed until sufficient vacuum is built up to hold it closed. When the required vacuum is attained the ovenmanifold valve is closed and the vacuum pump is shut off. Usually the amount of desorption is small enough so that the vacuum will be maintained for an extended period, but a fresh vacuum should be drawn at the end of the desorption period to remove any desorbed gases, and in extreme cases, it may be necessary to continuously evacuate the oven. At the end of a desorption run, the oven's valve to the atmosphere is opened to release the vacuum, and the sample is placed in a desiccator to cool before weighing. If the desorption treatment is the end step of a curing cycle, then after the required time, the oven is switched off and the resin is left inside to cool under vacuum.

The <u>Karl Fisher apparatus</u> is shown in Figure 9 and is des-cribed in detail in Appendix E. The associated calculations are described in Appendix A. The electronics do not require a warm up period and are ready to go as soon as the switch is turned on. The run starts with sufficient methanol in the beaker to cover the metal parts of the electrodes; at this point the meter reads about 10 milliamps. While the methanol is stirred by the magnetic stirrer, the Karl Fisher reagent is added from the automatic burette in 1/2 ml. portions. As each portion is added, the meter flicks over to 100 and drops rapidly back to the original reading. The drop becomes slower as the end point is approached, and the end point is taken as the titration for which the meter first requires 10 sec. to return to the original reading. During the titration the methanol solution goes from colorless to yellow to light orange. The color change has been used to determine the end point, but in this case, the use of an insoluble solid sample interferes with the visibility of the color change. After the blank end point

-

FIGURE 9 - KARL FISHER APPARATUS

is reached, the weighed solid sample is added to the beaker, and with stirring, additional KF reagent is added to reach the end point again. The water content of the sample is calculated from the amount of reagent added after the sample (Appendix A).

The Winslow Mercury Porosimeter, pictured in Figure 10, is a standard piece of equipment manufactured by American Instruments Co., Inc. Specifications are given in Appendix E. Detailed theory and operating procedures are given in company literature supplied with the equipment. Derivations by which surface area and permeability can be calculated from the pore diameter distribution data have been made, and calculations are performed by computer program HRI65R003, listed in appendix C. The wighed sample is placed in the penetrometer which is a glass oulb with a graduated stem. The penetrometer is placed in the filling device, stem down, and the filling device is evacuated to 200 microns of Hg absolute. The stopcock is opened and mercury is forced into the filling device by atmospheric pressure until the lower part of the penetrometer stem is covered. Pressure is then slowly raised to 5 psia (as close as possible and recorded exactly) and mercury is forced up the stem and into the penetrometer bulb. The excess mercury is drained away. The pressure is increased to atmospheric in stages and the stem reading recorded at each stage. As the pressure goes up the mercury is forced into smaller and smaller pores, so that the siem reading represents the total pore volume of pores from infinite diameter down to D(microns) = 175./ P(psia), where P has been corrected for the mercury head in the stem. When atmospheric pressure has been reached, the penetrometer is transferred to the high pressure container and the pressure increased until readings have been obtained up to 15,000 psig.

- 50 ·

FIGURE 10 - WINSLOW MERCURY POROSIMETER

V. KINETIC MODEL

It is desired to formulate a mathematical model for the degradation of the solid polymer (a porous solid) in terms of the chemical reactions and the transport phenomena involved. Ideally, if the solid were completely contained on a surface then the product species would pass immediately into the gas phase and react further. Actually, the amount of surface area might be low and a substantial amount of mass would be within the bulk solid phase, where transport to the nearest surface would be a factor.

In any kinetic study two points of view are possible: mathematic description in terms of, 1) disappearance of the reactants, and 2) appearance of the product species. In the case involved here, the disappearance of the solid is of prime importance since it determines the basic energy utilization; on the other hand, the subsequent transpiration effects are dependent upon the product species and secondary reactions which occur.

Our primary concern in this report is the description of the initial solid phase degradation -- the chemical and physical processes involved.

A. Chemical Reactions in the Solid Phase:

Consider the necessary equations for a chemical reaction in a solid phase which produces a species which diffuses to the nearest surface and is then carried away by a sweep gas; the one-dimensional geometry can be visualized as shown in Figure 11. Assume a simple first order chemical reaction of A - B in the solid element δV , and diffusion of B in the x-direction only. The material balance equation for component B is given by,

$$\begin{cases} \text{Mols B into } \delta V \\ \text{by diffusion} \\ \text{in } d \Theta \end{cases} + \begin{cases} \text{Mols B produced} \\ \text{in } \delta V \text{ by reaction} \\ \text{in } d \Theta \end{cases} - \begin{cases} \text{Mols B out of} \\ \delta V \text{ by diffusion} \\ \text{sion in } d \Theta \end{cases}$$
$$= \begin{cases} \text{Change of mols of} \\ \text{B in } \delta V \text{ in } d \Theta \end{cases}$$
(V-1)

$$- \operatorname{EdA} \begin{pmatrix} \partial C_{\underline{e}} \\ \partial X \end{pmatrix}_{1} \quad d\theta + r_{\underline{b}} d\theta \, \delta V \cdot \operatorname{EdA} \begin{pmatrix} \partial C_{\underline{b}} \\ \partial X \end{pmatrix}_{2} \quad d\theta = \begin{pmatrix} \partial n_{\underline{e}} \\ \partial \overline{C} \\ \partial \overline{C} \end{pmatrix}_{1} \quad d\theta \quad (V-2)$$

FIGURE 11 - VISUALIZATION OF THE POROUS SOLID

- 54 - .

now
$$\left(\frac{\partial \chi}{\partial \zeta^{B}}\right)^{J} = \left(\frac{\partial \chi}{\partial \zeta^{B}}\right)^{J} + \frac{\partial \chi}{\partial \zeta}\left(\frac{\partial \chi}{\partial \zeta^{F}}\right)^{J} q x$$

giving,

$$\left(\frac{\partial \mathbf{x}^2}{\partial \mathbf{x}^2} - \frac{\partial \mathbf{x}}{\partial \mathbf{x}^2}\right) + \frac{\partial \mathbf{x}}{\partial \mathbf{x}^2} + \frac{\partial \mathbf{x}}{\partial \mathbf{x}^2} = 0$$

(V-3)

since
$$(n_{e}/v) = C_{B}$$
 then,
 $\left(\frac{\partial^{2}C_{B}}{\partial x^{2}}\right) - \frac{1}{D}\left(\frac{\partial C_{-}}{\partial A}\right) = -\frac{r_{B}}{D}$

.

. (V-4)

For the reaction involved,

$$j = k V a_A = k \gamma_A V \begin{pmatrix} n_{A_0} - y \\ n_{A_0} \end{pmatrix}$$

(V-6)*

which upon integration gives,

$$\xi_{\mathbf{B}}^{\circ} = \left(\frac{\pi}{r_{i} \lambda_{0}}\right) = \left(1 - \varepsilon\right) = \left(1 - \varepsilon\right)$$

(V-7)

Also,

 $C_{B} = \left(\frac{y}{\sqrt{2}}\right) = \frac{OA_{O}}{\sqrt{2}} \left(1 - e^{-\lambda \theta}\right)$

(V - 8)

and

$$Y_{B} = \left(\frac{1}{\sqrt{2}} \frac{\partial n_{B}}{\partial \theta}\right) = C_{B} = ke^{-\lambda \theta}$$

(V - 8)

Substituting (8) into (4) gives,

$$\left(\frac{\partial^{2} C_{\text{B}}}{\partial \lambda^{2}}\right) - \frac{1}{D} \left(\frac{\partial^{2} C_{\text{B}}}{\partial \theta}\right) = -\frac{kc}{D}$$

(V-9)

$$\left(\frac{\text{mols}}{\text{vol} \text{ cm}^2}\right) - \left(\frac{\text{Sec mols}}{\text{cm}^2 \text{ vol sec}}\right) = -\left(\frac{\text{Sec mols}}{\text{cm}^2 \text{ sec vol}}\right)$$

Equation (9) is the differential equation to be solved; the boundary conditions are,

i) region, $\gamma < x < l$;

ii) when $\theta = 0$, $C_B = 0$, in the entire region, X = 0 - 1;

iii) the sweep gas rate is sufficiently high to make, $C_B = 0$, at. $X = {}^{0}$, $\mathcal{E} > 0$.

* A dot over a symbol indicates its time derivative.

B. Solution of the Mass Diffusion Equation:

We note a solution given for equation (V-9) by Carslaw and Jaeger (4), p. 132, eq. 14):

$$\begin{pmatrix} C_{\mathbf{B}} V \\ \overline{(\mathbf{n} \mathbf{A}_{0})} = \begin{bmatrix} C_{05} \times (\lambda f_{0})^{t} h \\ \overline{(\mathbf{n} \mathbf{A}_{0})} = \begin{bmatrix} C_{05} \times (\lambda f_{0})^{t} h \\ \overline{(\lambda f_{0})} + 1 \end{bmatrix} e^{-\lambda \theta} \\ + \frac{4}{T^{T}} \sum_{r=0}^{\infty} \frac{(-1)^{r} c}{(1 + 1)^{r}} \frac{C_{05} (1 + 1)^{r} \frac{TT \times}{2 t}}{4 \lambda t^{2}} \end{bmatrix}$$

(V-10)

and,

.

.

$$\frac{V}{nA_{0}}\left(\frac{\partial C_{n}}{\partial X}\right) = \left(\frac{3\ln \left(\frac{1}{2}\right)^{h}}{3n \in 1} \left(\frac{1}{2}\right)^{h}} \left(\frac{\lambda}{D}\right)^{h} \left(\frac{\lambda}{D}\right)^{h} e^{-\lambda\theta} - \frac{(1n+1)^{2}\pi^{2}D\theta}{4L^{2}} - \frac{(1n+1)^{2}\pi^{2}D\theta}{4L^{2}} - \frac{2}{1}\sum_{n=0}^{\infty} \frac{(-1)^{n}e}{\left(1 - (\frac{1}{2}r_{1} + \frac{1}{2} - \pi^{2}D)\right)} - \frac{1}{4\lambda^{2}L^{2}}\right)$$

(V-11)

At
$$X = Q$$
,

$$\frac{V}{nA_0} \left(\frac{\partial C_0}{\partial X}\right)_{X=k} = \frac{c}{k} \sum_{n=0}^{\infty} \frac{(-1)^n c}{(-1)^n c} \frac{Sin(2n+1)(T/2)}{(-1)^n T^n D} - 1$$

$$- \left(\frac{\lambda}{D}\right)^{1/2} e^{-\lambda \Theta} tan\left(\frac{Q^n \lambda}{D}\right)^{1/2}$$

(V-12)

The transport of B across the boundary at X = f will be given by,

$$n_{B} = -DS\left(\frac{\partial \hat{c}_{P}}{\partial \lambda}\right)_{\chi = \ell}$$

(V-13)

now,

$$V = \frac{S(2^{l})}{\chi} ; l = (\sqrt{s}) = (\frac{1}{sp})$$

(V-14)

Then,

$$\hat{n}_{B} = -\frac{D \leq r, A_{D}}{V} \left[\frac{1}{L} \sum \dots - \left(\frac{i}{U}\right)^{L} e^{-\lambda \theta} \tan \left(\frac{\mu^{2} \lambda}{D}\right)^{L} \right]$$

$$= -\frac{D \leq nA_{0}}{V \sqrt{5}} \left[\sum \dots - \frac{1}{2} \left(\frac{\mu^{2} \lambda}{D}\right)^{L} e^{-\lambda \theta} \tan \left(\frac{\mu^{2} \lambda}{D}\right)^{L} \right]$$

$$= -\left(\frac{2 D nA_{0}}{\mu^{2}}\right) \left[\sum \dots - \frac{1}{2} \int d e^{-\lambda \theta} \tan \alpha \right]$$

$$\alpha = \left(\frac{\mu^{2} \lambda}{D}\right)^{L} = \left(\frac{\mu^{2} + \nu}{nA_{0}}\right)^{L}$$

(V-15)

$$\frac{L^{2}}{2D/A_{0}}\int dn_{\theta} = \frac{L^{2}}{2D}\int_{0}^{\xi_{B}} \int_{0}^{\theta} \left[\sum \cdots -\frac{\alpha}{2} \tan \alpha e^{-\lambda\theta}\right] d\theta$$

$$\frac{L^{2}}{2D}\int_{0}^{\xi_{B}} \left(\frac{\alpha}{2\lambda} \tan \alpha\right) \left(1 - e^{-\lambda\theta}\right)$$

$$+ \left(\frac{4L^{2}}{\pi^{2}D}\right) \sum_{0}^{\infty} \left(\frac{\frac{(2n+1)^{2}\pi^{2}D\theta}{4L^{2}}}{(2n+1)^{2}\left(1 - \left(\frac{2n+1}{4L^{2}\lambda}\right)^{2}\right)}\right)$$

$$\xi_{\theta} = \left(\frac{\tan \alpha}{\alpha}\right) \left(1 - e^{-\lambda \theta}\right) + \frac{\vartheta}{\Pi^2} \sum_{0}^{\infty} \frac{\left(\frac{-(\alpha + 1)^2 \pi^2 \theta}{\Pi^2}\right)}{(2n + 1)^2 \left[1 - \frac{(\alpha + 1)^2 \pi^2}{4x^2}\right]}$$
(V-16)

For convenience the following parameters are defined: Dimensionless Diffusion Time, \mathcal{T}_{m} = $\left(\frac{D}{L^{2}}\right)\theta = DS^{2}\rho^{2}\theta = \mu\theta$ $\mu \equiv diffusion parameter$

Dimensionless
Kinetic Time,

$$T_{\mathbf{k}}$$

$$\equiv \left(\frac{kV}{NA_{0}}\right)\theta = \left(\frac{kM_{0}}{\rho}\right)\theta = \lambda\theta$$

$$\lambda \equiv \text{ reaction parameter}$$

Reaction-Diffusion
Parameter,
$$\alpha^2 \equiv \frac{\lambda}{\mu} = \left(\frac{\lambda I^2}{D}\right) = \left(\frac{k i \lambda o}{\rho^3 s^2 D}\right) = \frac{Tk}{Tm}$$
 (V-17)

- 58 -

Equation (V-7) can be introduced into (V-16) giving,

$$\begin{split} & \xi_{B}^{*} \left(1 - 1 + \frac{\tan \alpha}{\alpha} \right) \xi_{B}^{\circ} - \frac{8}{\pi^{2}} \sum_{0}^{\infty} \frac{\left(\frac{-\left(2 n + 1\right)^{2} \pi^{2} T m}{4} \right)}{\left(1 - e^{-\frac{1}{4}} + 1\right)^{2} \left(\frac{1 - e^{-\frac{1}{4}}}{4\pi^{2}} - 1\right)} \\ & = \xi_{B}^{\circ} - \left[\frac{8}{\pi^{2}} \sum_{0}^{\infty} \cdots + \left(1 - \frac{\tan \alpha}{\alpha}\right) \xi_{B}^{\circ} \right] \end{split}$$

(V-18)

.

From equation (V-7) and V-17) we note that,

$$\xi_{B}^{o} = (1 - e^{-\lambda \theta}) = (1 - e^{-\uparrow k}) = (1 - e^{-\alpha^{2}\uparrow m})$$

$$(V-7)$$

and (V-18) becomes

$$\xi_{B} = \xi_{B}^{\circ} - \left[\frac{8}{\pi^{2}} \sum \cdots + \left(1 - \frac{\tan \alpha}{\alpha}\right) \left(1 - e^{-\alpha^{2} \tau_{m}}\right)\right]$$

$$(V-19)$$

Let

$$\eta \equiv \left[\frac{\$}{n!} \sum_{0}^{\infty} \cdots + \left(1 - \frac{\tan \alpha}{\alpha}\right) \left(1 - e^{-\alpha^{2} T_{m}}\right)\right]$$

= Diffusion Attenuation (V-20)

Then,

$$\xi_{B} = \xi_{B}^{\circ} - \gamma (\chi, Tm)$$

(V-21)

D |

Now consider η under certain limiting conditions; equation (V-20) can be simplified as follows, for $\mathbf{Q} \not\in \mathbf{S}$,

$$\eta = \frac{3}{\pi^2} \sum_{0}^{\infty} \frac{\left(1 - c - \frac{1}{c^2} (2n + 1)^2 \tau_m^2\right)}{(2n + 1)^2 (2n + 1)^2 \tau_m^2} \frac{4\alpha^2}{\left(1 - \frac{4c^2}{(2n + 1)^2}\right)} + \left(1 - 1 - \frac{\alpha^2}{2}\right) \left(1 - c^{-\alpha^2} \tau_m^2\right)$$

For 7 > 0.3,

ŧ

$$\eta \approx \frac{2\pi a^{2}}{\pi^{4}} \left[\left[1 - e^{-\frac{\pi^{2}}{4} \tau_{m}} \right] + \sum_{i=1}^{\infty} \frac{1}{\left[\tau_{i}(\tau_{i})^{4} \right]} - \frac{\alpha^{2}}{3} \left(1 - e^{-\alpha^{2} \tau_{m}} \right) \right]$$

$$\eta \approx \frac{\alpha^{2}}{2} \left[-\frac{q_{6}}{\pi^{4}} \left(1 - e^{-\frac{\pi^{2}}{4} \tau_{m}} \right) - \left(1 - e^{-\alpha^{2} \tau_{m}} \right) \right]$$

$$\eta \approx \frac{\alpha^{2}}{3} \left(e^{-\alpha^{2} \tau_{m}} - e^{-\frac{\pi^{2}}{4} \tau_{m}} \right)$$

$$\eta \approx \frac{\alpha^{2}}{3} \left(e^{-\alpha^{2} \tau_{m}} - e^{-\frac{\pi^{2}}{4} \tau_{m}} \right)$$

(V-23)

615 11

If α and Tm are small, a further simplification results.

$$\eta \cong \frac{\alpha^{2}}{5} \left[1 - \alpha^{2} \operatorname{Tm} - 1 + \frac{\pi^{2}}{4} \operatorname{Im} \right] = \frac{\alpha^{2} \operatorname{Tm}}{3} \left(\frac{\pi^{2}}{4} - \alpha^{2} \right)$$

$$(\alpha < 0.5; \operatorname{Tm} < 0.5)$$

$$(V - 24)$$

A plot of the computer calculated values of γ , by equation (V-20) is presented by Figure 12.

- 61 -

- 62 -

C. Possible Polymer Reactions:

Our present picture of the "cured" polymer substance is that there exists:

- a) a residual amount of adsorbed water, gases (02 & N2), and unlinked alcoholic -OH groups (which are released as water when the substance is decomposed, SR — R + 3);
- b) a basic polymer structure made up of individual units, which can be visualized as,

$$-CH_{2} - CH_{2} - (CH_{2})_{3/2} \cdot (C_{6}H_{2}) \cdot OH$$

$$-CH_{2} - A \cdot B \cdot C$$

$$-CH_{2} - A \cdot B \cdot C$$

(V - 25)

c) - a residual amount of mineral "ash" (from the catalyst, polymer impurities, etc.).

As an elementary model, we propose the following reactions taking place in the thermal decomposition process:

 release of the adsorbed water, gases, and alcoholic -OH, which can be represented by,

$$SR_{(s)} \xrightarrow{ko} R_{(g)} + S_{(s)} \qquad (V-26)$$

 breakoff of the -OH and -CH₂ groups from the polymer unit by,

$$AB \begin{vmatrix} C_{(s)} & \stackrel{K_1}{\longrightarrow} & AB_{(s)} & + & C_{(g)} \end{vmatrix}$$
 (V-27)

$$ABC_{(s)} \xrightarrow{k_2} BC_{(s)} + A_{(g)}$$
 (V-28)

$$A = B(s) = B(s) + A(g)$$
 (V-29)

$$B = C_{(s)} - B_{(s)} + C_{(g)}$$
 (V-30)

3) - breakout of larger fragments, especially at higher temperatures, from the ring, by

$$ABC_{(s)} \xrightarrow{k_5} A_{(g)} + B_{(g)} + C_{(g)}$$
 (V-30a)

4) - reaction in the gas phase of the fragments evolved.

For the weight loss by decomposition of the solid, the following equations apply.

$$(\hat{SR}) = -k_0 V (k_{SR})$$
 (V-31)

$$(ABC) = -(k_1 + k_2 + k_5) V Q_{ABC}$$
 (V-32)

$$(\mathbf{AB}) = \mathbf{V}(\mathbf{k}_1 \stackrel{\mathcal{Q}}{}_{\mathbf{ABC}} - \mathbf{k}_3 \stackrel{\mathcal{Q}}{}_{\mathbf{AB}}) \qquad (\mathbf{V} - 33)$$

$$(BC) = V(k_2 a_{ABC} - k_4 BC)$$
 (V-34)

Also for the gas species evolved,

$$R = k_0 V Q_{SR}$$
 (V-35)

$$C = V(k_1 + k_5) Q_{ABC} + k_4 V Q_{BC}$$
 (V-36)

$$A = V(k_2 + k_5) Q_{ABC} + k_3 V Q_{AB} \qquad (V-37)$$

$$B_{(g)} = k_5 V \Omega_{ABC} \qquad (V-38)$$

By material balance,

 $\frac{k_{o}}{(n_{SRo}-w)} = \frac{k_{o}}{(s)} = \frac{S_{(s)} + R_{(g)}}{(s)}$ $\frac{(n_{SRo}-w)}{(s)} = \frac{k_{1}}{(s)} = \frac{k_{1}}{(s)} + C_{(g)}$

 $(n_{ABCo}-x)$ x x

- 63 -

		- 64 -	
	$ABC(s)$ $\frac{k_2}{2}$	^{BC} (s) ^{+ A} (g)
	(n _{AB0} -x-y)	у у	
	^k ₃ (s) (x-u)	^B (s) + ^A (g u (u +) · y)
	BC	^B (s) + ^C (g)
	(y-η)	(η + u) (η +	x)
	ABC	A(g) + B(g)	+ ^C (g)
	(n _{ABCo} -x-y-z)	(z + u + y) z	(z + h , + x)
	θ=0	€=0 MW	(Approx.)
SR(s)	ⁿ SRo	ⁿ SRo ^{-W}	130
^S (s)	0	w	112
R(g)	0	w	18
ABC(s)	ⁿ ABCo	n ABCo ^{-x-y-z}	112
AB(s)	0	x - u	95
C _(g)	0	x + h + z	17
^{BC} (s)	0	у- ђ	91

2 A.

1.1211年11日、12日により通いたい。 いいりついり

• •
$$A_{(g)} = 0 \qquad z + u + y \qquad 21$$

$$B_{(s)} = 0 \qquad h + u \qquad 74$$

$$B_{(g)} = 0 \qquad z \qquad 74$$

$$n_{T(s)} = n_{ABCo^{-z}} = n_{o}, \text{ because } z \text{ is small}$$

$$n_{T(g)} = w + x + y + 3z + h + u$$

- 65 -

From equation (V-31),

$$\frac{dnee}{d\theta} = -\frac{k_0 V n_{s1}}{n_0} ; \left(\frac{n_{s2}}{n_0}\right) = \left(\frac{n_{s2}}{n_0}\right) c \frac{\left(\frac{k_0}{n_0}\right)}{n_0} \theta$$

(V-39)

From equation (V-32),

$$\frac{dnaec}{d\theta} = -k_{125} \sqrt{\frac{r_{AEC}}{r_{10}}} ; \frac{n_{AEC}}{r_{10}} = e^{-\frac{k_{115}}{r_{10}}} \theta$$

(V-40)*

From equation (V-33),

$$\frac{dn_{AB}}{J9} + \frac{L_3V}{n_0} \quad n_{AE} = \left(\frac{L_1V}{n_0}\right) \\ n_{AE} = L_1V \\ e^{-\frac{L_1L_5V}{R_0}} \\ \theta^{-\frac{L_1L_5V}{R_0}} \\ \theta^{-\frac{L_1L_5V$$

integrating gives,

$$\left(\frac{n_{AB}}{n_{0}}\right) = \left(\frac{L_{1}}{L_{1:5}-L_{3}}\right) \left(e^{-\frac{k_{B}V\theta}{n_{0}}} - e^{-\frac{k_{B}L_{5}}{n_{0}}}\right)$$

(V-41)

$$\frac{d n B c}{d \theta} + \frac{k_4 V}{n_0} n_{B c} = \frac{k_2 V}{n_0} n_{A B c} = k_2 V e^{-\left(\frac{k_1 2 3 V}{n_0}\right) \theta}$$

integration gives,

`•,

$$\left(\frac{N_{BC}}{N_{0}}\right) = \left(\frac{k_{2}}{k_{125} - k_{4}}\right) \left(e^{-\frac{k_{4} \sqrt{\theta}}{N_{0}}} - e^{-\frac{k_{125} \sqrt{\theta}}{N_{0}}}\right)$$

(V-42)

.

From equation (V-38),

$$\frac{dn_{E}(q)}{d\theta} = k_{5} \sqrt{\frac{n_{AEC}}{n_{0}}} = k_{5} \sqrt{\frac{e}{n_{0}}}$$

$$\frac{n_{E}(q)}{n_{0}} = \frac{-5}{k_{125}} \left(1 - \frac{-\frac{1}{k_{125}} \sqrt{\theta}}{n_{0}}\right) = \frac{k_{5}}{k_{125}} \frac{\xi_{125}}{(V-43)}$$

D. Oxygen Evolved into the Gas Phase:

The total oxygen evolved into the gas phase assuming a surface reaction with no diffusion attenuation, and assuming $k_1 = k_4$ and $k_2 = k_3$, is given by,

$$W_{0x} = 16C + 16R$$
 (V-44)

.

$$\frac{W_{OX}}{IGV} = (k_1 + k_5) \hat{U}_{ABC} + k_4 \hat{U}_{EC} + k_6 \hat{U}_{SZ}$$

$$= (k_1 + k_5) \hat{U}_{ABL} + k_1 \hat{U}_{PC} + k_6 \hat{U}_{SZ}$$

$$= (k_1 + k_5) \frac{n_{ABC}}{n_0} + k_1 \frac{n_{BU}}{n_0} + k_6 \frac{n_{5Z}}{n_0}$$

$$= k_{15} e^{-\frac{k_{12} 5 \sqrt{\theta}}{N_0}} + (\frac{k_1 k_1}{k_{125} - k_4}) \left(e^{-\frac{k_4 \sqrt{\theta}}{N_0}} - e^{-\frac{k_{12} 5 \sqrt{\theta}}{N_0}}\right)$$

$$= k_{15} e^{-\frac{k_{12} 5 \sqrt{\theta}}{N_0}} + (\frac{k_1 k_2}{k_{25}}) \left(e^{-\frac{k_1 \sqrt{\theta}}{N_0}} - e^{-\frac{k_{125} \sqrt{\theta}}{N_0}}\right)$$

$$+ k_0 \left(\frac{n_{\epsilon_{20}}}{n_0}\right) \epsilon^{-\frac{k_0 \vee \theta}{n_0}}$$

$$\left(\frac{Wox}{16V}\right) = k_0 \left(\frac{n_{520}}{n_0}\right) e^{-\frac{k_0 \sqrt{\theta}}{n_0}} + \frac{k_1 k_2}{k_{25}} e^{-\frac{k_1 \sqrt{\theta}}{H_0}}$$
$$+ \left(k_{15} - \frac{k_1 k_1}{k_{25}}\right) e^{-\frac{k_{115} \sqrt{\theta}}{H_0}} \theta$$
$$(V-45)$$

$$- 68 - \frac{1}{(\frac{W \circ x}{W \circ})} = \frac{16V}{W \circ} \left[k_{\circ} \frac{n_{s \ge 0}}{n_{\circ}} \int_{0}^{\theta} e^{-\frac{k_{\circ} \sqrt{\theta}}{N \circ}} d\theta + \frac{k_{1} k_{2}}{k_{2} s} \int_{0}^{\theta} e^{-\frac{k_{1} \sqrt{\theta}}{N \circ}} d\theta + \frac{k_{1} k_{2}}{k_{2} s} \int_{0}^{\theta} e^{-\frac{k_{1} \sqrt{\theta}}{N \circ}} d\theta \right]$$

$$+ \left(k_{15} - \frac{k_{1} k_{2}}{k_{15}} \right) \int_{0}^{\theta} e^{-\frac{k_{1} 2s}{M \circ}} d\theta = \frac{1}{N \circ} d\theta = \frac{1}{N \circ} \left(\frac{1 - e^{-\frac{k_{1} \sqrt{\theta}}{N \circ}}}{k_{2}} \right) \left(1 - e^{-\frac{k_{1} \sqrt{\theta}}{N \circ}} \right) + \left(\frac{1}{1 + \frac{k_{2}}{k_{2}}} \right) \left(1 - e^{-\frac{k_{1} \sqrt{\theta}}{N \circ}} \right) + \left(\frac{1}{1 + \frac{k_{2}}{k_{2}}} \right) \left(1 - e^{-\frac{k_{1} \sqrt{\theta}}{N \circ}} \right) = \frac{1}{\beta_{1}} \left(\frac{1 + \frac{1}{k_{2}} - \frac{1}{k_{1} \sqrt{\theta}}}{k_{1} \sqrt{k_{2}}} \right) \left(\frac{1 - \frac{1}{k_{1} \sqrt{k_{2}}} + \frac{1}{k_{2}}}{k_{1} \sqrt{k_{2}}} \right) \left(\frac{1 - \frac{1}{k_{1} \sqrt{k_{2}}} + \frac{1}{k_{2}}}{k_{1} \sqrt{k_{2}}} \right) = \frac{\beta_{1}}{\beta_{1}}$$

$$\left(\frac{Wox}{Wo}\right)_{g} = \left(\frac{16 \text{ h}}{Wo}\right) \left[\frac{N_{520}}{N_{0}} \xi_{0} + \frac{1}{\left(\frac{1+k_{5}}{k_{1}}\right)} \xi_{1} + \beta_{1} \xi_{125}\right]$$
(V-46)
When the temperature is low $k_{5} \cong 0$ and,

$$\frac{(Nox)}{(No)g} = \left(\frac{16 n_{s20}}{No}\right) \xi_0 + \left(\frac{16 n_0}{Nc}\right) \xi_1$$

(V-47)

Including the diffusion effect,

$$\left(\frac{Wox}{Wo}\right)_{g} = \left(\frac{16N_{520}}{Wo}\right)\xi_{0} + \frac{16r_{10}}{Wo}\left(\xi_{1}^{\circ} - \gamma_{1}\right)$$

(V-48)

E. Carbon Evolved into the Gas Phase:

(Assuming $k_1 = k_4$; $k_2 = k_3$) The total carbon (C) is given by, $W_C = \frac{3}{2} [11] A + 6 [12] B$

$$\left(\frac{W_{c}}{V_{LV}}\right) = \left[\frac{3}{2}\left(k_{2}+k_{5}\right)+G_{k5}\right] \quad \mathcal{Q}_{ABC} + \frac{3}{2}k_{3} \quad \mathcal{Q}_{AB}$$

$$= \left[\frac{1}{2}e^{-\frac{k_{125}V\theta}{N0}} + \frac{3}{2}\frac{k_{3}k_{1}}{(k_{125}-k_{2})}\left(e^{-\frac{k_{2}V\theta}{N0}} - e^{-\frac{k_{125}V\theta}{N0}}\right) \right]$$

$$= \left(\frac{3}{2}k_{25}+G_{k5}-\frac{3}{2}\frac{k_{3}k_{1}}{k_{15}}\right)e^{-\frac{k_{125}V\theta}{N0}} - e^{-\frac{k_{3}V\theta}{N0}} - e^{-\frac{k_{3}V\theta}{N0}} \right]$$

$$+ \frac{3}{2}\frac{k_{1}k_{2}}{k_{15}}e^{-\frac{k_{3}V\theta}{N0}}$$

$$(V-49)$$

$$\left(\frac{W_c}{W_0}\right)_{g} = \frac{12N_0}{W_0} \left[\left(\frac{3}{2} k_{15} + 6k_{5} - \frac{3}{2} \frac{k_1 k_1}{k_{15}}\right) \frac{1}{k_{125}} \left(1 - e^{-\frac{k_1 25 \sqrt{\theta}}{N_0}}\right) + \left(\frac{3}{2} \frac{k_1}{k_{15}}\right) \left(1 - e^{-\frac{k_2 \sqrt{\theta}}{N_0}}\right) \right]$$

$$\left(\frac{W_{c}}{W_{0}}\right)_{g} = \left(\frac{18 n_{0}}{W_{0}}\right)\left(\frac{k_{1}}{k_{13}}\right)\xi_{1} + \frac{18 n_{0}}{W_{0}}\left(\frac{k_{1}+5k_{5}-\frac{k_{1}k_{1}}{k_{15}}\right)\xi_{125} \\ = \left(\frac{18 n_{0}}{W_{0}}\right)\left(\frac{k_{1}}{k_{15}}\right)\xi_{1} + \left(\frac{18 n_{0}}{W_{0}}\right)\beta_{2}\xi_{125} \\ \frac{1}{k_{15}} + \frac{1}{k_{15}} + \frac{1}{k_{15}} + \frac{1}{k_{25}} + \frac{1}{k_{25}} + \frac{1}{k_{25}}\right)$$
(V-51)

When the temperature is low $k_5 \cong 0$ and,

$$\left(\frac{W_{2}}{W_{0}}\right)_{g} = \frac{is N_{0}}{W_{0}} \xi_{2}$$

(V-52)

F. Hydrogen Evolved into the Gas Phase:
The total hydrogen (H) is given by (assuming
$$k_1 = k_4$$
,
 $k_2 = k_3$),
 $W_H = 2(1)R + 3(1)A + 2(1)B_{(g)} + 1(1)C$ (V-53)
 $\left(\frac{W_H}{V}\right) = 2k_0 a_{52} + (k_1 + 3k_2 + 4k_5) a_{ABC} + 3k_2 a_{AB} + k_1 a_{22}$
 $= 2k_0 \left(\frac{n_{520}}{n_0}\right)e^{-\frac{k_0 V\theta}{n_0}} + (k_1 + 3k_2 + 4k_5 - \frac{3k_1 + 2}{k_{15}} - \frac{k_1 + 2}{k_{25}})$
 $e^{-\frac{k_1 + 5 V\theta}{n_0}} + \frac{3k_1 k_2}{k_{15}} e^{-\frac{k_1 V\theta}{n_0}} + \frac{k_1 k_2}{k_{25}} e^{-\frac{k_1 V\theta}{n_0}}$

(V-54)

•

$$\left(\frac{W_{H}}{W_{0}}\right)_{g} = \frac{n_{0}}{W_{0}} \left[2\left(\frac{n_{sR0}}{n_{0}}\right)\left(1 - e^{\frac{-k_{0}V\theta}{n_{0}}}\right) + \frac{k_{2}}{k_{2}s}\left(1 - e^{\frac{k_{1}V\theta}{n_{0}}}\right) + \frac{3k_{1}}{k_{1}s}\left(1 - e^{\frac{k_{2}V\theta}{n_{0}}}\right) + \frac{3k_{1}}{k_{1}s}\left(1 - e^{\frac{k_{2}V\theta}{n_{0}}}\right) + \left(\frac{k_{1} + 3k_{2} + 4k_{5} - \frac{3k_{1}k_{3}}{k_{1}s} - \frac{k_{1}k_{2}}{k_{2}s}\right)\left(1 - e^{\frac{k_{1}s}{n_{0}}}\right) + \left(\frac{k_{1} + 3k_{2} + 4k_{5} - \frac{3k_{1}k_{3}}{k_{1}s} - \frac{k_{1}k_{2}}{k_{3}s}\right)\left(1 - e^{\frac{k_{1}s}{n_{0}}}\right) + \left(\frac{W_{H}}{w_{0}}\right)_{g} = \frac{n_{0}}{W_{0}}\left[2\left(\frac{n_{5}w_{0}}{n_{0}}\right)\xi_{0} + \frac{k_{2}}{k_{2}s}\xi_{1} + \frac{3k_{1}}{k_{1}s}\xi_{2} + \beta_{3}\xi_{12}s\right]$$

$$\left(\frac{W_{H}}{W_{0}}\right)_{g} = \frac{n_{0}}{W_{0}}\left[2\left(\frac{n_{5}w_{0}}{n_{0}}\right)\xi_{0} + \frac{k_{2}}{k_{2}s}\xi_{1} + \frac{3k_{1}}{k_{1}s}\xi_{2} + \beta_{3}\xi_{12}s\right]$$

$$\left(\frac{W_{H}}{W_{0}}\right)_{g} = \frac{n_{0}}{W_{0}}\left[2\left(\frac{n_{5}w_{0}}{n_{0}}\right)\xi_{0} + \frac{k_{2}}{k_{2}s}\xi_{1} + \frac{3k_{1}}{k_{1}s}\xi_{2} + \beta_{3}\xi_{12}s\right]$$

ł

When the temperature is low, $k_5 = 0$, and

$$\left(\frac{W_{H}}{W_{o}}\right)_{g} = \frac{n_{o}}{W_{o}} \left[2\left(\frac{n_{sRO}}{n_{o}}\right) \xi_{o} + \xi_{1} + 3 \xi_{2} \right]$$
(V-56)

G. Total Weight Loss:

Obviously, the total weight loss is the sum of the total oxygen, carbon, and hydrogen evolved into the gas phase, and is given by the sum of equations, (V-46), (V-51), (V-55),

$$\left(1 - \frac{W}{W_o}\right) = \left(\frac{W_{ox}}{W_o}\right)_g + \left(\frac{W_e}{W_o}\right)_g + \left(\frac{W_H}{W_o}\right)_g$$
(V-57)

$$\left(1 - \frac{W}{W_0}\right) = \left(\frac{18 \operatorname{N}_{SRO}}{W_0}\right) \xi_0 + \left(\frac{17 \operatorname{N}_0}{W_0}\right) \left(\frac{k_2}{k_{25}}\right) \xi_1 + \left(\frac{11 \operatorname{N}_0}{W_0}\right) \frac{k_1}{k_{15}} \xi_2$$

$$+ \left(\frac{16 \operatorname{N}_0}{W_0}\right) \phi_{125} \xi_{125} \qquad (V-58)$$

$$\phi_{125} = \left(\beta_1 + \frac{9\beta_2}{8} + \frac{\beta_3}{16}\right)$$
(V-59)
If k₅ = 0 then,

$$\left(1 - \frac{W}{W_{o}}\right) = \left(\frac{18 \, n_{sRo}}{W_{o}}\right) \, \xi_{o} + \left(\frac{17 \, n_{o}}{W_{o}}\right) \, \xi_{i} + \left(\frac{21 \, n_{o}}{W_{o}}\right) \, \xi_{2}$$

$$(V-60)$$

An additional material balance equation is useful in the calculations,

$$\begin{split} & \mathcal{W}_{o} = \mathcal{W}_{ABCO} + \mathcal{W}_{ash} + \mathcal{W}_{sRO} \\ & = \mathcal{W}_{ABCO} \left(1 + \frac{\mathcal{W}_{ash}}{\mathcal{W}_{ABCO}} + \frac{\mathcal{W}_{SRO}}{\mathcal{W}_{AB.O}} \right) \\ & \left(\frac{\mathcal{W}_{o}}{n_{o}} \right) = \mathcal{M}_{ABC} \left(1 + \frac{\mathcal{W}_{ash}}{\mathcal{W}_{ABCO}} + \frac{\mathcal{W}_{SRO}}{\mathcal{W}_{ABCO}} \right) \\ & (V-61) \end{split}$$

•

- 72 -

VI. ANALYSIS OF THE DATA

A. WEIGHT LOSS DATA:

An overall view of the decomposition rate process can be obtained from the weight loss function, $(1 - W/W_0)$. Figure 13 presents the weight loss isotherms as a function of time over a range of 720°F to 1200°F. In making any mechanism study, it is imperative to "slow down" the reactions to rates such that the individual phenomena can be observed. In this study, for phenol-formaldehyde polymer, a temperature of 332°C (720°F) was a good threshold level. Six additional weight loss isotherms were obtained at higher temperatures, and at two particular temperatures, 498°C and 605°C, complete analyses including product species, were obtained. The material balanced curves and data are presented as Figures 14, 15, and 16, at 382°C, 498°C and 605°C, respectively. The detailed data for all runs are presented in Appendix B (Tables B-1 through B-14).

Obvious'y, the mechanism of weight loss must be the composite effect of breakup of the chemical structure of the polymer; i.e., the sum of the individual reactions involved. The fact emerges from the data that the oxygen is first to

come out of the polymer $\left[c.f.\left(\frac{Wox}{Wo}\right) \text{ and } \left(\frac{Wc}{Wo}\right) \text{ at } 382^{\circ}C\right]$.

The effect of quartz fibers on the decomposition of PF polymer was determined at 382°C and appears to be negligible; 28.8 w% quartz fibers were a) individually cured with the PF polymer and b) admixed with the cured polymer, the weight loss curves are presented in Figure 17. To illustrate that the effect is primarily dilution, a normalized curve is also plotted in Figure 17.

As part of the study preliminary isotherms were determined for the epoxy-novolak polymer described previously. The first isotherm was obtained at 388°C (730°F), but the weight loss in 15 minutes was found to be almost 50 w%. Lower temperatures were tried, and an isotherm obtained at 316°C (569°F) was more directly comparable to the PF polymer at 382°C. Figure 18 presents the results, and Figure 19 presents a preliminary material balanced set of curves.

0.50 Tito 0.40-GGG CI (1) (99 F) 60 r 12 5.7 R 0.30-0.20 6 0.10n 100 θ 50 0

FIGURE 13 - WEIGHT LOSS, PF RESIN

- 74 -

75 -

FIGURE 14 - C/H/O LOSS DISTRIBUTION, PF (382°C)

0.055

0.058

0.064

0.069

0.071

0.012

0.015

0.018

0.022

0.024

20

30

50

80

100

0.073

0.080

0.089

0.097

0.101

0.006

0.007

0.007

0.007

0.007

ł,

- 76 -

FIGURE 15 - C/H/O LOSE DISTRIBUTION, PF (498°C)

0	$\left(1-\frac{W}{Wo}\right)$	(^{Wox} /Wo)g	(^{Wc} /Wo)g	(^W H/Wo)g
0	0	0	0	0
3	0.310	0.133	0.161	0.016
5	0.320	0.139	0.161	0.020
7	0.331	0.143	0.163	0.023
10	0.336	0.147	0.164	0.025
15	0.343	0.152	0.165	0.026
20	0.349	0.156	0.166	0.027
30	0,355	0.160	0.165	0.030
50	0.363	0.162	0.166	0.035
80	0.371	0.163	0.171	0.037
100	0.376	0.163	0.174	0.039

FIGURE 16 - C/H/O LOSS DISTRIBUTION, PF (605°C)

77 -

- 78 -

FIGURE 17 - EFFECT OF QUARTZ FIBERS ON PF DECOMPOSITION

FIGURE 18 - WEIGHT LOSS, EPN RESIN

- 79 -

- 80 -

	$\left(1 - \frac{W}{W\alpha}\right)$	$\left(\frac{Wox}{Wo}\right)_{g}$	$\left(\frac{Wc}{Wo}\right)_{g}$	$\left(\frac{W_{\rm H}}{W_{\rm O}}\right)_{\rm g}$
0	. 0	0	0	0
3	0.050	0.038	0.008	0.004
5	0.056	0.039	0.012	0.005
7	0.060	0.041	0.014	0.0055
10	0.066	0.044	0.016	0.006
20	0.083	0.051	0.024	0,008
30	0.095	0.056	0.029	0.010
50	0.120	0.066	0.039	0,014
60	0.130	0.070	0.045	0.015

FIGURE 19 - C/H/O LOSS DISTRIBUTION, EPN (316°C)

B. SOLID PHASE PROPERTY CHANGES:

• - ·· ··

ar 18 a. 1, is a antor tar a 60 m. hitana -

The physical characteristics of the solid are important in understanding a) the solid reaction volume and b) the transport of the decomposition species to the surface. The properties of porosity, bulk density, skeletal density, pore volume, surface area, permeability as a function of weight loss, and the surface area and permeability distributions as a function of the pore volume for a given sample, were """ measured by means of a Winslow mercury porosiometer and an analytical balance. The detailed data are presented in Appendix B (Tables B-16 to B-40) and a summary of the pertinent values is given by Table B-15. A plot of the skeletal density, pore volume, surface area, average pore diameter, and permeability as a function of the weight loss is presented in Figure 20.

