On the class of admissible nonlinearities for Lur'e's Problem

by

Allan M. Krall 1,2

Let us consider the system \(N \):

\[
X' = AX + \mu S ,
\]

\[
\mu = \phi(\sigma),
\]

\[
\sigma = \langle C, X \rangle,
\]

where \(X = (x_j(t)) \) is a variable \(n \) vector, \(S = (s_j) \) and \(C = (c_j) \) are constant \(n \) vectors, \(A = (a_{ij}) \) is a constant \(n \times n \) matrix, \(\sigma \) is a scalar, \(\langle C, X \rangle = \sum_{j=1}^{n} c_j x_j \), and \(\phi(\sigma) \) is in general a nonlinear function of \(\sigma \). We set our problem in an appropriate \(L^p \) space with \(L^p \) norm. Multiplication by \(A \) is then a bounded transformation with suitable norm. We assume that the norm of \(S \) is 1 in \(L^p \) and that the norm of \(C \) is also 1 in the dual space. We denote all these norms by \(\| \cdot \| \).

For a system such as \(N \), stability means that \(X \) remains bounded for

1 McAllister Building, The Pennsylvania State University, University Park, Pennsylvania, 16802

2 This research was supported in part by NASA Grant NGR 39-009-041.
all $t > 0$, and asymptotic stability means that X approaches zero as t approaches infinity. We wish to impose conditions on \mathcal{O} so that the system will be stable or asymptotically stable.

We assume that the linear system L:

$$Y' = AY + \mu S,$$

$$\mu = h \sigma,$$

$$\sigma = \langle C, Y \rangle,$$

is stable whenever $k_1 < h < k_2$. Note that this system can be written as $Y' = BY$ where the matrix $B = (b_{ij}) = (a_{ij} + hs_i c_j)$.

Lemma. Consider the matrix solution of $Y' = BY, Y(0) = I$ as an operator on ℓ^p to ℓ^p. If all of the characteristic roots of B lie in the left half of the complex plane, then there exist constants $a > 0$ and $b > 0$ such that $\| Y \| < ae^{-bt}$.

If all of the characteristic roots of B lie in the left half of the complex plane or as simple roots on the imaginary axis, then there exists a constant $a > 0$ such that $\| Y \| < a$.

See Bellman [2; p.36].

Let us now approximate the nonlinearity $\mathcal{O}(\sigma)$ by $\alpha \sigma + \Psi(\sigma)$, where $k_1 < \alpha < k_2$.

Note that the linear system L with $h = \alpha$ is asymptotically stable, and that by the lemma, there exist constants $a > 0$ and $b > 0$ such that $Y(t)$, the solution of L with $h = \alpha$ satisfying $Y(0) = I$, satisfies $\| Y(t) \| < ae^{-bt}$.
Theorem. If \(\varphi(\sigma) \) satisfies
\[
(\alpha - \frac{b}{\sigma}) < \varphi(\sigma)/\sigma < (\alpha + \frac{b}{\sigma})
\]
then \(N \) is asymptotically stable.

If \(\varphi(\sigma) \) satisfies
\[
(\alpha - \frac{b}{\sigma}) \leq \varphi(\sigma)/\sigma \leq (\alpha + \frac{b}{\sigma})
\]
then \(N \) is stable.

Proof. \(N \) is equivalent to
\[
X' = BX + \mu S,
\]
\[
\mu = \psi(\sigma),
\]
\[
\sigma = \langle C, X \rangle.
\]

Thus
\[
X(t) = Y(t)X(0) + \int_0^t Y(t-\tau)\psi(\langle C, X(\tau) \rangle) S \, d\tau.
\]

By the lemma,
\[
\|X(t)\| \leq ae^{-bt} \|X(0)\| + \int_0^t ae^{-b(t-\tau)} |\psi(\langle C, X(\tau) \rangle)| \|S\| \, d\tau.
\]

Now if \(\varphi(\sigma) \) satisfies the hypothesis of the theorem, then
\[
|\psi(\sigma)| \leq \beta |\sigma|, \text{ where } \beta \leq \frac{b}{\sigma}.
\]
Thus
\[
|\psi(\langle C, X(\tau) \rangle)| \leq \beta |\langle C, X(\tau) \rangle|,
\]
\[
|\psi(-C, X(\tau))| \leq \beta \|C\| \|X(\tau)\|.
\]

Since \(\|S\| = 1 \), \(\|C\| = 1 \), multiplying by \(e^{bt} \), we have
By Gronwall's inequality [2; p. 35],
\[e^{bt} \| X(t) \| \leq a \| X(0) \| + \int_0^t a^\beta e^{b\tau} \| X(\tau) \| d\tau. \]

Remarks. 1. A can have characteristic values in the right half plane. That is, the system with no feedback \(\emptyset \) may be unstable.

2. \(a \) and \(b \) depend upon \(\alpha \). As \(\alpha \) approaches \(k_1 \) or \(k_2 \), \(b/a \) must approach zero. Further, \(\alpha - k_1 \geq b/a \) and \(k_2 - \alpha \geq b/a \).

3. Pliss [6] has shown by example that one cannot expect the interval of stability [\(\alpha - b/a, \alpha + b/a \)] to entirely fill the interval \([k_1, k_2] \). (See also Aizerman and Gantmacher [1].)

4. The optimal choice of \(\alpha \) has not yet been determined.
References

