MAJA TM X- 55577

RADIOACTIVE NUCLEI PRODUCTION FROM RELATIVELY ABUNDANT NATURAL ELEMENTS

GPO PRICE	\$
CFSTI PRICE(S)	\$
Hard copy (H	c) <u>1.00</u>
Microfiche (M	F) 150
ff 653 July 65	

JULY 1966

GODDARD SPACE FLIGHT CENTER — GREENBELT, MARYLAND

N67 11359	
(ACCESSION NUMBER)	(THRU)
<u> </u>	
(PAGES)	(CODE)
1 TMV -55571	24
(NASA CR'OR TMX OR AD NUMBER)	(CATEGORY)

RADIOACTIVE NUCLEI PRODUCTION FROM RELATIVELY ABUNDANT NATURAL ELEMENTS

by Robert J. Janda

July 1966

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

RADIOACTIVE NUCLEI PRODUCTION FROM RELATIVELY ABUNDANT NATURAL ELEMENTS

INTRODUCTION

The function of this data is to furnish a guideline in evaluating potential radioactive nuclei production that could affect experiments or personnel in the Goddard Space Flight Center accelerator laboratory. The elements given in the table have been selected based upon the following criteria:

- a. Theoretical reaction threshold energies less than 17.0 Mev.
- b. Half-life time greater than 0.2 second.
- c. Natural element abundance greater than 1%.

The use of the table is intended to serve accelerator personnel by estimating decay half-life for materials placed within the accelerator beam. The beam energy and particle type are taken into account for each material in determining if the reaction goes to completion. Since activation cross-section data is not provided, the table cannot provide reaction yields, it being a monumental task to obtain cross-section data for each threshold energy and particle type.

Since the cross-section data is not readily obtainable, it does not necessarily mean the particular reactions shown in Table II do or do not constitute a radiological hazard. The table shows that the potential reaction exists.

DEFINITION

The following list of definitions are headings as listed left to right in Table II.

Target Nuclide: The element bombarded by the accelerated beam. The superscript refers to the atomic weight. Most elements exist in the form of several isotopes - some radioactive, some stable.

Natural Abundance: The percentage of the particular isotope which is found in any sample of the element.

Radioactive Nuclei: The radioactive product formed when the accelerated beam interacts with the target nuclide.

Production Scheme: The method of interaction to form the radioactive product. The first symbol in parentheses names the accelerated beam particle

which interacts with the target nuclide to yield the radioactive nuclei. The second symbol names the subatomic particle which is produced by the interaction in addition to the radioactive nuclei.

Decay Scheme: Defines the type of radiation produced by the radioactive nuclei during its decay. In some cases, there are multiple modes by which the radioactive nuclei may decay, and these are listed by their symbols.

Half-Life: The time required for one half of all the nuclei in a given sample to decay exponentially. The activity never reaches zero, but becomes very small after several half lives. For example, after ten half lives the activity has reduced to $\sim 0.1\%$ of the original amount.

Threshold Energy: The theoretical minimum energy in the center of mass, in million electron volts, an accelerated particle must have to interact with the target nucleus to produce a radioactive nucleus. In practice, the numbers quoted must be increased by 10% to 15% to give the corresponding laboratory energies. For example, light nuclei with heavy bombarding particles will have a large center of mass correction. Conversely heavy nuclei with light bombarding particles will have a small correction.

SYMBOLS

The following symbols are used in Table II:

α : alpha particle

 β^- : electron emission

 β^* : positron emission

 γ : Gamma ray or x-ray

 ∂ : deuteron (heavy hydrogen nucleus)

d: days (under half-life heading only)

e : electron

ex : exothermic (the accelerated particle does not need any energy to trigger the reaction)

h : hours

•

IT: isometric transition (γ -ray emission)

K: K shell electron capture (γ -ray emission)

L : L shell electron capture (γ -ray emission)

m: minutes

Mev: million electron volts

n : neutron

p : proton

s : seconds

t: triton (double heavy hydrogen nucleus)

y : years

TABLE UTILIZATION

A typical example of using the tables would be in evaluating the activation hazard of a proton beam on an aluminum target. The relative hazard can be obtained as follows:

- 1. Find Al in Table I, note it is the seventh element listed in Table II.
- 2. Find Al as the seventh element in Table II.
- 3. Choose the correct atomic weight of the element. (Typically, the highest percent of the natural abundance.)
- 4. Seek the correct production scheme, in this case protons or the (p, n) reaction. Note that neutrons should be anticipated if the threshold voltage is reached.
- 5. Find the corresponding threshold energy and add 10% to be conservative. In our case, the final value would be about $6.1\,\mathrm{Mev}$.

6. If the planned accelerated proton beam is to exceed 6.1 Mev, the resulting decay half-life is 4.4 seconds. This element should not constitute a hazard since in an accelerator run the element will decay typically before the accelerator voltage is reduced to ground potential.

