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1. INTRODUCTION 

1.1 Purpose and Scope of Report 

This report  documents the results of a study and laboratory develop- 

ment effort authorized by two task orders  under the subject contract. 

description of work in Task Order No. ASTR-AD-12 reads as follows: 

The 

The contractor shall perform the work necessary to devise, 
t es t  and evaluate a breadboard model of a new technique for 
measuring the frequency instability of high precision oscillators, 
such as a hydrogen maser.  The objective is to demonstrate the 
feasibility of a coherent detection measurement technique which 
suitably expresses the spectral  characteristics of a CW signal 
in a manner that characterizes the frequency instability of an 
oscillator in a useful way by measuring the power density spec- 
t rum of the frequency o r  phase fluctuations of the oscillator out- 
put signal. 

The measurement system shall be applicable to the: evalua- 
tion of the frequency stability of the maser;  evaluation of the 
frequency stability of crystal  oscillators to be used in 1 MHz 
synthesizers; evaluation of the degradation of signals processed 
by synthesizer components (multipliers, mixers, etc. ); evalua- 
tion of synthesized 1 MHz signals; and evaluation of future high 
precision oscillators. 

Seeing that other known and used methods of characterizing 
and measuring frequency instability a r e  inadequate for the tasks 
listed above, the new measurement system should f i l l  an im-  
portant current  need. The measurement of the power spectral  
density of frequency instability is the only method capable of 
providing sufficient data f o r  the performance of the above tasks. 

The complete task shall include the following subtasks: 

a. Automatic Detection Loop Development - Design, specify 
and procure loop components including motor , geartrain, 
resolver and dc amplifier. Construct phase detector and 
loop filter. Utilizing a stable 1 MHz crystal  source and 
a special low frequency spectrum analyzer, test  and de- 
termine performance of the loop including, but not limited 

lock-in range, and distortion. 
to: deieciivri serisitiviiy, C ~ O S  ed-loop f i l t ~ r i i ~ g  p ~ r ~ i ~ e t ~ r ~  , 
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b. Predetection E r r o r  Multiplication Development - The 
object here is to design and develop circuits that a r e  
suitable for e r r o r  multiplication and hence increase 
the sensitivity of the above loop system. The circuits 
must be designed to accept the 1 MHz signals contem- 
plated in NASA's application. The crit ical  elements of 
the e r r o r  multiplication system a r e  the first multiplier 
stages. 
surement instrument, optimize these multipliers for  
minimum signal degradation and implement the system 
for  minimum undesired c ros s  coupling and feedback. 

Utilizing the automatic detection loop as a mea- 

c.  System Integration, Test and Evaluation - Integrate sys-  
tem into a self -contained rack-mounted breadboard con- 
figuration. Devise techniques for absolute calibration of 
output indications in terms of input frequency and phase 
fluctuations and systems parameters. Determine over - 
all detection sensitivity as a function of ra te  of frequency 
fluctuations. 

. 

The description of work in Task Order  No. ASTR-AD-13 reads as fol- 

lows: 

Develop a unified method of measuring and specifying the 
characterist ics of oscillator spectra using the measurement 
technique developed on Task No. ASTR-AD-12. The objec- . 

tive is to derive methods to prescribe cpantitatively and mea- 
s u r e  effects of a number of signal processing techniques (such 
as mixers, frequency multipliers and dividers, etc. ) necessary 
f o r  the generation of an ultra-stable 1 MHz signal from ultra- 
stable sources in the region above 10 GHz. 

Since the above descriptions of work a r e  closely interrelated, it was  

felt appropriate, in the interest of continuity and clarity, to prepare a unified 

report  covering both tasks. 

The scope of our work on Task ASTR-AD-12 encompassed the effort 

required to devise, tes t  and evaluate a new technique for measuring the f re -  

quency instability of high precision oscillators. The major problem here  was  

to design implement, tes t  and evaluate a breadboard system that was shown to 
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evaluate the mean-square spectral density of short-term phase fluctuation and 

the long t e rm frequency fluctuations of two stable sources. The work involved 

primarily the development of automatic detection loop circuits , predetection 

e r r o r  multiplication circuits and the solution of the system interface problems. 

The end result  of this task was a laboratory breadboard that demonstrated the 

feasibility and usefulness of the new technique in practical application. 

The scope of our work on Task ASTR-AD-13 encompassed a reevalua- 

tion of existing methods and recommendation of new cr i te r ia  and methods fo r  

specifying and measuring the performance characterist ics in the light of the 

new capability demonstrated by the Task 12 breadboard system. 

of this task is to devise operationally-suitable methods and procedures for the 

Task ASTR-AD-12 system that will yield the data required for evaluating the 

performance characteristics of ultra-stable oscillators and related signal 

processing techniques. 

The objective 

1.2 The Measurement Strategy 

Previous work by ADCOM, Inc. , under Contract No. NAS8-11228 has 

shown the need for a new approach to oscillator instability, with a requisite 

new characterization of the signal properties of oscillator output and a new 

Basically, this work showed that the performance measurement doncept. 

of an oscillator in a system sensitive to only the zero-crossing o r  phase s ta-  

bility of an oscillator signal as a first-order effect is best  described by the 

mean-square spectral density of the real-t ime frequency deviation random 

process,  S o  (w). 

I 1-4 

0 
The  oscillator signal is described as 

e(t) = a(t) cos  (271. f t +  +(t)), - (1) 
- 

where f is the long te rm frequency of the oscillation, averaged over all time 

of interest  i n  any applications such that it can be considered to be constant, ant 
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&t) is a random process representing the deviation in phase of the oscillation 

f rom the perfect ramp 2 n f t .  Denoting the argument of the cosine function in  

Eq.( l )  as 

and differentiating once with respect to time, we see  that 

i(t) = 2 n f +  &t) (3) 

Now Q(t) can be seen to be a nonzero-mean random process ,  which 

' is split into its average and deviant parts in Eq. (3) ,  such that #t) is a zero- 

mean random process and 

It is the phase process, +(t), whose spectral density, S (01, serves  as the 

best  description of oscillator instability in zero -crossing sensitive systems. 
4 

In that 

either spectral  density is an adequate description of the oscillator signal, and 

either can be used as a basic measurement output to be converted to the other. 

Reference 1 also shows that the performance of those systems which 

measure the elapsed phase o r  time between one zero-crossing of an oscillator 

signal and another such crossing o r  the original crossing delayed in time, such 

as coherent range and range-rate tracking systems o r  time -base measurement 

or generating systems, can be predicted in a first-order statistical sense by 

these deviation spectra. F o r  example, the normalized r m s  range-error  in a 

l 

l 

~ 1 

I 4 
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coherent system caused by range -tone oscillator instability is described bj 

where 7 is the two-way transmission time to and from target, o,(T) is the 
- n 2  range e r ror ,  R( r )  is the average o r  true range to target, and I H(w) I is a 

linear -system characteristic function describing the phase -processing cha 

acteristic of the entire tracking system. This description of oscillator in- 

stability has distinct advantages over its predecessors in that the effect of 

system characteristic function enters in a simple, explicit manner. 

The determination of S '(a) of a given oscillator permits the predi 

of its performance in any number of different systems. Thus, any oscillat 

stability measurement strategy must be evaluated in the light of its efficac< 

yielding either S'(w) o r  S (a), regardless of what quantity is fundamentall, 

measured, o r  how the measurement is conducted. 

4) 

4) d 

Most previous descriptions of oscillator zero -crossing stability h 

been based on the concept of a fractional frequency instability, defined as 1 

r m s  deviation in frequency of an oscillation over a time r divided by the a 

age frequency 'during this interval. W e  have chosen to call  this normalize( 

quantity I(T). Pr io r  techniques for the measurement of oscillator instabili 

have attempted to determine I(T) , usually through counting and accumulatir 

time increments of an integral number of oscillation periods. 

measured quantity is thus the period of an-oscillation, whose rins value in 

t ime T divided by the accompanying average value can be shown to be appr 

mately equal to I(T), if the value of I(r)  f o r  any given r is small. Unfortun; 

this technique does not readily yield the desired spectral information 

we must choose an alternate technique. 

The basic 

3 J 4  , , 
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Since there is a duality between correlation functions and spectral 

densities in any wide -sense stationary random process, we  could obtain spectral 

data by a basic measurement of the autocorrelation function of the instantaneow 

frequency of an oscillation, or,  for that matter, describe the performance of 

an oscillator in a system in te rms  of a correlation function. Such a descrip- 

tion, however, would involve convolution integrals, and is not a s  tractable 

mathematically a s  Xq. (7) if both are formulated to yield those parameters of 

performance directly related to the left s ide of Eq. (7), particularly when a 

systems characteristic function (an impulse response) is involved. We prefer 

the spectral  description. In a technique for the determination of spectra, cor -  

relation functions a r e  an extra complication and a source of an extra empirical 

inaccuracy. Thus we propose to attack the problem of direct measurement of 

S ' (w)  and/or  S (w). 4 4 
1.3 Goals of Measurement System Performance 

The requisite performance of the measurement system cannot be de- 

termined without some ap r io r i  knowledge of the constituents of the spectra we 

desire and some insight into the mechanisms involved in their creation. 

addition, we must be cognizant of the theoretical limitations of spectral mea- 

surement and evolve some compensations o r  alternatives if  these limitations 

prove important in our particular problem. 

