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Minimum-Impulse Time-Free Transfer

Between Elliptic Orbits

ABSTRACT

Minimum-impulse orbit transfer between coplanar ellipses and between
neighboring low-eccentricity ellipses was investigated. - In the former case,
all optimal elliptic transfer arcs were isolated and cataloged, and &
graphical method for determining the optimal transfer between arbitrary
coplanar ellipses was presented. In the latter case, explicit relations
were derived for the optimal transfer between adjacent ellipses whose
elements are known.



FOREWORD

This report was prepared by United Aircraft Research Laboratories of
United Aircraft Corporation, East Hartford, Connecticut. It presents
the final documentation of a research study on minimum impulse require-
ments for orbital transfer problems done by United Aircraft for the
Langley Research Center under Contract NAS 1-4688. This work is an
outgrowth of the interest at Langley Research Center in problems of
orbital transfer and rendezvous and results from the support of an
unsolicited proposal submitted by U.A.C. to Langley. This research
study was administered by the National Aeronautics and Space Adminis-

tration with Mr. R. L. Collins, Jr. acting as technical monitor.

The research presented in this report began in February 1965, was
completed in February 1966, and was carried out by the authors at the

U.A.C. Research Laboratories in East Hartford, Connecticut.
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Minimum-Impulse Time-Free Transfer Between Elliptic Orbits

Contract NAS1-4688
Final Report

by
Frank W. Gobetz, Michael Washington and Theodore N. Edelbaum

SUMMARY

The method of primer vector maximization has been applied to two classes
of time-free, impulsive, orbit transfer problems. The first class concerns
coplanar transfers between arbitrary elliptic orbits. For this case, two
distinct families of transfer arcs were isolated, one with Lawden's symmetric
transfer as a limiting solution, and one limited by the lawden spiral. A
complete catalog of data for all optimal arcs of these families was made in
terms of parameters useful in solving specific problems. A sample problem was
successfully solved using these data.

In addition to the cataloging of optimal arcs, a geometric interpretation
of the coplanar problem is described. By a digital simulation, spool-shaped
figures discovered by Contensou were visually displayed and photographed. The
results are discussed as they apply to the families of coplaenar solutions.

The second problem treated is that of time-free transfer between
neighboring orbits of small eccentricity. A complete analytic solution was
obtained for this problem. Explicit expressions are given for the optimum
location, direction, and magnitude of each impulse. The solutions are
found to require either two or three impulses. In the three-impulse cases,
the solutions are singular and may be replaced by finite-thrust solutions of
arbitrary magnitude with no increase in fuel consumption.

INTRODUCTION

The problem of transferring between elliptic orbits with minimum
expenditure of impulse in the restricted two-body problem is one which has
been solved only for certain special cases. In general, minimum-impulse
solutions to particular orbit transfer problems have been obtalined either
by numerical search or by approximate analytical methods. These solutions
serve limited purposes because they are designed to apply only to particular



terminal orbits or families of orbits, and because they are based on assumptions
regarding the number of impulses involved in the transfer. The complexity of
minimel-impulse problems has prevented the attainment of more general solutions,
but a clear need exists for such solutions.

The purpose of this study was to explore .he case of time-free, minimum-
impulse transfer, utilizing a method inspired by the contributions of lawden,
Contensou, and Breakwell, and with the hope of tabulating solutions to this
problem for use with a wide range of possible elliptic terminal orbits. In
view of the large number of parameters involved, the problem has been divided
into two categories. The first concerns coplanar, time-free transfers between
elliptic orbits. The second involves a linearized, three-dimensional model
with neighboring terminal orbits of low eccentricity. Treatment of the
general three-dimensional problem, while it is feasible in principle by the
method described herein, would require consideration of additional variables,
thereby greatly complicating the task of tabulating transfers. Therefore,
this most genersl time-free case was not considered in this study.

‘Solution of an orbital transfer problem requires the determination of a
coasting arc (or arcs) to join the terminal orbits. Since departure and
arrival terminals are left unspecified, a multitude of possible arcs must be
chosen from in order to select the optimum transfer. The appropriate figure
of merit in meking this selection is minimum characteristic velocity, i.e.,
AV. It is apparent that a direct method of solution would be to express AV
as a function of the state variables of the problem, perhaps orbital elements,
and to successively differentiate AV to optimize these state variables.
Unfortunately this method of solution, although feasible, results in a set of
simultaneous equations which cannot be solved explicitly and which provide
no physical interpretation of the results.

The approach taken herein may be described as the method of primer
vector maximization. Specifically, the technique permits isolation of all
possible elliptic coasting arcs of optimal transfer trajectories. These
arcs are merely segments of elliptic orbits, but not all segments of arbitrary
elliptic orbits are candidates for optimal coasting arcs. By exclusion of
those arcs which do not fulfill the necessary conditions derived by lawden in
Ref. 1 for optimal coasting ellipses, the remaining arcs may be tabulated.

A major objective of this contract was the tabulation of these data for both
the nonlinear coplanar problem and a linearized noncoplanar problem.
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Component of primer in radial direction
Component of primer in circumferential direction
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Q tan™' (8% /A% )

Subscripts

1, 2 Junction points

I, 11 Terminal orbits

i 1, 2, 3, ...

T Transfer arc

(o} Circular reference orbit

A, B, A’ Families of noncoplanaf solutions

BACKGROUND

In general, determination of optimum impulsive transfer trajectories
requires answers to four questions. First, how many impulses should be
applied to effect the desired transfer? Second, where should these impulses
be applied? Third, in what directions should the impulses be applied?

And finally, how should the total impulse be distributed if more than one
impulse is involved?

The state of current knowledge with regard to the first question has
been treated by Edelbaum in a recent paper, Ref. 2. This problem is probably
the most difficult of the four. It is apparent that single-impulse transfers
are possible only if the terminal orbits Intersect; but in most cases which
have been investigated numerically, single-impulse transfers have been found
to be less economical than multi-impulse transfers. Most frequently, two
impulses are considered in planning practical orbit transfers because, on the
one hand, terminal orbits do not always intersect and, even when they do,
single-impulse transfers may be costly of fuel; and on the other hand, multi-
impulse transfers (greater than two) require repeated restarting of propulsion
engines which introduces reliability and lifetime problems. These considerati
will become less crucial as space flight is made routine, however, and if sub-
stantial savings are available through multiple applications of thrust, these
savings may eventually be realized.

The question of where to apply the impulses has received somewhat more
attention since, once it has been assumed that a certain number of impulses
is to be applied in a given problem, the best locations of the impulses can
be determined by numerical search. Generally speaking, any point on an
ellipse is a possible impulse point, except in a single-impulse transfer
when the intersection point of the ellipses must be used. Of the known

ons



minimizing solutions, all but lawden's symmetric transfer (described below)
involve thrust impulses applied at apses of the transfer and terminal
ellipses. On the basis of some numerical solutions to two-impulse coplanar
transfers in Ref. 3, it was noted that when the terminal orbits intersect,
impulse requirements are sensitive to the points of application of the two
impulses. For nonintersecting orbits, however, total impulse was found to
be relatively insensitive to the location of impulse points.

It has been shown by Moyer, in Ref. h, that the thrust direction for an
optimum single-impulse coplanar transfer always lies between the velocity
vector and the local horizontel and tends to be closer to the latter. The
impulse may also be exactly opposite, i.e., 180 deg from this direction, but
in either case it will result in a relatively small change in direction of the
velocity wvector.

Magnitudes of the individual impulses in a multiple-impulse transfer
vary from case to case, but show one tendency which can be explained. When
large energy changes are necessary, the major part of the total impulse is
usually applied at the terminal point closest to the center of attraction
because energy can be added most efficiently where velocity is greatest, and
velocity is greatest near the focus.

Only two minimizing solutions are known for time-free transfer when the
orbits are all coplanar ellipses. One of these is the familiar Hohmann-type
transfer between co-apsidael ellipses which requires tangential impulses
applied at the apses, Figure 1 is a summary of known solutions of this type
as described in Ref. 5. The second known solution was obtained by both
Plimmer and Iawden, Refs. 5 and 6, and is a transfer between congruent
ellipses whose major axes are skewed. This case, referred to herein as a
symmetric transfer, involves a coasting orbit whose major axis is the line
of symmetry of the transfer. A typical example of a symmetric transfer is
presented in Fig. 2 which is taken from Ref. 5.

Some other solutions which are small perturbations of the Hohmann-type
transfer have been developed for coplanar coaxial ellipses, Ref. 7, and
inclined coaxial ellipses, Ref. 8. In a recent work, Ref. 9, several
interesting discoveries were made concerning coplanar transfers. Reference
9 is especially pertinent to the first problem treated in the present study.

METHOD OF ANALYSIS

The problem of determining the optimal, time-free impulsive transfer
between two elliptic terminal orbits in an inverse-square field may be treated
as a problem in the calculus of variations since it requires the determination
of a trajectory x(t) which minimizes a functional, in this case AV. Much of



the pioneering work in solving this problem has been done by lawden, and in
Ref. 1 his contributions are summarized in a concise form. Of particular
interest for this study has been lawden's derivation of the primer vector
in his general theory of optimal rocket trajectories.

The primer can best be described as a vector formed from components which
are Iagrange multipliers introduced in the variational treatment of the
problem. The multipliers which constitute the primer are those which are
introduced in association with the velocity components of the state vector.
ultipliers are often referred to as adjoint variables, the primer
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One of lawden's major contributions, and the foundation upon which the

method used in this study was constructed, is the discovery of the primer

and its characteristics. The primer always points in the direction of optimum

thrust application, and thrusting periods are determined by the value of tle

primer, That is, when the primer exceeds a certain value, thrust is turned

on full, and when it is less than this value, thrust is turned off. If an

intermediate thrust arc 1s part of the trajectory, the primer is constant

over this arc.

