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ABSTRACT

The basic design principles of a relatively interac-

tion-free, five component magnetic suspension and balance

system are described. The performance of the various sub-

systems are described in detail. Several recent innovations

in subsystem design are outlined. The results of the study

are applied to a proposed design of a complete magnetic sus-

pensionand balance system to be compatible with the Fifteen

Inch Hypersonic Flow Apparatus, at NASA, Langley Field,
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CHAPTER I

INTRODUCTION

i:i:i INITIAL GOALS OF STUDY

The basic purpose of this study was the determination of the

feasibility of a magnetic balance and suspension system for use in

the fifteen-inch hypersonic flow apparatus at the Full-Scale Dynamic

Stability Facility at NASa-, Langley Field s Va. The scope of this

study was originally planned to include consideration of the static

aerodynamic and gravitational loads that would be encountered in

typical aerodynamic test programs that might be conducted in the

proposed facility. In addition, preliminary consideration of the

additional transient loads that might be caused by tunnel starts and

stops were to be made, in order to obtain an estimate of the increase

in overall performance that would be required of the balance to

accommodate such loads, without use of auxiliary mechanical re-
straint.

Specifically, the study was originally directed toward con-

sideration of a five-component balance for the fifteen-inch hyper-

sonic flow apparatus. The roll component was to remain uncontroll-

ed, and further, rolling moments were not to be measured. Several

magnet configurations were to be studied. The basic _L_ and uVU

configurations used by several groups in their original development

programs (Refs. I, Z) were to be evaluated, and other magnet con-

figurations which showed promise were also to be studied. The

relative merits of each configuration were to be defined in as quanti-

tative a way as possible, in order to establish the basis for the

selection of the final configuration. In the course of these studies

of magnet configuration, a general study would be made to determine
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the relative performance of air-cored and iron-cored support mag-

nets, in the context of a full five-component magnet arrangement.

The model-position sensing system, and the magnet current control

system were to be studied and defined.
These studies were to culminate in the choice of a complete

system configuration, with all important dimensions and parameters
established. The theoretical response and stability of the complete

aerodynamic, magnetic, mechanical, and electronic system were to
be defined.

During the course of these studies, it became apparent that

it would be desirable and feasible to include additional goals in the

design study of this balance system. These refinements hinge largely

on innovations that were made in techniques of controlling the roll

component, and on the development of a deeper understanding of the

performance of magnetic balance systems in general. As a result,

the following additional goals were considered to be desirable, and

were included in the aims of this study.

1:1:.2 ADDITIONAL GOALS OF STUDY

Lack of control over the roll component places a restriction

on the types of model that can be tested in the magnetic balance sys-

tem. Such models will generally be limited to an axisymmetric

shape. This is of course a very large and important class of test

shapes, but there is also a very large number of test bodies of inter-

est that do not fall into this class, for example finned bodies, winged

bodies, and _lifting = bodies. With control over the roll component,

a large class of aerodynamic measurements can be made on these

bodies, in the translational and pitch and yaw components. If this

roll control is complemented by an ability to measure the rolling

moment, then the balance will be a true six-component system, of

great potential versatility as a general test instrument. Recent

studies have indicated feasible methods of independently controlling

Q
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the roll component, (Ref. 3), and it also appears quite feasible to

measure the rolling moment. Thus it appears to be reasonable to

include these innovations in the design of the proposed balance sys-
tem.

The design study was initially directed toward a balance sys-

tem to be used in the measurement of static aerodynamic forces on

typical test models; that is, forces that are imparted to a stationary

test model by a uniform, steady wind stream. This simulates the

condition of steady rectilinear flight of a vehicle through a uniform

medium. Additional aerodynamic forces can be induced by manuevering
of the vehicle. These maneuvers can be simulated in the wind tunnel

by forcing the test model to follow some bounded motion relative to

the wind tunnel frame of reference. Such controlled motion is gener-

ally quite feasible with a m_gnpt_r _I ..... _.o+_ m_^ ,._.,_._,,.,_.,.u._,=:_

of these =dynamic = forces relative to the static aerodynamic forces

are a function of the reduced-frequency parameters:; =. For the dyn-

amic forces to be measurable with an acceptable degree of accuracy,

the reduced frequency parameters required can generally be calcul-

ated, and specified as one of the performance requirements of the

balance system. Specification of the required reduced-frequency

parameters implies specification of the maximum angular and trans-

lational accelerations to be produced, for a given forced-oscillation

amplitude and jet velocity. These can in turn be interpreted as

additional force performance requirements. Thus, the demands of

a typical dynamic test program can be translated into the performance

required of the balance system.

A limited analysis of these additional performance require-

ments was thus proposed as a further goal, and the results of this

analysis applied to the final design selection, to determine the ability

of the system to measure dynamic characteristics.

The reduced frequency parameter is a dimensionless quantity

which relates the period of oscillation of a body to the time that

would be required for the undisturbed stream to traverse some

characteristic length of the body.



1:1:3 CONTENTS OF THE REPORT - SYNOPSIS

This report contains a description of the basic characteristics

of a six-component magnetic suspension and balance system. The
general capabilities of such a system are described in terms of the

aerodynamic test programs that may employ the system. The general

arrangement, and the operation of the system are described. The

discussion continues with a relatively detailed description of the per-

formance of the several individual subsystems. Each subsystem is

considered in terms of the performance that is required of it, and

the most suitable and compatible subsystem designs are chosen to

constitute the final complete system. The final system is outlined,

and analysed as a complete system, and its performance as a general
wind tunnel measuring instrument is defined. The discussion con-

cludes with recommendations of areas for further study, and the means

of translating the proposed design into reality, as a useful and versa-

tile wind tunnel instrument system.
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CHAPT ER II

GENERAL BACKGROUND

2:i:I THE MAGNETIC SUSPENSION AND BALANCE SYSTEM

A magnetic balance is a device which is capable of suspending

an arbitrarily shaped body in space, solely by means of the interaction

of controlled magnetic fields with the body. (The body is usually partly

or wholly composed of ferromagnetic material.) The device can with-

stand a range of external forces and moments applied to the body, and

is capable of accurately maintaining the position of the body at prescribed

levels, despite these externally applied forces. The device is further

capable of imparting independent motion to the various degrees of freedom

of the body, over a range of amplitude and frequency. The device can pro-

vide an accurate and virtually continuous measure of the magnitude of the

externally applied forces and moments, without any mechanical contact

being made with the suspended body. The device also provides an accurate

and virtually continuous measure of the position and orientation of the body.

This general magnetic balance and suspension scheme can

conceivably have several applications. In particular the magnetic

suspension and balance, in conjunction with a wind tunnel, can be

applied to a very broad class of aerodynamic simulation studies. This

application of the system forms the subject of the following discussions.

Z:Z:l APPLICATION TO WIND TUNNEL TEST PROGRAMS

Application of the magnetic suspension techniques to wind

tunnels have been viewed with interest for a long time. Magnetic

suspension offers a very close approach to true aerodynamic

TR 128 5



simulation of flying bodies, over virtually the whole range of Mach

number, with particular usefulness in the supersonic regime. This

is of course due to the complete absence of the aerodynamic inter-
ference from the mechanical supports that are required in convention-

al balance systems. These interferences or _sting effects n usually

have a profound influence on the pressure distribution on the base of

the body, generally distort the near and far wake flow field pattern,

and in some cases may influence the pressure distribution over the

entire body° This immediately suggests several areas that could be

studied with the balance system.

The magnetic balance system could be expected to provide

an accurate measure of steady aerodynamic forces imparted to the

body. Also, the flow field surrounding the body, and particularly

the near and far wakes, could be probed, with a relatively high level

of confidence in the assumption that a free-flying body is being simu-

lated. The magnetic balance can also be exploited to measure the

induced aerodynamic forces and moments due to unsteady motion of

the body, which can be designed to simulate maneuvers of the free

flying body. The determination of the dynamic stability parameters
of the body falls into this class of measurements.

Another area of study that has been suggested is that of the

effects of ablation on the aerodynamic properties of a body. This
might include several areas of interest, such as the effects of mass

addition, dynamic stability of the ablating surface, and simulation

of flight profiles of an ablating body.

These are a few of the general fields that can be studied

with the magnetic balance system. It now remains to be seen how

practical the system can become as a regularly used laboratory

instrument, rather than a laboratory curiosity. The ultimate goal

is to produce a wind tunnel test instrument that is useful, versatile,

and reliable. In a following section, the measurement of static

and dynamic forces using a particular magnetic balance system is

described in detail, and some general conclusions concerning possible
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fundamental test condition limits inherent in a magnetic balance

are discussed (Chapter IV}.

The motivation for the design of the balance system is thus

quite strong. The basic ideas that lie behind the system will now

be discussed, and these will be followed by consideration of the details

that make up the complete system.

2:3:1 THE MAGNETIC BALANCE ASA MEASURING SYSTEM

The basic operation of the system is as follows. The block

diagram of Fig.l shows the general arrangement of the subsystems.

The system is roughly divided into two parts: the suspension system,

and the _balance t, or force and moment computation and readout system.

The suspension system is the heart of the overall system; it is the

device which supports the model in the wind stream and counteracts

the aerodynamic forces on the model. It produces the forces required

to move the model in response to position command input signals. It

can automatically maintain the position of the model at constant value,

for a range of values of aerodynamic forces and moments. The "balance"

aspect of the device, that is, the ability of the device to measure forces

applied to the suspended body, is provided by computations performed on

measured variables related to the model position and orientation, and the

magnetic fields and field gradients.

Specifically, the system shown in Fig.l operates in the following

manner.

Z:3:Z THE MAGNETIC MODEL SUSPENSION SYSTEM

The suspension system operates as follows. The test model

is assumed to be initially in equilibrium under the combined influence

of aerodynamic, gravitational, and magnetic forces. The aerodynamic

forces are then assumed to change. The model is therefore no longer

in equilibrium, and will experience angular and translational acceler-
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ationso The position and orientation of the body will change, and
L,=_e changes will be detected by the aPOSITION SENSORS", and

translated into electrical signals. These signals are compared

with position input command signals, and the resultant signals

consisting of the difference between the command signals and the

sensor outputs represent position error signals. These position

error signals are subsequently modified by a network of _FEED-

BACK CIRCUITS", which perform several dynamic compensation

and decoupling operations. The modified error signals then are

amplified to much higher power levels by _POWEIZ AMPLIFIERS ",

and the amplifier output currents are applied to the magnetic

uSUPPORT COILS t'. These coils produce magnetic fields and field

gradients in proportion to the coil currents. These magnetic fields

magnetize the model and produce moments on the model. The field

gradients produce translational forces on the model. The magnetic

forces and moments are defined by the _/iAGNETIC FORCE AND

MOMENT IZELATIONS" . The magnetic forces combine with the

aerodynamic and gravitational forces, and the overall effect is that

the model is restored to its original position. That is, the position

error signal is made to converge to zero. This ability to completely com-

pensate for changing aerodynamic loads, with a position error that con-

verges to zero, is an inherent feature of the design of suspension system

feedback circuits that will be used commonly.

Z;3:3 AERODYNAMIC FORCE AND MOMENT READOUT SYSTEM

The aerodynamic forces and moments acting on the suspended

model can be deduced at any time by computing the magnetic forces

acting on the body, and subtracting the =inertia a forces and moments

due to gravity and translational and angular accelerations that might

exist at the time of interest. The inputs to the magnetic force com-

putation consist of the coil current signal, translated into suitable

form by a readout device, and the model position and orientation
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signal readouts. The inputs to the _inertia _ force computation

consist of the model position and orientational signal readouts.

The aerodynamic forces and moments can thus be presented as

independent outputs. They can be related to the orientation of

the body to determine the static _erodynamic characteristics,

and they can be related to the general kinematics of a moving
modelj to find the ndynamic" forces and moments.

Thus, a general system has been proposed that can con-

ceivably be translated into an aerodynamic force measuring in-

strument. In the following sections of this discussion, the per-

formance of each of the subsystems outlined above will be de-

scribed in greater detail.
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CHAPTER Ill

PERFORMANCE OF SUBSYSTEMS

3:0:1 MAGNETIC SUSPENSION SUBSYSTEMS

The magnetic suspension system is composed of four basic
subsystem s.

1. Magnetic field interaction region - magnetic support
relationships

2. Support coils and power amplifiers

3. Model position sensors
4. Feedback circuits.

This part of the report is composed of general descriptions
of each of the four items listed above. The analyses and comments

generally apply to a broad class of magnetic suspension configurations,
and are included in order to supply the background information that

is of assistance toward an understanding of the operations of the sus-
pension system.

Several of the equations that are used are stated in more than

one way. For example, an equation may be written in terms of several

frames of reference, and systems of equations may be written as ex-
plicit functions of several of the independent variables. These various
forms have been found convenient and are listed here for reference.

3.1:1 MAGNETIC SUPPORT RELATIONSHIPS

Notes on Units Used in Discussion

The units that are used to describe the magnetic field variables

are of somewhat hybrid form. The "applied magnetic field" , HA, is in

terms of kilogauss, or kilo-oersteds, and the Itmagnetic induction" B

is also in terms of kilogauss. In free space, which is the case in the

tunnel test section region in which the model is to be magnetically
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suspended, the permeability of free space, _0, is by definition unity
and hence in the test region, B is equal to H. These are known as
nmixed Gaussian u units. Wherever necessary, factors are defined

which translate the equations into terms of commonly used engineer-

ing units such as inches, pounds, inch-pounds, etc.

Forces and Moments

A body of ferromagnetic material will generally experience

magnetic body forces and moments when it is immersed in magnetic

fields and field gradients. These forces and moments can be des-

cribed quantitatively in terms of the size and shape of the body, the

orientation of the body, and the strengths of the magnetic field com-

ponents and gradients. The magnetic torque _T u can be written in

general terms as follows,

T - x

where tr = volume of model

_ = average magnetization of model

['_A = applied magnetic field flux density

The magnetic forces are described by the following relationship,

[7 = 1Lr -_') HA (2)

3:1:2

where _ = field gradient operator

MAGNETIZATION OF A FERROMAGNETIC BODY

C3)

Both the magnetic torque equation and the magnetic force

equation contain the magnetization term, _. This term is quite

important, and it is therefore analyzed first.

The average magnetization of a ferromagnetic body immersed

in magnetic fields is related to the shape and orientation of the body,

the strength and direction of the applied magnetic field, and the

material composing the body.
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Magnetization of a Two-Dimensional Body

Consider the body of ferromagnetic material shown in Fig. 2.

For the purposes of this initial discussion, the body is two-dimen-

sional, extending indefinitely in the _zn direction, and having some

arbitrary shape in the x-y plane. A magnetic field H A is applied in

the x-y plane at an angle _ to the x-axis. The average magnetization

vector _. will be proportional to the applied field and will lie at an

angle _ to the x-axis. The section has associated with it a pair of

mutually orthogonal vectors which characterize the magnetic proper-

ties of the particular section geometry. These can be considered as

=principal magnetic axes". These magnetic axes are defined as those

directions in which the applied field and the resultant average magnet-

ization vector are parallel. These axes are labelled aaU and '%_ .

The average magnetization in the direction parallel to the a-axis is

proportional to the component of the applied field in the a-direction,

and the average magnetization in the b-direction is proportional to

the field component in the b-direction. The magnitudes of these pro-

portionality factors are related to the shape of the section and the

magnetic permeability of the material relative to air. The permeability

of the material is assumed to be uniform across the section. Specif-

ically, the magnetization relations are,

(

where

l_, _4b = components of I_A in "a"

directions re spectively

= magnetic permeability of material

(relative to air)

= average demagnetizing factors (re-

lated to shape of section)

and I%,,

The demagnetizing factors Da and D b are related to each

other as follows, for the two-dimensional case,

D. 4- Db = I (5)

TR. 128 13



Magnetization of a Three-Dimensional Body

The relations describing the magnetization of a three-dimen-

sional body such as a wind tunnel model, are identical those describ-

ing the two-dimensional body. That is, if the principal magnetic axes

are _aa, Hb n, and UcU, the components of average magnetization are

given by

- Ha. (6a)

_b - li _÷ Ju.I]_] _6 (6b)

The demagnetizing factors are related as follows for the three-dimen-

sional case.

For a body of revolution, with the a-axis the axis of revolution,

the demagnetizing factors are further related, through symmetry.

- I3. (8)

3:1:3 EFFECT OF MATERIAL PROPERTIES

The average relative permeability of the material depends

upon the composition of the material, and upon the level of magnet-

ization. The permeability of a particular material can be deter-

mined from the magnetization curve of the material. The perme-

ability here is defined as the ratio of the magnetization m, to the

net applied field H . The net applied field consists of the externally
n

applied field HA, less the demagnetizing field H D due to the magnet-
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ization of the material surrounding the point of interest. The

permeability is thereby defined by Eq.(6a), for example, as the

limit as the demagnetizing factor D approaches zero. That is,
a

L H..I (9)

The resultant average magnetization of the body is the vector

sum of the component magnetizations

Surfaces of constant average magnetization are thus spheres

in the _%, _'%L, _v% - space, and contours are circles in the. _,_ ." & eL" ]D

plane, for example. This fact will be of interest when constraints

on the total magnetization are considered.

The total average magnetization influences the value of the

permeability _ in some fashion. Specifically, for values of total

magnetization less than the "saturation magnetization _, the perme-

ability typically is very high for the usual mnigh-qualityn soft ferro-

magnetic materials. The permeability is however a material prop-

erty that can be subject to rather broad and in practice generally un-

predictable changes under some circumstances. Since the perme-

ability enters the force and moment equations, through the magnet-

ization term, it is of interest at this point to examine in some detail

the part played by the permeability, and in particular the relative

changes in magnetization of a body that can be produced by relative

changes in the permeability that could be expected to occur in prac-

tice.

Let the permeability take on a range of values

then

(ll)
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and the range of relative changes in m i is

_'D_ >> I'_

= i ] (12)

For typical materials of moderate levels of magnetization

the relative permeability is of the order of 5,000 -" 20,000. This

high permeability usually holds for magnetization levels up to

eighty or ninety percent of the saturation level. The permeability

may experience severe relative changes as the temperature of the

material approaches the Curie point; that is, the temperature at

which it loses its ferromagnetic properties and the relative perme-

ability falls to unity. The following conditions can be assumed to

be typical limits for a good quality ferromagnetic material, exposed

to the conditions of temperature and general physical handling that

might be experienced in operation as a wind tunnel test model.

The average permeability N' is assumed to be 5000, with

a maximum possible variation of plus or minus 50 percent due to

unpredictable, effects. The relative change in magnetization can

be plotted as a function of the demagnetizing factor. This plot will

be useful in future calculations of the accuracy of the system as a

force measuring instrument. It appears in Fig. 3. From the plot

it can be seen for example that for a demagnetizing factor greater

than 0°i, the relative changes in magnetization will be less than

0°3%. It might quite conceivably prove possible in the course of

development of testing techniques that employ the balance system

to confine the relative change in permeability to a level less than

50 percent thereby allowing greater accuracy in force measure-

ments on bodies that are relatively slender,i, e.bodies having a low

demagnetizing factor. The conditions of Fig._will thus be considered

as worst-case for the sake of this initial analysis.

As a consequence of these considerations of material proper-

ties, a simplification of the magnetization equations appears possible.
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3:1:4 APPROXIMATE MAGNETIZATION RELATIONS

Since the typical values of relative permeability are quite

high, the magnetization relations can be simplified by eliminating

the effect of the material by assuming that the permeability approaches

infinity. The actual requirement is that M0D i be much greater than

unity. This yields,

This relation (13) will be used in subsequent equations

(13)

which include the magnetization.

3:1:5 DEMAGNETIZING FACTORS

Demagnetizing factors can be obtained analytically for certain

classes of bodies, the most significant being the ellipsoid. The deter-

mination of these factors is described in Refs.4 and 5. Included in

these references are tables and curves of computed factors for ellip-

soids of various shapes. The following table (Table I) is a partial

list of demagnetizing factors for ellipsoids of revolution.

TABLE I

I.o£)o o. 3_ 3

I. ?=oo o.zs_z

I.500 o._L_3 o

I._,oo o. t94. I

'Z.ooo o. l't_

LC).C>E_C3 O. C_Z._7-_
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Experimental Determination of Demagnetizing Factors

A straightforward and accurate procedure has been developed

for the experimental determination of the demagnetizing factors for

bodies of general shape. This procedure is described in Appendix I_.

The method was exploited to determine the demagnetizing factors of

a series of bodies of revolution° These included cones, cylinders,

and cylinder-cones. A partial list of the results is shown in Table

II below. The complete list for the bodies tested is found in Appendix_.

T "n"

"_,IAGNETII_INC-.. FA.C_TOIZSRJZ C.ONES, LIqD C.A_C'I'LIN_

I

c :Do. 1 :tz,=.

5 ° o,o.z _,¢=_

'25 ° o.7..'E,_

"_, _. ¢<=,=1.