In 

Equation (7) shows the necessity of an integration across  the origin 
z of the spectrum S '  (a) IH(w)l . Since H(jw) in any system within the class  4 

considered here  is always some sor t  of lowpass characteristic, we may be 

certain that the low-frequency portion of S '  (a) is of major interest. There 4 
is always sufficient attenuation roll -off slope with increasing frequency in 

2 I H(o) I , such that the region l im S (0) wil l  not be of interest, as we shall 
w+co 4 

see. Figure 13, p.'53 of Ref. 1, shows the expected shape of S '  (w) of any 4 
oscillator, and the mechanisms underlying the various portions of the general 

6 

~~~ ~ ~~ ~ 
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spectrum a r e  described within the reference. The only constituent known to 

contribute a broad region of positive slope to S (0) is that caused by white 

noise added to the signal external to the basic oscillation mechanjsm. This 

external noise produces an w 

t e rm is 6 dB/octave, such that arguments invoking the limiting action of 

I H(w) I co a r e  upheld. In general, there also is adequate 

bandpass filtering in an oscillator after the oscillation loop to terminate the 

positive slope. 

to additive white noise within the oscillation loop. Finally, as w-' 0, there is 

a region of negatively sloped spectrum, whose asymptotic behavior is usuaIly 

a /  I wI . 
generally considered to be the result  of "flicker noise." The presence of the 

observed "random -walk" nature of the phase characteristic of an unlocked 

oscillator is predictable if  S '  (w) has  a nonzero density at the origin, so it is 

reasonable to presume that such is the case. 

to insure that S' (0) remains bounded throughout, so it is clear  that an a /  I w I  

shape cannot prevail all the way to the origin. 

at the origin is not known, and perhaps never will be; suffice to say that it 

levels o r  dips in some way as to be bounded, but not zero. 

b 
2 

t e rm in S '  (w). The logarithmic slope of this 4 .  
2 

in Eq. (7) a s  

There is a region of flat spectral density which is attributable 

This is a Lleoretically predictable and an actually observed phenomenoi 

b 
Energy arguments a r e  sufficient 

b 
The precise behavior of S '  (a) b 

I t  is obvious that spectral information cannot be obtained either a s  w-' 00 

or w-' 0. 

I H(w)  I , and sin (UT /2)/(w / 2 )  

The problem at w-' 0 is important considering the behavior of S' (a), 
2 2 2 b 

as w-' 03. Some alternative must be developed 

to handle the effect of S '  (0) close to the origin. 

the slowly varying o r  long-term frequency effects of flicker noise a r e  indis- 

tinguishable f rom those phenomena generally described as drift. 

stantaneous frequency of an oscillator signal is observed and sufficiently 

narrowband filtered, the drift phenomena approaches the appearance of a 

deterministic function of time, such as that shown in Fig. 1. 

In a real-time presentation, b 

If the in- 

- .  

7 - ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 



I 

10 t 

a-1018 

Fig. 1 Narrowband Filtered Frequency Process  vs. Time. 

With  sufficient filtering (but not infinite averaging) we can approximate 

the random characteristic of the frequency by such a deterministic function of 

time. This approximation changes the characteristic of an initially distributed 

spectral region in S '  (a) to that of an impulse at the origin whose a rea  is time- 

varying. Now, if  we can determine the maximum bandwidth, called 27rB, re- 

quired to establish a reasonable approximation of this kind, we can lump that 

distributed spectrum from a =  0 to a =  f 27rB into aspecular component at w =  0. 

The contribution to any system e r r o r  of this component can be handled without 

recourse to random theory, and we can handle the problem at w-' 0 by elimi- 

nating the region - 27rB < w < 27rB from the kernel of Eq. (7).  Nevertheless, 

1 /2rB may represent such a long time that spectral measurement in this regior 

may still be impractical. 

will  retain its shape all the way to I w I  = 27rB once the a/lwl flicker component 

becomes dominant as ~ U J I  decreases toward zero. 

only to preserve spectral resolution toward the origin until the flicker -noise 

spectrum is determined with sufficient accuracy, and then extend the shape 

toward the origin as far as it is necessary for the purposes of analysis. It 

appears that conventional period counting techniques a r e  adequate to measure 

the quasi-deterministic drift curve. 

4 

It is reasonable to presume, however, that S '  (0) 4 
Thus, it seems necessary 
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The relative strength of constituents in a given S '  (w) reflects the type 

F o r  example, a hard oscillation such as that produced by a VCO 

spectral com- 

4 
of oscillation. 

2 oscillator running unlocked would have a small additive noise w 

ponent and relatively large flat-spectrum and a /  I w I components. A weak os - 
cillation designed f o r  maximum long-term stability, such as that from atomic 

frequency standards, would have a large w 

a / l w l  components. . Since it is the small  1 0 1  region of S '  (a) that represents 

the "long-term" properties of frequency instability, it is reasonable to pre  - 

sume that atomic standards, being the most long-term stable of any class  of 

oscillators, would exhibit minimum flicker components. The authors have - 
seen proof that 1/2nB of one hour represents adequate average time for  the 

quasi-deterministic drift approximation to hold in the case of a hydrogen maser 

whose long-term stability seems to be the best  yet observed. 

soning, a lower limit of w =  1/1 hour, o r  w =  1 / 2  hour, is probably adequate for  

spectral  resolution in  general. 

2 component, and small  flat and 

4 

By this r ea -  

5 It has been shown that the optimum stability and accuracy in conver- 

gence to the spectral density of a real-time process is assured if the co r re -  

sponding spectral  density is flat, i. e. ,  a constant. 

S' (a) components it is clear that we should measure S '  (w) for all I w I  
where w 

increases, and we should measure S (w) for I w I  2 w . 
flattest spectrum available in any range of w without any additional "pre- 

whitening" filtering. 

In light of the anticipated 

w 

is that value where external additive noise dominates S (a) as I w I 4 4 0 

0 4 
This choice affords the 4 0 

The accuracy requirements for the measurement a r e  not extreme, at 

leas t  initially. The technique is new, and almost any spectral data that can be 

obtained will be superior to previous information for this c lass  of applications. 

The immediate goals a r e  sensitivity and freedom from drift. I t  is clear  that the 
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threshold of the tes t  set, defined a s  those minimum residual spectral densities 

calibrated in units of S ' (a) and S (a) that a r e  present a t  the output of the de- 

vice and a r e  caused by the measurement device itself, independent of the input 

oscillator source o r  sources, will have to be extremely low. Exactly how low 

these residual spectra must be cannot be known before oscillator measurement: 

are made and the state of the oscillator ar t  in t e r m s  of S '  (a) is determined. 

The sensitivity of the tes t  se t  is thus a post facto requirement. The same can 

be said of drift, although we have a reasonable limit on the maximum time in- 

terval over which drift must be considered. 

of time constants and bandwidths must be maintained to eliminate any signifi- 

cant coloration of the measured oscillator instability spectra and to prevent 

any AM to PM conversion effects. 

formidable by the necessity of the tremendous rejection of the 27rrf portion of 

0(t), as seen in Eq. (3) ,  that must be accomplished before instability can even 

be detected. 

design problems and some sophisticated techniques for  their solution. 

are described in detail in the following sections. 

4 4 

4 

It is also clear  that careful contro 

The sensitivity requirement is made more  

As might be expected, these requirements have led to difficult 

These 
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2. SYSTEM DESCRIPTION AND OPEFLATION 

2.1 Principle of Operation 

The basic configuration of the measurement system was described in  

Sec. 4.4 of Ref. 1. 

signal extraction and processing section, the e r r o r  multiplication section, and 

the output analysis section. 

It consists of three functional sections a s  shown in Fig. 2: the 

It was shown in Sec. 4.3 of Ref. 1 that the requisite rejection of the 

average -frequency (f) cannot be achieved with one oscillator signal alone. 

Thus, two independent oscillators, generating two 1 MHz oscillations at almost 

identical average frequencies, supply inputs to the measurement system. An 

automatic detection loop, incorporated in the signal extraction and processing 

section, maintains a synchronous quadrature relationship between these two 

signals, thus essentially removing all average frequency drifts. 

1 

---"'a --- 3 Fluctuations 

Error 
Mu1 t i  pl ier 
Section 

R-2622 

Fig. 2 Basic Configuration of the Measurement System. 
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The automatic-detection loop, illustrated in simplified form by Fig. 3, 

is essentially a second-order electromechanical phase -locked loop. The motor 