The skeletal density, ρ of the undecomposed resin is approximately 1.24-1.26 g./cm³ and that of the char about the same. Statistically it appears that the density may increase slightly as the char becomes 30-40% decomposed, approaching the value for natural graphite.

The pore volume, V_p of the resin is 0.69-0.73 cm³/g. and appears to remain approximately constant as decomposition progresses, perhaps increasing somewhat in the later stages.

The surface area, S, for the resin is approximately $2400 \text{ cm}^2/\text{g.}$, a rather low value compared to catalyst substances (500 - 1000 m²/g.), and as decomposition progresses the surface area appears to remain fairly constant; however there is considerable scatter in the data.

The average pore diameter, $\overline{d} = \frac{4v}{S}$ for the resin is about 12 microns, characterizing the pores as macro-pores rather than micro-pores, and consistent with the slight increase in pore volume in the later stages of decomposition; the average pore diameter appears to increase to 20-30 microns.

The permeability, K, for the resin is approximately $0.5-2 \times 10^{-6}$ cm² and appears to increase in the later stages.

The pore size distribution for the resin and three chars at different stages of decomposition is presented by Figure 21. The majority of the pores are in the range of 10-80 microns diameter, shifting to the large end of this range as decomposition occurs, which should also increase the permeability.

1.1

~ 82 -

FIGURE 20 - PHYSICAL PROPERTIES OF SOLID

- 83 -

Pore Diameter, Microns

	(1- ^W /Wo)	
0.188 g. sample	0	
0.176 g.	0.133	
0.190 g.	0.259	
0.195 g.	• 0.320	
	0.188 g. sample 0.176 g. 0.190 g. 0.195 g.	$\begin{array}{c cccc} & & & & & & & & & \\ \hline 0.188 & g. & sample & & 0 \\ 0.176 & g. & & 0.133 \\ 0.190 & g. & & 0.259 \\ 0.195 & g. & & 0.320 \end{array}$

FIGURE 21 - PORE SIZE DISTRIBUTIONS

C. DISAPPEARANCE OF OXYGEN AND CARBON FROM THE SOLID:

Insofar as the determination of the mechanism of decomposition is concerned, it appears that the oxygen disappearance from the solid, which occurs the most rapidly, would be the simplest approach, since oxygen occurs in only one group, phenolic-OH, (c.f. carbon which can come from numerous locations in the structure). If the polymer were completely cured and free of adsorbed water, etc., the oxygen content would be (16/112 = 0.143); however, analysis indicates some residual phenolic-OH (about 0.47%) and also some residual adsorbed water and air. Table VI presents a material balance of the C-1 resin with the appropriate para-

meters calculated and indicates $\binom{WOX}{WO}_g \cong 0.1627$ (including adsorbed nitrogen). The $\binom{WOX}{WO}_g$ isotherms are presented in Figure 22.

Consider the oxygen evolution into the gas phase; at low temperatures equation V-48 is applicable,

$$\left(\frac{W_{ox}}{W_{o}}\right)_{g} = \frac{16n_{o}}{W_{o}} \left(\frac{n_{sRO}}{n_{o}} \xi_{o} + \xi_{i}^{*} - \eta_{i}\right)$$

$$\left(\frac{W_{ox}}{W_{o}}\right)_{g} = 0.0243 \xi_{o} + 0.1355 \left(\xi_{i}^{*} - \eta_{i}\right)$$

$$(V-48)$$

Figure 22 presents ($^{Wox}/Wo$) at three temperatures, 382°C (720°F), 498°C (928°F) and 605°C (1121°F), and indicates a very rapid initial rise; interpreted as rapid release of the adsorbed water, fixed gases and residual alcoholic-OH. Consequently ξ_o reaches unity almost instantaneously. Initially reaction occurs on the solid surface and,

$$\lim_{\Theta \to 0} \left(\frac{W_{\text{ox}}}{W_{\text{o}}} \right)_{g} = 0.0243 + 0.1355 \xi_{1}^{\circ}$$
$$\lambda_{1} = \frac{1}{\Theta} \ln \left\{ \text{Lim} \left[\frac{1}{1 - \left(\frac{(W_{\text{ox}})_{g} - 0.0243}{W_{\text{o}} \right)_{g} - 0.0243} \right) \right] \right\}$$

$$\lambda_{1} \equiv \frac{k_{i}V}{n_{o}} = \left(\frac{k_{i}M_{o}}{\rho}\right)$$
(VI-1)

- 84 -

RESIN	
<u>c.</u> 1	
NO	
BALANCE	
MATERIAL	
VI.	
TABLE	

Contribution Oxygen 0.1388 0.0161 0.0047 0.0031 0.1627 1 118.0 (Cal Resin) 0.9497 0.0243 0.0260 - 112 (1.0530) Fraction 0.1388 0.0035 Weight 0.0161 0.8109 0.0047 0.0260 1.0000 Phenolic Oxy. W SRO Ads. 02 & N2 ABCO/ • : Component Ads. H₂0 A1c. OH C-H ash h Ash $\left(\frac{W_o}{u_o}\right) = M_{ABC} \left(1 + \frac{1}{1}\right)$ 0.1596 0.8109 0.0260Wo 0.0260 Wo=1.00+0.0295Wo 1.0000 0.0035Wo 0.8356 0.1644 •• Wo'=1,0304 $0.9497 = \left(\frac{W_{ABCO}}{W_{ABCO}}\right)$ W SRO $0.1627 = \left(\frac{W_{ox}}{W_{o}}\right)$ 0 Oxygen (phenolic' & alcoholic) **G-H**, in Resin 0.0260 = 0.0243 = Adsorbed Air Adsorbed H₂0 Ash WABCO: Wash: WSRO: Wox: 1) 3) **(e** 4) 3

85 -

- 86 -

FIGURE 22 - OXYGEN DISAPPEARANCE

using the data at 382°C, λ_i , can be calculated,

θ	$\lambda_i(min^{-1})$
3.0	0.0425
5.0	0.0410
7.0	0.0224
13.0	0.0160

Obviously the reaction is "slowing down", which is interpreted as the diffusion attenuation effect. Figure 23 presents a plot of ξ_1 , ξ_1^n , and $(\xi_1^n - \xi_1)$ vs Θ , and it appears that $(\xi_1^n - \xi_1)$ is the same form as γ_1 , predicted by the theoretical development. γ_1 derived in Chapter 5-B assumes no buildup of product species at the surface; i.e., the sweep gas rate is sufficient to prevent buildup. However, in the actual case since the surface occurs in pores a concentration will build up at the surface and consequently slow down mass transfer into the bulk gas phase. The actual ξ_1 -data does not extend beyond 100 mins., but qualitatively the effect is illustrated in Figure 23.

Figure 24 presents the curves for the carbon loss into the gas phase at 382, 498, and 605°C, and by the proposed model is the sum of the two reactions (characterized by k_2 and k_5) involving breakout of the -CH₂ bridges and the C₆-ring,

$$ABC \xrightarrow{K2} BC(s) + A(g)$$
 (V-28)

$$A|B|C - K_{5} - A(g) + B(g) + C(g)$$
 (V-30)

The loss of total carbon into the gas phase is given by,

$$\left(\frac{W_c}{W_o}\right)_g = \left(\frac{18n_o}{W_o}\right) \left(\frac{\lambda_1}{\lambda_{15}}\right) \xi_2 + \left(\frac{18n_o}{W_o}\right) \beta_2 \xi_{125}$$
(W-51)

at 382°C the equation becomes,

$$\left(\frac{Wc}{W_{0}}\right)_{g} = 0.1899 \left(\xi_{2}^{\circ} - \eta_{1}\right) + 0.05514 \left(\xi_{125}^{\circ} - \eta_{125}\right)$$

$$(\lambda_{2} = 0.0120; \alpha_{2} = 18.00; \lambda_{5} = 0.0054; \alpha_{3} = 10.00) \quad (VI-2)$$

- 87 -

10,000 Ŧ 11 , θ (mins) 01 NT 2ATION BU CONCENTERI HE SUPFACI 1000 ÷ -i-i-S AT Z 144 AT 100 • t m š ū w Ð 5 w Ð 10.0 1.1-1-1-1 .: -Œ 7 : • • a maria di Ter 0.50 1.00 0

FIGURE 23 - OXYGEN DISAPPEARANCE MECHANISM

- 88 -

- 89

FIGURE 24 - CARBON DISAPPEARANCE

at 498°C,

$$\left(\frac{W_c}{W_o}\right)_{g} = 0.1086\left(\xi_{1}^{\circ} - \eta_{1}\right) + 1.07171\left(\xi_{115}^{\circ} - \eta_{125}\right)$$

$$\left(\lambda_{1} = 1.344; \alpha_{1} = 10.72; \lambda_{5} = 0.0728; \alpha_{3} = 1.200\right)$$
(VI-3)

at 605°C,

$$\left(\frac{W_{c}}{W_{0}}\right)_{g} = 0.08392\left(\xi_{2}^{*} - \eta_{2}\right) + 0.07914\left(\xi_{125}^{*} - \eta_{25}\right)$$

$$(\lambda_1 = 30.10; \alpha_1 = 6.00; \lambda_5 = 0.5440; \alpha_3 = 0.250)$$
 (VI-4)

Note from the above equations and the values of the parameters $(\lambda$'s and $(\lambda's)$ that both the bridge and ring removal reactions increase rapidly with temperature $(\lambda_1 = 0.0120 - 30.1; \lambda_5 = 0.0054 - 0.5440)$. On the other hand, the transport effect decreases with temperature $(C_1 = 18.0 - 6.00; C_3 = 10.0 0.250)$; actually the diffusivities increase, but $C = (\lambda/\mu)^{1/2}$ decreases.

Figure 25 illustrates how well the model satisfied the $(Wc/Wo)_g$ and $(^{1-W}/Wo)$ data at 605°C. It is interesting to note in equation (V-58) for $(^{1-W}/Wo)$ that the maximum value of the weight loss can be obtained by setting ξ_o , ξ_i , ξ_i , and ξ_{125} equal to unity, then,

$$\left(1 - \frac{10 \text{ No}}{\text{Wo}}\right)_{\text{max}} = \left(\frac{10 \text{ Noo}}{\text{Wo}}\right) + \left(\frac{17 \text{ No}}{\text{Wo}}\right) \frac{\lambda_2}{\lambda_{15}} + \frac{21 \text{ No}}{\text{Wo}} \left(\frac{\lambda_1}{\lambda_{15}}\right) + \left(\frac{16 \text{ No}}{\text{Wo}}\right) \Phi 125$$

(VI-5)

an wears

- 90 -

. . ..

- 91 -

FIGURE 25 - CARBON DISAPPEARANCE, BY THE MODEL

いちをますい ちょうちょうない いちょうちょう ちょう ちょうち ちょうち ちょうちょう かんしょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう 「ないけるとなっていたい」で、ない、いていたないなどなったいとうないというたちしてものののないないないを見ていたいという」

- 92 -

Values are,

eranana ana a

<u>t</u> °C	(1-W/Wo)Max.
382	0.3916
498	0.3902
605	0.3720
800	0.3580
1000	0.3533

D. RATE AND TRANSPORT CONSTANTS:

In the mathematical model proposed (equations V-46, V-51, V-55, and V-58) there are four reaction rate constants k_0 , k_1 , k_2 and k_5 , and three diffusivities, D_1 , D_2 , and D_5 involved. k_0 is large, even at low temperatures, and since it is a surface reaction, $\gamma_0 = 0$. For mathematical convenience, λ 's, the reaction parameters, can be used instead of k's since they differ only by constants.

$$\lambda_{i} \equiv \left(\frac{k_{i}M_{o}}{\rho}\right)$$

(VI - 5)

به المراجع من الله الم الم

and similarly μ 's, the diffusion parameters can be used instead of D's,

$$\mu_{k} \equiv (D_{k} S^{2} \rho^{2})$$

(VI - 6)

As is well known, reaction rate constants can be represented by several temperature function forms, the simplest of which is the Arrhenius equation,

$$k_{\lambda} = A e^{-E_{\lambda} \cdot /RT}$$

$$\left(\frac{\langle A M_{o} \rangle}{\rho}\right) = \left(\frac{A M_{o}}{\rho}\right) e^{-E_{\lambda} \cdot /RT}$$

$$\lambda_{\lambda} = A_{\lambda} \cdot e^{-E_{\lambda} \cdot /RT} \cdot (VI-7)$$

$$D_{\lambda} = Be^{-E \times \lambda/RT}$$

$$(D_{\lambda} S^{2} \rho^{2}) = (BS^{2} \rho^{2}) e^{-E \times \lambda/RT}$$

$$\mu_{\lambda} = A_{\mu\lambda} e^{-E \times \lambda/RT}$$

$$(VI-8)$$

We note by equation (V-17) that, $\alpha_{i} = (\lambda_{i} / \mu_{i})^{2}$; by substituting (VI-7) and (VI-8),

$$\alpha_{i} = \begin{bmatrix} \frac{-E_{\lambda i}/RT}{A_{\mu i} e^{-E_{\mu i}/RT}} \end{bmatrix}^{1/2} = A_{\alpha_{\lambda}} e^{-E_{\alpha_{\lambda}}/RT}$$

function,

(VI-9)

For purposes of calculations the most convenient parameters to work with will be the λ 's and CL's.

Using the model all isotherms were processed by computer program HRI65R002 (see Appendix C and Appendix D) to determine the "best fit" of the data and the values of the reaction rate parameters λ_1 , λ_2 and λ_5 , and the transport parameters, $\not< 1$, \propto_2 and \propto_3 . The experimental values of the constants are presented in Tables VII and VIII; all "fits" were within an average deviation of 5%, except at the lower temperatures where diffusion is rate controlling.

Plots of the λ 's, α 's and D's are presented in Figures 26, 27 and 28. Least-squares fits of the experimental λ 's and α 's were made and the Arrhenius parameters A's and E's are presented in Table IX. It is interesting to note the magnitudes of the diffusivities; e.g. D₂, the diffusivity of the CH₂ - species is shown in Figure 27 and is the range of 10-13 to 10-8 cm²/sec which is directly comparable to values reported in the literature and summarized in Table B-41 in Appendix B. Also, we note that the activation energy for the diffusion process is reasonable.

 $E_{\mu_2} = E_{\lambda_2} - 2E_{\alpha_2}$ = 39.65 - 2(-569) = 5:03 K. cals./g. mole

t°C	382	4 36	498	533	571	605	666
t•F	720	819	928	166	1060	1121	1199
T°K	655	209	771	806	844	878	6 2 6
$\frac{1}{T} \times 10^3$	1.528	1.411	1.298	1.241	1.184	1.139	1.064
$RT(\frac{K.cals}{g.mol})$	1.302	1.410	1.530	1.601	1.676	1.744	1.864
$\lambda_1(min^{-1})$	0.060	0.095	0.180	0.260	0.410	0.666	1.40
k _l (moles/sec-c	.m ³)1.09×10 ⁻⁵	1.730×10 ⁻⁵	3.28x10 ⁻⁵	4.73×10 ⁻⁵	7.47×10 ⁻⁵	1.212×10 ⁻⁵	2.55×10 ⁻⁵
λ2	0.0120	0.1700	1.334	5.40	12.2	30.1 1	34.0
k ₂	2.18×10 ⁻⁶	3.10×10 ⁻⁵	2.43x10 ⁻⁴	9.84×10 ⁻⁴	2.22x1n ⁻³	5.48x10 ⁻³	2.4×10 ⁻²
λ5	0.0054	0.0150	0.0728	0.160	0 • 300	0.544	1.60
k 5	9.84×10 ⁻⁷	2.73×10 ⁻⁶	1.326×10 ⁻⁵	2.91×10 ⁻⁵	5.46x10 ⁻⁵	9.91×10 ⁻⁵	2.91x10 ⁻⁴
$k_i = \frac{\lambda_i n_{Ao}}{60V} =$	$= \frac{\lambda_i \rho}{60 M_{resin}} =$	(1.820 × 10 ⁻⁴) λ <mark>*</mark> ; (mole	ss/sec - cm ³			

* Value of ho from Table B-15, C-1 Run 2

94 -

TABLE VII - EXPERIMENTAL VALUES OF λ'_s & k's as a function of temperature

4

-

t°C	382	436	498	533	571	605	666
ŁºŖ	720	819	928	166	1060	1121	1199
T°K	655	209	771	806	844	878	939
$\frac{1}{\pi}$ x10 ³	1.528	1.411	1.298	1.241	1.184	1.139	1.064
ÅT	1.302	1.410	1.530	1.601	1.676	1.744	1.864
d	20.6	13.6	7.56	6.56	4.50	3.40	2.30
$\mu_1(nin^{-1})$	1.413x10 ⁻⁴	5.14x10 ⁻⁴	3.16×10 ⁻³	6.05×10 ⁻³	2.02x10 ⁻²	5.76×10 ⁻²	0.265
$p_1(\frac{cm^2}{sec})$	2.67×10 ⁻¹³	0.974×10 ⁻¹²	0.597×10 ⁻¹¹	1.144×10 ⁻ 11	3.82×10 ⁻¹⁰	1.09×10 ⁻¹⁰	0.501×10 ⁻⁹
٩	18.0	14.0	10.72	8.00	7.00	6.00	5.08
$\mu_2(min^{-1})$	0.370×10 ⁻⁴	0.867x10 ⁻³	1.155×10 ⁻³	0.844×10 ⁻¹	0.249	0.836	5.19
$D_2(\frac{cm^2}{sec})$	0.707x10 ⁻¹³	1.64×10 ⁻¹²	2.18×10 ⁻¹¹	1.594×10 ⁻¹⁰	4.71×10 ⁻¹⁰	1.582x10 ⁻⁹	0.981×10 ⁻⁸
a ₃	10.0	3.60	1.20	0.720	0.400	0.250	0.130
$p_1 = (\frac{\mu_1}{60 \ s^2 \rho^2})$	= (1.87×10		1112 (ec)				
* Values of S	and p fro	m Table B-15	, C-l run 2				

TABLE VIII – EXPERIMENTAL VALUES OF \mathcal{C} 's & μ 's as a function of temperature

r

- 95 -

- 96 -

FIGURE 26 - RATE AND TRANSPORT FARAMETERS OXYGEN DISAPPEARANCE

500 °C 350 700 650 600 550 450 400 103 10⁻⁸ 10² 10⁻⁹ 10-10 10 ÷ 0 Ē 10-11 1.00 1 .10⁻¹² 10-1 .10-13 10⁻² 10-14 10-3 1.20 1.30 1.40 • 1,50 1.10 1.60 1.00 $\left(\frac{1}{T} \times 10^3\right)$ · -----.

FIGULE 27 - RATE AND TRANSPORT PARAMETERS CH₂ - DISAPPEARANCE

1995 Rep.

- 97 -

- 98 -

FIGURE 28 - RATE AND TRANSPORT PARAMETERS RING DISAPPEARANCE

TABLE IX - TEMPERATURE FUNCTION PARAMETERS FOR λ 's AND CC's

$$-E_{ki}/RT$$

$$\lambda_{i} = A_{ki} e$$
(VI-7)

و برو بردنه بر برما بعدوم التار

(VI-9)

		<u>A (min⁻¹)</u>	E ₂ (K.Cals./g. mole)
(estimate)	λ٥	0.1700×10^7	12.65
	λ1	0.13568 x 10 ⁴	13.379
	A2	0.24058×10^{12}	39.648
	λ_5	0.84331×10^{6}	24.824

	A (dimensionless)	E∡ (K.Cals./g. mole)
\mathfrak{a}_1	0.015442	-9.481
α_2	0.23829	-5.690
α3	0.51945×10^{-5}	-18.891

It is interesting to note that a "chemical decomposition threshold temperature or incipient reaction temperature, T_r " can be calculated from the data obtained. Using equation (V-58), at low temperatures and $\theta = 0$,

$$\left(\frac{d}{d\Theta}\right) = \frac{-17n_{o}\lambda_{1}}{W_{o}} = \frac{-17n_{o}A_{21}}{W_{o}} = \frac{-17$$

(VI - 10)

e' raget

HOUSTON RESEARCH INSTITUTE, INC.

and arbitrarily defining the threshold of chemical reaction as the temperature at which 0.01% weight loss occurs per minute, i.e. $\left(\frac{d W/W_0}{d\Theta}\right) = 0.0001$, then,

$$T_r = \frac{-E_{\lambda i}}{R \, \ell_{\lambda} \left(\frac{3.333 \, N_0}{17 n_0 \, F_{\lambda \lambda}}\right)}$$

(VI - 11)

1

Substituting in values gives,

$$T_r = 506^{\circ} \kappa = 233^{\circ} C = 387^{\circ} F$$

HOUSTON RESEARCH INSTITUTE, INC

- 100 -
VII. PF PYROLYSIS GAS SPECIES

Figures 29, 30 and 31 present the product gas species distributions at 382, 498 and 605° C and indicate that at low temperatures the products are H₂O, CO, CO₂, with traces of H₂. At high temperatures, additional hydrocarbon species appear as a result of breakout of aromatic rings and their subsequent decomposition to lighter species. It must be remembered that we also see in the gaseous products the results of secondary reactions (and further) in the gas phase. The overall sequence might be visualized as indicated in Figure 32.

More specifically, the following considerations are pertinent:

1. The absence of light aromatics, condensed ring products, and H_2 in low temperature runs (382°C) indicates that water is the only product formed initially in substantial quantities and that a few bridges are also severed and further react producing CO and CO₂. This is very likely because elimination of water between the neighboring OH and CH₂ groups can proceed with ease. 1

ار موسیقهار، مردفان از این اینون که ولول که وسود معلاد-

mapines

2. The appearance of light aromatics and condensed ring structures in pyrolysis products at higher temperatures indicates fragmentation of the PF resin.

3. The mechanism by which CO, CO₂ and H₂ are formed can be illustrated by the following sequence of reactions:

$$H_2 0 \longrightarrow OH + H$$

$$2 OH \longrightarrow H_2 0 + 0$$

$$OH + 0 \longrightarrow H0_2$$

$$CH_2 + H0_2 \longrightarrow CH_3 00$$

$$CH_3 00 + CH_2 \longrightarrow CH_3 00H + CH$$

$$CH_3 00H \longrightarrow C0 + 2H_2 + 0$$

$$CH + 0 \longrightarrow CH0$$

$$CH + 0 \longrightarrow CH0$$

$$CH0 + H_2 0 \longrightarrow CH_3 00$$

$$C0 + H_2 0 \longrightarrow C0_2 + H_2$$

4. Amongst the light hydrocarbons CH_4 , C_2H_6 and C_3H_8 , methane is likely to be the result of two mechanisms while

HOUSTON RESEARCH INSTITUTE, INC.

- 102 -

FIGURE 29 - GAS SPECIES DISTRIBUTION, 382°C

(No trace of H_2 , condensed ring structures, or light aromatics, and only traces of light hydrocarbons)

- 103 -

きまたい キ たいそ

AND STREET STREET

(Only a trace of H_2)

- 104 -

`#

a de al fattation de san san de alla de san de s

こうこう あうしがん いたいせき ない こうしんせき こうじきしんかん 読みないない

propane and ethane are primarily due to thermal cracking of ring structures (fragments) as indicated in the following sequence of reactions.

مەسىرىم ئۇرىمۇرىغ مەتۇرىغۇ مەتورىغە مۇرىمۇرىيە ئۇرىغۇرى ئارىمۇرىغ

 $CH_2 + H_2 \longrightarrow CH_4$

Methylene bridge

5. Toluene and Xylene found in the reaction products are probably due to ring fragments detaching from the resin with one or two CH groups intact and reacting further with hydrogen.

From the product species produced it is evident that a number of simultaneous reactions are involved in the pyrolysis process. As a preliminary procedure, attention was focused on the water gas shift reaction and equilibrium constants were calculated from the kinetic data and compared with the values calculated from free energy of formation data. The results are presented as follows:

		Temp. 4	98°C		T	emp. 605	°C	-
Run No.	к ^(а)	к'(ь)	K ^(c)	Run No.	К ^(б)	к'(Ъ)	к ^(с)	
60	0	1.45	5.728	55	0.660	1.80	`3.304	
61	0	0.647		53	0.095	1.31		
59	0	0.478		49	0.101	1.25		
62	0	0.688		54	0.121	1,67		
63	0	0.645		58	0.086	0.735		
64	0	0.638		51	0,102	0.815		
				51	0.154	0.950		
				57	0.144	0.865		
				52	0.086	0.425		
				56	0.151	0.528		

$$c_0 + H_{20} = c_{02} + H_{22}$$

(a) Equilibrium constant, using H₂ analysis

(b) Equilibrium constant, using total hydrogen

(c) Equilibrium constant from thermodynamic data

The constants K and K' were both lower than the thermodynamic value, and were off by an order of magnitude at low temperatures and at higher temperature by a factor of 5. Values of K and K' are consistent (though small); the deviation may be due to the H₂ analysis which is not very accurate by the chromatograph using helium as sweep gas.

Table X compares gaseous species reported in the literature with a typical gas analysis from this investigation, selected to correspond as closely as possible to the pyrolysis conditions of the literature data. The values from Lee include a considerable amount of aldehydes, primarily formaldehyde, as would be expected from an acid catalyzed novolak (see Section III). An additional problem is that there is no indication of the total amount of material lost, and each product is reported as a fraction of the total products identified; because of this, comparison can be made only on a basis of relative amounts.

Component	Lee (26)* 450°C	Fractions of Weight Los HRI No. 63 (35 min. at 498°C)	t Madorsky (55)** (30 min. at 500 ⁰ C)
H ₂	Trace	Trace	None Reported
H ₂ 0	0.058	0.347	lncluded in Unidentified
co ₂	0.413	0.161	0.055
CO	0.346	0,059	0.035
Light Hydrocarbons	0.032	0.024	0.043
Light Aromatics	0.041	0 069	0.072
Unidentified	1	0.338	0.499
Acetone & Propanol	None Reported	None Found	0.287
Aldehydes	0.111	None Found	None Reported
Weight Loss/Sample Weight	Unknowr.	0.25	0.28
* Novolak Fractions of	nroducts identif.		

Novolak. Fractions of products identified.

Approximately 1:1 phenol-formaldehyde, CTL 91-LD **

l

١

1

.

108 -•

-

COMPARISON OF GASEOUS SPECIES

TABLE X

The values from Madorsky are expected to be more comparable to the present work because temperature, time, and weight loss correspond closely, even though the material is not exactly the same. The acetone and propanol is thought to come from a solvent used when the material was polymerized. Most of the other entries compare reasonably well with this work.

技

-12 2 4944 VT 12 - 1

\$

VIII. CALCULATIONAL MODEL

As indicated previously, the purpose of the model is to permit better design calculations by providing a more realistic description of the decomposition phenomena occurring.

The mechanism of ablation can be visualized as follows, (refer to Figure 33). Once heat has started to flow inward from the external surface raising the temperature of the ablator from T_0 to T_r , the threshold or incipient reaction temperature, and after certain time has elapsed, the ablator layer may be visualized as consisting of four zones: a) a carbonized char zone, b) a char zone, c) a reaction zone, and d) a virgin material zone. The extent, temperature profile and physical characteristics of zones a, b, and c obviously change with time.

The purpose of the study described in this report is to provide a better understanding and develop a mathematical model for the pyrolysis occurring in zone c, the reaction zone. As mentioned previously, primary attention in this work was focused on the solid decomposition reactions and not on the subsequent secondary reactions of the product species.

In order to use the mathematical model for the desired calculations, a set of working equations is given in the following section.

Ts> Icc> Tc> Tr> Tms

.

.

FIGURE 33 - VISUALIZATION OF THE ABLATION PROCESS

- 111 -

a an a superior de la grande a superior a

. . . .

,

-

$$\frac{\left(\frac{v_{lox}}{v_{lo}}\right)_{2}}{\left(\frac{w_{pr}}{w_{pr}}\right)} \left[\frac{\left(\frac{16n_{seo}}{w_{o}}\right) \xi_{o} + \left(\frac{16n_{o}}{w_{o}}\right) Z_{15}}{w_{o}} + \frac{18n_{o}}{w_{o}} \left(\frac{\lambda_{1}}{\lambda_{15}}\right) \xi_{1} + \frac{18n_{o}}{w_{o}} \left(\frac{\lambda_{1}}{\lambda_{15}}\right) \xi_{2} + \frac{\left(\frac{16n_{o}}{w_{o}}\right) \beta_{1} \xi_{125}}{w_{o}} \right]$$

$$\frac{\left(\frac{v_{lo}}{w_{o}}\right)_{2}}{\left(\frac{w_{lo}}{w_{o}}\right)_{2}} = \frac{w_{o}}{w_{pr}} \left[\left(\frac{2n_{seo}}{w_{o}}\right) \xi_{o} + \frac{m_{o}}{w_{o}} \left(\frac{\lambda_{1}}{\lambda_{15}}\right) \xi_{1} + \frac{3n_{o}}{w_{o}} \left(\frac{\lambda_{1}}{\lambda_{15}}\right) \xi_{2} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{2} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{1} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{2} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{1} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{2} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{1} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\omega_{1}}\right) \left(\frac{w_{1}}{w_{o}}\right) \xi_{1} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\lambda_{15}}\right) \xi_{2} + \frac{w_{o}}{w_{o}} \left(\frac{\omega_{1}}{\omega_{1}}\right) \left(\frac{w_{1}}{w_{o}}\right) \xi_{1} + \frac{w_{1}}{w_{o}} \left(\frac{w_{1}}{\omega_{1}}\right) \left(\frac{w_{1}}{w_{o}}\right) \xi_{1} + \frac{w_{1}}{w_{o}} \left(\frac{w_{1}}{\omega_{1}}\right) \xi_{1} + \frac{w_{1}}{w_{o}} \left(\frac{w_{1}}{\omega_{1}}\right) \xi_{1} + \frac{w_{1}}{w_{o}} \left(\frac{w_{1}}{\omega_{1}}\right) \xi_{1} + \frac{w_{1}}{w_{1}} \left(\frac{w_{1}}{w_{0}}\right) \xi_{1} + \frac{w_{1}}{w_{0}} \left(\frac{w_{1}}{w_{0}}\right) \xi_{1} + \frac{w_{1}}{w_{0}} \left(\frac{w_{1}}{w_{0}}\right) \xi_{1} + \frac{w_{1}}{w_{0}} \left(\frac{w_{1}}{w_{0}}\right) \xi_{1} + \frac{w_{1}}{w_{0}} \left(\frac{w_{1}}{w_{0}}\right) \xi_{1} + \frac{w_$$

$$\beta_{1} = \left[\frac{1}{\left(1 + \frac{\lambda_{1}}{\lambda_{15}}\right)} - \frac{1}{\left(1 + \frac{\lambda_{2}}{\lambda_{1}}\right)} + \frac{\lambda_{2}}{\lambda_{1}} + \frac{\lambda_{2}}{\lambda_{1}}} \right]$$
$$\beta_{2} = \left[\frac{\lambda_{2} + 5\lambda_{5} - \frac{\lambda_{1}\lambda_{2}}{\lambda_{15}}}{\lambda_{12}} \right]$$
$$\varphi_{125} = \left[\frac{\lambda_{1} + 5\lambda_{1} + 4\lambda_{5}}{\lambda_{12}} - \frac{3\lambda_{1}\lambda_{2}}{\lambda_{15}} - \frac{\lambda_{1}\lambda_{2}}{\lambda_{25}} \right]$$

$$b = \left(\beta_1 + \frac{3}{8}\beta_1 + \frac{p_3}{16}\right)$$

$$\left(\frac{1}{125} = \left(\beta_1 + \frac{3}{8}\beta_1 + \frac{\beta_3}{16}\right)$$

(VIII-2)

ī

- 112 -

where, $\lambda_{15} = \lambda_1 + \lambda_5$; $\lambda_{25} = \lambda_2 + \lambda_5$; $\lambda_{125} = \lambda_1 + \lambda_2 + \lambda_5$

$$\xi_{i} = \xi_{i}^{*}(T_{k}) - \eta_{i}(\alpha_{k}, T_{mi})$$

(VIII-3)

.

and the second

to a second a trime is a

,

however, $[\eta_0=0]$

$$T_{ki} = \lambda_{k} \Theta$$
; $T_{mi} = \mu_{k} \Theta$; $\alpha_{i} = \left(\frac{\lambda_{i}}{\mu_{i}}\right)^{1/2}$ (VIII-4)

$$\boldsymbol{\xi}_{k}^{\circ}(\boldsymbol{\gamma}_{kk}) = (1 - e^{-\boldsymbol{\gamma}_{kk}}) \qquad (\text{VIII}_{-5})$$

$$\eta_{i}(\alpha_{i}, T_{m_{i}}) = \left[\frac{8}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\left(\frac{-(2n+1)^{2} \pi^{2} - m_{i}}{4}\right)}{(2n+1)^{2} \left(\frac{(2n+1)^{2} \pi^{2}}{4\alpha_{i}^{2}} - 1\right)} + \left(1 - \frac{\tan \alpha_{i}}{\alpha_{i}}\right) \left(1 - e^{-\alpha_{i}^{2} T_{m_{i}}}\right) \right] \qquad (VIII-6)$$

$$-E_{\lambda \star}/RT$$

$$\lambda_{\lambda} = A_{\lambda \star} e \qquad (VIII-7)$$

$$-E_{\alpha,i}/RT$$

$$\alpha_{i} = A_{\alpha,i} e$$
(VIII-8)

- 114 -

B. CALCULATED TGA CURVE:

It is now possible by means of the working equations and for an assumed heating rate $(dT/d\Theta) = R$ to calculate a weight loss curve for a changing temperature situation (simulated TGA curve).

By equation (VIII-1) $\frac{W}{W_{o}} = \varphi(\Theta, T)$

then

$$d\left(\frac{W}{W_{o}}\right) = \left[\frac{\partial(W/W_{o})}{\partial \Theta}\right]_{T} d\Theta + \left[\frac{\partial(W/W_{o})}{\partial T}\right]_{\Theta} dT$$

and

$$\frac{\mathrm{d}(\mathrm{W}/\mathrm{W}_{\mathrm{o}})}{\mathrm{d}\Theta} = \left[\frac{\mathrm{d}(\mathrm{W}/\mathrm{W}_{\mathrm{o}})}{\mathrm{d}\Theta}\right]_{\mathrm{T}} + \mathrm{R}\left[\frac{\mathrm{d}(\mathrm{W}/\mathrm{W}_{\mathrm{o}})}{\mathrm{d}^{\mathrm{T}}}\right]_{\mathrm{O}}$$

 $(VIII_-9)$

n ana sama dat (B

The derivatives can be obtained from the working equations and lead to the equation for the partial derivative with respect to time,

$$\left[\frac{\partial(W/W_{n})}{\partial \Theta}\right] = -\frac{VI_{0}}{V_{i}\rho_{F}}\left[C_{0}\left(\frac{\partial E_{0}}{\partial \Theta}\right)_{T} + C_{1}\left(\frac{\partial E_{1}}{\partial \Theta}\right)_{T} + C_{2}\left(\frac{\partial E_{1}}{\partial \Theta}\right)_{T} + C_{3}\left(\frac{\partial E_{125}}{\partial \Theta}\right)_{T}\right]$$

(VIII-10)

where,

$$C_0 = \frac{2n_{SRS}}{W_0}; \quad C_1 = \frac{n_o}{W_0} \frac{\lambda_2}{\lambda_{2S}}; \quad C_2 = \frac{2in_o}{W_0} \frac{\lambda_1}{\lambda_{1S}}; \quad C_3 = \frac{n_o}{W_0} \Phi_{12S}$$

- 115 -

......

and,

$$\left(\frac{\partial \xi_{i}}{\partial \Theta}\right)_{T} = \lambda_{i} e^{-\gamma_{k}} \frac{t_{a} n \alpha}{\alpha} - 2\lambda_{i} \sum_{n=0}^{\infty} \frac{e^{-(2n+i)^{2} \frac{\pi^{2}}{4}} \gamma_{mi}}{(2n+i)^{2} \frac{\pi^{2}}{4} - \alpha_{i}^{2}}$$

$$(VIII-106)$$

and the partial derivative with respect to temperature,

$$\begin{bmatrix} \frac{\partial (W/W_{0})}{\partial \Theta} \end{bmatrix}_{T} = -\frac{W_{0}}{W_{pf}} \begin{bmatrix} C_{0} \left(\frac{\partial E_{0}}{\partial T} \right) + C_{1} \left(\frac{\partial E_{1}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{2}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{2}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{1}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{1}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{1}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{1}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} + C_{2} \left(\frac{\partial E_{1}}{\partial T} \right) + E_{1} \frac{d(C_{1})}{d T} \end{bmatrix}$$

$$(VIII-11)$$

where,

$$\left(\frac{\partial \xi_{i}}{\partial T}\right)_{\theta} = \theta e^{-\tau_{k_{i}}} \left(\frac{d \lambda_{i}}{d T}\right) \frac{\tan \alpha_{i}}{\alpha_{i}} - 2\alpha_{i}^{2} \left(\frac{\partial \Sigma_{i}}{\partial T}\right)_{\theta} - \frac{4\alpha_{i}^{2} E_{\alpha_{i}}}{RT^{2}} \sum_{i}$$

$$+\left(1-C^{-T_{k_{i}}}\right)\frac{E_{\alpha_{i}}}{RT^{2}}\left[\frac{1}{(\cos \alpha_{i})^{2}}-\frac{\tan \alpha_{i}}{\alpha_{i}}\right]$$
(VIII-11a)

and for i = 0, 1, 2, 5:

$$\frac{d\lambda_i}{dT} = \frac{\lambda_i E_{\lambda_i}}{RT}$$

(VIII-11b)

Ser.

ere billionling all thereares, where all the constructions and a second statements in a

1.2.20

ي ، الم

but for i = 125:

$$\frac{d\lambda_{12s}}{dT} = \frac{d\lambda_{1}}{dT} + \frac{d\lambda_{2}}{dT} + \frac{d\lambda_{s}}{dT}$$

....

(VIII-11c)

and the second set of

"eleticity of a lattice of the second of the second s

$$\sum_{i} = \sum_{n=0}^{\infty} \frac{\left[-(2n+i)^{2} \frac{\pi^{2}}{4} \mathcal{T}_{m_{i}}\right]}{(2n+i)^{2} \frac{\pi^{2}}{4} \left[(2n+i)^{2} \frac{\pi^{2}}{4} - \alpha^{2}\right]}$$
(VIII-11d)

and,

$$\frac{\partial \Sigma_{x}}{\partial T}_{\theta} = \theta \frac{d\mu_{x}}{dT} \sum_{n=0}^{\infty} \frac{e}{\left[(2n+1)^{2} \frac{\pi^{2}}{4} - \alpha_{x}^{2}\right]} + \frac{2\alpha_{x}^{2} E_{\alpha_{x}}}{RT^{2}} \sum_{n=0}^{\infty} \frac{\left[1 - e}{(2n+1)^{2} \frac{\pi^{2}}{4} - \alpha_{x}^{2}\right]} + \frac{2\alpha_{x}^{2} E_{\alpha_{x}}}{RT^{2}} \sum_{n=0}^{\infty} \frac{\left[1 - e}{(2n+1)^{2} \frac{\pi^{2}}{4} - \alpha_{x}^{2}\right]^{2}}$$
(VIII-11e)

where for i = 0, 1, 2, 5:

$$\frac{d\mu_{i}}{dT} = \frac{\lambda_{i}}{\alpha_{i}^{2}} \frac{E_{\lambda_{i}} - 2E_{\alpha_{i}}}{RT^{2}}$$

(VIII-11f)

but for i = 125:

$$\frac{d\mathcal{A}_{125}}{dT} = \frac{1}{\alpha_3^2} \left[\frac{\lambda_1 E_{\lambda_1} + \lambda_2 E_{\lambda_2} + \lambda_5 E_{\lambda_5} - 2\lambda_{125} E_{\alpha_3}}{R T^2} \right]$$

(VIII-11g)

Also needed for (VIII-11),

$$\frac{dC_1}{dT} = \frac{17 n_0}{W_0} \frac{\lambda_2 \lambda_5}{\lambda_{25}^2} \left[\frac{E_{\lambda_2} - E_{\lambda_5}}{RT^2} \right]$$

$$\frac{dC_2}{dT} = \frac{21 n_0}{W_0} \frac{\lambda_i \lambda_s}{\lambda_{is}^2} \left[\frac{E_{\lambda_i} - E_{\lambda_s}}{RT^2} \right]$$

$$\frac{dC_3}{dT} = \frac{n_0}{W_0} \left[\frac{dB_1}{dT} + \frac{9}{8} \frac{dB_2}{dT} + \frac{1}{16} \frac{dB_3}{dT} \right]$$

(VIII-11f)

where,

$$\frac{d\beta_{i}}{dT} = \frac{\lambda^{2}}{\lambda_{125}^{2}} \frac{\left(\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}} - \lambda_{15} E_{\lambda_{2}}\right)}{RT^{2}}$$
$$- \frac{\lambda_{1} \lambda_{2}}{\lambda_{25} \lambda_{125}} \left[\frac{E_{\lambda_{1}} + E_{\lambda_{2}}}{RT^{2}} - \frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{RT^{2} \lambda_{125}} - \frac{\lambda_{2} E_{\lambda_{2}} + \lambda_{7} E_{\lambda_{5}}}{RT \lambda_{25}} \right]$$
$$\frac{d\beta_{2}}{dT} = \frac{1}{\lambda_{125}} \left(\frac{\lambda_{2} E_{\lambda_{2}} + 5 \lambda_{5} E_{\lambda_{5}}}{RT^{2}} \right) - \frac{\lambda_{1} + 5 \lambda_{5}}{\lambda_{125}^{2}} \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{RT^{2}} \right) - \frac{\lambda_{1} + 5 \lambda_{5}}{\lambda_{125}^{2}} \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{RT^{2}} \right) - \frac{\lambda_{1} + 5 \lambda_{5}}{\lambda_{125}^{2}} \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{125} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{125} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{125} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{2} E_{\lambda_{2}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{125} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{125} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2}} \right) - \left(\frac{\lambda_{1} E_{\lambda_{1}} + \lambda_{5} E_{\lambda_{5}}}{\lambda_{15} RT^{2$$

and,

$$\frac{d\beta_3}{dT} = \frac{d}{dT} \left(\frac{\lambda_1 + 3\lambda_2 + 4\lambda_5}{\lambda_{125}} \right) - \frac{d}{dT} \left(\frac{3\lambda_1\lambda_2}{\lambda_{125}^2} \right) - \frac{d}{dT} \left(\frac{\lambda_1\lambda_2}{\lambda_{25}\lambda_{125}} \right)$$

.

- ----

where,

$$\frac{d}{dT}\left(\frac{\lambda_{1}+3\lambda_{2}+4\lambda_{5}}{\lambda_{125}}\right) = \frac{\left(\lambda_{1}E_{\lambda_{1}}+3\lambda_{2}E_{\lambda_{2}}+4\lambda_{5}E_{\lambda_{5}}\right)}{\lambda_{125}RT^{2}}$$
$$-\frac{\left(\lambda_{1}+3\lambda_{2}+4\lambda_{5}\right)\left(\lambda_{1}E_{\lambda_{1}}+\lambda_{2}E_{\lambda_{2}}+\lambda_{5}E_{\lambda_{5}}\right)}{\lambda_{125}^{2}RT^{2}}$$

• •

- 117 -

$$\frac{d}{dT}\left(\frac{3\lambda_{1}\lambda_{2}}{\lambda_{125}^{3}}\right) = \frac{3\lambda_{1}\lambda_{2}}{\lambda_{125}^{2}}\left[\frac{\left(E_{\lambda_{1}}+E_{\lambda_{2}}\right)}{RT^{2}} - \frac{2}{\lambda_{125}}\frac{\left(\lambda_{1}E_{\lambda_{1}}+\lambda_{2}E_{\lambda_{2}}+\lambda_{5}E_{\lambda_{5}}\right)}{RT^{2}}\right]$$
$$\frac{d}{dT}\left(\frac{\lambda_{1}\lambda_{2}}{\lambda_{25}\lambda_{125}}\right) = \frac{\lambda_{1}\lambda_{2}}{\lambda_{25}\lambda_{125}}\left[\frac{\left(E_{\lambda_{1}}+E_{\lambda_{2}}\right)}{RT^{2}} - \frac{\left(\lambda_{1}E_{\lambda_{1}}+\lambda_{2}E_{\lambda_{2}}+\lambda_{5}E_{\lambda_{5}}\right)}{\lambda_{125}RT^{2}}\right]$$
$$-\frac{\left(\lambda_{2}E_{\lambda_{2}}+\lambda_{5}E_{\lambda_{5}}\right)}{\lambda_{25}RT^{2}}\right]$$

In order to illustrate the effect of various parameters on the TGA curves calculations have been made for:

- a. Different heating rates, $R = 1^{\circ}C./min.$, $3^{\circ}C./min.$, and $6^{\circ}C./min.$; curves shown on Figure 34.
- b. Different water adsorptions, 0. w%, 2.74 w% and 11.4 w%; curves shown on Figure 35.
- c. Different quartz contents, 0. w%, 10. w%, 28.8 w%, and 40. w%; curves shown on Figure 36.