Table I
ORDER OF TABLE II ELEMENT LISTING

1.	Li	10.	Ar	19.	Ge
2.	N	11.	К	20.	\mathbf{Zr}
3.	0	12.	Ca	21.	Sn
4.	Ne	13.	Ti	22.	Sb
5.	Na	14.	Cr	23.	Та
6.	Mg	15.	Fe	24.	Au
7.	AI	16.	Ni	25.	Pb
8.	Si	17.	Cu	26.	Th
9.	p	18.	Zn	27.	U

Table II

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLI ENERGY
Li ⁶	7.4%	₂ He ⁶	(n,p)	β-	0.82s	2.74
Li ⁶		2He ⁶	(e,γ)	β	0.82s	ex
Li ⁶		₄ Be ⁷	(p,y)	К	53.0 d	ex
Li ⁷	92.6%	₄ Be ⁷	(p,n)	К	53.0d	1.66
Li ⁷		3Li ⁸	(n, y)	β-, 2α	0.84s	ex
Li ⁷		4Be ¹⁰	(t,y)	β-	2.7 x 10 ⁶ y	ex
N 14	99.6%	8O ¹⁴	(p,n)	β^{\dagger}, γ	72.0s	5.97
N 14		6C ¹⁴	(n,p)	β-	5730.0 y	ex
N 14		7N13	(γ,n)	β ⁺	10.0 m	10.56
N 14		8O15	(p,γ)	β ⁺	2.1 m	ex
N ¹⁴		9F ¹⁸	(α,γ)	β ⁺	1.87 h	ex
O ¹⁶	99.0%	7N ¹⁶	(n,p)	β-, γ	7.4s	9.60
O16		8O ¹⁵	(γ,n)	β ⁺	2.1 m	15.60
O ¹⁶		9F ¹⁷	(p,γ)	β^+	66.0s	ex
O16		9F ¹⁸	(3,7)	β^{+}	1.87 h	ex
Ne ²⁰	90.0%	11 Na 20	(p,n)	β+,α	0.3s	16.2
Ne ²⁰		9 F ²⁰	(n,p)	β , γ	11.0s	6.25
Ne ²⁰		₁₀ Ne ¹⁹	(γ,n)	β^+	18.5 s	16.92
Na ²³	100.0%	₁₂ Mg ²³	(p,n)	β^+, γ	12.0s	4.89
Na ²³		₁₀ Ne ²³	(n,p)	β-, γ	40.0s	3.58
Na ²³		₁₀ Ne ²³	(e,γ)	β-, γ	40.0s	3.38
Na ²³		11 Na ²⁴	(n,y)	β^- , γ	15.0 h	ex
Mg ²⁴	79.0%	13 Al ²⁴	(p,n)	β^+, γ	2.1s	14.85
Mg ²⁴		11Na ²⁴	(n,p)	β-,γ	15.0 h	4.71
Mg ²⁴		₁₂ Mg ²³	(γ,n)	β+, γ	12.0s	16.57
Mg ²⁴		11 Na ²⁴	(e,γ)	β^-, γ	15.0 h	7.69
Mg ²⁴		13 Al ²⁵	(p,γ)	β^+, γ	7.3s	ex
Mg ²⁴	 	13 Al ²⁶	(7,6)	$\beta^+; \beta^+, \gamma$	6.5 s; 10 ⁶ y	ex
Mg ²⁵	10.0%	₁₃ Al ²⁵	(p,n)	β^+, γ	7.3s	5.05
Mg ²⁵		11 Na ²⁵	(n,p)	β-, γ	60.0s	2.92
Mg ²⁵		11 Na ²⁴	(γ,p)	β-, γ	15.0 h	12.07
Mg ²⁵		11 Na 25	(e,γ)	β-, γ	60.0s	3.22
Mg ²⁵		13 Al ²⁶	(p,γ)	$\beta^+; \beta^+, \gamma$	6.5 s; 10 ⁶ y	ex
Mg ²⁵		13 Al ²⁸	(t, y)	β-,γ	2.3 m	ex
Mg ²⁶	11.0%	11 Na ²⁵	(γ,p)	β,γ	1.0 m	14.07
Mg ²⁶		13 Al ²⁶	(p,n)	β^+, γ	6.5 s 10 ⁶ y	4.83
Mg ²⁶		₁₂ Mg ²⁷	(n,γ)	βίγ	9.5 m	ex
Mg ²⁶		13 Al ²⁸	(6,6)	β,γ	2.3 m	ex
Mg ²⁶		13 Al ²⁹	(t, y)	β-γ	6.6 m	ex
Al ²⁷	100.0%	14Si ²⁷	(p,n)	β⁺,γ	4.4s	5.62
Al ²⁷		₁₂ Mg ²⁷	(n,p)	β,γ	9.5 m	1.79

