
WYLE LABORATORIES - RESEARCH STAFF 

T E C H N ~ A L  MEMORANDUM 65-19 

P R ~ G R E S S  REPORT ON 
, L  

F 
ACCEPTANCE FOR QLl NDERS IN REVERBERANT 

. ,  

ACOUSTIC P t ECD 

d Submitted oh 

Technical Directivo W-12 
NASA Contrqct No. NAS8-20073-1 

. Brown Engineering Company Work Or& No. 933-0119-9!50 - -  

Prepared by d, A Approved by 
Eldred 

Dtrector or Research 

September, 1965 

GPO PRICE $ 

I CFSTI PRICE(S) $ 

Hard copy (HC) / m  1 
1 *--a (1 I 

I 
I 

/- 
I Microfiche (MF! t 

ff 653 July 85 
- 

I- - 



1.1 

JOINT ACCEPTANCE FOR CY1 NOERS IN A REVERBERANT FIELO 

INTRODUCTION 

The problem of finding joint acceptance for any body undergoing random vibration cun be 
divided into two parts. The first part involves finding the normal modes of vibration af the. 
body and writing the equation for the joint acceptance squared as a function of the n o m 1  
modes and the cross spectral density of the(random)forcing function. The second part 
involves finding or approximating the cross spectral density of the forcing function. The , 

problem of the vibration of a thin cylinder or shell i n  an acoustic f ield i s  complicated by 
the fact that a scattering problem must be solved in  order to obtain the cross spectral 
d&ty of the forcing function. In such problems the second part usually presents much 
more diff iculty than the first. 

In  the discussion which follows we shall consider each part of the problem separately. A 
brief derivation of the equation for the joint acceptance squared i s  given for the case of 
a general body undergoing random vibration. The discussion of the scattering problem wil l  
be limited to the case of a plane acoustic wave impinging on an infinite r igid cylinder. 

Derivation of Equation for h i n t  Acceptance 

The equation of motion of a body undergoing forced vibration can be written i n  the form 

where U(x,t) 
body, d i; the damping coefficient, f i s  the external force, and L i s  a symmetric, 
positive definite lipear differential operator involving only space derivativas. I t  i s  
understood that the variable x i s  actually a vector x = (xi , - - , xn) , where 

n = 1,2, or 3 depending on the dimension of the problem. We assume th t the body 

satisfy the necessary boundary conditions on the boundary of f l  

i s  the displacement of the body, c i s  the characteristic wave speed of the 

occupies a domain F i n  x space, so that equation (1) holds for x i n  5 , qnd U must 

I f  f(xf is of the form 

iwt 
f(x,t) = g(xj e 

we assume a solution of the form 

i ut 
U(x,t) = V(x) e 



i 
v 

Substituting into (1) we obtain 

2 2  
( - w / c  + id) V +LV = - S  , or 

( w2/c2 - i w d  ) V - LV = g . 
2 2  

Letting X w / c  - iwd we have 

(2) 

as the equation to be solved, subjected to the same boundary conditions as before. 

The solutions X and 

the eiaenvalues and orthogonal eigenvectors,respectively,of the system, where the 9 ' s  

are normalized by setting 

( x - L) v = g 
I <  

9 (x) , n = 1,2, - - , of (2), obtained by setting g =0, are 
n n 

n 

(Qm 1 qn ) = /  g,(.) + n (x)dx = 6 mn w 
c./ 

Here S i s  the Kronecker delta, while the bar denotes complex con jugate. 
mn 

We are interested i n  obtaining a sotution of ( 1 )  when f(x ,t) = S b  - f )  &(t), where 

6 i s  the Dirac delta function, and 6 i s  in,&. Substituting his into (1) and toking the 
Fourier transform of both sides we obtain 

1 
( - w / c  + i o d ) G ( x , t , w ) + L G ( x , q , w ) =  - - 2 2  A A 

I .e., 

1 A 
(3) ( A  - L ) G  = - 

A 
Where G(x,[  w ) is,the transform of the desired solution G(x,t) , and w i s  the transform 
variable. Assuming a solution of (3) of the form 



f 

( 4) 

. 
.- 
t i  

_L I 

! ' .  
r /  

A 
G =  

n = l  t. . ; .' '. 
~ 

n 'n 
C 

I 1. where +he cn's are constants to be determined, 
we obtain, after substituting into (3, 

m 

i 

OD i 

since ( X  - L ) qn = 0 .  Therefore w e  have that 
n 

: 

I I 

B- Multiplying both sides of the expression by 9 (x) and integrating over we obtain rn 

so that 

I /  
! 
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-1  We now assume that f(x,t) i s  a random forcing function, and proceed to obtain an 
expression for the cross spectral density S (x,y,w) of the response as a function of the 

cross spectral density S (x,y,w) of the forcing function. The formula for S (x,y,w) 

in terms of 5 (x,y,o) and G(x,[,w) i s  (see Reference 1) , where x and y are any 
two points in & 

6) 

.- 
U :d 

=y 
7 

U f 
zi2 

m 

= 
P- - - -_ 
3 

f - 
I 

s ( x , y , w )  - 
U 

G!x,xl,w) G(y,x 2’ o) S f l 2  (x ,x ,w> dxl dx2 . 