In general, the same amount of weight can be lost for a short time period at a high temperature as for a longer time period at a lower temperature. The net effect is that the curves, although very similar to each other, appear to be displaced toward higher temperatures at higher heating rates, or toward lower temperatures at lower heating rates. Consideration on this basis tends to give a false impression of the situation. When it is realized that in Figure 34, the line for $R = 6^{\circ}$ C/min. reaches 1000° C at 150 minutes; 3° C/min. at 300 min.; and 1° C/min. at 900 min.; a truer perspective can be obtained, and it is obvious that the curves for lower leating rates are displaced toward lower temperatures because the material spends so much more time at lower temperatures.

The different water content curves of Figure 35 are easily interpreted. The water is released very quickly between $100-125^{\circ}$ C and after that the curves are displaced to lower W/Wo by the amount of the original water fraction. The implication is that adsorbed water will not stay in the heat shield long enough to be of any real value during ablation.

....

- 119 -

FIGURE 34 - EFFECT OF HEATING RATE ON TGA CURVE

Kint we is a mine to be

1 I I I

- 120 -

FIGURE 35 - EFFECT OF ADSORBED WATER ON TGA CURVE

FIGURE 36 - EFFECT OF QUARTZ CONTENT ON TGA CURVE

- 121 -

、、これなどの間でにはないないないないないがられてきたがなってい、シートの、これにいたい、おけいので、いいないないないないないないないないないないないないです。

Figure 36 presents a very simple picture of the effect of quartz content. The value of (1. - W/Wo) is directly proportional to (1. - quartz fraction) for any value of time (temperature) so long as the heating rate is constant.

Although Figures 34, 35, 36 were obtained using time increments of 1 minute, some calculations were made using $\Delta \Theta = 0.2$ min., but the results did not change appreciably from those of the 1 min. increments.

These results appear to be quite consistent with those reported by Friedman (14) or Farmer (12).

C. IN SITU DECOMPOSITION:

In the reaction zone of Figure 33, the degradation of the polymer material follows the pattern described previously, and we can now focus attention on the equations that must be solved in order to describe the actual ablation process in a protective layer.

Consider a slice element of the layer and assume a one dimensional flow process.

The equation for total heat transfer, based on flow of the product gases through the porous char at a given instant of time can be written as,

$$\left(\frac{k_{s}}{C_{p_{s}}R_{s}} - \frac{\theta_{T}}{L^{2}}\right)\frac{\partial^{2}T}{\partial\chi^{2}} - \frac{\partial T}{\partial\theta} - \left(\frac{K}{\mu} - \frac{P_{0}\theta_{T}}{L^{2}}\right)\left(\frac{C_{p}P_{g}}{C_{p_{s}}R_{s}}\right)\frac{\partial P}{\partial\chi} - \frac{\partial T}{\partial\chi}$$

- 122 -

- 123 -

$$+ \left[\left(\frac{A_{s_o} C_{\rho}}{C_{\rho_s} P_s} \right) \left(\tau - \tau_{datum} \right) - \frac{\Delta H_R A_{s_o}}{T_o C_{\rho_s} P_s} \right] \frac{d(W/W_o)}{d \Theta} = 0$$

(VIII-12)

 $d \Theta$ is defined by equation (VIII-9) from the rela- Θ_{T} and Θ_{T} is the total re-entry time. The first where d tion $\boldsymbol{\Theta} \stackrel{\textbf{l}}{=} \boldsymbol{\widehat{\Theta}}'$ two terms are the usual Fourier differential equation for heat transfer, in dimensionless form; the third term is the heat loss due to mass flow through the element; and the fourth term is the contribution due to reaction and mass loss within the element. The density of the gas, ρ g = M/ZRT. The parameters k_s , Cp_s , and ρ_s are properties of the solid. The permeability of the solid, K, is the sum of contributions from all types of gas flow. The parameters M, Cp, \mathcal{M} , and Z are properties of the gas dependent on composition; for Cp and ${\cal \mu}$, the property is the sum of the weight fraction of each component times the property of the pure component: for M and Z, the mole fraction is used. The sum of the energies of all reactions is represented by Δ H_R. All of the foregoing properties are to be evaluated at the proper temperature, T; the proper time, Θ ; and total pressure, π ; for the displacement from the surface, X. Dimensionless variables used are $\tau = T/T_0$; $P = \pi / P_0$; $\chi = X/L$; where T_o is the initial temperature of the material, P_o is a reference pressure of one atmosphere, and L is the thickness of the heat shield. The initial density of the ablation material is

The corresponding mass flow differential equation can be written as,

$$\left(\frac{P_{g}}{P_{s_{o}}}\right)\left(\frac{K}{\mu}\frac{P_{o}\theta_{T}}{L^{2}}\right)\left[\frac{\partial^{2}\theta}{\partial\chi^{2}}+\frac{1}{\rho}\left(\frac{\partial\theta}{\partial\chi}\right)^{2}-\frac{1}{\tau}\frac{\partial\theta}{\partial\chi}\frac{\partial\tau}{\partial\chi}\right]+\frac{d(W/W_{o})}{d\Theta}=0$$

(VIII-13)

The differential equations for heat and mass transfer must be solved simultaneously by numerical methods, using appropriate boundary conditions, in order to obtain the temperature profile through the reaction zone after each of the selected time increments.

IX. LITERATURE CITED

- American Society of Metals, <u>Atom Movements</u>, Seminar, 32nd National Metal Congress, Chicago, October 1950
- (2) Anderson, H. C., U. S. Naval Ordnance Lab. TR 62-59, October (1962)
- (3) Boquist, C. W. and Nielsen, E. R., WADD TR 61-72, Vol. XV, AD 418 260, July 1963
- (4) Carslaw, H. S.; Jaeger, J. C., Conduction of Heat in Solids, 2nd Edition, Oxford University Press, (1959)
- (5) Carswell, T. S., "Chemical Structure of the Phenoplasts," in "Phenoplasts: Their Structure Properties and Chemical Technology," Interscience, New York (1947)
- (6) Coffman, J. A., WADD TR 60-646, Part II; AD 297 946, January 1963
- (7) Coffman, J. A., and Friedman, H. L., WADD TR 60-646; AD 433 021, February 1964
- (8) Conley, R. T. and Bieron, J. F., J. Applied Science, 7, 103, 171 (1963)
- (9) Dienes, G. J., J. Appl. Phys., 23, 1194, (1952)
- (10) Directorate of Engineering Test, Wright-Patterson AFB, WADC TR 59-523, Part IV; N63-32019, October 1962
- (11) Farmer, Rex W., WADD TR 60-314, AD 249 275, September 1960
- (12) Farmer, Rex W., ML-TDR64-133, AD-441 142, January 1964
- (13) Feldman, M. H.; Goeddel, W. V.; Dienes, G. J., Grossen, W., J. Appl. Phys., 23, 1200, (1952)
- (14) Friedman, H. L., G. E. Space Sciences Lab. Report ER61SD145, August (1961) N63-13464
- (15) Friedman, H. L., G. E. Space Sciences Lab. Report ER 62SD57, December (1962) AD 297237

(16)	Good, G. M.; Voge, H. H.; and Greensfelder, B. S., Ind. Eng. Chem., <u>39</u> , 1032 (1947)
(17)	Greensfelder, B. S., and Voge, H. H., Ibid., 37, 514, 983, 1038 (1945)
(18)	Greensfelder, B. S.; Voge, H. H.; and Good, G. M., Ibid., <u>37</u> , 1168 (1945); Ibid., <u>41</u> , 2573 (1945)
(19)	Howse, Paul T., Jr., Pears, C. D. and Oglesby, Sabert, Jr., WADD TR 60-657; AD 260 065, January 1961
(20)	Jenkins, R. J. and Parker, W. J., WADD TR 61-95; AD 268 752, June 1961
(21)	Johnson, R. D. and Havlik, A. J., JPL SPS No. 37-22, August 31, 1963
(22)	Kinney, C. R., and DelBel, E., Ind. Eng. Chem., <u>46</u> , 548 (1954)
(23)	Kinney, C. R., and Slysh, R. S., "Proceedings of the Fourth Conference on Carbon," p. 301, Pergamon, New York (1960)
(24)	Kotlensky, W. V., JPL SPS No. 37-21, p. 42 ff, June 30, 1963
(25)	Lapple, C. E., Brady, A. P. and Chamberlain, D. L., Jr., ASD TR 61-204; AD 268 946, September 1961
(26)	Lee, L. H., J. Polymer Science, <u>A3</u> , 859 (1965)
(27)	Lewis, I. C., and Edstrom, T., WADD TR 61-72, Vol. XXVII, November (1963) AD 427 129
(28)	Lincoln, K. A., USNRDL TR 617; AD 401 875, 23 January 1963
(29)	Madorsky, Samuel L., and Straus, Sidney, WADC TR 59-64, Part I; AD 215 852, June 1959
(3 0)	Martin, Stanley B., and Ramstad, Robert W., Analytical Chemistry, <u>33</u> , 982, (1961)
(31)	Mason, Donald R., Kulwicki, Bernard M., Barnes, Charles E., and Rose, Gerald D., Michigan #2900- 146-R, N63 22421, September 1963
(32)	Mathews, B. E. and Perdue, G. F., WADC TR 59-523, Part III; AD 276 384; N63-13960, May 1962

* 10' +

- 125 -

 (33) McAllister, L. E.; Bolger, J. C.; McCaffery, E. L.; Roy, P. J.; Ward, F. W.; and Walker, A. C., Jr. Chem. Eng. Progr. Symposium Series 40, <u>59</u>, 17 (1963) (34) Meyer, R. A. and Burr, J. G., J. Am. Chem. Soc., <u>85</u>, 478 (1963) (35) Mixer, R. Y., and Marynowski, C. W., WADC TR 59-668, Part I; AD 237 242, February 1960 (36) Nagler, Robert G., JPL TR #32-552, January 20, 1964 (37) Nelson, L. S., <u>Science</u>, <u>136</u>, 296 (1962) (38) Ouchi, K., and Honda, H., Fuel, <u>38</u>, 429 (1959) (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases and Liquids</u>, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS' Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 		
 (34) Meyer, R. A. and Burr, J. G., J. Am. Chem. Soc., <u>85</u>, 478 (1963) (35) Mixer, R. Y., and Marynowski, C. W., WADC TR 59-668, Part I; AD 237 242, February 1960 (36) Nagler, Robert G., JPL TR #32-552, January 20, 1964 (37) Nelson, L. S., <u>Science</u>, <u>136</u>, 296 (1962) (38) Ouchi, K., and Honda, H., Fuel, <u>38</u>, 429 (1959) (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases and Liquids</u>, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS' Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (44) Schwidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(33)	McAllister, L. E.; Bolger, J. C.; McCaffery, E. L.; Roy, P. J.; Ward, F. W.; and Walker, A. C., Jr. Chem. Eng. Progr. Symposium Series 40, 59, 17 (1963)
 (35) Mixer, R. Y., and Marynowski, C. W., WADC TR 59-668, Part I; AD 237 242, February 1960 (36) Nagler, Robert G., JPL TR #32-552, January 20, 1964 (37) Nelson, L. S., <u>Science</u>, <u>136</u>, 296 (1962) (38) Ouchi, K., and Honda, H., Fuel, <u>38</u>, 429 (1959) (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases</u> and Liquids, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS' Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (44) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (45) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(34)	Meyer, R. A. and Burr, J. G., J. Am. Chem. Soc., <u>85</u> , 478 (1963)
 (36) Nagler, Robert G., JPL TR #32-552, January 20, 1964 (37) Nelson, L. S., <u>Science</u>, <u>136</u>, 296 (1962) (38) Ouchi, K., and Honda, H., Fuel, <u>38</u>, 429 (1959) (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases and Liquids</u>, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., MSD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(35)	Mixer, R. Y., and Marynowski, C. W., WADC TR 59-668, Part I; AD 237 242, February 1960
 (37) Nelson, L. S., <u>Science</u>, <u>136</u>, 296 (1962) (38) Ouchi, K., and Honda, H., Fuel, <u>38</u>, 429 (1959) (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases and Liquids</u>, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(36)	Nagler, Robert G., JPL TR #32-552, January 20, 1964
 (38) Ouchi, K., and Honda, H., Fuel, <u>38</u>, 429 (1959) (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases</u> <u>and Liquids</u>, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(37)	Nelson, L. S., <u>Science</u> , <u>136</u> , 296 (1962)
 (39) Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases and Liquids</u>, McGraw-Hill, (1958) (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(38)	Ouchi, K., and Honda, H., Fuel, <u>38</u> , 429 (1959)
 (40) Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963 (41) Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(39)	Reid, R. C.; Sherwood, T. K., <u>The Properties of Gases</u> and Liquids, McGraw-Hill, (1958)
 (41) Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962) (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(40)	Rudkin, R. L., ASD TDR 62-24, Part II; AD 413 005, June 1963
 (42) Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(41)	Scala, S. M., and Gilbert, L. M., ARS Journal, June, 917 (1962)
 (43) Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(42)	Schmidt, D. L., WADD TR 60-862; AD 268 078, August 1961
 (44) Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(43)	Schmidt, D. L., ASD-TR-61-650, February (1962) N62-12763
 (45) Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(44)	Schmidt, D. L., and Schwartz, H. S., ASD TR 61-691, March 1962
 (46) Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(45)	Schwartz, H. S., Schmidt, D. L., Marolo, S. A., and Starks, D. F., WADD TN 60-286; AD 260 071, January 1961
 (47) Shewmon, P. G., <u>Diffusion in Solids</u>, McGraw-Hill, (1963) (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(46)	Schwartz, H. S., ASD TR 61-517; N62-10952, January 1962
 (48) Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963 (49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961 	(47)	Shewmon, P. G., <u>Diffusion in Solids</u> , McGraw-Hill, (1963)
(49) Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961	(48)	Singer, L. A., and Lewis, I. S., WADD TR-61 72, Vol. XVI; AD 414 491, June 1963
	(49)	Space Sciences Lab - General Electric, Final Report - Mark 3 Advanced Re-Entry Vehicle Program Applied Research, 30 June 1961

- 126 -

.

-- +-

.

.....

- 127 -

1

 (50) Stehling, F. C.; Frazee, J. D.; and Anderson, R. C., "Eighth Symposium (International) on Combustion,"
 p. 774, Williams and Wilkins, Baltimore (1962) ÷.

2

÷

٩

a strates a

÷.

- (51) Sutton, G. W., J. Aero/Space Sci., 27 (5), 377 (1960)
- (52) Wacks, Morton E., ASD TDR 62-372; AD 287 790, May 1962
- (53) Wolfs, P. M. J.; van Krevelen, D. W.; and Waterman, H. I., Fuel, <u>39</u>, 25 (1960)
- (54) Sherwood, T. K.; Reid, R. C., <u>The Properties of Gases</u> and Liquids, McGraw-Hill, (1958)
- (55) Madorsky, S. L. and Straus, S., Modern Plastics, <u>38</u>, No. 6, February, 134 (1961)

• APPENDIX •

-

F

.

APPENDIX A

EXPERIMENTAL PROCEDURES

The following are the procedures for the supplementary analyses. The operations of the major pieces of equipment ore described in Section IV.

1. Elemental Analysis:

The equipment required consists of a combustion furnace with a fused silica or vycor glass tube, combustion boats, push rod, flow indicator, and two adsorption tubes. The reagents required are cupric oxide (wire form), dehydrite (magnesium perchlorate, granular), ascarite (or carbasorb) 14 mesh, and pure dry oxygen.

Before starting a series of analyses after an extensive shut-down, a pre-conditioning routine must be followed. The furnace tube is packed with cupric oxide for about four inches at the exhaust end. One adsorption tube is filled with dehydrite and connected to the exhaust of the furnace tube; the other adsorption tube is filled with ascarite and connected to the exhaust of the first adsorption tube. The furnace is heated to 800°C and an empty boat is pushed into the furnace. Oxygen is allowed to pass through the furnace tube and through the adsorption tubes for 4 to 5 hours, or until the adsorption tubes attain constant weight.

A run is made by weighing 300-500 milligrams of sample in a pre-conditioned boat and adding about 1/2 gram of cupric oxide to cover the sample. The oxygen flow is adjusted to 300-400 cc./min. The ads. tubes are removed, wiped thoroughly with lint free adsorbent paper, and weighed. The tubes are re-connected, dehydrite to the furnace tube, ascarite to the dehydrite, and the boat with sample is pushed to the center of the furnace tube. Pass oxygen through the tubes for 15 minutes, remove the adsorption tubes and let them cool at room temperature for 15 minutes. Remove the boat from the furnace tube and clean the cupric oxide from the boat. After the adsorption tubes are cool, they are wiped and weighed again. The gain of weight by the dehydrite tube represents the water generated by burning the resin, and the gain of the ascarite tube is carbon dioxide.

Elemental analysis is calculated on a dry ash free basis by,

 $%C = \frac{0.2729}{F} \quad \left(\frac{wt. of \ CO_2}{wt. of \ sample}\right)$

$$%H = \frac{0.1119}{F} \left(\frac{\text{wt. of } H_2^0}{\text{wt. of sample}} - \frac{\% \text{ moisture in resin}}{100} \right)$$

1

!

and,

$$\% 0 = 100 - \% C - \% H$$

where,

$$\mathbf{F} = \left(1 - \frac{\% \text{ ash in resin}}{100(W/W_0)} - \frac{\% \text{ moisture in sample}}{100}\right)$$

These equations hold whether the sample is undecomposed resin or a char, and whether the sample is phenolic or epoxy.

Loss of individual elements can be calculated from the results of the elemental analysis by,

$$\frac{W_{C}}{W_{0}} = \frac{\%C \text{ in resin}}{100} (A) - \frac{\%C \text{ in char}}{100} (B)$$

$$\frac{W_{H}}{W_{0}} = \frac{\%H \text{ in resin}}{100} (A) - \frac{\%H \text{ in char}}{100} (B)$$

$$\frac{W_{0x}}{W_{0}} = \frac{\%0 \text{ in resin}}{100} (A) - \frac{\%0 \text{ in char}}{100} (B)$$

where,

$$A = \left(1 - \frac{\% \text{ ash in resin}}{100} - \frac{\% \text{ moisture in resin}}{100}\right)$$
$$B = \left(\frac{W}{Wo} - \frac{\% \text{ ash in resin}}{100} - \frac{\% \text{ moisture in char}}{100}\right)$$

2. Ash determination:

The equipment required consists of a muffle furnace, a fused silica or vycor glass crucible with lid, and a burette. The reagents required are standard HCL soln. and phenolphthalein indicator.

Before making a run, the crucible must be heated in a muffle furnace at 800° C until it attains a constant weight. One gram of resin is weighed into the crucible and covered with the lid. The crucible is placed in a muffle furnace at 400° C for 1/2 hour; the lid is removed and the furnace temperature is raised to 800° C for one hour, or until constant weight is attained.

$$% ash = \frac{weight of residue}{weight of sample} \times \frac{100}{x}$$

If a fixed alkali catalyst is used in the polymerization of the resin (as is the case for the phenol-formaldehyde used in this investigation), it is necessary to determine the alkali content of the ash. The ash is leached out by boiling with distilled water for 1-2 hours. The washings are titrated with 1 N HCL to a phenolphthalein end point. Alkali is calculated as Na₂0.

$$% Na_2 0 = \frac{(mls. of 1 N HCL)(3.10)}{weight of sample}$$

3. Karl Fisher analysis for moisture:

.

The equipment required is described in detail in Appendix E. The reagents required are stabilized Karl Fisher reagent, Karl Fisher diluent, methanol and sodium tartrate dihydrate, reagent grade. The reagent is diluted approximately 1:4 with the diluent. The resulting diluted reagent is standardized by titrating a weighed amount of sodium tartrate dihydrate in methanol, using the technique of operation described in Section IV-B. The calibration factor is calculated by,

 $C_F = \frac{(mg. sodium tartrate) \times 0.1566}{m1. KF reagent}$

When the unknown sample is 'itrated, the moisture content is calculated by,

$$%H_2^0 = \frac{F \times (m1. KF reagent)}{(grams of sample) \times 10}$$

4. Alcoholic hydroxide determination:

The equipment required consists of a 125 ml. flask with ground glass joint and matching reflux condenser, hot plate or heating mantle to fit the flask, thermometer, 10 ml. pipette, and burette. Reagents required are pyridine, acetic anhydride, fused sodium acetate and standardized sodium hydroxide soln. and phenolphthalein indicator (all ACS or AR quality). A stock reagent is prepared from one volume of acetic anhydride to 19 volumes of pyridine.

A 0.25 gram sample is weighed into the flask. The pipette is used to add 10 ml of the stock reagent to the flack. Approximately 2 gm. sodium acetate is added, and the reaction mass is refluxed for 10 hours at 100° C. After acetylation, 30-50 ml. of CO₂ - free distilled water is used to wash down the wall of the condenser into the flask. The solution is titrated with standard sodium hydroxide to the phenolphthalein end point. Simultaneously a blank is run which consists of the same reagents and treatment, but without a sample being added to the flask.

%OH = 1.701(titre for blank-titre for sample)(Normality of NaOH) sample weight

. .

1 ..

APPENDIX B

EXPERIMENTAL DATA

The following tables contain data pertinent to this report. Tables B-1 to B-40 contain experimental data obtained by this investigation. Data in Table B-41 was obtained from the literature for comparison purposes. 「「「「「「「「」」」

:

Run	X 7	X8	X 9	X 10	X11
Time (mins)	5.00	10.0	20.0	30.0	80.0
(w/w _o)	0.948	0.945	0.932	0.926	0.908
(1-W/W ₀)	0.052	0.055	0.068	0.074	0.092

TABLE B-1:THERMAL DECOMPOSITION DATA, 378°C(712°F),PHENOL-FORMALDEHYDE ABLATOR C-1

TABLE B-2: 387 °C (729 °F)

		والمحمد والمراجع والمراجع			
4	5	6	7	X 2	X 3
5.00	5.00	5.00	10.0	10.0	15.0
0.941	0.937	0.942	0.932	0.934	0.931
0.059	0.063	0.058	0.068	0.066	0.069
8	9	X 4	x 5	×1	
1.5					<u></u>
	4 5.00 0.941 0.059 8	4 5 5.00 5.00 0.941 0.937 0.059 0.063 8 9	4 5 6 5.00 5.00 5.00 0.941 0.937 0.942 0.059 0.063 0.053 8 9 X4	4 5 6 7 5.00 5.00 5.00 10.0 0.941 0.937 0.942 0.932 0.059 0.063 0.053 0.068 8 9 X4 X5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Time					
(mins)	15.0	20.0	20.0	20.0	25.0
(W/W _o)	0.927	0.925	0.926	0.923	0.920
$(1-W/W_0)$	0.073	0.075	0.074	0.077	0.080

- 133 -

Run	41		36		42	
Time (mins)	3.0		5.0		7.0	
(W/W ₀)	0.953		0.946		0.931	
(1-W/W ₀)	0.047		0.054		0.061	
(W _{H20} /W _o)	0.025		0.024		0.027	
(w _{co} /w _o)	0.005		0.0061		0.0069	
(W _{CO2} /W _o)	0.021		0.020		0.020	
(W _{CH4} /W _o)	2.05 x10-5		3.3 x10-5		3.7 x10-5	
	(0.051)		(0.0501))	(0.0539))
	(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
(W _C /W _o)	0.0078	0.0240	0.0081	0.005	0.0085	0.007
(W _{ox} /W _o)	0.0404	0.0197	0.0494	0.0439	0.0440	0.0695
(w _H /w _o)	0.0028	0.0016	0.0027	0.0037	0.030	
(w _c /w)		0.793		0.820		0.831
(W _{ox} /W)		0.151		0.126		0.100
		0 056		0.054		0 070

TABLE B-3:THERMAL DECOMPOSITION DATA, 382°C(720°F),PHENOL-FORMALDEHYDE ABLATOR C-1

- - - -

Total $\left(\frac{v_{ox}}{W_o}\right)$

0.1804 0.1597 0.1654 0.1589 0.1345 0.1600

and the state of the

- 134 -

.

Same -

-	Run	44		43		37	
	Time (mins)	13.0		10.0		15.0	
	(W/W _o)	0,932		0.935		0.931	
	$(1-W/W_0)$	0.068		0.065		0.069	
-	(W _{H20} /W ₀)	0.0340		0.0310		0.0340	
	(W _{CO} /W _o)	0.0062		0.006/		0.0065	
	(W _{CO2} /W _o)	0.0220		0.0220		0.0270	
(0	(w _{CH4} /w _o)	4.5 x10-5		3.8 x10-5		5.7 x10-5	
א. פי		(0.0622)		(0.0594))	(0.0675))
		(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
	(w _c /w _o)	0.0087		0.0087	0.0430	0.0102	0.0160
	(W _{ox} /W _o)	0.0497		0.0473		0.0522	0.0467
	(W _H /W _o)	0.0038		0.0034	0.0028	0.0038	0.0046
EE)	(w _c /w)	÷ =			0.7880		0.821
L FR	(W _{ox} /W)				0.1565		0.125
ASH	(W _H /W)				0.0555		0.054
-				0 1803		0 1652	<u></u>

TABLE B-3 (CONTINUED)

Wo
100 W.

:

1	Run	45	38		39	
1	fime (mins)	20.0	25.0		50.0	
((w/w _o)	0.925	0.924		0.911	
((1-W/W _o)	0.075	0.076		0.089	
-	(w _{H20} /w _o)	0.039	0.0390		0.0510	<u> </u>
((w _{co} /w _o)		0.0068		0.0060	
((w _{c02} /w _o)	0.020	0.0250		0.0250	
s)	(w _{CH4} /w _o)		6.8 x10-5		8.9 x10-5	
√ ບ)			(0.0708))	(0.0820))
		(EA)	(GA)	(EA)	(GA)	(EA)
((W _C /W _o)	0.005	0.0097	0.0150	0.0094	0.0290
((W _{ox} /W _o)	0.0706	0.0569	0.0538	0.0671	0.0534
((w _H /w _o)		0.0043	0.0049	0.0057	0.0035
((w _c /w)	0.839		0.828		0.825
FRE ((W _{ox} /W)	0.100		0.054		0.119
ASH	(w _H /w)	0.061		0.118		0.056
I	Cotal (Wox)	0.1605	0.1054		0.1725	0.1676

TABLE B-3 (CONTINUED)

	Run	40	(384°C) 47	((384°C) 46	
	Time (mins)	90.0		3.0		20.0	
	(w/w _o)	0.901		0.951		0.924	
	(1-W/W ₀)	0.099		0.049		0.076	
	(W _{H20} /W _o)	0.0540		0.0260		0.0400	
	(w _{co} /w _o)	0.0081		0.0063		0.0086	
	(w _{c02} /w _o)	0.0260		0.0200		0.0250	
(S	(w _{CH4} /w _o)	10.5 x10 ⁻⁵		2.5 x10-5		7.2 ×10-5	
(G A	,	(0.0881))	(0.0523))	(0.0836))
		(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
	(W _C /W _o)	0.0106	0.0250	0.0080		0.0105	0.020
	(W _{ox} /W _o)	0.0716	0.0653	0.0412	0.0687	0.0587	0.0516
	(w _H /w _o)	0.0060	0.0061	0.0029		0.0045	0.0028
(EE)	(w _c /w)		0.838		0.843		0.823
HA H	(W _{ox} /W)		0.108		0.099		0.121
	(W _H /W)		0.054		0.058		0.056
	Total (<mark>Wox</mark>)	0.1661	0.1598	0.1328	0.1603	0.1672	0.1604

•

.

Run	65	66	67	68	69	70
Time (mins)	2.0	5.0	10.0	20.0	41.0	90.0
(w/w _o)	0.905	0.885	0.867	0.857	0.842	0.828
(1-W/W _o)	0.095	0.115	0.133	0.143	0.158	0.172

TABLE B-4:THERMAL DECOMPOSITION DATA, 436°C(819°F),PHENOL-FORMALDEHYDE ABLATOR C-1

TABLE B-5:THERMAL DECOMPOSITION DATA, 533°C(991°F),PHENOL-FORMALDEHYDE ABLATOR C-1

Run	83	84	85	86
Time (mins)	2.0	10.0	30.0	60.0
(w/w _o)	0.787	0.740	0.718	0.709
(1-W/W ₀)	0.213	0.260	0.28.2	0.291

TABLE B-6:THERMAL DECOMPOSITION PATA, 571°C(1060°F),PHENOL-FORMALDEHYDE ABLATOR C-1

Run	71	72	73	74	75	76
Time (mins)	1.0	3.00	8.00	16.0	32.0	70.0
(W/W _o)	0.741	0.698	0.680	0.671	0.660	0.655
(1-W/W ₀)	0.259	0.302	0.320	0.329	0.340	0.345

1- 605 a mange 207 am

Run	60	61	59	
Time (mins)	2.00	4.00	10.00	
(w/w _o)	0.823	0.811	0.782	
(1-W/W _o)	0.177	0.189	0.218	
(w _{H20} /w _o)	0.0550	0.0590	0.0739	
(w _{co} /w _o)	0.0103	0.0112	0.0138.	
(W_{CO_2}/W_o)	0.0373	0.0368	0.0386	
(W _{CH4} /W _o)	0.0087	0.0012	0.0032	
(W _{rg} /W _o)*	0.0001	0.0001	0.0001	
(W _{org} /W _o)**	0.0715	0.0673	0.0752	
	(0.183)	(0.176)	(0.205)	
	(GA) (EA)	(GA) (EA)	(GA) (EA)	
(w _c /w _o)	0.0350 0.0750	0.094 0.0950	0.105 0.1180	
(W _{ox} /W _o)	0.0820 0.0999	0.0858 0.1024	0.102 0.0854	
(w _H /w _o)	0.0102 0.0085	0.0087 0.0092	0.011 0.0141	
	(0.1772)	(0.1885)	(0.218)	
(w _c /w)	0.8680	0.8760	0.8500	
(W _{ox} /W)	0.0754	0.0665	0.0982	
(W _H /W)	0.0566	0.0575	0.0578	
Total (^W ox)	0.1421 0.1601	0.1380 0.1546	0.1762 0.1597	

TABLE B-7:THERMAL DECOMPOSITION DATA, 498°C(928°F),PHENOL-FORMALDEHYDE ABLATOR C-1

*

Residual gas - see Table B-14 Organic "tar" - see Table B-13 **

- 139 -

TABLE	B	7	(CONTINUED)

.

	Run	62	63	64
	Time (mins)	20.00	35.00	60.00
	(w/w _o)	0.762	0.746	0.736
	(1-W/W _o)	0.238	0.254	0.264
	(W _{H20} /W ₀)	0.0706	0.0887	0.0968
	(w _{c0} /w _o)	0.0115	0.0148	0.0156
	(W _{CO2} /W _o)	0.0348	0.0404	0.0417
	- (W _{CH/} /W _o)	0.0033	0.0057	0.0070
	(W _{rg} /W _o)	0.0001	0.0001	0.0001
s)	(W _{org} /W _o)	0.0798	0.0885	0.0835
¥		(0.2000)	(0.2382)	(0.2447)
Ű		(GA) (EA)	(GA) (EA)	(GA) (EA)
	(W _C /W _o)	0.1324 0.1050	0.1237 0.1430	0.1237 0.1300
	(w_{ox}/w_{o})	0.0948 0.1158	0.1168 0.1038	0.1253 0.1206
	(w _H /w _o)	0.0108 0.0090	0.0136 0.0102	0.0149 0.0173
	**************************************	(0.2380)	(0.2541)	(0.2639)
REE)	(w _c /w)	0.8820	0.8620	0.8940
LID- H FI	(W _{ox} /W)	0.0587	0.0778	0.0550
(SO)	(W _H /W)	0.0593	0.0602	0.0510
	Total (<mark>Wox</mark>)	0.1380 0.1590	0.1728 0.1598	0.1644 0.1597

,

	Run	5 5		53		49	
	Time (mins)	1.50		3.00		5.00	
	(W/W _o)	0.680		0.680		·0.680	
	(1-W/W ₀)	0.320		0.320		0.320	
•	(w _{H20} /w _o)	0.0436		0.0436		0.0515	
	(W _{CO} /W _o)	0.0195		0.0223		0.0243	
	(W _{CO2} /W ₀)	0.0483		0.0492		0.0490	
	(W _{CII4} /W _o)	0.0141		0.9162		0.0214	
	(W _{rg} /W _o)	0.0002		0.0002		0.0002	
2	(W _{org} /W _o)	0.1690		0.0915		0.0850	
- ∢ ون	<u> </u>	(0.292)		(0.223)		(0.231)	
-		(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
	(w _c /w _o)	0.1965	0.1530		0.1580	0.1225	·) .1640
	(W _{ox} /W _o)	0.0862	0.1516	0.0884	0.1328	0.0953	0.1407
-	(w _H /w _o)	0.0129	0.0228	0.0114	0.0263	0.0134	0.0288
(11	(w _c /w)		0.9410		0.9180		0.9330
4	(W _{ox} /W)		0.0116		0.0%10		0.0289
1 04	(W ₇ 'W)		0.0474		0.0410		0.0381
I	Total(^W ox Wox)		0.1592		0.1597		0.1596

TABLE B-8:THERMAL DECOMPOSITION DATA, 605°C(1121°F),PHENOL-FORMALDEHYDE ABLATOR C-1

deres.

ومنافرة المردقة

UED)			

	Run	54		51		50	
	Time (mins)	5.00		15.00		20.00	
	(w/w _o)	0.667		0.661		0.658	
	(1-W/W _o)	0.333		0.339		0.342	
-	(W _{H20} /W ₀)	0.0525		0.0788		0.0887	
	(w _{co} /w _o)	0.0198		0.0289		0.0252	
	(W _{CO2} /W _o)	0.0453		0.0502		0.0561	
	(W _{CH4} /W _o)	0.0190		0.0233		0.0233	
	(W _{rg} /W _o)	0.0002		0.0002		0.0002	
(s	(W _{org} /W _o)	0.1640		0.0750		0.0708	
۹. ۲		(0.301)		(0.256)	• <u></u>	(0.261)	
0		(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
	(W _C /W _o)	0.1947	0.1690	0.1996	0.1610	0.1900	0.1530
	(W _{ox} /W _o)	0.0900	0.1420	0.1231	0.1515	0.1342	0.1578
	(W _H /W _o)	0.0149	0.0245	0.0165	0.0266	0.0175	0.0282
-		<u> </u>		(0.339)		(0.342)	
(EE)	(W _C /W)		0.9280		0.9460		0.9580
H	(W _{ox} /W)		0.0270		0.0121		0.0027
AS	(w _H /w)		0.0450		0.0419		0.0393
	Total (<mark>W</mark> ox)		0.15 93		0.1592		0.1595

TABLE B-8 (CONTINUED)

- 142 -

و و المان المان

· HALL · · · · · · · · ·

,

> -<u>-</u> .

Territori

-

TABLE B-8 (CONTINUED)

Run	57		52		56	
Time (mins)	25.00		31.00		78.00	
(w/w _o)	0.648		0.653		0.637	
(1-W/W _o)	0.352		0.347		0.363	
(w _{H20} /w _o)	0.1200		0.1200		0.1350	
(w _{co} /w _o)	0.0214		0.0333		0.0290	
(W_{CO_2}/W_o)	0.0550		0.0455		0.0522	
(W _{CH} /W _o)	0.0205		0.02 37		0.0204	
(W _{rg} /W _o)	0.0002		0.0002		0.0002	
ŵ ^{(W} org/W _o)	0.1090		0.0590		0.1000	
۲۵.	(0.326)		(0.282)		(0.337)	
9	(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
(w _c /w _o)	0.1717	0.1750	0.1673	0.1680	0.1656	0.1841
$(W_{\sigma x}/W_{o})$	0.1590	0.1591	0.1589	0.1463	0.1746	0.1591
(w _H /w _o)	0.0213	0.0328	0.0208	0.0324	0.0228	0.0374
	(0.352)		(0.347)			
ଲ୍ଲ (พ _c /พ)		0.9665		0.9440		0.9735
₩ (W _{ox} /W)		0.0000		0.0212		0.0000
W (W _H /W)		0.0335		0.0348		0.0265

Total $\left(\frac{W_{ox}}{W_{o}}\right)$

0.1591

0.1594 0.1591

. --- -

-

. . . .

د در ال المسجد .

.

м. М.

٠

:

1

教授のないのの言い

あぞく

ang i Children

のかからまし

TABLE B-8 (CONTINUED)

•	Run	58				
	Time (mins)	10.00				
	(w/w _o)	0.656				
	(1-W/W _o)	0.344				
•	(W _{H20} /W _o)	0,1130				
	(W _{CO} /W _o)	0.0218				
	(W_{CO_2}/W_o)	0.0468				
	(W _{CH} /W _o)	0.0199				
	(W _{rg} /W _o)	0.0002				
(s	(W _{org} /W _o)	0.1160				
A.		(0.317)		<u></u>	 7	
3		(GA)	(EA)			
	(w _c /w _o)	0.1499	0.1780			
	(w _{ox} /w _o)	0.1470	0.1534			
	(w _H /w _o)	0.0206	0.0318			
(E)	(w_/w)		0.9555			
FRI	(W., /W)		0.0095			
ASH	(w _H /w)		0.0350			
•	Total (^W ox) W _o)		9.1594		 	

			k			
Run	77	78	79	80	81	82
Time (mins)	2	4	8	16	32	72
w/w _o	0.628	0.624	0.622	0.618	0.612	0.607
1-W/W ₀	0.372	0.376	0.378	0.382	0.388	0.393

TABLE B-9:THERMAL DECOMPOSITION DATA, 666°C(1199°F),PHENOL-FORMALDEHYDE ABLATOR C-1

- -

	Run	105	<u></u>	109		106	
	Time (mins)	2		5		10	
	(w/w _o)	0.976		0.966		0.960	
	(1-W/W _o)	0.024		0.034		0.040	
•	(W _{H,0} /W ₀)	0.01860		0.02600	<u></u>	0.03100	
	(w _{co} /w _o)	0.00284		0.00376		0.00477	
()	(w _{c02} /w _o)	0.0021		0.00560		0.00520	
۲		(0.0235)		(0.0354)		(0.0410)	<u></u>
2		(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
	(W _C /W _o)	0.00176	0.007	0.00314	0.023	0.00346	0.017
	(w _{ox} /w _o)	0.01364	0.0260	0.02930	0.0213	0.03409	0.0310
	(w _H /w _o)	0.00206		0.00284	` 	0.00344	** **
(มา	(W_/W)		0.800		0.788		0.802
2 2	(Wou/W)		0.1318		0.1410		0.1270
AVE	(W _H /W)		0.0682		0.0710		0.0710

TABLE B-10:	THERMAL DECOMPOSITION DATA,	388°C ·	
(730.4°F),	PHENOL-FORMALDEHYDE-QUARTZ*	ABLATOR	C- 3

W% Quartz 28.8 *

--- -

.

	Run	110		12		113 (Mixtur	114 e)
	Time (mins)	30		60		2	60
	(W/W ₀)	0.943		0.929		0.968	0.927
	(1-W/W _o)	0.057		0.071		0.0316	0.0727
	(W _{H20} /W ₀)	0.04970		0.05720		0.01850	0.05800
	(W _{CO} /W _o)	0.00480		0.00490		0.00305	0.01690
(s	(w _{c02} /w _o)	0.00370		0.00580		0.00890	
8		(0.0582)	<u>-</u>	(0.0679)		(0.03045)(0.0749)
S		(GA)	(EA)	(GA)	(EA)	(GA)	(GA)
	(W _C /W _o)	0.00306	0.033	0.00368	0.034	0.00155	(0.0072)*
	(W _{ox} /W _o)	0.04773	0.0418	0.05791	0.0400	0.0247	(0.0613)*
	(w _H /w _o)	0.00552		0.00635	49 66	0.0021	0.0064
(II)	(w _c /w)		0.800		0.817		
LID-	(W _{ox} /W)		0.1298		0.119		
I SOI	(W _H /W)		0.0702		0.0640		

TABLE B-10 (CONTINUED)

.

•

* Contributions from CO₂ not included.

Run	214		215		207	
Time (mins)	2		5		10	
(w/w _o)	0.950		0.943		0.934	
(1-W/W ₀)	0.050		0.057		0.066	
(W _{H20} /W _o)	0.0364		0.0348		0.0470	
(w _{c0} /w _o)	trace		trace		trace	
(w _{c02} /w ₀)	0.0045		0.0070		0.0048	
(W _{tar} /W _o)*	0.0045		0.0104		0.0119	
	(0.0454	<u></u>	(0.0522))	(0.0637))
	(GA)	(EA)	(G A)	(EA)	(GA)	(EA)
(w _c /w _o)	0.0056	0.0140	0.0120	0.0170	0.0129	0.0350
(W _{ox} /W _o)	0.0357	0.0040	0.0361		0.0453	0.0040
(w _H /w _o)	0.0041		0.0042		0.0055	
(w _c /w)		0.6870		0.6840		0.6800
(W _{ox} /W)		0.2200		0.2310		0.2237
(W.,/W)		0.0930		0.0850		0.0963

An other and the spectrum.

南部の書

TABLE B-11: THERMAL DECOMPOSITION DATA, 316°C(560°F), EPOXY-NOVOLAK ABLATOR

* No detailed analysis attempted.

(solid-

. ..

TABLE B-11 (CONTINUED)

.

1	Run	213		208		216	
	Time (mins)	20		30		60	
	(W/W ₀)	0.917		0.902		0.867	
	(1-W/W _o)	0.083		0.098		0.133	
-	(W _{H20} /W ₀)	0.0479		0.0482		0.0610	
	(w _{c0} /w _o)	trace		trace		trace	
	(w _{co2} /w _o)	0.0064		0.0072		0.0127	
2	(W _{tar} /W _o)	0.0179		0.0144		0.0162	
ç -		(0.0722))	(0.0698))	(0.0899))
-		(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
	(W _C /W _o)	0.0192	0.0320	0.0160	0.0170	0.0192	0.0310
	(w _{ox} /w _o)	0.0473	0.0110	0.0480	0.0435	0.0634	0.0552
-	(w _H /w _o)	0.0058	42 42	0.0057	•• •• •	0.0072	
1	(w _c /w)		0.6840		0.7120		0.7240
444	(W _{ox} /W)		0.2178		0.1860		0.1802
E C E	(w _H /w)		0,0982		0.1020		0.0958

Run	202		201		203	
Time (mins)	2		5		10	
(w/w _o)	0.811		0.680		0.577	
(1-W/W _o)	0.189		0.320		0.423	
(w _{H20} /w _o)	0.0750		0.0980		0.1260	
(w _{co} /w _o)	0.0039		0.0079		0.0119	
(W_{CO_2}/W_o)	0.0680		0.0270		0.0430	
(W _{tar} /W _o)	0.0430		0.0260		0.1040	
<u></u>	(0.1899)		(0.1589))	(0.2849))
,	(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
(w _c /w _o)	0.0620 0	.0960	0.0371	0.1720	0.1171	0.2550
(W _{ox} /W _o)	0.1177 0	.0480	0.1103	0.1107	0.1490	0.1278
(w _H /w _o)	0.0095 0	.0050	0.0119	0.0213	0.0168	0.0228
(W _C /W)	0	.7040		0.7560		0.7440
(W _{ox} /W)	0	.2040		0.1552		0.1533
(W _H /W)	0	.0920		0.0880		0.1027

TABLE B-12:	THERMAL	DECOM	POSITION	DATA,	388°C
(730.4°F)	EPOXY-NO	VOLAK	ABLATOR	-	

......