For the case of impulsive application of thrust treated in the present
study, thrust is considered to be infinite in magnitude and to act over an
infinitesimally small time duration. Lawden has shown that in this case the
following conditions for an optimal trajectory must be satisfied (Ref. 1):

1. The primer and its time derivative must be continuous everywhere,

2., Whenever the rocket motor is operative, the thrust must be aligned
with the primer which must have a certain constant magnitude, P,

3. The magnitude, p, of the primer must not exceed P on any coasting
arc,

4, The time derivative of p is zero at all junction points not coin-
cident with the terminals,

Because of condition 3, the primer assumes its maximum value, P, at
each Jjunction. The magnitude of P is arbitrary and is assumed to be unity in
the present study. Therefore, whenever p = P = 1, a thrust impulse is applied.

A derivation of the equations for the primer components A, p, and v
appears in Chapter 5 of Ref. 1. These components are, respectively, in the
radial, circumferential, and normal directions and are depicted in Fig. 3.
The circumferential direction is defined to be perpendicular to the radius
vector in the plane of and in the same sense as the motion. The normal
direction completes the right-handed orthogonal triad. The following are




‘Lawden's equations describing the components of the primer in terms of orbital
eccentricity, e, true anomaly, f, and the integration constants, A, B, C,
D, E, and F. These equations constitute the starting point of the present

study.

A = Acosf 4+ Besinf + CI,(e,f) ' (1)
u = - Asinf + B(l + ecosf) + D= Asinf -, CI,le,f) (2)
I + ecosf
Ecosf + Fsinf
v =
! + ecosf (3)
2 2 2 2
P = XN+ u +v (%)

It is of interest to consider the integration constants. The physical
ir.kerpretation of these constants i1s better understood when orbital
elenents are used as state variables rather than the polar coordinates used by
Iawden. It 1s possible to show that these constants are the lLagrange
multipliers associated with orbital element state variables. Since the
multipliers can be expressed as the partial derivatives of the payoff with
respect tc the associated state variables (Ref. 10), the following proportion-
alities indicate the nature of the integration constants.

A = 3AV/3w | (5)
B = 3AV/3a ' (6)
C = dAV/dt | : | (1)
D = JAV/34 (8)



=

=

34V 24V

Exa 31 Y& 3 : (9) |
AV AV
Feg 3 "85 (10)

where g, , g, &3, & are functions of Q, w, and i. For the special case where
the time of the transfer i1s not prescribed, the constant C is zero, thereby
eliminating the integral functions I, and I; (e, f) from the equations.

Under the assumption of impulsive thrust application, an optimal trajectory-
can be regarded as a succession of coasting arcs separated by Junction points
which represent impulses. Included in this series of arcs are the terminal
orbits themselves, 1In effect, with time open, the orbital motion of a body in
the initial terminal orbit is part of the transfer, since it will coast in
this orbit until it reaches the point where the primer is a maximum. At this
point, an impulse is applied, thereby establishing a new orbit which is also
entered at a maximum of p, But this new orbit must have the unique feature
that the primer goes through another equal maximum at some other point (true
anomaly); otherwise subsequent transfer to another orbit would not be optimal.
At this second maximum of p, transfer is made to the next arc, which may or
may not be the final terminal orbit, depending on the optimum number. of
impulses required to effect the transfer.

In any case, it is evident that by piecing together transfer arcs, the
optimum transfer can be generated in this manner. However, only transfer
arcs which are characterized by double maxima of p are candidates for optimum
coasting arcs. Therefore, by applying Lawden's conditions on p to all
elliptic orbits, those arcs which are candidates for optimal coasting arcs may
be determined and cataloged.

COPIANAR TRANSFERS

Analysis

Necessary Conditions

The first task to be undertaken is that of cataloging optimum coasting
arcs for coplanar transfers. For this case, the equations for the primer
components reduce to

A=Acos f +Be sin f (11)



s D-A sin f
= <A f+3B (1 + c ) + ————— 12
. sin ( ¢ cos ) l+ecos f (12)
=A% =1 (13)

where, in Eq. (13) the maximum value of p is arbitrarily set at unity. Since

)\ and p are proportional to the direction cosines of p, & thrust angle, ¢, may
be defined as the angle between the projection of p on the A, u plane and the
perpendicular to the radius vector in the direction of motion (counterclockwise),
as shown in Fig. 3.

If an ellipse contains a coasting arc, it will be possible to find a double
meximum of p; i.e,, there will be two values of f on the orbit for which p is
both a local maximum and equal to unity. As many as three maxima and three
minima of p are possible in this coplanar problem, but some primer vector loci
will contain fewer than two maxima, and most of those which contain two maxima
will have unequal peaks. The result is that the category of optimal arcs is
restricted to a particular subset of all possible arcs. It will be noted from
the form of Egs. (11) through (13) that the semimajor axis, a, does not appear.
Therefore, optimal arcs may be tabulated according to the eccentricity of
ellipses of which they are segments, and the size of the ellipses need not be
specified.

It now remains to satisfy

3P

Sf,—=o (14)
and

PP =1 (15)

for two values of f for a given e. This process might be done graphicelly by
selecting £, A, and e, and finding the combinations of B and D which satisfy
these conditions. For given f, A, and e, two sets of satisfactory values of

B and D are found, so that by varying f these sets will form a locus of

possible optimal arcs. Each point on the curve represents a value of f.
Therefore, if the curve crosses itself, two values of f exist for which Lawden's
conditions are met. In Fig. h, a typical diagram of the B vs D locus is depicted
for e = 0.5, A = 0.3. The upper and lower branches of the curve are seen to be
symmetrical, with two crossings shown. These crossings represent two congruent
arcs which are reflections about the major axis of an e = 0.5 ellipse as indicated
by the true anomaly values noted in Fig. k4.

10



In principle, all optimum coasting arcs could be determined by this graphical
approach. However, problems of sensitivity of the results have made it desirable
to choose an alternate method, utilizing a computer to obtain sufficient
accuracy. If the conditions of Egs. (14) and (15) are applied to Egqs. (11)
through (13), a system of four equations results. The exact form of these
equations is given in Appendix A. In functional form they are:

p(A,B,D, e, ;) =1 (16)

3p (A, B, D, e, ;)

57, =0 (17)
p (A, B, D, e, f3) =1 (18)
dp (A, B, D £,

p ( ) ) €, 2) =0 (19)

3t

For fixed e and A, these equations constitute a system of four equations in
the four unknowns B, D, f;, and f;, where the subscripts 1 and 2 refer to

the double maximum of p. In addition, a second derivetive test insures that
the extrema are maxima and not minima. Using Newton's method, these equations
have been programmed for the IBM TO94 computer.

Several problems were encountered in obtaining the solutions. The first
problem was to isolate the region of acceptable values of A. In the course
of pursuing the graphical approach described above, it was observed that two
limiting cases, Lawden's symmetric transfer and the lawden spiral, constitute
upper bounds on A, and that at higher values of A, no crossings occurred,
Moreover, the form of the equations requires that solutions for A negative
duplicate those determined for A positive. Apparently, A is bounded by these
limiting cases, and by thus placing bounds on A, the region to be explored was
narrowed and the task of calculating and tabulating solutions considerably
reduced.

The second problem was one of convergence of the computation scheme.
The derivatives in Egs. (17) and (19) were driven to zero to five significant
figures, and the functions in Eqs. (16) and (18) were driven to unity to the
same degree of accuracy. Proceeding from A = 0, convergence was achieved
over a range of values of A. Then, before the end of the acceptable range of
A values was reached, convergence to the desired accuracy was not achievable
by the method being employed. But by an alternate method, employing a numerical
search technique, some of the nonconvergent cases were forced to convergence to
the desired accuracy. Therefore, it was concluded that the maxima had become



‘extremely flat in this region, causing the Newton-Raphson iteration to fail.
The remaining points in the region of slow convergence were cbtained to less
than the desired accuracy to avoid an excessive penalty in computing time, but
in view of the apparent flatness of the maxima, the penalty in AV for slight
inaccuracies in these data is inconsequential.

If the equations of Appendix A describing necessary conditions for equal
maxime of the primer are expanded, it can be shown that an equation of 6th
degree in cos f results. Therefore, as many as three maxima and three minima
are theoretically possible. However, the square of the primer has been used
rather than the primer itself (as a mathematical convenience) and, consequently,
three different roots mey not actually be attainable. Furthermore, no evidence
of a third root was found in the numerical solutions, thereby indicating that
only two equal maxima of p occur in the coplanar case,

Limiting Cases

To determine the acceptable region of values of the constant A, several
limiting cases were considered. These are the known optimum coplanar transfer
solutions. The first is the Hohmann-type transfer for which f; and f; must
be O or M, and A = O, The latter condition results from the fact that all
ellipses in a Hohmann-type transfer are co-apsidal, or alternatively, the
longitude of peri-apsis, w, is constant. By Eq. (5) then, A = 0.

Iawden (Ref. 1) shows that the values of B and D are easily obtained for
Hohmann-type transfers. There are basically two families. In the first family,
impulses at both junction points act in the same direction, either both
supporting or both opposing the motion. For this case, the points of inter-
section occur when

B=zx31 (20)

D=2x21(1-¢%) (21)
In the second family, one impulse supports the motion and one opposes it.