and R F  resolver operate on one of the two input oscillations to simulate a VCO. 

The average frequency difference between the two oscillators, denoted by AT 

and representing the relative phase drift between the two oscillators, can be seen to 

be analogous to a doppler offset frequency in a conventional tracking PLL. 

The particular implementation of the automatic-detection loop shown 

in Fig. 3 has certain desirable properties. The loop has been designed so that 

the locked-loop transference from input frequency difference to the lowpass 

Phase 
Detector e,( t 1 - 

output y(t) is maximally flat (second-order Butterworth). 

analogous to an F M  discriminator output for  all difference -frequency fluctuation 

components occupying the spectrum from dc almost up to w 

frequency. 

put. 

drift. 

fluctuation components are greatly attenuated (at 12  dB per octave). 

basic sensitivity before dc gain of 2n volts per hertz is very high. 

Thus, this output is 

the loop cutoff 
C’ 

However, it has certain advantages over an F M  discriminator out- 

First, there is no long t e rm o r  temperature -dependent center-frequency 

Second, because of the loop lowpass characteristic, the high-frequency 

Third, the 

a *  
T x (  t )  

L 

a Phase 

t 

R-IO196 

F I u c tu a t i ons 

Fluctuations 

Motor 

- 
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loop filter H(S) 



The locked-loop transference from input phase difference to the high- 

pass output x(t) is flat from frequencies slightly greater than w . 
output is analogous to a phase detector output, but it too has certain advantages 

over conventional open-loop techniques, Since the signals are continuously 

maintained in quadrature at the detector, several problems are  eliminated. 

First, there is no variation in  the phase-to-voltage transference with changing 

phase, 

does not vary with changing phase. Third, there is no abrupt change in the out- 

put signal at 27r intervals as happens in open-loop systems. In addition to these 

advantages, the system possesses a high phase-to-voltage sensitivity of 10 volk 

per  radian before post-amplification which, combined with a low noise level, 

provides very high signal-to-noise ratio. 

Thus, this 
C 

Second, the rejection of AM components is maximized, and this too, 

The automatic-detection loop thus provides two output signals: the f i rs t  

x(t), is a signal proportional to the phase-difference fluctuations passed through 

a maximally-flat highpass filter; while the second, y(t), is a signal proportional 

to the frequency-difference fluctuations passed through a maximally-flat lowpas: 

filter. 

to the output analysis section. 

These two output signals a re  fed, after amplification and interfacing, 

The output analysis section contains primarily a low-frequency 

spectral-density analyzer, which can process either x(t) o r  y(t) and graphically 

display the corresponding spectrum. Spectral analysis at frequencies below the 

lower  frequency limit of the analyzer can be accomplished by recording and 

digital processing of the fluctuations. Providing that the statistical independence. 

of all oscillator fluctuations is assured, two -at-a-time measurements upon 

three oscillators are sufficient to determine the fluctuation spectra of each. 

The predetection e r r o r  multiplier section is a group’ of frequency 

multipliers and mixers operating on the two 1 MHz oscillator signals whose 

phase o r  frequency fluctuation spectra are to be measured. E r r o r  multiplication 
. -  proviaes effective preueLeLLIuL1 ’ - A -  -A:-- ---- wLI n- +ha cLLc n h ~ c p  rh--uu Qnd ---- frequency fluctuations,and’ 

hence an increase of the overall sensitivity of the measurement system, where 
- 
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sensitivity is defined as the lowest spectral densities S (a) o r  S-(a)  that can be 

reliably measured. 
4 4 

To couple properly with the automatic detection loop, the 

error multiplier accepts 1 MHz signals as inputs and provides 1 MHz signals 

as outputs with enhanced phase and frequency fluctuations. 

2.2 Physical Description 

The three sections of the measurement system were fabricated in the 

form of several self-contained chassis. 

gogical purposes; here we a re  concerned with the optimum grouping of circuits 

into chassis in te rms  of signal isolation, maintenance, and the feasibility of 

future improvement of the test set. Thus we have designed and constructed 

according to a minimum signal processing approach, and have organized the 

test set as an interconnection scheme between rack-mounted self -contained 

chassis. Each of these chassis presents standard 50 ohm input and output 

impedances (with the exception of the output analysis section), permitting 

rapid changing of chassis. 

surement system can be updated within minimum difficulty. Inherent in the 

operation of the system is the need to change various gains, loop time con- 

stants, and operating modes. We have attempted to make this operation as 

simple as possible with the aid of switches and control knobs. 

pictorial representation of the equipment. 

of the equipment a re  described in detail in the next few sections. 

2.3 

The sections were chosen for peda- 

A s  improvements in  circuitry a re  made, the mea- 

Figure 4 is a 

The physical and electrical feature; 

Description of the Signal Extraction and Processing Section 

The signal extraction and processing section consists of three chassis 

The three chassis and a reference source, interconnected as shown in Fig. 5 .  

are the baseband chassis, the electromechanical chassis and the R F  chassis. 

The reference source is a General Radio 11 15 -B standard frequency oscillator 

14 
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The RF chassis, in conjunction with the resolver in the electromechan- 

ical chassis, processes the two 1 MHz input signals and produces an output 

consisting of the instantaneous phase difference between the two signals including 

all phase components from dc to about 10 kHz. 

The baseband chassis accepts the phase-difference signal and operates 

on it to provide an e r r o r  voltage for the motor which drives the resolver, thus 

closing the phase-locked loop. 

meter indicdtors for both the highpassed phase difference signal x(t) and for the 

low p a s s e d f r e que n cy - di f f e r e n c e sign a1 y (t ) . 

In addition, it provides selectable gain and 

The electromechanical chassis contains the RF resolver, its drive 

motor, and dc amplifier. The motor is a dc servo type with a speed-to-voltage 

transference of about 5 rad per sec/volt. A tachometer/generator is integrally 

mounted with the motor and is used in a feedback loop around the motor to r e -  

duce the minimum stiction speed and to adjust the total speed-to-voltage t rans-  

ference (@ of the servo loop to 1.0 radians per sec/volt. 

A General Radio Type 11 15 -B Standard Frequency Oscillator supplies 

a 1 MHz signal fo r  reference. 

are available, they can be substituted. 

However, i f  other signals of reference quality 

The chassis are described in more detail below. 

The RF chassis accepts the two 1 MHz input signals in channels A and 

B, as shown in Fig. 6. 

detector. 

input of the phase detector. 

Channel A drives the split-phase input of the phase 

Channel B, after passing through the resolver, drives the ser ies  

The signal conditioners at the input of each channel produce +20 dBm 

output for  any input signal amplitude between -13 dBm and +17 dBm. The output 

of the signal conditioner in each channel is  brought to the front panel and patchec 

into the following amplifier on a coaxial cable. This allows the e r r o r  multiplier 

to be inserted i n  either channel at this p i n t .  After the e r r c r  ~ u ? t i p ? i e r  patch, 
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_ .  

Fig. 6 Block Diagram of the R F  Chassis. 

each channel has a 7 dB power amplifier. 

detector while channel B is passed through the resolver and a 34 dB post- 

amplifier, which makes up for the attenuation of the resolver, and is then fed to 

the phase detector. 

produce readings of 85 * 2 on M4 and M5 to maintain the phase detector trans- 

ference for  proper system operation. 

motor in such a way that the two signals are maintained in quadrature at the 

phase detector. 

Channel A goes directly to the phase 

The R F  levels at the input to the phase detector must 

The resolver is driven by the servo 

The phase detector is fed by two equal-amplitude sinusoidal signals. 

This ensures maximum sensitivity to P M  fluctuations and minimxn sensitivity 

to AM fluctuations. 

radian. 

and is available on the front panel of the R F  chassis in  a Twinax connector. 

and M7 must read 76 f 2 for  proper system operation. 

loop is out of lock, M6 and M7 wil l  oscillate i n  quadrature. 

amplifier subtracts the two outputs of the phase detector and produces a single- 

ended output a t  100 volts!radian clipped at  512 vnltc. The n e t  characteristic of 

The phase detector is se t  up for a transference of 10 volts/ 

The dc level of the phase detector output is indicated on M6 and M7, 

M6 

When the phase-lock 

The differential 
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the R F  section is a high gain phase-to-voltage transference which is independent 

of the R F  input level and which possesses a high dynamic range of phase 