Run	204		205		206	
Time (mins)	20		30		60	
(w/w _o)	0.470		0.406		0.305	
(1-W/W ₀)	0.530		0.594		0.695	
(w _{H20} /w _o)	0.1540		0.1560		0.1650	
(w _{co} /w _o)	0.0166		0.0166		0.0205	
(W_{CO_2}/W_o)	0.0590		0.0670		0.0760	
(W _{tar} /W _o)	0.1230		0.1310		0.1170	
	(0.3526))	(0.3706))	(0.3785))
	(GA)	(EA)	(GA)	(EA)	(GA)	(EA)
(W _C /W ₃)	0.1429	0.3070	0.1528	0.3440	0.1434	0.4380
(W _{ox} /W _o)	0.1878	0.1907	0.1953	0.2041	0.2121	0.1957
(W _H /W _o)	0.0203	0.0379	0.0208	0.0407	0.0215	0.0544
(w _c /w)		0.8540		0.8780		0.8510
(W _{ox} /W)		0.0474		0.0162		0.0561
(W _H /W)		0.0986		0.1058		0.0929

TABLE B-12 (CONTINUED)

.

RUNS	
ΡF	
ANALYSIS,	
TAR	
B-13:	
TABLE	

lun	51	55	56	57	58
		Component Weigh	t Fraction of W	.0	
i thane	3.24x10 ⁻⁴	4.98x10 ⁻⁴	6.83x10 ⁻⁴		4.18×10 ⁻⁴
ropane	8	1.56×10 ⁻⁵	2.15×10 ⁻⁵	Trace	Trace
later	1.65×10 ⁻²	1.95×10 ⁻²	1.80×10 ⁻²	1.64×10 ⁻²	2.08×10 ⁻²
(y lene	3.16x10 ⁻⁵	4.43x10 ⁻⁵	6.40x10 ⁻⁶	5.69x10 ⁻⁵	4.27×10 ⁻⁵
oluene.	1 1	;	:	1 1	8
inident	6.84x10 ⁻²	14.95×10 ⁻²	8.20×10 ⁻²	9.25×10 ⁻²	9.52x10 ⁻²
lotal	7.50x10 ⁻²	16.9×10 ⁻²	10.0x10 ⁻²	10.9×10 ⁻²	11.6×10 ⁻²
temp ° C	605	605	605	605	605
1-W/W _o)	0.339	0.320	. 0. 363	0.352	0.344
(und) [c	0.343	0.761	0.495	0.538	0.535

- 152 -

F :

う数

ALL I HEAR

è.

HIMAGE AND MARK TS. CO.

-
(II)
INIL
N 8
-
13
B-13
BLE B-13

]]
Run	59	60	61	62	63	
						1
	-	Component Weigh	t Fraction of W.			
Ethane	3.91x10 ⁻⁴	2.74×10 ⁻³	2.00×10 ⁻⁴	3.17x10 ⁻⁴	3.15×10 ⁻⁴	
Propane	Trace	9.10×10 ⁻⁵	Trace	:	5.14x10 ⁻⁶	
Water	1.99x10 ⁻²	3.68×10 ⁻³	4.51x10 ⁻³	4.97x10 ⁻³	3.56×10 ⁻³	
Xy lene	Trace	1.78×10 ⁻⁵	Trace	1.89×10 ⁻⁶	1.61×10 ⁻⁶	
Tolueze	!	Trace	Trace	Trace	Trace	
Unident	5.53×10 ⁻²	6.78×10 ⁻²	6.28×10 ⁻²	7.48×10 ⁻²	8.48x10 ⁻²	Ţ
	7.52×10 ⁻²	7.15×10 ⁻²	6.73x10 ⁻²	7.98x10 ⁻²	8.85×10 ⁻²	ļ
Temp °C	498	498	498	498	498	
(1-W/M ^o)	0.218	. 0.177	0.189	0.238	0.254	
W(und) WC	0.527	0.798	0,668	0.564	0.597	

•

Run	49	50	51	52
	(Weight	Fraction o	f W _o)	
H ₂	6.24×10^{-4}	1.26×10^{-3}	9.77×10 ⁻⁴	1.53x10 ⁻³
C ₂ K ₆	5.13x10 ⁻³	1.84×10^{-3}	1.85x10 ⁻³	1.88x10 ⁻³
с ₂ н ₄		Trace O	nly	
C ₃ H ₈	1.79×10^{-3}	1.36x10 ⁻³	2.79x10 ⁻³	6.58x10 ⁻³
фснз	2.35×10^{-2}	3.26×10^{-3}	2.46×10^{-3}	3.53x10 ⁻³
$\phi(ch_2)_2$	5.23x10 ⁻³	9.82×10 ⁻³	6.94x10 ⁻³	1.01x10 ⁻²

TABLE B-14: ANALYSIS OF RESIDUAL GAS, PF RUNS

Run	5 3	54	55	56
	(Weight	Fraction o	f W _o)	
н,	4.78×10^{-4}	6.68x10 ⁻⁴	2.93×10^{-3}	2.25×10^{-8}
с ₂ н ₆	1.65×10^{-3}	1.52×10^{-3}	1.34×10 ⁻³	1.85×10 ⁻³
C ₂ H ₄		Trace O	nly	
с ₃ н ₈	1.80×10^{-3}	9.05×10^{-3}	1.05×10 ⁻³	1.29×10^{-2}
ϕ_{ch_3}	2.13×10^{-2}	1.82×10^{-2}	1.94x10 ⁻²	
ϕ (cH ₃) ₂	5.23×10 ⁻³	6.80x10 ⁻³	5.05×10 ⁻³	1.77×10 ⁻²

こう 一部です。 大学ななななななななななななななななななななななななななななななななない マイン・シート マイ・シート アイ・シート アイ・シート

--

TABLE B-14 (CONTINUED)

PARTY TO THE REPORT OF THE ALLOW TO BE A

Run	5 7	58	59	60
	(Weight	Fraction o	f W _o)	
H ₂	1.33×10 ⁻³	9.41×10^{-4}		
с ₂ н ₆	1.79×10^{-3}	1.55x10 ⁻³	4.22×10^{-4}	1.68×10^{-3}
с ₂ н ₄		Trace On	nly	
C ₃ H ₈	5.72×10 ⁻³	4.95×10^{-3}	2.96×10^{-3}	6.20x10 ⁻³
фсна	3.96×10^{-3}	2.92×10 ⁻²	1.07×10^{-2}	2.92×10 ⁻²
ф(сн ₃) ₂	1.18×10 ⁻²	9.24×10 ⁻³	9.25×10^{-3}	9.53x10 ⁻³
Run	61	62	63	64
	(Weight	Fraction o	fw _o)	
^H 2				-
C ₂ H ₆	2.30×10^{-3}	5.53x10 ⁻⁴	6.55×10^{-4}	6.14×10^{-4}
с ₂ н ₄		Trace On	nly	
C-H-	6.85×10^{-3}	$2,92 \times 10^{-2}$	5.20×10^{-3}	8.87×10^{-3}

с ₃ н ₈	6.85x10 ⁻³	2.92×10^{-2}	5.20×10^{-3}	8.87x10 ⁻³
ϕ сн $_3$	3.82×10^{-2}	1.04×10^{-2}	1.15×10^{-2}	1.80×10^{-2}
φ (cH ₃) ₂	1.27×10^{-2}	4.18×10^{-2}	5.89×10 ⁻³	9.55x10 ⁻³

(FF)	
SOLID	
0F	
PROPERTIES	
PHYSICAL	
1	ł
B-15	
TABLE	

	R III III III	Ψ	$\rho_{\rm B}$	٩	V P	s x 10 ⁻³	סין	K x 10 ⁶
(1-W/Wo) No.	Porosity	(g/cm ²)	(g/cm ³)	(cm ³ /g)	(cm ² /g)	(Mícrons)	(cm ²)
0	(C-l resin) Run 2	0.473	0.648	1.225	0.729	2.437	11.97	0.413
0.032	P-1	0.459	0.701	1.298	0.656	1.987	13.2	0.738
0.047	P-2	0.485	0.628	1.220	0.773	3.516	8.80	1.235
0.0734	#33	0.446	0.676	1.220	0.659	2.386	11.0	0.942
0.095	# 65	0.4692	0.6371	1.200	0.7365	4.545	6.48	0.914
0.133	#67	0.4612	0.6424	1.192	0.7179	3.573	8.00	0.413
0.158	# 69	0.4750	0.6247	1.190	0.7603	3.628	8.37	0.781
0.171	# 70	0.484	0.623	1.234	0.793	1.027	30.9	0.900
0.213	#83	0.486	0.678	1.320	0.717	3.245	8.83	0.991
0.259	#71	0.4610	0.6536	1.213	0.7053	2.337	12.4	1.528
0.260	#84	0.452	0.641	1.160	0.706	2.314	12.22	1.320
0.282	#85	0.454	0.660	1.205	0.687	3.614	7.60	1.338
0.340	# 75	0.445	0.677	1.220	0.658	1.167	22.6	2.80
0.345	#76	0.470	0.678	1.278	0.693	2.274	12.20	0.844
0.376	#78	0.548	0.560	1.240	0.980	1.504	26.10	0.530
0.378	479	0.539	0.597	1.292	0.902	0.8924	40.5	0.196
0.382	#80	0.484	0.679	1.314	0.7132	0.9612	29.7	0.119
0.388	# 81	0.515	0.7802	1.514	0.622	1.734	14.3	1.081

- 156 -

= 4V S

á

- 157 -

TABLE B-16

-

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehyde resin, C-1, Run 1

Sample wei	.ght, grams			0.	2180
Bulk densi	ty, grams/cm	3		0.	6737
Skolotal d	lonsity oran	s/cm ³			256
		57 C III		* •	
 Fraction p	orosity	nakadikaryi 1 miliken anakiki mungi na sikunan di Kabasa at	• • ••••••••••••••••••••••••••••••••••	0.	4635
DOD -	DADE	D2/16//T	2/0	CHOCACE	DEDMEAD
VOLUME	DIAMETER	V10 T0+8.	270 X10 TO-4.	APEAL	VIO TOAR.
 CM3/G	MICKONS	CM-1	CM-1	CM2/G	CM2
•0000	372.340	12592.409	•0054	• 0	•00
•0275	134.615	1645.954	•0149	2.8	90.82
•0321	112.179	1143.024	.0178	3.5	93.78
•0413	85.784	668.412	.0233	5.4	97.63
 •0459	73.529	491.078	.0272	6.6	98.87
•0550	65.759	393.135	•0304	9.2	100.75
 • 0596	59.524	321.818	•0336	10.7	101.51
•07cu	50.143	228.378	•0399	17.4	103.85
 .0572	45.103	184.774	•0443	21.3	104.73
•1147	37.634	128.647	• 0531	34.7	106.72
 •1470	34.585	108.643	•0578	51.3	108.36
•211Û	30.329	83.551	•0659	92.4	111.33
 •3119	26.718	64.637	•0749	163.5	114.80
• 3945	23.087	48.413	•0866	230.1	116.96
 •4579	19.423	34.265	•1030	<u> 299.7 </u>	118.37
•5046	17.623	28.210	•1135	339.4	118.90
•5459	14.957	20.320	.1337	390.5	119.37
•6101	2.705	· •665	•7394	670.8	119.68
•6697	•343	•011	5.8251	2628.1	119.69
•6789	•218	•004	9.1771	3316.3	119.69
 •6835	•174	.003	11.4629	3789.7	119.69
· 6835	•058	.000	34.3200	3789.7	119.69
 1300.	•050	.000	40.0343	5495.1	119.69
 •6881	.012	.000	171.4286	5495.1	119.69

.

- 158 -

TABLE B-17

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehyde Resin (C-1), Run 2

Sample weight, grams	.188
Bulk density, grams/cm ³	. 648
Skeletal density, grams/cm ³	1.225
Fraction porosity	. 473

 PORE Volume /	PORE DIAMETER.	D2/16VT X10 T0+8,	2/D X10 T0-4,	SURFACE AREA+	PERMEAB. X10 TO+8
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
 •0000	159.672	2185.785	.0125	• 0	•00
 • 0266	86.164	636.515	.0232	4.8	17.75
•0479	56.726	275.879	•0353	11.0	22.34
 .0851	40.230	138.755	•0497	26.8	25.99
.2021	30.435	79.413	•0657	94.3	32.03
 .4202	22.537	43.546	•0887	262.8	38.37
•5106	18.717	30.033	•1069	351.2	39.95
 •5718	14.957	19.180	•1337	424.8	40.66
•6915	4.768	1.949	• 4194	755.8	41.26
 •7074	3.385	•982	•5909	836.4	41.27
•7234	•825	•058	2.4229	1076.8	41.27
 •7234	.192	.003	10.4229	1076.8	41.27
•7261	•087	.001	22.9943	1521.2	41.27
•7287	•044	.000	45.8514	2436.7	41.27
•7287	.012	•000	171.5657	2436.7	41.27

• •

- 159 -

TABLE B-18

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehyde Char # Pl

(1 - W/Wo) = 0.032 (2½ min at 385°C)	
Sample weight, grams	.122
Bulk density, grams/cm ³	.701
Skeletal density, grams/cm ³	1.298
Fraction porosity	. 459

	PORE VOLUME	PORE DIAMETER	D2/16VT X10 T0+8.	2/D X10 T0-4.	SURFACE	PERMEAB.
	CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
_	•0000	182.292	3165.992	•0110	•0 .	.00
	•0410	102.041	992.028	•0196	6.3	39.11
	•0656	77.64Ú	574.307	.0258	11.8	47.95
	.0984	58,725	328.564	•0341	21.6	54.74
	•1311	47.814	217.816	•041B	34.1	58.85
	•1516	40.907	159.430	•0489	43.4	60.63
	•2131	34.247	111.740	•0584	76.4	64.45
	•2787	29.863	84.968	•0670	117.5	67.41
	• 3607	24.964	59.377	.0801	177.7	70.13
	•4631	19.094	34.737	•1047	272.4	72.34
	• 4262	21.525	44.144	.0929	236.0	71.67
	 52ú5 	15.926	24.167	.1256	339.0	73.15
	•6311	4.464	1.899	•4480	656.3	73.81
	•6393	3.557	1.205	•5623	697.7	73.82
	•6475	•829	•065	2.4137	819.7	73.82
	•6516	•342	•011	5.8423	988.9	73.82
	•6516	•146	•002	13.7257	988.9	73.82
	•6557	•057	•000	34.9829	1987.0	73.82
	•6557	•012	•000	171.5543	1987.0	73.82

.

TABLE B-19

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification:	Phenol-formaldehyde Char #P-2
$(1 - W/Wo) = 0.047 (4\frac{1}{2})$	min. at 385°C)
Sample weight, grams	.130
Bulk density, grams/cm ³	. 628
Skeletal density, grams	/cm ³ <u>1.220</u>
Fraction porosity	. 485

	PORE	PORE	J2/16VT	2/D	SURFACE	PERMEAB.
	VOLUME.	DIAMETER,	X10 T0+8,	X10 T0-4+	AREA	X10 T0+8,
	CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
	.0000	221.519	3967.550	•0090	•0	•00
	•0615	135.240	1478.795	•0148	7.3	81.28
	•0923	86.207	600.876	.0232	13.2	96.79
	•1192	65.250	344.238	.0307	20.4	102.96
	•1385	53.191	228.762	.0376	27.0	105.64
	•2000	41.371	138.387	•0483	53.4	111.12
	•2692	34.483	96.140	•0580	90.2	115.05
	• 3308	28.950	67.762	•0691	129.3	117.50
	•4000	24.407	48.166	•0819	181.6	119.44
	•47 <u></u> 59	21.135	36.117	•0946	249.5	121.02
	<u> </u>	18.647	28.113	•1073	303.9	121.86
	•6U7 7	15.576	19.617	•1284	394.5	122.75
	.7015	1.530	.189	1.3074	1499.0	123.49
	•7692	•825	•055	2.4229	1642.5	123.49
	•7092	• 044	•000	45.8514	1642.5	123.49
	•7751	•039	•000	51.5657	3515.9	123.49
	•7731	.012	•000	171.5657	3515.9	123.49
		•				
	Andrean - International Andrean - International Andrean			······································		
				<u></u>		
·						
					•	
						······
•						
- 						
				•		

- 161 -

······

TABLE B- 20

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehyde Char #33

$(1-W/W_0) = .0734 (15 \text{ min at } 389^\circ)$

Sample weight, grams	.088
Bulk density, grams/cm ³	. 676
Skeletal density, grams/cm ³	1.220
Fraction porosity	. 446

PORE	PORE	J2/16VT	2/D	SURFACE	PERMEAB.
VOLUME.	DIAMETER,	X10 T0+8,	X10 T0-4,	AREA.	X10 T0+8,
CM3/G	MICRONS	См-1	CM-1	CM2/G	CM2
 	·				
 •0000	282.258	7555.919	•0071	• 0	• 00
•0227	182.292	3151.579	.0110	2.1	54.27
 • 0341	84.175	<u> </u>	• 0238	4.0	63.96
•0455	68.843	449.490	.0291	7.0	66.80
•0739	57.302	311.410	•0349	16.1	71.62
•0909	51.110	247.744	.0391	22.4	73.74
•1304	43.424	178.838	.0461	41.8	78.07
 .1932	38.168	138.163	.0524	69.8	82.09
•2614	33.144	104.184	•0603	108.2	85.77
• 3182	29.501	82.876	0677	144.6	88.14
•4091	24.964	59.106	•0801	211.7	91.02
 4602 	21.772	44.955	.0919	255.7	92.21
•5000	19.189	34.921	.1042	294.7	92,91
• 5568	16.151	24.741	.1238	359.5	93.67
•6364	5.303	2.667	•3771	558 •7	94.16
• 6477	1.591	.240	1.2571	651.6	94.16
• 6534	•426	.017	4.6971	820.7	94.16
 • 5534	.097	.001	20.6971	820.7	94.16
•6591	•058	.000	34.4114	2386.3	94.16
 • 6591	.012	•000	171.5543	2386.3	94.16

.

.

- 162 -

and and a subjective of a set of the set of

-

TABLE B-21

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

(1-W/Wo)	= 0.095; (2	min at 436°C)	<u></u>		
Sample wei	ght, grams	•		0,3	148
		3			6371
Bulk densi	cy, grams/cm		0371		
Skeletal d	lensíty, gram	s/cm ⁻		1.	2003
Fraction p	orosity			0.4	4692
	· · · · · ·	•	• • • • • • •	•	
PORE	PORE	- J2/16VT	2/D	SURFACE	PERMEAU
VOLUME.	DIAMETER.	X10 T0+8,	X10 T0-4,	AREA	X10 T0+
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
•0000	410.067	14732.782	•0048	• 0	.00
•0135	143.914	1757.584	.0139	1.3	52.28
•0203	115.971	1141.313	.0172	2.3	56.87
+0270	96.048	782.865	•0208	3.6	59.92
•0372	74.754	474.221	• 0268	6.0	62.91
•04ŭ5	64.386	351.791	•0311	7.0	63.57
•0541	56.379	269.737	• 0355	11.5	65.54
•0777	49.638	209.510	•0403	20•4	68.20
•1216	44.081	164.893	• 0454	39.2	72.05
•1892	39.503	132.427	•0506	71.7	76.77
•2035	34.757	102.514	• 0575	111.9	80.86
• 3784	23.548	69.161	•0701	185.2	85.49
• 4122		66.851	.0713	209.0	86.57
• 400Z	25.907		•0772	249+2	88.14
- 5 3 3 8	23.900	40+142	•0835	2/3.6	88.89
•5000 •5008	20.290	34,935	•0925	300+2	07,00 14
•5811	19,022	30.705	1050	352.0	<u> </u>
•5946	17.986	27.451	.1112	367-3	90-64 44
•b115	16.816	23.996	.1189	386.7	90.84
•b21ó	15.311	19.893	.1306	399.4	90.94
•7095	4.300	1.569	•4651	661.0	91.39
•7196	1.530	.199	1.3074	750.9	91.39
•7230	1.054	.094	1.8971	805.0	91.39
•7264	•660	•037	3.0286	888•2	91.39
•7297	•342	.010	5.8514	1038.2	91.39
•7297	•116	.001	17.2800	1038.2	91.39
•7331	.035	.000	57.2800	2297.6	91.39
•7331	•032	•000	62.9943	2297.6	91.39
• / 365	•029	•000	70.0800	4545.5	91.39
• / 365	.012	•000	171.5657	4545.5	91.39

- 163 -

TABLE B-22

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

.6579

.7500

.7506

.7632

.7632

.7064

•7064

.7697

•7697

14.957

.324

.170

.087

•058

.049

.022

.019

.012

.

(1-W/Wo)	= 0).115; (5)	nin at 436°C)			·
Sample we:	ight, grams			0	. 1 5 2
Bulk denst	ity, grams/cm	3		0.	6227
Shalt tal (doncity gram	s/cm ³		1	1959
Skeltal	lensity, gram	5 7 C m			
Fraction p	porosity			0	, 4793
PORE	PORE	D2/16VT	2/0	SURFACE	PERMEAB
CM3/G	MICRONS		CM-1	CM2/G	
•0000	182.292	2698.312	•0110	•0	•00
•0329	114.007	1055.402	•0175	4.7	29.59
•0461	89.240	646.665	• 0224		
•0526	75.301	460.429	•0266	8.9	36.70
•0625	53.337	325.741	•0316	11.8	
0024	55•292 117 911	240+249 185 640	• UJDZ 0// 1 8	22.8 T2+T	J7.92 41 97
-2072	39.124	124.290	0710	76.3	50.52
·2072	34,415	<u>+6706</u> 20 96,173	.0581	117.7	54-52
•4013	28.998	68.278	•0690	192.9	59.19
•4770	25.480	52.720	•0785	248.7	61.38
•5428	22.327	40.478	• 0896	304.0	62.85
•5921	19.774	31.750	•1011	351.0	63.71
•6250	17.065	23.646	•1172	386.9	64.14

18.166

.009

.002

.001

.000

.000

.000

.000

.000

64.47

64.87

64.87 64.87

64.87

64.87

64.87

64.87

64.87

428.2

3331.9

3922.1

5068.7

5068.7

6299.9

6299.9

9495.4

9495.4

.1337

6.1714

11.7714

23.0857

34.2857

40.5714

91.4286

102.8571

171.4286

- 164 -

TABLE B-23

.

---- .

•

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample wei	ight, grams			0.3	1755
Bulk densi	ity, grams/cm	3		0.0	6424
	1 / / / / / / / / / / / / / / / / / / /	, 3			1002
Skeletal c	lensity, gram	s/cm		· • 4	1925
Fraction p	orosity	··			4612
PORE	PORE	D2/16VT	2/D	SURFACE	PERMEA
VOLUME.	DIAMETER.	X10 T0+8,	X10 TO-4,	AREA	X10 TO-
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
•0000	190.217	3150.043	•0105	• 0	• 0 (
•0114	125.358	1368.111	.0160	1.5	11.8
•0171	82.586	593.786	.0242	2.7	14.4
•0228	09.339	419.181	.0288	4.2	15.70
•0342	57.040	283.258	.0351	7.8	17.6
•0513	50.186	219.275	•0399	14.2	19.62
•0709	45.776	182.425	•0437	24.9	21.98
•1254	39.503	135.858	•0506	47.8	25.54
•2335	33.686	98.792	•0594	107.3	31.40
•2905	30.648	81.775	•0653	142.8	33.7
• 3362	28.595	/1.185	• 0699	173.6	
• 3075 11 X 97	20.010	51.4 60	• 0 / 54	210.9	36.94
.4766	22.401	<u> </u>	• 0823	251.4	38.2
-5242	20.115	35.225	• U070	203.0	39.13
.5470	18.837	30.893	.1062	352.2	
•5098	15.880	21,955	.1259	378.6	40.50
• όθθο	14.957	19.477	•1337	426.7	40.95
•7009	2.624	•599	•7623	847.9	41.39
·7060	1.526	.203	1.3109	907.0	41.39
•7094	• 342	•010	5.8514	1009.0	41.39
•7094	.192	.003	10.4229	1009.0	41.39
•7123	•173	•003	11.5314	1321.7	41.39
•7123	•037	.001	22.9943	1321.7	41.39
.7151	•048	•000	41.2800	2237.3	41.39
•7179	•038	.000	52,4800	3572.9	41.39
•7179	.012	.000	171.5657	3572.9	41.39

T

- 165 -

and and a stand stand of the stand stand stand stand of the stand stand stand stand stand stand stand stand stand

- ----

·

,

TABLE B-24

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Bulk density, grams/cm ³ 0.6247 Skeletal density, grams/cm ³ 1.1898 Fraction porosity 0.4750 PONE D2/16VT 2/D SURFACE PERMEAB VOLUME, DIAMETER, X10 T0+8, X10 T0-4, AREA, X10 T0+4 CM3/G CM2/G CM2 .0000 291.667 6993.082 .0069 .0 .00 .0105 175.000 2517.509 .0114 1.5 37.33 .0246 116.667 1118.893 .0171 2.7 44.47 .0331 88.354 642.156 .02266 4.3 47.93 .0490 57.377 270.627 .0349 9.1 51.51 .016 40.4323 133.657 .0431 16.7 54.15 .0246 106.586 .0555 107.6 66.32 .0471 31.646 82.323 .0632 16.6 70.404 .0490 28.546 66.996 .0701 200.2 72.45 .4495 .22.45 .4495 .22.45 .4495 .22.45 .4495 .22.45 .4495 .22.45 .4495	Samplc wei	ght, grams	2		0.	1210
I.1898I.1898Fractiol porosityPORED2/16VT2/DSURFACEPERMEABVOLUMEDIAMETERX10 T0+8X10 T0-4AREAX10 T0+4CM3/GMICHONSCM-1CM-1CM2/GCM2·00000291.6676993.062.0069.0.00.00000291.6676993.062.0069.0.00.01000291.6676993.062.0069.0.00.01105175.0002517.509.01141.537.33.0240116.6671118.893.01712.744.47.035186.354642.156.02264.347.93.049057.377270.627.03499.151.51.077440.419177.128.049668.5.2.08.cab230.003106.586.0555107.666.32.47131.64682.323.0632161.670.40.405028.54366.996.0701200.272.45.405028.54335.679.0960342.276.62.576520.63335.679.0960342.276.62.576520.63335.679.0960342.276.62.576520.63335.679.0960342.276.62.576520.63335.679.0960342.276.62.576520.63335.679.0960342.276.62.5765 </th <th>Bulk densi</th> <th>ty, grams/cm⁻</th> <th>3</th> <th></th> <th>0.</th> <th>6247</th>	Bulk densi	ty, grams/cm ⁻	3		0.	6247
Fraction porosity 0.4750 PORE PORE D2/16VT 2/D SURFACE PERMEAB VOLUME, DIAMETER, X10 T0+8, X10 T0-4, AREA, X10 T0+4 CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .00000 291.667 6993.082 .0069 .0 .00 .0165 175.000 2517.509 .0114 1.5 37.33 .0240 116.667 1118.893 .0171 2.7 44.47 .0351 86.354 642.156 .0226 4.3 47.93 .0490 57.377 270.627 .0349 9.1 51.51 .0490 57.377 270.627 .0349 9.1 51.51 .0490 57.377 270.627 .0349 9.1 51.51 .0490 57.377 270.627 .0349 9.1 51.51 .0496 68.5 .02.08 .0431 18.7 54.15 .0495 26.000 106.586 .0555 107.6 66.32	Skeletal d	ensity, grams	s/cm ³		1.	1898
PORE PORE D2/16VT 2/D SURFACE PERMEAB VOLUME, DIAMETER, X10 T0+8, X10 T0-4, AREA, X10 T0+4, CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .00000 291.6667 6993.082 .0069 .0 .00 .0165 175.000 2517.509 .0114 1.5 37.33 .024d 116.667 1118.893 .0171 2.7 44.47 .0331 88.324 642.156 .0226 4.3 47.93 .0490 57.377 270.627 .0349 9.1 51.51 .0118 40.323 133.657 .0496 68.5 .208 .0490 28.543 66.996 .0701 200.2 72.45 .4020 28.543 66.996 .0701 200.2 72.45 .4020 28.543 66.996 .0701 200.2 72.45 .4020 28.543 66.996 .0701 200.2 72.45 .4024 20.633 35.67	Punatia, m	a waa i tu			0	.750
PORE D2/16VT 2/D SURFACE PERMEAB VOLUME, DIAMETER, X10 T0+8, X10 T0-4, AREA, X10 T0+4, CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .0000 291.667 6993.082 .0069 .0 .00 .0165 175.000 2517.509 .0114 1.5 37.33 .0246 116.667 1118.893 .0171 2.7 44.47 .0331 88.364 642.156 .0266 4.3 47.93 .0490 57.377 270.627 .0349 9.1 51.51 .018 40.323 133.657 .0496 68.5 .02.08 .252 36.008 106.586 .0555 107.6 66.32 .4471 31.646 82.323 .0632 161.6 70.49 .4455 26.030 55.915 .0767 242.6 74.4 .4959 24.272 48.423 .0824 268.9 74.96	riaction p	OIDSILY	• • •	• -		47.50
VOLUMEDIAMETERX10 T0+8X10 T0-4AREAX10 T0+4CM3/GMICRONSCM-1CM-1CM2/GCM2.0000291.6676993.082.0069.0.00.0165175.0002517.509.01141.537.33.0243116.6671118.893.01712.744.47.035188.354642.156.02264.347.93.049057.377270.627.03499.151.51.074440.419177.128.043118.754.15.151843.323133.657.049668.5.2.08.256236.008106.586.0555107.666.32.647131.64682.323.0632161.670.40.405028.54366.996.0701200.272.45.405522.35041.063.0895311.576.02.575520.83335.679.0960342.276.62.51618.42127.895.1086376.077.12.544617.12324.103.1168413.277.53.74362.614.651.7109823.778.11.7479.352.0105.6800955.778.11.7521.239.0076.92571216.178.11.752.070.00028.66571951.978.11	PORE	PORE	D2/16VT	2/0	SURFACE	PERMEAN
CM3/GMICRONS $CM-1$ $CM-1$ $CM2/G$ $CM2$.0000291.6676993.082.0069.0.00.0165175.0002517.509.01141.537.33.0243116.6671118.893.01712.744.47.033188.354642.156.02264.347.93.049057.377270.627.03499.151.51.074445.419177.128.043118.754.15.151843.323133.657.049668.552.08.255235.008106.586.0555107.666.32.647131.64682.323.0632161.670.40.405028.54866.996.0701200.272.45.45522.35041.063.0895311.576.02.545520.83335.679.0960342.276.62.51613.42127.895.1086376.077.12.544617.12324.103.1168413.277.53.74362.614.651.7109823.778.11.7479.352.0105.680095.778.11.7521.239.0076.92571216.178.11.7567.070.00028.68571951.978.11	VOLUME	DIAMETER	X10 TO+8,	X10 TO-4.	ARFA.	X10 TO+8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•0000	291.667	6993.082	.0069	• 0	.00
$\cdot 0246$ 116.6671118.893 $\cdot 0171$ 2.7 44.47 $\cdot 0331$ 88.384 642.156 $\cdot 0226$ 4.3 47.93 $\cdot 0490$ 57.377 270.627 $\cdot 0349$ 9.1 51.51 $\cdot 0744$ 40.419 177.128 $\cdot 0431$ 18.7 54.15 $\cdot 1018$ 43.323 133.657 $\cdot 0496$ 68.5 52.08 $\cdot 252$ 36.008 106.586 $\cdot 0555$ 107.6 66.32 $\cdot 5471$ 31.646 82.323 $\cdot 0632$ 161.6 70.40 $\cdot 4050$ 28.548 66.996 $\cdot 0701$ 200.2 72.45 $\cdot 4028$ 26.030 55.915 $\cdot 0767$ 242.6 74.14 $\cdot 4959$ 24.272 48.428 $\cdot 0824$ 268.9 74.96 $\cdot 5755$ 20.333 35.679 $\cdot 0960$ 342.2 76.62 $\cdot 5755$ 20.333 35.679 $\cdot 0960$ 342.2 76.62 $\cdot 6116$ 18.421 27.895 1086 376.0 77.12 $\cdot 0446$ 17.123 24.103 1168 413.2 77.53 $\cdot 7438$ 2.614 $.651$ $.7109$ 823.7 78.11 $\cdot 752$ $\cdot 070$ $\cdot 000$ 28.6857 1951.9 78.11 $\cdot 7562$ $\cdot 070$ $\cdot 000$ 28.6857 1951.9 78.11	•0165	175.000	2517.509	.0114	1.5	37.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·0248	116.667	1118.893	.0171	2.7	44.47
.0490 57.377 270.627 $.0349$ 9.1 51.51 $.0744$ 45.419 177.128 $.0431$ 18.7 54.15 $.1518$ 43.323 133.657 $.0496$ 68.5 $.0208$ $.2552$ 36.008 106.586 $.0555$ 107.6 66.32 $.471$ 31.646 82.323 $.0632$ 161.6 70.40 $.4050$ 28.548 66.996 $.0701$ 200.2 72.45 $.4028$ 26.030 55.915 $.0767$ 242.6 74.14 $.4959$ 24.272 48.428 $.0824$ 268.9 74.96 $.5455$ 22.350 41.063 $.0895$ 311.5 76.02 $.5785$ 20.333 35.679 $.0960$ 342.2 76.62 $.5785$ 20.333 35.679 $.0960$ 342.2 76.62 $.5785$ 20.333 35.679 $.0960$ 342.2 76.62 $.5785$ 20.333 35.679 $.0960$ 342.2 76.62 $.5785$ 20.333 35.679 $.0960$ 342.2 77.53 $.5785$ 20.333 35.679 $.0960$ 342.2 77.53 $.57436$ 2.814 $.651$ $.7109$ 823.7 78.11 $.7436$ 2.814 $.651$ $.7109$ 823.7 78.11 $.7479$ $.352$ $.007$ $.6.9257$ 1216.1 78.11 $.7521$ $.289$ $.007$ 6.9257 1216.1 78.11 $.753$.0331	88.354	ó42.156	.0226	4.3	47.93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 0490	57.377	270.627	.0349	9.1	51.51
$\cdot 1518$ $4 \\ 323$ 133.657 $.0496$ 68.5 52.08 $\cdot 2552$ 36.008 106.586 $.0555$ 107.6 66.32 $\cdot 3471$ 31.646 82.323 $.0632$ 161.6 70.40 $\cdot 4050$ 28.548 66.996 $.0701$ 200.2 72.45 $\cdot 4028$ 26.030 55.915 $.0767$ 242.6 74.14 $\cdot 4959$ 24.272 48.428 $.0824$ 268.99 74.96 $\cdot 5455$ 22.350 41.063 $.0895$ 311.5 76.02 $\cdot 5755$ 20.333 35.679 $.0960$ 342.2 76.62 $\cdot 6116$ 18.421 27.895 $.1086$ 376.0 77.12 $\cdot 6446$ 17.123 24.103 $.1168$ 413.2 77.53 $\cdot 74.33$ 2.614 $.651$ $.7109$ 823.7 78.11 $\cdot 7521$ $.289$ $.007$ 6.9257 1216.1 78.11 $\cdot 7552$ $.070$ $.000$ 28.6657 1951.9 78.11	• 0744	40.419	177.128	•0431	18.7	54.15
$\cdot 2562$ 36.008 106.586 $.0555$ 107.6 66.32 $\cdot 3471$ 31.646 82.323 $.0632$ 161.6 70.40 $\cdot 4050$ 28.548 66.996 $.0701$ 200.2 72.45 $\cdot 4028$ 26.030 55.915 $.0767$ 242.6 74.14 $\cdot 4959$ 24.272 48.428 $.0824$ 268.9 74.96 $\cdot 5455$ 22.350 41.063 $.0895$ 311.5 76.02 $\cdot 5785$ 20.333 35.679 $.0960$ 342.2 76.62 $\cdot 6116$ 18.421 27.895 $.1086$ 376.0 77.12 $\cdot 6446$ 17.123 24.103 $.1168$ 413.2 77.53 $\cdot 7438$ 2.614 $.651$ $.7109$ 823.7 78.11 $\cdot 7521$ $.289$ $.007$ 6.9257 1216.1 78.11 $\cdot 7562$ $.070$ $.000$ 28.6857 1951.9 78.11	.1018	43.323	133.657	•0496	68.5	b2.08
$\cdot 5471$ 31.646 82.323 $.0632$ 161.6 70.40 $\cdot 4050$ 28.548 66.996 $.0701$ 200.2 72.45 $\cdot 4028$ 26.030 55.915 $.0767$ 242.6 74.14 $\cdot 4959$ 24.272 48.428 $.0824$ 268.9 74.96 $\cdot 5455$ 22.550 41.063 $.0895$ 311.5 76.02 $\cdot 5755$ 20.353 35.679 $.0960$ 342.2 76.62 $\cdot 6116$ 18.421 27.895 $.1086$ 376.0 77.12 $\cdot 5446$ 17.123 24.103 $.1168$ 413.2 77.53 $\cdot 7438$ 2.814 $.651$ $.7109$ 823.7 78.11 $\cdot 7479$ $.352$ $.010$ 5.6800 955.7 78.11 $\cdot 7521$ $.289$ $.007$ 6.9257 1216.1 78.11 $\cdot 7562$ $.070$ $.000$ 28.6657 1951.9 78.11	• < 362	36.008	106.586	•0555	107.6	66.32
4050 28.543 66.996 $.0701$ 200.2 72.45 4028 26.030 55.915 $.0767$ 242.6 74.14 $.4959$ 24.272 48.423 $.0824$ 268.9 74.96 $.5455$ 22.350 41.063 $.0895$ 311.5 76.02 $.5755$ 20.333 35.679 $.0960$ 342.2 76.62 $.6116$ 18.421 27.895 $.1086$ 376.0 77.12 $.6446$ 17.123 24.103 $.1168$ 413.2 77.53 $.7436$ 2.814 $.651$ $.7109$ 823.7 78.11 $.7479$ $.352$ $.010$ 5.6800 955.7 78.11 $.7521$ $.269$ $.007$ 6.9257 1216.1 78.11 $.7562$ $.070$ $.000$ 28.6657 1951.9 78.11	• 3471	31.646	82.323	• 0632	161.6	70.40
+628 26.030 55.915 $.0767$ 242.6 74.14 $+4959$ 24.272 48.428 $.0824$ 268.9 74.96 $.5455$ 22.350 41.063 $.0895$ 311.5 76.02 $.5755$ 20.333 35.679 $.0960$ 342.2 76.62 $.6116$ 18.421 27.8955 $.1086$ 376.0 77.12 $.0446$ 17.123 24.103 $.1168$ 413.2 77.53 $.7438$ 2.814 $.651$ $.7109$ 823.7 78.11 $.7479$ $.352$ $.010$ 5.6800 955.7 78.11 $.7521$ $.289$ $.007$ 6.9257 1216.1 78.11 $.7552$ $.070$ $.000$ 28.6857 1951.9 78.11	«4050	28.548	66.996	•0701	200•2	72,45
.4959 24.272 48.428 $.0824$ 268.9 74.96 $.5455$ 22.350 41.063 $.0895$ 311.5 76.02 $.5755$ 20.333 35.679 $.0960$ 342.2 76.62 $.6116$ 18.421 27.8955 $.1086$ 376.0 77.12 $.0446$ 17.123 24.103 $.1168$ 413.2 77.53 $.7436$ 2.614 $.651$ $.7109$ 823.7 78.11 $.7479$ $.352$ $.010$ 5.6800 955.7 78.11 $.7521$ $.289$ $.007$ 6.9257 1216.1 78.11 $.7552$ $.070$ $.000$ 28.6857 1951.9 78.11	•4028	26.030	55.915	• 0767	242.6	74.14
$\cdot 5455$ $22 \cdot 350$ $41 \cdot 063$ $\cdot 0895$ $311 \cdot 5$ $76 \cdot 02$ $\cdot 5755$ $20 \cdot 353$ $35 \cdot 679$ $\cdot 0960$ $342 \cdot 2$ $76 \cdot 62$ $\cdot 6116$ $18 \cdot 421$ $27 \cdot 895$ $\cdot 1086$ $376 \cdot 0$ $77 \cdot 12$ $\cdot 5446$ $17 \cdot 123$ $24 \cdot 103$ $\cdot 1168$ $413 \cdot 2$ $77 \cdot 53$ $\cdot 7436$ $2 \cdot 814$ $\cdot 651$ $\cdot 7109$ $823 \cdot 7$ $78 \cdot 11$ $\cdot 7479$ $\cdot 352$ $\cdot 010$ $5 \cdot 6800$ $955 \cdot 7$ $78 \cdot 11$ $\cdot 7521$ $\cdot 239$ $\cdot 007$ $6 \cdot 9257$ $1216 \cdot 1$ $78 \cdot 11$ $\cdot 7552$ $\cdot 070$ $\cdot 000$ $28 \cdot 6857$ $1951 \cdot 9$ $78 \cdot 11$	•4959	24.272	48.428	•0824	268.9	74.96
$\cdot 5755$ 20.333 35.679 $\cdot 0960$ 342.2 76.62 $\cdot 6116$ 18.421 27.8955 $\cdot 1086$ 376.0 77.12 $\cdot 5446$ 17.123 24.103 $\cdot 1168$ 413.2 77.53 $\cdot 7436$ 2.814 $\cdot 651$ $\cdot 7109$ 823.7 78.11 $\cdot 7479$ $\cdot 352$ $\cdot 010$ 5.6800 955.7 78.11 $\cdot 7521$ $\cdot 289$ $\cdot 007$ 6.9257 1216.1 78.11 $\cdot 7552$ $\cdot 070$ $\cdot 000$ 28.6857 1951.9 78.11		22.350	41.063	• 0895	311.5	76.02
.6116 18.421 27.895 $.1086$ 376.0 77.12 $.0446$ 17.123 24.103 $.1168$ 413.2 77.53 $.7436$ 2.614 $.651$ $.7109$ 823.7 78.11 $.7479$ $.352$ $.010$ 5.6800 955.7 78.11 $.7521$ $.269$ $.007$ 6.9257 1216.1 78.11 $.7552$ $.070$ $.000$ 28.6857 1951.9 78.11	• 5765	20.003	35.679	•0960	342.2	76.62
.6446 17.123 24.103 .1168 413.2 77.53 .7436 2.614 .651 .7109 823.7 78.11 .7479 .352 .010 5.6800 955.7 78.11 .7521 .239 .007 6.9257 1216.1 78.11 .7552 .070 .000 28.6857 1951.9 78.11	•6116	18.421	27.895	•1086	376.0	77.12
• 7438 2.814 .651 • 7109 823.7 78.11 • 7479 • 352 • 010 5.6800 955.7 78.11 • 7521 • 239 • 007 6.9257 1216.1 78.11 • 7552 • 070 • 000 28.6657 1951.9 78.11	•0440	17.123	24.103	•1168	413.2	77.53
•7479 •352 •010 5•6800 955•7 78•11 •7521 •289 •007 6•9257 1216•1 78•11 •7552 •070 •000 28•6857 1951•9 78•11	• / + 38	2.814	•651	•7109	823.7	
•/521 •289 •007 6•9257 1216•1 78•11 •7552 •070 •000 28•6857 1951•9 78•11	• 7 4 7 9	• 352	.010	5.6800	955.7	78.11
	• / 521	•289	•007	6.925/	1216.1	78.11
	• / 362	• 0 7 0	•000	28.6657	1951.9	78.11
	•7005	012	•000		3626.4	79 11

_ _

-	1	6	6	-
---	---	---	---	---

er i reservagenere ageler della

--- 4

ter sales var var ander the statement of the statement of the same of the same of the same and the same and the