B =% 1/2e (22)

D= F(1 - e®)/2e (23)

12



Another limiting case, the symmetric transfer, has B = D = 0., When
necessary conditions are applied with this simplification, an equation for A
results.

7 X (I + ecosf) _
JU + ecost® + (3 + 2ecosf)sinif (24)

For given e, the angle f is determined at once from the condition ap/af =
so that the primer is known.

One other limiting case is Iawden's spiral solution. Although these
spirals are really intermediate thrust arcs (which were recently shown to be
nonoptimal, Refs. 11 and 12) they may be interpreted as consisting of a

0L e T moace conatodad L2 P S e e e

b(‘_'.['.l.ﬂb U.L J.IlJ..LIlJ.LrUbJ.HRJ,.L J.lll.Pu.J.be L palaicu U‘Y .Lll..LJ.l.l.l.bch.lllu.L bU&th..l.lg arcs or
by almost e 360-deg coast (Ref. 13). Equations for the constants A, B, and
D as well as for true anomaly, f, were obtained from Ref. 13. If ¢ is the
angle made by the primer with a perpendicular to the radius vector in the
direction of motion, and n = sin ¢, then

A s -3n%3 - ?n’) (25)
e(3 - 5n")

B - 3n2/i-n? (i8 - 9in? + 149n° - 8Orf) ¢
e*(3 - 4n®)(3 - 5n")* (26)

3J1 —nt 2 2
< - 4n? —_ 2 .
D : H3 - 53 —and L° (3 - 4n®°(1 — 7n*+ 10n*) (27)

+ (e — Nn%(18 - 9in? +149n* — BOn')]

-2/ - n¥ (I —2n%)(3 - 4n?) (28)
n(7 - 2in® + 16nY

tanf =

Here, n = sin ¢ must be selected to satisfy

9nY(7 - 2In*+16n*) + ] 36n%0 - n®)(1—2nH%(3 - 4n?Y)?
(3 - sn%)*

(29)

13



Catalog of Data

The solutions obtained by the method described above follow a distinct
pattern. The most striking result is that all optimum transfer arcs fall
into one of two families. The first family begins with a Hohmann-type
transfer with both supporting or both opposing impulses, and ends with a
Iawden spiral solution. This family is henceforward referred to as spiral-
limited. The second family begins with a Hohmann-type transfer with impulses
opposing one another, and ends with a symmetric transfer. This family is
henceforward referred to as symmetric-limited. Representative solutions from
these families are presented in Figs. 5 and 6 for e = 0.5.

Spiral-limited solutions possess the property that both impulses either
oppose or support the motion. In Fig. 5, straight lines join the impulse
points which form extremities of optimum coasting arcs with e = 0.5. Either
segment of the ellipse, i.e., Af > T or < 7, may be used. But first, consider
arcs entered nearer the focus. It is apparent that the Hohmann-type transfer,
the longest arc, is entered at peri-apsis and departed at apc-apsis; the
length of the transfer arc decreases monotonically as the spiral solution is
approached. None of these arcs includes an apse. With the direction of motion
assumed counterclockwise in Pig. 5 and the thrust directions illustrated in the
sketch, all arcs are entered with true anomaly in the first or second quadrant,
and end with true anomaly in the second quadrant. The spiral solution itself
always lies within the range

90® = £ < 125°

If points beyond the spiral solution are entry points into the transfer
ellipse (coasting arcsT’ﬂ), the thrust directions are reversed. Only half

the spiral-limited solutions are shown in Fig. 5. The remainder are described
by a reflection of the set shown about the major axis of the ellipse. These
transfer arcs are ildentical to those shown but are described by f = -f and

¢ = -9.

Symmetric-~limited solutions show a different character, as illustrated
in Fig. 6. Here, impulses are always applied in opposition to one another,
and coasting arcs all pass through an apse of the ellipse. The limiting
solutions are the symmetric transfer and the Hohmann-type transfer. Thrust
directions indicated in the sketch are appropriate for arcs entered near the
focus (Af < m); for Af > T, thrust directions must be reversed. As in the
spiral-limited case, reflections exist for all the coasting arcs shown in
Fig. 6. Again, these reflected arcs are described by £ = -f and ¢ = -¢.

In ascertaining the appropriate thrust directions at each Junction point
in Figs. 5 and 6, the data of Ref. 4 have been invaluable. The method used

1k



herein predicts only the value of tan ¢ at each point so that thrust directions
separated by T are always possible. But in Ref. h, sufficient conditions are
given to exclude one of these directions at each point.

The solutions shown in Figs. 5 and 6 are representative of those obtained
in the study. It is evident from these diagrams that, even for e = 0.5, many
transfer arcs exist, each characterized by specific terminal points and thrust
directions. Cataloging of these solutions has been a major goal of the study.
A summary of computer output date describing spiral-limited transfers appears
in Figs. T through 12 and similar data for symmetric-limited transfers appears
in Figs. 13 through 18. In view of the way the solutions were generated, all
curves are plotted ageinst A. Subscripts 1 and 2 used with the parameters f and
¢ refer to initial and final impulse locations as indicated in Figs. 5 and 6.
It is important to realize that any junction point may be an entry point into
or departure point from the transfer ellipse. The subscripts are used only to
identify the terminals as being nearer peri-apsis (subscript l), or nearer
apo-apsis (subscript 2).

Summary Curves

In order to use the data summarized in Figs. 7 through 18 in practical
orbit transfer problems, it is necessary to substitute parameters of physical
significance. However, in order to retain the nondimensional character of the
solutions and thereby generalize them to orbits of all sizes, no dimensional
parameters should be introduced in the final presentation of the data.

Mindful of the foregoing considerations, the following parameters have
been chosen for presentation: the radius ratio, rp/r;, where the subscripts
- correspond to the initial and final Jjunction points (only radius ratios greater
than unity sre tabulated since it is clear that "reflected" solutions account
for all ratios less than one); the central angle of the transfer, Af = f,z-le;
eccentricity, e; the thrust angles, ¢, and ¢o; and the velocity components,
w; and vy, normal to the primer at each junction. The significance of w; and
wp lies in the fact that the component of velocity normal to p remains unchanged
across & Junction point, since all AV is applied in the direction of p. Since
Aw = O across every Jjunction, this condition must be tested at each such point
and the tabulation of w; and wp, is indispensable. Both w; and w, are non-
dimensional velocities, having been normslized with respect to the local circular
velocity. For chosen values of A and e, the parameters f,, fp, @, and ¢, may
be read from Figs. 7 through 18. The radius ratio and normal velocity may be
calculated from known quantities.

ra 1 +e cos fy

(30)

5 1l+ecos fy
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w=|sin @ ~f1 +ecos £ -2 sin f cos ¢ I (31)
A/l +ecos f

Since the.sign of w 1s unimportant, absolute value signs are used in Eq. (31)
so that w will always be recorded as a positive quantity. The final summary
curves are presented in Figs. 19 through 23 for the spiral-limited family and
in Figs. 24 through 28 for the symmetric-limited solutions. The first curves
in each set display radius ratio and central angle of the transfer with e as
the parameter. The succeeding curves relate the remaining variables to e and

ra /Ty .

Using the Summary Curves

The solutions summarized in Figs. 19 through 28 constitute all arcs of
elliptic orbits which can be used as transfer arcs in.putting together an
optimal, coplanar transfer between elliptic orbits. However, the problem
usually posed is one of selecting the proper arc or arcs to connect known
terminal orbits, and nothing has yet been said to specify what orbits may be
entered into or departed from using a particular optimal arc. It is possible
to solve the general problem, that is, determination of the arc or arcs which
should be used to connect given terminal orbits, by using the summary curves.
Before describing the method to be used, however, consider the families of
orbits which may be joined to a particular arc at a junction point.

— . — e amm — e mn — —— —— — —

A terminzl orbit need have only a single maximum of p. Therefore, all
ellipses are potential terminal orbits, although the family of orbits attainable
from a given Junction is restricted. To obtain the family of terminal orbits
related to a given optimal arc, it is necessary only to treat each junction
point as a single-impulse transfer, since the same conditions on the primer
must be met. The results of Ref. 4, which treats necessary conditions for
single-impulse transfers, are therefore directly applicable here. Iawden
(Ref. 1, p. 116) gives expressions sufficient for calculating the primer
constants, A, B, and D, in terms of e and f on the terminal orbit. For given
AV, it is then possible to determine e and f for the terminal orbits in terms
of known quantities at the junction, and in such a way that the primer is a
maximum at that point. Moyer (Ref. 4) points out that when the impulse exceeds
a certein value, the primer no longer has an sbsolute maximum at the junction
point. The impulse must, therefore, vary between bounded values. Each AV
is then associated with one member of the family of terminal orbits reachable
at the given junction.

The upper bound on AV is more simply understood by considering some possible

primer loci in Fig. 29. The heavy curve displays a double maximum of p and
is therefore the locus of a member of the family of optimal transfer arcs. When
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an impulse is applied at one of the indicated maxims (point B) the primer locus
is deformed; i.e., a new locus is formed which is tangent to the transfer arc
locus at the Jjunction point, and which has no higher maxima than that at the

+angent noint. R A smoall AV nroduces a small deformation such as curve g
tangent poind, B. 4 smAil proauces a aeiormation, sucn as curve a,

larger AV's produce correspondingly larger deformations, e.g., curve b, until,

~at some value of AV, a locus, c, with two equal maxima is produced. It is

clear, then, that a still larger AV will result in & maximum at C which is
higher than that at B. But this case is impossible since the terminal orbit
must be entered at an absolute maximum of p. Therefore, as pointed out in
Ref. 4, an upper limit on AV exists.