linearity . 
The baseband chassis contains the loop filter f o r  the phase-locked 

loop, the output amplifiers for x(t) and y(t) phase and frequency fluctuation out- 

puts, and the offset bias controls, as well a s  metering of the system operation 

as shown in Fig. 7. 

The input signal from the output of the phase detector differential 

amplifier is applied to the r e a r  connector J1. Since this signal consists of the 

phase fluctuations, it is amplified with gain f rom 0 to 60 dB selectable in 10 dB 

steps by S1, and brought out to the front panel connector 52 as the x(t) output at 

levels of -40 to -100 dB with respect to a radian (dB rad) per volt of output. 

There are two meters  connected to this output line. M1, labeled "phase e r ror ,  ' 
is a center-zero dc meter with voltage sensitivity selected by switch S2 from 30 

millivolts ( -30  dB) full scale to 30 volts (+30 dB) full scale in 10 dB steps. This 

switch should never be left on a range lower than 10 volts (+20 dB) as the ampli- 

fier can severely overload the meter. The high sensitivity ranges a re  only for 

setup and calibration and a r e  not normally required in the operation of the sys- 

tem. This meter indicates the dc and very low frequency (less than 2 Hz) 

components of the x(t) output. 

full  scale peak reading voltmeter. This meter monitors the total (dc plus ac) 

peak level of the x(t) output and is used to indicate the maximum safe gain for  

that output. 

M2, labeled "phase output monitor," is a 10.volt 

For  linear operation the peak phase level should never be allowed 

to exceed 50% on this meter. If the output level exceeds 10070 then the output 

amplifier w i l l  be severely clipping the signal, thus resulting i n  a degraded o r  

erroneous output spectrum. 

should be reduced such that M2 reads less than 5070. The system has been so 

designed that it does not saturate as long as  M2 reads l e s s  than 50% for some 

setting of S1. 

To correct this condition the gain setting of S 1  
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Fig. 7 Block Diagram of the Baseband Chassis. 
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The input signal from the R F  chassis is also applied to the loop fi l ter/  

The feedback time constants of this amplifier a r e  selected by S3 so amplifier. 

that the loop cutoff frequency w is adjusted in  5 dB steps of 0.16,0.5,1.6, 5, and 

16  Hz. 

o r  eliminate a forced transient in  a very few seconds. 

procedure is to select the widest loop bandwidth, and then t r im  the bias until the 

phase e r r o r  meter M1 indicates synchronous operation. 

finitely averaged phase detector output, and will null when the loop is in proper 

trim. Once the loop acquires, w can be switched to a lower value with only a 

short pause to allow minor perturbations to die out and data can then be taken. 

C 

In the 5 and 1 6  Hz settings the loop wil l  generally acquire a new signal 

The normal acquisition 

M1 responds to the 

C 

The output of the loop filter/amplifier goes to the y(t) output amplifier 

and to the electromechanical chassis. In the 16 Hz range of w a large transient 

can cause the loop to oscillate. This oscillation appears on the resolver dial 

and the meters, and can be stopped by temporarily damping the dial by hand. 

C 

The y(t) output is derived from the signal at the input to the electro- 

mechanical chassis and is compensated by an amplifier whose upper frequency 

roll-off is the same as w and is also selected by S3. 

the y(t) output amplifier is 27r volts per Hertz of frequency offset. 

put amplitude is controlled by S4 and appears on the display panel at two BNC 

connectors labeled 53 and 54 for f l 0  volt full scale measurement; one phone 

jack, 55, for  current measurement of 50.5 MA into 1400 ohms; and on the 

"Frequency Offset" meter, M3, which is calibrated in Hertz. Full scale range 

are fO.OO1 to rt 1.0 Hertz in 1,2.5, 5 sequences for convenient linear recording 

on a f 5 division s t r ip  chart. 

The signal at the input to 

The y(t) out- 
C 

When two oscillator signals which have a nonzero average frequency 

offset are tobe analyzed, a calibrated dc bias can be introduced at the input of the 

electromechanical chassis to allow increased sensitivity of the y(t) output and 

* t o  reduce the possibility of saturation in the loop amplifiers. The magnitude of 

the error sip-83 a.nd the deflpr.t.i.nn o f  the frequency offset m-et.er will  he recli.Ir.~d 
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by the amount of bias added. 

average reading on the frequency offset meter for a constant frequency offset. 

Switch S5 and the ten-turn potentiometer control labeled "offset bias" determine 

the amount of bias injected into the system, and a r e  calibrated in Hertz with full- 

scale ranges of -1.0, -0.1, -0.01,0,+0.01,+0.1,+1.0 Hz and a vernier of 0-1000 

for the range selected. Thus there is a frequency resolution of 10-5Hz in the 

bias setting. 

This bias can be adjusted to produce a zero- 

The electromechanical chassis, illustrated in Fig. 8, consists of the 

RF resolver, motor/tachometer, feedback amplifiers and power amplifier. The 

tachometer and amplifiers a r e  used in a feedback loop, called the minor loop, 

around the motor. 

motor by three orders  of magnitude to an acceptable level. 

resolver is coupled to a front-panel indicator dial which is graduated indegrees 

This loop serves  to reduce the effective sticktion of the 

The shaft of the 

This dial rotates with the motor of the resolver and directly indicates the phase 

shift introduced on the signal in channel B. 

the power amplifier are available on the front panel. 

2.4 

The input and output terminals of 

Description of the Output Analysis Section 

There are two output signals from the baseband section; one is directlj 

proportional to the highpassed phase fluctuations x(t), and the other is directly 

proportional to the lowpassed frequency fluctuations Y ~ L I .  

section, illustrated in Fig. 9, provides direct analog spectral analysis of either 

of these signals in the frequency range of 1 to 5000 Hz. 

analysis eq-&pment are a signal proportional to the spectral density at a par- 

ticular frequency and a signal proportional to that frequency. 

analysis equipment is a Quan-Tech Laboratories modified model 304-R Wave 

Analyzer (Spec. 2222). 

I ,le output analysis 

The two outputs of the 

The heart of the 

This analyzer provides both manual and automatic 

frequency sweep, selectable bandwidths and averaging times, selectable sweep 

spans and rates,  and linear dc analogs as output functions. 

dual-channel logarithmic converter is used to provide linear decibel and loga- 

rithiiiiz fi-equericy v e r . s i u r i s  wl" tile wave  analyzer outputs. 

A Moseley 7560A 

-. inus, with tnis 
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combination, the output presentation on the X-Y recorder can have either linear 

or logarithmic amplitude and frequency scales to best f i t  the signals being pro- 

cessed. 

mode and has about 50 dB dynamic range. The frequency scale (x-axis) is 

operated.linearly for presentation of line frequency and other harmonically 

related components, and is operated logarithmically for broadband components 

to facilitate interpretation of signals which vary exponentially with frequency 

(such as l / f ) .  The exponential sweep generator may be used for logarithmic 

frequency measurements to provide a constant sweep speed of the pen along the 

x-axis, and thus a constant effect from the averaging time constant in the am- 

plitude output. The Quan-Tech wave analyzer produces a dc frequency analog 

output of 1 millivolt per Hertz (i. e. , 0-5 volts for 0-5 kHz). The minimum 

useful input to the logarithmic converter is about 10 millivolts, thus a dc 

amplifier is used to compatibly interface these units when low frequencies a r e  

used. 

The amplitude scale (y-axis) is usually operated in the logarithmic 

2.5 Description of the Error Multiplier Section 

The error multiplier section, shown in Fig. 10, is a self-contained unit 

which can be patched into either channel to multiply the spectral distribution 

and offset of the oscillator instabilities in that channel by a factor of 16. 

error multiplier requires a 5 MHz input at +14 dBm as input to J 6 .  

signal to be multiplied must be applied to J 7  at +20 dBm level, either separately 

generated o r  as the output of a signal conditioner. 

plied in four doublers to 16 MHz and the 5 MHz signal is tripled to 15 MHz. 

These two signals are mixed and the resultant 1 MHz signal is filtered and 

amplified to +20 dBm at 58. 

supplied wi th  the system provides 5 MHz at +14 dB and has a 1 MHz output whicl 

can be used as the reference signal. 

The 

The 1 MHz 

The 1 MHz signal is multi- 

The Type 1115-B Standard Frequency Oscillator 
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3 .  ANALYSIS AND DESIGN OF THE AUTOMATIC -DETECTION LOOP 

3.1 Analysis of the Ideal Loop 

A linearized model of the automatic-detection loop, shown in Fig. 11, 

represents the behavior of the loop under lock conditions. Let the two input 

signals to the loop be described by 

and 

e 2 (t) = a2(t) cos e#) (9) 

where 8 (t) and 8 (t) have the same components as described in Eq. (2). Klis 

the total loop gain exclusive of the motor, and thus includes the transference of 