TABLE B-25

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Bulk density, grams/cm ³ Skeletal density, grams/cm ³ Fraction porosity PORE PORE 22/16VT 2/D SURFACE PERMEAB. VOLUME, DIAMETER, X10 T0+B, X10 T0-4, AREA, X10 T0+6 CM3/6 MICRONS CM-1 CM-1 CM2/6 CM2 .0000 334.147 9065.328 .0059 .0 .00 .0004 162.157 2073.194 .0123 .8 22.75 .0506 86.462 589.199 .0231 8.3 49.93 .0506 86.462 589.199 .0231 8.3 49.93 .0506 86.462 589.199 .0231 114.2 77.02 .5003 28.090 62.188 .0712 240.1 85.54 .0076 22.095 38.440 .0905 322.0 88.01 .5502 18.229 26.190 .1097 372.6 88.80 .7039 15.432 18.770 .1296 433.2 89.35 .7679 4.442 1.555 .4503 604.5 89.64 .7754 5.405 .914 .5874 648.3 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	Sample we:	ight, grams	. 1185			
Skeletal density, grams/cm ³ 1.234 Fraction porosity .484 PORE PORE D2/16VT 2/D SURFACE PERMEAB. VOLUME. DIAMETER. X10 T0+8. X10 T0-4. AREA. X10 T0+6 CM3/6 MICRCNS CM-1 CM-1 CM2/6 CM2 .0000 354.147 9065.328 .0059 .0 .00 .0004 162.167 2073.194 .0123 .8 22.75 .0506 86.462 589.199 .0231 8.3 49.93 .0970 55.520 242.946 .0360 22.0 59.28 .0338 37.634 11.629 .0531 114.2 77.02 .0503 28.090 62.188 .0712 240.1 85.54 .0076 22.095 38.480 .0905 322.0 88.80 .7039 15.432 18.770 .1296 433.2 89.65 .704 .442 1.555 .4503 604.5 89.65 .7932 .342 .009 5.8514 1027.4	Bulk dens	ity grams/cm	3			623
Skeletal density, grams/em	Chalanal	ley, grumo, em	3			
Fraction porosity	Skeletal	iensity, gram	s/cm			
PORE PORE D2/16VT 2/D SURFACE PERMEAB. VDLUME. DIAMETER. X10 T0+8. X10 T0-4. AREA. X10 T0+8 CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .0000 339.147 9065.328 .0059 .0 .00 .0044 162.167 2073.194 .0123 .8 22.75 .0506 86.462 589.199 .0231 8.3 49.93 .0970 55.520 242.946 .0360 22.0 59.28 .0038 37.634 11.629 .0531 114.2 77.02 .5003 28.090 62.188 .0712 240.1 85.54 .0076 22.095 38.460 .0905 .322.0 88.01 .65d2 18.229 26.190 .1097 .372.6 88.80 .7079 4.442 1.555 .4503 604.5 89.65 .7546 1.571 .194	Fraction p	porosity				. 484
PORE D2/16VT 2/D SURFACE PERMEAB. VOLUME. DIAMETER. X10 T0+8. X10 T0-4. AREA. X10 T0+2. CM3/6 MICRONS CM-1 CM-1 CM2/6 CM2 .0000 334.147 9065.328 .0059 .0 .00 .0004 162.167 2073.194 .0123 .8 22.75 .0506 86.462 589.199 .0231 8.3 349.93 .0970 55.520 242.946 .0360 22.0 59.28 .0038 37.634 11.629 .0531 114.2 77.02 .0038 37.634 11.629 .0531 114.2 77.02 .0047 22.095 38.480 .0905 322.0 68.01 .0076 22.095 38.480 .0905 322.0 88.01 .0077 24.412 1.555 .4503 604.5 89.65 .7754 .442 1.555 .4503 604.5 89.65	•	·	·.			
VOLUME DIAMETER X10 T0+8 X10 T0-4 AREA X10 T0+6 CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .0000 339.147 9065.328 .0059 .0 .00 .0004 162.1a7 2073.194 .0123 .8 22.75 .0505 86.462 589.199 .0231 8.3 49.93 .0970 55.520 242.946 .0360 22.0 59.28 .0033 28.090 62.188 .0712 240.1 85.54 .0076 22.095 38.480 .0905 322.0 88.01 .6532 18.229 26.190 .1097 372.6 88.80 .7069 15.452 18.770 .1296 433.2 89.35 .7679 4.442 1.555 .4503 604.5 89.65 .7754 5.405 .914 .5874 648.3 89.65 .7932 .012 .000 171.5657 1027.4	PORE	PORE	22/16VT	2/D	SURFACE	PERMEAB.
CM3/6 MICRONS CM-1 CM-1 CM2/6 CM2 .0000 339.147 9065.328 .0059 .0 .00 .0004 162.167 2073.194 .0123 .8 22.75 .0506 86.462 589.199 .0231 8.3 49.93 .0970 55.520 242.946 .0360 22.0 59.28 .038 37.634 111.629 .0531 114.2 77.02 .5003 28.090 62.188 .0712 240.1 85.54 .0076 22.095 38.480 .0905 322.0 88.01 .6072 18.229 26.190 .1097 372.6 88.80 .7089 15.432 18.770 .1296 433.2 89.65 .704 3.4405 .914 .5674 648.3 89.65 .7059 4.442 1.555 .4503 604.5 89.65 .7932 .342 .009 5.8514 1027.4 89.65	VOLUME.	DIAMETER.	X10 T0+8,	X10 T0-4,	AREA.	X10 T0+8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•0000	339.147	9065.328	•0059	• 0	.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•0084	162.107	2073.194	.0123	•8	22.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.0506	86.402	589.199	•0231	8.3	49.93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.0970	55,520	242.946	•0360	22.0	59,28
.5003 28.090 62.188 .0712 240.1 85.54 .6076 22.096 38.480 .0905 322.0 88.01 .6532 18.229 26.190 .1097 372.6 88.80 .7089 15.432 18.770 .1296 433.2 89.35 .7679 4.442 1.555 .4503 604.5 89.64 .7704 3.405 .914 .5874 648.3 89.65 .7545 1.571 .194 1.2731 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	• 2038	37.634	111.629	•0531	114.2	77.02
.b076 22.095 38.480 .0905 322.0 88.01 .b532 18.229 26.190 .1097 372.6 88.80 .7039 15.432 18.770 .1296 433.2 89.35 .7679 4.442 1.555 .4503 604.5 89.64 .7754 3.405 .914 .5874 648.3 89.65 .7645 1.571 .194 1.2731 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	.5003	28.090	62.188	.0712	240.1	85.54
.6532 18.229 26.190 .1097 372.6 88.80 .7089 15.432 18.770 .1296 433.2 89.35 .7679 4.442 1.555 .4503 604.5 89.64 .7754 3.405 .914 .5874 648.3 89.65 .7548 1.571 .194 1.2731 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	• öÚ76	22.095	38.480	•0905	322.0	88.01
.7069 15.432 18.770 .1296 433.2 89.35 .7679 4.442 1.555 .4503 604.5 89.64 .7764 3.405 .914 .5874 648.3 89.65 .7548 1.571 .194 1.2731 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	•6532	18.229	26.190	•1097	372.6	88.80
.7679 4.442 1.555 .4503 604.5 89.64 .7764 3.405 .914 .5874 648.3 89.65 .7548 1.571 .194 1.2731 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	•7089	15.432	18.770	•1296	433.2	89.35
.7764 3.405 .914 .5874 648.5 89.65 .7548 1.571 .194 1.2731 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	•7679	4.442	1.555	•4503	604.5	89.64
.7845 1.571 .194 1.2751 726.8 89.65 .7932 .342 .009 5.8514 1027.4 89.65 .7932 .012 .000 171.5657 1027.4 89.65	-//04	3.405	• 914	.5874	648.3	89.65
·7932 ·012 ·000 171.5657 1027.4 89.65	•/040	1.0/1	•194		1027 /	89.00
	•7932	•012	•000	171.5657	1027.4	89.65
			· · · · · · · · · · · · · · · · · · ·			
{						
				(

- 167 -

TABLE B-26

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

(1-W/Wo) *	= 0.259; (1 m	in. at 571°C))			
Sample wei	ight, grams	0.1900				
Bulk densi	ity, grams/cm	0.	6530			
Chaletal a	landtu anam		0105			
Skerelar (lensity, gram	57 C III		0.4610		
Fraction p	porosity					
PORE	PORE	D2/16VT	2/D	SURFACE	PERMEAB	
VOLUME.	DIAMETER.	X10 T0+8,	X10 T0-4.	AREA	X10 TO+8	
См3/6	MICRONS	CM-1	CM-1	CM2/G	CM2	
•0000	546.375	26502.221	.0037	• 0	•00	
.0158	153.644	2091.870	.0130	1.3	104.07	
• 0211	167.891	1031.527	.0185	2.1	107.80	
·US16	83.413	616.554	.0240	4.4	111.86	
<u>60000</u>	64.552	369.252	•0310	5.8	113.05	
•0526	55.911	277.009	•0358	11.1	115.40	
• 3421	33.168	129.095	•0524	138.7	142.50	
•4447	32.181	91.771	•0621	197.5	147.72	
•5053	27.822	68.593	.0719	238.1	149.96	
• 5 3 5 8	24.579	53.533	•0814	262.3	150.85	
•5084	22.013	42.939	•0909	289.5	151.55	
•5947	19.663	34.261	•1017	314.8	152.02	
•6105	1/./00	27.971	•1126	331.7	152.25	
•5395	14.957	19.825	•1337	367.4	152.57	
•0042 CUDE	4.197	1.561	•4765	503.9	152.79	
• 0090 - 690 7	1 040	• / 01	. JOUZJ	534+4 500 5	152.79	
•0947	1000	.021	L 1371	500.5	152.19	
.6974	• 400 . 385	.013	5.2000	703.4	152 79	
	- 214	<u>. 015</u>	<u> </u>	703.4	152 79	
•7000	.194	.003	10.3086	961.9	152.79	
•7000	.116	.001	17.2800	961.9	152.79	
•7026	.084	.001	23.9086	1503-8	152.79	
•7020	.070	•000	28.7086	1503.8	152.79	
•7053	•058	•000	34.6514	2337.5	152.79	
.7053	.012	•000	171.5657	2337.5	152.79	

· ·

.

-

.

.

- 168 -

TABLE B-27

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehyde Char #72

$(1 - W/W_0) = 0.302;$ (3 min. at 571°C)

•

.

- ----

.

......

Sample weight, grams	.1515
Bulk density, grams/cm ³	. 659
Skeletal density, grams/cm ³	1.680
Fraction porosity	. 609

PORE Volume•	PORE DIAMETER,	D2/16VT X10 T0+8,	2/D X10 T0-4,	SURFACE AREA+	PERMEAB. X10 TO+8,
CM3/G	MICKONS	CM-1	CM-1	CM2/G	CM2
•0000	233.333	3682.660	•0086	•0	.00
.0132	126.537	1083.028	•0158	1.6	19.16
•0264	81.699	451.487	.0245	4.3	25,33
•0462	62.927	267.844	•0318	9.8	29,66
•1584	47.425	152.136	.0422	51.3	44.01
• 3234	35.971	87.522	•0556	132.0	56.06
•4224	29.362	58.317	•0681	193.2	60.45
•4950	24.221	39.683	•0826	247.9	62.62
•5413	20.420	28.205	•0979	289.7	63.57
•5677	13.154	22.291	.1102	317.1	63.98
·6007	15.331	15.896	•1305	356.8	64.36
·0001	5.193	1.824	•3851	510.0	64.68
•7591	1.562	.165	1.2800	1334.3	64.74
•7921	•709	.034	2.8229	2011.4	64.75
•7921	.116	.001	17.2800	2011.4	64.75
+8581	.057	•000	34,9943	19263.6	64.75
•8581	•044	•000	45.8514	19263.6	64,75
•5911	.029	.000	68.7086	38167.9	64.75
•9241	•014	•000	141.8514	72913.7	64.75
•9241	.012	.000	171.5657	72913.7	64.75
•9241	.012	.000	171.5657	72913.7	6

--

.

- 169 -

TABLE B-28

MERCURY POROSIMFTER DETERMINATION OF PORE VOLUME, SURFA E AREA, AND PERMEABILITY

(1 - W/Wo) = 0.320; (8	min 571°(;)			
Sample we:	ight, grams			0.	1948	
$\frac{1}{2}$						
burk dens.						
Skeletal	density, gram	s/cm ⁻		<u> </u>	1.3261	
Fraction ;	porosity			Ο.	4714	
•		ч.				
PORE	POI :	D2/16VT	2/0	SURFACE	PERMEAB	
VOLUME.	DIAMETER	X10 T0+8,	X10 T0-4,	AREA.	X10 TO+	
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2	
•0000	261.194	6340.364	•0077	• 0	.00	
•0154	152.452	3094.757	•0110	1.4	34.25	
.0205	118.034	1295.888	•0169	2.1	39.56	
•0231	90.370	899.315	.0203	2.6	40.89	
.0359	72.584	489.632	.0276	5.7	45.09	
.3234	48.679	220.225	•0411	104.4	93.19	
•4415	39.150	-142.446	•0511	158.8	103.28	
·4625	34.505	111.164	.0578	181.1	105.74	
•5133	30.435	86.085	•0657	200.2	107.17	
•5390	28.000	72.862	•0714	217.8	108.13	
•5047	24.646	56.461	•0811	237.3	108.91	
• 5052	22.293	46.138	•089 7	254.9	109.41	
•5903	20.735	39.956	•0965	259.7	109.51	
• ວິບິບິດ	19.063	33.774	•1049	270.0	109.69	
• 505/	1/•/48	29.276	•1127	275.6	109.77	
• D 1 (D		23.180	•1215	281.6	109.83	
•0100	2 705	20.192	•1337	288•2	110 05	
•0 4 05	2.100	063	+ 1 J J +	422•0 503 8	110.05	
•0520 •6571	•020 Xita	005	5.0057	<u> </u>	110.05	
+0071 +6p22	• 044	- 000 • 011	64.1371	2510.2	110.05	
• bo48	.620		97.9657	4590.6	110.05	
•6574	19	-000	103.1086	7171.1	110.05	
• 0725	.012	.000	169.2800	14162.6	110.05	
•6725	.012	.000	171.5657	14162.6	110.05	

____, ,

ŧ

-	1	7	0/	-
---	---	---	----	---

TABLE **B-29**

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

1 - W/Wo)) = .329; (16	<u>min at 571°(</u>	2)			
Sample wei	ght, grams	0.	0.146			
Bulk densi	ty, grams/cm		673			
			<u></u>			
skeletal d	iensity, gram		1.297			
Fraction p	orosity					
PORE	PORE	D2/16VT	2/0	SURFACE	PERMEAB.	
VOLUME.	DIAMETER.	X10 T0+8,	X10 TO-4,	AREA	X10 T0+8	
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2	
•0000	307.018	8230.857	•0065	• 0	.00	
• 0137	152.639	2309.778	.0123	1.3	34.80	
·U205	107.428	1007.749	.0186	2.3	40.27	
•0342	76.586	512.180	•0261	5.4	45.29	
•0548	61.533	330.625	•0325	11.4	49.47	
•1044	46.667	190.166	•0429	52.7	63.22	
• 3002	38.846	131.767	•0515	120.6	74.38	
•4178	32.022	89.539	•0625	183.0	80.23	
•4795	27.778	67.377	.0720	224.5	82.56	
•5274	23.793	. 49 . 434	•0841	261.9	83.91	
•5479	21.793	41.473	.0918	279.9	84.36	
•5753	19.252	32.364	•1039	306.7	84.84	
•oû27	16.572	23.981	•1207	337.5	85.22	
•6164	15.351	20.577	•1303	354.7	85.36	
• 2549	4.442	1.723	•4503	553.5	85.73	
• b349	2.850	•709	•7017	553.5	85,73	
•0ÅTR	1.516	.201	1.3189	622.7	85.73	
•0718	•426	•016	4.6971	622.7	85.73	
•0900	• 346	•010	5.7829	981.6	85.73	
+ 0 7 0 0 7	• 039	•000	51.5543	981.6	85.73	
• / 055	•032	•000	62.9829	4904.1	85.13	
•/JUY	• 01.7	• 000	102.9829	1146.0	85./5	
•1123	• U1 /	• • • • • • • • • • • • • • • • • • • •		11468+3	82.13	

. . .

.

t

.

÷

٠

e

•

•

•

- 171 -

and the second second

TABL. B-30

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample wei	ght, grams	<u> </u>				
Bulk densi	ty, grams/cm					
Skeletal d	lensity, gram					
Fraction p	orosity			. 445		
	•					
PORE	PORE	D2/16VT	2/D	SURFACE	PERMEAB.	
VOLUME.	DIAMETER.	X10 T0+8,	X10 T0-4+	AREA	X10 T0+8	
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2	
-0000	5 7 9,470	31894.539	. 0035	. 0		
.0294	176.569	2961.985	-0113	•0	228.11	
.0551	82.547	647.230	.0242	6.7	248.77	
•0772	55.644	294.096	•0359	13.4	253.39	
.2132	40.491	155.726	•0494	71.4	267.01	
•3713	29.501	. 83.002	•0677	163.9	275.40	
•4743	22.422	47.751	•0892	244.7	278,40	
•5551	15.597	23,107	•1282	332.6	279.67	
•5237	7.511	5.358	•2663	477.7	280.14	
•6434.	3.2 83	1.024	•6091	542.0	280.16	
•6507	•828	•065	2.4149	653.2	280.16	
•6581	•173	•003	11.5543	1166.8	280.16	
•5581	• 0 1 2	•000	1/1.5543	1166.8	280.16	
				······································	·····	
	•					
- 172 -

TABLE **B-31**

•

..

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

16VT T0+8, 1 98.79; 12.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000	2/D X10 T0-4, CM-1 .0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	SURFACE AREA, CM2/G .0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	<u>. 678</u> <u>1.278</u> <u>.470</u> PERMEAB. <u>X10 T0+8.</u> CM2 <u>.00</u> 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
16VT 10+8, 12.052 12.052 12.052 12.052 24.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000	2/D X10 T0-4, CM-1 .0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	SURFACE AREA, CM2/G .0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	1.278 .470 PERMEAB. X10 T0+8. CM2 .00 41.93 53.05 76.71 83.05 83.05 83.72 83.97 84.34 84.35 84.36 84.36
16VT 70+8, 1 98.79: 12.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	2/D X10 T0-4, CM-1 .0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	SURFACE AREA, CM2/G .0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	PERMEAB. X10 T0+8. CM2 .00 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
16VT T0+8, 1 98.79: 12.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	2/D X10 T0-4, CM-1 .0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	SURFACE AREA, CM2/G .0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	PERMEAB. X10 T0+8 CM2 .00 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
16VT 70+8, 1 98.79: 12.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	2/D X10 T0-4, CM-1 .0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	SURFACE AREA, CM2/G .0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	PERMEAB. X10 T0+8. CM2 .00 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
T0+8, 1 12.052 284.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000	X10 T0-4, CM-1 .0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	AREA, CM2/G CM2/G 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	X10 T0+8 CM2 .00 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
98.79: 12.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	.0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	.0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	.00 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
98.79: 912.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000	.0084 .0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	•0 4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	.00 41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36 84.36
12.052 84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	.0189 .0356 .0640 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	4.0 13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	41.93 53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
84.647 88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	. (6356 . (640 . 0787 . 0970 . 1155 . 1294 . 3600 . 4754 1. 3943 10. 4229 34. 4229 171. 5657	13.9 148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	53.05 76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36 84.36
88.074 58.181 38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	.0840 .0787 .0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	148.4 252.6 303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	76.71 81.72 83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36
38.318 27.022 21.535 2.784 1.596 .186 .003 .000 .000	.0970 .1155 .1294 .3600 .4754 1.3943 10.4229 34.4229 171.5657	303.9 350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	83.05 83.72 83.97 84.34 84.35 84.36 84.36 84.36 84.36
27.022 21.535 2.784 1.596 .186 .003 .000 .000	•1155 •1294 •3600 •4754 1•3943 10•4229 34•4229 171•5657	350.5 377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	83.72 83.97 84.34 84.35 84.36 84.36 84.36 84.36
21.535 2.784 1.596 .186 .003 .000 .000	•1294 •3600 •4754 1•3943 10•4229 34•4229 171•5657	377.3 538.1 568.6 636.8 636.8 2273.5 2273.5	83.97 84.34 84.35 84.36 84.36 84.36 84.36
2.784 1.596 .186 .003 .000 .000	.3600 .4754 1.3943 10.4229 34.4229 171.5657	538.1 568.6 636.8 636.8 2273.5 2273.5	84.34 84.35 84.36 84.36 84.36 84.36
1.596 .186 .003 .000 .000	•4754 1•3943 10•4229 34•4229 171•5657	568.6 636.8 636.8 2273.5 2273.5	84.35 84.36 84.36 84.36 84.36
•186 •003 •000 •000	1.3943 10.4229 34.4229 171.5657	636.8 636.8 2273.5 2273.5	84.36 84.36 84.36 84.36
•003 •000 •000	10.4229 34.4229 171.5657	636.8 2273.5 2273.5	84.36 84.36
•000	<u> </u>	2273.5	84.36
• • • • •	1/1.505/	2213.3	<u> </u>

		e este de spansen george op spansen fils de se Maria de sen d	affaal faan akka daanna aa an tekka tiit in faan daaraa taan aa aa gaaraa ay
	<u> </u>		

.

•

- 173 -

TABLE B-32

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample wei	ight, grams	2			1180
Bulk densi	ty, grams/cm	2			620
Skeletal d	lensity, gram	s/cm ³		1.	322
Fraction p	porosity				469
	·		0.40		OCOME AD
PORE	OTAMETED.	J2/10/1		ADEAL	PERMEAB
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
.0000	223.785	4140.195	•0089	• 0	.00
.0078	122.378	1238.118	•0163	8.6	85.51
•1186	73.529	446.972	•0272	19.6	105.60
•1854	50.872	213.953	.0393	42.2	116.11
•4492	34.851	100.458	•0574	109.2	135,48
•5763	27.822	63.993	.0719	251.3	140.38
•6441	22.098	42.592	•0881	305.6	142.07
• 0949	19.551	31.537	•1024	354.0	142.96
•7203	16.900	23.612	•1183	382.1	143.29
•/3/3	15.331	19.430	•1305	403.2	143.46
<u>•6135</u>	5.892	2.870	•3394	582.4	143.86
•8220	2.931	•/10	•6823	625.6	143.86
•8305	1.402	• 1 / /	1.3080	12.5	143.86
•0090 •6090	• L / H) (3 7	•005	11+4743	1250+7	1/13 97
-0050	.035	.000	57 2900	1250.1	143.07
•6475	.017	•000	114,4229	4658.1	143.87
• \$559	.014	.000	144.7086	15638.3	143.87
•8559	.012	.000	171.5657	15638.3	143.87

- .174 -

TABLE B-33

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehyde Char #78

(1 - W/Wo) = .376; (4 min. at 666°C)	
Sample weight, grams	.102
Bulk density, grams/cm ³	. 560
Skeletal density, grams/cm ³	1.240
Fraction porosity	. 548

CM3/G MICRONS CM-1 CM-1 CM2/G .0000 96.899 598.818 .0206 .0 .1176 56.452 203.239 .0354 33.0 .2745 38.210 93.111 .0523 101.8 .4510 28.974 53.537 .0690 208.9 .5275 22.996 33.726 .0870 346.6 .7451 18.479 21.779 .1082 461.4 .8137 15.453 15.228 .1294 542.9 .9412 5.556 1.968 .3600 854.8	CM2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.00
.2745 38.210 93.111 .0523 101.8 .4510 28.974 53.537 .0690 208.9 .5275 22.996 33.726 .0870 346.6 .7451 18.479 21.779 .1082 461.4 .8157 15.453 15.228 .1294 542.9 .9412 5.556 1.968 .3600 854.8	25.85
.4510 28.974 53.537 .0690 208.9 .5275 22.996 33.726 .0870 346.6 .7451 18.479 21.779 .1082 461.4 .8137 15.453 15.228 .1294 542.9 .9412 5.556 1.968 .3600 854.8	38.59
	45.68
•7451 18.479 21.779 •1082 461.4 •8157 15.453 15.228 •1294 542.9 •9412 5.556 1.968 •3600 854.8	49.90
•8157 15.453 15.228 •1294 542.9 •9412 5.555 1.968 •3600 854.8	51.69
•9412 5.556 1. 968 •3600 854.8	52.39
	52,99
9008053 .6251 .951.4	53.00
•9705 1.080 •074 1.8514 1072.8	53.00
.9755 .603 .028 3.0171 1192.1	53.00
.9755 .425 .012 4.7086 1192.1	53,00
<u>9804</u> 249 .004 8.0229 1504.2	53.00
•9504 •012 •000 171·5657 1504·2	53,00

ւն է ուն ուն անասնանում մենաստան անգացին է է ու է հերապեսին կանում է հայնական հետ ունաստես է մաստես հանանանությունը գտանություն պայում։

.....

- -----

- ---

- 175 -

TABLE B-34

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample Identification: Phenol-formaldehy	yde Char #79
(1 - W/Wo) = .378; (8 min. at 666°C)	
Sample weight, grams	,1230
Bulk density, grams/cm ³	
Skeletal density, grams/cm ³	1.292
Fraction porosity	, 539

 PORE VOLUME,	PORE DIAMETER,	J2/16VT X10 T0+8,	2/D X10 T0-4,	SURFACE AREA	PERMEAB. X10 TO+8,
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
 •0000	230.263	3672.230	.0087	• 0	•00
 •1057 •1870	129.630 73.222	1163.830 371.331	.0154 .0273	12•7 30•1	137.75 171.39
 • 2520 • 3559	47.425 28.455	155.777 56.080	•0422 •0703	52.7 116.7	180.62
 •5255 •5504	25.811 20.290	46.142 28.513	•0775 •0986	236.9	191.60
 •7236 •7724	17.073 14.957	20.189	•1171	423.1	195.02
 • 5502 • 9024	4.768	1.575	•4194 •7280	799 . 1 892 . 4	196.01 196.02
 •9024	•012	.000	171.5657	892.4	196.02
 · · · · · · · · · · · · · · · · · · ·					

- -

.

.

.

176	5 -
-----	-----

and the second second

- Anno - - - -

.

TABLE B-35

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

			. 2 . /	, ang pana - dan katan ang pana -	
Sample we:	ight, grams				129
Bulk dens:	ity, grams/cm	3			679
Skeletal d	density, gram	s/cm ³		1	.314
		0 , e			/. 9 /.
rraction j	porosily				. 404
PORE	PORE	J2/16VT	2/D	SURFACE	PERMEAB
VOLUME.	DIAMETER,	X10 T0+3,	X10 T0-4,	AREA	X10 T0+8
CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
• 0000	220.460	4575.189	•0088	• 0	•00
•0543	104.979	966.041	•0191	7.5	72.77
•1085	01.109	328.197	.0327	21.6	89.76
•2481	39.503	139.296	•0502	79.4	105,55
•4341	20.70	/3.343	•0691	190.4	117 32
• 5116	18.207	29,251	•0094	313.5	118,42
• <u>b124</u>	15.535	21,155	.1287	359.6	118.89
• 0899	4.226	1.565	.4733	593.0	119.32
•6977	2.384	.498	•8389	643.9	119.32
•7054	1.509	.200	1.3257	727.8	119.32
.7132	.426	.016	4.6971	961.2	119.32
•/132	•012	•000	1/1.5543	961.2	119.32
			·		
	· · · ·				
		·····		· · · · · · · · · · · · · · · · · · ·	·
· · · · · · · · · · · · · · · · · · ·					

- 177 -

• -

TABLE B-36

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Sample wei	.ght, grams	2		0.	1519
Bulk dens.i	Bulk density, grams/cm ³				7802
Skeletal d	lensity, gram	s/cm ³		1.	514
Fraction p	orosity	•	515		
PORE	PORE	D2/16VT	2/D	SURFACE	PERMEAR
VOLUME.	DIAME R.	X10 T0+8,	X10 T0-4,	AREA	X10 TO+
CM3/G	MICHONS	CM-1	CM-1	CM2/G	CM2
•0000	200.000	4298.879	•0097	• 0	•00
·U329	126.720	1613.275	.0158	4.2	50.11
.0527	97.222	949.622	.0206	7.8	63.15
• U05-	73.933	549.161	• 9271	11.7	69 . 50
<u> </u>	30,503	156.779	<u> </u>		85.52
•2107 •30%0	28.926	84,059	•0508	168.3	72•79 107.41
•4542	23.300	54.918	•0855	224.3	106.00
.4072	20.444	41.990	•0978	254.5	106.82
•5201	17.199	29.719	•1163	289.7	107.43
•5 <u>3</u> 2	15.494	24.117	•1291	305.9	107.61
•610B	1.443	•209	1.3863	954.3	108.15
•6221	• 0 4 4	•000	45.9543	1733.5	108.15
•0221	•012	•000	1/1.565/	1/33.5	108.15
······					

......

- 178/ -

an and the second se

.

مسينيس والمسرار م

- -

.....

.....

---- ---

. - - --------

TABLE B-37

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

(1 - W/Wo)) = 0.213; (2)	min. at 533°	(C)		
Sample wei	ight, grams				.129
Bulk densi	ity, grams/cm	3			678
Cl - 1 - h - 1	1	3			
Skeletal c	lensity, gram	s/cm		1	.320
Fraction p	porosity		• •		. 486
PORE	PORE	J2/16VT	2/D	SURFACE	PERMEAB.
VOLUME.	DIAMETER:	X10 T0+8,	X10 TO-4,	AREA.	X10 TO+8
CM2/G	MICRONS	CM-1	CM-1	CM2/G	CM2
.0000	233.333	4745.854	• 0086	• 0	•00
•0233	124.202	1344.668	•0161	2.9	34.42
•0543	84.094	616.443	•0238	9.1	49.20
•1434	54.002	254.772	•0370	36.1	68.07
·3721	38.210	127.264	•0523	138.3	89.30
•4805	30.702	82.165	•0651	202.0	94.82
•5426	25.849	58.245	•0774	246.2	96.94
•5969	20.673	37.255	•0967	293.5	98,20
•6279	10.900	25.090	,1179	326.8	98.67
• 5395	15.503	20.951	•1290	341.1	98.80
• 0977	4,442	1.720	.4503	509.5	99.12
•7054	1.571	.215	1.2731	- 576.3	99.12
•7152	•435	•015	4.5989	803.9	99.12
•7132	• 044	.000	45.8400	803.9	99.12
•7171	•025	•000	80.1257	3245.1	99.12
•7171	.012	.000	171.5543	3245.1	99.12

- -

TABLE B-38

.

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

.

- -----

and and a subscription in a subscription of the state of the subscription of the

-

Sample Ide	entification:	Phenol-form	aldehyde Cha	r #84	· · · ·
(1 - W/Wo)) = .260; (10	min. at 533°	°C)		
Sample wei	ight, grams	•			.141
Bulk densi	ity, grams/cm	3			. 641
	1	3		1	1.60
Skeletal c	iensity, gram	s/cm		ل	
Fraction p	porosity				.452
	-			• • •	•
PURE	PORE		2/D	SURFACE	PERMEAB.
VULUME,	DIAMETER,	X10 T0+8,	X10 TO-4,	AREA	X10 T0+8
CM3/G	MICRONS	См-1	CM-1	CM2/G	CM2
•0000	413.712	15152.025	•0048	• 0	• 00
•0213	158.802	2232.483	•0126	1.9	83.59
·U355	84.210	627.856	•0237	4.4	92.76
•0709	54.945	267.259	.0364	15.1	99.94
•3330	33.207	97.618	•0602	165.9	125.67
•4905	25.234	56.371	•0793	245.0	129.62
•5532	20.673	37.835	•0967	294.9	130.83
•617ú	15.391	20.972	•1299	367.3	131.67
•6773	5.556	2.732	• 3600	515.0	132.00
• 5079	3.528	1.102	•5669	564.3	132.01
•6950	1.434	.132	1.3943	633.8	132.01
.7021	•173	.003	11.5657	1093.4	132.01
•705 7	.035	•000	57.2800	2314.0	132.01
•7057	•012	•000	171.5657	2314.0	132.01

.

- 180 -

.

та стала и правити и простити и правити и пр

-

TABLE B-39

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

Bulk density, grams/cm ³	Sample wei	ght, grams	_			.128
Skeletal density, grams/cm ³	Bulk densi	ty, grams/cm	3			.660
Fraction porosity	Skeletal d	lensity gram	s/cm ³			205
PURE PORE D2/16VT 2/D SURFACE PERMEA VOLUME DIAMETER X10 T0+8 X10 T0-4 AREA X10 T0 CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .0000 372.340 12612.572 .0054 .0 .0 .0156 228.460 47.540 .0088 1.1 61.5 .0313 155.971 2213.164 .0128 2.8 86.2 .0409 86.923 719.365 .0225 5.5 96.6 .0339 58.624 314.793 .0340 16.6 105.8 .2156 40.690 15.632 .0491 71.8 119.8 .5072 31.503 90.286 .0635 155.4 127.9 .4531 25.022 59.725 .0781 216.2 130.9 .5032 17.005 28.199 .1136 317.7 133.1 .5032 17.005 28.199 .135.6 .033.133.8 .5102 2.398 .3920 528.7 133.7 <td< th=""><th></th><th>ensicy, gram</th><th>37 C m</th><th></th><th>^</th><th>. 205</th></td<>		ensicy, gram	37 C m		^	. 205
PURE PORE D2/16VT 2/D SURFACE PERMEA V0LJME, DIAMETER, X10 T0+8, X10 T0-4, AREA, X10 T0 CM376 MICRONS CM-1 CM-1 CM2/G CM2 .0000 372.340 12612.572 .0054 .0 .0 .0155 228.460 47.540 .0088 1.1 61.5 .0313 155.971 2213.164 .0128 2.8 86.2 .0459 86.923 719.365 .0225 5.5 96.6 .0359 53.624 314.793 .0340 16.6 105.8 .2156 40.699 15.632 .0491 71.8 119.8 .3572 31.503 90.286 .0635 155.4 127.9 .4531 25.622 59.725 .0781 216.2 130.9 .5524 21.097 40.492 .0948 277.0 132.5 .5025 1.160 2.398 .3920 528.7 133.7 <	Fraction p	orosity				.454
PURE PORE D2/16VT 2/D SURFACE PERMEA V0LJME, DIAMETER, X10 TO+8, X10 TO-4, AREA, X10 TO CM3/6 MICRONS CM-1 CM-1 CM2/6 CM2 .0000 372.340 12612.572 .0054 .0 .0 .0156 228.460 47. .340 .0088 1.1 61.5 .0313 155.971 2213.164 .0128 2.8 86.2 .0409 86.923 719.365 .0225 5.5 96.6 .0309 58.324 .014.793 .0340 16.6 105.8 .2156 40.699 15.632 .0491 71.8 119.8 .0572 .0128 .0340 16.6 105.8 .2156 40.699 15.632 .0491 71.8 119.8 .0572 .0781 216.2 130.9 .053 15.4 127.9 .4331 25.022 59.7	~				· · · · · · · · · · · · · · · · · · ·	, -
VOLJME DIAMETER, X10 T0+8, X10 T0-4, AREA, X10 T0 CM376 MICRONS CM-1 CM2/6 CM2 .0000 372.340 12612.572 .0054 .0 .0 .0156 228.460 47.340 .0088 1.1 61.5 .0131 155.971 2213.164 .0128 2.8 86.2 .0409 85.923 719.365 .0225 5.5 96.6 .0639 58.624 .014793 .0340 16.6 105.8 .2158 40.699 157.632 .0491 71.8 119.8 .3072 .31.503 .90.285 .0635 15.4 127.9 .4312 25.622 59.725 .0781 216.2 130.9 .52.4 21.097 40.492 .0948 277.0 132.5 .5025 17.005 28.199 .1135 317.7 133.1 .5029 15.650 .22.398 .3920 528.7 133.7 .5102 2.398	PURE	PORE	J2/16VT	2/0	SURFACE	PERMEAE
CM3/G MICRONS CM-1 CM-1 CM2/G CM2 .0000 372.340 12612.572 .0054 .0 .0 .0155 228.460 47-340 .0088 1.1 61.5 .0313 155.971 2213.164 .0128 2.8 86.2 .0459 86.923 719.365 .0225 5.5 96.6 .0359 58.624 314.793 .0340 16.6 105.8 .2156 40.695 157.632 .0491 71.8 119.8 .3672 31.503 90.286 .0635 155.4 127.9 .4531 25.622 59.725 .0781 216.2 130.9 .52.4 21.097 40.492 .0948 277.0 132.5 133.1 .50.59 15.650 22.310 .1277 346.0 133.4 .50.59 15.650 2.358 .3920 528.7 133.7 .5102 2.358 .32920 528.7 133.4 <th>VOLJME.</th> <th>DIAMETER.</th> <th>X10 T0+8,</th> <th>X10 T0-4,</th> <th>AREA</th> <th>X10 TO+</th>	VOLJME.	DIAMETER.	X10 T0+8,	X10 T0-4,	AREA	X10 TO+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CM3/G	MICRONS	CM-1	CM-1	CM2/G	CM2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• មើមិមិមិ	372.340	12612.572	• 0054	•0	.00
.0313 155.971 2213.164 $.0128$ 2.8 86.2 $.0459$ 88.923 719.365 $.0225$ 5.5 96.6 $.0359$ 58.324 314.795 $.0340$ 16.6 105.8 2158 40.695 157.632 $.0491$ 71.8 119.8 $.3672$ 31.503 90.236 $.0635$ 155.4 127.9 $.4531$ 25.522 59.725 $.0781$ 216.2 130.9 $.5254$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5525$ 17.006 28.199 $.1136$ 317.7 133.1 $.5c99$ 15.650 22.310 $.1277$ 346.0 133.4 $.550$ 1.146 $.5634$ 603.3 133.8 $.5719$ $.3550$ 1.146 $.5634$ 603.3 133.8 $.5797$ $.342$ $.011$ 5.8400 925.6 133.8 $.5797$ $.039$ $.000$ 51.5543 3614.0 133.8 $.6375$ $.012$ $.000$ 171.5543 3614.0 133.8	<u>.0156</u>	228.460	47- 340	•0088	1.1	61.58
0409 88.923 719.365 0225 5.5 96.6 0359 58.324 314.795 0340 16.6 105.8 2156 40.695 157.632 0491 71.8 119.8 $.5572$ 31.503 90.286 $.0635$ 155.4 127.9 $.4531$ 25.522 59.725 $.0781$ 216.2 130.9 $.52.4$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5524$ 21.097 40.492 $.0948$ 277.0 132.5 $.5525$ 17.005 28.199 $.1136$ 317.7 133.1 $.5c39$ 15.650 22.310 $.1277$ 346.0 133.4 $.5505$ 1.146 $.5634$ 603.3 133.8 $.5797$ $.342$ $.011$ 5.8400 925.6 133.8 $.5757$ $.039$ $.000$ 51.5543 3614.0 133.8 $.5675$ $.012$ $.000$ 171.5543 3614.0 133.8	• U313	155.971	2213.164	.0128	2.8	86.27
0359 58.624 314.793 0.0340 16.6 105.8 2156 40.695 157.632 0491 71.8 119.8 5572 31.503 90.286 0635 155.4 127.9 4531 25.522 59.725 0781 216.2 130.9 52.4 21.097 40.492 0948 277.0 132.5 5524 21.097 40.492 0948 277.0 132.5 5524 21.097 40.492 0948 277.0 132.5 5525 17.605 28.199 1136 317.7 133.1 5525 17.6560 22.310 1277 346.0 133.4 6525 5.102 2.358 3920 528.7 133.7 5719 3.550 1.146 5634 603.3 133.8 6719 829 063 2.4114 603.3 133.8 6797 $.342$ $.011$ 5.8400 925.6 133.8 6375 $.039$ $.000$ 51.5543 3614.0 133.8 6375 $.012$ $.000$ 171.5543 3614.0 133.8	•0409	88.923	719.365	•0225	5.5	96.67
2158 40.695 157.632 $.0491$ 71.8 119.8 $.5572$ 31.503 90.286 $.0635$ 155.4 127.9 $.4531$ 25.522 59.725 $.0781$ 216.2 130.9 $.52.4$ 21.097 40.492 $.0948$ 277.0 132.5 $.5025$ 17.006 28.199 $.1136$ 317.7 133.1 $.5c.9$ 15.660 22.310 $.1277$ 346.0 133.4 $.5c.9$ 5.102 2.358 $.3920$ 528.7 133.7 $.5719$ 3.550 1.146 $.5634$ 603.3 133.8 $.6719$ $.829$ $.063$ 2.4114 603.3 133.8 $.6797$ $.342$ $.011$ 5.8400 925.6 133.8 $.6375$ $.039$ $.000$ 51.5543 3614.0 133.8 $.6375$ $.012$ $.000$ 171.5543 3614.0 133.8	<u> </u>	58.824	314,793	•0340	16.6	105.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•2158	40.695	150.682	• 0491	71.8	119.87
4531 25.622 59.725 $.0781$ 216.2 130.9 $.52.4$ 21.097 40.492 $.0948$ 277.0 132.5 $.50.25$ 17.005 28.199 $.1136$ 317.7 133.1 $.5c.99$ 15.660 22.310 $.1277$ 346.0 133.4 $.650.5$ 5.102 2.368 $.3920$ 528.7 133.7 $.6719$ 3.550 1.146 $.5634$ 603.3 133.8 $.6719$ $.829$ $.063$ 2.4114 603.3 133.8 $.6797$ $.342$ $.011$ 5.8400 925.6 133.8 $.6797$ $.116$ $.001$ 17.2686 925.6 133.8 $.6575$ $.039$ $.000$ 51.5543 3614.0 133.8 $.6375$ $.012$ $.000$ 171.5543 3614.0 133.8	.3672	31.503	90.286	•0635	155.4	127.99
.52.34 21.097 40.492 $.0948$ 277.0 132.5 $.5025$ 17.006 28.199 $.1136$ 317.7 133.1 $.5c99$ 15.650 22.310 $.1277$ 346.0 133.4 $.6503$ 5.102 2.368 $.3920$ 528.7 133.7 $.6719$ 3.550 1.146 $.5634$ 603.3 133.8 $.6719$ $.829$ $.063$ 2.4114 603.3 133.8 $.6719$ $.342$ $.011$ 5.8400 925.6 133.8 $.6797$ $.342$ $.001$ 17.2686 925.6 133.8 $.6375$ $.039$ $.000$ 51.5543 3614.0 133.8 $.6375$ $.012$ $.000$ 171.5543 3614.0 133.8	•4531	25.622	59.725	•0781	216.2	130.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	21.097	40.492	•0948	277.0	132.52
.5259 15.650 22.310 .1277 346.0 133.4 .6555 5.102 2.368 .3920 528.7 133.7 .5719 3.550 1.146 .5634 603.3 133.8 .5719 .829 .063 2.4114 603.3 133.8 .5797 .342 .011 5.8400 925.6 133.8 .5797 .342 .011 17.2686 925.6 133.8 .5797 .116 .001 17.2686 925.6 133.8 .5375 .039 .000 51.5543 3614.0 133.8 .5375 .012 .000 171.5543 3614.0 133.8	• 5025	17.005	28.199	•1136	317.7	133.13
0.535 5.102 2.358 $.3920$ 528.7 133.7 0.5719 3.550 1.146 $.5634$ 603.3 133.8 0.5719 $.829$ 0.63 2.4114 603.3 133.8 0.5797 $.342$ $.011$ 5.8400 925.6 133.8 0.5797 $.116$ $.001$ 17.2686 925.6 133.8 0.575 $.039$ $.000$ 51.5543 3614.0 133.8 0.575 $.012$ $.000$ 171.5543 3614.0 133.8		15.650	22.310	.1277	346.0	133.40
.5719 5.550 1.145 .5634 603.3 133.8 .6719 .829 .063 2.4114 603.3 133.8 .5797 .342 .011 5.8400 925.6 133.8 .5797 .342 .011 5.8400 925.6 133.8 .5797 .116 .001 17.2686 925.6 133.8 .5375 .039 .000 51.5543 3614.0 133.8 .6375 .012 .000 171.5543 3614.0 133.8	• 0 3 3 3	5.102	2.368	•3920	528.7	133.79
.5719 .329 .053 2.4114 603.5 133.8 .5797 .342 .011 5.8400 925.6 133.8 .5797 .116 .001 17.2686 925.6 133.8 .5675 .039 .000 51.5543 3614.0 133.8 .6375 .012 .000 171.5543 3614.0 133.8	• 5719	3.550	1.146	•5634	603•3	133.80
•5757 •542 •011 5•8400 925•6 155•8 •5797 •116 •001 17•2686 925•6 133•8 •5575 •039 •000 51•5543 3614•0 133•8 •5875 •012 •000 171•5543 3614•0 133•8	•0719 6707	• 829 340	•003	2.4114	603.3	133.80
.3757 .115 .001 17.2585 925.6 135.8 .6575 .039 .000 51.5543 3614.0 133.8 .6575 .012 .000 171.5543 3614.0 133.8	•5797	• 544	•011	<u> </u>	925.6	133.80
•6375 •012 •000 171•5543 3614•0 133•8	• 0 7 9 7	•110	•001	1/•2000 51 5507	920.0	133.00
	•6375	.012	•000	<u> </u>		133 00
			•			

- 181 -

TABLE B-40

MERCURY POROSIMETER DETERMINATION OF PORE VOLUME, SURFACE AREA, AND PERMEABILITY

rams/cm ³ y, grams/cm ³ ty E D2/1 METER: X10 RONS CM-1 .172 729 .946 220 .337 5	3 16VT 2 T0+8, X L C 04.604 33.512	2/D (10 T0-4, 2M-1 .0067	SURFACE AREA, CM2/G	.603 L.132 .466 PERMEAB X10 TO+ CM2
y, grams/cm ² ty E D2/2 METER, X10 RONS CM-2 .172 729 .946 220 .337 5 .215 20	3 16VT = T0+8, X L	2/D (10 T0-4, 3M-1 .0067	SURFACE AREA, CM2/G	<u>.466</u> <u>PERMEAB</u> X10 TO+ CM2
ty E D2/ METER, X10 RONS CM- .172 729 .946 220 .337 5	16VT 2 T0+8, X L C	2/D (10 TO-4, M-1 .0067	SURFACE AREA: CM2/G	
E D2/2 METER, X10 RONS CM-2 .172 729 .946 220 .337 57	16VT 3 T0+8, X L C	2/D (10 T0-4, :M-1 .0067	SURFACE AREA, CM2/G	
E D2/2 METER, X10 RONS CM-2 .172 729 .946 220 .337 57	16VT 3 T0+8, X L C 94.604 33.512	2/D (10 TO-4, M-1 .0067	SURFACE AREA: CM2/G	PERMEAB X10 TO+ CM2
METER: X10 RONS CM-: .172 729 .946 220 .337 5 .215 20	T0+8,) L C 94.604 33.512	.0067	AREA, CM2/G	X10 TO+ CM2
•172 729 •946 228 •357 5	94.604 33.512	•0067		
•946 220 •357 5	33.512		- 0	
• 3 3 7 5	75 944	.0119	1.3	30.43
.215 20	13+041	•0237	5.3	45.57
)4.142	.0398	48.6	70.36
• 395 8	57.602	.0608	176.7	87.66
•475 5	56.746	•0755	244.9	91.02
•933 .	55.475	•0955	299.3	92.39
•71 <i>5</i> 2	25.399	.1129	337.2	92.91
•712	19.936	.1273	364.5	93.15
•453	1.605	•4491	600.3	93.56
• 722	•600	•7349	627.2	93.56
• 505	•183	1.3291	721.1	93.56
612 643	•004	9.2720	721+1	93.50
• 000	•001	57.2686	2237+1	93.56
•020	•000	99.5543	9367.5	93.56
.014	•000 1	45.2686	20495.8	93.56
.012	.000 1	.71.5543	20495.8	93.56
	933 713 2 712 1 453 722 505 216 083 035 020 014 012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	933 35.475 $.0955$ 713 25.399 $.1129$ 712 19.936 $.1273$ 453 1.605 $.4491$ 722 $.600$ $.7349$ 505 $.183$ 1.3291 216 $.004$ 9.2720 $.063$ $.001$ 24.1257 $.035$ $.000$ 57.2686 $.020$ $.000$ 145.2686 $.014$ $.000$ 171.5543	933 35.475 $.0955$ 299.3 713 25.399 $.1129$ 337.2 712 19.936 $.1273$ 364.5 453 1.605 $.4491$ 600.3 722 $.600$ $.7349$ 627.2 505 $.183$ 1.3291 721.1 216 $.004$ 9.2720 721.1 $.035$ $.001$ 24.1257 2239.1 $.035$ $.000$ 57.2686 2239.1 $.020$ $.000$ 145.2686 20495.8 $.012$ $.000$ 171.5543 20495.8

	TAB	LE B-41 - MAGNITUDE OF	DIFFUSIVITIES	
Gas	8:		$D = \frac{cm^2}{sec}$	Ref.
1)	327 [°] C	CO ₂ in Air	0.555	Sherwood &
2)	300°C	H ₂ 0 in Air	0.849	Reid (39)
Lig	uid s:	·	6	
1)	18 ⁰ C	CO ₂ in Water	1.71×10^{-5}	
2)	25°C	H ₂ in Water	3.36×10^{-5}	
3)	25 [°] C	0_ in Water	2.60×10^{-5}	Sherwood & Reid
4)	22 [°] C	N ₂ in Water	2.02×10^{-5}	(39)
5)	15°C	Phenol in Methanol	1.40×10^{-5}	
Sol	ids:			
1)	350 [°] C	Na in NaCl	7×10^{-13}	
	400 [°] C		1.5×10^{-12}	
	500°C		9×10^{-12}	(47)
2)	800 ⁰ C	Fe in FeO	8×10^{-9}	
3)	1000 [°] C	C in Austenite	2.7-7.8 x 10^{-7}	
4)	800°C	Nitrogen in Q -Iron	7.3×10^{-7}	
5)	1100 ⁰ C	Oxygen in γ -Iron	1×10^{-9}	American Soc.
6)	1050 ⁰ C	Hydrogen in γ -Iron	1.6×10^{-4}	Metals (1)

- 182 -

ومعرفيكم سوالا والمعارية والمراجع والمراجع والمراجع والمحافي والمراجع

. .