_.. o, tS'b

The general trend is apparent in the demagnetizing factors

of bodies of revolution. The polar axis demagnetizing factor D
a

decreases as the slenderness ratio (a/b) increases. For a sphere,

the demagnetizing factors are equal, and for axisymmetric bodies

of general shape the slenderness ratio can usually be adjusted to

produce equal demagnetizing factors. For example, a cone with a

semivertex angle of 27 degrees will have equal demagnetizing factors,

and will thus be equivalent to a sphere, in terms of the average magnet-

ic properties.

3:1:6 COORDINATE TRANSFORMATIONS - MAGNETIZATION

The magnetization of the body can be expressed in several
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frames of reference. It _vill be useful to list some of these relations.

The body will be assumed to be axisymmetric and the polar axis

will lie in the x-y plane. The polar axis ;;,ill be inclined at an angle

@to the x-axis. The applied magnetic field components will be paral-

lel to the x-y plane.

a) In the body frame: _%,L "- _ (14a)

3:1:7

" "I_"-'-6 ÷ -'_-"_ / ( 1 7b)

MAGNETIG TORQUE RELATIONS

The magnetic torque is defined by Eq. I. Consider the case

of an axisymmetric body, polar axis lying in the x-y plane, and applied

fields parallel to the x-y plane. The torque UT= is given by

- T'U" y_ _ _ (i..ig.) (18>

where k T

V =

m =

In particular,

lent expressions

magnetic moment constant

1.14 (inch ibs) (cu.in.) "I (kilogauss) -Z

volume of body, cu.ins.

average magnetization, kilogauss

applied magnetic field strength, kilogauss

the torque will be given by the following equiva-
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(19)

(20)

(Zl)

L -_.3>61 z
(zz)

4-

CZ3)

The magnetic torque equations ID-Z3 demonstrate several

interesting features. For example, the torque T is zero for thez

following conditions.

o )

3:3,:,. - "D_,

The first condition is a function of the shape of the body.

A sphere would satisfy this condition, as would a cone with a semi-

vertex angle of 27 degrees, as was mentioned in 3:2:6. The latter

two conditions correspond to a resultant applied field parallel to
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the polar axis, and the b-axis respectively.

Equation 22 indicates that in an applied field Hx, the body
experiences a _restoring u torque when the angle @is less than _/Z_

and for small values of @this restoring torque is approximately

Co<< i)

• - @ (24)

sity p_

If the body has a radius of gyration R and mass den-
gz

'the moment of inertia I is, by definition
z

(27)

Thus, the body is capable of experiencing free angular oscillations

of natural frequency 0_ given by
z

If the body has a length (in the a-axis direction) of ttfa then the

reduced frequency parameter"kp" corresponding to this =reson-

ance a condition is

Factors which place limits on-m are discussed in the following

subsection. A maximum value will be 15 kilogauss. The radius

of gyration R will typically be of the order of 0.2 --" 0.Z5 times
gz
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the length _, and the density p, for steel is approximately 0.283

ib/in 3. The factor (Db - Da) will typically be of the order of

0.3 --"0.4.

If the undisturbed stream velocity V is expressed in

feet/sec°, then the reduced frequency parameter k Rwill be of

the order

"7"8

(High Mach-Number streams, will have typical values of V of0e
-Z

4500 -_ 5000 ft/sec, which yields typical values of k R of 1.4 x 10

--" 1.7 x 10 -2 )

When @ is near zero, and a steady _bias:' field H is applied,x

it can be seen that T is a linear function of the field component H .
z y

It is of interest to see how linear the relation remains for general

values of @. This is most conveniently shown by Eq. Z3 , in which

the bias field H is a parameter, and the independent variable is
X

Hy/H x"

The term in curved brackets is plotted in Fig.4o It appears

that it will be convenient in practice to control the magnetic torque

T by means of variation of the field component H . That is, a
z y

steady bias fieldH is applied, and torque control is affected by
x

variation of H
Y

Limits on Magnetic Torque

The maximum magnetic torque that can be obtained on a

body is governed by two basic constraints. These are,

i_ Total magnetization limit

ii_ Applied field limits

i) Total magnetization limit

The torque equation is in terms of the two body-axis

components of magnetization _¢_ and Irr_. The torque can be
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normalized as follows.

This contour is shown in Fig.5.

maximum normalized torque T
z

_'_ circle. This torque is, n
max

Thus, this normalized torque can be represented by a family

of hyperbolas in the ___b-plane. A plot of these is shown in Fig.5.

This representation of the torque in the _v_,__plane is very

useful because the limits on the torque that are imposed by the magnet-

ization can be very conveniently represented. As was seen in 3:Z:5,

contours of constant total magnetization will appear as circles in the

_, _b-plane. The maximum total magnetization is chosen as a limit

since it is a measure of the point at which the permeability begins to

deteriorate. For typical materials, the maximum magnetization
max

or point at which the permeability has begun to decrease is generally

in the neighborhood of 15 kilogauss. This will therefore be assumed to

be the maximum permissible level of magnetization, for these studies.

From this it can be seen that the

is the contour which is tangent to the

(magnetization limited)

The magnetic torque on the body can be written in terms of

the maximum magnetization _ and one of the magnetization corn-max'

ponents of the body, when the total magnetization is equal to
max
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ii) Applied field limits

From practical considerations, the applied field components

will be limited to certain definite ranges. The limits arise from

factors that will be considered in more detail in later sections of this

report° It appears that practical magnet configurations for use in

the suspension system will employ separate and magnetically independ-

ent magnet systems for each component of magnetic field parallel to

the wind tunnel, or x, y, z axes. Consequently, the limits on Hx,

H and H will be independent and will be governed by such factors
y z

as the individual coil power dissipation, power supply voltage or

current, etc. Thus, the applied field components have the ranges

Lines of constant field component H or H can be mapped
x y

onto th¢ _a' _o -plane" The mapping function depends upon the

demagnetizing factors of the body, and the angle @ between the body

polar axis and the x-axis. The mapping function can be found by

inve_ting Eqs.(15a) and (15b), to yield,

The constraints of Eq.(34) map into the Ma, Mb-plane

as an area bounded by a parallelogram. This area partly or

completely includes the area comprising the total-magnetization-

limited-range, the circle having a radius of_. (= 15 kilogauss).
inax

The area that is common to the circle and the parallelogram is
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the range of possible values of magnetization, and of the torque T
Z

for the particular body shape, and angle e. This is illustrated by

the following example.

Numerical Example:

Given:

Body: Cone _semivertex angle

Base Diameter

Length

Volume

Demagnetizing

Factors

i_= Z0 °

d = 2.00 in.

= 2.75 in.

_.r= 2.6Z cu.in.

D a = 0.179
D b 0.411

Field Constraints: H
x max

H
y max

= 5 kilogauss

= Z.5 kilogauss

Attitude Angle : @ = 0 °, 30 °

Find:

Solution:

Range of allowable torque, for @ = 0,

The solution is shown in Fig.6.

30 °

For @ = 0 °,

_ = - 82 kilogauss Z -_ + 82 Kilogauss
a t)

or

T

For @ = ÷ 300,

or

= - 57.4 in. lb. --" + 57.4 in. lb.
Z

_a_b : -llz kilogauss Z -_ +_G_kilogauss

T = --?_in.lb. -" +_._in.lb.
Z
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3:1:8 MAGNETIC FORCES

Magnetic forces are generated by interaction of magnetic

field gradients with a magnetized body. The general expression

for these magnetic forces is

(35)

where, k T

v

m

V

= magnetic moment constant

= 1.14 (lb.) (cu°in.)-1(Kilogauss) -I

= volume of body, (cu.in.)

= average magnetization (kilogauss)

-i
= field gradient operator, (in.)

= total applied field, (kilogauss)

(kilogaus s/in. )-

Equation 35 can be expanded to yield,

p- I

l J

(36a)

(36b)

(36c)

For the case in which only the x, y-plane fields, gradients

and forces are considered,
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In terms of the average applied field components, the demagnet-

izing factors, and the attitude angle @, these forces are

C38a)

(38b)

Relations Among Gradients

The magnetic field gradients are related through Maxwellts

Equations. In the region of interest there are no electric currents

(and no distributed magnetic poles) which results in the following

V _ _ _ O (39)

(40b)

(40c)

(41)

(41a)
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For the particular magnet configuration that has been chosen for
use in the proposed balance system, the field gradients at a point

at the center of the magnet array are independent of the actual

magnetic field at that point° That isp one set of magnets produces

the average magnetic field components required to magnetize and

apply moments to a body located at this point, and another set of

magnets produces pure gradients which exert forces on the magnet-

ized body. (Of course, if the body is located at some point within

the vicinity of the central point, the magnetization and torques will

be a function of the gradient fields and the displacement from the

central point. These effects can be predicted by a more detailed

analysis; they will be ignored in calculations of overall performance,

but must be included in calibration equations.) The gradients that

are controlled independently are OHx/OX, 8Hy/OX, 8Hz/OX. These
are related to the other field gradient properties by Eqs. 39 and41.

The most important consequence of this is that changes in 8Hx/8×

produce changes in SHy/By. Specifically, from Eq.41a,

- ± (43)

Equations 37b and 38b can be rewritten with this substitution,

(441

-[- "IZ

(45)
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An additional representation of the forces, formed by rewriting

Eq°_7, will be useful later, in particular in the determination of
combined force limits.

_-_ = ]=_]I--'-_l ÷ _I" U _ (I ÷ _I vI%,) 1 _ (46a)

= 2.

_n 2
(46b)

'"' J
(47a)

(47b)

It is of interest to note the fortuitous appearance of the

term m (i ÷ _1--_yi_vt x) )- This term is related to the total magnet-

+ 4Qa_l)

X

ization _v_ as follows

Thus Eq. 46 can be rewritten in the napproximate" form,

(49a)
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(50a)

An even further simplification is afforded by use of Eq. Z6

From this, the ratio (_y/_) can be deduced to be approximately

related to the torque Tz, and the attitude angle @,

The magnetic forces (Eqs.46a, 46b, and 49a, 49b ) are

thus linear functions of the gradients. When the body polar axis is

=0),aligned with x-axis and no torque is applied to the body (H
Y

the force equations are very simple,

(53a)

Limits on Magnetic Forces

The magnetic forces on a body have been shown to be functions

of the magnetization of the body, and the gradients in the applied field.
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Thus, the limits on the forces will generally be related to limits

on the magnetization, and to limits on the magnetic field gradients.

The magnetization was seen to be limited by two possible factors

(see 3:2:8), and the gradients will be limited in much the same

manner as were the average applied field components. (By coil

power limits, etc.). The torque was seen to be a function of the

magnetization, so conversely the magnetization can be seen to be

a function of the torque. Thus, a prescribed level of torque will

in turn prescribe a range of possible values of magnetization of

the body. This will place constraints on the range of variations
of the forces, for a given value of torque. This leads to a consider-

ation of the manner in which the force and torque limits interact, and

to formulation of a picture of the overall magnetic =performance" of

the complete magnet array; that is, the combined limits on the forces

and moments that can be applied to the suspended body.

Combined Force and Torque Limits in Suspension Performance

In its application as a wind tunnel model support, the 'Sperfor-

mance _ of the magnetic suspension must be known. That is, it must

be known to be capable of supporting the aerodynamic forces and torques

that are imparted to the body. Thus, it would appear necessary to

compile data, for the particular balance system, for a series of body

geometries and orientations, that describe the range of maximum

magnetic forces and moments. For the case of planar motion in the

x-y plane, the performance of the suspension system can be summarized,

for a body of volume =v" demagnetizing factors D and IDb and orient-' a

ation @, as follows

This represents a surface in Fx, Fy, Tz-space , within which

falls all allowed values of Fx, Fy, and Tz. The shape of the surface

depends upon v, D a, Db, and @, for a given suspension system. The
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factor (_)max depends upon the model material, and the field limits

(Hx)max, (Hy)max , (SHy/SX)max , (8Hx/SX)max depend upon the
particular suspension system.

Examination of the force and torque equations reveals that

both the forces and the torque are proportional to the volume "v"

of the body. Thus, it will afford some simplification if the sus-

pension performance is represented in Fx/V , F/v, Tz/v-space.
The actual number of parameters to be varied, in an analysis of

the performance of a particular suspension system is three, namely

Da, Db and @.
That is, the magnetic performance range is,

(55)

General Features of Force-Moment Limit Surface

The limiting surface is characterized by several general

features. These are illustrated by Fig. 7 The allowable values

of (F/v) and {F/v) fall within a parallelogram. The location of

this parallelogram is dictated by the body orientation angle @, the

applied magnetic torque {Tz/V}, and the demagnetizing factors D a

and D b. The body is assumed to be magnetized to the limit _max"

3:1:9 CONTROL OF FIVE COMPONENTS

The discussions of the previous pages have dealt with the

forces and moments associated with an axisymmetric body whose

polar axis is confined to a single plane passing through the wind

axis. This restriction was made to simplify the analysis but still

bring out all the salient features. The general graphical represent-

ation of the performance of a five component system, in the same

manner as for three, poses some difficulties. However, the forces

and torques can be expressed in general form, for future reference.
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Using the coordinate system of Fig. 8, the general equations for

this system are related by the matrices IPI and I P'I which

describe the transformation from the x, y, z coordinates to the

a,b,c, coordinates, and from the a,b, c, coordinates to x,y, z
That

z p

and!P'I

coordinates respectively.

,A

PQ. I

,x

FP

L._-j

and _

_,.sd

The matrices I Pl

is, in vector notation,

are defined as follows

(56)

(57)

[P[- (58)

p I r I

(59)

For the coordinate systems shown in Fig. 8, the elements of these

matrices are

P

I

!

I

'p_ .-

I

- _-_ _._;,_ _)_ _ - si_ _._ _p

(60)
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!

I

! m

_ _ _ -_,...,_oo._

f

!

I

(61)

Thus, exploiting this notation scheme,

are

L_J
oIt

G 0

["!I
|

P' o

0

the magnetization components

P

IHI
H_

0 Q

t
_-_ o

o J--

The forces and moments may be resolved along any of

the a, b, c or x, y, z axes using these relations.

It appears to be generally impractical to control all six

components using the schemes outlined above. Methods of con-

trolling the remaining component, namely the rolling moment,

(6z)

(63)
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or T have been developed and are described in detail in Ref._.
a'

One of these methods is particularly effective, and will be de-

scribed briefly in the following section.

3:1:I0 CONTROL OF ROLLING TORQUES

An additional independent variable is required if an

additional component is to be controlled independently. This

independent variable can be some spatial, or some temporal

property of the magnetic fields. It has been found possible to

control the roll degree of freedom by modifying the electrical

properties of the model, and applying audio-frequency average-

field components H and H . Specifically, the technique involves
y z

the following. A closed loop of copper surrounds the ferromagnetic

body, and lies in the a,b plane of the body. The ferromagnetic

part of the body is composed either of an isotropic, high resistivity

material, or of insulated laminations stacked with their planes

perpendicular to the a-axis. An alternating, spatially uniform

magnetic field H sin_,t is applied to the body. This produces an

average torque Tar" due to this alternating field of

=" ,l ÷ (64)
where @ = unit vector associated with c-axis

L = inductance of wire loop

R = resistance of loop

This interaction relation arises from the diamagnetic

current induced in the loop by the time-varying magnetic field.

It can be seen that the torque reaches a limiting value for large

values of the factor (_L/R). For typical geometries, the fre-

quency _" that is required to produce torque within 90% of this

limit is in the range of 400 cps. to I000 cps.

Equation 64 can be translated into terms of the rolling

I sin o_,t, H t sin_,_,
torque Ta, in terms of alternating fields l-ly z

and the orientation of the body. Consider the simple case shown
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in Fig. 9 • Here the roll axis coincides with the x-axis, and
the c-axis is inclined to the z-axis by an angle qJ. The oscillat-

ing applied field Haf is inclined at an angle qJ0to the y-axis, and
lies in the y-z plane,

---
The torque T (= 'i_) is thusa

Thus, the roll torque can be controlled by maintaining a constant

amplitude IHall and controlling the orientation q_0 of Haf, relative

to the roll orientation q_of the model.

At general angles of pitch and yaw, the pitching and yawing

moments will be influenced by the roll torque, but these interactions

can be counteracted by the steady state H and H control fields, as
y z

described in Section 3:2:8. The actual magnitude of these inter-

actions can be found from expansion of Eq. 64.

3:1:ii MAGNETIC FORCE AND MOMENT RELATIONS - SUMMARY

AND CONCLUSIONS.

All six components of force and torque can be applied independ-

ently to a ferromagnetic body. The forces and torques may be con-

trolled by adjustment of the following magnetic field variables.

Magnetization (_bias _ ) field - H
x

Rolling Torque r_ HyC_aw), Hz(_0v)

Yawing Torque T_ - H Y

Pitching Torque r,j - H z

Drag Force F, - 8Hy/SX

Side Force _ - 8Hy/OX

Lift Force _ - 8Hz/OX
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Thus, a magnet system which provides control of these

field variables will afford the forces and moments required of a

six-component model suspension system. General methods of

synthesizing these magnetic field properties will consequently

be explored in order to determine those magnet configurations

that may prove most practical in application to the wind tunnel

suspension scheme. This will form the subject of following sec-
tions.

3:2.i NOTES ON DESIGN OF MAGNET SYSTEMS

A major portion of this design study was devoted to an
evaluation of various magnet configurations that would be com-

patible with a wind tunnel test section and the various wind
l-,,n,n_,1 -_r-r,=,oo,-_.;_,o i-l-,-_#- 1,1 _'_._',..1-_ ",.. ..... _1 : ....... :-.-

with the magnetic suspension and also with the additional equip-

ment required by the suspension system. A total of five distinct

magnet systems were studied, and of these five configurations,

three were innovations in this field. One of these general magnet

configurations is chosen for use in the NASA Langley Suspension

System; a detailed account of this magnet system is found in

Section zL:l:%.

The basic requirements of a magnet arrangement are

several, and they fall into the following general categories.

a. GEOMETRICAL - Compatibility with tunnel system.

i) Tunnel test section must be provided - this

implies an unobstructed cylindrical volume

passing through the magnet arrangement,

somewhat larger than the outside diameter

of the test section wall if a closed-jet tunnel,

or somewhat larger than the outside diameter

of the diffuser inlet in an open-jet facility.

ii) Convenient access to test region through and/or

around the magnet system, to allow model changes,

calibration, probe adjustments, etc.

iii) Provision of viewing ports-unobstructed cylindrical

passages through magnet array, perpendicular to and

passing through the tunnel axis, at the point of model

suspension. These ports will be required for general

viewing and for the schlieren system.
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b.

Co

iv) Compactness. It appears desirable that a compact

magnet system be used, from the point of view of

tunnel operations; access to the test section will be

easier.

v) Provision of space to accommodate model position

sensing devices.

MAGNET IC

i) The magnet system must provide independent

control of H , Hy, H z, , xx Hy(_) Hz(_), 8H /Sx,

aHy/aX, 8Hz/aX, at the center of the test section.

ii) The magnetic field properties must be accurately

correlated with the magnet coil currents pro-

ducing the fields, over the maximum ranges of

field properties encountered in practice with the

system. (These currents will be used in the

measurement of the magnetic forces on the sus-

pended model).

iii) The magnetic fields must be produced with

reasonable efficiency. That is, the magnet

system should not be so compact that the

dissipation power density becomes excessive.

iv) The magnetic energy storage should be as small

as practical. This is the factor which affects the

reactive power that must be supplied to the system,

for time-varying magnetic fields. The reactive

power requirement will influence the volt-ampere

requirements of the power supplies which provide

the control currents to the coils. (The magnetic

energy density is proportional to the magnetic field

squared, and inversely proportional to the relative

permeability. Thus, for given maximum levels

of magnetic field, a minimum magnetic energy

storage level limit will be imposed by the size of

the tunnel test section. It is possible to decrease

the energy storage outside this region, by use of

high permeability flux return paths).

ELECTRICAL

i} The magnet coils must be capable of withstanding
the maximum applied voltages without dielectric
breakdown. The coil insulation must be capable

of withstanding all operating conditions of temper-

ature, moisture, pressure, etc.

ii) Electrical connections to the individual coils must

be reasonably convenient.
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do COIL COOLING

i) The electrical power dissipated in the magnet
coils in the form of IZR loss must be removed

by some heat transfer mechanism. For the

power densities to be used, water cooling is

mandatory.

ii) The cooling fluid inlet and outlet connections

must be reasonably convenient for mainten-

anc e.

e. MECHANICAL

i) The magnet assembly must be adequately supported.

The individual mechanical components must be

held rigidly with respect to each other, and the whole

assembly accurately maintained in a fixed position

relative to the tunnel.

These are the fundamental design requirements. The problems

associated with a particular design will suggest further details that

must be considered.

3:2:2 NOTES ON PERFORMANCE OF COIL-POWER AMPLIFIER

SYSTEMS.

In Sections 3:1:7 and 3:1:8 it was noted that the ranges of

possible values of the magnetic forces and moments were limited

by restrictions on the magnetic fields and field gradients. It is

of interest, then, to see how these fields and field gradients are

typically produced, and the factors that may limit these properties.