the phase detector - which in turn depends on the amplitude of the input signal - 
as well as those gains associated with amplifiers within the loop. 

shaft-rotation-rate to input-voltage of the idealized minor loop expressed in 

radians per  sec/ volt, and $I (t) is the resolver shaft position or  radians of phase 

shift introduced by the resolver in a non-modulo 27r or open-ended sense. 

1 2 

fi is the 

_ _  . 

. .  

Fig. 11 Linearized Model of the Automatic Detection 
Loop. 
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A s  explained in Ref. 1 the input v(t) to the linearized model is the 

instantaneous phase difference, written as 

where we have defined 
- A -  - 

Af = f 1 - f 2  

and 

A+(t) +l(t) - d2(t)  

of Eq. (8) and Eq. (9). 

equal to 27rA7 in order  to preserve the synchronous, quadrature relationship at 

the detector input. 

that the linear transfer functions of the loop are 

Under conditions of lock, the resolver rotates at a rate 

By a proper selection of parameters, we can establish 

and 

where the parameter choices satisfy the conditions 

and 

K BT >>I. 1 1  
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Utilizing Eqs,(lO),(13) and (1 4) and accounting for the dc components 

generated by the phase detector to maintain lock, we show in Appendix A that 

the output spectral densities a re  given by 

and 

where A and A a r e  calibration factors. Inequalities (16) and (17) establish 

that 1/T2 is small  enough to be negligible within the passband of the filtering 

characteristic in Eq. (18), so that we have 

1 2 

Both Eq. (18) and Eq. (20) show highpass filtering functions operating 

on the sum of S+ (a) and S+,(W). This sum is the spectrum of the difference- 

phase fluctuations A+(t), which we denote by SA+(o). Equations (19) and (20) 

show complementary second-order Butterworth (maximally-flat) lowpass and 

1 

(a) respectively. T h s ,  tbey both 
A P  A+ 

highpass filtering operating on S 

have the same 3 dB cutoff frequencies, oc. 

these a r e  precisely the filtering functions desired for  the measurement of the 

Chapter 1 has established that 

constituents of the oscillator instability spectra. 

W e  shall show in the next two sections that the practical limitations i n  the 

minor -loop design make it impossible to exactly achieve these maximally-flat 

character is t ics .  We shall then show how the actual design approximates these 

character i E t i C  s .  
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3 . 2  Analysis and Desipn of the Minor Loop 

The block diagram of the electromechanical chassis shown in Fig. 8 

In turn, a linearized model may be simplified into the one shown in Fig. 12. 

of the minor loop can be drawn as in  Fig. 13. 

stants in  the amplifiers, we may write the closed loop transference from 

ein(t) to e (t) as  

If we may neglect all time con- 

0 

where T(s) is the transference of the tachometer, and M(s)  is the transference 

of the motor. 

We choose to lump all mechanical effects of the motor, tachometer, 

To a first ap- and resolver into the mechanical time constant of the motor. 

proximation, 

where T is the electrical time constant of the lnotor armature, and T is 

the mechanical time constant of the armature and shaft loading. 

impedance on the tachometer is high enough, we may neglect any electrical 

time constant in the tachometer, so that its transference becomes pure d i f -  

fer  entiatio n : 

e m 
If the loading 

Inserting (22)  and (23)  i n  (21)  we obtain 
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Fig. 1 2  Block Diagram of the Minor Loop. 

. .  

Fig. 13 Linearized Model of the Minor Loop. 
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The effective bandwidth of the transference e (t) to $(t) is requii in  
to be sufficiently wide to introduce negligible distortion of the automatic- 

detection loop filtering functions shown inFigs. (13) and (14). The largest  w 

we select will produce the most susceptibility to minor-loop bandwidth. It 

is clear  that the effect of this bandwidth will  be observable first at the A + ( t  

output of the automatic-detection loop, in that this output contains the highe 

frequency components. In general, the transference M(s) will  not be suffic 

ly wideband, so that the feedback in the minor loop wi l l  be required to wide 

this bandwidth. 

C 

Let us plot a sample root -locus of the open loop (to unity feedback p 

transference: 

aK2K3K4 1 
T T  K3KqM(s) T(s) = 

e m  

This plot is shown in Fig. 14. 

at Q = -1 /T 

T is sufficiently large so that the pole loc 

As the loop gain is increased, 
m 

l ies  very close to the origin. m 

Fig, 14 Root-Locus Plot 01 &e Bpeii LGGP Trznsference 
of the Minor Loop. 
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two roots at l /Te  and 1/T 

traveling equidistantly along the line parallel to the j w  axis given by: 

move toward each otherthenbecome complex, m 

- ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 

T + T  m e 
2T T m e  

Do % 

Thus the transference E (s) /E.  (s) is dominated by a pair  of relatively- 

resonant complex poles. If T is small  enough, then o CY 1/2Te, and the 

value of T 

0 .  in  

e 0 
is not particularly irnpurtant. 

m 

Now, the design objectives a r e  a wide closed-loop bandwidth, rela- 

tively flat lowpass response, and high loop gain in order  to reduce motor 

stiction. 

f rom the j w  axis and reduce the resonance peak. 

the smallest  T 

gain to move the poles further away from the Q axis. 

are moved too far away from the (3 axis then the response will begin to ex- 

hibit a resonance peak which detracts from the flatness. 

loop gain is clearly a compromise between bandwidth and flat response. 

Flat response is achieved by increasing 0 to move the poles away 
0 

Thus we should strive fo r  

possible. The bandwidth is increased by increasing loop 
e 

However, if the poles 

Thus the choice of 

There a r e  further difficulties preventing the choice of large loop gain. 

The presence of additional time constants not shown in the model of Fig. 13 - 
such as amplifier poles - will  make the root loci bend toward the j w  axis a s  

the gain is increased, so that the loop will eventually become unstable. 

addition, if the gain is increased to widen the bandwidth at the cost of an ap- 

preciable resonance peak,new problems are  caused by brush-noise generation in 

the tachometer. 

tachometer, and appears even when the tachometer output is very lightly 

loaded. 

sufficient components in the resonance -frequency region that the minor loop 

saturates  and becomes unstable. 

restrict the m-aximiim_ permissible motor speed for a given loop gain. 

In 

This noise is a result  of the self-magnetizing current of the 

When the motor runs a t  a moderate speed, the brush-noise has 

The net effect of this brush-noise is to 

3 3  



The previous remarks a re  based on actual experience obtained during 

e system development. The lowest achievedT was 1 .6  ms.  It was possible to in- 

c rease  the minor loop gainuntil K K shown in Figs. 1 2  and 13 reached 150 before 

instability occurred. The resulting closed-loop bandwidth was about 300 Hz, with 

a 1 2  dB resonance peak near band-edge. Itwas possible by increasing the bias 

voltage to increase the motor speed until the brush-noise components fell near 

resonance resulting in saturation and instability. 

the gain factor of 150, which is not enough for satisfactory system operation. 

3 4  

The stiction w a s  reduced by 

The solution to this dilemma was found to be equalization. An RC 

network was inserted across  the summing amplifier in such a way as to create  

a zero in the open-loop transference exactly superimposed on the pole at 

-1 /Te. 

and the complex poles with their resonance problems were completely elimi - 
nated. Now the loop gain can be greatly increased before instability takes 

place, and the brush noise no longer severely limits the dynamic range of 

the loop nor the maximum permissible motor speed. AgainK K of 1000 w a s  

achieved, with a closed-loop bandwidth of about 500 Hz. 

the effective stiction by a factor of 1000 to an acceptable level. 

worthy that the instability occurring whenthis gain exceeds 1000 is still due 

to additional time constants not included in the linear model. 

The root locus of the remaining pole thus became the negative 0 axis, 

3 4  
This in turn reduced 

It is note- 

The resulting transference replacing Eq. (24)  is readily shown to be 

The transference f rom e (t) to the shaft rotation (t) is simply l /T(s ) ,  so  

that the minor-loop transference from input to shaft rotation output is 
0 
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The closed minor-loop gain, corresponding to 

mately l/a, was adjusted to unity by manually adjusting the tachometer gain 

a. 

of Fig. 11 and given approxi- 

The transference of Eq. (28) is then very closely approximated by 

1 

An s-plane plot of the transference of Eq. (29)  is shown in Fig. 15. 

The pole a t  the origin is the desired pole to f i t  the model of Fig. 11. 

due to the mechanical time constant T 

tive (5 axis, until the bandwidth of the minor loop reaches about 500Hz. 

This pole represents the failure of the minor loop to achieve the perfect 

integrator characteristic required to f i t  the ideal model of Fig. 11. 

The pole 

has been moved away along the nega- 
m 

I .  

i w  

s -Plane  