The summary curves may be used to construct optimum transfers involving
more than one coasting arc since the families of optimum ares include all
coasting arcs which may be used to make up an optimum transfer trajectory.

For example, a three-impulse transfer would consist of two optimum coasting

arcs Joined together. At the junction common to both arcs, however,

continuity conditions on r, ¢, and w must be satisfied. That is, the Junction
requires a unique radius common to the appropriate terminal of each arc,

equal values of ¢ to assure continulty of the primer across the junction,

and equal values of w, since the normal component of velocity is unchanged

by the impulse. If a plot of w vs ¢ is made using the data provided by the
summary curves, arcs which may be Joined together will be identified by

crossings of their curves on the diagram. (The radius constraint is automatically
satisfied since w is nondimensionalized by the local circular velocity.)

While the method is feasible in principle, it suffers some serious draw-
backs. First, the region of crossings is so extensive, and hence the number
of cases to be tested so great, that it is impractical to consider this
approach. Secondly, even if the crossings could be analyzed, the resulting
transfer arcs would be extremely difficult to catalog, and they would still
have to be tested against two-impulse transfers in perticular problems to
determine which is superior.

Finally, a recent paper by Marchal (Ref. 9), indicates that the region
of optimum three-impulse transfers is restricted to a very small class of
terminal orbits for which the ratio of the maximum apo-apsis radius to the
minimum peri-apsis radius 2 21.0. Recently, two further limitations were
added, (Ref. 14).

0° <|uy -wy| < 22°
(32)
e +eg > 1.7127
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It is clear that both e, and e, must be large and that the angle between major
axes of the terminal orbits is quite restricted.

Fixed Terminal Orbits

The most practical application to which the summary curves can be put
is that of determining the optimum transfer by two impulses between prescribed
terminal orbits. Fortunately, this problem can be solved, and although the
method involved is laborious, it requires only plotting and routine hand
calculation to accomplish the desired objective.

The method assumes complete knowledge of the terminal orbits, to be
designated by subscripts I for the initial orbit and II for the final orbit.
It is assumed that wy, the angle between the reference line and peri-apsis
of orbit I, is zero as shown in Fig. 30, although this assumption in no way
limits the choice of orbits. All angles are measured from a fixed reference
line, and the angle B, with appropriate subscript, measures the angular travel
from the reference line to a Jjunction point. The subscript T refers to the
transfer arc.

The first step is to assume impulse points 1 and 2, that is, to specify
B, and By. This process determines Af and rg/r, .

AT = Bg-B, (33)

r2 _ f13. 1 +er cos B (34)

ry 4 1+ ey cos (By-wrr)

Now, using the summary curves for rb/ri vs Af, e; is determined (each family
of transfer arcs must be investigated separately). This in turn permits
determination of wyy, the velocity normal to the thrust direction on the
transfer orbit, and ¢, the thrust angle at junction 1. The normal velocity
on the initial terminal orbit, wy, may then be calculated.

tan 8; = o Sin By (35)
T ¥&; cos By

w1 =a\f2 - r, /a; sin (81 - ¢,) (36)

The angle 6 is measured between the velocity vector and the perpendicular
to the radius at the impulse point. (A diagram illustrating the geometry at an
impulse point is provided in Fig. 31.) It is noted that Eq. (31 is an alterative
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expresslion for w if appropriate subscripts are used.

Since wy; and wy will generally be unequal, it is necessary to vary B,
to find the locations (B¥) of the second impulse point for which wyy = wy.
By considering many values of B,, curves of wy; and wr vs By are generated;
crossings of these curves indicate values of B¥, i.e., locations of the
second impulse point which satisfy the necessary conditions for the assumed
B; . At these points, ¢ and wy;; are read from the curves and wrr is
calculated. ’

. 7~ N
err sin (P - Wrzr)

tan QII =
1 + ey cos (Bg - wrr) (37)
Wer = / v Ja-e ain (O _ &) {281

If this calculation is now repeated for a range of values of B,, curves
of wrg end wry vs B, are generated; crossings of these curves indicate values
of Bf, i.e., locations of the first impulse point which satisfy the necessary
conditions for the corresponding B¥'s. Since it is not known, at the outset,
into which family of optimal arcs the final solution will fall, it is necessary
to consider both families. In some problems it may be evident that one or the
other family cannot contain the solution and this knowledge would result in a
considerable saving in labor. However, if a final solution is found in the
first family, it is not safe to eliminate the other from consideration, since

the solutions obtained can be considered as only local and not global minima.

One simplification which may be made results from a conclusion of Ref. k4,
where it was shown that thrust is always applied in a direction which lies
between the local velocity vector and the perpendicular to the local radius
(or 180 deg from this direction). In view of this result, the assumption can
be made that |e|z|¢|. Furthermore, 6 and ¢ will always have the same sign,
i.e., both velocity and thrust directions lie on the same side of the local
horizontal. Therefore, it is permissible to assume positive signs for both
© and ¢ in performing the calculations, and as & result, w will also be
positive.

In using the summary curves for optimal arcs, Figs. 19 through 28, it is
important to bear in mind that only radius ratios greater than or equal to
unity are plotted. Reflections of these curves occur for rp/r; > 1, and such
cases must be investigated in solving a problem. Cases not plotted include
Af > Tand fy; > T. As an aid in relating the data in the summary curves to
the pictorial diagrams in Figs. 5 and 6, the following table has been prepared.

19



TABIE I

Family rg/fi £ Af Impulse Directions
Radians Radians
Spiral-limited > 1 >0 <1 s-8
Spiral-limited > 1 <0 > S-S
Spiral-limited <1 >m < m 0-0
Spiral-limited < 1 <m > 1 0-0
Symmetric-limited > 1 >0 <mn s-0
Symmetric-limited > 1 <0 > S5-0
Symmetric-limited <1 >n > 8-0
Symmetric-limited <1 <m < T S-0

The last column refers to the thrust directions, S designating an
impulse in support of the motion and O an impulse which opposes the motion.
It is interesting that all symmetric-limited transfers are of the S5-0 type,
so that if an optimal arc is entered by an opposing impulse it is always of
the spiral-limited family.

As a further aid in solving problems by this technique, a flow chart
describing the essential features of the method is provided in Appendix B.

Solutions to a number of time-free orbital transfer problems are pre-
sented in Ref. 3, using date from Ref. 15. In the latter paper, a steepest-
descent program was carried out by a digital computer to obtain the optimum
transfer solutions. One of these cases was selected for solution by the
graphical approach described above in order to illustrate the method.

Terminal orbits of the following characteristics were specified for the sample
problem: N

ar = 1.01 arr = 1.43
er = 0.10 erz = 0.40
wrp = o° wrr = 30o

In the course of solving the sample transfer problem, the curves depicted

in Figs. 32 through 38 were prepared. Values of B; and B, between O and 27

were chosen, and only enough points were calculated to adequately determine

crossings. Since |6|2|¢|, combinations of B, and By which failed to satisfy
this inequality were eliminated, thereby resulting in breaks in the curves.
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Beginning with Figs. 32 and 34 for the spiral-limited family, it is
apparent that several sequences of crossings occur as P, is varied between
0 and 27 (the heavy dots for B, = O and T are single-point curves which
belong to a sequence of crossings). When these are plotted as curves of
wry and wrp against B,, the sequences are seen to describe solutions of the
types listed in Table I. However, only one sequence displays a crossing in
the wy; and wyg vs B, plots in Fig. 35; this then is a solution which
satisfies all the criteris for a local minimum of AV. Similar sets of curves
are shown in Figs. 36 to 38 for the symmetric-limited family, and in Fig. 38
8 second -crossing is indicated. This solution and the spiral-limited
solution mentioned previously correspond closely, having almost identical
transfer ellipses and impulse magnitudes. However, characteristics of the
transfer orbits are such that only the symmetric-limited solution is
acceptable. The spiral-limited solution is unacceptable because its
transfer orbit has greater anguler momentum than either terminal orbit
(£; = 1.00 < 4; = 1.265 > £7; = 1.20). Since the spiral-limited solution
requires both impulses in the same direction, the symmetric-limited solution
must be the correct choice.

The final solution involves a supporting impulse to enter the transfer
orbit and an opposing impulse to establish the final orbit. The transfer
ellipse elements are: e; = 0.365, 4; = 1.265, a; = 1.460, and @, = 33 deg.
Entry into the transfer ellipse is at f;, = 7 deg and departure is at
fro = 182 deg so that Af = 175 deg and ry/r; = 2.145. In the units of
Ref. 3, total characteristic velocity for the transfer is AV// vy/4; = 0.1510
of which 0.1310 is applied at the first junction and 0.0200 at the second.

Contensou's Spools

In a paper published several years ago, Ref. 16, Contensou considered
optimal impulsive transfer from the poiﬁt of view of the theory of optimal
evolution. Briefly, this theory, which is explained in Ref. 16 and elsewhere,
considers a dynamic system defined by a position vector xi(t) and velocity
vector x,(t), and interprets, geometrically, the domain achievable to this
system at any time, t, in the accompanying hodograph space. The fundamental
condition prescribed by the theory is that the geometric figure which describes
the state of the system in the hodograph space be convex to assure an optimum
trajectory. If it is not convex, the figure must be imbedded in the smallest
possible convex body. The theory itself cannot be adequately explained here,
but the result, as it pertains to the present study, is illustrated rather simply.