These will be shown in more detail in the performance summary of

the final configuration selected (Section 4ri:2) and in the

analyses of the alternative magnet configurations that were studied

(Appendix A). It is appropriate here to outline a few general

considerations that are useful in the design of these magnet systems.

These fall into the following general topics.

I. Scaling Laws.

Z. Magnetization Limits for Iron Cores.

3. Coil Power Density Limits.

4. Magnet Inductance and Limits on Unsteady Fields.
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i. Scaling Laws

The magnetic and electrical performance of a particular

magnet is related to several factors, one of these being the size

of the magnet. This introduces the question of scaling laws, that

is, the laws that relate performance to size, the geometric shape

being kept fixed. These laws are of vital interest in the study of

magnet systems. They can be used to predict the behavior of a

large scale and complex magnet system, from test data measured

with a small scale experimental model of the system. Such test

models can be fabricated at a small fraction of the cost of the full-

size system. The =performance n here is rather loosely defined as

the ratio of the field property of interest to the ampere-turns pro-

ducing the field property. The nperformance n will also include a

description of the spatial uniformity of the field property of inter-

est.

The scaling laws can be summarized as follows.

a. MAGNETIC SCALING LAWS

i) The components of the static (low frequency)

magnetic field at any point in a system of media

of constant permeability and of a given configur-

ation having a characteristic linear dimension _fn

are linear functions of the applied ampere-turns

(NI), (NIz) - (NI) , and are inversely proportion-
al to the dimensinn_" .

ii) The components of the static magnetic field

gradient tensor (V B) at any point in a system

of media of constant permeability of a given

configuration and having a characteristic linear

dimension n_ are linear functions of the applied

ampere-turns (NI), -(NI)n and are inversely
proportional to the square of the dimension _u .

b. ELECTRICAL SCALING LAWS

i) The low frequency resistance of a magnet coil of

a given configuration having a characteristic linear

dimension Uu", and composed of a series of con-

ductors of uniform size, of number nn_, the con-

ductive portion of which accounts for a proportion

Fp.(Packing Factor) of the total cross section of

the coil, and of a resistivity =p_ , will be proportional

to the resistivity npn, the number of turns unn squared,
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and inversely proportional to the linear dimen-
sion a_u and the packing factor F.p.

ii) The self inductance of a magnet coil of a given

c .... gu .... on having a characterlstic linear

dimension a,u and composed of ant turns of

wire of a uniform size is proportional to the

number of turns ann squared, and to the linear

dimension t_, .

iii) The time-constant, L/R, of a magnet coil of a

given configuration, packing factor, and resistivity

is proportional to the linear dimension nu" squared.

(From i and ii).

g. Magnetization Limits for Iron Cores

The magnetic field of a coil can be enhanced by the use of an

iron core. The magnetic field strength at a point is composed of the

contribution that would be produced by the coil alone, and the contrib-

ution from the magnetized iron. It was mentioned in Section 3:1:7

that the magnetization of iron is subject to a limit due to saturation.

This limit is generally of the order of 15 kilogauss. That is, the

magnetization of the iron should remain below this limit. Above this

limit, the magnetization becomes independent of the applied magneto-

motive force, and can be strongly influenced by temperature.

It is desired that the total field component be accurately re-

lated to the applied magnetomotive force (the coil current). Thus

the core saturation constitutes a limit, in a manner similar to the

saturation of the model.

If the field strength or gradients that can be obtained with an

iron-cored magnet below the saturation limit are of satisfactory

magnitude and spatial uniformity then the iron magnet is attractive

since it will generally have a higher efficiency than an air-core coil

in the same application. This in turn means that the coil power ampli-

fier need have a relatively low peak power capability, which can be an

important consideration in the total cost of the suspension system. The

iron-core magnet can generally be of quite compact construction, and

the geometry can be quite flexible, allowing it to fit closely with the

other magnet systems that comprise the suspension.
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3. Coil Power Density Limits

Some means of removing the power dissipated in the magnet

coils by the coil currents is required. In general this cooling will be

effected by means of a heat exchange liquid pumped through the coil

structure, and coming in intimate thermal contact with the coil con-

ductors in which the power is being dissipated. The actual details of

the construction of the coils depends on several factors, among which

are consideration of ease of manufacture, conductor packing factor (and

hence efficiency), coolant supply pressure and available space for cool-

ant inlet and outlets, flow rate, coil impedance, and maximum frequency

of excitation. In general, certain practical limits on the power dissipation

density exist. However, on the basis of design experience obtained so

far, (Ref . G ) these limits will not be approached in practice, since

other considerations will generally be predominant. Therefore, coil cool-

ing is not anticipated to be a major problem.

4. Coil Inductance and Unsteady Field Limits

The magnetic field strength or field gradient is proportional to

the corresponding coil current. The impedance of the coil will increase

with frequency due to its inductive nature, and hence will require relatively

large coil voltage amplitude to produce a high frequency time-varying field,

compared to the coil voltages required to produce the same amplitude at

low frequency. That is, the reactive power required by the coil increases

with increasing frequency. Hence, the volt-ampere requirements of the

coil power amplifiers are related to the peak field or gradient amplitude

as a function of frequency.

3:3:1 MODEL POSITION SENSORS

The model position sensors are required to meas'ire the position

and orientation of the model or a,b, c axes relative to the wind tunnel or

x,y, z-frame of reference. The general capabilities of an ideal position
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measuring system along with some target specifications, are listed
below. {Ref.'/).

3:3:2 CAPABILITIES OF IDEAL POSITION SENSING SYSTEM

For a particular body of arbitrary shape the system should,

a) Measure the displacement of the center of gravity of

the model in x,y, z directions, from a nominal origin centered

in the tunnel test section.

b) Measure x, y, z displacements over the range of the order

of ±2 inches.

c) Measure position within an accuracy of ±0.001 inch, over

periods of hours, without necessity of direct recalibration.

d) Measure angle of pitch and angle of yaw of model major

axis.

e) Measure pitch and yaw angles over a range of ±45 o.

f) Measure pitch and yaw angles within ±0.05 ° over a period

of hours without necessity of direct recalibration.

g) Measure roll orientation of body over full range of roll

angle of 360 °

h) Measure roll orientation to accuracy of ±0.05°.

i) Read out the positions and orientation at intervals no greater

than twenty microseconds. Lag uncertainty between measure-

ment and readout should not exceed one millisecond.

j) Be conveniently adaptable to bodies of different shape.

k) Be compact.

3:3:3 GENERAL TYPES OF POSITION SENSING SYSTEM

A system will in general be composed of an array of sensors

of some type or types, each sensor being capable of determining some

geometrical characteristic of the suspended body that can be related to
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the position and orientation of the body. If the position and orientation

of the body can be related uniquely to the output signals of the sensor

array, over the ranges of displacement required, then a feasible, if

not a practical, position sensing system has been found.

The measuring system can be characterized by the basic type
of sensor that is used. The general approach has in the past been

towards optical sensors of various types. Detailed accounts of develop-

ments of such systems can be found in Refs.?__ r. In general, the

optical methods are attractive for limited applications because they

can be of quite simple construction. However, they are not very versa-

tile, and in fact can be quite impossible to use in some applications, the

most notable being the case of non-axisymmetric bodies.

As a result of this impasse, a radically different approach was

considered necessary. From studies of the alternative approaches that

were available, the most promising appeared to be based on the concept

of the differential transformer. The basic ideas involved in this

approach are described in the following sections. It appears that a

sensor system based on this technique will approach the ideal require-

ments more closely than any optical system so far conceived.

3:3:4 ELECTROMAGNETIC POSITION SENSOR (EPS)

A position sensing system based partly on the concept of a

differential transformer has been developed. This sytem is based on

electromagnetic induction techniques and has hence been called an

Electromagnetic Position Sensor, or EPS. The operation of this sys-

tem can be described qualitatively as follows.

Operation of EPS

The ferromagnetic model is magnetized by a spatially uniform,

sinusoidally-time-varying magnetic field, typically generated by a pair

of tuned tI-lelmholtz Coils = excited by an audio-frequency generator of
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moderate power. This magnetizing field will in general produce in

the body components of magnetic moment in the directions of the

tunnel axes, the magnitudes of which will be related to the orientation

of the body. These magnetic moment components correspond to magnetic

dipoles of oscillating strength, of amplitude related to the orientation of

the body. The location of these dipoles corresponds to the center of

magnetization of the body. A c0il of wire located in the vicinity of the

magnetized body will have an oscillating voltage induced in it due to

that part of the oscillating magnetic dipole field that passes through

the coil of wire. The amplitude and phase of this voltage can be taken

as a partial measure of the position and orientation of the body relative

to the coil. An array of N such coils, located in several different posi-

tions and orientations, relative to the x,y,z axes will produce N different
voltage signals. The position and orientation of the body relative to the

x,y, z axes can be related to these N voltage signals. That is, each
component of position and orientation is a function of the N coil out-

put voltages. These relations can be unique over certain ranges, pro-
vided the number of coils is equal to or greater than the number of

position and orientation degrees of freedom, and provided the coils are

arranged in an appropriate manner. The problem of the design of this

system is the synthesis of an appropriate arrangement of these sensing

coils which will provide signals that are in useful form and are uniquely

related to model position and orientation over the required ranges, and

which is compatible with the geometrical requirements of the wind tunnel

and the other parts of the suspension system.
A general arrangement of sensing coils has been found that

promises to fulfill these requirements. Also, the electronic circuitry

external to the coil systems that is required to process the coil voltage

signals is well developed. The development of the coil array design
will be outlined below in some detail.

3:3:5 SINGLE DEGREE OF FREEDOM EPS

An EPS designed to measure the position of a model located

on the x-axis will be studied. The layout of the coil system and model
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location is shown in Fig. i0. A pair of excitation coils, of mean radius

np, are coaxial with the x-axis and are centered at ( +g, 0, 0) and (-g, 0, 0)

and are labelled nA_ and aBt' respectively. The coils each have a total

of "n _ turns° These coils are connected in series such that the current _I"

flows in the same sense in each coil, namely in the clockwise sense when

viewed in the positive x direction. The magnetic field H, at a point x on

the x-axis due to these coils is

' _ . _ _ (66)

It can be shown that this field Hx(X ) can be made to have negligibly

small second derivatives over a considerable volume within these coils,

by appropriate choice of the ratio g/p. The required condition is g/p

equal to one half, giving the so-called Helmholtz-pair. This yields,

Helmholtz-pair - (g/p = i/2)

p -+-

!

= o.'-r,v p.o C67)

The axial field H at points adjacent to the origin (0, 0, 0) is
x

very close to the central value of Eq. 66 . Quantitatively, it is with-

in 0.1% of the central value, over a spherical volume centered at the

origin, of radius equal to p/3 (Ref.8).

The wind tunnel model of volume t/f,, composed of a ferro-

magnetic material of high incremental permeability is placed within

the coils, with its center of magnetization located on the x-axis at

a point (x0, 0,0). The body is symmetric about the a-axis, and this

axis lies in the x-y plane, and is inclined to the x-axis by an angle @.

The average magnetization of the body is thus,

_ ___ _ [ _--_ 4- "_'_£] (68a)
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The total magnetic dipole moment due to each component is

C69)

These magnetic moments produce magnetic fields at a point at a

distance _rn from the body, on a line inclined to the x-axis by an

angle _, of magnitudes H r and H_given by

_4r " \4"."/".M_ 2 _ ÷ (_'_I_ z.;,_"Y" (70a)

flux,

of the model can be shown by integration of Eq.70 to be

This magnetic flux passes through the excitation coils. The

_PA that is linked with coil A, and arises from the magnetic moment

and

(71a)

(71b)

These equations are identical in form to Eq. 66 which relates

the magnetic field strength at a point on the axis of the coils to the

location of the point relative to the coils. The field point corresponds

to the model magnetization center. For the Helmholtz arrangement,

it is known that Eq. 66 yields a very uniform value of H over a large
X'

range of values of x, and incidentally is also true for y and z. If

the sense of one of the coil currents is reversed, however, then a

negative sign appears in Eq.66, and it is known that the field strength

H will then have a very uniform variation with position x. In an
X

analogous fashion, then, if the difference in flux linkages, (_A - qbB)

can be measured, this should provide a good linear measure of the

position x 0 of the model. Thus,

(7Z)
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This yields, in the vicinity of the origin,
I'-- 1 (V3)

and for a Helmholtz pair, (g : 0.5)

Equation 74 should be accurate within 0.1% over a spherical volume

of radius --P °
3

Thus, the flux (_A- _B ) is related to the excitation current,

through Eqs.68,69, 73, as follows. (For Helmholtz coils, mean

radius = p)

If the current I is time-varying, voltages are induced in coils A and B,

i.e.,
f __

Signal Detection

It is desired to obtain a voltage signal that is proportional

to the displacement x 0. This can be done by the technique ofnphase -

sensitive demodulation n. This is illustrated by Eq.78. The output
t

signal Vx is derived by multiplying (V A-VB)x9 by cos _0t.

This can be implemented by electronic circuitry.

(78)
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Xo

The component ( Z ¢_2_t) can be removed by electronic

filtering, leaving the signal Vx, which is proportional to the axial

position x 0. The voltage difference (VA-VB)x0 can be measured

by means of the bridge circuit shown in Fig. II. In this arrange-

ment the excitation voltage is applied to the coils connected in series,

and the difference voltage (VA-VB) is taken at the connection point

of the two coils, relative to a voltage derived from a potential divider

connected across the two coils in series.

It was seen in Eq.76that the voltage difference signal was

actually a function of the body geometry and orientation, as well

as the primary variable, x0. This variation is described by the

cosz0 si___nz__8
factor, [ Da + Db ] "

(As an example, for a ratio of (Da/Db) of 0.435, corres-

ponding to a Z0 ° semivertex-angle cone, this factor varies by

23% for a range of variation in @ of ± 45°.)

3:3:6 TWO DEGREE OF FREEDOM EPS

The single degree of freedom schemes outlined above can

be extended to include measurement of the angle 0, by addition of

another pair of coils. It was noted in Eq. 63b that the lateral magnet-

ization m is related to the angle @. This lateral .nagnetization
Y

in turn corresponds to a magnetic dipole My, which has associated

with it a lateral magnetic field, which can be detected by a pair of

coils arranged on the lateral or y-axis in a manner similar to the

x-position coils. In this case, the sum of the induced coil voltages

will be used as the measure of the angle 8. If these coils are labelled

C and D, and are centered at (0, gt,0) and (0, _gt, 0) respectively, are

coaxial with the y-axis, and each have an equal number of turns, then

the sum voltage (V¢ + VI_ ) amplitude will be of the form
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The factor sin@ cos@ is approximately equal to @, for

small angles. The variation is illustrated by the following short
table.

@ sin@@cos@ (I sin@@ ) %

0 ° I 0.0

i0 ° 0.97 3.0

Z0 ° 0.9ZZ 7.8

30 ° 0.83 17.0

40 ° 0.705 29.5

45 ° 0.50 50.0

%

Thus, this voltage (V c + V ) is a strong function of @, up to approxi-P

mately 40 ° . This voltage signal can be phase-sensitive demodulated

in the same manner as the x-position signal.

3:3:7 THREE DEGREE OF FREEDOM EPS

Displacements of the body in the y-direction can be measured

by an additional set of four coils, as shown in Fig. iZ. These coils

have an equal number of turns on each, and are arranged symmetrically

about the x and y axis, with one coil centered in each quadrant of the

x-y plane. The plane of each loop is approximately parallel to the x-z

plane. These coils are labelled E,F,G,H, in the ist, Znd, 3rd, 4th

quadrants respectively. Assuming the convention that an increasing

magnetic flux in the y direction produces positive voltages VE, VF,

VG, VH, these coils are connected to provide the sum and difference

voltage Vy,

- Cv,_v, - +v.) c ol

M x ,

This voltage is proportional to the axial magnetic moment

and the vertical position Y0-
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This variable thus has the same dependence on @ as does the x-position

signal.

Displacement of the body in the y-direction introduces an additional

difference signal (VA-VB)y0_ @ in the x-position coils which is proportion-

al to the y-displacement, and is a function of the angle @. Specifically,

this additional voltage is

Thus, the total x-position coil output signal is

(84)

where

(85)

for Helmholtz coils, as in Eq. 76.

3:3:8 EXTENSION TO FIVE DEGREES OF FREEDOM.

The arrangement described briefly above can be extended to

measurement of displacements in five degrees of freedom by addition

of six coils centered in the x-plane, in an array similar to that used

to measure @ and Y0- This array will measure the vertical displacement

z0, and the pitch angle _.

Measurement of the roll orientation by an extension of this sys-

tem does not appear feasible at this time. Development of a general

purpose roll angle sensor will be studied in the future.
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3:3:9 SYSTEM SENSITIVITY - EXAMPLE

It is of interest to consider an example in order to show the

sensitivity that can be expected of this device. For this example,

consider the single-degree of freedom system studied first° The
excitation and sensing coils will be aHelmholtz pair, and the body

will be of some typical size and shap%as follows:

Given: Permeability of Air:

Coils: Mean radius

Number of turns

Current

Frequency

_0 = (4w x I0 -7)
39.4 (weber s/inch

amp. turn)

p= 8.5

n= 500

Io= 1 amperes

_0 = 20 KHz

= 1.26 x 105 rad/sec.

Find:

Solution:

From Eq.

Model: Cone

Orientation:

(vA_ VB)xo/Xo

- Semivertex angle = Z0 °

Base Diam. = 4 a

length = 5- I/Z a

volume V = Z3 cu. in.

D = 0_179
a

D b = 0.41 1

@ = 0 °, 30 °

C'_._b •
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that is, at @= 0

and at @= 30°

_ ,o.,
These sensitivities are very encouraging; it may be assumed

to be practical to resolve these voltages to an accuracy of _0.5 milli-

volts, without too much difficulty. This corresponds to a resolution

in position measurement of +5 x 10 -5 inches, which is greater than an

order of magnitude better than the resolution specified as a tentative

goal in Section 3:3:2.

3:3:10 FREQUENCY RESPONSE OF EPS SYSTEM

rT"L,^ ^..$_...t- _; _--_1 .... : "..: -- _.f -l.1_ ^ T?, r'lO

a.a.,,., V_..I._LCL. O.l._J..l.O._ ,i. .I. .L"..... .=.2 .... --_ .I.1_1.._2, L._.I.I_ .IC._.I. lJ .I.U.I.I.I_L,,I. UI.I I..#.L I._J.I;_

rate of change of the measured variable. Thus, the frequency re-

sponse of the system is of interest. Consider the case of the axial

position sensor. The variable that is to be measured is x0. Assume

0 is constant, and that the model is executing sinusoidal motion in

the x-direction with a frequency of ¢00 and amplitude x. The coil

excitation frequency is _0. The modulated coil output signal V is
x0

= "X= (86)

This signal is demodulated by multiplication by cos _0tr i.e.,

The ripple component of Eq.87 represents an error signal, and

canbeattenuatedby means of either a low-pass or a band-reject filter.

The design of this filter will be dictated by the system frequency re-

sponse that is required, and the excitation frequency,. The signal

and ripple spectra are shown in Fig. 13. The signal spectrum can be
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seen to overlap the ripple spectrum when_0 is greater than the

excitation frequency. The low-pass filter characteristics must

therefore be approximately as shown in Fig° 14. That is, for _0

greater than or equal to _, the filter must strongly attenuate the

signal. For frequencies less than_ , the attenuation and phase
shift should be as small as possible. This implies that a maximally

flat, multistage filtering function is needed, such as a Butterworth

or Chebyshevtype. (Ref.9).

For example typical maximum practical excitation frequencies

appear to be of the order of Z0 I_ Hm. An eight-order low pass
Butterworth filter, with - 3 ib point at i0 KH_ will have an approxi-

mately linear phase response of 0.036 degrees per I-_, corresponding

approximately to a time delay of 0.i millisecond. The amplitude
ratio is within 0.05% for values of _0 less than 4 KHz. These num-

bers indicate that the frequency response of this system can be ex-

pected to meet the specified goals.

3:3:11 SUMMARY AND CONCLUSIONS

These preliminary considerations have shown that an EPS

capable of measuring model position in five degrees of freedom is

conceptually feasible. The anticipated accuracy and frequency re-

sponse of the system is well within the target specifications. The
external electronics need not be particularly sophisticated, being

well within the state of-the-art. The coil system appears to be

sufficiently flexible to be adaptable to a wind tunnel and suspension

system. The layout of the final EPS design configuration for the

NASA 15_ HFA suspension system is described in Section 4.'1"2(c)

which includes general recommendations for the external circuitry.
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3:4:0

3:4:1

AUTOMATIC CONTROL SYSTEM

INTRODUCTION

Feedback control of the position of the magnetic wind tunnel
model is necessary in this model support system for several reasons.

• S •

The position of a magnetlcally soft ferromagnetic body in a fixed

magnetic field which produces a force and moment which balance all

other forces and moments applied to the body is in unstable equilibrium.