Pole a t  
Origin 

b 

8 

Fig. 15 S-Plane Plot of the Minor-Loop Transference, After 
Compensation. 
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3.3 Analysis and Design of the Actual Loop 

We have indicated in Sec. 2.3 that  the automatic-detection loop band- 

width is selectable in 5 dB steps of 0.16, 0.5, 1.6,  5, and 16  Hz. This greatly 

facilitates spectral analysis of a large class of oscillators. 

tone crystal  standards have a break in their S ' ( o )  characteristic such that 

external additive noise effects a r e  usually dominant as w increases from 

this point. 

f rom direct S (w) measurement to direct S (a) measurement. In all  likeli- 

hood, measurements of weaker atomic resonance oscillation should be crossed 

Most 5th over - 

(b 

Thus, h = 2n represents a commonly occurring point for transfer 
C 

A b  A+ 

over at a lower w , while crystal  oscillators driven harder than 5th overtone 

standards will require larger  w . C 

C 

It should be pointed out that one does not normally desire to take 

S 

have been passed through complementary Butterworth filter functions. 

the contrary, one is fa r  more likely to measure S 

w 

overlapping region where spectral data has been obtained from both outputs, 
2 such that there is an opportunity to check the o 

tween spectra.. This allows a considerable relaxation of the "flatness" require 

ment of the Ab(t) output, which is limited by the bandwidth of the minor loop, 

i n  that the smaller  selections of w 

is being observed. 

(w) and S ' (w) data using the same o , such that the resulting spectra 

On 
A b  A b  C 

(w) data extending to an 
A b  

much lower than the similar upper limit of Sad, (w) data. This gives an 
C 

theoretical relationship be- 

will normally be in effect when this output 
C 

The basic design equations for  the loop a r e  given in Eqs. (15) through 

(17). 

is necessary to choose a large loop gain K 8 .  
t ime constant T 

widths w . 
and attempting to acquire, the circuit acts essentially as an open-loop system 

In o rde r  to achieve low residual phase e r ro r s  and large lock range, it 

Equation (15) shows that the 1 
must be correspondingly large to achieve small loop band- 

2 
This presents two problems. First, when the loop is unlocked 

C 

36 
ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 
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charging up with time constant T It is c lear  that unaided acquisition could 

take hours, so manual acquisition aiding by adjusting the bias voltage may be 

required. Second, the synthesis of T 
2 

extremely large capacitors. 

scribed in the Appendix to synthesize the loop filter. 

2' 

with passive elements would require 

We resor t  to active-synthesis techniques de- 

A circuit diagram of the loop filter synthesis is shown in Fig. 16. 

The component values a r e  chosen according to Eqs. (15) through (17) so that 

the ideal loop represented by Fig. 11 has the desired Butterworth closed-loop 

characteristics mentioned in Sec. 3.1. The switching strategy is to establish 

the appropriate T and T for any w while maintaining the loop gain con- 

stant. This is accomplished by switching R and C together via switch S3. 

R1, R3, R4, and R 

1 2 C 

2 2 
of Fig. 16 fix the dc gain of the active filter, hence thesc 5 

components are not changed. 

- #-IO29 

Fig. 16 Active Synthesis of the Loop Filter. 

Since the minor-loop transference, given in Eq. (29), represented 

an imperfect integrator, we expect that the transferences of the actual 

automatic -detection loop to be only approximations of the desired Butterworth 

characteristics. Utilizing Eq. (29) and Fig. 11, we can wr i te  the two closed- 

loop transferences as 
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( ' + ~ K ~ K ~ K ~  TmS )(1 + T2s) 
X(S) = 

T s  
) ( l+T2s )  + K 1 ( l + T l s )  
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and 

A comparison of these two transferences and the corresponding 

transferences of the ideal loop (Eqs. (13)  and (14)) shows that the undesiredpole 

in  the minor loop gives r i s e  to an extra zero at its undesired poles s-plane 

location, and to an extra pole on the negative 0-axis. 

the two complex poles and the one rea l  pole is determined by the gain K and 

the location of the undesired minor-loop pole ( -  T The design 

procedure is then to attempt to bring the two complex poles as close as pos- 

sible to their  ideal Butterworth locations, and to keep the real pole as far 

away as possible from the origin to maintain flat inband response. 

Thus the location of 

1 
/or K K K ). m 2 3 4  

Several root-locus plots were made before finally choosing a value 

The final choice was a compromise that resulted in  fairly flat for gain K 

response f o r  the low bandwidth settings (0.16, 0.5 and 1.6 Hz),  and somewhat 

resonant responses for the high settings (5  and 16 Hz). At these high settings 

the two complex poles approach the jo-axis resulting in perceptible resonance 

peaks. 

mentioned in Sec. 2 . 3 .  

1' 

This accounts for  the occasional instability at the 16  Hz Setting 

_ _  . --.- 



4. ANALYSIS AND DESIGN O F  THE ERROR MULTIPLIER 

r - f:, ( t )  1 
I 

4.1 E r r o r  Multiplier Operation 

Mixer 
1MHz 

An e r r o r  multiplier has been developed as a predetection block to 

increasethe sensitivity of the measurement system. A block diagram of a general 

n-stage error multiplier is shown in Fig. 17. 

represent frequency multipliers with their multiplication factors written inside 

the blocks. The two original, independent, oscillator signals a r e  the inputs 

e (t) and e (t) shown in Fig. 17  when the error multiplier is used. It is as- 

sumed that the mixer blocks contain bandpass filtering such that only the - 
difference frequencies (and the associated spectral regions) are present at their 

outputs. 

The square blocks in Fig. 17  

1 2 

The index - i refers  to the number of iterations of the basic scheme 

e , ( t )  0 

involved in any ea(t) output. Any of the outputs f.(t),  where 1 i 5 n and e2(t) 
1 

f" (t) 

4 

M M 

are the two input signals to the automatic detection loop. 

actually implemented and depicted in Fig. 11 is a single-stage version of that 

shown in Fig. 17. 

The e r r o r  multiplier 

r 
lMH2 
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It has been shown in Sec. 4.4.3 of Ref. 1 that 

e (t) = a.(t) L cos [ (MiAf + f2) 27rt +MiAd(t) + d2(t)] (32) 
a, 

L 

The input to the linearized automatic-detection loop is then modified from 

Eq. (10) and Fig. 11 to 

v. (t) = A [ 27r MiA f t  + MiA6(t)] (33) 
.1 

i It can be seen that the phase fluctuations have been amplified by the factor M , 
but so has the frequency offset A:. Thus, the motor is now required to rotate 

M times as fast when operating in conjunction with the e r r o r  multiplier. Tt 

was  also shown that the output spectra are  given by 

i 

and 

2 S (0) = A 
Y 

(35) 

Here again, we see that the spectral densities have been magnified by a factor 
2i  M .  

4.2 E r r o r  Multiplier Design Requirements 

The e r r o r  multiplier design must satisfy several requirements if  it is 

to successfully enhance the oscillator fluctuations prior to detection. 

formulate these requirements in this section, and discuss some of them in 

detail in the succeeding section. 

We 

In addition to multiplying the instantaneous phase or frequency, prac- 

tical frequency multipliers attenuate and add noise to the incoming signal. 
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These effects limit the ultimate sensitivity of an e r r o r  multiplier system 

employed to detect phase fluctuations of the input spectrum. If we assume 

that the "operating 'point" of the multiplier is set  by the relatively large Carrie: 

component of the input signal, and consider the phase fluctuations to be small 

perturbations about this operating point, the e r r o r  multiplier may be considerei 

"linear" for these small fluctuations, and an analogy to the front end of a r e -  

ceiving system may be developed. 

in validity by its qualifying assumptions, the basic design requirements of the 

e r r o r  multiplier system may now be listed: 

Based on this front end analogy, and limitec 

i The overall multiplication factor M must be small  enough 
so that the resultant peak phase deviation is much l e s s  than 
a radian, i n  order  not to  exceed the linear range of the phase 
detector characteristic o r  the dynamic range of the associated 
amplifiers . 
The square of the multiplication factor must exceed the 
reciprocal of the insertion loss  on a stage-by-stage basis 
i f  net phase-noise gain is to  be assured. Thus, conversion 
efficiency of the multiplier is of paramount importance. 

The equivalent input noise level of the e r r o r  multiplier se t s  
the ultimate sensitivity of the entire system. Hence, all 
stages, and especially the first few stages, must exhibit 
extremely low noise characteristics. 

The bandwidth of the entire chain must be wide enough to 
pass the first order  phase fluctuations of the input signal 
without distortion, and yet narrow enough to reject unwanted' 
multiplier and mixer components. 

The primary limitation on peak phase deviation in  our system is the 

dynamic range of the amplifiers associated with the phase detector. 

permissible phase deviation is A O . 1  radian, so that to ensure requirement (a) 