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Al ²⁷		₁₂ Mg ²⁷	(e,γ)	β^-, γ	9.5 m	2.18
A1 ²⁷		13 Al ²⁸	(n, y)	β-,γ	2.3 m	ex
Si ²⁸	92.0%	15P ²⁸	(p,n)	β^+, γ	0.28 s	14.55
Si ²⁸		₁₃ Al ²⁸	(n,p)	β^-, γ	2.3 m	3.86
Si ²⁸		₁₃ Al ²⁸	(e,γ)	β-,γ	2.3 m	4.16
Si ²⁸		₁₅ P ²⁹	(p,γ)	β^+ , γ	4.5s	ex
Si ²⁸		15P ³⁰	(3,7)	β^{+}, γ	2.5s	ex
Si ²⁹	5.0%	₁₅ P ²⁹	(p,n)	β^+, γ	4.5s	5.76
Si ²⁹		13Al ²⁹	(n,p)	β^- , γ	6.6 m	1.95
Si ²⁹		13 Al ²⁸	(γ,p)	β^- , γ	2.3 m	12.35
Si ²⁹		13Al ²⁹	(e,γ)	β-,γ	6.6 m	3.40
Si ²⁹		15P ³⁰	(p, y)	β^+, γ	2.5 m	ex
Si ²⁹		15P ³²	(t, y)	β-	14.5 d	ex
Si ³⁰	3.0%	15P ³⁰	(p,n)	β^+, γ	2.5 m	5.12
Si ³⁰		₁₃ Al ²⁹	(γ,p)	β^-,γ	6.6 m	13.79
Si ³⁰		14Si ³¹	(n,γ)	β^-, γ	2.6 h	ex
Si ³⁰		₁₅ P ³²	(٥,γ)	$oldsymbol{eta}^-$	14.5 d	ex
Si ³⁰		15P ³³	(t,γ)	β-	25.0 d	ex
P ³¹	100.0%	16S ³¹	(p,n)	β^+, γ	2.6s	6.24
P ³¹		₁₄ Si ³¹	(n,p)	β^-, γ	2.6 h	0.68
P ³¹		15P ³⁰	(γ,n)	β+, γ	2.5 m	12.40
Ar ⁴⁰	99.6%	19K ⁴⁰	(p,n)	β¯; K	10 ⁹ y	2.29
Ar ⁴⁰		18 Ar41	(n,p)	β-, γ	1.82 h	ex
K ³⁹	93.2%	20 Ca ³⁹	(p,n)	β+	1.0s	7.61
K ³⁹		₁₈ Ar ³⁹	(n,p)	β-	260.0y	ex
K ³⁹		19 K 38	(y,n)	$\beta^+; \beta^+, \gamma$	7.7 m; 0.95 s	12.88
Ca ⁴⁰	96.9%	21Sc ⁴⁰	(p,n)	β^+, γ	0.2s	14.72
Ca ⁴⁰		19K ⁴⁰	(n,p)	β¯; K	10 ⁹ y	0.53
Ca ⁴⁰		19K ⁴⁰	(e,γ)	β ⁻ ; K	10 ⁹ y	0.83
Ca ⁴⁰		21Sc41	(p,γ)	β+	0.87 s	ex
Ca ⁴⁰		20 Ca ⁴¹	(n,γ)	К	10 ⁵ y	ex
Ca ⁴⁰		21Sc42	(3,7)	$\beta^+, \gamma; \beta^+$	62.0s; 0.66s	ex
Ca ⁴⁰		21Sc43	(t, y)	β^{+}, γ	3.9h	ex
Ca ⁴⁰		22 ^{Ti⁴⁴}	(α,γ)	К	10 ³ y	ex
Ca ⁴²	0.64%	19K ⁴²	(n,p)	β^-, γ	12.5 h	2.87
Ca ⁴²		₁₉ K ⁴²	(e,γ)	β-,γ	12.5h	3.2
Ca ⁴²		21Sc43	(p, y)	β+, γ	3.9h	ex
Ca ⁴²		21Sc44	(7,7)	IT ; β ⁺ , K	2.4d; 4.0h	ex
Ca ⁴⁴	2.1%	21Se ⁴⁴	(p,n)	ΙΤ ; β ⁺ , Κ	2.4d; 4.0h	4.45
Ca ⁴⁴		₁₉ K ⁴⁴	(n,p)	β-, γ	22.0 m	5.35
Ca ⁴⁴		₁₉ K ⁴³	(γ,p)	β-, γ	22.0 h	12.24
Ca ⁴⁴		19 K ⁴⁴	(e,γ)	β-, γ	22.0 m	6.1