A slight displacement of the body in the direction of the applied magnetic

force will cause the model to diverge from the equilibrium position.

Another destabilizing influence present for many aerodynamic configur-

ations of interest is provided by the aerodynamic characteristics of

the test model.

In addition to stabilizing the system the feedback used must

be designed to provide satisfactory transient response to allow start-

ing the wind tunnel with the model supported in the magnetic suspension

system. The position excursion of the model during the start cannot

exceed the limits of the position measuring system without losing con-

trol of the model. It is also desirable to have an integration in the

feedback to have the model always return to the set position with steady

aerodynamic loads applied. This simplifies force vs. magnet current

calibration since calibration is then required for only one position of

the model.

3:4:2 MAGNETIC SUSPENSION SYSTEM CONTROL LOOP COMPONENTS

The complete magnetic suspension system is shown in block

diagram form in Fig.15. The characteristics of the individual

components influencing the control loop will be discussed in this sec-

tion.

a_ Position sensor

The position sensor characteristics of interest here are its

dynamic behavior and the static relation between output voltage and
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input position. The optical sensors presently in use in the Aero-

physics Laboratory Magnetic Suspension System can be character-

ized dynamically as a first order lag. The time constant of this

system is under 50 microseconds and is negligible compared to

other lags in the system. The output voltage is linearly related to

the model position within the operating range of the sensor. For

this control system analysis performance similar to the Aerophysics

Laboratory system optics will be assumed. Hence, the character-

istics of the position sensor will be represented as a constant gain.

b) Magnets and _oower sup.plies

The relationship between a field component applied to the

magnetic model and the voltage at the terminals of the magnet coil

producing the field is a function of the model position, the existing

field gradient and the coil inductance and resistance. For example,

for the vertical applied field:

,- K./m ] (88)

where z is the vertical model position measured from the center-

line of the suspension system and K is the ratio of vertical field
z

produced by the magnet to the magnet current. During normal

operation the nonlinearity introduced into the control loop by the

position dependent term will be small. Changes in H due to posi-

tion changes will generally be less than 59 of the total field.

In order to improve the performance of the power supply

and coil combination a signal proportional to the magnet current

can be fed back to the power supply input. Such an arrangement

is represented in block diagram from in Figure 16.. On the

assumption that the power supply has a very short time constant

it is represented here by a simple gain li relating input and output

voltage. The transfer function of the magnet and power supply com-

bination is then as follows (neglecting the position dependent term):
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where V. is the input to the power supply. If the feedback gain1

is set so that K l ___z) >> l the time constant of the system is

reduced. Also, if the power supply gain is nonlinear the adjust-

ment of
K l so that K l (-_) >>i will make the system linear for

inputs which dontt saturate the supply.

One disadvantage of making K, large is the necessity of

having to increase the series gain to compensate for the attenuation

resulting from the feedback. With the characteristics of the usual

controlled d.c. power supply, even though the d.c. gain is adjusted

to be the same with and without feedback,more noise will be trans-

mitted by the system with feedback. The feedback gain setting will

thus depend on the power supply characteristics, the noise present

in the system, the magnet time constant and the desired time con-

stant of the system.

c) Magnetic model and magnetic field

The forces and moments produced by a magnetic field on a

magnetic body characterized by its demagnetizing factors are given

in Eqs.38a, 38b, 23. The models used in this discussion are magnet-

ically axisymmetric so that D b = Dc. in normal operation of the

balance system the H field component will be held constant at ax

value determined by a constraint on model magnetization level as

discussed in Section 3:1:3 . Five other field properties are con-

trolled by separately energized magnets to control all degrees of

freedom of model motion except rotation about the model axis. The
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force and moment equations indicate that independent control of any

single degree of freedom cannot be obtained by controlling just one of

the field variables. Also, the equations are nonlinear in body angle

of attack and in applied field.

It is desirable from the point of view of obtaining a system of

good dynamic performance to have as little coupling between each
controlled degree of freedom as possible.

In order to obtain an understanding of the coupling due to the

magnetic model between the five controlled degrees of freedom the

equations were linearized about an angle of attack in pitch, _0, with
zero yaw angle and are written as follows in one matrix equation:

where

I
_ \kT' /J

( o )

IC o ) C _ ) ( o )

d@.)[
CHOJ

(90)

Cgl)

P
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The quantities TI,_/,_, k, 6 and _ are functions of c_0 and the demagnet-

izing factors are defined as follows:

¥ -

k -

c:_ "_ _ _-_ _

-IDa,--D..'_

Examination of { _ij } indicates that changes in OHx/OX ,

OH /Oy, and OH /az have no effect on the pitching and yawing mom-
x x

ents, i.e., qb41, qb4Z, qb43, _51' qb5Z, _53 are zero. Therefore, a

force disturbance which is compensated for in the system of Fig. 15

by changes in the field derivatives will not affect the pitch and yaw

degrees of freedom. However, a torque disturbance will affect all

five degrees of freedom. In other words the force and torque systems

interact in an open loop manner. A change in torque produces an

effect in the force systems but there will be no feedback from the force

systems to the torque systems. Thus the dynamic characteristics

of the force systems and moment systems are independent of the dynamic

characteristics of each other. The two moment systems interact with

each other in an open loop mamaer also since qb45 is zero.

The three force systems, however, are interconnected in a

closed loop. The force systems alone are shown in Fig. 17. The

dynamics of the position sensors, compensation, power supplies,

and magnets are represented byA(s), B(s), and C(s) for the drag,

side, and lift forces respectively. The effect of the off-diagonal

elements of the magnetic model transfer matrix can be investigated
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by a root locus plot of the system. The force system can be re-

arranged as in Fig 18 showing drag force as the input and drag

position as the output. For simplicity it is assumed that the open

loop transfer functions of the three force systems decoupled from

each other are equal, i. e. ;

A (,-£){:b,, m

The characteristic equations for the complete force system is then:

(93)
I 13(s') ]

l+_where
{94)

For the sake of obtaining a qualitative understanding of the

coupled system it is assumed that each decoupled translational-de-

gree-of-freedom system can be represented as a damped second

order system. This results in the following characteristic equation

for the coupled system:

{95)

(gZ)

A root locus plot of this system is presented in Fig. 19. The sys-

tem is stable for - i < • < .g5 assuming a reasonable damping

ratio, _, of 0.5. It is also assumed that the dynamic performance

of the decoupled systems, or D(s), is unchanged with changes in

angle of attack. This assumption should be realized in practice and

is further discussed in Section 3:4:2 {d).

The value of _ was computed for two different cones supported

by a magnetic suspension system in a Mach I0 air flow with q = Z.5 psia.

In Fig. 20 is a plot of _ versus angle of attack for cones of I0 ° and Z5 °

half angle each with a g.5 inch diameter base. The axial field in each

case is set so that a model magnetization level of 15,000 gauss results

at each angle of attack. At zero angle of attack the coupling parameter,
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, is zero indicating that the three translational degree-of-freedom

systems operate independently. As the angle of attack is increased

the system performance deteriorates as _ becomes more and more

negative.

The coupling parameter, _, for the case of zero yaw

angle is proportional to the ratio of the vertical to axial model

magnetization squared. This ratio depends on the aerodynamic

moment and the demagnetizing factors of the body. As seen in

Fig. 20 the values of _ for the two cones used are nearly equal.

Also plotted is - I/2 tan2_ which equals _ for wind-tunnel-off

operation. The effect of the aerodynamics in this case is to re-

duce the coupling. This is a result of the positive aerodynamic

moment for a positive angle of attack. The direction of the re-

sultant magnetization is closer to the wind axis with the wind tunnel

flow on than with wind off which results in less coupling between

the translational degrees of freedom.

d) Aerodynamic model

The aerodynamics of the test model influence the applied

field and field derivatives necessary for support which in turn in-

fluence the total system dynamics as discussed above. Also,

since the aerodynamic pitching moment is generally a function of

angle of attack the influence on the pitch system is that of adding

a spring which can be either positive or negative and linear or

nonlinear.

The aerodynamics introduce coupling between the rotational

and translational degrees of freedom since changes in angle of attack

generally produce changes in lift and drag. The coupling introduced

by the aerodynamics does not, however, produce a closed loop inter-

action, i.e., the stability of the system is not affected by the aero-

dynamic interaction between degrees of freedom. Of course the

stability of the control loop for each degree of freedom is affected in

the ways mentioned in the preceding paragraph.
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3:4:3 DECOUPLING FORCE AND MOMENT PRODUCING SYSTEMS

From the foregoing it is apparent that it is desirable to make

the control of each degree of freedom be independent of all others.

One method of realizing such a non-interacting system is shown in

Fig. 21 . The feedback matrix is selected so that the resulting

be diagonal. As shown in Ref.10
closed-loop transfer matrix, {_[j},

{Kij } is as follows:
-l m

The feedback matrix elements will be constants which will provide

a non-interacting system for a certain model, one angle of attack,

and one flow condition. If the instantaneous values of the field vari-

ables and angle of attack are fed continuously into the decoupler to

modify its elements a magnetically decoupled system is obtained for

any flow condition and angle of attack.

It is impossible to realize physically the system exactly as

shown in Fig. 21 . A possible arrangement which could be constructed

is shown schematically in Fig. 22. The decoupling is accomplished

ahead of the power supplies by simulating the model with its known

transfer matrix, operating on the outputs from the model simulation

with a decoupling matrix, summing the decoupler and compensation

network outputs and then using this sum as the input to the power

supplies and the model simulator. The elements of the two matrix

transfers are adjusted according to the magnet currents or field

variables.

The time constants of the power supply and coil combinations

must be equal for the system to be decoupled dynamically as well as

statically. The constants designated by the letter C in the figure re-

late for each degree of freedom the controlled field variable to the

corresponding compensation network output voltage. The constants

designated by K relate each field variable to the current controlling

that field variable. The model simulator and decoupler could be
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synthesized using either a digital or analog computer. A syatem for

decoupling five degrees of freedom appears to require so large an

analog facility as to be impractical.

For the static testing of bodies controlled in five degrees

of freedom it hardly appears necessary to decouple all five degrees
of freedom. In fact as shown in Section 3:4:Z(c), the stability of the

system will not be improved by decoupling more than the three

translational-degree-of-freedom systems. For testing using angle

of attack in pitch and zero yaw angle only the lift and drag system need

be decoupled. The model transfer matrix to be decoupled reduces to:

The decoupling matrix for this system is:

This decoupling system is shown in Fig. 23. Such a system with

the constants set manually for each angle of attack,model,and flow

condition could be constructed in analog fashion using only six operat-

ional amplifiers. Such a system should prove adequate for static

testing. For dynamic testing a more elaborate system may be re-

quired but a more complete control system investigation is needed before

specifying the necessary decoupling scheme.
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3:4:4 CONCLUSIONS AND RECOMMENDATIONS

It is clearly possible to stabilize a magnetic suspension sys-

tem by designing compensation for each degree of freedom considered

separately for operation at low angles of attack as has been proven

experimentally in the Aerophysics Laboratory suspension system and

as indicated above. For moderate to high angles of attack decoupling
operations can be introduced to allow the system to be stabilized in

the same manner as at low angles of attack. Starting loads can be
handled under the restrictions discussed in Section 4:1:1.

Further study of the coupled system will define the specific

conditions under which decoupling of the control systems for each

degree of freedom is necessary. When the field producing system

is specified and specific models are chosen for testing, optimization
of the compensation for the control loops should be carried out.
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CHAPTER IV

DESIGN OF MAGNETIC SUSPENSION AND BALANCE

SYSTEM FOR THE NASA-LANGLEY 15 nHFA FACILITY

4:1:0 INTRODUCTION

Presented in this section is a summary of the configuration

and performance of a magnetic suspension and balance system that

has been selected for application to the Fifteen-inch Hypersonic Flow

Apparatus at the Full Scale Dynamic Stability Facility at NASA,

Langley Field, Virginia. The summary includes discussion of the

following items.

I.

o

Q

DESIGN CONDITIONS

a) Tunnel test conditions

b) Typical test models

c) Static aerodynamic and gravity loads on typical

models and corresponding magnetizing and gradient
fields.

d) Additional loads on the test models due to tunnel
starts.

SUSPENSION CONFIGURATION AND SUBSYSTEM PERFORMANCE

a_ Magnet arrangement

b) Magnet performance characteristics and tentative

power amplifier specifications

c) Position sensing system

d_ Tunnel test section

e_ Feedback system (complete control loop)

SUSPENSION SY ST EM PERFORMANCE

a_ Summary of maximum fields and field gradients,

and notes on maximum rates of change

b) Maximum available combined magnetic forces
and moments.
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4. NOTES ON SUSPENSION AUXILIARIES

a_ Magnet cooling system

b) Model injector

c_ Schlieren system

d} Safety interlocks

e_ Signal monitoring system

5. BALANCE (FORCE READOUT) BASIC REQUIREMENTS

a} Data recording and readout system requirements

b_ Data reduction requirements

4:1:1 DESIGN CONDITIONS

In order to design a magnetic suspension system, a sufficiently

comprehensive set of design conditions must first be outlined. In

brief, the conditions that must be known are the aerodynamic and inertia

forces experienced by a set of typical test models under the operating
conditions of the tunnel. These forces, correlated with the effective

magnetic sizes and shapes of the _typical test models n will provide an
envelope of the required values of each of the controlled magnetic field

strength and field strength gradient components. This envelope can

then be used as a guide in the design of the magnet systems. The de-

sign conditions for this particular suspension system are as follows:

a_ Tunnel test conditions.

(i) Mach number M,= i0

(ii} Maximum stagnation temperature T O = 1500 °F

(iii) Maximum stagnation pressure P0 = 1500 psia

('iv} Maximum dynamic pressure q = 2.5 psi

b) Typical test models.

A family of cones is assumed to represent the _typical test

models _. This family will consist of four cones, each having a base

diameter of one inch, and semivertex angles of I0 °, 20 °, 30 ° and 40 °

The polar axis demagnetizing factors _D tt for these cones are known
a

from experiment to be 0.060, 0.I00, 0.40, and 0.630 respectively.
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c) Static aerodynamic and gravity loads on typical test

models, with corresponding magnetizing and gradient
fields.

The aerodynamic drag, lift, and pitching moments are com-

piled for these cones for a series of values of the angle of attack _,

from 0 ° to 40 ° in ten degree increments. In each case, the cone is

assumedtobe magnetized to an average level of 15 kilogauss. The

magnetic fields Hx and Hy, and the field gradients 8Hx/_)x and _Hz/_)x

which correspond to the applied aerodynamic loads and the assumed

magnetizations are computed and compiled. This data is listed in

Table Ill. Under these conditions and at the maximum level of the

dynamic pressure "q" of 2.5 psi, it is seen that H has a range of
X

variation from 0.9 kilogauss to 9.45 kilogauss, H from zeroto -6.07
Z

kilogauss, aHx/6)x from 0.014 kilogauss/in, to 0. 684 kilogauss/in, and

8Hz/_X from zero to -0.432 kilogauss/in.

The design condition corresponding to q = Z.5 psi and a base

diameter of one inch can be considered to be _worst-case _ . That is,

there is a considerable degree of latitude available since the effects

of decreasing q, and increasing the model size both contribute to

decreasing the required gradients (@Hx/SX) and (SHy/By). Thus, the

fields and gradients found in TableIIl are just used as a preliminary

guide to the choice of maximum design values of Hx, Hz, @Hx/@X ,

_Hz/SX• (The performance of the final design choice can again De

expressed in terms of the _typical test models"; that is, the mini-

mum model sizes at qmax' and the variation of minimum model size

with q. )

d) Additional loads due to tunnel starts.

A problem that requires careful consideration is the matter

of tunnel starting loads, and the transient displacements of the test

model that result• This problem can be broken into two parts: the

power-amplifier-limited transient effects,and the requirements of the

control system to handle the starting transients. The control system

TI< IZ8 67



TABLE Ill. Static magnetic forces, and required values of
magnetic field and gradient components, for
typical test models, at M = I0, q = 2.5 psi.
(Cores with one-inch base diameter, semivertex
angle = 1_, at orientation _)

20 _

30 •

40 c

Notes

D = 0.060 0 ° 0.262
a

D = 0.470 10 t 0.524
c

Length = 2_86" 20 _ 1.050

3
Voi. : 0.748 in 30 _ 2.230

Weight : 0.212 ib 40 c 3.150

D = 0.180 0 _ 1.53
Z=

D = 0.410 10 ° 1.86
c

Length = 1,375" 20 t 2.73

3
Vol.= 0.362 in 30 _ 3.93

Welgr, t = 0.10Z lb 40 c 5.60

D = 0.410
&

D b = 0.295

Length = 0.867 in

Voi. = 0.227 in 3

Weight :0.06431b

D = 0._30
a

D b = 0,185

Length = 0.597"

3
Vol. = 0.15t) in

Weight : 0.04,t! lb

0 _

10 _

20 °

30 =

40 =

0 o

10 °

gO _

30 °

40 _

Fx/V q, v

(iLl in 3 (ib/in 3)

5.37

0.00

0.786

1.490

2.040

2.360

0

i .42

2.18

2.73

2.40

Ty I v _Hxl_X 8Hz/PJx H x

(Ib/in 3) (Kg/in i (Kg,in) (Kg)

0.00 0.0141 0.00 0.90

-2.25 0.0337 0.0433 0.91

-4.50 0.0777 0.0778 0.96

-6.75 0.1885 0.0878 I .02

-9.00 0.2800 0.0743 1.12

0 0.0894

-0.90 0.12.20

-1.80 0.2020

-2.70 0.2540

-3.60 0.4880

0 0.3140

H
z

(Kg)

0.00

0.01

0.01

-0.02

-0.75

0 2.70 0

0.0742 2.66 i-0.35

0.i010 2,61 -0.73

0.1005 2.48 -1.09

0.0Zl0 2.39 -1.35

0 6.15 0

5.89

6.41

7.37

7.62.

11.2

11.5

11.9

12.4

12.3

1.91

2.60

2.34

1.73

-0.225 0.3650 0.0801 6.07 -i.12

0

-0 .i 32

-0.527

- I .320

-2.500

-4).450 0.4340

-0.675 0.5140

-0.900 0.5370

0 0.6550

-0.075 0,6730

0.0801

0.0053

-0.0994

0

-0.0667

5.78 -2.20

5,27 -3.22

4.60 -4.10

9.45 0

9.30 -i .64

-0.i50 0._840 -0.1570 8.88 -3.23

i-0.2770 8.18 -4.73

-0.4320 7.24 i-6.07
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problem will be considered in alater section; the power-amplifier-
limited case is considered here.

Power-Amplifier-Limited Startin G Loads

The chain of events that occurs during the transient period

in which the wind tunnel flow is established is as follows. The test

model is held in the magnetic suspension system in the attitude

corresponding to minimum drag. The magnetization of the model

is adjusted to the maximum level. The model position is adjusted

to place the model at the extreme upstream location. The drag

coil current and resultant drag field gradient 8Hx/SX are zero at

this time. The tunnel air flow is then started. It is assumed that

the starting and running procedures with this particular tunnel

system dictate that the upstream stagnation pressure (before any

shocks) at the moment the tunnel is started is the same as the

stagnation pressure used during the test. It is also assumed that

the drag force on the suspended model can be characterized by a

step change equal to the steady aerodynamic drag load corres-

ponding to the dynamic pressure at equilibrium, and in addition,

an impulse corresponding to the passage of the starting shock down-

stream past the model. (There is considerable debate about the

magnitude of this impulse; a reasonable assumption might be that

the peak force is three times the steady drag force, and the effect-

ive duration of this force is of the order of ten to one hundred micro-

seconds.) At the instant the aerodynamic drag force begins, it is

assumed that the model position signal, as modified by the control

networks, calls for full control power from the drag power amplifier.

That is, the power amplifier immediately Usaturates". This means

that the full amplifier supply voltage is applied to the drag coils. The

response of these coils is characterized by a single lag, of time-con-

stant equal to the ratio of the inductance to resistance. The consequence

of this is that the drag gradient, and hence the drag force, increases

with time, and this force asymptotically approaches the maximum mag-

netic drag force available for the particular model. If it is assumed
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that the amplifier remains _saturated _, it is possible to predict
the maximum downstream displacement of the model due to the

starting transient. This displacement is the crucial factor in the

consideration of the starting problem, for fairly obvious reasons.

For instance, the model must not travel very far downstream,

since the position sensor has a total axial measurement range of

no more than one half the tunnel radius, i.eo, approximately eight

inches. A quantitative analysis of the maximum displacements for

the typical test models is given in the following section.

Estimate of Transient Effects Due to Tunnel Starts.

The situation is as shown in the following sketch.

• r

In_a I _;_n

- " QD

I
i

o_e _oat_.

The aerodynamic drag force FA(t ) is assumed to be a step function at

t=O,

i.e., fA = 0 t < 0

fA = -FA t > 0

The magnetic drag force fm(t) is assumed to be of the form

f = 0 t < 0
m

fm =Fm II-e-t/_ 1 t>0
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m

where, for iron, at m = 15 kilogauss,

Define

Fm = 60.6 Mg (aHx/OX)max.