The dynamic system is represented by the elements of an elliptic orbit, a,
£, and w. The variation-of-parameters equations of celestial mechanics are
used to describe the motion of the system. That is, the rates of change of
these elements can be written in the form

da _

3t of, (e, E, ¢) (39)
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d? = °’f2 (e: E; ¢) (""‘O)
j—i = ofy (e, E, 9) (k1)

where E is eccentric anomaly, o is thrust acceleration, and e and ¢ are as
defined previously. These equations are the "velocity" components of a state
vector composed of a, e, and w. If only small changes in the elements are
permitted, the derivatives in Egs. 39 to 41 may be replaced by incremental
changes in a, £, w and t. Since t represents the time during which changes

are made, il.e., thrusting time,and since thrusting time is zero in the impulsive
case, it is convenient to replace t by V as the independent variable. This

is easily done using the relation o = dV/dt. In terms of small changes of the
elements produced by impulses, AV, the equations may now be written as:

X = éé.(e, E, ¢) (42)
AV
_ A
y = AV (e) EJ ¢) (LI'3)
AR (4)

Even though time has been replaced by velocity, the equations still represent
the rates of change of the system in the sense that, for small velocity
increments AV, changes in state, Aa, AL, and Aw occur. The x, y, z space,

then can be thought of as the hodograph space of the system. Contensou showed
that for moderate orbital eccentricities, the figure which results has the shape
of a spool, as in Fig. 39A. The spool is hollow with walls of finite thickness,
the x-y plane as a plane of symmetry, and the z axis as an axis of symmetry.
Both the ends, 1, and the lateral surface, 2, are concave except for two small
convex regions, 3, on the ends of the spool.

The origin is the initial state; by a velocity increment, AV, a new state
is established and the locus of reachable new states, by this AV, forms the
spool. Because of the definitions of x, y, and 2z, the velocity change, AV, is
not a parameter of the diagram and may be thought of as unity. ILarger AV's
result in spools of larger dimensions, but with the same shape, as long as
changes in the elements are kept small,

Applying the theory, it is required that the figure be convex. However,
the spool is obviously convex only in regions 3. Therefore optimal transfers
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to the states within 3 are possible directly from the origin by single impulses

of maonitinde AV Qinpgla_imnilece +ranaferce +0 the recgicone 1 and 2 are nocsceihle
Ol Magnivuas Av. SINgsC=1MPUu.LST LIallsitrs wvo VA IEglilils . allll « arlf pesSsio.al

but nonoptimizing, because the figure is concave over these portions of the
surface. The theory requires that the figure be made convex by imbedding the
spool within the smallest convex body, which can be thought of as an elastic
membrane stretched over the spool. The membrane Jjoins the convex regions by
an envelope of straight line segments such as A-A' and B-B' in Fig. 39A. The
points A, A', B, and B' are the contact points of the membrane with the spool,
and because each such generating line touches the spool at just two points,
two-impulse transfers are optimum over the concave portions of the spool.

In effect, by using two impulses instead of one, the set of reachable states
with a given AV is extended from the spool surface to the membrane; or
alternately, a smaller AV is required to achieve a given state x, y, z, by
constructing a smaller spool such that the membrane and not the spool includes
the state point.

Contensou verified the geometrical interpretation by considering a known
case, namely the Hohmann-type transfer. It is known that if the orbits are
co-axial, a Hohmann transfer is optimum. 1In the x, y, z domain the co-axial
condition implies no change in z, since AW = O. Therefore, a diagram in the
x-y plane is sufficient to describe such transfers. Such a diagram is
illustrated in Fig. 39B. Here it is seen that the entire diagram is concave,
and the -four contact points, L, M, N, and P, must be used as impulse points.
The line IM in Fig. 39B is the locus of E = m, and NP is the locus of E = O.
At Land P, ¢ =0, and at M and N, ¢ = M. Thus, for example, to transfer to
a state between L and N, these points are the contact points of the spool with
the membrane and they determine the optimum values of E and ¢. A forward
impulse is applied at E = T, followed by a backward impulse at E = O, or vice
versa, to effect the transfer.

It is interesting that the families of transfers discovered in the course
of the present study occupy unique regions on the spool. The symmetric-limited
family occupies the lateral surface of the spool, while spiral-limited transfers
exist only on the ends of the spool. These families are separated by the small
regions, 3, in Fig. 39A over which single-impulse transfers are optimum.

To determine the use of the spools as a tool in understanding optimum
orbit transfers, a program was written for the Research Laboratories' digital
simulator. Input to the computer consisted of the variaticn-of-parameters
equations in the form of Egs. (L42) through (44). The output was displayed
visually as lines of constant E and/or ¢ in a three-axis representation.
Figures 40 and 41 depict the shape of the spools and the character of the
generating lines for e = 0.5, Generally, lines of constant E run along the
length of the spoocl, forming closed curves. Lines of constant ¢ also form
closed curves, but are more nearly perpendicular to the spool axis.
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To study the spools systematically, the same views of the output were
photographed for a range of eccentricities. The photographs appear in Figs.
40 through 48 for eccentricities ranging between 0.25 and 0.875, (but not
in that order). Unfortunately, eccentricities above 0.875 were precluded by
storage limitations of the program, and, while an improved program might have
alleviated this limitation, time did not permit such an extension.

Considering first a moderate eccentricity, e = 0.5 in Figs. 42 and 43, the
upper photograph shows the spool from the direction of the negative z axis
(the x-y-z triad is right-handed). Lines of constant E are used to generate
the spool; ¢ varies over each generating line. In the lower view, lines of
constant E and ¢ are both used to generate the figure, as seen from the
direction of the positive x~axis. Here it is seen that the ends of the spool
appear convex. Actually it is the four points, L, M, N, and P, in the x-y
Plane which cause the ends to look convex from this view. These are, of
course, the Hohmann transfer points which separate two distinct regions of
single-impulse transfers on each end of the spool.

Another interesting view is one loocking into the end of the spool. In
Fig. 43, two such views, one using E lines and one using ¢ lines, reveal the
hollow nature of the figure. Only the z-axis appears in true length in these
views.

When eccentricity is increased, the spool displays a general flattening
at the ends and a skewed stretching in the lengthwise direction. Three views
for e = 0.75 are shown in Fig. 44, the same two orthogonal views shown for
e = 0.5, and the end view. In the lowest picture, the flattening of the
spools is evident. The stretching and skewing effects are illustrated by the
other shots. Further increases in eccentricity accentuate these effects as
shown in Figs. 45 and 46 for e = 0.875.

The limiting case of e = 1.0 results in a doubly infinite extension
along the x-axis so that the simulation may not be carried out to very high
eccentricities. This limitation is unfortunate since a change in character
is to be expected at e ~ 0.925, according to Ref. 4, where three-impulse
transfers are superior to two impulses for some cases.

For e = 1.0, the variation-of-parameters equations reveal the shape of
the spool to be doubly-infinite along the x-axis and to form a surface with
four humps, Fig. k7. The contact points of the surface consist of: x = % ©,
where ¢ is undefined and E = O and 27 respectively; the extreme points on the
y-axis, for which E = M and ¢ = O or 7; and four "hump" points for which
E = ﬂ/2 and 3“/2 and ¢ = O or T, An interpretation of these impulse points
for e = 1.0 is shown at the bottom of the diagram. One point is always at
the origin, corresponding to x = £ » in the sketch. It is to be expected that
the value of ¢ be undefined at the origin, since acceleration here is infinite
and velocity (AV) may be added in any direction. Actually ¢ = T/2 for the
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positive x-axis and 3n/2 for the negative x-axis, and these values may be
assumed to hold for the first impulse point. The second impulse point lies
between E = T/2, which is at a distance a from the origin, and E = 7, which
is the apo-apsis. The second impulse always features ¢ = O or T, Of the
four possible combinations shown, two fall into each of the transfer famllies
determined in the study. '

When eccentricity is less than 0.5, the spools undergo a flattening in
the opposite direction. In Fig. 48, for e = 0.25, this effect is especially
evident in the second view, while the first view reveals a flattening of the
ends of the spool. As e - O, Fig. h9, the spool reduces to a plane such that
x = y. Furthermore, the spool's ends also become flat with ¢ = O on one end
and ¢ = T on the other, and all constant-¢ lines are vertical (in the =
direction). On the upper and lower boundaries, which are concave, E and ¢
vary, but at the sharp end points, E = T/2 or 3m/2. Thus, the interpretations
shown at the bottom of Fig. 49 are possible with the transfer angle always
equal to T, Since the peri-apsis point of the circle is arbitrary, the impulses
may be applied at any opposing points on the orbit.

In Ref. 9, solutions have been obtained in expansion form for eccentricities
that approach zero and 1.0. These solutions are of interest because, as e -
1.0, & third family of optimum transfer arcs is introduced. The number and
locations of impulses for these limiting cases are presented in Ref. 9.
Also, as e —» 0, the spiral-limited solutions appear as arcs of varying lengths,
with tangential impulses at each terminal.

LINEARTZED NONCOPIANAR TRANSFERS

Linearization of the Problem

The general noncoplanar transfer problem is difficult to solve, even
though Lawden has derived expressions for all three primer components (Egs.
1 through 3). However, it has been shown in previous analyses, Ref. 17 for
example, that if the equations of motion are linearized about a circular
orbit, the resulting equations for the primer components are greatly simplified,
being independent of eccentricity. Significantly, for the linearized problem,
the primer remains unchanged throughout an optimum transfer. That is, it
remains the same over impulses and coasting arcs of the trajectory (to first
order).