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Ca ⁴⁴		₂₀ Ca ⁴⁵	(n,y)	β-	160.0 d	ex
Ca ⁴⁴		21Sc ⁴⁶	(9,7)	IT, Κ; β ⁻ , γ	20.0s;85.0d	ex
Ca ⁴⁴		21Se ⁴⁷	(t, y)	β-, γ	3.4 d	ex
Ti ⁴⁶	8.0%	23V ⁴⁶	(p,n)	β+	0.4s	8.17
Ti ⁴⁶		₂₁ Se ⁴⁶	(n,p)	IT, Κ; β ⁻ , γ	20.0s;85.0d	1.56
Ti ⁴⁶		₂₂ Ti ⁴⁵	(γ,n)	β ⁺ ; K	3.1h	13.4
Ti ⁴⁸	74.0%	23V ⁴⁸	(p,n)	β*; K	16.2 d	4.83
Ti ⁴⁸		21Sc ⁴⁸	(n,p)	β,γ	44.0h	3.24
Ti ⁴⁸		21Se ⁴⁷	(γ,p)	β-, γ	82.0 h	11.4
Ti ⁴⁹	5.5%	23V ⁴⁹	(p,n)	K (no γ)	1 y	1.41
Ti ⁴⁹		₂₁ Sc ⁴⁹	(n,p)	β-, γ	57.0 m	1.19
Ti ⁴⁹		21Sc ⁴⁸	(γ,p)	β-,γ	44.0h	11.4
Ti ⁵⁰	5.3%	₂₃ V ⁵⁰	(p,n)	-	10 ¹⁴ y	3.21
Ti ⁵⁰		21Sc ⁴⁹	(γ,p)	β-,γ	57.0 m	12.2
Cr ⁵⁰	4.4%	₂₅ Mn ⁵⁰	(p,n)	IT, $\beta^+; \beta^+$	2.0 m; 0.28 s	8,60
Cr ⁵⁰		₂₃ V ⁵⁰	(n,p)	_	10 ¹⁴ y	0.60
Cr ⁵⁰		24Cr ⁴⁹	(γ,n)	β^+, γ	42.0 m	13.2
Cr ⁵⁰		25 Mn ⁵¹	(p,γ)	β^+, γ	45.0 m	ex
Cr ⁵⁰		24Cr ⁵¹	(n,γ)	К	27.0d	ex
Cr ⁵⁰		₂₅ Mn ⁵²	(7,6)	ΤΤ, β ⁺ ; K	21.0 m; 57 d	ex
Cr ⁵⁰		₂₅ Mn ⁵³	(t, y)	К	140.0y	ex
Cr ⁵²	84.0%	25Mn ⁵²	(p,n)	Π, β ⁺ ; K	21.0 m; 5.7 d	5.50
Cr ⁵²		23V 52	(n,p)	β-,γ	3.8 m	3.10
Cr ⁵²		23V ⁵²	(e,γ)	β-, γ	3.8 m	3.40
Cr ⁵²		₂₅ Mn ⁵³	(p, y)	K (no γ)	10 ⁶ y	ex
Cr ⁵²		25Mn ⁵⁴	(3,7)	К	314 d	ex
Cr ⁵³	9.5%	₂₅ Mn ⁵³	(p,n)	K (no γ)	10 ⁶ y	1.40
Cr ⁵³		23V ⁵²	(γ,p)	β-,γ	3.8 m	11.1
Cr ⁵³		₂₅ Mn ⁵⁴	(p, y)	K	314 d	ex
Cr ⁵³		₂₅ Mn ⁵⁶	(t, y)	β¯, γ	2.6h	ex
Cr ⁵⁴	2.4%	₂₅ Mn ⁵⁴	(p,n)	К	314 d	2.00
Cr ⁵⁴		24Cr ⁵⁵	(n,γ)	β	3.6 m	ex
Cr ⁵⁴		₂₅ Mn ⁵⁶	(3, 7)	β-, γ	2.6h	ex
Cr ⁵⁴		25Mn ⁵⁷	(t, y)	β-, γ	1.7 m	ex
Fe ⁵⁴	6.0%	27Co ⁵⁴	(p,n)	β+	0.18s	9.70
Fe ⁵⁴		₂₅ Mn ⁵⁴	(n,p)	К	314 d	ex
Fe ⁵⁴		₂₆ Fe ⁵³	(γ,n)	β^+, γ	9.0 m	13.6
Fe ⁵⁴		₂₅ Mn ⁵⁴	(e,γ)	K	314 d	0.1
Fe ⁵⁴		27Co ⁵⁵	(p,γ)	β ⁺ , K	18.0 h	ex
Fe ⁵⁴		₂₆ Fe ⁵⁵	(n, y)	K (no γ)	2.9y	ex
Fe ⁵⁴		27Co ⁵⁶	(3,7)	Κ,β*	77.0 d	ex
Fe ⁵⁴		27Co ⁵⁷	(t, y)	К	267.0d	ex

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Fe ⁵⁶	92.0%	₂₇ Co ⁵⁶	(p,n)	к,β+	77.0d	5.40
Fe ⁵⁶		₂₅ Mn ⁵⁶	(n,p)	β ⁻, γ	2.6h	2.90
Fe ⁵⁶		₂₅ Mn ⁵⁶	(e,γ)	β-, γ	2.6h	3.20
Fe ⁵⁶		27 ^{Co⁵⁷}	(γ,q)	К	267.0 d	ex
Fe ⁵⁶		27 ^{Co58}	(9, 7)	IΤ; β ⁺ , κ	9.0h;71.0d	ex
Fe ⁵⁷	2.0%	27 ^{Co⁵⁷}	(p,n)	К	267.0d	1.30
Fe ⁵⁷		₂₅ Mn ⁵⁶	(y,p)	β⁻, γ	156.0 m	10.6
Fe ⁵⁷		₂₇ Co ⁵⁸	(p,γ)	IT ; Κ , β ⁺	9.0h; 71.0d	ex
Fe ⁵⁷		27Co ⁶⁰	(t,γ)	β-, γ	5.2y	ex
Fe ⁵⁸	0.3%	27 ^{Co58}	(p,n)	IT; Κ, β*	9.0h;71.0d	3.10
Fe ⁵⁸		26Fe ⁵⁹	(n,γ)	β-, γ	45.0 d	ex
Fe ⁵⁸		27 ^{Co60}	(3, 7)	β-, γ	5.2y	ex
Fe ⁵⁸		27 ^{Co⁶¹}	(t,γ)	β-, γ	1.65 h	ex
Ni ⁵⁸	68.0%	29Cu ⁵⁸	(p,n)	β ⁺ , γ	3.2 s	10.80
Ni ⁵⁸		27 ^{Co58}	(n,p)	IT ; Κ , β ⁺	9.0h;71.0d	ex
Ni ⁵⁸		28 Ni 57	(γ,n)	β ⁺ ; K	36.0 h	11.8
Ni ⁵⁸		27Co ⁵⁸	(e,γ)	IT ; Κ, β ⁺	9.0h;71.0d	ex
Ni ⁵⁸		29Cu ⁵⁹	(p,γ)	β^{+} , γ	81.0s	ex
Ni ⁵⁸		28Ni ⁵⁹	(n,γ)	K (no γ)	10 ⁵ y	ex
Ni ⁵⁸		29Cu ⁶⁰	(3,7)	β ⁺ , γ	24.0 m	ex
Ni ⁵⁸		29Cu ⁶¹	(t, y)	β ⁺ , γ	3.3h	ex
Ni ⁵⁸		30Zn ⁶²	(α, γ)	К,β ⁺	9.0 h	ex
Ni ⁶⁰	26.0%	29 Cu ⁶⁰	(p,n)	β^+ , γ	24.0 m	7.1
Ni ⁶⁰		27 ^{Co60}	(n,p)	β-, γ	5.2 y	2.0
Ni ⁶⁰		27Co ⁶⁰	(e,γ)	β-, γ	5.2y	0.80
Ni _{eo}		29Cu ⁶¹	(p,γ)	β ⁺ , γ	3,3h	ex
Ni ⁶⁰		_{2 9} Cu ⁶²	(3,7)	κ,β [±]	9.9 m	ex
Ni ⁶⁰		28Ni ⁵⁹	(γ, n)	Κ (no γ)	10 ⁵ y	ex
Ni ⁶¹	1.1%	29Cu ⁶¹	(p,n)	β^+ , γ	3.3h	3.0
Ni ⁶¹		27Co ⁶¹	(n,p)	β-, γ	1.7 h	0.6
Ni ⁶¹		27 ^{Co61}	(e,γ)	β-, γ	1.7h	2.40
Ni ⁶¹		2 9 Cu 6 2	(p,y)	β+, γ	9.9 m	ex
Ni ⁶¹		27 ^{Co60}	(γ,p)	β-, γ	5.2y	ex
Ni ⁶²	4.0%	29Cu ⁶²	(p,n)	β^+, γ	9.9 m	4.70
Ni ⁶²		27 ^{Co62}	(n,p)	β-; β-, γ	1.6 m; 14.0 m	3.70
Ni ⁶²		27Co ⁶¹	(γ,p)	β-, γ	96.0 m	11.0
Ni ⁶²		27Co ⁶²	(e,γ)	β-; β-, γ	1.6 m; 14.0 m	4.5
Ni ⁶²		28Ni ⁶³	(n,γ)	β-	80.0 y	ex
Ni ⁶²		29 ^{Cu⁶⁴}	(3,7)	κ , β ‡	12.8 h	ex
Ni ⁶⁴	1.0%	29Cu ⁶⁴	(p,n)	Κ , β [±]	12.8 h	2.50
Ni ⁶⁴		28 Ni ⁶⁵	(n, y)	β-, γ	2.56 h	ex
Ni ⁶⁴	-	29Cu ⁶⁶	(7,5)	β-, γ	5.1 m	ex