F
, m

F A

then .ff -t/r
e - (_'- 1)

X --
FA Tz

M [ It )z

and x = Xmin., art = T, i.e.,

o? T/T)(_) = ( _'--c-I-) (I- e-

•". x(0)--Xmi n =_ T z (_) (I- ( ) --_--)

.J

or F A T 2

x(0) - Xmin. = k(_') ---IQ[-- (99)

The factors k(_') and( T ) are computed as functions of if, and

are tabulated below.

TABLE iV. Factor k(a) and (T/T) vs.

o? k(d) (T/T) _' k(_') (T/T)

1.46 0.930 3.0

1.76 0.480 Z .0

Z.07 0.Z97 1.5

2.72 0.140 1.0

Z.96 0.106 0.9

!3.21 0.089 0.8

3.57 0.068 0.7

4.03 0.053 0.6

4.71 0.035 0.5

5.7Z 0.0ZZ 0.4

7.33 0.015 0.3

I0.50 0.010 0.g

20.0 0.005 0.i
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For the proposed balance system, the time constant T is 0.Z0 seconds,

and the maximum drag gradient (0Hx/0×)max° is tentatively set at 0.380

kilogauss/in. For the typical test models with base diameters of one

inch, the corresponding values of _ and (x(0)- Xmin) are readily found,

for the maximum value of dynamic pressure of 2.5 psia. For a given

value of (x(0)-Xmin) there is a corresponding value of FA/M. This in

turn is uniquely related to the semivertex angle F of the standard model,

and the base diameter _d_ . If (x(0) -Xmin) is set at the maximum value,

then the minimum diameter of each standard model can be computed.

These are as follows:

r

= = 7.5it)Model (F) drain(X(0) - Xmi n 3.75 u ) dmin (x(0) - Xmi n

i0 °

20 °

30 °

40 °

0.171

1.00

3.50

7.36

0.13

0.76

2.65

5.58

These constraints can be used in a description of the overall operating

ranges of the balance system. In particular, these contours define part

of a region in the d, F-plane in which it is necessary to use an injection

mechanism in order to start the model. Tunnel blocking curves can

also be represented in the d, F-plane. One curve for the standard bodies

represents an upper bound on the allowable diameter for which the tunnel

will =start u successfully with the model present, and the second blocking

curve represents the maximum allowable diameter of a model injected

into the steady stream. Within the band defined by these curves and

contingent upon the suspension performance limits, the bodies may be

tested, but must be injected by some mechanical device. A further bound-

ary in the d,F-plane consists of the envelope of minimum diameters of

the standard bodies that may be used in static testing, over the standard

range of angle of incidence, as limited by the maximum field and gradient

properties.
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The overall operating range of the balance system for the

standard bodies and standard incidence range, including the effects

of the starting transient can be displayed in the d,F-plane. Three

distinct regions are shown: one in which the model may be started

without an injection system, one in which the model may be tested

but must be started using an injection device, and a third in which

testing is not allowed. A chart showing these regions and boundaries

in the d,F-pl,me is given in Fig. 24.

4:1:2 SUSPENSION CONFIGURATION AND SUBSYSTEM PERFORMANCE

a) M_..Aagnet arrangement.

The magnet arrangement is designed to provide independent

control of the following magnetic field properties, at the geometric

_nLez of the magnet array.

(i) H - Magnetizing bias field (iv) %Hx/%X - Drag force
X

(ii) H - Yawing moment and roll (v) %Hy/SX - Side force
Y control

(iii_ H - Pitching moment and roll (vi) 8Hz/SX - Lift force
z control

Each of these properties is provided by an independent magnet

system. All of the individual magnet systems fit together in an inte-

grated assembly. The general arrangement of the magnet system is

shown in Fig. 25, which is an abbreviated version of the general engin-

eering layout drawing of the system, found in Aerophysics Laboratory

Drawing E-8-730. The magnet systems are arranged as follows.

(i) The uniform axial magnetizing bias field H is

provided by two pairs of mrlelmholtz coils" x These

are solenoids which are coaxial with the tunnel axis,

and have axial separations approximately equal to

their respective radii, thereby insuring that a uni-

form field strength is produced in the test region

by these coils. The outlines of these coils are shown

in Fig. 26 which shows their overall dimension, position,

and orientation with respect to the wind tunnel coordin-

ate system.

TR 128 73



0i)
I

The magnetic field components H and H which
y z

control yawing moment and pitching moment are

produced by two pairs of coils which are excited

by two separate power amplifiers. Each pair of

coils produces a uniform magnetic field compon-

ent in a direction inclined to the y or z axis by an

angle of 45 ° These directions are labelled yt

and z' . The coils are shown in Fig. 27. Each

coil pair is tubular in form, and has a rectangular

opening in each side. The coil pairs are rested

such that these openings overlap to provide two

rectangular paths through this assembly, perpend-

icular to the axis of the coils, and to each other.

The outer coils produce the field component in the

yt direction and proportional to the excitation current

lyt . The inner coils produce the field component in

the zt direction proportional to the current Izt .Thus

I-Iy and Hz are produced by control of Iy t and Izt • That

is,

H : k_ IH - k z
Y y, IH z,

H = k I IH ÷ k z IH
z y, z'

Since H and H are to be independently controlled
y z

by command input signals, say VH and VH then
y zt

a coupling network is required of the general type

shown in Fig. Z8.

This particular arrangement is used because it

allows the model-viewing paths to be parallel to the

y and z axes, as shown in Fig. 27. It also has the

advantage that both sets of coils and power ampli-

fiers can be used at one time to generate either H
or H with an attendant increase in available fiel_{

Z'

strength, the limit being approximately _ times

as large as the limit for a single coil pair.

These magnet coils will also be used to produce

the alternating transverse magnetic fields that are

required in the control of the rolling torque, as de-

scribed in Section _i:I0 . Special techniques are

required in the construction of these coils in order
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(iv)

to ensure efficient operations at the roll-control
frequency which will be of the order of I kilocycles/see.
That is, the coils must be designed to have a large
packing factor and a small ratio of a.c. resistance
to d.c. resistance within this frequency range. Water-
cooling of the coil will of course be mandatory.

The field gradient 8Hx/OX is produced by two pair
of Helmholtz coils. These are solenoids which
are coaxial with the tunnel wind axis, and are connect-
ed such that the pair of coils upstream of the center-
line produce positive H and the downstream pair pro-

X'

duce negative H . Consequently, in the region between

the upstream an_ downstream coil pairs, a uniform

gradient, 8Hx/SXis produced, and from the symmetry

of the coils about the origin of the wind axes. The contrib-

ution to H at the origin is zero. These gradient coils
X

used to produce the uniform bias field Hx{l ). The grad-
ient coils are outlined in Fig. 29.

The field gradient components 8Hy/SX and 8Hz/OX which

control side force and lift force are produced by a set

of four iron-cored magnets which are symmetric about

the yt and zc axes. These coils are shown in Fig. 30

and the manner in which they are excited is indicated.

These magnets produce the field gradient components

SHy t/Sx and 8Hz,/Ox. Since all four magnets are

identical, the gradients 8Hy/OX and 8Hz/SX are functions

of the coil-pair currents IG and IGz t , i.e.,
yr

8 y/OX : kc - IG, )

8Hz/SX : k G (IGy , +IOz ,)

These field gradients can be generated in response to

command input signals by means of a decoupling net-
work, in the same manner as were the control field

components H and H .
y z

This magnet arrangement was chosen to provide

the model viewing path, and field gradient limits in the

y and z direction greater than would be obtainable by

one coil pair on its own.
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(b) Performance of individual magnet_____sy.stems and

tentative power amplifier specifications.

This section includes a summary of the general character-

istics of the individual magnet subsystems, with a tentative proposal

of the initial choice of coil power amplifier specifications.

__/ssuming magnet generally are designed tothat the coils be

capable of dissipating moderately large loss power densities, say of

the order of 5 kilowatts per cubic inch, then the suspension system

can be designed to possess a large performance growth potential.

That is, the suspension system can be designed initially to provide

a relatively limited range of allowable test conditions (minimum

model diameters, maximum gts_max_mum CDts , CLtS, etc.) and

the performance can be expanded by additions to the power ampli-

capability at a later date.)fier

(is Coils for producing__Hx_.

Assume: - All coils in series.

- Uniform current density.

- Packing factor = 75%, minimum.

- Copper conductor - resistivity = 6.7 x i0 "?

- Total number of turns - N H
x

- Current 1H
X

Performance Characteristics (H x

i) Total H = 7.76 x 10 -6
x N H IH (kilogauss)

X X

Maximum Hx(tentative)

ii) Total resistance R H =
X

iii) Total power PH = IZH
X X

in. kilogaus s)

= I0 kilogauss
Z

1.58 x 10 -6
N H

X

R H
X

26 H 2 kilowatts.
X

ohm s.

Z microhenrys.iv) Total inductance L H = 0.79 N H
X X

ohm in.
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L__)=
v) Total time constant 7Hx = (12 R 0.50 sec.

vi) Total gross volume V
g

= II, 860 cu.in.

= 2°2 H Z watts/in svii) Loss power density PH /V
x g x

Tentative Specifications for the H Power Amplifier
x

The power amplifier which supplies the H field coils need
x

consist only of a regulated power supply. That is, during operation

of the suspension system, the H field will in fact be a steady bias.x

Thus, the current is required to be controllable, but not rapidly

variable. Consequently, the cost-per kilowatt will probably be sub-

stantially less than for the other power amplifiers, which must have

short voltage rise times. Since the maximum H field required by
x

the typical test models is close to ten kilogauss, this level is pro-

posed as the maximum level for H . This corresponds to a maximum
x

power of Z.6 megawatts. A power supply capable of providing con-

tinuous control of power over this range is not actually required. That

is, at the higher power levels, incremental steps in power are satis-

factory, and will be considerably less expensive than a continuously

variable supply. The power supply would probably actually consist

of two supplies; one to provide regulated and continuous control of

H from zero to say 1.5 kilogauss, corresponding to a controlled powerx

of 60 kilowatts, which is quite moderate_ and an additional, alternate

supply, consisting of a multiple-tapped transformer and rectifier bank,

to provide a set of incremental steps in H of say 2.0, 2.5, 3,4, 6, 8, i0
x

kilogauss.

(ii) Coils for producingHy,_(la_.Erge_Er pair of =saddle shaped u coils 1

Assume - Both coils in series

- Uniform current density

- Packing factor - 50%

-7
- Copper conductor - resistivity 6.0 x 10

- Total number of turns = NHy _

- Cur rent-IHy t
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Performance Characteristics (Hy t

i) Total field

Max. Hy t (tentative)

ii) Total d.c.resistance

iii) Total d.c.power

Hyt

RHyt

PH.c
Y

iv) Total inductance LHy I

v) Total time constant THyt

vi) Total gross coil volume VHy t

vii) Loss power density PHy t/VHy t

viii) Maximum cooling capacity

ix) Cooling water flow

in. kilogaus s)

= 1.07 x 10 -5

NHy, IHy t

= 4.Z kilogauss

3.77x 10 -6 Z

= NHy r

= 12 R-Hy tHyt

= 33 H 2
y: kilowatts

2 microhenrys= 0.138 N H
yt

= L Hj/RHy _ 0.0366 sec.

= 4070 cu.in.

= 8.1 H 2 watts/cu.in
yt

= 800 kilowatts

= 8 Ib/sec. at AT = 100°F

Ciii_ Coils for producing_.Hz, (smaller pair of _saddle-shaped _

As sume

coils)

Total number of turns NHz t

Current IHz t

in. kilogau s s)

i) Total field Hz, =

- Both coils in series

- Uniform current density

- Packing factor - 50%

- Copper conductor - resistivity 6.7 xl0-7ohm in.

Performance Characteristics (Hz,

Max. Hz, (tentative)

ii) Total d.c.resistance RHz '

1.35x 10 -5

NHzt IHzt

4.2 kilogaus s

4.8x 10 -6 N 2

Hz:
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iii) Total d.c.power
PHzt

ivy Total inductance LHz f

v) Total time constant THz '

vi_ Total gross coil volume VHz '

vii_ Loss power density PHz '/VHz ,

viii) Maximum cooling capacity

ix) Cooling water flow rate

= I2

Hzt RE z,

= Z6.Z H 2
zl kilowatts

= 0.109 N 2 microhenrys
Hz:

= L H /R H = 0.023 sec.
z z

= Z,540 cu.in.

10.3 H 2 watts/cu.in
Zl

= 640 kilowatts

= 6.4 Ib/sec at AT = 100°F

Te,t_£iv= S_,=uificaiions for the -- and - (Pitch and Yaw)
Power Amplifier s. l-ly, l-lzt

The amplifiers which control the currents in the Hy_ and Hz,

coils which in turn control the pitching and yawing moments are required

to provide both positive and negative output voltage polarities, with a

short voltage rise time, into an inductive load. Using the typical test

model data as a guide, the maximum required H or H will be approxi-
y z

mately 6.0 kilogauss. This corresponds to Hy t = Hz: = 4.2 kilogauss,

and maximum power dissipation levels PHy, of 600 kilowatts, and _PH t of

of 4@0 kilowatts. Thus, disregarding the question of cost, these are the

maximum steady power levels that would be desirable for these power

amplifiers. If it is required that the worst-case model be oscillated in

pitch or yaw at some angular frequency greater than the reciprocal of

the coil time-constants TH and TH , then a greater power is required,
yt zt

due to the inductive reactance of the coils. This _corner-frequency n is

of the order of Z5 radians/sec., or 4 cycles/sec. Thus, for example, to

produce a sinusoidal variation in Hy t of +0.5 kilogauss at I00 cps., super-

imposed on the steady-state value of 6.0 kilogauss will require a maximum

volt-ampere capability of 800 kilowatts, an increase of 33_. If this
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oscillation component is applied in both Hy_ and Hzt, the standard body
(the 40 ° semivertex-angle cone, @ of 40°, will oscillate in pitch or yaw

with an amplitude of approximately 4 °, at the excitation frequency of

i00 CpSo )o

It is noted that by simply increasing the diameter of the test

model by a factor of Z will reduce the magnetizing field requirements

H and H by a factor of Z, for constant maximum field
x max. z max.

gradients° Thus, the required power is diminished by a factor of 4,

for this example to 200 volt-amps. Reductions in the dynamic pres-

sure will have the same effect. Thus, as the starting point, the

maximum required power for the Hy t and Hzt amplifiers will be of

the order of 800 kilowatts each, for the worst-case typical test model,

at an angle of incidence of 40 D, with a 4 degree amplitude, at i00 cps.

oscillation superimposed.

The maximum volts and maximum amperes will depend upon

the choice of coil impedance; i.e., the number of turns. The d.c.

resistance will probably be chosen to be of the order of 0.5 ohms,

corresponding to approximately 250 turns per coil, of conductor

which is approximately 0.25" in diameter (or square).

The voltage rise time should be equal to or less than 3

milliseconds, (corresponding to a 6-phase, 60 cps. SCR, ignitron_

or thyratron bridge circuit).

Connected in parallel with the pitch and yaw control amplifiers

are modulated audio frequency oscillators, which control the roll

component, as described in Section 3:1:10. These oscillators are

coupled to the coils in the same manner such that the power amplifier

operation is not affected by the high alternating coil voltages produced

by the roll-control currents. The actual isolation scheme has not been

completely worked out, but should be quite straightforward.

Coils for producing 8___Hx/OX (aHx/0X

Assume - All coils in series

- Uniform current density

- Packing factor = 75%

in. kilo_aus s/in)
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Assume - Copper conductor - resistivity = 6.Tx10"7ohm in.

(ctd.) - Total number of turns = N
G

X

Current -
X

Performance Characteristics (OHx/OX in kilogauss/in. )

"i) Total gradient (SHx/SX) = 4.4x 10-7NG l G kg/in.
X X

Maximum gradient {tentative)

ii) Total resistance

iii) Total power
X

- . f

vl

vi)

vii 

viii_

ix)

Total inductance x
_G

X

Total time constant _G : L G /R_
X X X

Total gross coil volume V
G

X

Loss power density PC- /VG
X X

Maximum cooling capacity

Cooling water flow rate

= 0.380 kg/in.

1.58x10 -6 2 ohms
= N G

X

Z
=I G R G

X X

= 8.2(8H x /Sx_ Megawatts

X

= 0.203 sec.

= 11,860 cu.in.

690 (SH /Sx)watts/cu.in.
X

= 1.6 megawatts

16 Ib/sec. at aT = 100°F.

Tentative Specifications for the 8H _8x, (Dra_ Coil)
X

Power Amplifier.

The worst-case typical test model, a 40 ° semivertex-angle

cone with i = base diameter at 30 ° incidence angle, requires a steady

drag coil gradient field of 746 gauss/in. This corresponds to a drag

coil steady-state power requirement of 4 megavolt-amps. This is

rather astronomical, when compared with the power required to sup-

port the drag loads on less blunt cones. The maximum dynamic pres-

sure must thus be reduced, if a power amplifier smaller than 4 mega-

volt-amps is used. The output voltage rise time requirement will be
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again specified to be a minimum of 3 milliseconds.

It has not been firmly established that the drag power amplifier

need be Utwo-sided= ; that is, supply both positive and negative voltage

polarities. The question arises when tunnel stopping procedures are

considered° Arguments have been presented which suggest that the

negative (upstream) drag loads may be experienced when the tunnel flow

is stopped, due to the upstream passage of a normal shock. If only a

ttsingle-sidedUamplifier is required, it will be equivalent to one-half

of a =double-sided = amplifier, of the same maximum power rating.

Thus, a single-sided amplifier of twice the power capability of a

double-sided amplifier might be expected to be of the same cost,

approximately, if not less. Thus, a tentative upper limit of 1.6

megavolt-amps might be placed on the drag coil amplifier requirement.

(v) Coils for producing_(8_Hy t/_Sx I and lSHz,/_Sx) {iron cored magL_ets).

Assume - ]Both coils in series

- Uniform current density

- Packing factor = 75%

- Copper conductor - resistivity 6.7x10-7ohm in.

- Total number of turns NGy ' , NGz '

- Current IGy ' , IGz '

Performance Characteristics (ally,/ax, aHz,/ax in kilogauss/in.)

i) Maximum gradient

(saturation limited)

ii) Gradients

iii) Total d.c. resistance

ivy Total d.c.power

and

TP_ 128

= (aHz, /ax(8Hy,/8x) max. max.

8H _t/ax
Y

R

%,

= 0.15 kilogauss/in.

= IG0.95 x 10-6NGy _
yt

Z

= 6.6x 10 -7 N%_

= 730 (Oily t/Sx) z
kilowatts

730 (8Hz, /8x) 2 kilowatts



(From this the maximum d.c.power dissipation, at the

saturation limit, will be 730(.15) 2

case. )

v) Total inductance L G
yt

L G
Z i

= 16.4 kilowatts, in each

Z

0.32 N%t

0.32 N_z t

microhenrys

microhenrys

vi) Total time constants
_%, : L G /l<%tyt

_z_'' = L /Rgz' gz t

= 0.48 sec.

= 0.48 sec.

vii) Total coil volumes
V%t = 4500 cu.in.

viii)

V_ = 4500 cu.in.

= 162 (OHy t/8x) Z watts/cu.in.

= 162 (8Hzi/Ox) Z watts/cu, in.

i.e., = 3.6 watts/cu.in at

saturation limit.

Tentative Specifications for the 8Hy t/0*: , 8Hz,/O_ (Lift and
Side Forcel' lZ_ower ATnpl'ifierls

The maximum steady power that can be used by these coils

is 16.4 kilowatts, above which level the iron cores are saturated.

However, to produce the same amplitude at 100 cps. would require

approximately five megavolt-amperes. Thus, in the interests of

good frequency response, apair of 800 kilovolt-ampere two sided

amplifiers having a voltage rise time of less than 3 milliseconds would

appear suitable for this application.

(c) Position SensingSystem

The basic design concept of the electromagnetic position sensor

is described in Section 3:3:4.
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The layout of the model position sensing system coil arrange-

ment which is proposed for use in the suspension system is shown in

Fig.31 . It consists of a total of sixteen coils, arranged on a tubular
form constructed of some rigid electrically insulating material. The
coils are connected in the manner shown in Fig. 31. The coil excitation

inputs and signal outputs are provided by a single multiple-pin connector
at one end of the assembly.

The electronic system required for excitation and signal

demodulations is shown schematically in Fig.3Z. The circuits

are quite conventional and straightforward and are simply shown

here in block-diagram form.

The demodulated and filtered output signals are only approxi-
mate functions of the conventional position and orientation variables,

x0, Y0,z0, @,4, but may be converted. This conversion will most

accurately be performed by a digital computer, operating on periodic

or single samples of the signals. It will probably prove to be im-

practical and unnecessary to perform these computations in real time,
therefore, it will be necessary to provide some kind of real-time buffer

storage, and a storage readout onto tape or punched cards in suitable

format for input to a digital computing machine.