APPENDIX C

COMPUTER PROGRAMS

The computer programs which follow were used to perform the majority of calculations and data processing which were necessary for this investigation. A short description, flow chart and print out of the source deck, are presented for each program.

- 184 -

• COMPUTER PROGRAM HRI65R002 •

CALCULATION OF RATE AND TRANSPORT CONSTANTS

FROM EXPERIMENTAL DATA

The purpose of the program is to calculate the best values of the kinetic constants (λ 's) and transport constants (\mathbf{Q} 's) from experimental data.

The working equations consist of: (V-46), (V-51), (V-55), (V-58), (VIII-2), (VIII-3 to VIII-8 incl.), and

$$Y_1, Y_2, Y_3, Y_4 = \left(\frac{W \circ x}{W \circ}\right)_g, \left(\frac{W c}{W \circ}\right)_g, \left(\frac{W_H}{W \circ}\right)_g,$$

(1-W/Wo) respectively.

The input consists of:

- 1) Y_1 , Y_2 , Y_3 , Y_4 vs. θ
- 2) The constants, (ⁿSRO/Wo), (n_o/Wo), λ_{o} , **Q**_o
- 3) First approximations of λ_1 , λ_2 , λ_5 and α_1 , α_2 , and α_3 .
- 4) Coarse mesh increments of λ_1 , λ_2 , λ_5 . and the number of mesh points. The same for α 's.
- 5) Medium mesh increments and number of mesh points.
- 6) Fine mesh increments and number of mesh points.

The calculational procedure consists of searching for the best fit of the function by "narrowing down" from a coarse to a fine mesh of values, starting with certain first approximations. See also Appendix D.

The computer program follows.

FIGURE 37a - FLOW CHART FOR HRI65R002

- 185 -

- ~

FIGURE 37b - FLOW CHART FOR HR165R002

. .

1.		DIMENSION $C(5)$, SDELSO(1000), ALAMB(6)
2.		$1 \cdot THETA(50) \cdot wOwO(50) \cdot UM(6) \cdot FTAT(5) \cdot XTT(6) \cdot ALPHA(6) \cdot STOTHE(50) \cdot COMPACE$
3.		$2 \qquad CON(4) * WEXP(200) * VI AM1(1000) * VI AM2(1000) * VI AM3(1000) *$
4.	······	3VALP1(1000), VALP2(1000), VALP3(1000), SUMSOT(1000)
•	222	2 FORMAT (B8H1DATA PROCESSING - CALCULATION OF PATE AND TRANSPORT CON
ΰ.		ISTANTS FOR PYROLYSIS OF ARLATORS//27H HRT PROGRAM NO HRT6500023
7		29HTYPE OF MATERIAL IS PHENOL-FORMAL DEHYDE 54 (HOATA SET 14//)
8.	111	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
9.	1	$FORMAT(11) I 2 \cdot 17 \rightarrow 7E10.5)$
		READ(5,221) IPRINT, IT, (STOTHE(1), I=1,IT)
1.	221	FORMAT(11+14+15F5-4)/16F5-4/16F5-4)
2	ţe la A	JRITE (6,222) ID
3.		$MRITE(\Delta, 343) TEMP \qquad (CON(T) \cdot T=1 \cdot 4)$
4.		AIAM30=CON(3)
5.		AL PHAD=CON(4)
b.	443	
7.	545	00 3 JE1.50
н.		$\mathcal{A} = \mathcal{A} = $
4	2	CCADINAT(SEIA_S)
· / · · · · · ·	<u> </u>	
1		ACTINETATION (ACTING)
2.	<u> </u>	
<u>с</u> .	7	
ц.		()FY=(TY=1)*(0+ (
7• 5-	940	
5 .		
7.		
<u>.</u>		ALAMBITA
о.	555	KERD(S)SSO)DEAMIIDEAMZIDEAMSIINEAMIIINEAMZIINEAMSIIFEAG
· · · · · · · · · · · · · · · · · · ·	555	= FORMAT(OFIO + 57)
•	550	
±.• ⊘		
<u>८</u> • २.	554	
<u>.</u>		
* ● ⊆.		
7		
4 • N	•• •• •• ••	
0 • G		
1		
· ·		
 3		
τ♥ 5		
7.		
₹ ♥ 	.	
_)● Li.		
∕.•	 	
	000 207	A MARTALAMORTALAMO
× •	100	
- ■ × .	000	ALAMDITALAMDITULAMI Continue
	704	
τΨ `		J JJ NHIINN (F(15) 6G FO (-1))60 TO 005
•		
•		
•		ALANDACI-VLANCANI

.

	- 188 -
D Ú•	ALAMS(3) = VLAMS(K)
<u>، 9</u> ر	CALL CONSTS (IY) ALAMB, CON, CO, C)
60.	906 CONTINUE
21.	
) •	
124.	I = (IPRINI / 999 / 999 / 0)
220	
UU	T CODMETIZE LANGAT-SETOLE)
01.	$\frac{7}{100} = \frac{1}{100} = \frac{1}$
	a = CORMAT(7H A) PHA=(6F10.4)
70.	WRITE(0,10) UMO, (UM(I), I=1,3)
71.	10 FORMAT(7H MU= 6E10.3//)
72.	11 WRITE(6, 120) IY, IY
73.	120 FORMAT(1H /6H THETA, 2X, 2(2HY(, 11, 1H), 4X),
-74.	14HFDEL,9X,5HDELSQ,5X,3HXI0,5X,5HXI1/0,
75.	2 3X, 4HETA1, 4X, 5HX12/0, 3X, 4HETA2, 4X, 5HX13/0, 3X, 4HETA3)
10.	20 WRITE(6,21)
77.	21_FORMAT(BX+13HEXPER+ CALC+//)
78.	999 CALL MONSTR(N/CO/C/ALAMBO/ALAMB/ALPHAO/ALPHA/THETA/WOWO/JN/
.79.	1EM, SUMUEL, SUMSQ, IPRINT, UMO, UM)
じじ・	SUMSQI(K)=SUMSQ
<u>)</u>	SDELSQ(K)=SUMDEL
<u>,</u> 2•	99 CONTINUE
03.	WRITE(6/101)
04+	101 FORMAT(10H SUM DELSQ/4X/6HLAMBAU/4X/6HALPHAU/4X/6HALPH
52.	
30• 	DU IUZ N-I/NN Xe (jelse so (-1)) so To 907
01.	
411-	
51.	$102 = \sqrt{103}$ SUMSQI(K) ALAMBO ALPHAO ((ALAMB(I) ALPHA(I)) I=1/3)
12.	103 FORMAT(1X,E9.4,12(2X,F8.4))
93.	MK=1
94.	EXDLSQ=SUMSQI(1)
15.	DO 104 K=2/KK
• ورا	IF(EXDLSQ.LT.SUMSQI(K))GC TO 104
97.	MK=K
)ર•	EXDLSW =SUMSQI(K)
19.	104 CONTINUE
00•	1F (1FLAG.EQ.(-1))GO TO 908
P1.	ALAMO(1)=VLAM1(MK)
12.	ALAMA(2)=VLAM2(MK)
03.	ALAMS(3)=VLAM3(MK)
<u>4</u> 40	909 CONTINUE
D •	
•د ا	
- J (• F	
	witte(5,8) Al PHAO, (Al PHA(1), T=1.3)
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	CALL = CONSTS (1Y + A! AMR + CON + CO + C)
	NPRINT=1
	CALL MONSTR (N/CO/C/ALAMBO/ALAMB/ALPHAO/ALFHA/THETA/WOWO/JN/
1.5.	1EN, SUMUEL, SUMSQ, NPRINT, UMO, UM)

		WRITERO1987 SUMDELISUMSQ
T1/•	93	FURMATCIH /10H FDEL BAR=+F8.5+10X+10HSUM DELSQ=+E10.3////)
Liυ•		WRITE(6/150)IY
19.	150	FORMAT(6H_THETA,4X,2HY(,11,1H) .5X,3HXI0,6X,5HXI1
1 250 •		L/0,4X,4HETA1-5X,5HXI2/0,4X,4HETA2,5X,5HXI3/0,4X,4HETA3)
•		00 107 J=1,IT
122.		F=STOTHE(J)
23.		TAU=UMO *T
124.		XI=1EXP(-ALAMBO *T)
425.		10=11
20.		YC=CO*(XI-ETA(ALPHAO ,TAU,XI))
1 27.		DO 106 I=1,3
126.		TAU=UM(I)*T
129.		XI=1EXP(-ALAMB(I)*T)
• بادار		IX=(1)=XI
131.		ETAII=ETA(ALPHA(I),TA),XI)
1-52.		ETAI(I)=ETAII
33.	106	YC=C(I) *(XI-ETAII)+YC
1-54.	107	.31TE(6,108)T,YC,XIO,((XII(I),ETAI(I)),I=1,3)
135.	105	FORMAT(1X, F7.3, 2X, F6.5 / 7(2X, F7.5))
56.		ALPHIEALPHA(1)
. 57.		ALPHZEALPHA(2)
1.35		
- 59 -		AE AMRITAE AMR(1)
ن بر من ا اللغان		
14		
142.	05.5	$\Delta I PHI = \Delta I PHI = D [\Delta MI * F[(\Delta T((TNLAMI = 1)/2))]$
· · · · ·	007	$\Delta r \mathbf{P} = \Delta r \mathbf{P} = \Delta r \mathbf{P} = \mathbf{C} \mathbf{A} \mathbf{T} (\mathbf{T} \mathbf{N} \mathbf{C} \mathbf{M} \mathbf{P} = 1 / 2 \mathbf{I}$
+J •		ALT ALE ALT ALE MENTEDRA AND AND AND AND AND AND AND AND AND AN
		ALENJEALENJEJEANJENEURI (CINERMOSI//2/
1 	· · · · · · · · · · · · · · · · · · ·	
•		
' r∤ ● 17.5	· · · · · · · · · · · · · · · · · · ·	
1400		
+9+		
• • • •		UU 9UZ U-IFINLAMZ
101•		
1520		UU 9UI KEI/INLAMS
ು ು •		
エン 4・		VALP3(KK)=ALPH3
155.		VALP2(KK)=ALF.
. 20.		VALP1(KK)=ALPH1
.)7•	9.02	ALPHJ=ALPH3+DLAM5
120.	902	ALPH2=ALPH2+DLAM2
• פ ר י	903_	ALPH1=ALPH1+DLAM1
i - AG	NUSTIC*	102
JIAG	NUSTIC*	906
1-70-		CALL CONSTS(IY+/_AMB+CON+CO+C)
1.		60 TU 904
1020	905	ALPHA(1) = VALP1(K)
103.		ALPHA(2)=VALP2(K)
4.		ALPHA(3)=VALP3(K)
:		60 TO 906
10.	907	ALPHA(1)=VALP1(K)
-1,7 ·		ALPHA(2)=VALP2(K)
1		ALPHA(3) = VALPS(K)
in (ye		GU TO 102
•	900	ALPHA(1) = VALP1(MK)
·		ALPHA(2)=VALP2(MK)

en ander anteressan ann anterest but

•	ALPHA(3)=VALP3(MK)
•	GO 10 909
	ENU .
	• SUBROUTINES •
	CHERONITANE CONCTENTS AND CON CO. C.
• <u> </u>	SUBROUTINE CONSTS (ITTALAMBICONICOIC)
•	DIMENSION ALAMBIOJICON(4))C(D)
•	
•	$\frac{1}{1} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} +$
•	
•	
•	C(1)=1/.*CON(2)*ALAMB(2)/(ALAMB(3)=ALAMB(1))
•	
•	$= BETAI = 1 \cdot TALAMB(2)/ALAMB(3) \times (1 \cdot TALAMB(1)/(ALAMB(3) - ALAMB(1)))$
•	BETA2=(ALAMB(2)+5.*(ALAMB(3)+ALAMB(1)+ALAMB(2))-ALAMB(1)*ALAMB(2)/
•	$\frac{1(ALAMB(3)-ALAMB(2)))/ALAMB(3)}{2}$
٠	PH13=3=TA1+1.125*BETA2+(4.*ALAMB(3)=ALAMB(2)=3.*ALAMB(1)=ALAMB(1)*
•	1ALAM3(2)*
•	2(3./ALAMB(3)+1./(ALAMB(3)-ALAMB(1)))/ALAMB(3)/16.
•	$C(3)=1_0.*CON(2)*PHI3$
•	30 TJ 774
•	$771 \text{ CO=1}_{\text{o}} + \text{CON}(1)$
٠	C(1)=10.*CON(2)*ALAMB(2)/(ALAMB(3)-ALAMB(1))
•	C(2)=0.
•	BETA1=1ALAMB(2)/ALAMB(3)*(1ALAMB(1)/(ALAMB(3)-ALAMB(1)))
• _	C(3)=15.*CON(2)*DETA1
•	GO TJ 774
•	<u>772 CD=0.</u>
•	C(1)=0.
•	C(2)=18.*CON(2)
•	5ETA2=(ALAMB(2)+5.*(ALAMB(3)-ALAMB(1)-ALAMB(2))-ALAMB(1)*ALAMB(2)/
•	1(ALAMB(3)-ALAMB(2))/ALAMB(3)
•	C(3)=12.*CON(2)*BETA2
•	<u>55 TO 774</u>
•	773 CU=2.*CON(1)
٠	C(1)=CON(2)*ALAMB(2)/(ALAMB(3)-ALAMB(1))
•	C(2)=3.*CON(2)*ALAMB(1)/(ALAMB(3)-ALA`'B(2))
•	C(3)=0.
•	774 RETURN
•	ÉND

· • · ·

.

. ---

. .

. . .

.

.

1.•	FUNCTION ETA(ALPHAI, TAU, XI)
- •	ETAKIN=SIN(ALPHAI)/COS(ALPHAI)/ALPHAI
3.	ALPHSQ=ALPHAI*ALPHAI
4.	SUM=0.
5.	CN=-1.
0.	DO 333 NN=1,99
7.	EN=EN+1.
5.	ENS=2.*EN+1.
9.	ENS=ENS*ENS*2.4674
LU 💊	TERM=(1 - EXP(-ENS*TAU))/ENS/(1 - ENS/ALPHSQ)
11.	SUM=SUM+TERM
[AGNDSTIC*	THE TEST FOR EQUALITY BETWEEN NON-INTEGERS MAY NOT BE MEANINGFUL.
12.	IF(AdS(TERM/SUM).LE001)GO TO 334
13. 333	CONTINUE
14. 334	SUM=2.*SUM*(-1.)
L5• 444	ETA=SUM-(ETAKIN-1.)*XI
16.	RETURN
17.	END

1.	SUBROUTINE MONSTR(N, CO, C, ALAMBO, ALAMB, ALPHAO, ALPHA, THETA, WOWO, JN,
<u>د م</u>	1EM, SUMDEL, SUMSQ, IPRINT, UMO, UM)
• ک	JIMENSION C(5), ALAMB(6), ALPHA(6), THETA(50), WOWO(50), UM(6),
4.	<u>1 XII(6), ETAI(6)</u>
•	SUMDEL=0.
J.	SUMSU=0.
7.	00 30 J=1, JN
۵•	T=THETA(J)
y.	XIO=1EXP(-ALAMBO*T)
Ú•	
1.	ETAO=ETA(ALPHAG, TAJ, XIO)
2.	YC= C. (XIO-ETAO)
<u>ن</u> .	00 25 I=1+ >
4.	TAUHUM(I)~T
Š•	x1=1EXP(-ALAMB(I)*T)
ü •	ETALI=ETA(ALPHA(I), TAU, XI)
7.	XII (A)=XI
ü 🐜	YC=YL+C(])*(XI-ETAII)
9.	25 ETAI (I)=ETAII
U •	WOW=1,0W0(J)
1.	JEL=YC-WOW
2••	DEL=DEL/WOW
3.	DELSUEDEL*DEL
4	SUMSU=SUMSQ+DFLSQ
5	SUMDEL=SUMDEL+ABS(DEL)
Ó•	IF (1PRINT) 30,30,930
7.	930 WRITE (6,31) TOWOW, YCODEL OFLSQ. XTO. ((XIT(T). FTAT (T)). TELON)
ບ•	31 FORMAT(1X, F5, 1, 2(2X, F6, 5), 2X, F8, 5, 2X, F10, 3, 7(2X, F6, 4))
9	· 30 CONTINUE
() ••	SUMDEL=SUMDEL/EM
	RETURN
2.	
and the state of t	

• COMPUTER PROGRAM HR165R003 •

- Non-Automatic processory of the second and a super-

CALCULATION OF SURFACE AREA AND PERMEABILITY

FROM EXPERIMENTAL POROSITY DATA

A derivation has been made which shows that the surface area of the pores is of the form,

$$A_{p} = 2 \int_{0}^{V} T \frac{dV}{D}$$

where V_T is the total pore volume, and D is the pore diameter. Permeability can be obtained from,

This program takes the porosity data in the form of tabulated pressure and pore volume values and performs the required integrations by the trapezoid method after calculating pore diameter by,

$$D (microns) = \frac{175}{P (psia)}$$

The computer program follows.

FIGURE 38 - FLOW CHART FOR HRI65R003

	$\text{JIMENSION V(100)} \cdot D(100) \cdot DSO(100) \cdot TWOD(100)$
2.	111 WRITE(6/10)
3.	10 FORMAT(1H1)
~4•	READ(5,11)ID,WT,VT,PHI
5.	11 FORMAT(110,3F10.5)
6.	"RITE(6,1)
7.	1 FORMAT(1H0,9X,48HSURFACE AREA AND PERMEABILITY FROM POROSITY DATA/
じ・	1/)
9.	WRITE(6,2)ID
	2 FORMAT(10X,10HSAMPLE NO.,15,//)
120	KLAD(S/S/F/VLL 3. FORMAT/SF10 F)
15.	
.	DEFEIT75.F=4/P
.7.	
18.	DSQ(1)=DEE*DEE/16./VT
19.	5 TwOD(1)=2./DEE
-U.	6 WRITE(0,7)
-1.	7 FORMAT(10X,4HPORE,8X,4HPORE,7X,7HD2/16VT,7X,3H2/D,8X,7HSURFACE,4X,
22•	18HPERMEAB./10X/7HVOLUME//5X/9HDIAMETER//2X/9HX10_TO+8//5X/9HX10_TO
<u>:3.</u>	2-4,,2X,5HAREA,,6X,9HX10 TO+8,/10X,5HCM3/G,7X,7HMICRONS,4X,4HCM-1,1
<u> </u>	30X,4HCM-1,7X,5HCM2/G,6X,3HCM2//)
<u>_</u> +c	N=I-1
•	SUR=0.
⊆/•	
10• .u	VPRE-V(1) Jeodge-Den(1)
<u></u>	
51.	PRED.
.2.	TP=TwOPRE*1.E=4
د ک د	JU=DSQPRE*1.E8
;4.	DI=1.E4*D(1)
5.	WRITE(6,9)VPRE, DI , DD, TP, SUR, PR
10.	DO 3 1=2+N .
.7.	VEE=V(I)
0.	DELV=(VEE-VPRE)*•5
19.	DS=D50(I)
U•	PER=PER+DELV*(DS+DSQPRE)*PHI
<u>+•</u>	
2.	SUR#SURFUELV#(ID+IWUPRE)
З •	
T•	
D•	PR=PER+1.FB
7.	
8.	JU=DSQPRE*1.E8
9.	JI = 1.E4 * D(I)
0.	J WRITE(6,9)VPRE/DI /DD/TP/SUR/PR
۰.	9 FURMAT(F16.4,F13.3,F13.3,F13.4,F10.1,F11.2)
. •	GG TO 111
3.	END

-

1

••

•

٦

• COMPUTER PROGRAM HRI65R004 •

MATHEMATICAL SIMULATION OF TGA CURVES

The purpose of this program is to simulate the thermogravimetric analysis of phenol-formaldehyde resin of the type used in this investigation. Equation (VIII-9) is used in the finite difference form,

$$\Delta\left(\frac{W}{W_{o}}\right) = \left\{ \left[\frac{\partial(W/W_{o})}{\partial\theta}\right]_{T} + \Re\left[\frac{\partial(W/W_{o})}{\partialT}\right]_{\theta} \right\} \Delta\theta$$

for a convenient time increment, $\Delta \Theta$, and a selected value of heating rate, A. The partial derivatives are given by equations (VIII-10) and (VIII-11). The increments of W/Wo are negative, and as each is calculated, it is summed with the current value of W/Wo.

The input consists of:

1) Constants,
$$\begin{pmatrix} n_{SRO} \\ W_{O} \end{pmatrix}$$
, $\begin{pmatrix} n_{O} \\ W_{O} \end{pmatrix}$, $\begin{pmatrix} W_{PF} \\ W_{O} \end{pmatrix}$, R , $\Delta \theta$, initial and final temperatures.

. .

.....

2)
$$A_{\lambda_0}$$
, E_{λ_0} , A_{λ_1} , E_{λ_1} , A_{λ_2} , E_{λ_2} , A_{λ_5} , E_{λ_5} ;
 A_{a_1} , E_{a_1} , A_{a_2} , E_{a_2} , A_{a_3} , E_{a_3} .

The computer program follows.