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLE ENERGY
Ni ⁶⁴		29Cu ⁶⁷	(t, y)	β-, γ	61.0 h	ex
Cu ⁶³	69.0%	₃₀ Zn ⁶³	(p,n)	β^+, γ	38.0 m	4.20
Cu ⁶³		28 Ni ⁶³	(n,p)	β^-, γ	92.0y	ex
Cu ⁶³		29Cu ⁶²	(y,n)	β^+ , γ	10.0 m	10.6
Cu ⁶³		28Ni ⁶³	(e,γ)	β-,γ	92.0 y	ex
Cu ⁶³		29Cu ⁶⁴	(n,γ)	κ,β [±]	12.8 h	ex
Cu ⁶³		30Zn ⁶⁵	(7,7)	Κ, β ⁺	245.0d	ex
Cu ⁶³		31Ga ⁶⁷	(α,γ)	β ⁺ , κ	78 h	ex
Cu ⁶⁵	31.0%	28 Ni ⁶⁵	(e,γ)	β-, γ	2.6h	0.1
Cu ⁶⁵		29Cu ⁶⁶	(n, y)	β^-, γ	5.1 m	ex
Cu ⁶⁵		30Zn ⁶⁵	(p,n)	κ, β+	245.0d	2.15
Cu ⁶⁵		28Ni ⁶⁵	(n,p)	β^-, γ	2.6h	1.28
Cu ⁶⁵		29Cu ⁶⁵	(γ,n)	Κ,β [±]	13.0 h	9.8
Zn ⁶⁴	49.0%	31Ga ⁶⁴	(p,n)	β^+, γ	2.5 m	8.1
Zn ⁶⁴		29Cu ⁶⁴	(n,p)	Κ,β [±]	12.8 h	ex
Zn ⁶⁴		29Cu ⁶⁴	(e, y)	κ, β [±]	12.8 h	0.5
Zn ⁶⁴		₃₁ Ga ⁶⁵	(p,γ)	IT , β ⁺ , K	15.0 m	ex
Zn ⁶⁴		30Zn ⁶⁵	(n,γ)	Κ,β ⁺	245.0d	ex
Zn ⁶⁴		₃₁ Ga ⁶⁶	(7,7)	β ⁺ , K	9.4h	ex
Zn ⁶⁴		₃₁ Ga ⁶⁷	.(t, y)	К	78.0 d	ex
Zn ⁶⁴		₃₀ Zn ⁶³	(γ,n)	β ⁺ ; K	38.0 m	11.9
Zn ⁶⁶	28.0%	31Ga ⁶⁶	(p,n)	β ⁺ ; K	9.4 h	6.0
Zn ⁶⁶		29Cu ⁶⁶	(n,p)	β-,γ	5.1 m	1.8
Zn ⁶⁶		29Cu ⁶⁶	(e,γ)	β-,γ	5.1 m	2.1
Zn ⁶⁶		31Ga ⁶⁷	(p, y)	К	78.0h	ex
Zn ⁶⁶		₃₁ Ga ⁶⁸	(3,7)	β ⁺ , κ	68.0 m	ex
Zn ⁶⁷	4.0%	31Ga ⁶⁷	(p,n)	К	28.0 h	1.9
Zn ⁶⁷		29Cu ⁶⁷	(n,p)	β-,γ	61.0 h	ex
Zn ⁶⁷		29Cu ⁶⁷	(e,γ)	β^-, γ	61.0 h	0.1
Zn ⁶⁷		31Ga ⁶⁸	(p, y)	β*; K	68.0 m	ex
Zn ⁶⁷		31Ga ⁷⁰	(t, y)	β^-, γ	21.0 m	ex
Zn ⁶⁷		32 ^{Ge⁷¹}	(α,γ)	К	12.0 d	ex
Zn ⁶⁷		29Cu ⁶⁶	(γ,p)	β-,γ	5.1 m	8.9
Zn ⁶⁸	19.0%	31 Ga ⁷⁰	(p,n)	β ⁺ ; K	68.0 m	3.70
Zn ⁶⁸		29Cu ⁶⁷	(γ,p)	β^-, γ	61.0h	9.4
Zn ⁶⁸		₃₀ Zn ⁶⁹	(n, y)	IΤ ; β ⁻	14.0h; 52.0m	ex
Zn ⁶⁸		₃₁ Ga ⁷⁰	(3,7)	β-,γ	21.0 m	ex
Zn ⁷⁰	0.6%	₃₁ Ga ⁷⁰	(p,n)	β-,γ	21.0 m	1.40
Zn ⁷⁰		30Zn ⁷¹	(n, y)	$\beta^-, \gamma; \beta^-, \gamma$	3.0 h; 2.5 m	ex
Zn ⁷⁰		31 Ga ⁷²	(3,7)	β^-, γ	14.1h	ex
Zn ⁷⁰		₃₁ Ga ⁷³	(t, y)	β^-, γ	5.0 h	ex
Ge ⁷⁰	21.0%	₃₁ Ga ⁷⁰	(n,p)	β-, γ	21.0 m	0.8