4

(d) Tunnel Test Section

The test section of the wind tunnel will consist of a flanged

tube constructed of some rigid, heat resistant, electrically non-

conducting material, and will mate with the existing nozzle and

diffuser sections of the wind tunnel. It will contain a total of six

ports: two of these will be used for viewing, one willbe used for an

over-pressure protective device, a fourth may be used for model

injection and retrieval, and two downstream hatches may be used for

normal access, and for test probe mechanism mounting. A layout of

the proposed test section configuration is shown in Fig.33.

Preliminary study of the problem of design of this test section,

including consideration of the choice of material, and the available

methods of fabrication, has been made. No serious problems are antici-

pated in the detailed design of this part of the system.
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[e.) Co__mp.ensation networ.k design__

The design analysis presented here is for the suspension sys-

tem with each degree of freedom decoupled from each other. The

limitation imposed is that the absolute value of _, the coupling para-

meter discussed in Section 3:4:1 , be small compared to unity or

that the system have in it a decoupler allowing independent closed

loop control of each degree of freedom.

The effect of changes inapplied field due to changes in model

position when there is a field gradient present is neglected in this

analysis since in most practical cases the model magnetization won't

change more than a few percent in an allowable position excursion.

In other words, the transfer function relating magnet current to the

field applied to the model is assumed to be independent of model

position. It is further assumed that the system can be adequately

represented for stability analysis and compensation design by linear-

izing the system about an angle of attack. This is a good assumption

for moderate angles of attack since the system gain varies slowly

with angle of attack.

i_ Translational-De_ree-of-Freedom Systems

The criteria for satisfactory performance of the drag con-

trol loop applied here are: (1) zero position error under static

load condition, (2) maximum model displacement during a wind

tunnel start is less than plus or minus 4 inches from the balance

centerline.

The first criterion is satisfied by a system that is stable

and has an integration in the position feedback. Also, the noise

level in the system must be low enough so that neither the balance

calibration nor the aerodynamics are affected. Satisfying the

second criterion is basically limited by the available power supply

voltage, the time constant of the magnet coils and the model geometry

as discussed in Section 4:1:1.
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The decoupled drag control loop as analyzed here is shown

in Fig. 34 . The other translational-degree-of-freedom systems are

essentially the same as drag. The function chosen for H(s) is as

follow s :

[-IC'_b=
_i + _O'_s_ _

5_i + "rs) z

The time constant, T, is chosen to be Z.5 milliseconds. The closed

loop system for operation in the linear range, Joe., for inputs which

dontt saturate the power supply, is described by the following character-

istic equation:

rl

The root locus plot for this system is shown in Fig. 35 The

system is stable for a wide range of gain and can be adjusted to

give good dynamic performance. There is no position error with a

steady force applied.

If the drag load imposed by a wind tunnel start is considered

to be a step change in force the system response can be found. For

the system as designed above the power supply saturates at a very

short time after the starting load is applied. The maximum position

excursion is thus determined by the power supply, magnet and model

geometry used (see Section 4:1:1 ).

Further design work will require a knowledge of the noise

present in the components of the system and such knowledge may

indicate alterations in the compensation system proposed here.

Operation of the Aerophysics Laboratory System with similar com-

pensation has been successful.

ii) Pitch and Yaw De_rees of Freedom

The system representing the decoupled and linearized pitch

and yaw degrees of freedom is shown in Fig. 36. The main difference
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in the pitch and yaw systems from the translational-degree-of-

freedom systems is the presence in effect of a spring attached to

the model. This spring is provided by the aerodynamics as well

as by the magnetic field acting on the iron model. Values for the
spring constants are given in the table below.

i

TABLE V. Aerodynamic and Magnetic Spring Constants

one]

_, _alf-

i0 °

I0 °

25 ,°

ol

o

45 _

0 to

45 °

OT = K
(_-_)net V

in-lb
-15o.o

--150.0 "

-- 11.3 "

in-lb
+I 55.0

64.6 u

70.0 n

in- Ib
+5.0

--_D.U

+58.7

The net spring constant can be either positive or negative depending

on the model geometry and angle of attack.

The requirements of the pitch and yaw systems are the same

as for the translational degrees of freedom. However, it is expected

that starting the wind tunnel will be done with the model at zero angle

of attack and that the pitching and yawing moments will be small. Pitch-

ing moment data for a wind tunnel start is required before a specific

requirement on the pitch system performance can be set. The linear

system analysis presented here will provide a system which will have

zero angle of attack error under steady loads and be stable over an

angle of attack range of zero to 45 degrees for two specific models;

10 ° and 25 ° half-angle cones.

The characteristic equation for this system using for compen-

sation the same operations as the drag system is:
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Root loci for this system are plotted in Figs. 37 and 38. The time

constants used for the lead-lag compensation and the power supply

and coil combination lag are the same as for the drag system for the

case of a i0 degree half-angle cone. For the 45 ° cone the zeros are
-I

moved out the negative real axis to a value of 50 sec . The high

and low values of gain at which instability in the control loop occurs

are indicated on all plotso In comparing the two plots for the I0 ° cone

the effect of the change in effective spring constant, I_T, is evident.
At low angle of attack the spring constant is positive as seen in Fig. 39.

At high angle of attack the spring is large and negative resulting in

a much reduced maximum gain for stable operation. The system

gain should be adjusted with changes in angle of attack in the pitch

and yaw systems to maintain stable and well damped operation iff

the angle of attack range used.
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4:1:3 SUSPENSION SYSTEM PERFORMANCE

(a) Summary of Maximum Fields and Field Gradients,

Notes on Maximum Rates of Change (Tentative) '"

and

Static Limits:

ii) H
Y

iii) H
Z

iv) OH x/ax

aH/ax
Y

vi) 8H /0x
Z

= 0 -_ 1.5 kilogauss (regulated)

= 2.0, 2.5, 3.0, 4.0, 6.0, 8.10 Kilogauss (ste:

= ±6.0 kilogauss (power limit)

= ±6.0 kilogauss (power limit)

= ±0.380 kilogauss/in. (power limit)

= ±0.Z10 kilogauss/in. (core saturation)

= ±0.Zl0 kilogaus s/in. ]= el.500 kilogauss/4n. (power limit)

,s)

Power

Ampli -
fiefs

Dynamic Limits :

The maximum rate of change of the controlled field variables

is related to the _voltage saturation u of the power amplifiers.

The response of a controlled field variable H.. of coil time

to a saturated power amplifier IJ is related toconstant _H..'
M

power-limited maximum value (Hij)p .1.. That is,

d 1 - Hij(t)]_-(Hij(t))]= TH. " [ (Hij)p.l.

13

These time constants are as follows:

i. 7,_ = 0.036 sec.

Y

ii. 7H = 0.036 sec.
Z

iii.

iv.

V.
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_b) Maximum available combined magnetic forces and moments.

The performance of the proposed balance system can be summar-

ized in one chart which shows the bounds on the forces as a function of

the attitude angle, the applied torque, and the demagnetizing factors of

the body. The forces and moments are normalized with respect to the

volume of the body, and with the weight of the body, assuming that the

body is made of solid iron in either case. The method of generating the

performance surface is described fully in Section 4:1:3 . The perform-

ance of this system is shown in Fig. 40.

4:1:4 SUSPENSION SYSTEM AUXILIARIES

(a) Magnet coolingsystem

The magnets will be cooled by demineralized and de-aerated

water circulated through the coil conductors by a pumping system. The

demineralized water will be contained in an inner coolant loop, and the

heat will be removed from the demineralized water by means of a heat

exchanger using service water as a secondary coolant. The :system is

shown schematically in Fig. 41.

The maximum flow rate of primary coolant is dictated by the

allowable temperature rise. It is assumed that the low pressure side

of the inner loop will be close to atmospheric pressure. The maximum

possible total heat dissipation rate is 6 megawatts (tentative), which

corresponds to a primary coolant flow rate of 400 gallons/minute, for

a 100°F temperature rise. Assuming a pressure drop of i00 psi through

the coil cooling passages, the pumping requirement will be of the order

of Z0 horsepower.

{b) Model injector

The detailed design of a versatile model injection system for

use with the balance system has not been fully worked out. However,

a suitable location for such a system is provided by one of the ports

in the tunnel test section as mentioned in Section 4:1:4.

TR 138 90



(c) Schlieren system

Viewing ports are provided for the schlieren system in the

tunnel test section. The glass in the viewing port windows must

be of suitable optical quality to be compatible with operation of the

schlieren. The viewing path is in the same relative location as is

found in the present tunnel configuration.

(d) Safety. interlocks

In order to prevent possible damage to the balance system,

an interlock system is required which ensures that the magnet system

will not become overheated should any part of the coolant system fail

to operate properly, while magnet current is being applied. This

interlock system can be quite simple, consisting simply of a primary

coolant flow meter connected to a relay system which signals safe, or

dangerous operation. An even more effective system would consist

of flow meters for each parallel coolant path, with appropriately

placed thermocouple probes imbedded in each coil to allow coil temper-

ature monitoring.

In the event of cooling system failure, the balance system

must be programmed to automatically provide an immediate model

ejection and current shutdown procedure. The model may either be

seized by the model injection system, or actually magnetically ejected

into one of the port areas. This is necessary to prevent the model

from being blown downstream when the magnet current is shut off,

and the tunnel is running. This ejection procedure may be overridden

when the tunnel is not operating.

(e) S_gnal monitoring.

A monitoring system is required to show the state of operation

of all the suspension subsystems.
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4:1:5 BALANCE (FORCE READOUT) REQUIREMENTS

_a) Data readout and recording__system

The "raw" data consists of the output signals from the electro-

magnetic position sensing system, and voltage signals proportional to

the coil currents. This data must be recorded by suitable instrumentation

while the aerodynamic test is proceeding, to an accuracy compatible with

the accuracy required in the computed aerodynamic properties, over

the frequency bandwidth of the model motion. That is, for _static _

tests, the raw data is sampled at each desired test point, while for

UdynamicU testing, the data must be recorded either continuously,

or at a sufficiently rapid sampling rate. This recorded data is sub-

sequently either transferred onto punched cards or tape, or used as

is, as input to a digital computing machine which computes the magnetic

forces and moments imparted to the body.

(b) Data reduction requirements

The data reduction is accomplished by an automatic digital

computer. The data reduction equations used to compute magnetic

forces and moments will be of a general form similar to the equations

found in Sections 3:1:7 and 3:1:8, with modifications to account for

displacement of the model. The inertia forces are computed quite

straightforwardly, provided the position input data has been recorded

at sufficiently rapid sampling rate to allow accurate computation of

accelerations.

Thus, the nbalance_ aspect of the magnetic suspension and

balance system is actually composed of standard machinery and

programming techniques, and is thus expected to be relatively

straightforward. It is mentioned in closing that the overall accuracy

of the balance system has been well established for some time now,

for suspension systems of less advanced design than that proposed

in this study.
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CHAPTER V

GENERAL CONCLUSIONS AND RECOMMENDATIONS

The magnetic suspension and balance system described in this

report represents an advance in the state of the art. Several innovations

have been incorporated in the design. These innovations have come in

the following areas.

The general concept of independent control of magnetizing fields

and field gradients is an advance from the =first-generation _ five com-

ponent suspension systems of the aLU or =V = type, The inherent advantage

of the independent control of the field properties lies in the consequent

lin_rity nf th_ m=gn_tin fn_-_i,g f .... +_,_._0 T_;. 11 .... ;*...;--:_:^.-.1..

simplifies the design of a high performance suspension control loop, for

a broad range of test models, and also increases the range of available

magnetic forces and moments. The magnet arrangement is completely

compatible with the wind tunnel environment and accessories.

Another innovation comes in the design of the model position

sensing system. An electromagnetic position sensing system based on

differential-transformer action, has been designed which promises to

provide excellent position measurement resolution, and also an excellent

adaptability to position measurement of bodies of a broad range of size

and shape. This system is capable of measuring all model displacements

except in the roll degree of freedom.

The suspension system is capable of controlling rolling moments,

by means of alternatingtransverse magnetic fields which interact with a

conducting loop in the meridian plane of the test model. The principal

of operation is similar to a nselsynn transformer.

The suspension system automatic control networks are of ad-

vanced design. Interaction between degrees of freedom are controlled

by decoupling networks, and moderately uncomplicated analog computing

circuitry is developed to provide accurate and fast-response control of

model position, for a broad range of model geometry and angle of attack.
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Calibration of the suspension system to allow operation as a

force and moment balance, is well developed. The basic requirement

of the nbalance" aspect of the system is a data acquisition, recording

and readout system, which is compatible with an automatic digital

computing machine. (Considerable operating experience has been

gained with the original "first generation" suspension and balance sys-

tem and this experience is applicable to the operation techniques of the

proposed balance system.)

The proposed suspension and balance system promises to

provide control of a large class of bodies, in six degrees of freedom

of motion. It promises further to allow a broad range of static and

dynamic testing to be performed. However, since a large number of

innovations are incorporated in the design, which have not as yet been

completely tested in the context of the complete suspension and balance

system operation, it appears wise at this point to assemble a pilot

model of the system. Experience gained in the manufacture and oper-

ation of the pilot model will be of great help toward design and oper-

ation of the full scale facility.
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APPENDIX A

STUDY OF FOUR ADDITIONAL TYPES OF

MAGNETIC BALANCE ARRANGEMENT S

Introductory Remarks

As indicated in the text, a successful magnetic balance and sus-

pension system is based upon the ability to control the gradient of fields

and fields that produce the required forces and moments on the body.

For a five degree of freedom system, the fields and gradients that must

be developed independently are:

B
X

Axial magnetizing field

Y

B
Z

Cross field for yawing moments

Cross field for pitching moments

8B
X

_X Axial gradient field for drag force

_B
Z

8x Lateral gradient field for lift forces

8B
Y

_X
Lateral gradient field for lateral forces

These field and field gradients, which can be produced independ-

ently in many ways, are of primary importance in the free space region

of the test section. Their associated "leakage" or return field exists

outside the test region. It is desirable, but not absolutely necessary, to

provide low reluctance flux return paths.

In designing the coils and magnets, due consideration must

also be given to constraints which might affect the desired uniformity

and linearity of the gradient fields. In hypersonic wind tunnel application

an additional constraint is the space allocated for schlieren path and, if

necessary, for injecting and retrieving the model. Within these con-

straints, the goal is that of arranging the coils and cores that make up

the magnets such that the configuration lead to an efficient design.
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Several designs were considered and scaled models built.

The scaled models were used to study the field patterns of the magnets

and coils and to establish the ampere-turn vs. field strength relations.

These dataare included at the end of Section IV corresponding to each
design arrangement. The following four magnetic balance arrange-

ments are presented:

I. L and V type magnet configurations.

II. Original ARL-TYPE configuration.

Ill. Cylindrical iron mag,letic balance arrangement.

IV. E-Magnet configuration.

This particular order of discussion has the merit that it follows

the chronological sequence of designs. Further, the order allows the

reader to see clearly the origin of the several fields and gradient fields-

particularly in Section II. In Section II a basic configuration is developed

that has definite coils to provide for each magnetic function; the magnet-

ization coils, moment or cross field coils, and gradient coils. The re-

sulting arrangement is different from those arrangements discussed in

Section I. Note that the arrangements in Section I are conceptually re-

lated to aerodynamic needs in the same way as in strain gauge balance
systems, i.e., by having forward and aft lift elements, etc. In other

words, the step between Sections I and II is indicative of the awareness

of the limitation of the L and V systems and represents an intentional
step to overcome the limitations.

The first step from Section I to Section II is that of providing an

independent means of magnetizing the model. This was suggested by

H. Parker of the University of Virginia (J. of Applied Physics, Supplemental

H4, April 1959, pp. 2384-9) for a magnetic balance of a different princi-

ple. The remaining steps are those of orienting the fields and gradient

fields in the proper direction with respect to the magnetization direction

of the model.

The remaining configurations represent arrangements that

possess advantages of the system described in Section II and offer

ope rational simplifications.
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SECTION I

L AND V TYPE MAGNETIC BALANCE ARRANGEMENTS

A. Introduction

Since the magnetic balance system at the M.I.T. Aerophysics

Laboratory is the first five-degree of freedom model to operate at

angle of attack some of its design characteristics and performance

features will be examined. It is called an aL_ system because of the

relation of the lift and side force magnets. The ttL= system will be

used as a reference for a comparison between various designs that

are discussed below.

Figure A-I shows the general layout of the =Z '_ balance arrange-

ment. It is observed that the lields B , B and B are not produced
x y z

uniformly. The gradient fields _Bx/SX , 8B /Ox and 8B /8x, which
y z

are run constant, are produced with the drag coil, lateral and lift

magnet yokes, respectively. These fields and gradient fields are

linear functions of currents below the saturation point of the magnets.

The M.I.T. Aerophysics Laboratory Magnetic Balance System

was designed to operate continuously in the NSL 4 by 4-inch hypersonic

tunnel. The requirements included supporting the test model during

start and stop of the flow and for holding against static loads. The

static load and current requirements were:

Drag Solenoid: I0 oz. at 30 amps,nose at 4 inches from

solenoid.

Lift Unit: i0 oz/leg at 30 amps,at 4 inches from pole face

Lateral Units: 2.5 oz/leg at 15 amps, 4 inches from pole face

Reference I contains considerable detail on various components

and operation of t_._ unit.

The performance of the _L _ system will be discussed below.

Each component will be examined and field plots will be shown. It

TR 128 139



should be realized that the field plots are presented here for com-

parison with later configurations. The design of the _L= system was

based upon measurements with models and the application of linear

scaling laws.

B. Field Production

i. Lift Magnet Construction and Field Properties.

The lift magnets were designed to carry I0 oz./leg. Two

critical areas were examined. The first was to establish the general

configuration of the magnet, that is, the relative proportions of the

yoke and poles, and the second was to find the ampere-turns necessary

to produce the given forces. In these studies, some modifications

were made to the lift magnets cores to incorporate the test results

that would reduce the leakage flux. This step was taken to cause the

pole faces to be as close as possible to each other. The measured

density was plotted against ampere-turns, as was suspension force

per pole.

The final configuration for the core for the lift magnet that

evolved from these tests is shown in Fig A-2. The taper on the legs

of the yoke helped in reducing the leakage flux by 1 29 in comparison

with a yoke of constant cross sectional area.

After the lift magnets were built, and after successful wind

tunnel operation measurement in field properties was undertaken, a

quadric linkage was built having a gaussmeter at one point and a

pencil at its conjugate point. In this way field lines could be quickly

traced out on a piece of paper. For example, one of the legs of the

lift yoke was energized and a field plot of H was drawn. This is
z

shown in Fig.A-3.By changing the orientation of the sensing element,

lines of constant H were drawn as shown in Fig.A-4.The components
x

of the fields can be expressed in terms of the coil currents of the for-

ward lift magnets {IL ) and the after lift magnet (IL );
1 2
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Hx = (5.5) I L1 + (5.5) ILz

Hz = (-6.5) ILl + (6.5) IL_

These formulas hold only on the wind axis and the transverse

plane of symmetry of the lift magnets. Note that this formula holds as

long as the yoke remains unsaturated.

2. Lateral Magnet Design and Field Properties.

The lateral magnet was designed by the same techniques as

the lift magnet. The configuration of this yoke is shown in Fig.A,5.

The design of the lateral magnets were not considered as critical

since the lateral forces required are much smaller than lift forces;

geometry. The performance of such a design to produce axial,

lateral and gradient fields will be discussed later.

3. Drag Solenoid and Field Plot.

The drag solenoid produced part of the magnetizing field B
x

and the axial gradient field _Bx/_X. The diameter, cross sectional

area and ampere-turns necessary to produce the required drag force

was established experimentally. As a result of these tests, the drag

coil configuration was determined. The geometry is shown in Fig.A-i

The drag coil has I000 turns, which represents 30,000 ampere-turns

(for a maximum current of 30 amps). The standard model would ex-

perience up to 16 oz. of drag force at this ampere turn level.

The same apparatus that was used in the lift magnet field plots,

was used to trace the H and OH /Sx fields. Fig.A-6 shows the constant
x x

H and H flux lines plotted in the test region of the balance.
x z

In the following pages, the performance of the "L _ configuration

will be discussed. Also, the effect of all these fields versus magnet-

ization and forces on the test body will be considered.
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C. Performance of L Configuration

In the previous section the physical and field properties of

the hE" configurations were presented. It remains to interrelate

these fields with the force and magnetization of the suspended model.

I. Forces and Moments on the Model.

Since the magnetic field components can be added linearly,

data from Figs.A-3, A-4, and A-6 can be used to express the axial, lateral

and gradient fields as the sum of the contributions of the lift and

drag magnets. Writing the fields in terms of coil current, the

following expressions have been determined on the wind axis.