the product of M and the peak input phase deviation must not exceed this value 

The phase output monitor M2 can be used to read the peak phase deviation with 

o r  without the e r r o r  multiplier, then the multiplication factor can be chosen 

accordingly. 

Maximum 

i 
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Passive multipliers (containing var actor s )  gene rally have low int erna: 

noise but high insertion loss,  s o  that requirement (b) tends to se t  the upper 

l imit  on the total multiplication factor achievable. Active multipliers (contain- 

ing transistors o r  vacuum tubes) generally have relatively high internal noise, 

so  that requirement (c) tends to se t  the upper limit on the total multiplication 

factor achievable. The best multiplier design is chosen on the basis of desired 

input sensitivity and the actual sensitivity and dynamic range of the automatic- 

detection loop. 

The ultimate requirements of an e r r o r  multiplier to be used for 

measuring the characteristics of a specific oscillator a r e  determined not only 

by the system characteristics, but also by the actual spectral densities and 

frequency offsets to be measured. 

established until some preliminary measurements a re  performed on the oscil- 

lator using the existing measurement system. We have developed a 1 6  -fold 

error multiplier using varactor doublers as building blocks, in  order  to demon 

strate the general feasibility of the technique. 

Thus these requirements cannot be finally 
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5. SYSTEM PERFORMANCE 

5.1 Svstem Sensitivitv 

The system sensitivity is determined by the residual noise spectral 

density at both the x(t) and y(t) outputs. Measurements of these residual 

spectra have been made by operating the system in common mode, i. e . ,  by 

connecting the General Radio standard frequency oscillator to both the e (t) 

and e (t) inputs simultaneously. 
1 

The results are presented in Figs. 18 and 19. 2 

Figure 18 presents the residual phase-noise spectral density as 

abstracted from several independent measurements, with and without the e r r o r  

multiplier. Without the e r r o r  multiplier, the residual noise is seen to be very 

low indeed. The discrete components at multiples of 60 Hz a re  obviously 

caused by power supply feedthrough. Their magnitudes were  obtained by 

stopping the sweep on the Quan-Tech wave analyzer at the appropriate multiple 

of 60 Hz, then carefully taking a reading off the level meter incorporated in thc 

wave analyzer to confirm the reading recorded by the X-Y plotter. It is useful 

to use this procedure in any measurement to isolate the discrete components. 

The continuous part of the spectral density within the overall bandwidtl 

limitation of the system is seen to have a slope of a 10 dB/decade, indicating 

the presence of f 

1.3 kHz is caused by the system bandwidth limitation. 

-1 -type noise, which is to be expected. The roll-off beyond 

The second curve in Fig. 18 shows the effect of the e r r o r  multiplier 01 

residual phase noise. The center portion of the c’ontinueus part of the spectral 

density has been raised about 20 dB, a cohsequence of the internal noise i n  the 

frequency doublers, mixer, and/or the amplifier incorporated in the e r r o r  

multiplier. 

ment in system sensitivity by the e r r o r  multiplier is about 4 dB. 

evaluation of the various sources of internal noise and redesign of the corre-  

sponding circuits should increase this improvement significantly. 

Since the multiplication factor is 1 6  or 24 dB, the overall improve, 

Careful 
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The discrete components and the low-frequency portion of the con 

ous part of the spectral density are greatly increased by the e r r o r  multipl 

probably because of power supply problems. It should be possible to redu 

these effects by careful upgrading of the e r r o r  multiplier design and comp 

nents. Once these weaknesses in the error  multiplier design a re  eliminat 

it will be possible to greatly increase system sensitivity by utilizing a mu1 

stage e r r o r  multiplier, each stage resembling the existing multiplier. 

Figure 19 presents the residual frequency-noise spectral density 

abstracted from several independent measurements. Recall that the y(t) c 

was  intended to be a Butterworth lowpassed version of the frequency fluch 

tions, so we expect a 40 dB/decade system skir t  selectivity. Figure 1 9  SI 
30 dB slope for the bandwidth choices w = 0.16, 0.5, 1.6 Hz, thus confirm 

the presence of f-type frequency noise (equivalent to f -type phase noise) 

which was  observed in Fig. 18. The spectral densities corresponding to t k  

bandwidths w = 5 and 16 Hz exhibit the resonance phenomena mentioned in 

Sec. 3.3 above, and hence an undesired increase of  the residual noise in  th 

vicinity of the resonance frequencies. The 40 dB/decade skirt  slopes wou 

probably become 30 dB/decade i f  the resonances are removed, because th 

slopes indicated a re  too close to the resonance frequencies to be definitive 

C -1 

C 

5.2 System Operating Regions 

The system is capable of yielding meaningful measurements of th 

fluctuations only when the input offset frequency and phase -fluctuation spel 

density fall within certain limits. Figure 20 illustrates these limits. 

The lower limit to the measurable spectral density is the residua 

phase-noise spectral  density. 

corresponding $0 various baseband frequencies, as taken from Fig. 18. 

upper limit is determined by the dynamic range of the phase detector and 

This is indicated in Fig. 20 by horizontal lii 

T: 
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associated differential amplifier, which is * 0.1 radian peak. This limit is 

readily monitored on meter M2 with the aid of switch SI. Assuming a peak 

factor of 10 dB, the upper limit on mean-square phase fluctuation becomes 
2 

30 dB below one radian . 
density at any given frequency, but this limit is dependent on the actual shape 

of the spectral density. 

horizontal dotted line at -30 dB, but the true upper limit on spectral density 

will be below this level. 

This in turn sets an upper limit on the spectral 

We pictorially indicate this limit in Fig. 20 by a 

The lower limit to the measurable frequency offset is determined by 
- 4  

the stiction of the motor in the minor loop. 

it is indicated on Fig. 20 by a vertical line. 

value would produce jerky rotation of the motor, thus resulting in unreliable 

data. 

range of the power amplifier driving the motor. 

it is indicated on Fig. 20 by a vertical line. 

This lower limit is 10 

Offset frequencies lower than this 

Hz, and 

The upper limit is determined by bearing friction and by the dynamic 

This upper limit is 1 Hz, and 

Now we have in Fig. 20 a set of rectangles delineating the proper 

operating regions of the measurement system. In addition, we have on the 

next page a table summarizing the performance specifications of the system. 

If it is desired to measure the instabilities of an oscillator whose fluctuations 

lie below the lower boundaries of the rectangles indicated, then the e r r o r .  

multiplier can be used to extend the region of operation to accommodate this 

oscillator. 

phase fluctuations according to characteristics similar to Fig. 18, blit in 

addition w i l l  ra ise  the phase -fluctuation spectral densities themselves by a 

factor M 

eters are known, they should be checked against Fig. 20 to ensure that the 

resultant inputs to the automatic-detection loop fall within the operating regions 

In that case, the multiplier wi l l  ra ise  the lower limit on measurablc 

2i i , and the frequency offsets by a factor M . When the various param 
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SYSTEM PERFORMANCE SPECIFICATIONS 
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-ADVANCED COMMUNICATIONS RESEARCH AND DEVELOPMENT- 

Input frequency 

Input signal power 

Input impedance 

Maximum frequency offset 
between input signals 

Minimum measurable frequency 
offset 

Minimum measurable change in 
frequency offset (at low rates) 

Maximum measurable phase 
difference 

Minimum measurable phase - 
difference spectral  density 

Phase difference x(t) output 
ranges 

Frequency difference y(t) output 
ranges 

Frequency offset bias ranges 

Loop cutoff frequencies (wc) 

1.0 MHz 5170 

-13 to +17 dBm (0.05 to 1.6 volts) into 
50 ohms 

50 ohms 520'7'0 

1 Hz (or 1 X referred to 1 MHz) 

10-4Hz (or 1 X 10-l' referred to 1 MHz) 

3 X 10-6Hz (or 3 X 

1 MHz) 
referred to 

0.1 radian peak (-20 dB referred to 
1 radian) 

2 radians per  Hz at 1Hz (-110 dB 
2 rad /Hz) decreasing at 10 dB per decade 

to radians2(-140 dB rad2/Hz)at 1 kH1 

-40 to -100 dB rad per  volt in 10 dB steps 
-20 to -80dB rad at 10volts full scale on 
M2. 

to  lo- '  Hz per volt in 1,2.5,5 steps, 
to 1 Hz at 10 volts full scale on M3. 

f 0.01,0.1, 1 Hz full  scale with 0-1000 
vernier 

0.16,0.5,1.6,5, 16Hz (1, 3.2, 10, 32, 100 
radians / s e  c) 



5.3 Some Typical Measurements 

Figures 2 1  through 24 show some spectral density measurements on 

two typical oscillators, abstracted from many separate X-Y plots. The 

General Radio type 1115-B oscillator was always used as the reference e (t). 

The phase and frequency spectral densities obtained for an oscillator incor- 

porated in a CMC type 727B frequency counter a r e  depicted in Figs. 21 and 22 