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Ge ⁷⁰		31Ga ⁷⁰	(e,γ)	β-, γ	21.0 m	1.1
Ge ⁷⁰		33As ⁷¹	(p, y)	β^+ , γ	62.0 h	ex
Ge ⁷⁰		32Ge ⁷¹	(n,γ)	К	12.0d	ex
Ge ⁷⁰		33As ⁷²	(7,7)	β^+ , γ	26.0 h	ex
Ge ⁷⁰		33As ⁷³	(t,γ)	K	76.0 d	ex
Ge ⁷²	27.0%	33As ⁷²	(p,n)	β^+, γ	26.0 h	5.20
Ge ⁷²		31Ga ⁷²	(n,p)	β^-, γ	14.1 h	3.20
Ge ⁷²		31 Ga ⁷²	(e,γ)	β-, γ	14.1 h	3,50
Ge ⁷²		33As ⁷³	(p,γ)	К	76.0 d	ex
Ge ⁷²		33As ⁷⁴	(7,6)	π;κ, β [±]	8.0 s ; 18.0 d	ex
Ge ⁷³	7.8%	₃₃ As ⁷³	(p,n)	К	76.0 d	1.20
Ge ⁷³		31Ga ⁷³	(n,p)	β-,γ	5.0h	0.6
Ge ⁷³		31Ga ⁷³	(e,y)	β-, γ	5.0 h	0.6
Ge ⁷³		33As ⁷⁴	(p,γ)	Π; K, β [±]	8.0s; 18.0d	ex
Ge ⁷³	<u> </u>	33 As 76	(t, y)	β-, γ	26.7 h	ex
Ge ⁷⁴	36.5%	33As ⁷⁴	(p,n)	IT; Κ , β [±]	8.0s; 18.0d	3.4
Ge ⁷⁴	-	32 ^{Ge⁷⁵}	(n,γ)	IΤ ; β ⁻ , γ	49.0s;82.0m	ex
Ge ⁷⁴	+	33As ⁷⁶	(9,7)	β^-, γ	26.7 h	ex
Ge ⁷⁴		33 As ⁷⁷	(t,γ)	β-, γ	39.0h	ex
Ge ⁷⁶	7.8%	33 As ⁷⁶	(p,n)	β-,γ	26.7 h	1.90
Ge ⁷⁶		33 As ⁷⁷	(p,γ)	β^-, γ	39.0h	ex
Ge ⁷⁶		32Ge ⁷⁷	(n,γ)	IT, β^- , γ ; β^- , γ	52.0s; 12.0h	ex
Ge ⁷⁶	- 	33 As ⁷⁸	(9, y)	ΙΤ; β ⁻ , γ	6.0 m; 90.0 m	ex
Ge ⁷⁶		33 As ⁷⁹	(t,y)	β-,γ	9.0 m	ex
Zr ⁹⁰	52.0%	41Nb ⁹⁰	(p,n)	IT; β ⁺ , γ	24.0s; 14.6h	5.20
Zr ⁹⁰		39Y ⁹⁰	(n,p)	IT; β^+ , γ	3.2h; 64.2h	1.40
Zr ⁹⁰		39Y ⁹⁰	(e,γ)	IΤ ; β ⁺ , γ	3.2h; 64.2h	2.0
Zr ⁹⁰		41Nb ⁹¹	(p,y)	IT, K; K	62.0 d; long	ex
Zr ⁹⁰		41Nb ⁹²	(9,7)	к	10.1d	ex
Zr ⁹¹	11.0%	41Nb ⁹¹	(p,n)	П, К ; К	62.0 d; long	2.20
Zr ⁹¹		39Y ⁹¹	(n,p)	IΤ ; β -, γ	50.0 m; 58.0 d	0.70
Zr ⁹¹		39 Y ⁹¹	(e,γ)	IT ; β -, γ	50.0 m; 58.0 d	1.0
Zr ⁹¹	- 	41Nb ⁹²	(p, y)	к	10.1 d	ex
Zr ⁹¹		41Nb ⁹⁴	(t,γ)	ΙΤ. β , γ ; β , γ	6.6 m , 10 ⁴ y	ex
Zr ⁹²	17.1%	41Nb ⁹²	(p,n)	К	10.1 y	2.50
Zr ⁹²		39Y ⁹²	(n,p)	β-, γ	3.5 h	2.70
Zr ⁹²		39Y ⁹²	(e,γ)	β-, γ	3.5 h	3.0
Zr ⁹²	1	40Zr ⁹³	(n, y)	β^- , γ	10 ⁶ y	ex
Zr ⁹²		41Nb ⁹⁴	(3,7)	ΙΤ. β -, γ ; β -, γ	6.6 m; 10 ⁴ y	ex
Zr ⁹²		41Nb ⁹⁴	(t, y)	ΙΤ. β , γ ; β , γ	6.6 m; 10 ⁴ y	ex
Zr ⁹⁴	17.4%	41Nb ⁹⁴	(p,n)	ΙΤ. β΄, γ;β΄, γ	6.6 m; 10 ⁴ y	1.50
Zr ⁹⁴	-11270	39Y ⁹⁴	(n,p)	β^-, γ	20.0 m	4.60