H_ = (5.5)I_ + (5.5)IL + (3.0)][D GAU55 (A-l)

Hz = (-G,5)ILi+ (G.5)rL_

-C .7)L+ + (-o.3F)%
_z z

= (0.2}IL_+ (o.2)Z_ + (0.75)Zp

)-ffz - C3.9) ELi + (3.9) I,z
_x

GAUSS (A-2)

GA U55/IN.(_-3)

GAU5 5/IN. (f-4)

GA U 55/IN. (k-5)

where ILl , IL2 and IDare the two lift magnet coil and drag coil

currents.

The forces and moments generated by these fields and field

gradients can be calculated if the magnetization of the model is known.

For simplicity take the model to be a prolate spheroid (which will be

uniformly magnetized) having demagnetizing factors of D in the x
a

direction (long axis) and D b in the z direction (short axis). Recalling

that F= (M • _7 )B and = M x B suggest that some calculation of
--,b

M is required.
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2. Magnetization of Model

Controlability of magnetization in the model can best be represent-

ed if the magnetization is expressed in terms of coil currents. If M for

a prolate spheroid is expressed in terms of two plane field, the following

equation results:

Substituting the values of H and H from Eqs.(A-l) and (A-Z) into
X Z

the above equation, the following results:

This relation shows that magnetization depends on the lift and drag forces;

hence, the model cannot be magnetized to any desired level independently.

Thus the force and moment equations have

Fx= KFV_ H-z"<_HxP. _'_-x+ Hzp&_Hx]_ (A-S)

Hz _Hz

-L D,L_z Pl,_7,

It is obvious that the lift forces are quadratic functions of current. This

nonlinearity of force can complicate the closed loop control and the model

calibration process. However, the forces can be controlled separately

by varying the currents in the coils individually. These lift forces are

balanced by the weight of the suspended model. The one sidedness of

the lift and drag force limits the frequency for dynamic stability testing.

For such tests, it is desired to produce also negative lift forces where it

will be possible to obtain few -g,t loads. Consequently, the L balance has

a limited capability in this respect.
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Concluding Remarks on the tiE" System.

The design of the _L" system was based upon extrapolation

of small scale models. The design was reasonably compact, magnet-

ically, but the fields are non-uniform in the test volume. Equations

(A-8)-(A- i0) show that the forces are quadratically dependent upon the

fields (or amperes in the coil) and that there is an appreciable inter-

action between the lift, drag and pitching moment. The quadratic

dependence and the interaction between the components are a consequence

of the property of the configuration that both the lift and drag magnetize

the model. This objectionable feature could be overcome to a large

extent by the use of a separate set of magnetizing coils and a separate

set of drag gradient coils. The model would have to be saturated in

the wind direction since the lift coils are more efficient at producing

H than OH /Sz (or OH /8x). The more serious deficiency of the L
x x z

system is the lack of symmetry in the lift force, i.e., the Z sys-

tem only acts upward and gravity acts downward. This seriously

limits the plunging frequency that can be obtained in the balance and

limits its usefulness as a dynamic stability balance. With the intro-

duction of symmetric magnetizing axial field and axial field gradients

the "L-system _ could be used for dynamic stability testing in the

lateral plane only.

D. The V-Type System

nV" System is essentially the L system rotated 45°from the

normal so that all the transverse coils act as lift magnets (see Fig.A-7).

This arrangement does not overcome any of the deficiencies of the

L system.

The fields produced by the V-type arrangement for lift and

lateral magnets can be written, respectively:

L ' ,J=Ki (Iq+IL,) +(IL,+ IL.

__ /-I t -
f
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where K,, z include the multiplying factors of the currents and the
cosine and sine terms of the angle @(see FigAr7)K I = Kz when
O = 45 °.

To repeat the gradient expression for L system as reference

= 3,91L + 3.91Lz

= K' ILL + ILL )

It is obvious that two systems are equivalent and produce the same

field patterns.

It was shown previously that forces produced by the L-Type

system were nonlinear functions of the magnet coil currents, and

consequently, introduced difficulties in stability. This same argu-

ment applies for the V configuration. The only advantage that might

be considered is the greater lift force due to the vector sum of the

lift components. Also, the lateral magnets can be eliminated since

the compensating forces can be produced by the y component of the

lift magnets. However, there is no interdependency between the lift

and lateral forces if each pole has separate windings for lift and

lateral forces.

The advantages and disadvantages of the V-type arrangement

are:

I. The lift forces produced are nonlinear functions of

magnet coil current thereby introducing s me complexities in control

as the non-magnetized L-type configuration.

Z. No negative lift forces can be produced.

3. The magnetization of the suspended model is a nonlinear

function of the lift coil and the drag coil currents.

4. One possible advantage over L-type system is the elimin-

ation of the lateral magnets and the introduction of symmetry into the

design.
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SECTION II

DESIGN ASPECTS OF THE ARL-TYPE CONFIGURATION

The material presented in this section is based on a configur-

ation which was studied for the Aerospace Research Laboratory;:-', U.S.

Air Force. The performance of this system is discussed in detail

in Ref. Z. However, since this configuration possesses several
novel features the results will be summarized

The ARE-type magnetic balance arrangement is shown in

Figs.A-8 andA-9. Figures A-8 is 1:4 scale styrofoam mockup. Figure A-9
illustrates each coil and magnet, and also, in an exploded view.

In the ARL-type design, all field components are controlled

separately thereby eliminating any nonlinear relations between coil

currents and forms produced. The uniform fields Bx, B and By z
are produced by Helmholtz coils. The coils that generate the BY
and B fields are located in the exterior of the arrangement. The

Z

gradient fields for lift and side forces are produced by iron cores

and the drag gradient is produced by Helmholtz pairs with the currents

flowing in opposite directions in each coil.

_H
X

A. Axial Field, Hx, ' and Axial Gradient Field, 8x

The axial magnetizing field is produced by a pair of Helm-

holtz coils as shown in Fig.A-10. Note that only the interior

portion of the windings are used for magnetizing purposes. The

field obtained from such a coil is uniform in the test region as shown

in Fig.A-ll. The field in the test section at any point can be calculated

by the following equation:

8, (A-lt)

Under Contract AF 33(615)-1470
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where r I , r z - Inside and outside radius in inches.

Xl , XZ ------

_t 0 ==

Axial distance of separation from test center

to inside and outside faces of coil.

Permeability of air = 4_ x 10 -3 Gauss/ampere-

turn/meter.

K -= 39.7 in/meter.

The power consumed in a Helmholtz coil can be calculated
NI

by expressing the J term in Eq.(A-ll)as J = _- . Then for any

desired value of B field and dimensions of Helmholtz coil,
X

be found. The resistance of the coil can be expressed as

where p

l
R --/CA)C_.K) (oH.5)

resistivity of conductor

fn_ copper.

= length of copper in inches.

NI can

6.7 x 10 -7 ohms/in

Cross sectional area in inches 2.

Packing factor for windings

It can be assumed that these coils are a pair of single turn

winding {holding the cross sectional area constant) and the resistance

now can be expressed as

R(oHMs)- 6.7 xaoC_-"O0',.-_,,)(P.F)

The current in the coil will be

Z =N_._.I= N.._IIAMPERES
/V 2

P/COIL : IZR =_._),.,.#.XII_7Z
C',.t-'_O(3,,.-_,)(F_r.)

=5.2' x t(}7('NZ;_('_''''') (A- iZ)
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Expressing Eq.(A-II) in terms of NI and substituting in Eq.(A-IZ), the

following relation is obtained:

P/COIL = 2.:LXIO

The power required increases as the square of the magnetizing field.

The packing factor (P.F.) is fixed by coil winding techniques which vary

between 0.5 and 0.8. The axial distance x I and the inside radius r: is

fixed by schlieren path and flow inlet area respectively. Therefore, the

only factor that can be altered in the design are the coil outer radius,

rz , and the coil length Cxz -x I ). These factors are selected to keep

the power consumption as small as possible. The conductivity can only

be reduced by cooling {or by superconductivity). However, this trade-off

was not studied since these techniques may require further development

before application to this problem.

Axial gradient field is produced by the additional independent

windings on the Helmholtz coils (Fig.10). This portion of the winding

is independently controlled as shown. If these additional coil pairs

are connected to oppose each other electrically, then the field pro-

duced in the test region will be in opposing directions; hence, a field

will exist with a linear variation of strength, having zero strength at

the center of the test volume.

The gradient field can be expressed in terms of current if the

axial field equation is differentiated. Since

,z

X-_

//

I
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JB_ _ I<.Vo r_ 3 × GAUSS/ZN. (A-15)
aX 2 ( _" + R')'/z

where r and x are in inches.

The maximum magnitude of dBx/dX is set by the design speci-

fications for the type of test models whose drag is to be counteracted.

Note that the drag is dependent upon model area while the magnetic

force acting in the model is a volume force. There is a limitation to

the smallest size of test model that can resist the drag load.

The gradient coil power consumption can be estimated be-

cause the gradient field can be expressed in terms of coil current.

5/.

I: )(2 +-')'"
(A- 16)

K_. _2 3x

PT:TAm.= I'R (WATTS_

= z.78 k a.) {,x
(A- 1.7)

Both the magnetizing coil and the axial gradient coil require cooling.

However, the power density is not so high that this will be a serious

problem, as long as each turn is connected in parallel hydraulically

while being connected in series electrically. The cooling can be

handled by hollow cored conductors.

B. Production of Lift and Lateral Gradient Fields.

Figure A-iZ shows final shape of the gradient magnet core

approximately. This core is magnetized by a coil that fits over the

central part (see Fig.A-9). Test results showed that a single coil-
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core assembly possesses a linear range of gradient of 160 gauss/in.

at the centerline. Two of these magnets double the gradient, i.e.,

320 gauss/in. The total of 4Z,800 ampere-turns in the coil produced

this field. In the full scale model, this gradient represents a force

of four times the model weight of an iron model magnetized to 15,000

gaus s.
When the gradient magnets are located (total of four) in their

design positions, they are exposed to strong return axial fields from

the magnetizing Helmholtz pair. This leakage field further magnet-

izes the iron yoke under the coil and it causes an early saturation in

the iron core, reducing the linear range of the gradient field.

The effect of the leakage flux is reduced by compensation wind-

ings that are utilized to oppose the net magnetization. It is possible

experimentally to find the number of ampere-turns necessary in the

compensation windings for a given level of ampere-turns in the

magnetizing coil. The ratio, for the particular design was found

to be i/8 that of the magnetizing Helmholtz coil. The compensation

windings are wound on the magnetic core of the gradient magnets and

are electrically connected in series with the Helmholtz coil.

Lift and lateral gradient fields are independently controlled

and are linear functions of coil currents. Hence, the 0Bz/0X or

0By/_X gradients can be represented as

. (42,goo).
where n = scale factor.

The power can be approximately calculated as follows:

(A-18)

WATTS (A- 19 )

where

2

R : F(2) ('A) ( P. I='.,) (A-ZO)

TR 128 150



For the magnets the mean length t, the cross sectional

area A and the NI are known. Hence it is possible to find P.

The power consumed in the compensation windings is found simil-
arly.

C. Producin_ the B and B Fields.
y z

It is desirable to produce these cross fields as uniform as

possible in the test region. In the ARL Design a set of Helmholtz

coils were used as shown in Figs.A-8andA-9. These coils are not

circular in shape as Helmholtz coils but the fields produced by these

pairs are uniform within g_0 in the test section. Considering that

large quantities of copper will be used, and also the desirability of

having the coils closer to each other for efficient field production,

due consideration must be given to compactness of coils.

The B and B fields that are produced by these coils,
y z

envelope the gradient magnets thus causing a net magnetization in

their respective directions. However, this effect is not very strong

because the demagnetizing factors of magnets in the "y" and "z"

directions are large. If dynamic stability testing uses high frequency

excitation eddy current losses would be induced in the solid core. To

eliminate those losses, the iron cores can be built out of laminated

sheets: the plane of these sheets should be parallel to the axis of

coil pair.

The power consumed in the cross field coils can be found

by measuring the corresponding B or B field and the current
y z

through the coils. Thus, the field can be expressed as

. B_,= (N,_f,u,_@ QAU SS
IB_tz - NZ (M_A_,U_p)

where C is the ratio of the measured field to ampere-turns,

R
2

= N
f CA) r.)

(A- ZZ)
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where K'

.. P = R

W'AT T& (A- Z3)

This relation will give approximately the power necessary to pro-

duce a desired B or B field.
y z

D. Concluding Remarks.

This configuration has the capability of producing each field

and field gradient component independently. Also, these fields were

linear functions of coil currents. The advantages were pointed out

in the most general form because no specific performance parameters

were established. Consequently, only a qualitative comparison can

be made among the various designs.

Test results and preliminary performance calculations in-

dicate the following:

i. The ARL-type magnetic balance arrangement is a

feasible design and can be applied to wind tunnel operations.

2. This arrangement can produce uniform axial and cross

fields, and uniform gradient fields independently.

3. Magnetization of the suspended model is independent

of force coil currents.
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4. It meets the accessibility requirement of sufficiently large
schlieren windows.

The above configuration, even though it meets the operational

requirement overall, presents some difficulties in construction. The
cross field component coils do not represent simple design. Building

these coils and incorporating them in the assembly will be complicated.

Further, because the cross field coils are large, their in-

ductance is large. Hence unsteady operation requires a high supply

voltage when compared with the"L" or "V" systems. Thus, the

geometric effect has a pronounced influence upon the nature of the

power supplies. Nevertheless, this configuration has considerable

merit and it shows that a compatible orthogonal set of fields and

field graule,u_ _,, be .......... in a ' ..... I ....

manner. The table below compares the AI_L and L systems.

Magnetized level
Max. cross field

Max.lift gradient
Max. distance

Force direction

L System

variable

500 gauss

ZI0 gauss/inch

6- I/Z inches

unidirectional

(except for

lateral forces)

ARL System

constant

i000 gauss

3Z0 gauss/inch

15 inches

bi- directional
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SECTION Ill

CYLINDRICAL IRON MAGNETIC BALANCE ARRANGEMENT

A. Introduction

In this particular design, an effort was made to control and

simplify the flux return path. The configuration was constrained to

be compatible with the requirements of the tunnel (cylindrical test

section, schlieren path). The arrangement that evolved is shown in

Fig.A-13. Figure A-13 shows that flux return paths are provided for

all components and gradient fields by a heavy cylindrical yoke con-

structed of low carbon steel. (For the full scale device, the cylinder

would be made of laminated iron sheets). The thickness of this

shell is determined by the need to avoid saturating the return path.

The fields are generated by eight coils numbered from 1 to

8 (Fig.A-13). Each coil is energized separately. Inside each coil is

an iron pole piece that is bolted into the shell. This assembly is

very simple. Figure A-14 shows the location of the schlieren path and

the bolt holes. Figure A-15 shows the outside shape of the coils and

core.

The test data shows that it is possible to produce uniform

fields and field gradients with these magnets. For example, to

produce the B field, coil numbers 1 - 4 can be energized with north
x

polarity and coils number 5 - 8 can be energized with south polarity.

This will give a B field in the test section since the flux lines from
X

the N (north polarity) magnets will ttconverge n to S (south polarity)

magnets.

Axial gradient field 8B /Sx can be produced by energizing
x

all magnets with the same polarity. Also, the lift and lateral force

field gradients can be produced by energizing, i.e., magnets i, 5, 3,

7 with N, S, S,N polarities, respectively. Similarly, fields B or B
y z

can be produced, i.e., energizing magnets i, 5, 3, 7 with N, N, S, S

polarities, respectively.
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This configuration was tested to determine the uniformity

of the field and the field gradients and to determine the saturation

limits at the pole faces. The description of the test procedure and

the results are discussed below.

B. Model Design and Construction.

A steel 1:6 scale model of a magnetic suspension that is

suitable for the NASA 15-inch H.F.A. was built. Prior to build-

ing the steel model, a mockup of 1/2 scale was built out of styro-

foam. The purpose was to check the magnetic configurations,

windings, schlieren path (windows) and other physical features.

The outer tubular section was made of mechanical steel

tubing of an O.D. of 6.16 inches and I.D. of 4.5 inches. (See

Fig.A-14 for dimensioning.) The steel was a low carbon steel

specially chosen to avoid errors due to hysteresis. An excep-

tion was taken in cutting the schlieren path, for construction ease.

A i-i/4" diameter hole was drilled instead of the rectangular shape

path shown in Fig.A-L4.This change is of little concern since it has

negligible effect on the reluctance of the return paths.

The poles were also made out of mechanical steel tubing

of low carbon composition. They were cut to the dimensions shown

in Fig _-15. All eight magnets were drilled and held in position by

bolts. The number of windings was the same on all magnets: two-

hundred turns of No. Z0 wire per pole. For the complete assembly

of the model, see Fig.A-13.

The power supply requirement was satisfied by connecting

two wet cell batteries in series for a total of 12 volts. During the

test, it was possible to obtain a steady current and hence a constant

field. The current was controlled by a high power rheostat and

current readings were taken using a Rubicon potentiometer connected

across a shunt. Field measurements were made with an ]Empire

Model 900 Gaussmeter. (See Fig.A-16 for a schematic wiring diagram).
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C. Magnetizing and Gradient Field Development.

i. B Field
x

The purpose of this test was to determine the uniformity and

strength of the field in the axial direction. It should be remembered

that the desired magnitude of the field is of the order of five thousand

gauss for the full scale unit. Such a field is required for the purpose

of magnetization of the iron core in the suspended model. Development

of 5,000 gauss in the test section may saturate the pole face flux.

Magnet poles number i, Z, 3 and 4 were energized with _orth u

polarity and magnets number 5, 6, 7 and 8 were energized with nsouth"

polarity. A current of 1.32 amperes was applied and axial field read-

ings were taken with a gaussmeter along the "x u axis. See Table I and

Fig. A-17 for data and plot respectively.

TABLE I. Axial Field Component B
X

Current in coils = 1.32 amps.

Coils No. I,Z, 3,4 and 5, 6, 7, 8 energized with N,N,N,N and S, S,

S, S polarities respectively.

Probe position "X_ mm. Gaussmeter Reading

(Gauss)

+ 30 43.0

+ 25 52.0

+ 20 58.O

+ 15 60.5

+ 10 62.0

+ 5 62.0

0 62.0

- 5 62.0

- i0 62.0

- 15 61.0

- 20 59.0

- 25 53.0

- 30 45.0
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A detailed field survey was plotted as shown in Fig_A-13.The

gaussmeter reading was normalized with respect to the radial field

reading at the center of a pole face.

The results show that a high degree of uniformity and strength

can be produced in the middle third of the volume between the pole

pieces.

2. Saturation Limit

The saturation magnetization of iron is of the order of 20,000

gauss. If an operating limit of 15,000 gauss is placed on the material

composing the balance structure, then it may be reasonably assumed

that the magnetic fields produced in the test section will be linear

functions of the various coil currents. This is desirable due to the

requirements of the balance calibration procedure.

It may reasonably be assured that the highest levels of magnet-

ization will occur in the magnet poles. A measure of the magnetization

of the poles can be made, from which the ampere-turns limit for in-

cipient saturation can be estimated. This calculation was performed

as follows. The magnetization is equal to B-H. Thus, with a measure

of B and of H across the face of one of the poles, the magnetization of

the pole can be found. Since all the field plots presented here have

been normalized with respect to the normal component of B at the cen-

ter of a pole face, then the magnetization of the pole will also be re-

ferred to this value. A survey of the normal component of B, across

a pole face, was made, and then the same area was probed to obtain

a measure of H;that is, the magnetic field in the absence of any iron.

The results of the two surveys were subtracted to provide B-H, the

magnetization, and this in turn was normalized with respect to B0,

the pole-face-center value of B. The maximum value of (B-H)/B 0

was approximately 3. Thus, the maximum value of B0 will be approxi-

mately 5,000 gauss implies incipient saturation of the magnet pole.
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3. Cross Field B
Y

Cross fields B and B are required when it is desired to pro-
y z

duce pitching and yawing moments on the suspended body. This is

evident from the expression T = M x H.

The applied field H should be uniform on the test section. To

obtain such a field, coils No. i, 5 and 3, 7 were energized with N, N

and S, S polarities (see Fig. A-19). A current of 1.88 ampere was applied

and field readings were taken using the gaussmeter. (See data in Table

II ).

TABLE II. Cross Field Component B
Y

Coil current = 1.88 amps.

Coil No. i, 5 and 3, 7 energized with N, N and S, S polarities.

Probe position in ram. Gaussmeter Reading

(Gauss)

+ 30 81.0

25 72.0

20 6O .5

15 51.0

i0 42.5

5 37.0

0 35.0

5 35.0

I0 39.5

15 46.5

Z0 55.5

25 66.5

- 30 77.5

From the data on Fig. A-19, it is seen that the field B was not
Y

very uniform. This non-uniformity was attributed to the large axial

separation of the magnets. The axial separation was a result of moving

the magnets axially apart to obtain a sufficiently large schlieren window.

Originally the pole faces were intended to be separated equally from each

other; i.e., a = b in the sketch shown on the next page.
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There are several ways in which the above non-uniformity can

be altered and a uniform field established. For this particular case,

four more smaller magnets can be added between the main magnets

thereby increasing the flux at the test section.