The basic assumption in linearization of the problem is that only small
changes are allowed in the orbital elements. This assumption is tantamount
to specifying that the terminal orbits, as well as the transfer orbits, must
be "neighboring” orbits of small eccentricity. With these assumptions, it
was shown in Ref. 17 that the primer equations take the form
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A\ = Acost + Bsint (4s5)

K~ = D - 2Asint + 2Bcosr (46)

A
"

Geost + Hsint (47)

In these equations, the independent variable T is a nondimensional time
parameter which was used in Ref. 17. However, to first order, T is equivalent
to angular travel, and therefore Egs. (45) through (L47) are identical to the
equations derived by Lawden in Ref. 1 for the case of e = 0.

A simplification introduced by Iewden in Chapter 6 of Ref. 1 is also
permissible here, The constants A and B may be replaced by grouping terms
in the equations and introducing two new constants, R and T,, where the latter
is a rotation of the angular reference axis.

A = Rsin(r + 1) (18)
# = D+ 2Rcoslr+g) (49)
v = Ecoslr+ 1) + Fsin(r + 1) (50)

But, since the direction of the reference axis is arbitrary, it will be
assumed that T, = 0. The resulting primer equations for the linearized,
noncoplanar problem are

>
]

Rsint (51)

r

D + 2Rcost (52)
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v = Ecost + Fsint (53)

Analysis

The method of treating transfers in the noncoplanar case is the same in
principle as that for coplanar arcs except that the primer equations are much
atrmrmlan anAd +ha mavima mav lha Aatarminad avant 1y T~ ot Trmen ren T A~ 1
D.LIH.HLCJ. [- 28193 U.IJC IuOA Ll 1Ay VT Ut LT llllicu TAGW ULy » J.UJ. 6-LVCIJ. VCI.-LU-CD U.I. LI

constants, the primer locus lies in a plane. In fact, it is interesting to
note that the locus is precisely the intersection of the elliptic cylinder

ax’ + (u-pP : 4 (5k)
and the plane
FA + E—(ZLD) v = 0 (55)

Moreover, it is possible to show that double maxima of the primer occur only
for certain values of the constants.

The problem is essentially to determine two values of T, say 7, and Tp,
such that the following conditions hold:

—~ PPt (56)
dp
9 - © (57)
%, 8
35 = 0 (58)

where P, = P (71,), P, = P (T2), ete. If two such values exist, then the
following equations must also hold:

p: —_ Pz = 0 (59)
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9, _ 98 . (50)

or ot
90, Bpz (61
af + 61‘ = 0 \ )

When the components of the primer are substituted in the above, a system of
equations of the following type results:

Mfool®, Ta) + MyrhfG,T) + Qydn, 50 = O (62)
Mo (6,7) ¢ Ny (5 1) + W fy ) = D (63)
Bk {7, 7ad & Wl u o 0 Ol (n ) = D (6h)

where

M = RD
x = E
Wiy = osindy o v ko (-7' ; fﬂ)
T 4T

Voo = ~2c08 (1,4 T, }cos (f',;,f_zﬁ)

Vg = Yoo

Wpp = 4cos ( Lo T-i)

2
- £5)
'.:!"'?.‘C T 4‘D'J.',lr,l ( 7
hew = sin{z 2 Tp) coe (, ~ 1)
) Tt T
o fﬂ,sm(- 5 ) cos (w})
Voo = —@aalr +v)eoslz, =7l
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If Egs. (#2) through (8L) are to have a sclution for arbitrary values of the
5 M, N, and Q, the deter That is

G LoALS
b4

mina
ana g mina I coelriclents usT var .

nt of coefficients must vanish
si

cmitting the arguments 7, and T, te simplify notation,

4$u 4%0 4%:
Yoo  Veb Y| =0 (66)
l Yoo e ‘l"ccl

Erpansion of this determinant leads to the very simple result that

cos (TJ%EE) sin (1 .'.*_E%) s

This ecguation hnlds for all optimum, linearized, two impulse, noncoplanar
transfers. Values of 7, and T, which satiafy Fq.{AT7) ~onatitute the angular
posibions ot the thrusting points of such transfers,

Soluticns
Tamilies of Solutions

Erxamination of Bg. (A7) indicates that there sre two basic types of
rossihle sclutions. These are found by equating Lo zero cach factor of iLhe
there exists a singular colution which results when

each of the three coefficients M, N, and & of Bgs, (A7) Lthroogh (Ch) wanish,

ceguation. Tn addition,

Tn terms of the constanls appearing in Fgs. (51) theooeh (52) Ahe fotlowe) e

Lhree familics of svlutions can be predicted.

" - CO%("EI';;TE) = 0

T, = T

tan

RD = O
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(B) sin (—5—%) =0

't'z = -TI
cost. : -2RD
[ 2 2 2
3IR“+ Ef- F (69)
E=0
4RD? < (3R? - Foy2
3R? < 2
(c)

D=0

E =0 (70)

3R? = F?

The inequalities of Eg. (69) insure that cos T, < 1, and that the stationary
point is an actual maximum.

It is apparent from Egs. (68) that all transfers of type (A) have central
angles of 180 deg, since T; and T, are longitudes of the impulse points.
Noncoplanar transfers of the Hohmann type, as discussed by Long in Ref. 8,
must therefore be special cases within (A) since apsidal impulse points are
required for the Hohmann-type transfers but are not required in family (A).

Family (B) transfers possess the unique feature that Tz = - T,, so that
transfers of all central angles are included in this family. The special case
T, = 90 deg, T, = -90 deg is one which belongs to both families (A) and (B).

The above equations express the necessary conditions required to determine
all the optimal arcs for transfer between neighboring, low-eccentricity orbits.
The problem of cataloging these results in some manner sco as to be useful in
a particular transfer maneuver still remains.

It should be point<d out here that the method followed in cataloging
coplanar transfers could have been pursued in the noncoplanar problem too.
However, in the former case, an explicit soluticn of the two point boundary
value problem was not possible, whereas the linearized nonccplanar problem can
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be solved entirely. The results can be expressed in terms of the character-

fetine Af +ha +arminal Arhita Panilitatine thae nalpenlation af AV (and Ad+harn
4P ULLD Vi LUT VDL ULl VA WL VDY LOLLdld UQULLE VHE LG LULG VLUVIL Vd Y \Qdll U uwice

pertinent parameters) for arbitrary two-impulse transfers. To this end,. the
lagrange planetary variables are now introduced as a means of determining
instantaneous changes in the orbital elements. These variables are particularly
useful because, through their use, singularities are avoided when i and e
approach zero. The entire maneuver is now viewed as a perturbation of the
elements at time T, caused by an impulse u,; = AV, /Vo, followed at time Tg by
another perturbing impulse, u; = AVQ/VO. Multiple-impulse transfers can be
treated similarly with the total impulse being the sum of the individual u;'s.

The planetary variables as used herein consist of the nondimensionalized
semimajor axis,X; = a/ao, and the following combinations of the remaining
orbital elements:

Xy = esinw

Xy = ecosw
Xy = Sinisingl ~ jsinf

X¢ = sinicos ~ icosf (71)

The equations for small rates of change of these variables were derived
previously in Ref. 17 by starting with the equations for variation of the
elements, transforming to the planetary variables, and dropping second and
higher degree terms in e, 1 and As.

gdx?. . 2_:;& (72)
%ﬁ = %(zlusinr - Acost) (73)
|z—x3 = %(chosr + Asint) (74)
s | 2y ging

dr P (75)
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drg

dr = %VCOST (76)

vhere o is the thrust acceleration. While these equations apply for finite
thrust periods, a transformation from time to velocity as the independent
variable is desirable for the impulsive case, Assuming small changes in the
elements, the dx,; may be replaced by Ax;, and odT by AV/VO,

bxy = 20

AV VoP (17)
Ao - 1 .

=22 = o (2psinT - AcosT

AT cosT) (78)
&g 1 .

N " VoD (2pcosT + AsinT) (79)
Bxg . V_ sinT .
I\ VoP (80)
dxs _ v

— T COST

W Vop (81)

For a given transfer, these equations may be integrated or summed to determine
the total change in the orbital elements between initial and final terminal

orbits.

Befove iutegrating these eguations for the families of transfer arcs,
Egs. (68) through (70), it is noted that no solutions exist for F= O and
arbitrary values c¢f the remaining constants. Accordingly, the primer componcents
may be normalized by this constant ¥, eliminating F from the remainder of the
analysis. The justification for arbitrarily setting F equal to unity is that
the magnitude of the primer at the impulse points is arbitrary, as long as the
maxima of p are equal. Since F is never zero i1t is permissible to normalize
with respect to it., The following system is thus derived by substituting the

primer components and integrating over twe lmpulses:

Peaxy = 2D(uy + up) + UR(ujcosT, + uzscosT,) (62)
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Peazy = 2D(uysinT, + upsinTz) + 3R(w;s5inT;cosT, + uysinTpcosTy) (83)

2D(u, cosT; + upcosTs) + R(uy (1 + 3¢0s®Ty) + ua(1l + 3cos®Tz)) (8L)

P'A’)Ca =

. s R . -~ N, a2 S s
Pedxg = B(u,sinTycosT, + ussinTzcosTy) + uy81n~Ty + 02810 Ta (85)
PeAxe = E{u;cos®T; + upcos®Tp) + u;sinT,cosT + upsinTacosTy (86)

These equations must now be investigated for each of the families predicted
in Egs. (68) through (70). Consider the family of solutions (B) with Eqs. (69)
above. It is seen that T, = - Ty, cos T2 = ¢0s T;, and sin Tz = -sin T, .
A Tew definitions are necessary to facilitate the derivation of ihe equations.

tan w = Axp tan U = £is T = tan (@ - Q)
AK.S AK@
(87)
u = dy Uy & = Un | - 26 =14
u

Since u represernts tone total, nondimensional, characieristic velocity of
the transfer it is clear thal & is merely the fraction of u expended at the
second impulse point. The variables T and 0 are explained in Mg, 50. In
the upper diagram the variables x, and x5 are seen to represent components of
an "eccentricity vector" defined by magnitude e and argument w. Thus, if
subseripls L and 2 denote terminal orbits, the vectors e;, and &, are described
by ey, e5; & and wy,. The vector change in ececentricity which resulis from a
Lransier rrom owrbilt 1 te orbit 2 is defined by Ae and @ as shown in the sketch.
1t is clear that tan @ is'the ratic of A%y to AXs.