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Zr ⁹⁴		39Y ⁹⁴	(e,γ)	β-,γ	20.0 m	4.90
Zr ⁹⁴		41 Nb ⁹⁵	(p,γ)	IΤ ; β -, γ	90.0n; 35.0d	ex
Zr ⁹⁴		40Zr ⁹⁵	(n,γ)	β-,γ	65.0d	ex
Zr ⁹⁴		41 Nb ⁹⁶	(9,7)	β-γ	23.0 h	ex
Zr ⁹⁴		41 Nb ⁹⁷	(t, y)	IΤ ; β ⁻ .γ	1.0 m; 72.0 m	ex
Zr ⁹⁶	3.0%	41 Nb ⁹⁶	(p,n)	β-,γ	23.0h	0.50
Zr ⁹⁶		41 Nb ⁹⁷	(p,γ)	IT; $\beta^-\gamma$	1.0 m; 72.0 h	ex
Zr ⁹⁶		40Zr ⁹⁷	(n, y)	β-,γ	17.0 h	ex
Sn ¹¹²	1.0%	49 In 112	(e,γ)	ΓΥ ΓΥ Κ , β [±]	0.04 s 21.0 m 14.0 m	ex
Sn ¹¹²		49 In 112	(n,p)	ΙΤ ΓΤ Κ , β [±]	0.04s 21.0 m 14.0 m	ex
Sn ¹¹⁶		49 In ¹¹⁶	(e,γ)	IT; β¯, γ β¯, γ	2.2s; 54.0 m 14.0s	2.8
Sn ¹¹⁶	14.3%	₅₁ Sb ¹¹⁸	(9,7)	β ⁺ , κ κ	3.5 m 5.1 h	ex
Sn ¹¹⁶		51Sb ¹¹⁹	(t, y)	К	38.0 h	ex
Sn ¹¹⁶		51Sb ¹¹⁶	(p,n)	β ⁺ , Κ β ⁺ , Κ	60.0 m 15.0 m	5.50
Sn ¹¹⁶		49 In 116	(n,p)	IT; β¯, γ β¯, γ	2.2s; 54.0 m 14.0s	2.50
Sn ¹¹⁷	7.6%	49 In ¹¹⁷	(e,γ)	β^- , IT β^- , γ	1.9h 45.0 m	1.00
Sn ¹¹⁷		51Sb ¹¹⁸	(p,γ)	β ⁺ , κ κ	3.5 m 5.1 h	ex
Sn ¹¹⁷		51Sb ¹¹⁹	(3,7)	К	38.0 h	ex
Sn ¹¹⁷		51Sb ¹²⁰	(t,γ)	Κ β ⁺ , κ	5.8d 17.0 m	ex
Sn117		49In ¹¹⁷	(n,p)	β^- , IT β^- , γ	1.9h 45.0 m	0.70
Sn ¹¹⁸	24.0%	51Sb ¹²⁰	(9,7)	Κ β ⁺ , κ	5.8d 17.0 m	ex
Sn ¹¹⁸		₅₁ Sb ¹¹⁸	(p,n)	β ⁺ , κ κ	3.5 m 5.1 h	4.90
Sn ¹¹⁹	8.5%	51Sb ¹²⁰	(p,γ)	Κ β ⁺ , κ	5.8d 17.0 m	ex
Sn ¹¹⁹		₅₁ Sb ¹²²	(t, y)	IT β [±] , κ	3.5 m 2.8 d	ex
Sn ¹²⁰	32.5%	₅₀ Sn ¹²¹	(n,γ)	β¯,γ β¯	25.0 y 27.0 h	ex
Sn ¹²⁰		₅₁ Sb ¹²²	(9,7)	ΙΤ Κ, β [‡]	3.5 m 2.8 d	ex
Sn ¹²⁰		51Sb ¹²⁰	(p,n)	κ β⁺,κ	5.8d 17.0 m	3.50
Sn ¹²²	4.8	50Sn ¹²³	(n,γ)	β ⁻ , γ β ⁻ , γ	130.0d 40.0m	ex