The B field plot is similar to the plot of B .
z y

0B
X

4. Axial Gradient Field 0--'_

In order to produce drag forces on axially magnetized sus-

pended body, the axial gradient field 0Bx/0X must be established

within the test region.

All eight magnets were energized with the same polarity. A

current of 1.32 amperes was applied to all eight coils in series and

held constant. The field pattern thus obtained is shown in the sketch

below.
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Axial field readings were taken with the gaussmeter and are

shown in Table III The plot of the field is shown in Fig. A-Z0.

TABLE III. Axial Gradient Field-_

_B
X

_X

Coil current = 1.32 amps.

All 8 coils same polarity

Pole face flux at center = 48 gauss.

Position of Probe in mm.

+30

25

Z0

15

I0

5

0

5

i0

15

Z0

Z5

-30

Gaussmeter reading

+ ZZ.4

+ Z6.Z

+ Z6.3

+ Z3.0

+ 16.5

+ 8.5

0

- 8 .Z5

- 16.6

- 23.Z

- Z6.8

- Z7.3

- 24.0
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The results show that at the center of the test region, Bx
is zero, and also, the required gradients are quite constant over the

useful volume. Figure A-20 indicates a _Bx/SX.. of 40.6 gauss/inch was
developed in this model. Consequently, this configuration can pro-

duce large gradients, about 650 gauss/inch in a 15-inch inside dia-

meter device, if drag only is required. The 650 gauss/inch will be
reduced in the actual core because the need for lift and moment forces

at the pole face.

A survey was made in the test region and a normalized field

plot of B was obtained as shown in Fig.A-21. It can be seen that ax
gradient of 47%per inch is measured. The percentage reading represents

the local flux density divided by the pole-face-center value.

DR DB
5. Lateral _ieid Gradient z y

ax ' 8x

The lateral forces require field gradients in the y and z dir-

ections. Since both gradients are produced independently, using the

same arrangement, only one gradient component is plotted.

Coils No.l, 3, 5, 7 were energized with N, S, S and N polar-

ities, respectively. The coils were wired in series and a current of

1.88 ampere was applied. The resulting field was measured and is

shown in Table IV. (See Fig.A-ZZ for the plot of data.)

TABLE IV. Lateral Gradient Field

Coil current - 1.88 amps.

Coil No.l, 5, 3, 7 with N, S, Sand N polarities

Probe position in ram. Gaussmeter reading: B
y--

+ 30 + 77.5

25 65.5

20 51.5

15 39.5

I0 25.5

5 13.2

0 Z.0

5 - 9.O

or B (Gauss)
Z
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Probe position in mm. Gaussmeter reading

i0 - Z0.6

15 33.0

Z0 47.0

Z5 60.5

- 30 74.Z

From Fig.A-ZZ it can be seen that a gradient of about 68

gauss/inch was achieved. There was evidently good linearity (uni-

form gradient) in the test region.

It was mentioned previously that in the construction of this

scaled model, the poles were separated in order to provide a

schlieren path. When a smaller path is provided, then bringing the

poles axially closer to each other will give a higher gradient; con-

sequently, less power would be needed to achieve a given gradient.

No further efforts were made to optimize this arrangement

of magnets.

D. Some Remarks on the Cylindrical Design and Test Results.

From the above tests it can be concluded that the Cylindrical

Magnetic Balance arrangement will produce the necessary fields for

five degrees of freedom control. However, it was also shown that the

required axial separation of the magnets caused non-uniformity in the

B field. This does not represent any great problem since it can be
Y

solved by moving the pole faces closer together.

Figure A-18 shows it is possible to obtain 92.4%of the pole face

flux value at the test volume. Hence, the concept of giving a return

path to the magnetic flux increased the magnetic efficiency and made

a worthwhile gain in overall power reduction.

The above configuration has the apparent advantage of being

easily assembled and maintained.

This configuration was not studied in more detail because of

the problems of generalizing the configuration to include roll control.

This restriction is overcome by the next configuration.
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SECTION IV

E-MAGNET CONFIGURATION

A. Introduction

Figure A-Z3 shows the cross sectional view of the E-magnet

configuration, in which each coil and magnet is identified. This

figure shows diagramatically the scaled model that was built with

some simplifications from the actual design which is shown in Fig.

A-23. A i:2 scale mockup was built of styrofoam.

In Fig.A-23, coils numbered I represent the outer magnetizing

drag coil and coils numbered V represent the inner magnetizing drag
coil. These coils, even though not circular, produce a field approxi-

mating the field of a Helmholtz pair. They are designed to produce

the magnetizing field Bx and drag gradient field 0Bx/0X.
Magnetizing drag coils are divided into two halves. One half

of each coil is for producing the B field and the other half for pro-
x

ducing the drag field. The coils are arranged to decouple the mutual

inductance as much as possible.

The test model consistent of two pairs of E-magnets with a

total of twelve poles. Coils that are numbered III are for lift or lateral

force magnets and those that are numbered IV are for roll control mag-

nets.

The E-magnets produce the B
y'

the non-uniform fields for roll control.

and related data are presented below.

Bz, 0By/0X, 0Bz/0X and also

The production of these fields

This particular design incorporates the advantages of a Helm-

holtz coil for uniform axial field production and the E-magnet design

offers the flexibility of producing both uniform and curved (second de-

gree) fields.

Be Fabrication of Test Model.

1. Model Dimensioning

A 1/8 scale model that may be used in the NASA 15-inch H.F.A.

was built.
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Some simplifications were made in the actual model magnet

design to simplify the construction of the test model while maintain-

ing the functional and magnetic characteristics of the actual model.

Figures A-Z3 through A-Z6 show the actual dimensions (which

might differ from the full size model scaling due to slight construc-

tion differences).

Z. Construction of E-Magnets and Coil Windings

The E-magnets were made out of laminated silicon steel. The

windings of the following coils were:

No. of windings Wire size

Coil per coil no.

Lift Coils

Roll Control Coils

Inner Magnetizing-Drag Coils

Outer Magnetizing-Drag Coils

450 30

450 30

150 20

300 20

3. Field Strength Control

The coils were connected in series or parallel, to obtain the

desired field patterns. Six-volt batteries were used as power source

The field strength was controlled by a rheostat added in each coil set

to control the flow of current.

C. Magnetic Field Plots

I. Field Distribution of Magnetizing-Drag Coils

With the lift and roll control magnets turned off, the inner and

outer magnetizing drag coils were energized. The test region was

probed to find the relative current levels needed to provide uniform

field strength. The current was varied through each coil until a uni-

form field was indicated by gaussmeter probe traverses.
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The current ratio established was:

I
outer _ .8

I. ._-f = 2.16 where
inner

8a B _B
X X

8x 2
= 0 in central region

Te st Data

Outer magnetizing - drag coil current

Inner magnetizing - drag coil current

Position of probe from

center of magnet - cm.

Gaussmeter Read-

ing (gauss)

3.0 39

2.5 39

2.0 39

i .5 39

1.0 39

0.5 39

.0 39

- 0.5 39

- 1.0 39

- i .5 39

- 2.0 39

- 2.0 39

- 2.5 39

- 3.0 39

The probe was positioned at the center of the scaled model

magnet as shown in Fig.A-Z3 (point A denotes center of magnet).

The position scale used in gaussmeter readings is in centimeters.

The upper half scale is taken as positive and the lower half as

negative.

The outer magnetizing-drag coils were energized in series

while all the other coils were off. A current of .8 amp was established

and field measurements were made. The data was plotted and is

shown in Fig. A-27.
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The sume of the field from the two coils is shown in Fig.A-Z8.
Note that this field is uniform.

Z. Determination of the Magnetic Field Pattern for the Lift and

Roll Control Magnets.

Since primarily the interest is centered on the lift forces for

this test, the following measurements were made to determine only the

8B /0x component of the field. This component is important since the
z

force-field gradient expression is

After expansion the z component force may be written

M ÷ + MzFZ= x _Z _Z

Measurements of the field intensity were taken with 0.3 amperes

applied to coils a, c,d and f (see Fig.A-Z9) with S, N, N and S polarities.

During this test coils b and e were not energized. The field plot is shown

in Fig. A-30. From the graph it can be seen that the 8Bz/SX component

is constant in the test region.Figure A-31 shows the effect of moving

off the centerline of the system. The gradient is uniform over a wide

region.

Another test was performed in which coils b and e were energized

with a current of 0.5 amperes; all other coils were turned off. Field

readings were taken with a gaussmeter and field strengths were plotted

as percentages of the pole face flux density in Fig. A-3Z.

The same was repeated for coils a, c, d and f except the current

was .4 amperes. The plot is also shown in Fig. A-3Z.

The polarities of coils a,b, c, d, e, and f were S, N, S, N, S

and N respectively.

For the lift and roll control magnets, normalized constant flux

plots were made by applying in each case equal current through each
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coil. See Ref.3 for a discussion of the E-magnet roll system.

These plots are shown in Figs.A-33 - A-35.

3. Controlled Pitching Moment.

The pitching moment is expressed in general form as:

where M is the resultant magnetization vector and _ is the applied

field vector.

In order to counterbalance external moments brought upon the

model by the aerodynamic forces, it is necessary to produce such an

applied field where the cross product of M and H will keep the model

in equilibrium. T = M x -- NM where M is the external mom-

ent.

H is produced by the magnetizing drag coils It is necessaryX

to introduce only a field H to give a moment opposite to the external
e

moment. (see sketch).

He

s

o ._t

_o

H is produced by the E-magnets to any desired strength bye

controlling the ampere-turns, or in this case the current. To achieve

a uniform field H coils a, b, c and d, e, f are energized with S, S, S
e'

and N, N, N polarities respectively. (see Fig. A-33}. By linearly adding

the field components it can be seen that H and H are quite uniform
y z

having a value of about 20% of the pole flux.
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If it is necessary to produce a moment opposite to the one

discussed, then a vector _eliS obtained as shown in the sketch simply
by changing the polarities of the E-magnets. This establishes a field

where H vector reverses its direction to Hel .
e

Therefore, it is concluded that by varying the current through

the E-magnet coils, it is possible to obtain the desired pitching mom-

ent s.

4. Roll Control

One of the methods by which roll control can be achieved is

by applying a non-uniform field to a non-uniformly magnetized model.

(Ref. 3 ). This method of roll control was tested successfully on this

magnetic suspension test model.

Since it was necessary to produce a non-uniform magnetic

field in the model, three iron cores were used and positioned in an

alternating form as shown in Fig.A-36. A uniform axial field H (wind
X

axis direction) was applied by the magnetizing drag coils. Since the

iron cores can be considered as slender bodies, the resultant mag-

netic vector M in each core would be in the direction of its major

axis. If the components of the M vectors in the three cores are

taken and summed in the z direction, an approximate pattern of second

order curve, as shown in Fig. A-37, would result. Since the rolling

moment is the integral of the cross product of dM and Hy, then the

maximum roll torque would be obtained by applying a field normal

to the magnetization vector in the z direction.

The E-magnets would produce the applied field H . It is import-
Y

ant to notice that the applied field H should have a second order field
Y

distribution as shown in Figs.A-29 andA-34;in order to produce a net rolling
..b

moment the magnetic field vector M which points in the negative z
Z

direction, would cancel the moments that the positive M vector would
Z

produce. The appropriate H field was produced with a, c, e and b, d,f
Y

coils energized with N, N, N and S, S, S polarities respectively. This
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combination gave the appropriate sense to both vectors, and resulted

in an integral of the cross product which produced a net rolling moment.

D. Some Remarks on the Test Results of E-Magnet Configuration.

The E-magnet configuration is a generalization of the cylindri-

cal configuration to produce the fields necessary for roll control. It

was possible to produce curved fields as shown in Fig.A-32.Uniform

and gradient fields were produced most successfully, too. Figure A-Z8

indicates the uniformity of the axial field B Fig A-33 suggest B
X" Y

and B will also be uniform. Hence, it can be concluded that E-magnet
z

arrangement can generate required fields for controlling six degrees of

freedom, using this particular method of roll control.

Considering other features, the arrangement does not necess-

arily represent the simplest magnetic design° For example, the act-

ual shape of the inner magnetizing drag coil (not of the scale model)

is not a simple Helmholtz coil; because of the requirement of having a

clear schlieren path, they had to be bent to conform to the "window "

shape. Hence, production of these coils will require special winding

techniques. However, there has been a maximum use of space. The

model is a compact well integrated unit.

After investigating the physical features and field properties,

the design study was continued for other arrangements.

The E-magnet configuration, in spite of the considerable promise

was not selected for the final configuration for two reasons. The first

reason is the relative lack of efficiency (c.f. Fig. A-33) which suggests

that saturation at the pole face may be a serious problem. The second

reason is the problem of limitation on model size that results from the

detailed shape of the core. While neither of these problems appears to

be insurmountable, it is felt that the additional development required

outweighs the possible gain.
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Fig. A-7. Schematic view of V-type arrangement
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©

I. Axial magnetization and drag gradient windings (Hx, bHx/_X )

2. Lateral gradient magnet cores (0Hx/0y)

3. Vertical gradient magnet cores (aHx/OZ)

4. Lateral gradient control and core-biasing coils

5. Vertical gradient control and core-biasing coils

6. Vertical field component coils (Hz)

7. Lateral field component coils (H¥)

Fig.A-9. Exploded view of magnet arrangement.
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Wind Axis

Center of Test Section

Gradient Coils

(Wound in Opposite Directions)

Maqnetizinq WindincJs

(Wound in Same Direction]

Fig. A-lO° Axial magnetizing and gradient coils.
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WET CELL J

BATTERY|

Fig.A-16o

MAGNETIC BALANCE

MODEL i I
J

l!
- RUBICON

POTENTIOMETER

SHUNT

-'1 RHEOSTAT1.5 OHMS

28.5 AMPS MAX.

I
!

®

__1

Power control schematics for magnetic balance scaled

model.
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Fig. A-17. Axial field plot B
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l_ig.A-20. Axial field gradient 0Bx/0X.
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APPENDIX B

EXPERIMENTAL DETERMINATION OF DEMAGNETIZING

FACTORS OF FERROMAGNETIC BODIES OF GENERAL SHAPE

A. Introduction

The average magnetization of a body of ferromagnetic material

immersed in a uniform magnetic field may be related to the strength

of the applied field by means of parameters known as =demagnetizing

factors It. These parameters are related to the shape of the particular

body, and are associated with an orthogonal set of axes which are tied

to the body. it was desired to devise a convenlent and rapld method

of experimental determination of these demagnetizing factors, in order

to allow prediction of the magnetic performance of bodies with shapes

typical of aerodynamic test models, in operation in the magnetic sus-

pension system. The following is a brief discussion of the experimental

method, and some results that were obtained for several families of

bodies.

B. Theory

The magnetic torque on a body of ferromagnetic material

immersed in a uniform magnetic field is a function of the applied field,

the volume of the body, the relative permeability of the material, the

relative magnitudes of the demagnetizing factors and the orientation

of the =principal magnetic axes = of the body with respect to the applied

field.

I. Principal Magnetic Axes.

The principal magnetic axes are defined as follows. An

orthogonal set of three axes located in the body are labelled a, b, c.

In an applied magnetic field _'A' having components Ha, H b, H c

parallel to the a,b,c axes, the body becomes magnetized with corn-
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portents of average magnetization ma, crob, m . The axes a,b, c
are "principal magnetic axes" if the applied field and resultant

average magnetization is related by a diagonal matrix, i°e.,

_a_ O O lq_ -

0 0 N_:, _.

The factors Kaa, Kbb, Kcc are as follows,

w

(B-Z)

where u = relative permeability of material.

D = average demagnetizing factors in i-direction.
i

materials, u will be essentially infinite. Thus,

For typical

_4
m H_ Q-¸

D_

The "demagnetizing factors" Da, Db,
D are related as follows.

c

- i (B 3)

If the body is pivoted about one of the principal magnetic axes,

one of the other principal axes will usually align with a uniform magnet-

the torqueic field. If the pivot axis is "c" and the aligning axis is nan,

about the pivot axis is

(B -4)
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where T = torque about principal axis "km
C

3
v = volume of model, in.

K T = 1.14 in.lb./in. 3 kiiogauss 2

(pivot axis), in. lb.

H
a

D b

applied field, in direction of alignment of a-axis.

(Kilogau ss .)

demagnetizing factor in b-axis direction

D = demagnetizing factor in a-axis direction
a

e = angle (small) between a-axis and applied field H
radians.

If the body has a moment of inertia I in.lb.sec 2 and is given a
c

small initial angular displacement O and released it will experience

free anguiar oscillations of angular frequency w as follows
c

_ _c t V (B-5)

If, the pivot consists of a torsional suspension of spring rate "K I

in.lb./radian, the angular frequency is altered to cot as follows
c

Thus,
if K is known, the term (D.

a

with changes in H .
a

variation of cot
c

co' = co'(0).
c c

and for H = H , co' = co' (Ha )
a a I c c I

I I
) can be deduced from the

D 5

For example, with H = 0,
a

(B-6)

CB-7)
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i.e.,

'

Thus,

C. Experiment

i) Apparatus

The experimental equipment consisted of a pair of Helm-

holtz coils, excited by direct current, and producing a spatially

uniform axial magnetic field, H . The coil current _I" was moni-
X

tored and could be controlled. The magnetic field at the center of

the coils was measured and related to the current. The magnetic

field strength H could thus be determined from the current reading.
x

The model to be tested was suspended at its center of gravity

by a fine steel wire whose torsional spring constant was predetermined.

The point of attachment of the suspension fiber coincided with one of

the obvious axes of symmetry. (All bodies in these tests were axi-

symmetric. )

ii) Procedure

The test body was suspended by the fiber in the center of the

Helmholtz coils and allowed to oscillate torsionally with the current

turned off. The frequency of oscillation was measured. The current

was turned on, to correspond to some convenient level of Hx, and the

frequency again measured. The direction of alignment was noted. The

ratio of these two frequencies, the magnitude of Hx, and the suspension
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spring constant K are applied in Eq.B-9, and Eq.B-3 to find D
a

and D b .

Axisymmetric bodies were tested (see below). _ _e polar

axis is =a= , and the b and c axes are mutually perpendicular. The

"cn axis was used as the suspension axis.

I
line up with the applied field, the term (-_

a

it tends to align at right angles to the field,

If the a-axis tends to

1 ) is positive; if

1Db 1

(Da Db ) is negative

in Eq. (B-9). Applying these procedures, the following series of

bodies were tested.

iii) Test models

The bodies that were tested all belonged to a general family

*,.. J. ,,..,me

categories.

sketch.

a) Cones

b) Cylinder-cones

c) Cylinders with hemispherical nose caps.

The dimensional parameters are shown in the following

f

T--

L-'

,=t.

,. J

(Q) CoN ES (b_ CYLINDEI2- CONES (.¢J CX(Ll blDE _,,5
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iv)

table.

Re sult s

The measured demagnetizing factors are listed in the following

D b

v) Accuracy

The total probable error in the measured values of D a

are of the order of I_0, maximum.

and

D. Conclusions

This method appears to be simple and straightforward, and

provides quite adequate accuracy in the measurement of the demagnet-

izing factors of bodies of general shape.
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A

Class

Cones:

Table of Demagnetizing Factors for Cones, Cylinder-

Cones, and Hemispherical-Gapped Cylinders.

II I

Parameters

D/d D/l l/d 1TM

(oo) (oo) - 5 °
. . u 15 °

. . u 25 °

. . " 30 °

a a ,t 45 °

Demagnetizing Factor

D Dc)a Db(=

0.0259 0.487

0.105 0.447

0.281 0.360

0.413 0.294

O.68O 0.160

Cylinder
Cones: 6 6 - 15 °

,_ u a 20 o

a a . 30 °

a 2 11 15 °

a a a 20 °

a . a 30 °

" 1.25 a 15 °

. a . 20 o

a a a 30 °

4 6 a 15 °

a ,t It 20 o

. a tt 30 °
a It II 15 o

. - tt 20 °

. . a 30 °

a I .25 a 15 °

tt a a 20 °
. a • 30 °

2.5 6 u 15 °

. tt tt 20 o

a tt a 30 °

" 2 tt 15 °

. a a 20 o

a a tt 30 °

" 1.25 a 15 °

. tt a 20 °

tt u a 30 °

0.136 0.432

0.175 0.413

0.333 0.333

0.088 0.456

0.120 0.440

0.169 0.416

0.065 0.467

0.078 0.461

0.099 0.450

0.130 0.435

0.188 0.406

0.333 0.333

0.091 0.454

0 .I17 0.442

0.167 0.417

0.066 0.467

0.079 0.461

0.094 0.453

0.153 0.423

0.231 0.385

0.359 0.283

0 .II0 0.445

0.138 0.431

0.183 0.409

0.083 0.459

0.095 0.453

0.107 0.446
t

Cylinders : -- -- 5 --

tt tt 3 a

. tt 2 "

It 11 1 11

tt . 0.5 tt

0.055 0.472

0.104 0.448

0.159 0.420

0.332 0.334

0.525 0.237
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