The angle O in the lower diagram of Fig. 50 has a similar interpretation.
In this case the magnitude of a vector is i1 and its argument is ., Therefore

Q may be theought ¢f as the argument of the vector change in inclination,
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Substituting Egs. (69) as well as the sbsolute value, P, of the primer in
Eqs. (82) through (86) yields

DX 2¢ /1 +R?
u V(i = 3R¥)c? 4 4R? (88)
bxg 2(1 - 26)cs
u  V1+R®/1- 3R%)c® + LR® (89)
Axy 2(c® + R®)
W SR L. e (90)
Mg 2Rs® _
u _ﬁ + R2/(1 - 3R®)c® + 4R® (91)
Oxg 2R(1 - 28)
o S+ R - 3R + IR? (92)

In these equations ¢ = cos Ty 8 = ¢in T,, and the constant D has been replaced

by its equivalent from Eq. (69), (1-3R®)c/2R. (Note that due to the normaliz-
ation of the equations, the constant F no longer appears.) It then follows

by Egs. (87) that

p=(1- 26)2¢c?s ~ (c® + R®)s

(1 - 28)(1 + R®)c (93)
or
(1 - 28) = H(L+R°) "/Ta(: + B2} 4 Lo?(c®1 BP) (94)
SC
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Noting from Egs. (71) and (83) through (8€) that

Ae _ AEQ sin O + Mxa cos w (95)
u u u
and
Ai - =
T A—::"‘sm.ﬂ. + A—::'-cos.(). (96)

the following equations for small changes in the three orbital elements a/ao,
e, and i may be derived:

AQLO A 2c/I +R? _

v A= 3R + aR? (97)
be 2 2 2
u '\/(|-3re=)cz + aR? [Tr0vmy + 26+ a9

| (98)
- TJ/TR+ RV + asids R T

A / 2 2 2 2g2
o ° Ra/(1-3Rr?Hc? + 4R [.T (1+RY + 2s (99)

1
— T/T20 + R + 4s?(c?+ RZ)]2

These equations hold only for family B. However, similar equations may be
derived in the same manner for the solutions (A) with Eq. (68). When D =0

b

Af; (-28 y/Ae
z ("') (100)
v o+ T2 u
Ae (1 + 4ETI(1 + T?)
a¢ | 101
u 2/ (T FENU+ 1618 (101)

A /3T(4T -E)
u U+ET+16TR) (102)
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A special case (A') for solutions of type (A) exists for which R=T =0
and D # O. The following are the equations for the changes in the orbital
elements for family A'.

a
Qo 2D . (103) )

TV e

(104)

D
S

de _ 20 (1 - 23)
U ST+ E%D?

A S+ EF (105)

' VI + E2: D?

Representation of - Solutions

Because of the large number of parameters required to describe a
noncoplanar transfer, it is difficult to represent the optimum solutions in
a straight forward manner. For example, while Figs. 5 and 6 clearly describe
the behavior of the primer over coplanar transfer ellipses, a similar diagram
in the noncoplanar case requires an out-of-plane thrust component. Therefore
the behavior of the primer cannot be adequately represented in two dimensions.

Even though the number of physically significant parameters is numerous
however, there is a concise way of representing the noncoplanar transfers if
new parameters are introduced. These are the quantities {}, w and T defined
in Fig. 50 and by Egs. (87) above. As has been explained in the preceding
discussion the parameters ®w and ( represent the arguments of changes in vector
eccentricity and inclination. They therefore have indirect physical
significance in that the parameters can be measured in a vector diagram of the
type shown in Fig. 50, but they do not appear directly in a diagram of the
transfer trajectory itself.

In Figs. 51 through 53 noncoplanar transfers have been summarized for all
possible changes in the elements of the elliptic terminal orbits, A(a/ac)/u,
Ae/u and Ai/u. The angle w - = tan™! T has been held fixed in each diagram.
If this angle is 20 deg, for example, and the elemental changes Aa, Ae and Ai
are given, then the nondimensional characteristic velocity, u, of the transfer
can be determined from Fig. 52. Of course ® - (I must be calculated from e,
€, i, ip, W, we, {§ and 7 in a particular case, and interpolation between
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'diagrams would ordinarily be required to determine u. Therefore it is apparent
that these diagrams are insufficient to summarize all noncoplanar transfers but
are intended only to illustrate the behavicr of the sclutions, particularly
with regard to the domain of solution space occupied by the three families
determined in the analysis. The different families of solutions are indicated
by shaded areas in these diagrams. It is noted that as @ - Q increases, the
singular region grows, while at & - Q0 = 0 the singular region shrinks to a
point in the upper right-hand corner of the diagram. )

While the practical use of the diagrams is limited, it should be pointed
out that the above sets of equations lead to an explicit determination of the
optimal transfer between terminal orbits whose elements are known, for it is
possible to eliminate the constants in these equations until all the important
parameters depend only on the changes in the orbital elements. The algebraic
derivation of these relations is simple and straightforward, but lengthy.
Therefore the derivation is not included here. However, the complete set
of equations governing an optimal transfer, as well as the procedure for
calculating these transfers for fixed terminal orbits, may be found in
Appendix C. Only the expressions for the total impulse for each case are
listed below. Here, ug refers to the solution defined by Egs. (97) through
(99), ua to Egs. (100) through (102), and ua to Egs. (103) through (105).

v o= -"T[Z(Ai)'+ 2(ae) - (A-&)’]

(106)
U+ | [@el + (0g) '+ (811" - a@aerad) | - a(aeair’
+ — :
. 2J/1 + 12
2 (Ae) (1 + 4TH + 40 + TH(a ) 1 oe (o),
Ya T T a(l + T2 - be (107)
2
“:' = aair + (Aa% (ae) < (aa) (108)

The above discussion outlines the method of determining the optimum among
all two-impulse solutions. However, such solutions are determinate only when
all the gquantities involved (as they appear in Appendix C) are meaningful and
all inequality constraints are satisfied. If, for a particular case, these
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conditions are not met, then the solution must be of a singular nature. These
singular solutions result when the primer vector is everywhere constant, i.e.,
when E =D = O and R® = 1/3. The desired changes in the elements correspond

to a point in the singular region on diasgrams of the type indicated in Figs. 51

through 53.

The singular solutions correspond to three-dr-more-impulse maneuvers. 'The
boundary conditions cannot be satisfied using only two impulses. It is necessary
to integrate the equations of state assuming three or more impulses placed so
as to satisfy the given boundary conditions. Indications are that three impulses
will generally suffice.

§§gple Calculation

To illustrate the use of the equations in Appendix C for calculating
noncoplanar transfers, a sample case has been computed. It consists of a
transfer between low altitude Earth orbits of small eccentricity and inclination.
If a reference orbit altitude of 150 n mi is chosen and the terminal orbits
are of such size that Aa/ao = 0.001, then a; = 3591.795 n m and a, = 3588.205 n m,
where Earth's radius is 3440 n m. The eccentricities of the orbits are assumed
to be e; = eg = 0,001, For convenience the inclination of the first orbit is
assumed to be zero, and () is chosen as identical with ;. The remaining orbit
elements which must be chosen are i, w;, and w,. The value of () is not
arbitrary but depends upon the type of transfer and the initial direction of
the radial reference axis. The inclination i, is set at 0.0l radians, or a
little more than half a degree. The other parameters are arbitrarily chosen as

w, = 90 deg and w, = 1 deg.

The first step in the computation was to determine the family into which

the transfer falls. Accordingly, the inequalities of Equations (C-5) through
(C-11) of appendix C were tested and required that this particular transfer belong

to family (A).

Equations (C-12) of Appendix C are now employed successively to calculate
the characteristics of the transfer. Thus

D=0
T, = -0.44lL deg
T2 = 179.556 deg
u? = 0,0001005

E = -128.4615021
R = 4.,5019246

8 = 0.1433198

Qp = -0.blk deg
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The components of the incremental AV at each impulse point can be calculated
by properly scaling the primer components A, B, V. For example, at the first
impulse point Egs. (51) through (53) give .

-0.0349152

A, =
Wy = 9.0035783
v, =--128.4653950

If these are scaled so that their modulus is u, then the AV components at the
first impulse point can be calculated. Thus

\;

8" _ _0.0000023
Vo

AV,

T = 0.0006004
-]

v

AYY L 0.0085674
Vo

The velocity components on the initial terminal orbit are easily calculated
from standard equations so that addition of the above AV components yields the
velocity components on the transfer ellipse at this point. This in turn permits
calculation of the elements of the transfer ellipse,

%r_ = 1.0068241
er = 0.078002k4
i:-f- = 1.0006981
iy = 0.5111 deg

The angular positions of the impulse points are provided by 7, and 7.
In the initial terminal orbit the impulse occurs at £f; = 7, -(}) -~uw,. The final
terminal orbit is entered at f, = T, =() ~w,. Therefore,f; = -, = - 1.0 deg
and f, = 90.0 deg. Radii of the impulse points are then easily determined by
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r o __ 1
4 1l +ecos? (109)
Thus _
fL = 0.9985006
(]
ac

True anomalies of the impulse points in the transfer ellipse can now be
calculated from

cos £ = l[é -1] (110)
elr
Thus
fr, = 88.383 deg
f'l’3 = 269.8‘;,4 d.eg
and finally
Af; = 181471 deg

The last figure gives an estimate of the error involved in the calculation
since type (A) transfers have central angles of 180 deg. The angular error is
then 1.471 deg in a transfer arc of 180 deg, for an error of 0.817 per cent
in Af,.