respectively. The 'phase spectral density exhibits a 20 dB/decade continuous 

slope, and has substantial discrete components at multiples of 60 Hz. The 

frequency spectral density exhibits a flat portion within the loop bandwidth, 

which agrees with the 20 dB/decade slope observed in the phase spectral 
* 

density . 

2 

The phase and frequency spectral densities obtained for  an oscillator 

incorporated in an H P  type 524C frequency counter a r e  depicted in Figs. 23 

and 24 respectively. The phase spectral density exhibits three different slope: 

as shown, and there is a rather broad discrete-like component at 320 Hz. The 

frequency spectral density exhibits a 10 dB/decade positive slope within the 

loop bandwidth. In order  to agree with the corresponding slope in the phase 

spectral density, the latter should be -10 dB/decade instead of the -15 dB/ 

decade shown in Fig. 23. 

abstraction process to which the actual X-Y plots have been subjected. 

The e r r o r  is either instrumental, o r  in the graphical 

To illustrate the graphical abstraction process, we include as Fig. 25 

one of the actual X-Y plots from which Fig. 23 w a s  abstracted. Note the 

possibility of e r r o r  involved in drawing a best-fit straight line. 

trace at 60 Hz, where the magnitude of the discrete component was  recorded 

after completing the sweep by returning the pen to the 60 Hz location arid wait-  

ing for all transients to die down. 

Note also the 
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Several improvements can be suggested for inclusion in  an advanced 

succdssor to the measurement system. 

Two obvious improvements would be to reduce the brush-noise in  the 

such that a larger  minor loop bandwidth could minor loop, and to decrease T 

be maintained with l e s s  intrinsic resonance (see Sec. 3.2). 

can be implemented simultaneously by employing printed-armature techniques 

in both the motor and tach. 

more o r  less  distributed armature such that discrete interruptions of current in 

a given armature winding a r e  reduced considerably. Thus brush-noise genera- 

tion is suppressed. 

impedance of a few microhenries of inductance and a few tenths of ohms of 

resistance, 

tance (current) source, the electrical time constant can be made vanishingly 

small. The problem in  this would be to obtain sufficiently widebanc dc coupled 

current-mode power amplifiers that a r e  short-circuit stable and have adequate 

current output. It is expected the industry wil l  soon be able to supply coupled 

printed-armature motor-tach combinations whose brushes a r e  so phased as to 

cancel brush-noise at  the tach output. 

stiction speed, dynamic range, and maximum torque output is expected to be 

below that of comparable conventionally-wound devices. 

e 
Both improvements 

This printed armature rotating machinery has a 

The armature blocked-rotor equivalent circuit is a se r i e s  

If motor armature of this type is fed from a relatively high r e s i s -  

The cost of these devices for a given 

Another worthwhile improvement would be to relocate the closed-loop 

= 5 poles in the system to eliminate the resonance at the bandwidth settings w 

and 16  Hz. 

be considered, a s  well a s  other loop filter functions based on the techniques of 

the Appendix. 

C 

Compensation networks other than those mentioned in Sec. 3.3 shouic 

Better components in place of some used in the present system can be 

used to improve system performance. 

ing to less than one-tenth the motor-stiction voltage would be a great 

DC amplifiers with dc drift correspond- 
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improvement. 

which are compatible with the basic frequency offset requirements. 

regulated power supplies could probably reduce the residual noise in both the 

automatic-detection loop and the e r r o r  multiplier. 

components at multiples of 60 Hz could be greatly reduced. 

It would be worthwhile to investigate other types of resolvers 

Better 

In particular, the discrete 

Other sources of residual noise, again in both the automatic-detection 

loop and the e r r o r  multiplier, should be identified and evaluated, and methods 

devised to reduce their effects. 

We should mention in closing that it would be very easy to design and 

fabricate a greatly simplified version of the measurement system intended 

solely for  observing the slow drift fluctuations of A f .  

of particular value in evaluating unsynchronized time standards. 

Such a system would be 
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APPENDIX 

ACTIVE SYNTHESIS OF LOOP FILTERS 

We desire to synthesize a transference 

(A-1 

where 
(A - 2  

T2 > T1 

and K is a feedback-stabilized dc gain. 

indicated in light of the large values of T required. We shall develop a gen- 

era1 method for analyzing operational amplifier circuits, and then use this 

method to analyze a particular circuit that satisfies Eq.(A-1) and derive desigr 

equations for the circuit. 

An operational amplifier circuit is 

2 

3 

Figure A-1 shows the general model of an operational amplifier 

circuit. N and N a re  linear, lumped parameter, passive, and bilateral 1 2 
networks. If we may consider the output impedance of the amplifier suffi- 

ciently small  as to be negligible, then it is obvious that there is no feedforwar 

in Fig. A - 1 other than through the input to outpd t rans  - 
in  to vout path from V 

ference of the amplifier. Under this assumption, an equivalent model of Fig. A- 

can be drawn as shown i n  Fig.A-2, justified by the principle of superposition. 

It is important to realize that both B and B2 of Fig. A-2 a re  transferences in tl 

linear, lumped, passive and bilateral network shown in Fi2.A-3, since B and 

B 

case where the input admittance of the amplifier is not negligible. 

this admittance, unless i t  is negative or nonlinear, could be included in N an( 

thus the model is still general. ) 

1 

1 
are independent of the amplifier. (The one exception to this could be the 

Even so, 
2 

1 
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Figure A- 1 

Figure A - 2 

Figure A - 3  
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A s  such, B and B can be written as ratios of polynomials of the 1 2 
Laplace variable, s, in the transform domain. It has been shown that the 

functions B and B as defined have the same denominator polynomial. Thus 

we may write 

* 
1 2 

and 

where Z (s) and Z (s) a re  polynomials describing the "zeros" of their respec- 

tive functions, and P(s) is a polynomial describing the "poles" common to both 

functions. 

1 2 

Applying elementary feedback theory to Fig. A-2, we may wr i te  

Substitution of Eqs. (A-3) and (A-4) yields 

Equation (A -6) is the general relationship required to analyze any operational- 

amplifier circuit consistent with the feedforward assumption. 

The particular circuit chosen to satisfy Eq. (A-1) is shown in Fig. A-4,  

For this circuit 

a(1 + sR2C2) 

. B1(S) = 1 + s ( a R 1  +R2) c2 (A-7) 

J.  T 

Guilleman, E. A. ,  Synthesis of Passive Networks, John Wiley & Sons, Inc. , 
1959. 
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Figure A-4 

and 

where 

R R +R3R5+R4R5 

RlR3 + R1R4 + R3R4 + R3R5 + R4R5 
3 4  a =  

and 

1 4  R =  
~ R l R 3 + R  R +R3R4+R3R5+R4R5 1 4  

Substituting B and B into Eq. (A-6), we obtain 1 2 

Equation (A-11) can be seen to be of the correct form by comparing it 

Thus, we may equate (A-1) and (A-11) and identify obvious parts to Eq. (A-1). 

to obtain design equations. 
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from which we obtain 

ACL K =  3 1 + A B  

1 R2C2 = T 

and 

We may simplify the expressions for CL and i f  we let 

both R and R5 >> both R3 and R4 1 

Under these conditions 

R5 

R1 + R5 
a m  

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

and 

1 4  ’ (R1 + R5) (R3 + R4) (A-18) 

Equation (A-18) can be seen to be the transference of a cascade of two isolated 

voltage divider networks, indicating that the resistance of R plils R does not 

load the R3, R divider. 
1 5 

4 

Thus we have shown that Fig.A-4 is a sufficient synthesis of Eq. (A-1) 

The design equations for the circuit may be summarized a s  
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and either 

K 3  
- K3B 

A =  

R2C2 = T1 

I RlC2 = 
KQ 
3 

K3 +A 

R5 

R1 + R5 
a =  

and 

R.R. 
1 4  ’ = (R1 + R5) (R3 + R4) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

if condition (A-16) holds, o r  

R3R4 + R3R5 + R4R5 
a =  (A-24) RlR3 + R R + R3R4 + R3R5 + R R 1 4  4 5  

and 

Q Z r  R1R4 
- R1R3 + R1R4 + R3R4 + R3R5 + R4R5 (A -25) 

if condition (A-16) does not hold. 

The stabilization of the dc gain can be calculated by differentiating 

Eq. (A-13) with respect to A, yielding 

(A - 26) 1 - -  - dK3 

dA (1 + 

The assumption of negligible feedforward can be evaluated by considering the 

worst  case when the input frequency is high enough that C may be neglected. 2 
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The feedforward through the R 

(with C 

must be negligible in comparison with the output of the amplifier at this 

frequency. 

circuit plus the feed through the R 
5 2 

circuit 

shorted), both developed across  the output impedance of the amplifier, 
2 

This normal amplifier output is 

K3Tl  

S+oO *3 
l im H(s) = - - (A-27) 
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