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Sn ¹²²		₅₁ Sb ¹²⁴	(3, 7)	ΓΓ β ⁻ , γ β ⁻ , γ	21.0 m 1.3 m 60.0 d	ex
Sn ¹²²		₅₁ Sb ¹²⁵	(t,γ)	β-,γ	2.7 y	ex
Sn122		51Sb ¹²²	(p,n)	IT K, $\boldsymbol{\beta}^{\pm}$, γ	3.5 m 2.8 d	2.30
Sn124	6.1%	51Sb ¹²⁵	(p,γ)	β^-, γ	2.7 y	ex
Sn124		₅₀ Sn ¹²⁵	(n,γ)	β¯, γ β¯, γ	9.5 m 10.0 d	ex
Sn ¹²⁴		₅₁ Sb ¹²⁶	(9,7)	$\beta^-, \gamma; \beta^-, \gamma$	19.0 m; 12.5 d	ex ?
Sn124		51 Sb ¹²⁷	(t, y)	β-,γ	93.0 h	ex?
Sn124		₅₁ Sb ¹²⁴	(p,n)	IT β-, γ β-,γ	21.0 m 1.3 m 60.0 d	1.40
Sn 124		₅₀ Sn ¹²³	(γ,n)	β¯,γ β¯,γ	130.0d 40.0m	8.4
Sb ¹²¹	57.0%	₅₀ Sn ¹²¹	(y,n)	β-, γ β-, γ	25.0 y 27.0 h	ex
Sb ¹²¹		₅₁ Sb ¹²⁰	(γ,n)	Κ β ⁺ , K	5.8d 17.0 m	9.3
Sb ¹²³	43.0%	₅₀ Sn ¹²³	(e,γ)	β-,γ β-,γ	130.0d 40.0m	0.9
Sb ¹²³		₅₁ Sb ¹²⁴	(n,γ)	IT β-, γ β-, γ	21.0 m 1.3 m 60.0 d	ex
Sb ¹²³		₅₀ Sn ¹²³	(n,p)	β-, γ β-, γ	130.0d 40.0m	0.6
Ta 181	99.99%	72Hf ¹⁸¹	(n,p)	β,γ	46.0 d	0.20
Ta 181		73Ta ¹⁸⁰	(γ,n)	β ⁻ Κ	8.0 h	7.7
Au ¹⁹⁷	100.0%	78Pt ¹⁹⁷	(n,p)	Π ; β ⁻ , γ β ⁻ , γ	2.8h; 82.0m 19.0h	0.00
Au ¹⁹⁷		78Pt ¹⁹⁷	(e,γ)	IT ; β -, γ β -, γ	2.8h; 82.0m 19.0h	0.30
Au ¹⁹⁷		79 Au 198	(n, y)	β-, γ	2.7 d	ex
Au ¹⁹⁷		81Tl ²⁰¹	(a,y)	K	3.0 d	ex ?
Pb ²⁰⁴	1.3%	81Tl ^{2O4}	(e,γ)	β ⁻ , K	4.1y	0.30
Pb ²⁰⁴		82Pb ²⁰⁵	(n, y)	К	$3 \times 10^7 \text{ y}$	ex
Pb ²⁰⁴		83Bi ²⁰⁶	(9,7)	K	6.4d	ex
Pb ²⁰⁴		83 Bi ²⁰⁷	(t, y)	K, Ĺ	30.0y	ex
Pb ²⁰⁴		84Po ²⁰⁸	(α,γ)	.α,γ:	2.9y	5.19
Pb ²⁰⁴		81Tl ²⁰⁴	(n,p)	β̄, к	4.1y	0.0
Pb ²⁰⁶	26.0%	81Tl ²⁰⁶	(e,γ)	β	4.2 m	1.02
Pb ²⁰⁶		83Bi ²⁰⁷	(p,γ)	K, L	30.0y	ex
Pb ²⁰⁶		84 Po ²¹⁰	(α,γ)	α,γ	138.0 d	5.41
Pb ²⁰⁶		83Bi ²⁰⁶	(p,n)	К	6.4 d	4.35
Pb ²⁰⁶		81Tl ²⁰⁶	(n,p)	β-	4.2 m	0.72

Table II (Continued)

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Pb ²⁰⁷	21.0%	83Bi ²⁰⁷	(p,n)	K	30.0y	3,20
Pb ²⁰⁷		81T1 ²⁰⁷	(n,p)	β-,γ	4.8 m	0.65
Pb ²⁰⁷		81Tl ²⁰⁶	(γ,p)	β^-	4.2 m	7.5
Pb ²⁰⁸	52.0%	81Tl ²⁰⁷	(γ,p)	β-,γ	4.8 m	8.0
Pb ²⁰⁸		₈₃ Bi ²⁰⁸	(p,n)	К, L	$3.7 \times 10^5 \text{ y}$	3.73
Pb ²⁰⁸		81T1 ²⁰⁸	(n,p)	β-,γ	3.1 m	4.20
Th ²³²	100.0%	₉₁ Pa ²³²	(p,n)	β-,γ	1.3d	1.16
Th ²³²		90Th ²³¹	(y,n)	β^-, γ	26.0 h	6.4
U ²³⁸	99.3%	93 Nb ²³⁸	(p,n)	β-, γ	2.1 d	0.90
U ²³⁸		91Pa ²³⁷	(γ,ρ)	β-,γ	39.0 m	7.5

ADDITIONAL REFERENCES TO OBTAIN NUCLEAR DATA:

- 1. National Bureau of Standards Circular #499 - Nuclear Data September 1, 1950
- 2. Table of Isotopes
 Seaborg, G. T. & Perlman, I.
 Rev. of Modern Physics
 Vol. 20, No. 4, October 1948

ACKNOWLEDGEMENTS

The author wishes to acknowledge and thank Messrs. Eric Katz and Jesse Sabo for the assistance in compilation of the data.