FIGURE 39a - FLOW CHART FOR HRI65R004

-

<pre>2. 11 k=AD (5:1)D; TO:RH:DELTH:UPFOWO.ENSRO;ENO;TF 4. 1.FORMAI(110:7F10:5) 5. MLOWG=1WPFOWO 5. READ (5:9)ALO:ELO:AL1;EL1;AL2;EL2;AL5;EL5 7. Y FORMAI(GE10:3) 6. KEAD (5:9)AQD:EAO:AA1:EA1;AA2;EA2;AA3;EA3 9. WRITE(G:2)1D; TO:RH:DELTH:WPFOWO;ENSRO;ENO;TF 11. WRITE(G:9)AAO:EAO:AA1:EA1;AA2;EA2;AA3;EA3 9. WRITE(G:9)AAO:EAO:AA1:EA1;AA2;EA2;AA3;EA3 13. WRITE(G:9)AAO:EAO:AA1:EA1;AA2;EA2;AA3;EA3 14. J FO:MAI(11:6);AC:AFAD:AA1:EA1;AA2;EA2;AA3;EA3 13. WRITE(G:7) 15. 17/5H MIN::6X:6HDEG: C//) 16. TOETO:273. 17. TF=TF+273. 16. COETO:273. 17. TF=TF+273. 16. COETO:223 16. (1.1. 2) ENTH=:1 21. LO 222 I=1:1000 22. ENTHE:1 23. IF(I.LT. 2) ENTH=:1 24. IF(I.LT. 2) ENTH=:1 25. IF(I.LT. 2) ENTH=:1 26. IF(I.LT. 2) ENTH=:1 27. IF(I.LT. 2) ENTH=:1 28. IF(I.LT. 2) ENTH=:1 29. IF(I.LT. 2) ENTH=:1 20. A000C1. 21. FORMAIC:1000 22. ENTHE14 23. IF(I.LT. 2) ENTH=:1 24. IF(I.CT. 2) ENTH=:1 25. IF(I.LT. 2) ENTH=:1 26. IF(I.LT. 2) ENTH=:1 27. IFETA=THETA+DELTH 28. IF(I.LT. 2) ENTH=:1 29. IF(I.LT. 2) ENTH=:1 20. AAMOISALD:EXMI(=ELO/RT) 21. ALAMOISALD:EXMI(=ELO/RT) 23. ALAMOISALD:EXMI(=ELO/RT) 24. ALAMOISALD:EXMI(=LC/RT) 25. CI=21.*ENO:AALAMB1/(ALAMB2)/(ALAMB2)/(ALAMB2) 26. ALAMOISALD:EXMI(=LC/RT) 27. ALAMOISALD:EXMI(=LC/RT) 28. CI=12.*ENO:AALAMB1/(ALAMB2) ALAMB3 29. CI=21.*ENO:AALAMB1/(ALAMB2) ALAMB3 20. ETAI:1.*ALAMB2 / 1/(ALAMB3) ALAMB3 20. ETAI:1.*ALAMB2 / 1/(ALAMB3) ALAMB3 21. ALAMOIS = ALAMB1 /1/(ALAMB3) ALAMB3 23. CI=21.*ENO:AALAMB1/(ALAMB2) ALAMB3 24. EXO:AALAMB1 /1/(ALAMB3) ALAMB3 24. EXO:AALAMB1 /1/(ALAMB3) ALAMB3 24. ALAMOISALD:EXO:AALAMB3 24. ALAMOISALD:AALAMB3 24. ALAMOISAL</pre>	1.	2 FORMAT (27H1TGA FROM KINETIC CONSTANTS//67H HRI PROGRAM NO. HRI65RO
<pre>11 FORMITIO FORMIDELTH WPFOWORENSRORENC, ENC, TF 1. FORMITIO, TOTAL DELTH WPFOWORENSRO, ENC, ENC, TF 1. FORMITIO, FOLLS) 5. WELACO. (5,9) ALORED(ALIFELI, AL2, EL2, AL5, EL5 7. Y FORMAT(BELO, 3) 8. READ. (5,9) ALORED(ALIFELI, AL2, EL2, AL5, EL5 7. WRITE(G, 2) ID TORRH, DELTH WPFOWORENSRORENC, TF 10. WRITE(G, 2) ID TORRH, DELTH WPFOWORENSRORENC, TF 11. WRITE(G, 2) ALORED(ALIFELI, AL2, EL2, AL5, EL5 12. WRITE(G, 2) ALORED(ALIFELI, AL2, EL2, AL5, EL5 12. WRITE(G, 2) ALORED(ALIFELI, AL2, EL2, AL5, EL5 13. WRITE(G, 2) ALORED(ALIFELI, AL2, EL2, AL5, EL5 13. WRITE(G, 2) ALORED(ALIFELI, AL2, EL2, AL5, EL5 14. WRITE(G, 2) ALORED(ALIFELI, AL2, EL2, AL5, EL5 15. IT/SH MIN, FOX 6HDE6, C//) 16. IOSTOCZ73. 17. TFFTF4273. 16. COSTAL #ENSRO 19. THETA-SELTH 20. WON OST. 21. DO 222 ISI, 1000 22. ENTHEL 23. IF(I, LT, 2) ENTH=.1 24. DO 222 ISI, 1000 22. ENTHEL 23. IF(I, LT, 2) ENTH=.1 24. DO 222 ISI, 1000 22. ENTHEL 24. IF(I, LT, 2) ENTH=.1 25. IF(I, LT, 2) ENTH=.1 26. IF(I, LT, 2) ENTH=.1 27. IF(I, LT, 2) ENTH=.1 28. IF(I, LT, 2) ENTH=.1 29. IF(I, C, G, TF) GO TO 223 30. ALAMOSTAL #EXM(-ELO/RT) 31. ALAMOSTAL #EXM(-ELO/RT) 32. ALAMOSTAL #EXM(-ELO/RT) 33. ALAMSIALAMB2/(ALAMS1 / (ALAMS1 / (ALAMS1 / ALAMS1)) 34. ALAMOSTAL #EXM(-ELO/RT) 35. COSTAL #EXM(-ELO/RT) 36. ALAMOSTAL #EXM(-ELO/RT) 37. OSTAL #EXM(-ELO/RT) 37.</pre>	<u> </u>	104, TYPE OF MATERIAL IS PHENOL-FORMALDEHYDE//10H DATA SET-, 14//)
5. MCDWC11WPCDWO 6. READ (5,9)ALO:ELO;AL1;EL1;AL2;EL2;AL5;EL5 7. Y FONMAT(810.3) 8. READ (5,9)AAO:EAO;AA1;EA1;AA2;EA2;AA3;EA3 9. WRITE(6;3)IO:TO:RH:DELTH:WPCDWO;ENSRO;ENO;TF 11. WRITE(6;3)ALO:ELO;AL1;EL1;AL2;EL2;AL5;EL5 12. WRITE(6;3)ALO:ELO;AL1;EL1;AL2;EL2;AL5;EL5 13. WRITE(6;3)ALO:ELO;AL1;EL1;AL2;EL2;AL5;EL5 13. WRITE(6;3)ALO:ELO;AL1;EL1;AL2;EL2;AL5;EL5 14. 3 FORMAT(1H /GH TIME;,5X;GHTEMP;::4X;4HW/W0;GX;9HDY/DTHETA;GX;5HDY/ 15. IT/3H MIN:GX;GHDEG;C//) 16. T02T0+273. 17. TF=TF=7X; 16. C02H3;ENSRO 19. THETA=DELTH 20. WOWG1. 21. UO 222 T=1:1000 22. ENTHET: 23. IF(1.LT, 21) ENTH=:1 24. ENTHET: 25. IF(1.LT, 22) ENTH=:1 26. IF(1.LT, 22) ENTH=:1 27. THETA=HETAFDELTH #ENTH 28. KTE1:937#T 29. IF(1.GF, TF) GO TO 223 30. ALAM0;D=ALD#EXM(-ELD/RT) 34. ALM0;D=ALD#EXM(-ELD/RT) 34. ALM0;D=ALD#EXM(-ELS/RT) 35. C2=21;#ENO*ALAMB2/(ALAM2+ALAMB5) 36. C2=21;#ENO*ALAMB2/(ALAM2+ALAMB5) 37. DETA=1-ALAMB2 (ALAM23 *(1:+ALAMB1 /(ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB2 39. I(ALA%)3 +ALAMB2 (ALAMB3 -ALAMB3 /(ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB2 39. I(ALA%)3 +ALAMB2 (ALAMB3 -ALAMB3 /(ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB2 39. I(ALA%)3 +ALAMB2 (ALAMB3 -ALAMB3 /(ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 *ALAMB2 *ALAMB1 *ALAMB2 *ALAMB1 *ALAMB2 *ALAMB3 *ALAMB3 *ALAMB3 *ALAMB3 *ALAMB3 *ALAMB3 *ALAMB3 /ALAMB3 *ALAMB3 *ALAM	. 4.	LIL READ (5,1) ID, TO, RH, DELTH, WPFOWO, ENSRO, ENO, TF
0. READ_(5,9)ALO,EUC;ALI,ELI,AL2;EL2;AL5;EL5 7. Y FUNMAT (GE10,3) 0. MERTD_(5,9)ALO,EUC;ALI,ELI,AL2;EL2;AL5;EL5 10. WRITE(6)21ID 10. WRITE(6)21ID 10. WRITE(6)21ID 10. WRITE(6)21ID 11. WRITE(6)21AD/EDC)ALI,EL1;AL2;EL2;AL5;EL5 12. WRITE(6)21AD/EDC)ALI,EL1;AL2;EL2;AL5;EL5 13. WRITE(6)21AD/EDC)ALI,EL1;AL2;EL2;AL5;EL5 14. 3 FORMAT(1H /6H TIME,,5X,6HTEMP,.,4X,4HW/NO,6X,9HDY/DTHETA,6X,5HDY/ 15. TOTO-C273. 16. TOZTO-273. 17. TFETF+273. 18. CO216;AEMSRO 19. THETA=OELTH 20. CO216;AEMSRO 19. THETA=OELTH 20. MRODEL 21. DO 222 T=1:1000 22. ENTHEL 23. IF(1,LT, 2) ENTH=.1 24. IF(1,LT, 12) ENTHE.1 25. IF(1,GT, TF) GO TO 223 26. IF (1,GT, TF) GO TO 223 27. IF(1,GT, GELO/RT) 24. ALAMDEALAFEXM(=ELO/RT) <td< th=""><th>5.</th><th></th></td<>	5.	
0. READ_(5,9)ALO, ELO, ALI, ELI, AL2, EL2, AL5, EL5 7. 9. WRITE(6,2)ID 9. WRITE(6,2)ID 10. WRITE(6,2)ID 11. WRITE(6,2)ID 12. WRITE(6,2)ID 13. WRITE(6,3)ALO, ELO, ALI, ELI, AL2, EL2, AL5, EL5 14. JRITE(6,3) 15. WRITE(6,3) 16. JP, MRITE(6,3) 17. TFCTF+273. 18. JCDTO+273. 17. TFTF+273. 16. CQ218+ENSRO 19. THCTA-DELTH 20. W0021. 21. DO 222 TE1+1000 22. ENTHE1. 23. IF(1,LT, 2) ENTHE1. 24. DO 222 TE1+1000 25. IF(1,LT, 2) ENTHE1. 26. IF(1,LT, 2) ENTHE1. 27. IF(1,LT, 2) ENTHE1. 28. IF(1,LT, 2) ENTHE1. 29. IF(1,LT, 2) EN		
7. 9 FORMAT(3E10.3) 8. KEAD (5.9)AAQ:FAO:AA1:EA1,AA2;EA2:AA3;EA3 9. WRITE(6:1)ID:TO.RH:DELTH:WPFOWO:ENSRO,ENO.TF 11. WRITE(6:9)AAO:EA0:AA1:EA1:AA2;EA2:AA3;EA3 12. WRITE(6:9)AAO:EA0:AA1:EA1:AA2;EA2:AA3;EA3 13. WRITE(6:9)AAO:EA0:AA1:EA1:AA2;EA2:AA3;EA3 13. WRITE(6:9)AAO:EA0:AA1:EA1:AA2;EA2:AA3;EA3 14. 3 FONMAT(1H./6H TIME;:SX:6HTEMP:4X:4HW/W0:6X:9HDY/DTHETA:6X:5HDY/ 15. 11/5H MIN.:6X:6HDEG.C//) 16. LOETO:273. 17. TF=TF:273. 16. COEI3:AENSRO 19. THETA=-DELTH 20. WOROCI. 21. DO 222 I=1:1000 22. ENTHEL. 23. IF(1.I.T. 21) ENTH=.1 24. IF(1.I.T. 21) ENTH=.1 25. IF(1.I.T. 21) ENTH=.1 26. IF(1.I.T. 21) ENTH=.1 27. IF(1.I.T. 21) ENTH=.1 28. IF(1.I.T. 21) ENTH=.1 29. IF(1.I.T. 21) ENTH=.1 20. ALAMO:ALD:EXX(-ELC/RT) 21. ALAMO:ALD:EXX(-ELC/RT) 22. ALAMO:ALD:EXX(-ELC/RT) 23. ALAMO:ALD:EXX(-ELC/RT) 24. ALAMO:ALD:EXX(-ELC/RT) 25. IF(1.I.T. 21) ENTH=.1 26. ALAMO:ALD:EXX(-ELC/RT) 27. ALAMO:ALD:EXX(-ELC/RT) 28. ALAMO:ALD:EXX(-ELC/RT) 29. ALAMO:ALD:EXX(-ELC/RT) 20. ALAMO:ALD:EXX(-ELC/RT) 20. ALAMO:ALD:EXX(-ELC/RT) 21. ALAMO:ALD:EXX(-ELC/RT) 23. ALAMO:ALD:EXX(-ELC/RT) 24. ALAMO:ALD:EXX(-ELC/RT) 25. IF(1.I.AMB1+ALAMB2+ALAMB5) 26. ALAMD:ALD:EXX(-ELC/RT) 27. BETA1=1ALAMB2 +5.*(ALAMB5) 28. ALAMD:ALD:EXX(-ELC/RT) 29. IF(1ALAMB2 +5.*(ALAMB5) 20. ALAMD:ALD:EXX(-ELC/RT) 21. ALAMD:ALD:EXX(-ELC/RT) 23. ALAMB2:ALD:EXX(-ELC/RT) 24. ALAMB1:ALAMB2+ALAMB2:ALAMB5) 25. CC2:1: ENO*ALAMB2:ALAMB5 27. BETA1=1ALAMB2 +5.*(ALAMB5) 28. ALAMB2:ALAMB1+ALAMB2:ALAMB5) 29. I(ALAMD:ALD:EXX(-ELC/RTSO 20. ALAMB2:ALAMB1:EL/RTSO 20. ALAMB2:ALAMB1:EL/RTSO 20. ALAMB2:ALAMB2:EL/RTSO 20. ALAMB2:ALAMB2:EL/RTSO 20. ALAMD:ALAMB2:EL/RTSO 20. ALAMB2:ALAMB2:EL/RTSO 20.	ю.	READ (5,9) ALO, ELO, AL1, EL1, AL2, EL2, AL5, EL5
3. READ_(5:0)AAQ:EAQ:AA1:EA1,AA2;EA2;AA3;EA3 9. WRITE(b:0:2)ID 10. WRITE(b:0:2)ID 11. WRITE(b:0)ID,TO;RII;DELTH:WPFOWO;ENSR0;ENO,TF 11. WRITE(b:0)AAO;EAQ:AA1;AL2;EL2;AL5;EL5 12. WRITE(b:0)AAO;EAQ:AA1;EA1;AA2;EA2;AA3;EA3 13. WRITE(b:0)AAO;EAQ:AA1;EA1;AA2;EA2;AA3;EA3 13. WRITE(b:0)AAO;EAQ:AA1;EA1;AA2;EA2;AA3;EA3 13. WRITE(b:0)AAO;EAQ:AA1;EA1;AA2;EA2;AA3;EA3 14. 3. 15. IDETO;E273. 17. TETF+273. 16. CO218;#ENRO 19. THETA=-DELTH 20. W0WOE1. 21. DO 222 I=1;1000 22. ENTH=1. 23. IF(1.LT. 2) ENTH=1. 24. IF(1.LT. 2) ENTH=1. 25. IF(1.LT. 2) ENTH=1. 26. IF(1.G.G.G.C/RT) 27. IF(1.G.G.G.C/RT) 28. KEI3:907*T 29. IF(1.G.G.G.C/RT) 24. IF(1.G.G.G.C/RT) 25. ALAMDG=ALQ/RT <	7.	9 FORMAT(8E10.3)
9. WRITE(6:2)1D TO.RH.PELTH.WPFOWOYENSROYENOTF 10. WRITE(6:1)1D.TO.RH.PELTH.WPFOWOYENSROYENOTF 11. WRITE(6:9)ALOYELOYALIJELIJAL2;EL2;AL5;EL5 12. WRITE(6:9)ALOYELOYALIJELIJAL2;EL2;AL5;EL5 13. WRITE(6:7) 14. J FORMAT(1H /6H TIME, SX:6HTEMP,4X:4HW/WO.6X:9HDY/DTHETA;6X;SHDY/ 15. 1175H MIN.;6X:6HDEG. C//) 16. IOETO:273. 17. TFFTF:273. 16. COE10;#ENSRO 19. THETA=DELTH 20. WOWOOL. 21. DO 222 II:1000 22. ENTHEL. 23. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 21) ENTH=.1 25. IF(I.LT. 2) ENTH=.1 26. IF(I.LT. 2) ENTH=.1 27. IF(I.T. 2) ENTH=.1 28. IF(I.LT. 2) ENTH=.1 29. JHETA=THETA+DELTH #ENTH 20. MOROSILU/ENTHETA 20. ALAMOSILU/ENTH(-ELO/RT) 21. ALAMOSILU/ENTH(-ELO/RT) 22. ENTHEL3 23. ALAMOSILU/ENTH(-ELO/RT) 24. ALAMOSILU/ENTH(-ELO/RT) 25. IF(I.LT. 2) ENTH=.1 26. ALAMOSILU/ENTH(-ELO/RT) 27. ALAMOSILU/ENTH(-ELO/RT) 28. ALAMOSILU/ENTH(-ELO/RT) 29. ALAMOSILU/ENTH(-ELO/RT) 20. ALAMOSILU/ENTH(-ELO/RT) 20. ALAMOSILU/ENTH(-ELO/RT) 21. ALAMOSILU/ENTH(-ELO/RT) 23. ALAMOSILU/ENTH(-ELO/RT) 24. ALAMOSILU/ENTH(-ELO/RT) 25. ALAMOSILU/ENTH(-ELO/RT) 26. ALAMOSILU/ENTH(-ELO/RT) 27. DETA2=(ALAMB2 + 5.*(ALAMB5) 26. ALAMOSILU/ENTH(-ELO/RT) 27. DETA2=(ALAMB2 + 5.*(ALAMB5) -ALAMB1 / (ALAMB3 -ALAMB1)) 28. ALAMOSILU/ENTH(-ELO/RT) 29. I(ALAMOSI = ALAMB2 + 1.4XB1+4LAMB5) -ALAMB1 -ALAMB1)) 20. DETA2=(ALAMB2 + 5.*(ALAMB5) -ALAMB2 -3.*ALAMB1 -ALAMB1)) 20. DETA2=(ALAMB2 + 5.*(ALAMB5) -ALAMB2 -3.*ALAMB1 -ALAMB1)) 20. DETA2=(ALAMB2 + 1./(ALAMB3 -ALAMB5) -ALAMB2 -3.*ALAMB1 -ALAMB1)) 20. DETA2=(ALAMB2 + 1./(ALAMB3 -ALAMB5) -ALAMB2 / 16. 20. CJ21.*ENO+PH13 4. MIDORAT*T 4. MIDORAT*T 4. MIDORAT*T 4. MIDORAT*TSO 4. MAMOSTALAMB3*ELJ/RTSO 4. MAMOSTALAM	_8	READ (5,9) AAO, EAO, AA1, EA1, AA2, EA2, AA3, EA3
10. WRITE LG. / 10 / 0 / 0 / 10 / 0 / 10 / 0 / 10 / 0 /	9.	WRITE(6,2)ID
12. wRITE(6;9)ACOYEALIYELIYAL2YEL2YAL5YEL5 13. wRITE(6;3) 14. 3 FORMAT(1H /6H TIME,;5X;6HTEMP,:+4X;4HW/W0;6X;9HDY/DTHETA:6X;5HDY/ 15. 17/5H MIN:6X;6HDEG.C//) 16. 10=T0+273. 17. TF=TF+273. 16. C0=10;#ENSRO 19. THETA=>DELTH 20. A00x0=1. 21. D0 222 I=1;1000 22. ENTHE1. 23. IF(1,LT. 21) ENTH=.1 24. IF(1,LT. 12) ENTH=.1 25. IF(1,LT. 12) ENTH=.1 24. IF(1,LT. 2) ENTH=.1 25. IF(1,LT. 2) ENTH=.1 26. IF(1,GT. TF) GO TO 223 20. ALAMDO=ALO*EXN(-ELO/RT) 21. ALAMDO=ALO*EXN(-ELO/RT) 23. ALAMDO=ALO*EXN(-ELO/RT) 24. ALAMDO=ALO*EXN(-ELO/RT) 25. IF(1,GT, TF) GO TO 223 26. ALAMDO=ALO*EXN(-ELO/RT) 27. ALAMDO=ALO*EXN(-ELO/RT) 28. ALAMDO=ALO*EXN(-ELO/RT) 29. IF (T.GT. TF) GO TO 223 20. ALAMDO=ALA*EXM(-ELO/RT)	11	WKITE(6)1/10, RH, DELTH, WPFOWO, ENSRO, ENO, TF
12. MRITE(S)/AAU/EAU/AALFEAL,AA2/EA2/EA3/EA3 13. WRITE(G,3) 14. 3 FORMAT(1H /GH TIME, 5X/GHTEMP4X/4HW/W0/6X/9HDY/DTHETA.6X,5HDY/ 15. 17/6H MIN.6X/6HDEGC C//) 16. C0210+273. 17. TF=TF+273. 16. C0210, tensRo 19. THETA=DELTH 20. MOWOEL. 21. DO 222 T=1,1000 22. ENTH=1. 23. IF(1LT.12) ENTH=.1 24. IF(1LT.2) ENTH=.01 25. IF(1LT.2) ENTH=.1 24. IF(1.T.12) ENTH=.1 24. IF(1.T.12) ENTH=.1 24. IF(1.T.12) ENTH=.1 25. IF(1.T.T.2) ENTH=.1 26. IHETA=THETAFDELTH #ENTH 7. T=TO+RH#THETA 28. MKTE1.907#I 29. IF (T.GF. TF) GO TO 223 30. ALAMOC=ALD#EXM(~ELD/RT) 32. ALAMOC=ALD#EXM(~ELD/RT) 33. ALAMOC=ALD#EXM(~ELD/RT) 34. ALAMOC=ALD#EXM(~ELD/RT) 35. C2=21.*ENO*ALAMB2/ALAMB2+ALAMB5 36. ALAMD2	1.12 1.12	
<pre>14. 3 FORMATIIH /6H TIME,,5X,6HTEMP.,/4X/4HW/W0,6X,9HDY/DTHETA.6X,5HDY/ 15. 1T/5H MIN./6X/6HDEG. C//) 16. IOET04273. 17. TF=TF+273. 16. CO=18,*ENSRO 19. THETA==OELTH 20. WOWOEL. 21. DO 222 I=1/1000 22. ENTH=1. 23. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 21) ENTH=.1 25. IF(I.LT. 2) ENTH=.1 26. THETA=THETA+DELTH *ENTH 27. TET0+RH*THETA 28. KTE1.937*T 29. IF (T.GT. TF) GO TO 223 30. ALAMD2=AL2*EXM(-EL2/RT) 32. ALAMD2=ALAMB2/(ALAMB2+ALAMB5) 33. C2=21.*ENO*ALAMB2/(ALAMB2+ALAMB5) 34. ALAMD2=ALAMB2 /ALAMB2 *(1.+ALAMB1 /(ALAMB1 *ALAMB1)) 35. DETA2=(ALAMB2 +ALAMB5 *(1.+ALAMB1 /(ALAMB1 *ALAMB2)) 36. DETA2=(ALAMB2 +ALAMB2/(ALAMB5)) 37. DETA2=(ALAMB2 +ALAMB5) 38. C3=10.*ENO*ALAMB2/(ALAMB5) ALAMB3 *(1.+ALAMB1 /(ALAMB1 *ALAMB2)) 39. ALAMD2=ALAMB2 /ALAMB2 /(ALAMB5) /ALAMB3 /16. 39. C3=10.*ENO*ALAMB2/(ALAMB3 =ALAMB1))/ALAMB3 /16. 39. C3=10.*ENO*ALAMB2+EL/RT50 30. DETA2=(ALAMB0*ELD/RT50 30. DETA2=ALAMB2*ELJ/RT50 31. ALAMD2=ALAMB2*ELJ/RT50 32. ALAMD2=ALAMB2+EL/RT50 33. ALAMD2=ALAMB2+EL/RT50 34. ALAMD3=ALAMB2+EL/RT50 35. ALAMD2=ALAMB2+EL/RT50 35. ALAMD2=ALAMB2+EL/RT50 35. ALAMD3=ALAMB2+EL/RT50 35. ALAMD3=ALAMB2+ALAMB5 35. ALAMD3=ALAMB2+EL/RT50 35. ALAMD3=ALAMB2+ALAMB5 35. ALAMD3=ALAMB2+ALAMB5 35. ALAMD3=ALAMB2+ALAMB5 35. ALAMD3=ALAMB2+ALAMB5 35. ALAMA3=ALAMB2+ALAMB5 35. ALAMA3=ALAMB3+ALAMB3 35. ALAMA</pre>	13.	WRITE (6,3)
15. 17/5H MIN./SX/SHDEG. C//) 16. TQETO+273. 17. TF=TF+273. 18. COE18.*ENSRO 19. THETA==DELTH 20. MOMOEL. 21. DO 222 I=1/1000 22. ENTH=1. 23. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 22) ENTH=.1 25. IF(I.LT. 21) ENTH=1. 26. IF(I.LT. 22) ENTH=1. 27. IF(I.LT. 21) ENTH=1. 28. IF(I.LT. 21) ENTH=1. 29. IF(I.LT. 21) ENTH=1. 29. IF(I.ST.HETHELTH *ENTH 10. ALAMB0=ALD*EXM(-CLO/RT) 31. ALAMD2=AL2*EXM(-CL1/RT) 32. ALAMD2=AL2*EXM(-CL1/RT) 33. ALAMD2=AL2*EXM(-EL5/RT) 34. ALAMD2=AL2*EXM(-EL5/RT) 35. C2=21.*ENO*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB2/(ALAMB5 *(LAMB5) 36. ALAMD3=ALAMB2 / ALAMB2 *(ALAMB5) 37. DETA1=1-ALAM52 / J/ALAM53 *(I.+ALAM51 / (ALAM53 -ALAM61)) 38. IC2=(ALAM52 + 5.*(ALAM55 -ALAM53 - ALAM61)) 39. I(ALAM53 - ALAM5	14.	3 FORMATINE /6H TIME - 5Y 6HTEMP 4M - 444 440 - 4M - 040 M - 100 - 1
10. TUSTNATORABLES C/// 17. TF=TF+273. 17. TF=TF+273. 18. CQ=18.*ENSRO 19. THETA=>DELTH 20. w0w021. 21. D0 222 I=:,1000 22. ENTH=1. 23. IF(1.LT. 21) ENTH=.1 24. IF(1.LT. 21) ENTH=.1 25. IF(I.LT. 2) ENTH=1. 26. IF(I.LT. 2) ENTH=1. 27. IFTA=THETA+DELTH *ENTH 17. T=TO+RH*THETA 28. KT=1.937*I 29. IF (T.GT. TF) 60 TO 223 30. ALAMDO=AL0*EXM(~EL0/RT) 31. ALAMDICAL*EXM(~EL0/RT) 32. ALAMDICAL*EXM(~EL5/RT) 33. ALAMDICALAEXEXM(~EL5/RT) 34. ALAMDICALAMB2/ALAMB5 35. C2=21.*ENO*ALAMB1/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB2/ALAMB5 36. ALAMDICALAMB2 /ALAMB5 37. bETA1=1ALAMB2 /ALAMB5 38. IFA1=1ALAMB2 /ALAMB5 39. I(ALAM53 -ALAMB2+1/ALAMB5 39. I(ALAM53 -ALAMB1*ALAMB5	15.	TTOH MIN 6X 6HDEC C//
17. TF=TF+273. 16. C0=10, #ENSR0 19. THETA==DELTH 20. w0wO=1. 21. D0 222 T=1,1000 22. ENTH=1. 23. IF(T.LT. 21) ENTH=.1 24. IF(T.LT. 21) ENTH=.1 25. IF(T.LT. 22) ENTH=.01 25. IF(T.LT. 2) ENTH=.1 26. IF(T.LT. 2) ENTH=1. 27. IF(T.GT. TF) GO TO 223 30. ALAMOSTALO#ENT(-CLO/RT) 31. ALAMOSTALO#EXM(-CLO/RT) 32. ALAMOSTALO#EXM(-CLO/RT) 33. ALAMOSTALO#EXM(-CLO/RT) 34. ALAMOSTALO#EXM(-CLO/RT) 35. ALAMOSTALO#EXM(-CLO/RT) 35. ALAMOSTALO#EXM(-CLO/RT) 36. C2=21.#ENO#ALAMB2/(ALAMB2+ALAMB5) 36. ALAMOSTALO#EXM(-CLS/RT) 36. C2=21.#ENO#ALAMB2/(ALAMB2+ALAMB5) 36. ALAMOSTALO#EXM(-CLS/RT) 39. 1(ALAMOSTALA#B3 *(1.+ALAMB1 /(ALAMB1 *ALAMB2)) 30. BETA2=(ALAMB2 *5.*(ALAMB5) 30. BETA2=(ALAMB2 *5.*(ALAMB5) 30. BETA2=(ALAMB3 * 1./(ALAMB3 - ALAMB3 - ALAMB1 *ALAMB2)) 30. BETA2=(ALAMB3 * 1./(ALAMB3 - ALAMB3 - ALAMB1 - ALAMB1 *ALAMB2) 39. 1(ALAMOSTALA#B3 * 1./(ALAMB3 - ALAMB3 /16. 31. IALAMOSTALA#B0*ELO/RTS0 32. OLAMOSTALA#B0*ELO/RTS0 33. ALAMOSTALA#B0*ELO/RTS0 34. ALAMOSTALA#B0*ELO/RTS0 35. ALAMOSTALAMB5*ELS/RTS0 36. ALAMOSTALA#B0*ELS/RTS0 37. DLAMOSTALA#B0*ELS/RTS0 38. ALAMOSTALA#B0*ELS/RTS0 39. ALAMOSTALA#B0*ELS/RTS0 39. ALAMOSTALA#B0*ELS/RTS0 30. ALAMOSTALA#B0*ELS/RTS0 31. ALAMOSTALA#B0*ELS/RTS0 32. ALAMOSTALA#B0*ELS/RTS0 33. ALAMOSTALA#B0*ELS/RTS0 34. ALAMOSTALA#B0*ELS/RTS0 34. ALAMOSTALA#B0*ELS/RTS0 35. ALAMOSTALA#B0*ELS/RTS0 35. ALAMOSTALA#B0*ELS/RTS0 36. ALAMOSTALA#B0*ELS/RTS0 37. DLAMOSTALA#B0*ELS/RTS0 38. ALAMOSTALA#B0*ELS/RTS0 39. ALAMOSTALA#B0*ELS/RTS0 39. ALAMOSTALA#B0*ELS/RTS0 30. ALAMOSTALA#B0*ELS/RTS0 31. ALAMOSTALA#B0*ELS/RTS0 33. ALAMOSTALA#B0*ELS/RTS0 34. ALAMOSTALA#B0*ELS/RTS0 35. ALAMO	16.	TO=TO+273.
16. CO=18.*ENSRO 19. THETA=-DELTH 20. MOWOEL. 21. DO 222 I=1:1000 22. ENTHEI. 23. IF(I.LT. 21) ENTHE.1 24. IF(I.LT. 2) ENTHE.01 25. IF(I.LT. 2) ENTHE.01 26. IF(I.LT. 2) ENTHE.01 27. IHETAEIHETA+DELTH *ENTH 28. IT=TO*AH*THETA 28. KTE1.937*T 29. IF (I.GT. TF) GO TO 223 30. ALAMOC=ALC*EXM(-ELC/RT) 31. ALAMOEALD*EXM(-ELC/RT) 32. ALAMOEALD*EXM(-ELC/RT) 33. ALAMDEXALAMBEZ (ALAMBS+ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB5*ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB5*ALAMB5) 36. ALAMS3 -ALAMB2 /ALAMB3 *(1.*ALAMB5) 37. bETA1=1ALAMB2 /ALAMB3 *(1.*ALAMB5) 38. I(ALAMS3 -ALAMB2 /ALAMS5) 39. I(ALAMS3 -ALAMB2 /ALAMS5) 39. I(ALAMS2 +5.*(ALAMS5) -ALAMS1 /ALAMS1 /ALAMS1 30. DETA2=(ALAMS2 +5.*(ALAMS5) -ALAMS2 -3.*ALAMS1 -ALAMS1 /ALAMS1 /ALAMS2 /ALAMS3 /ALAMS5 31. ALAMS3 -ALAMS2 +1.*(ALAMS3 -A	17.	TF=TF+273.
<pre>19. THETA=-DELTH 20. wowc=1. 21. UO 222 I=1,1000 22. ENTH=1. 23. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 21) ENTH=.01 25. IF(I.LT. 2) ENTH=1. 26. IF(I.LT. 2) ENTH=1. 27. IFTO+RH*THETA+DELTH *ENTH 27. IFTO+RH*THETA 28. KT=1937*T 29. IF (T.GT. TF) GO TO 223 30. ALAMOJ=ALJ*EXM(-2LO/RT) 31. ALAMOJ=ALJ*EXM(-2LO/RT) 32. ALAMOJ=ALJ*EXM(-2LO/RT) 32. ALAMOJ=ALJ*EXM(-2LO/RT) 33. ALAMOJ=ALJ*EXM(-2LO/RT) 34. C1=17.*ENO%ALAM02/ALAM05 35. C2=21.*ENO*ALAM02/ALAM05 36. ALAMOJ=ALAM02+JALAM05 *(1.+ALAM05) -ALAM05] *ALAM02 39. I(ALAM03 -ALAM02 +JALAM05) -ALAM03 -ALAM05] *ALAM02 39. I(ALAM03 -ALAM02 +JALAM03 *(1.+ALAM05) -ALAM05] *ALAM02 39. I(ALAM03 -ALAM02 +JALAM05) -ALAM05 -ALAM05] *ALAM05 39. I(ALAM03 +1./(ALAM05) -ALAM05 /16. 39. C3=10.*ENO*PHI3 42. 2(3./ALAM03 +1./(ALAM05) -ALAM05 /16. 39. C3=10.*ENO*PHI3 44. RT50=RT*F 45. ULAM03=ALAM05*ELS/RTS0 40. ULAM05=ALAM05*ELS/RTS0 40. ALAM05=ALAM05*ALAM05 41. ALAM05=ALAM05*ELS/RTS0 41. ALAM05=ALAM05*ALAM05 41. ALAM05=ALAM05*ELS/RTS0 41. ALAM05=ALAM05*ALAM05 41. ALAM05=ALAM05*ELS/RTS0 41. ALAM05=ALAM05*ALAM05 41. ALAM05=ALAM05 41. ALAM05=ALAM05 41. ALAM05=ALAM05 41. ALAM05 41. ALAM05</pre>	18.	CO=18.*ENSRO
20. WORDE1. 21. DO 222 III,1000 22. ENTHEL. 23. IF(I.LT. 21) ENTHE.1 24. IF(I.LT. 21) ENTHE.01 25. IF(I.LT. 2) ENTHE.01 25. IF(I.LT. 2) ENTHE.01 26. IF(I.LT. 2) ENTHETA 20. IF(I.LT. 2) ENTHETA 23. KIEL937*T 24. KIEL937*T 29. IF(I.GT. TF) GO TO 223 30. ALAMDOFAL0*EXM(-ELO/RT) 31. ALAMDIFAL1*EXM(-ELO/RT) 32. ALAMDIFAL1*EXM(-ELS/RT) 32. ALAMDIFAL5*EXM(-ELS/RT) 33. ALAMDIFAL5*EXM(-ELS/RT) 34. CIEI7.*ENO*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB2/(ALAMB5) 36. ALAMDIFAL5*EXM(-ELS/RT) 36. ALAMDIFAL6*EXM(-ELS/RT) 37. DETA1=1ALAMB2 /ALAMB3 *(1.*ALAMB1 /(ALAMB3 -ALAMB1)) 36. JETA2=(ALAMB2 +5.*K(ALAMB5))-ALAMB1 *ALAMB2 39. I(ALAMDIFAL1*EXMB2 +5.*K(ALAMB5))-ALAMB1 *ALAMB2 39. I(ALAMDIFAL1*EXMB2 +5.*K(ALAMB5))-ALAMB1 -ALAMB1)) 30. DETA2=(ALAMB2 +1.*(ALAMB3 -ALAMB3 /16. 31. CIEI0.*ENO*ALAMB3*ELO/RTS0 42. PLISHDIFALAMB3*ELS/RTS0 43. KTSUERALAMB3*ELS/RTS0 44. KTSUERALAMB3*ELS/RTS0 44. MADIFALAMB3*ELS/RTS0 44. AMDIFALAMB3*ELS/RTS0 44. AMDIFALAMB3*ELS/RTS0 45. ULAMDIFALAMB3*ELS/RTS0 45. ULAMDIFALAM	19.	THETA=OELTH
21. D0 222 I=1,1000 22. ENTH=1. 3. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 21) ENTH=.01 25. IF(I.LT. 2) ENTH=1. 26. JHETA=IHETA+DELTH *ENTH 7. T=TO+RN+THETA 23. KT=1.937*T 29. IF (T.GT. TF) GO TO 223 30. ALAMDSALD*EXM(-ELD/RT) 31. ALAMDSALD*EXM(-ELD/RT) 32. ALAMDSALD*EXM(-ELD/RT) 32. ALAMDSALD*EXM(-ELD/RT) 33. ALAMDSALD*EXM(-ELD/RT) 34. C1=17.*ENO*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB2/(ALAMB2+ALAMB5) 36. ALAMDSALAMB2/ALAMB2+ALAMB5 36. ALAMDSALAMB2/ALAMB2 *1.*ALAMB5 37. GETA1=1ALAMB2 //ALAMB3 *(1.*ALAMB1 /(ALAMB3 -ALAMB1)) 38. GETA2=(ALAMB2 +5.*(ALAMB5) -ALAMB3 -ALAMB1)) 39. I(ALAMD3 -ALAMB2))/ALAMB3 40. PHI3=JETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1) 39. I(ALAMD3 +1./(ALAMB3 -ALAMB3 /16. 31. ALAMDSALAMB0*ELO/RTSQ 42. QL(3.'ALAMB3 *1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 33. C3=10.*ENO*PHI3 44. RTSD=AT*T 45. ULAMDSALAMB5*ELS/RTSQ 44. MTSD=ALAMB2*EL2/RTSQ 44. ALAMDSALAMB2*EL2/RTSQ 44. ALAMDSALAMB2*EL2/RTSQ 44. ALAMDSALAMB2*EL2/RTSQ 44. ALAMDSALAMB2*EL2/RTSQ 44. ALAMDSALAMB2*EL2/RTSQ 44. ALAMD5ALAMB2*EL2/RTSQ 44. ALAMD5ALAMB2*EL2/RTSQ 45. ALAMD5ALAMB2*EL2/RTSQ 46. ALAMD5ALAMB2*ALAMB5 47. ALAMD5ALAMB2*ALAMB5 48. ALAMD5ALAMB2*ALAMB5 49. ALAMD5ALAMB2*ALAMB5 40. ALAMD5ALAMB2*ALAMB5 40	20.	WOWO=1.
22. ENTHE1. 13. IF(I.LT. 21) ENTHE.0 24. IF(I.LT. 21) ENTHE.0 25. IF(I.LT. 2) ENTHE.0 25. IF(I.LT. 2) ENTHE1. 70. IHETAETHETA+DELTH *ENTH . TETO+RH*THETA 28. RTE1.937*I 29. IF (T.GT. TF) GO TO 223 30. ALAMOJALJ*EXM(-ELD/RT) 31. ALAMDIAL1*EXM(-ELD/RT) 32. ALAMDIAL1*EXM(-ELD/RT) 33. ALAMDIAL2*EXM(-ELS/RT) 34. CI=17.*END*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*END*ALAMB2/(ALAMB2+ALAMB5) 36. ALAMDIALAMB1+ALAMB2+ALAMB5) 36. BETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB1 *ALAMB1)) 36. BETA2=(ALAMB2 +5.*(ALAMB3 *(1.+ALAMB1 /(ALAMB1 *ALAMB1))) 36. BETA2=(ALAMB2 +5.*(ALAMB3 *(1.+ALAMB1 /(ALAMB1 *ALAMB1))) 36. BETA2=(ALAMB2 +5.*(ALAMB3 *(1.+ALAMB1 /(ALAMB1 *ALAMB1))) 37. BETA1=1ALAMB2 //ALAMB3 (1.+ALAMB1 /(ALAMB3 -ALAMB1))) 38. BETA2=(ALAMB2 +5.*(ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1))) 39. I(ALAMD3 + ALAMB2))/ALAMB3 /16. 39. C3=10.*ENO*PHI3 42. 2(3./ALAMB3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. 34. RT50=RT*T 45. DLAMDUALAMB0*ELO/RTS0 46. DLAMDUALAMB0*ELO/RTS0 40. DLAMDUALAMB3*ELD/RTS0 40. ALAMDUALAMB3*ELD/RTS0 40.	21.	DO 222 I=1,1000
<pre>13. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 21) ENTH=.1 24. IF(I.LT. 21) ENTH=.01 25. IF(I.LT. 2) ENTH=1. 20. IHETATHETATDELTH *ENTH</pre>	22.	<u>ÉNTH=1.</u>
24. IF(I.LT. 12) ENTH=.01 25. IF(I.LT. 2) ENTH=.01 25. IF(I.LT. 2) ENTH=1. 26. JHETA=THETA+DELTH #ENTH . T=T0+RH#THETA 28. KT=1.937*T 29. IF (T.GT. TF) GO TO 223 30. ALAMDD=ALD*EXM(-ELO/RT) 31. ALAMDT=AL1*EXM(-ELO/RT) 32. ALAMDD=ALD*EXM(-ELS/RT) 32. ALAMDD=ALD*EXM(-ELS/RT) 33. ALAMDD=ALD*EXM(-ELS/RT) 34. C1=T7.*ENO*ALAMB1/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 36. ALAMD5=ALAMB1+ALAMB2+ALAMB5 37. bETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 36. OETA2=(ALAMB2 +5.*(ALAMB5)) 37. bETA1=1ALAMB2 /ALAMB3 39. 1(ALAMB3 -ALAMB2))/ALAMB3 39. 1(ALAMB3 -ALAMB2))/ALAMB3 40PHI3=:bETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB1 _))/ALAMB1 *ALAMB2 39. 1(ALAMD3 + 1./(ALAMB3 -ALAMB3 _ALAMB3 _ALAMB1 _ALAMB1)) 30. C3=1c.*ENO*PHI3 42. 2(3./ALAAd3 ±1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. 33. C3=1c.*ENO*PHI3 44C3=LAMB3*EL2/RTSQ 45DLAMD2=ALAMB3*EL2/RTSQ 46DLAMD2=ALAMB3*EL2/RTSQ 40ALAMD2=ALAMB3*EL2/RTSQ 40ALAMD2=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL2/RTSQ 40ALAMD3=ALAMB3*EL3/RTSQ 40	<u>23.</u>	IF(I.LT. 21) ENTH=.1
<pre>25. IF(1.LT. 2) ENTH=1. ²0. JHETA=IHETA+DELTH *ENTH . T=T0+RH*THETA 23. KT=1.937*T 29. IF (T.GT. TF) GO TO 223 30. ALAMDO=ALD*EXM(-ZL0/RT) 31. ALAMD=ALD*EXM(-ZL1/RT) 32. ALAMDEAL2*EXM(-ZL2/RT) 33. ALAMDEAL2*EXM(-ZL2/RT) 34. C1=17.*ENO*ALAMB1/(ALAMB1+ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 36. ALAMDEALAMB1+ALAMB2/(ALAMB5) 37. DETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 30. BETA2=(ALAMB2 +5.*(ALAME5)-ALAMB1 *ALAMB2 39. 1(ALAMD3 -ALAMB2))/ALAMB3 70. PHI3=BETA1+1.125*BETA2+(4.*ALAMB5) -ALAMB2 -3.*ALAMB1 -ALAMB1 * 42. 2(3./ALAAB3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. 39. C3=10.*ENO*PHI3 42. 2(3./ALAAB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 39. C3=10.*ENO*PHI3 42. 2(3./ALAAB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 39. C3=10.*ENO*PHI3 42. 2(3./ALAAB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 39. C3=L0.*ENO*PHI3 44. RT50=RT*T 45. ULAMD0=ALAMB0*ELO/RTS0 40. ULAMD5=ALAMB0*ELO/RTS0 40. ULAMD5=ALAMB5*EL5/RTSQ 40. ALAM15=ALAMB5*EL5/RTSQ 40. ALAM15=ALAMB5*ALAMB5</pre>	<u>-</u> 4•	IF(I.LT. 12) ENTH=.01
<pre>>o</pre>	25.	IF(I.LT. 2) ENTH=1.
<pre>'. T=T0+RH*THETA 23. KT=1.937*T 29. IF (T.GT. TF) GO TO 223 30. ALAM50=AL0*EXM(-EL0/RT) 31. ALAM51=AL1*EXM(-EL1/RT) 32. ALAM52=AL2*EXM(-EL5/RT) 33. ALAM55=ALAM52*(ALAM55) 35. C2=21.*ENO*ALAM51/(ALAM51+ALAM55) 36. ALAM53=ALAM51/(ALAM54+ALAM55) 36. ALAM53=ALAM52 /ALAM55) 36. BETA2=(ALAM52 /ALAM53 *(1.+ALAM51 /(ALAM53 -ALAM51)) 36. BETA2=(ALAM52 /ALAM52)/ALAM55) 39. 1(ALAM53 -ALAM52)/ALAM55) 39. 1(ALAM53 -ALAM52)/ALAM53 *(1.+ALAM53 -ALAM51 -ALAM51)) 30. BETA2=(ALAM52)/ALAM55) 31. ALAM53 + 1./(ALAM55) 32. ALAM53 + 1./(ALAM55) 33. ALAM53 + 1./(ALAM53 - ALAM53 /16. 33. C3=10.+ENO*PHI3 42. 2(3./ALAA53 +1./(ALAM53 -ALAM51))/ALAM53 /16. 33. C3=10.+ENO*PHI3 44. RT50=RT*T 45. DLAM50=ALAM51*EL1/RTS0 45. DLAM55=ALAM51*EL2/RTS0 46. DLAM55=ALAM5*EL2/RTS0 40. ALAM5=ALAM54ALAM55</pre>	20.	THETA=THETA+DELTH *ENTH
23. KT=1.937*T 29. IF (T.GT. TF) GO TO 223 30. ALAMDUTALUYEXM(-ELO/RT) 31. ALAMDUTALIYEXM(-ELO/RT) 32. ALAMDUTALIYEXM(-ELS/RT) 33. ALAMDUTALIYEXM(-ELS/RT) 34. C1=17.*ENO*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 36. ALAMDUTALAMB1/(ALAMB1+ALAMB5) 36. ALAMDUTALAMB2 /ALAMB3 *(1.*ALAMB1 /(ALAMB3 -ALAMB1)) 36. BETA2=(ALAMB2 +5.*(ALAMB5))-ALAMB1 *ALAMB2 39. 1(ALAMDUTALIYEX)/ALAMB2 +1.*ALAMB5 -ALAMB1 *ALAMB2 39. 1(ALAMDUTALIYEX)/ALAMB2 -ALAMB5 -ALAMB1 *ALAMB1 30. PHIUTUETA1+1.125*BETA2+(4.*ALAMB5 -ALAMB2 -3.*ALAMB1 -ALAMB1 31. ALAMDUTALIYEXETA1+1.125*BETA2+(4.*ALAMB5 -ALAMB2 -3.*ALAMB1 -ALAMB1 34. C3=10.*ENO*PHIUTUE 42. 2(3.*ALAMB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 35. C3=10.*ENO*PHIUTUE 44. RTSUERT*T 45. DLAMBUTALAMB0*ELO/RTSQ 40. DLAMDUTALAMB1*EL1/RTSQ 40. ALAMDUTALAMB2*ALAMB5 40. ALAMDUTALAMB1*ALAMB5 40. ALAMDUTALAMB1*ALAMB5		T=TO+RH*THETA
<pre>29. IF (T.GT. TF) GO TO 223 30. ALAMBOTALOFEXM(-ELO/RT) 31. ALAMBOTALOFEXM(-ELO/RT) 32. ALAMBOTALTEXM(-ELI/RT) 33. ALAMBOTALSFEXM(-ELS/RT) 34. C1=17.*ENO*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 36. ALAMBOTALSFEXM(-ELS/RT) 37. bETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 36. ALAMBOTALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 37. bETA2=(ALAMB2 +5.*(ALAMB5))-ALAMB1 *ALAMB2 39. 1(ALAMD3 -ALAMB2))/ALAMB3 70. PHI3=DETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1 * 1. 1ALAMD2* 42. 2(3./ALA+d3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. 53. C3=Lo.*ENO*PHI3 74. RTSOTAT*T 75. DLAMBOTALAMBO*ELO/RTSQ 77. DLAMBOTALAMB1*EL1/RTSQ 77. DLAMBOTALAMB2*EL2/RTSQ 74. ALAM5TALAMB2*EL5/RTSQ 74. ALAM5TALAMB1*ALAMB5 76. DLAMBOTALAMB1*ALAMB5 76. DLAMBOTALAMB1*ALAMB5 77. ALAMBTATALAMBTATATATATATATATATATATATATATATATATATAT</pre>	28.	<u>KT=1.937*T</u>
30. ALAMBORALO*EXM(-2L0/RT) 31. ALAMBORALO*EXM(-2L1/RT) 32. ALAMBORALANBORALAMBORALO*ELS/RT) 33. ALAMBORALAMBORALAMBORALO*ELS/RT) 34. C1=17.*ENO*ALAMBORALAMBORALO*ELS/RT) 35. C2=21.*ENO*ALAMBORALAMBORALO*ELS/RT) 36. ALAMBORALAMBORALAMBORALO*ELS/RT) 37. C2=21.*ENO*ALAMBORALAMBORALO*ELS/RT) 36. ALAMBORALAMBORALAMBORALO*ELS/RT) 37. C2=21.*ENO*ALAMBORALAMBORALO*ELS/RT) 36. ALAMBORALAMBORALAMBORALO*ELS/RT) 37. C2=21.*ENO*ALAMBORALAMBORALO*ELS/RT) 36. ALAMBORALAMBORALAMBORALO*ELS/RT) 37. C2=21.*ENO*ALAMBORALAMBORALO*ELS/RT) 38. (1.+ALAMBORALAMBORALO*ELS/RT) 39. 1(ALAMBORANCA*ELS/RTSQ 42. 2(3./ALAMBORALAMBORALO/RTSQ 42. 2(3./ALAMBORALAMBORALO/RTSQ 44. RTSOCRT*T 45. ULAMBORALAMBORAMORALO/RTSQ 44. RTSOCRT*T 45. ULAMBORAMORAMORAMORAMORALO/RTSQ 46. ULAMBORAMORAMORAMORAMORAMORAMORAMORAMORAMORAM	29.	IF (T.GT. TF) GO TO 223
31. ALAM01=AL1*EXM(-2L1/RT) 32. ALAM02=AL2*EXM(-2L2/RT) 33. ALAM05=AL2*EXM(-2L2/RT) 34. C1=17.*ENO*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 36. ALAM05=ALAMB1+ALAMB2+ALAMB5 37. DETA1=1ALAMB2 /ALAMB3 *(1.*ALAMB1 /(ALAMB3 -ALAMB1)) 36. BETA2=(ALAMB2 /ALAMB5)/ALAMB3 /ALAMB3 -ALAMB1)) 37. DETA1=1ALAMB2 //ALAMB5)/ALAMB3 /ALAMB1 //ALAMB1 //ALAMB1 //ALAMB2)/ALAMB3 /ALAMB2)/ALAMB3 /ALAMB2 //ALAMB3 /ALAMB1 //ALAMB3 /ALAMB1 //ALAMB1 //ALAMB3 //ALAMB1	30.	ALAMOUZALU*EXM(-ELO/RT)
32. ALAMB2=AL2*EXM(-£L2/RT) 33. ALAMB5=AL5*EXM(-£L2/RT) 94. C1=17.*EN0*ALAMB2/(ALAMB2+ALAMB5) 35. C2=21.*EN0*ALAMB1/(ALAMB1+ALAMB5) 36. ALAMB3=ALAMB1+ALAMB2 / ALAMB5 37. bETA1=1ALAMB2 / ALAMB3 *(1.*ALAMB1 /(ALAMB3 -ALAMB1)) 38. DETA2=(ALAMB2 +5.*(ALAMB5)) 39. 1(ALAMB3 -ALAMB2))/ALAMB3 40. PHI3=BETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1 * 11. 1ALAMB2* 42. 2(3./ALAMB3 +1./(ALAMB3 -ALAMB3 -ALAMB1))/ALAMB3 /16. 73. C3=10.*ENO*PHI3 42. 2(3./ALAMB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 73. C3=10.*ENO*PHI3 44. RT50=RTT 45. DLAMD3=ALAMB0*ELO/RTSQ 46. DLAMD1=ALAMB1*EL1/RTSQ 47. DLAMD1=ALAMB1*EL1/RTSQ 48. DLAMD2=ALAMB2*EL2/RTSQ 49. ALAMB2*ALAMB5*EL5/RTSQ 40. ALAMB2*ALAMB5 40. ALAMB2+ALAMB5	5 1 •	ALAMD1=AL1*EXM(-EL1/RT)
35. ALAMD5=AL5*EXM(-EL5/RT) 54. C1=17.*ENO*ALAMB2/(ALAMB2+ALAMB5) 55. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 56. ALAMD3=ALAMB1+ALAMB2+ALAMB5 57. bETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 58. DETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 59. BETA2=(ALAMB2 +5.*(ALAMB5))/ALAMB3 / 0. 59. 1(ALAMD3 -ALAMB2))/ALAMB3 / 0. 70. PHI3=BETA1+1.125*BETA2+(4.*ALAMB5 -ALAMB2 -3.*ALAMB1 -ALAMB1 * 71. 1ALAMD2* 42. 2(3./ALAMB3 ±1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 73. C3=10.*ENO*PHI3 74. RT50=RT*T 75. DLAMD3=ALAMB0*ELO/RTSQ 76. DLAMD3=ALAMB0*EL2/RTSQ 77. DLAMD3=ALAMB5*EL5/RTSQ 78. ULAMD3=ALAMB5*EL5/RTSQ 79. ALAMB5*EL5/RTSQ 79. ALAMB5*ALAMB5*EL5/RTSQ 70. ALAMB5*ALAMB5*EL5/RTSQ	32.	ALAMO2=AL2*EXM(-EL2/RT)
35. C1=17.*ENO*ALAMB2/(ALAMB2/ALAMB5) 36. ALAMES=ALAMB1+ALAMB2+ALAMB5 36. ALAMES=ALAMB1+ALAMB2 +ALAMB5 37. ETA1=1ALAMB2 /ALAME3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 36. BETA2=(ALAMB2 +5.*(ALAMB5))-ALAMB1 *ALAMB2 39. 1(ALAME3 -ALAME2))/ALAME3 /(ALAME3 -ALAMB1 *ALAMB2)) 39. 1(ALAME3 -ALAME2))/ALAME3 -ALAME3 -ALAME1 -ALAME1 *ALAME2 //ALAME3 +0. 40. PHI3=BETA1+1.125*BETA2+(4.*ALAMB5 -ALAMB2 -3.*ALAMB1 -ALAMB1 *ALAMB1 //ALAME3 //ALAM	ن ي .	ALAMU5=AL5*EXM(-EL5/RT)
33. C2=21.*ENO*ALAMB1/(ALAMB1+ALAMB5) 36. ALAMb3=ALAMB1+ALAMB2+ALAMB5 37. BETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 38. BETA2=(ALAMB2 +5.*(ALAMB5))-ALAMB1 *ALAMB2) 39. 1(ALAMD3 -ALAMB2))/ALAMB3 //ALAMB3 -ALAMB1 -ALAMB1 *ALAMB2 //ALAMD2 * 40. PHI3=BETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1 *ALAMB1 //ALAMD2 * 42. 2(3./ALAAD3 +1./(ALAMB3 -ALAMB1))/ALAMB3 //ALAMB3 //ALAMB1 *ALAMB1 *ALAMB1 *ALAMB1 */ALAMB2 * 42. 2(3./ALAAD3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 //ALAMB3 //ALAMB1 */ALAMB1 */	24 <u>e</u>	CI=17.*ENO*ALAMB2/(ALAMB2+ALAMB5)
ALAMBSEALAMBITALAMB1 ALAMB5 37. BETA1=1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 36. BETA2=(ALAMB2 +5.*(ALAMB5))-ALAMB1))-ALAMB1 *ALAMB2 39. 1(ALAMB3 -ALAMB2))/ALAMB3 / r0. PHI3=BETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1 * r1. 1ALAMB2* 42. 2(3./ALAAB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. r3. C3=10.*ENO*PHI3 * r4. RTS0=RT*T +5. DLAMB0*ELO/RTSQ * *0. DLAMB1*EL1/RTSQ * *7. DLAMB1*EL1/RTSQ * *6. DLAMB5*EL5/RTSQ * *9. ALAMB5*EL5/RTSQ * *9. ALAM15=ALAMB1*ALAMB5	55. 44	C2=21. *ENO*ALAMB1/(ALAMB1+ALAMB5)
33. BETA1-1ALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1)) 33. BETA2=(ALAMB2 +5.*(ALAMB5)-ALAMB1)-ALAMB1 *ALAMB2	↓0 • <u></u>	ALAMDO-ALAMBITALAMB2TALAMB5
39. 1(ALAMB3 -ALAMB1 *ALAMB2 70. PHI3=BETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1 71. 1ALAMB2* 42. 2(3./ALAMB3 +1./(ALAMB3 -ALAMB1))/ALAMB3 /16. 73. C3=10.*ENO*PHI3 -ALAMB1))/ALAMB3 /16. 74. RTS0=RT*T +5. ULAMB0*ELO/RTSQ *0. ULAMB1=ALAMB1*EL1/RTSQ *7. ULAMB2*EL2/RTSQ *8. ULAMB5*EL5/RTSQ *9. ALAMB5*EL5/RTSQ *9. ALAM55=ALAMB5*EL5/RTSQ *9. ALAM15=ALAMB1*ALAMB5	3 గ •	DETAILITALAMB2 /ALAMB3 *(1.+ALAMB1 /(ALAMB3 -ALAMB1))
PHI3=BETA1+1.125*BETA2+(4.*ALAMB3 -ALAMB2 -3.*ALAMB1 -ALAMB1 IALAMB2* 42. 2(3./ALAMB3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. r3. C3=10.*ENO*PHI3 r4. RT50=RT*T +5. DLAMB0*ELO/RTSQ r0. DLAMB1*EL1/RTSQ r7. DLAMB1*EL2/RTSQ r6. DLAMB5*EL5/RTSQ r6. DLAMB5*EL5/RTSQ r9. ALAMB5*ALAMB5*EL5/RTSQ r0. ALAMB5*ALAMB5	19.	1 (ALAMB2 + D.* (ALAMB5)-ALAMB1 *ALAMB2 /
1. 1ALAMB2* 42. 2(3./ALAMB3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. +3. C3=10.*ENO*PHI3 +4. RTS0=RT*T +5. DLAMB0*ELO/RTSQ +0. DLAMB1*EL1/RTSQ +7. DLAMB2*ALAMB1*EL1/RTSQ +6. DLAMB2*EL2/RTSQ +7. DLAMB2*EL5/RTSQ +8. DLAMB5*EL5/RTSQ +9. ALAMB2*ALAMB5*EL5/RTSQ +9. ALAMB1*ALAMB5 -0. ALAMB1*ALAMB5	+0.	
42. 2(3./ALA4B3 +1./(ALAMB3 -ALAMB1)))/ALAMB3 /16. ,3. C3=10.*ENO*PHI3 ,4. RTSO=RT*T +5. DLAMSO=ALAMBO*ELO/RTSQ +0. DLAMS1=ALAMB1*EL1/RTSQ ,7. DLAMS2=ALAMB1*EL2/RTSQ ,6. DLAMS5=ALAMB5*EL5/RTSQ ,9. ALAM25=ALAMB5*EL5/RTSQ ,0. ALAM15=ALAMB1+ALAMB5	-1.	1ALAMB2 *
-3. C3=16.*ENO*PHI3 r4. RTS0=RT*T +5. DLAMB0*ELO/RTSQ +0. DLAMB1*EL1/RTSQ r7. DLAMB2*EL2/RTSQ r8. DLAMB5*EL5/RTSQ r9. ALAMB5*EL5/RTSQ r9. ALAMB2*ALAMB5 r0. ALAM15=ALAMB1*ALAMB5	42.	$2(3\sqrt{4})\sqrt{4}(3\sqrt{3}) + 1/(1)\sqrt{10} = 1000000000000000000000000000000000$
.4. RTSO=RT*T +5. DLAMSO=ALAMBO*ELO/RTSQ +0. DLAMS1=ALAMB1*EL1/RTSQ .7. DLAMS2=ALAMB2*EL2/RTSQ +6. DLAMS5=ALAMB5*EL5/RTSQ +9. ALAM25=ALAMB2*ALAMB5 .0. ALAM15=ALAMB1+ALAMB5	13.	C3=10.*ENO*2HI3
+5. DLAMBU=ALAMBO*ELO/RTSQ +0. DLAMB1=ALAMB1*EL1/RTSQ 7. DLAMB2=ALAMB2*EL2/RTSQ +6. DLAMB5=ALAMB5*EL5/RTSQ +9. ALAM25=ALAMB2+ALAMB5 -0. ALAM15=ALAMB1+ALAMB5	r4 •	RTSQ=RT*T
+0. DLAMB1=ALAMB1*EL1/RTSQ .7. DLAMB2=ALAMB2*EL2/RTSQ +8. DLAMB5=ALAMB5*EL5/RTSQ +9. ALAM25=ALAMB2+ALAMB5 .0. ALAM15=ALAMB1+ALAMB5	45.	ULAMOUTALAMBO*FLO/RTSO
7. DLAMB2=ALAMB2*EL2/RTSQ +8. DLAMB5=ALAMB5*EL5/RTSQ +9. ALAM25=ALAMB2+ALAMB5 -0. ALAM15=ALAMB1+ALAMB5	+0.	ULAMU1=ALAMB1*EL1/RTSQ
+8. DLAMD5=ALAMB5*EL5/RTSQ +9. ALAM25=ALAMB2+ALAMB5 20. ALAM15=ALAMB1+ALAMB5	.7.	ULAMO2=ALAMO2*EL2/RTSQ
+9. ALAM25=ALAMB2+ALAMB5 20. ALAM15=ALAMB1+ALAMB5	+0.	ULAMOS=ALAMB5*EL5/RTSQ
.0. ALAM15=ALAMB1+ALAMB5	•9•	ALAM25=ALAMB2+ALAMB5
	.0.	ALAM15=ALAMB1+ALAMB5
J. UCI=17.*ENO*(ALAMB5*DLAMB2-ALAMB2*DLAMB5)/ALAM25/ALAM25	1.	JC1=17.*ENO*(ALAMB5*DLAMB2-ALAMB2*DLAMB5)/ALAM25/ALAM25
· DC2=21.*ENO*(ALAMB5*DLAMB1-ALAMB1*DLAMB5)/ALAM15/ALAM15	بار	UC2=21.*ENO*(ALAMB5*DLAMB1-ALAMB1*DLAMB5)/ALAM15/ALAM15