In using the noncoplanar solution equations it must be understood that it
is the parameters Aa, e, and i1 which have been assumed small. Errors are
introduced when any of these parameters are not sufficiently small that their
second degree terms may be neglected, although there is no simple way of knowing
in advance that this is true in a given case. §5till, it is apparent that if
values of O.l1l are chosen in these parameters, the square of each parameter is
smaller then the parameter itself only by a factor of ten. When the values
are chosen to be 0.001, their squares are smaller by three orders of magnitude.
In the latter case it is to be expected that the linear soclution will be quite
accurate, but in the former case large errors may be introduced.

Previous experience with linear solutions of this type indicates that for
marginal cases, some of the linear solution equations will closely represent the
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exact solution, even while others fail badly. For example, in Ref. 18, a
linear solution for low thrust rendevous and transfer was applied to Earth-
Mars and Earth-Venus trajectories with some success even though the linearizing
assumptions were not expected to hold. In that instance it was found that

the prediction of thrust direction was good in cases where fuel consumption
was badly in error. PFurthermore it was found that though the magnitudes of
the errors were large in some cases, the general character of the solutions

(i.e., variation with launch date) closely resembled the exact solution.

In view of the significance of near-Earth rendezvous and transfer at
the present time, the linearized noncoplanar solution might be applied to
predict optimum maneuvers in cases where only small changes are required.
Recent experiments in the Gemini program have involved orbit changes which
fall within the linearizing assumptions. Therefore it is to be expected that
the present linear solution could provide at least a first approximation to

fuel consumption, thrusting points, and thrusting directions in such transfers.
CONCLUDING REMARKS

Solution of orbital transfer problems by the method of primer vector
maximization has been shown to be feasible for time-free transfers between
coplanar ellipses and between neighboring noncoplanar orbits of low eccentri-
city. The method may also hold promise for transfers in fixed time if the
complication introduced by an additional parameter is not severe.

Lawden's symmetric transfer and his spiral solution have been shown to
be limiting cases of the two families of coplanar transfer arcs determined in
the study. Hohmann-type transfers are also limiting cases in both of these
families. By using the catalog of optimal arcs presented herein it is
possible to solve problems where the two terminal orbits are specified.
Although the method of solution is lengthy, it can be accomplished by plotting
and desk calculation alone.

When the coplanar problem is interpreted geometrically using the theory
of optimal evolution, as described by Contensou, the families of optimal arcs
determined in the study can be observed. The families occupy distinct regions
on a spool-shaped figure in a hodograph space, and are separated by regions
over which single-impulse transfers are optimal.

In the case of noncoplanar transfers between neighboring orbits of low
eccentricity, explicit solutions have been obtained in equation form. These
equations allow direct calculation of impulse requirements for one- and two-
impulse transfers if knowledge of the terminal orbits is complete. Moreover,
the regions of solution space in which three or more impulses may be optimal
are indicated.

1



Because the noncoplanar solutions have been obtained in closed form, the
solution equations may be applied directly to practical problems. An immediate
application is the rendezvous of bodies in near circular, neighboring, earth
orbits when transfer time is left open. Current rendezvous experiments in the
Gemini program involve orbits which fall into this class. Estimates of fuel
consumption for arbitrary noncoplanar transfers may be obtained by substitution
of the orbital elements of the ellipses into the equations derived in this

report.
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APPENDIX A
Necessary Conditions for Optimum Coplanar Coasting Arcs

Two conditions must be satisfied at each junction. These are indicated
functionally by Eqs. (16) through (19) in the text. The exact form of these
equations is:

p? = A+ 28(D — 2Asinf) + B%(1 + e* + 2ecosf)

, D?- 2ADsinf (2 + ecosf) + A?sin?f(3 + 2ecosf) (A-1)
() + ecosf)?

ap?

of

-2eB32sinf - 4ABcosf
+ U+ ecosf)"{ZeD’sinf - 2AD(3e + 2cosf + e2cosf) (a-2)
+ 2A%sinf(5e + 3cosf + 2elcosf — 3esin?f - e'sm’fcosf)}

With eppropriate subscripts, 1 or 2, on p and f these equations can be
applied to both Junctions.
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APFENDIX B

Flow Chart for Solution of Fixed Terminal Orbit Problems

Given: e:, ez, 41, bz, wrz, (wy = 0)
(a) assume B,, B,
(b) compute Af, rp/r; from Egs. (33) and (34)
(¢) from Figs. 19, 24 determine ey
from Figs. 20, 25 determine ¢,
from Figs. 21, 26 determine wy,
(d) compute 8; and wy from Egs. (35) and (36)
(e) if wy; # wr return to (b) and repeat for new B,
(f) continue until wy, =w; at By = B3; find all such Bis
(g) pick a B:; read ¢, and wyg from Figs. 22, 23, 27, 28
(h) compute 6;; and wyy from Eqs. (37) and (38)
(1) 4if wg # wyz return to (g)} repeat for all B:s
(3) continue until wyg = wyr; all such points are candidates for

the optimum two impulse solution; by comparing AV's the best
solution can be determined




APPENDIX C
Calculation of Noncoplanar Transfers

If the elements of the terminal orbits satisfy e,, e; << 1, (ay-a, ) ao << 1
and 1,, 1; << 1, then the linearizing assumptions are satisfied and the
noncoplenar analysis applies. It 1s assumed that the elements of the terminal

orbits are entirely specified. That is, a,, a;, e, ey, w, w,, 1,, 1i,,

connd ohnirna Por the ndrpnlavr rafawranna avhidt da ~Ana P~

ava lresre A
Gie CLYCULEY reiference Oroiv is8 one 1ior

and )
il llz Gl DIIURLLe 21 BUUU Lilvive LUl

which ap = (a; + ay)/2, since this minimizes the radial excursion from the
origin of the reference axes which lies on the reference orbit.

It is convenient to choose the initial orbit plane as the plane of the
reference orbit so that i, = 0. Since (, is arbitrary, the choice ( = (),
determines the initial direction of the radial reference axis. Then all
relevant quantities, including the incremental changes in a, e, and i and the
parameter T = tan (w<1), depend only on the geometry of the orbits.

ala) * o - ar (c-1)
ae = Jel — 2e,e,c08 (W) — wy) + €,2 (c-2)
Ai = g (c-3)
T = —tesinw
Ai - e cosw, (c-k)

The latter three equations follow from trigonometric properties of the diagrams
in Fig. 50, where all angles are measured from the same reference line.

The particular famlly into which a given transfer falls is then determined
by the following sets of inequalities:

Family (A)

I+ T?

A

(d7) (©-5).
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(A)® 2 12TY(1 + 16T

Family (A')
T =0 and (Ae) < (Aa/q,)’
Family (B) .
T#0 and |+T=>(A—°)
Ackg
Rt < /3
Singular

I+ Tt < (Ae)/(Aa/ae)® and (Ai) < 12T¥(1 + 16TY)

or 1+T%>(Ae)/(Aa/ka) ond R®> I/3

(c-6)

(c-7)

(c-8)

(c-9)

(c-10)

(c-11)

In the case of singular solutions, two-impulse transfers do occur and the
total impulse for the maneuver can be calculated. However, it 1s difficult to
determine the locations and sizes of these impulses along the transfer ellipse.
It 1s notable that little or no improvement in the total impulse results from
resorting to higher numbers of impulses. For the other families of transfers,

all important parameters can be calculated.

Family (A)

tanz, = —4T

L6




T' - r".'ﬂ

g2« (B4 4T + 4(A0* (14T

4(1+ T

g . l2ulT? - (A (1 + 16T%)
Tl3ut + (Al (1 + 1677

pe - (4T-EXi+ 4ET)
12T

a
(i-28) =+ /T+ T’(AE')
Ae
=1
Family (A')
R=T=0

T, is orbitrary

T, = T, +7

E = —
tont,

aaif'+ (a2 )
—_— e

[w)
1]
D
°I°
+
m
~

b7

(c-12)

(c-13)



Family (B)

ut = %[Z(Ai)'+ 2(ae"- (A%o)']

S+ [[aer« (A§Q)'+ @i ]* — aaer’ (Ag)‘] — alae) (aif
. .

oA+ 18

2
2 | Qut- (ag) -awi
au? - 4ae’ + 3(ag)

2, 0\t
. ar'(a3)
' a0+ RY? - 0-3RY(ag)
(Cc-1k4)
Tz z T
D = (1 - BR’)cosr,
2R
=28 TU+RY % /Tl + RY)? + asin?r, (R? + cos’r)) { + for T<oO
2sinT, cost, ~for T>0
tanf, = tant, /(1 — 28)
The remaining equations hold for all three families
up = 8u (c-15)
U T U - oy (c-16)
A = Rsint (c-17)
p = D + 2Rcost (c-18)
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(c-19)
Ecost + sinT
1 4

s (C-20)
v
= X+ M+
P \/ y 2 z
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