-	
، گ•	DBETA1=(ALAMB2*(DLAMB1+DLAMB5)-ALAM15*DLAMB2)/ALAMB3/ALAMB3-(ALAM2
•	15*ALAMB3*(ALAMD1*DLAMB2 +ALAMB2*DLAMB1)-ALAMB1*ALAMB2*(ALAM25*(DLA
·5•	2MB1+DLAMB2+DLAMB5)+ALAMB3*(DLAMB2+DLAMB5)))/ALAM25/ALAM25/ALAMB3/A
·U •	3LAMB3
»7 •	UBLTA2=(ALAMB3*(DLAMB2+5.*DLAMB5
0.	1
.9.	25Q-DLAMB1-DLAMB5)/ALAM15/ALAM15)-(ALAMB2+5, *ALAMB5-ALAMB1*ALAMB2/A
0.	3LAM15)*(DLAMB1+DLAMB2+DLAMB5))/ALAMB3/ALAMB3
1.	DBETAA=ALAMB1*(2.*DLAMB2+3.*DLAMB5)+ALAMB2*(DLAMB5-2.*DLAMB1)-ALAM
2.	185*(3.*DLAMB1+DLAMB2)
3.	DBETABEALAMB1*ALAM62*(3.*(FL1+FL2)/RTSQ-6.*(DLAMP1+DLAMP2+DLAMPE)/
-11	
04 e	
	DBETAC-ALAMBITALAMBEX (TELITEL2)/RISQ-TDLAMBITDLAMB2+DLAMB5)/ALAMB5
	DBETAS=((DBETAA-DBETAB)/ALAMBS-DBETAC)/ALAMBS
<u>58.</u>	DC3=16.*ENO*(DBETA1+1.125*DBETA2+DBETA3/16.)
5 9 •	DYDIH=0.
70•	UYDT=0.
/1.	CALL ETA (T, THETA, AAO, EAO, ALO, ELO, ETAO, DETDT, DETDTH)
72.	XIEXP=EXP(-ALAMBO*THETA)
73.	DLUTH=CO*(ALAMBO*XIEXP-DETDTH)
74•	DLDT=CO*(THETA*DLAMBO*XIEXP-DETDT)
75.	UYDTH=DYDTH+DLDTH
?Ó•	
.7.	CALL ETA (TITHETAIAAIIEAIIALIIELIIETAIIDETDTIDETDTH)
້ ຢ 🚛	XILXP=EXP(-ALAMB1*THETA)
).	DLDTH=C1*(ALAMB1*XIEXP-DETDTH)
<u> 30 .</u>	DLDT=C1*(THETA+DLAMB1*XIEXP-DETDT) +DC1*(1XIEXP-ETA1)
• 1 د	JYDTH=OYDTH+DLDTH
52.	UYDT=DYDT+DLDT_
s 3 .	CALL ETA (T, THETA, AA2, EA2, AL2, EL2, ETA2, DETDT, DETDTH)
,4.	XIEXP=EXP(-ALAMB2*THETA)
50.	ULDTH=C2*(ALAMB2*XIEXP-DETDTH)
0.	ULDT=C2*(THETA*DLAMB2*XIEXP-DETDT) +DC2*(1XIEXP-ETA2)
57.	JYUTH=DYDTH+DLDTH
38.	DYDT=DYDT~DLDT
9.	CALL STE (T. THETA, AA3, EA3, AL1, EL1, AL2, EL2, AL5, FL5, FTA3, DETDT, DETDT
.0.	1H)
·1•	XIEXP=EXP(-ALAMB3*THETA)
12.	ULAMUSEDLAMB1+DLAMB2+DLAMB5
3.	
.4	DEDTEC3*(THETA*DLAMB3*XIEXP=DETDT) +DC3*(1,=XIEXP=ETA3)
5	
10.	
.7.	S=T=273.
) ()	WRITE(6.221) THETA.S.WOMO.DYDTH.DYDT.ETAO.ETA1.ETA2.ETA3
4	221 EDEMAT(1X+E7-2+3X+E7-2+3X+E6-4+6X+E10-3+5X+E10-3+4/EX+E10-3+1)
	TELEVANIANTIATET CONVERSE CONTRACTOR STATETORS (SATETORS)
1.	$\frac{1}{10000000000000000000000000000000000$
2.	AFNUTUT CLTC VCTUTUT ~V; NGLW~
6.	$\frac{UCLW-}{UCLW-} = \frac{WCCWUF(UUU)HTUTUTFKHT TULLTH TENTH}{UCLW-}$
	$1 r (3 \cdot 61 \cdot 360 \cdot 160 \cdot 10 \cdot 224)$

_ _ _	ZZO UCLYKLIULW

- 199 -

u6. IF (WOWO .LT. WLOWO) WOWO= WLOWO 222 CONTINUE 225 CONTINUE 50. 19. GO TO 111 <u>10.</u> 224 IF (DELW.GT. 3. *DELPRE) GO TO 225 GO TO 220 11. 12. 225 WOWD=WOWD-DELPRE 13. GO TO 226 END 14.

- 200 -

• SUBROUTINES •

SUBRJUTINE ETA (T, THETA, AA, EA, AL, EL, EIGHTA, DETDT, DETDTH) 1. RT=1.987*T 2. ALPHA=AA*EXM(-EA/RT) 3. ALAMBEAL*EXM(-EL/RT) 4. UM=ALAMB/ALPHA/ALPHA 5. RTSQ=RT*T Ö. 7. ULAMBA=ALAMB *EL/RTSQ JALPHA=ALPHA*EA/RTSQ 8. DMU=UM*(EL-2.*EA)/RTSQ 9. XIEXP=EXP(-ALAMB *THETA) 10. DXIODT=DLAMBA*THETA*XIEXP 11. 12. XIO=1.-XIEXP COSINE=COS(ALPHA) 1. TANALP=SIN(ALPHA)/COSINE 14. SUM1=0. 15. SUM2=U. .0. SUN3=0. £7. EN=-1. 10. TAOAMI=TANALP/ALPHA-1. . 9. ALPHSG=ALPHA*ALPHA 14. 00 880 I=1,99 11. EN=EN+1. :2. • ذ ENS=2.*EN+1. ENS=ENS*2.4674*ENS <u>:4</u>. :5. UMEXP=EXP(-ENS*UM*THETA) DENOM=ENS-ALPHSQ 0. TERM1=UMEXP/DENOM .7. SUM1=SUM1+TERM1 :8. 9. TERM=(1.-UMEXP)/DENOM/ENS SUM2=SUM2+TERM ノリ・ TERM3=TERM/DENOM 11. SUN3=SUM3+TERM3 2. IF (ALS (TERM/SUM2).LT. .001 .AND. ABS (TERM1/SUM1).LT. .001 .AND. <u>ن</u> ک 1 ALS(TERM3/SUM3), LT. .001) GO TO 889 4 ._ 5. 353 CONTINUE BOY USIGMA=DMU*SUM1*THETA+2.*ALPHA*DALPHA*SUM3 0. 7. EIGHTA=2.*ALPHSQ*SUM2-XIO*TAOAM1 IF(EIGHTA .LT. O.) EIGHTA=O.

·9•	DETDTH=(2.*SUM1-TAOAM1*XIEXP)*ALAMB
8	COSINE=COSINE*COSINE
5 1 .	UETDT=2.*ALPHSQ*DSIGMA+4.*ALPHA*SUM2*DALPHA-XIO*DALPHA*(ALPHA/COSI
۷	INE-TANALP)/ALPHSQ-TAOAM1*THETA*DLAMBA*XIEXP
+3.	RETURN
44.	END

1.	SUBROUTINE ATE (T, THETA, AA , EA , ALI, EL1, AL2, EL2, AL5, EL5, EIGHTA, DET
2.	1UT, DETDTH)
	RT=1.987*T
4.	ALPHA=AA*EXM(-EA/RT)
_5,	ALAMBIEALI*EXM(-EL1/RT)
Ö.	ALAMB2=AL2*EXM(-EL2/RT)
7.	ALAMB5=AL5+EXM(-EL5/RT)
8.	ALAMB=ALAMB1+ALAMB2+ALAMB5
9.	UMEALAMB/ALPHA/ALPHA
10.	RTSQ=RT*T
.1.	DLAMB1=ALAMB1*EL1/RTSQ
<u>.</u> 2.	DLAMB2=ALAMB2*EL2/RTSQ
13.	DLAMB5=ALAMB5*EL5/RTSQ
.4.	DLAMBA=DLAMB1+DLAMB2+DLAMB5
5.	DALPHA=ALPHA*EA/RTSQ
16.	DMU=(DLAMB1+DLAMB2+DLAMB5-2.*ALAMB*DALPHA/ALPHA)/ALPHA/ALPHA
17.	XIEXP=EXP(-ALAMB *THETA)
د •	DXIODT=DLAMBA*THETA*XIEXP
•¥	XIO=1XIEXP
żÛ•	COSINE=COS(ALPHA)
21.	TANALP=SIN(ALPHA)/COSINE
22.	SUM1=0.
23	SUM2=0.
	SUM3=0 •
<u> 25.</u>	EN).
20.	TAUAM1=TANALP/ALPHA-1.
-27.	ALPHSQ=ALPHA*ALPHA
~1ð•	DO 998 I=1,99
29	EN=EN+1.
30.	ENS=2.*EN+1.
51.	ENS=ENS*2.4674*ENS
32.	UMEXP=EXP(-ENS*UM*THETA)
33.	DENOM=ENS-ALPHSQ
34•	TERM1=UMEXP/DENOM
<u> 55.</u>	SUM1=SUM1+TERM1
30.	TERM=(1UMEXP)/DENOM/ENS
<u>37.</u>	SUM2=5UM2+TERM
<u> </u>	TERM3=TERM/DENOM
39	SUM3=SUM3+TERM3
40.	IF(ABS(TERM/SUM2).LT001 .AND. ABS(TERM1/SUM1).LT001 .AND.
41.	1 ABS(TERM3/SUM3).LT001) GO TO 999
42.	993 CONTINUE
3	999 DSIGMA=DMU*SUM1*THETA+2.*ALPHA*DALPHA*SUM3

		÷.
-4.	EIGHTA=2.*ALPHSQ*SUM2-XIO*TAOAM1	
•	IF(EIGHTA .LT. O.) EIGHTA=O.	
·U•	DETDTH=(2.*SUM1-TAOAM1*XIEXP)*ALAMB	•
.7.	COSINE=COSINE*COSINE	
+8•	DETUT=2.*ALPHSQ*DSIGMA+4.*ALPHA*SUM2*DALPHA=XIO*DALPHA*(ALPHA/COST	-
19.	INE-TANALP)/ALPHSQ-TAOAM1*THETA*DLAMBA*XIEXP	٦
·U•	RETURN	٦.
1.	END	·

.

.

1.	FUNCTION EXM(X)
2.	DO 96 I=1,10
3.	IF (ABS(X).LT. 10.) GO TO 97
4.	90 X=x/2.
5.	97 II=I-1
Ó.	EXM=EXP(X)
7.	IF(II.EQ. 0) GO TO 99
8.	DO 96 I=1,II
9.	98 EXM=EXM*EXM
10.	99 CONTINUE
11.	RETURN
2.	END

- 202 -

• COMPUTER PROGRAM HRI65R005 •

CALCULATION OF ISOTHERMAL DECOMPOSITION

OF PF/QUARTZ ABLATORS

The object of	this program is	; to calculate the decomposi	Ĺ -
tion functions (1	- W/Wo), $\left(\frac{W \circ x}{W \circ}\right)$	g, $\left(\frac{Wc}{Wo}\right)$ g, and $\left(\frac{W_{H}}{Wo}\right)$ at	
certain specified	temperatures by	v either of two options.	

- (A) For sets of specified values of the rate and transport parameters or,
- (B) For specified rate and transport parameter functions.

The following equations are used in the calculations: VIII-1 to VIII-8 incl.

The input consists of:

- 1) Constants, (ⁿSRO/Wo), (n_o/Wo), (W_{pf}/Wo).
- 2) Option one: tabular values of λ_0 , λ_1 , λ_2 , λ_5 and α_0 , α_1 , α_2 , α_3 at specified temperatures.
- 3) Option two: A_{λ_0} , A_{λ_1} , A_{λ_2} , A_{λ_5} ; E_{λ_0} , E_{λ_1} , E_{λ_2} , E_{λ_5} ; A_{d_1} , A_{d_2} , A_{d_3} ; E_{d_1} , E_{d_2} , E_{d_3} .

The computer program follows.

- 204 -

. .

T THE CRIME CONTRACTOR

.

FIGURE 40b - FLOW CHART FOR HRI65R005

. . *

د • •

1+

- 205 -

- 206 -

.....

• · •

·· ·

· ~ •

-

- -

1.	222 FORMAT (34H1DATA PROCESSING - CALCULATION OF) 25HISOTHERMAL DE
•	1COMPOSITION , 11HOF ABLATORS//27H HRI PROGRAM NO. HRI65R005, 3
3.	29HTYPE OF MATERIAL IS PHENOL-FORMALDEHYDE, 5X, 9HCALC. NO., 14//)
4.	DIMENSION C(5), IYVEC(4), CON(4), TM(4), ALAMB(6)
5.	1, THETA (50), WOWO (50), UM (6), ETAI (6), XII (6), ALPHA (6), STDTHE (50)
6.	111 READ(5,1) ID, IOPT, CON(1), CON(2), CON(3), (IYVEC(I), I=1,4)
7.	1 FORMAT(215)3F10.5/411)
ö.	$REAU(5)(221) \qquad III(S(DTHE(1))(1=1)(II))$
9 .	221 FURMAIN 15/15F5+4 /16F5+4/16F5+4/
U •	$\frac{\sqrt{11}}{\sqrt{222}}$
2.	WRITE(0/220/CUNTI/FCUNT2/FCUNT3/ 223 FORMAT(QU NSPO/WORL FR.5.5Y.6UNO/WORLF10 F.5Y.7UWDE/WORLF10 F1
3.	120 TOMMATCH NOROF FOR 301
Ц .	$RFAD (5 \cdot 9) AI \ 0 \cdot FI \ 0 \cdot AI \ 1 \cdot FI \ 1 \cdot AI \ 2 \cdot FI \ 2 \cdot AI \ 5 \cdot FI \ 5$
5	9 FORMAT(AF10.3)
6 .	$READ (5,9) AAO \cdot EAO \cdot AA1 \cdot EA1 \cdot AA2 \cdot EA2 \cdot AA3 \cdot EA3$
7.	WRITE (6,224)
8.	224 FORMAT(1H /16H LAMBA CONSTANTS)
9.	WRITE (6,9) ALO, ELO, AL1, EL1, AL2, EL2, AL5, EL5
Û.	WRITE(6,225)
1.	225 FORMAT(16H ALPHA CONSTANTS)
2.	WRITE(6,9)AAO, EAO, AA1, EA1, AA2, EA2, AA3, EA3
3.	302 READ(5,227)TEMP
4.	227 FORMAT(F10.5)
5.	IF (TEMP) 111,111,228
0.	228 RT=1.987*(TEMP+2.3.)
7.	EORT=-ELO/RT
ی .	ALAMBO =ALO*EXM(EORT)
9.	EORT=-EL1/RT
Û.	ALAMB(1)=AL1*EXM(EORT)
1.	EORT=-EL2/RT
<u>2</u> •	ALAMB(2)=AL2*EXM(EORT)
3• 	
·	
D •	
~	
/• ฉ	
9	
	$\Delta I PHA(2) = \Delta A 2 \times E YM(-E O PT)$
1.	FORT==FA3/RT
2.	ALPHA(3)=AA3*FXM(FORT)
٥.	GO TO 231
4.	301 READ(5,230) TEMP, ALAMBO, ALPHAO, ALAMB(1), ALPHA(1), ALAMB(2), ALPHA(2),
5	1ALAMB(5), ALPHA(3)
.	230 FORMAT(F10.5/8F10.5)
7.	IF(TEMP)111+111+231
3.	231 ALAMB(3)=ALAMB(1)+ALAMB(2)+ALAMB(5)
),	DO 401 K=1,4
).	IY=IYVEC(K)
	IF(IY.EQ. 0) GO TO 401
4 •	CALL CONSTS (IY, ALAMB, CON, CO, C)
? •	WRI1E(6,500)
T •	500 FORMAT(1H ////)
•	WRITE(0/501) TEMP
) () 7	DUL FURMATILDA TEMPERATURE=1+5.017H DEG. C)
•	

-0		
22.	105	
`•	105	
₩ 4 . < 0		WRITE(6)// ALAMBO/ALAMB(1)/ALAMB(2)/ALAMB(5)
24.		FORMAI(/H LAMBA=)6F1U.4)
3 3 .	•	WRITE(6)8)ALPHAO((ALPHA(I))I=1,3)
04.	88	FORMAT(/H ALPHA=)6F10.4)
00.		WRI(E(6)10) UMO((UM(1))1=1,3)
06.	10	FORMAT(7H MU= +6E10.3//)
37.		GO TO (601/602/149/149)/IY
58.	149	WRITE(6,150)IY
59 .	150	FORMAT(6H THETA, 4X, 2HY(, 11, 1H), 5X, 3HX10, 6X, 4HTM/0, 5X, 5HX11/0, 4X, 4H
70.	• • • • • • • • • • • • • • • • • • •	LETA1,5X,4HTM/1,5X,5HX12/0,4X,4HETA2,5X,4HTM/2,5X,5HX13/0,4X,4HETA3
71.		2,5X,4HTM/3)
72.	151	DO 400 J=1,IT
73.		T=STDTHE(J)
74.		TAU=UMO *T
75.		XI=1EXP(-ALAMBO *T)
76.		XIO=XI
77.		TMO= (XI-ETA(ALPHAO +TAU+XI))*CO
78.		YC=TMO
79.		DO 106 I=1,3
30.		TAU=UM(I)*T
81.		XI=1EXP(-ALAMB(I)*T)
32.		XII(I)=XI
33.		ETAII=ETA(ALPHA(I), TAU, XI)
84.		ETAI(I)=ETAII
45.		TM(I)=C(I)*(XI-ETAII)
. •	106	YC=YC+TM(I)
57.		GC TO (701,702,107,107), IY
58.	107	WRITE(6,108)T,YC,XIO,TMO,((XII(I),FTAI(I),TM(I)),T=1,3)
39.	108	FORMAT(1X+F7+3+2X+F6+5 +11(2X+F7+5))
90 .	<u>400</u>	CONTINUE
91.	-401	CONTINUE
LAGNOST	10*	151
TAGNOST	10*	400
32.	•••	IE(IOPT,EQ. 1) = 0 = TO = 301
23°		
<u>эн</u>	601	JPITE(6.410)IV
270 26.	001 ""	ΙΠΛΙΓΕΛΟΥΟΙΟΥΙΙ "ΕΔΡΜΑΤΙζΕΊ ΤΗΓΤΑ ΠΥΙΔΗΥΙΩΤΑΙΤΑΙΤΑΙ ΤΟΥ ΙΔΙΥΤΑΙΖΎΙΠΗΥΝ ΛΟ ΕΥΠΕΝΎΥΥΖΑΠΑΥΠΑΠ
200 24	010	FUNMAINUM IMEIA/46/2011/11/10/10/10/10/10/14/14/10/07/07/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/
יטי גע		CO TO 151
2/6	600	
20. 10 ····	- 002 - 200	
フブ ・ ヽヘ	020	FURMAINON INCLATATION (111)11/15X/5HX12/0/4X/4HETA2/5X/4HTM/2/5X/5
JU •		INX13/U/4X/4HE (A3/3X/4H (M/3)
) 7 •		
JZ •	/01	WKIIE(0,108) 1, YC, X10, TMO, XII(1), ETAI(1), TM(1), XII(3), ETAI(3), TM(3)
1 3 .		GU 10 400
J4•	702	WRITE(0,108)T,YC,XII(2),ETAI(2),TM(2),XII(3),ETAI(3),TM(3)
15.		GO 11/ 400
16.		END

- 207 -

.

.

• •

- - - --
- 208 -

- • •

• SUBROUTINES •

~~~~		
4.		
<u> </u>		ETAKIN=SIN(ALPHAI)/COS(ALPHAI)/ALPHAI
3.		
5.		
<b>Q</b> •		
(•		
0		
<b>9</b> • 10		ENS-ENSTENSTENSTATIO/T TERME(1 EYR(-ENS*TATI))/ENS/(1 ENS/ALRUSA)
1 1		
	STICE	THE TEST FOR EQUALITY RETWEEN NON-INTEGERS MAY NOT BE MEANINGEUL.
12.	5120*	TE (ABS (TERM/SUM) LE 001) GO TO 334
13.	333	
14	334	SUM=2.*SUM*(-1.)
15.	444	ETA=SUM-(ETAKIN-1.)*XI
16.		RETURN
17.		END
- • •		
		· · · · · · · · · · · · · · · · · · ·
1.		SUBROUTINE CONSTS (TY+ALAMB+CON+CO+C)
		DIMENSION ALAMB(6) CON(4) C(5)
⊷• 3.		TE(TY, FQ, 1) GQ TQ 771
ц.,		IF(IY, FQ, 2) = GO = TO = 772
5.		IF(IY,FQ, 3) GO TO 773
		CO=18.*CON(1)/CON(3)
7.		$C(1)=17_{*} \times CON(2) \times ALAMB(2) / (ALAMB(3) - ALAMB(1)) / CON(3)$
8.	بعثالة نفط اعتلاق ورجو ومراجع	C(2)=21.*CON(2)*ALAMB(1)/(ALAMB(3)-ALAMB(2))/CON(3)
9		BETA1=1ALAMB(2)/ALAMB(3)*(1.+ALAMB(1)/(ALAMB(3)-ALAMB(1)))
10.		BETA2= (ALAMB(2)+5.* (ALAMB(3)-ALAMB(1)-ALAMB(2))-ALAMB(1)*ALAMB(2)/
11.	1	(ALAMB(3)-ALAMB(2)))/ALAMB(3)
12.		PHI3=BETA1+1.125*BETA2+(4.*ALAMB(3)-ALAMB(2)-3.*ALAMB(1)-ALAMB(1)*
13.	1	LALAMB(2)*
14.	ź	2(3./ALAMB(3)+1./(ALAMB(3)-ALAMB(1)))/ALAMB(3)/16.
15.		C(3)=16.*CON(2)*PHI3 /CON(3)
.6.		GO TO 774
L7.	771	CO=16.*CON(1) /CON(3)
18.		C(1)=16.*CON(2)*ALAMB(2)/(ALAMB(3)-ALAMB(1))/CON(3)
.9.	_	C(2)=0.
20.		BETA1=1ALAMB(2)/ALAMB(3)*(1.+ALAMB(1)/(ALAMB(3)-ALAMB(1)))
21.		C(3)=16.*CON(2)*BETA1 /CON(3)
.2.		GO TO 774
:3.	772	COEU
<u>∠4</u> •	•	C(1)=0.
: <b>5</b> •		C(2)=18.*CON(2) /CON(3)*ALAMB(1)/(ALAMB(1)+ALAMB(5))
-D.		BEIA2=(ALAMB(2)+5.*(ALAMB(3)-ALAMB(1)-ALAMB(2))-ALAMB(1)*ALAMB(2)/
<b>41</b> •		L(ALAMB(S)-ALAMB(2))/ALAMB(3)
20.		U(3)-10,*UN(2)*BETA2/UN(3)
:9•	···· ·	60 10 774 Comp. #Con(1) Con(2)
-U• -•	(13	C(1) = C(0)(2) + A + A + B + C(2) + A + B + B + C(2) + A + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + A + B + B
•		UNITH-UUNIC/TALAMBNZ//NALAMBNJ/TALAMBNI/J/CON(3) 10/1/
سة. ∕د		
.J.		DE (A) - (4. TALAMB(3) - ALAMB(2) - 3. TALAMB(1) - ALAMB(1) +
94 e		LALAMD/ムノネ 2/スーノALAMD/ストエキーノ/ALAMD/ストーALAMD/キトトトノALAMD/スト
J.	6	(\J+/ALAMD\J/TI+/\ALAMD\J/#ALAMB\I////ALAMB\3/

5.	ید. بینیو مسئلین کر این وی وار ایمانی میلود بینیو ا	C(3)=CON(2)*BETA3/CON(3)
37.	774	RETURN
38.		END
	10 1 May 1 4 1	

· •

•

.

.

.

.

1.	FUNCTION EXM(X)
2.	DO 96 I=1,10
່ 3.	IF (ABS(X).LT. 10.) GO TO 97
. 4.	96 X=X/2.
· 5.	97 II=I-1
6.	EXM=EXP(X)
7.	IF(II.EQ. 0) GO TO 99
δ.	DO 98 I=1, II
· 9.	98 EXM=EXM*EXM
10.	99 CONTINUE
11.	RETURN
1.1.	END

••

.

- 209 -

• -

:

#### APPENDIX D

#### CALCULATION OF KINETIC AND DIFFUSION PARAMETERS

To illustrate the calculation of such parameters as  $\lambda$ ,  $\mu$ , D, k, and  $\xi$ , the path of calculation is followed for the smoothed values of weight loss (1 - W/Wo) at 605°C as taken from Figure 16. The actual calculations are made by computer program HRI65R002 (Appendix C), but this section will follow the calculations as closely as possible.

The theory of this operation is to calculate (1 - W/Wo) by equation (VIII-1) (or calculate Wox/Wo, Wc/Wo, or  $W_{\mu}$ /Wo by the appropriate equations if the data is based on the individual elements) for the specified values of time at the given temperature. The individual values calculated for (1 - W/Wo) have the corresponding experimental values substracted, and the differences are squared and summed. Since values of  $\lambda$  's and  $\alpha$  's are required to calculate (1 - W/Wo) (where  $\mathbf{a} = (\lambda/\mu)^{\frac{1}{2}}$ ), the correct values of  $\lambda$ 's and  $\alpha$ 's should allow the calculated weight loss to match the experimental weight loss, and the sum of the squares of the difference,  $\sum \Delta^2$ , will be zero. A logically arranged series of "guesses" of sets of values for  $\lambda$ 's and **Q**'s must be initiated, bearing in mind that the more correct the values in a set are, the smaller will be the sum of the squares of the differences between colculated and experimental values of weight loss. In principle, when  $\sum \Delta^2 = 0$ , the correct values will have been found for all  $\lambda$ 's and  $\alpha$ 's, but in an actual case, the experimental values have inherent errors, and  $\sum \Delta^2 = 0$  can not be reached. A compromise must be made so that the best values of  $\lambda$ 's and  $\alpha$ 's, giving a minimum for  $\sum \Delta^2$ , will be taken as correct for the temperature of the experimental points.

The selection of the series of successive approximations of sets of  $\lambda$ 's and **Q**'s follows a simple pattern. A first approximation set must be selected, but there are no rules governing the selection, and unfortunately only individual experience in the field of reaction kinetics is of any help in this selection. Regardless of how far the first approximation is from the correct set, given enough successive approximations the process should converge to give the correct set of  $\lambda$ 's and **Q**'s. In the case of HRI65R002, some simplification is possible. The desorption of water is thought to be very fast even at low temperatures so that  $\lambda_0$  is high, and is strictly a surface reaction so that  $\mathbf{Q}_0$  is negligible. These are arbitrarily set at  $\lambda_0 = 100/\text{min}$ . and  $\mathbf{Q}_0 = 0.0001$ . For these sample calculations,  $\lambda_1 = 0.6/\text{min}$ .  $\lambda_2 = 27.0/\text{min}$ .  $\lambda_5 = 0.7/\text{min}$ .  $\mathbf{Q}_1 =$ 3.2,  $\mathbf{Q}_2 = 6.0$ , and  $\mathbf{Q}_3 = 0.05$ .

A three dimensional matrix is set up for the  $\lambda$ 's which centers around the initial values of  $\lambda$ 's. An arbitrary number

of points is selected for each direction; in this case, five points for each direction. The size of the increments of  $\lambda$ in each direction are selected to define the volume of space to be investigated; in this case  $\Delta \lambda_1 = 0.05$ ,  $\Delta \lambda_2 = 1.0$ ,  $\Delta \lambda_5 =$ 0.05. The space is therefore defined as  $\lambda_1 = 0.5$ , 0.55, 0.6, 0.65, 0.7;  $\lambda_2 = 25.$ , 26., 27., 28., 29.;  $\lambda_5 = 0.6$ , 0.65, 0.7, 0.75, 0.8. Each of these 125 combinations of  $\lambda$ 's is used with the values of  $\lambda_0$ ,  $\mathbf{a}_0$ ,  $\mathbf{a}_1$ ,  $\mathbf{a}_2$ ,  $\mathbf{a}_3$  to calculate a  $\sum \Delta^2$  for the set of experimental data. The combination giving the smallest  $\sum \Delta^2$  is  $\lambda_1 = 0.7$ ,  $\lambda_2 = 29.0$ ,  $\lambda_5 = 0.6$ ; plus the values  $\lambda_0 =$ 100.,  $\mathbf{a}_0 = 0.0001$ ,  $\mathbf{a}_1 = 3.2$ ,  $\mathbf{a}_2 = 6.0$ , and  $\mathbf{a}_3 = 0.05$ . Sample calculations will therefore be made for this set, and at the time,  $\mathbf{A} = 3$  min.

From equation (VIII-1), it can be seen that four terms contribute to (1 - W/Wo) and the second term, involving  $\xi_1$ , will be examined as the most significant in this instance. Since by equation (VIII-3),  $\xi_1$  is made up of two parts,  $\xi_1^0$  will be calculated first. By combining (VIII-4) and (VIII-5),

$$\xi^{\circ} = 1 - e^{-\lambda \theta} = 1 - e^{-0.7} (3) = 0.8775$$

By combining (VIII-4), (VIII-5), (VIII-6),

$$\eta_{I} = \sum_{n=0}^{\infty} \frac{2\left[1 - e^{-(2n+1)^{2}\pi^{2}\mu_{I}\theta/4}\right]}{(2n+1)^{2}\pi^{2}\left[\frac{(2n+1)^{2}\pi^{2}}{\alpha_{I}^{2}} + \left(1 - \frac{\tan\alpha_{I}}{\alpha_{I}}\right)\xi_{I}^{\alpha}\right]}$$

where  $\mu_{l} = \frac{\lambda_{l}}{\alpha_{l}^{2}} = \frac{0.7}{(3.2)^{2}} = 0.0693$ 

The first term of the series will be for  $\mathbf{n} = 0$ ,

$$\frac{2\left[1-e^{-(0+1)^{2}\pi^{2}(0.0683)(3.)/4}}{(0+1)^{2}\pi^{2}}=-0.422$$

- - ----

The second term, for  $\mathbf{n} = 1$ , is 0.075; the third for  $\mathbf{n} = 2$  is 0.006; all of the following terms are positive but drop off rapidly in value, and the sum of the series is - 0.3390. The second term of  $\eta_1$  contains,

$$|-\frac{\tan \alpha_1}{\alpha_1}| = |-\frac{\tan 3.2}{3.2} = 0.9818$$

So,

 $\eta_1$  = -0.3390 + (0.9818) 0.8775 = 0.5225

From (VIII-3),

 $\boldsymbol{\xi}_1 = \boldsymbol{\xi}_1^{\bullet} - \boldsymbol{\eta}_1$ , = 0.8775 - 0.5225 = 0.3550

The coefficient of  $\xi_1$  is,

$$17\left(\frac{n_{o}}{W_{o}}\right)\frac{\lambda_{2}}{\lambda_{2}+\lambda_{5}} = 17(0.00847)\frac{29}{29.+0.6} = 0.1411$$

where (no/Wo) is determined from the structure of the p-f resin and the ash content. Since the structure is represented by equation (V-25),  $(CH_2)_{3/2}$  ( $C_6H_2$ ) OH, one gram mole of resin would weigh 112.12 grams. Since the material, resin plus ash plus adsorbed species, is 94.97 w% resin, an initial weight of 1C0 grams gives 94.97 grams of resin or 0.847 gram moles, and (no/Wo) = (0.847/100) = 0.00847.

The second term is therefore,

17 
$$\left(\frac{no}{Wo}\right) \frac{\lambda_2}{\lambda_{25}} \xi_1 = (0.1411)(0.3550) = 0.05001$$

in the fighter way strates with the second

Similarly, the coefficient of  $\xi_0$  is 0.02736,  $\xi_0^{=} 1.0$ , and  $\eta_0 = 0$ . So the first term is 0.02736. The coefficient of  $\xi_2$  is 0.09578,  $\xi_2^{=} = 1.0$ , and  $\eta_2 = 0.00^{\circ}94$ , so the third term is 0.09568. The coefficient of  $\xi_{125}$  is 0.10962  $\xi_{125}^{=} = 1.0$ , and  $\eta_{125} = 0$ . So the last term is 0.10962. The sum of the four terms is 0.2828, and since no inert filler was added,  $(W_C/W_{pf}) = 1$ . Therefore  $(1 - W/W_0) = 0.2828$  calculated by equation (VIII-1) at  $\theta = 3$  min. The experimental value is 0.3100 (Figure 16); the difference,  $\Delta = -0.0879$ ; the difference squared,  $\Delta^2 = 0.00773$ . For all of the points from  $\theta = 0$  to  $\theta = 100$  the sum of the squares of the differences,  $\sum \Delta^2 = 0.0198$ , for the set  $\lambda_0 = 100., \mathbf{a}_0 = 0.0001, \lambda_1 = 0.7, \mathbf{a}_1 = 3.2, \lambda_2 = 29.0, \mathbf{a}_2 = 6.0, \lambda_5 = 0.6, \mathbf{a}_3 = 0.05$ . Other sets from the possible combinations have  $\sum \Delta^2$  as high as 0.03717, but since none of the sets has a lower  $\sum \Delta^2$ , these values of  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_5$  are used in the next step.

The second phase of the operation is a minimization of  $\sum \Delta^2$ by variation of  $\mathbf{Q}$ 's in exactly the same fashion as was just done with variation of  $\lambda$ 's. The number of points in each direction is chosen to be five. The size of the increments are chosen as  $\Delta \mathbf{Q}_1 = 0.50$ ,  $\Delta \mathbf{Q}_2 = 0.50$ ,  $\Delta \mathbf{Q}_3 = 0.05$ , and from this the  $\mathbf{Q}$  matrix of  $\mathbf{Q}_1 = 2.2$ , 2.7, 3.2, 3.7, 4.2;  $\mathbf{Q}_2 = 5.0$ , 5.5, 6.0, 6.5, 7.0; and  $\mathbf{Q}_3 = 0.15$ , 0.20, 0.25, 0.30, 0.35, is set up with the previous "best"  $\mathbf{Q}$ 's in the center of the matrix. Each of the 125 combinations of  $\mathbf{Q}$ 's is used in a set with the previously determined best set of  $\lambda$ 's and  $\lambda_0$  and  $\mathbf{Q}_0$ . From this series of calculations  $\sum \Delta^2$  as high as 0.03416 and as low as 0.0197 are obtained. Corresponding to the minimum  $\sum \Delta^2$  are  $\mathbf{Q}_1 = 3.2$ ,  $\mathbf{Q}_2 = 5.0$ ,  $\mathbf{Q}_3 = 0.15$  and these "best" values are used in the next step.

The third phase is a repetition of the first phase which minimizes  $\sum \Delta^2$  by variation of  $\lambda$ 's again, but this time smaller  $\lambda$  increments are used and the  $\lambda$  matrix generated is a "medium mesh" matrix in the volume of the "coarse mesh" matrix generated in the first phase. The minimum  $\sum \Delta^2 = 0.0189$ is calculated with  $\lambda_1 = 0.74$ ,  $\lambda_2 = 29.8$ ,  $\lambda_5 = 0.56$  which are now taken as the new "best" values of  $\lambda$ 's to be used in the next step.

The fourth phase is a repetition of the second phase and minimizes  $\sum \Delta^2$  by using values from a "medium mesh" **Q** matrix. Minimum  $\sum \Delta^2 = 0.0189$  is calculated with **Q**₁ = 3.2, **Q**₂ = 4.6, **Q**₃ = 0.11 which become the new "best" **Q**'s.

Repeating with a "fine mesh" matrix of  $\lambda$ 's gives a minimum  $\sum \Delta^2 = 0.0189$ , and following with a "fine mesh"  $\alpha$  matrix gives a minimum  $\sum \Delta^2 = 0.0186$ . In principle this alternately improving  $\lambda$ 's and  $\alpha$ 's is continued until  $\sum \Delta^2$  no longer gets substantially smaller, and then the current "best" values of  $\lambda$ 's and  $\alpha$ 's are taken as correct for the temperature of the data. In practice it is unwise to have the computer continue automatically beyond three repetitions of  $\lambda$ 's and three of  $\alpha$ 's, or possibly even less for the first few submissions of the program. The reason for this is that the "correct" values of  $\lambda$ 's and  $\alpha$ 's may not be within the volume originally started with. This is the case for this example; by viewing the com $\Sigma\Delta^2$  always occurs at the boundary of the matrix being used. This means that better values of  $\lambda$ 's and  $\mathbf{Q}$ 's can probably be obtained by shifting the volume of investigation and repeating the process starting with a new coarse mesh matrix. When this is done, the parameters finally selected are  $\lambda_0 = 100$ ,  $\mathbf{Q}_0 =$ 0.0001,  $\lambda_1 = 0.666$ ,  $\mathbf{Q}_1 = 3.40$ ,  $\lambda_2 = 30.1$ ,  $\mathbf{Q}_2 = 6.00$ ,  $\lambda_5 = 0.544$ ,  $\mathbf{Q}_3 =$ 0.250 for  $605^{\circ}$ C. The values at other temperatures are presented in Tables VII and VIII. A least squares fit is then used to evaluate the constants for equations (VIII-7) and (VIII-8) so that  $\lambda$ 's and  $\mathbf{Q}$ 's can be calculated at intermediate temperatures.

The  $\lambda$ 's can be converted to k's by the simple relation given in Table VII,

$$k = \frac{\lambda_{i}\rho}{60 M_{resin}} = \frac{1.225 \lambda_{i}}{60(112.12)} = (1.820 \times 10^{-4}) \lambda_{i}^{*}, \frac{g.mole}{sec-cm^{3}}$$

and values of k's so obtained are tabulated in Table VII.

For each  $\lambda_i \, a_i$  pair, a value for  $\mu_i$  can be calculated by,  $\lambda_i$ 

 $\mu_i = \frac{\lambda_i}{\alpha_i^2}$ 

and the diffusivities can be calculated by the relation given in Table VIII,

$$D_{i} = \frac{\mu_{i}}{60 \, \text{s}^{2} \rho^{2}} = \frac{\mu_{i}}{60(2437)^{2} (1.225)^{2}} = (1.87 \times 10^{-9}) \mu_{i}^{*}; \frac{\text{cm}^{2}}{\text{sec}}$$

and values of  $\mu$ 's and D's are tabulated in Table VIII.

* Values of S and **P** from Table B-15, C-1 Run 2.

## APPENDIX E

#### EXPERIMENTAL EQUIPMENT

#### 1. Kinetic equipment:

The configuration of the kinetic equipment is discussed in Section IV. The chief item is a Perkin-Elmer model 800 gas chromatograph, which has a differential flame ionization detector, and is shown in Figure 41. An auxiliary thermal conductivity (hot wire) detector is installed in a separate oven and can be controlled at temperatures from  $50-400^{\circ}$ C. It is possible to operate the chromatograph so that both detectors are in use at the same time. The duel columns are in a proportional controlled oven which can be temperature programmed from ambic to  $400^{\circ}$ C. The du l liquid injector system can be operated up to  $500^{\circ}$ C. The gas sampling valve allows the introduction of a reproducible volume of sample gas in the nominal amounts of 25 ml., 5 ml., 1 ml., and 0.25 ml.

The output from the chromatograph goes to a Texas Instruments two channel Servo-Writer recorder, Model FWD-1MVE-5MVE-05-A16-BT, which is zener regulated, has 1/2 sec. response, and has 12 chart speeds. Channel A is 1 riv. and is connected to the hot wire detector. Channel B is 5 mv. and is connected to the flame detector.

The pyrolysis furnace, Figure 42, is a Lindberg-Heviduty type 54031, rated at 800 watts for 115/230 v. and can be operated to 1850°F. The furnace tube is custom made of vycor glass by Scientific Glass Blowing Company. The furnace temperature is controlled by a Honeywell Versa-Tronic indicating and controlling potentiometer, model R7161B-1468, which will operate over the range 0-1000°C. The controller activates a P & B relay #KA11AG, 10A. DPDT 115V. coil, which connects the furnace to the output of a 20A. 120V. Powerstat. The furnace temperature is obtained by means of an L & N #8686 millivolt potentiometer, which has multiple ranges to 100.100 millivolts, by means of a chromel-alumel thermocouple inserted down the furnace tube.

The vacuum for the furnace tube is provided by a Welch Disto-Pump model 1399, rated at 15  $\mu$ , Hg, and absolute pressure up to 240 mm Hg is indicated by a Bennert type vacuum manometer.

The adsorption tubes are 100 ml. Swartz drying tubes with 1215 ball and socket joints.

# 2. Karl Fisher apparatus:

The construction diagram of the apparatus is shown, Dwg. C-1001-19,700. The stirrer is a Lab-Line Magnestir #1250.



FIGURE 41 - GAS CHROMATOGRAPH

- 216 -



FIGURE 42 - PYROLYSIS FURNACE



The automatic burette is manufactured by Kimax to meet the requirements of NBS Circular 602; the reservoir is 1000 ml.; the burette capacity is 25 ml. with 0.1 ml. subdivisions.

## 3. Vacuum desorption apparatus:

-----

The construction diagram of the apparatus is shown, DWG. C-1002-19,700; vacuum oven is a National Appliance Company model 5830, and draws 550 watts at 115/220 V.; vacuum down to an absolute pressure of 1  $\mu$  Hg can be held, and temperature can be controlled from ambic to 200 °C within 0.5 °C. The vacuum for the oven is provided by a Welch Disto-Pump model 1399, rated at 15  $\mu$  Hg, and absolute pressure up to 240 mm Hg is indicated by a Bennert type vacuum manometer.

#### 4. Winslow Mercury Porosimeter:

The porosimeter, pictured in Figure 10, is American Instrument's 15,000 psi model and was supplied completely equipped except for the following accessories which were obtained separately: a Hastings DV3, TC type vacuum gauge for absolute pressures below 1000  $\mu$  Hg.; and a Welch Disto-Pump model 1399 vacuum pump, rated at 15  $\mu$  Hg.



I

- 220 -