From (4) and ( 5 )  wt- hcve that 

so that 

Substituting this into (6) we obtain 

s (x,y,w) =: 
u 2 

n i  

P P  

where x 
.2 
‘rn n 

i s  an arbitrary reference point, i s  known as the joint acceptance squared 
’ 

0 
(0 )  of the body for this particular type of loading. 
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Since the mode shapes and frequencies of a vibrating cylinder are well known (see Reference 2), 
the only remaining prob!em i s  to compute or estimate the cross spectral density S ( x , y , o ) .  

Calculation of Cross Spectral Density 

In  order to calculate the cross spectral density of the forcing function, i t  i s  necessary to 
solve the problem of scattering by Q cylinder of a plane acoustic Nave whose incident ray 
i s  not necessarily perpendicular to the axis of the cylinder. The simplest case occurs when 
the cylinder i s  infinitely long, since then there are no boundary conditions at the ends 

of the cylinder. 
perpendicular to tne axis of the cylinder by the method of separation of variables {see 
Reference 3); 
incident wave as fof!o*,.;: I n  cylindrical coordinates the equation to be solved for the 
scattered wave i :  

f 

---- 

T h i s  problem h a s  been solved for the case when the incident ray i s  

Dul-ifig the past month this method was extended to  the case of the oblique , 

t D2 + k 2 )  qs  = O  I i . e . ,  

The equation for the incident wave takes the form 

ik(  x cos p -C z sin p) ik(r cos e cos /3 + z sin p) 
- Ae = Ae 

'i I 

where p i s  the angle Letween the ;;em=! to the incident wave front and the axis of the 
cylinder. Taking the ve 

a9 
T- condition for 9 i s  

a 9; 
- -  _-- 

I '  
a 9s 
ar ar 

a b  

ocity potential Q, of the total 

= 0 on the surface of the cy 

e. I 

wave to be 9. + qq I the boundary 

inder. Thi: impliesthat for r = a ,  
I 

' S  

a r  
ik(a cos 8 cos p +  z sinp ) - -  - - i k  cos 0 cos p Ae 9) 

when r =- a .  I f  we assume a solution of (8) of the form =- G(r19) F(z), then Equation (8) 
takes the form 

s 



.. , . ~. 
h.. 
. .  

2 d2F 
F c F G -  0 I 

~a 
r ar r +G7- dz 

. ' I  I .e .  

2 a-k = 0 , 1 d2F 
2 

+ -  - 1 1  a 1 : a2G 

dz G r ar G F 

or 

il0) 

I 

L 3 dz 

i k  z . 3  , and from the Doutldaly condition (VI w e  see that A solution of ( 1  1 )  i .  FCz) - e 
we must take k - i. sin p. Then lel t ing 2 2 2 we have 3 K = k - k 3  

K 2 k 2 2 2  - k sin 9 k 2 ( 1  - sin 2 p) k 2 2  cos p , 

so that equation (101 becomes 

i a  + K  2 G = O .  

r r ar 
( 12) 

, .  

! 

The boundary conditipn (9)  takes the form 



- .  .-. . 

ik z . - iKa cos8 e 3 
I or, fa,$) F(z) = - K COS 8 Ae ar 

ik z 3 
since F(z) = e I 

iKa  C O S  8 - (c,0) - i K  c o s 8  Ae 
aG 
a r  

The differential ec;Ltatiot ( 12, and the boundary condition (13) are seen to be identical 
( i f  ;/e rep1Gce t- by 
w h i c h  i s  known. TIle:efore, by taking t h i s  solution and multiplying by 
we obtain the solutic t ,  Tor t h e  oblique incident wave. 

‘ with those of the plane wave at normal incidence, the solution of 

ik  (sin B I Z  
F(z) - e 

i 
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A SIMPLY SUPPORTED BEAM IN A OIFFUSE SOUND FIELD 

nt acceptance of a cylindrical shell in a diffuse sound f ie id  
lines outlined in the first section. 

The coin€ acceptance for this case w i l l  differ from known soluti'ons for a flat plate in a 

E 

L 

-_ - -  -- progressive wave sound f ield for two obvious reasons. The structure i s  cylindrical insteod 
of flat wd located i n  a diffuse f ie ld instead of a progressive wave field. To indicate the 
significance of the latter aspect, the joint acceptances for a simple supported beam i n  a 
diffuse and progressive wave f ield are compared i n  the following. 

I ~ 

. _  - 

era1 expression for the joint acceptance of any structure may be given in  the form 
T r n  

_. 

I 2 f f R(x,x') q(x) $(XI) dx, dx' (1 )  
.2 

A ~, , .  
. P  *% where x and x '  represent two elemental areas on the wrface with modal deflections 

c oeff i c i  en t . 
+(x)bnd +(XI) respectively. The quantity R(x,x') i s  the normalized space correlation -=ic 

A_ 

= t-: 

For a simply supported beam of length w 

* 

$(x) = sin nnx/w 21 
- -_ - - - 
f 

For a homogeneous plarle progreisive wave sound field, the ,pace correlation coefficient i s  

R(x,x') = COS K(x  - x ' )  ( 3) r 

where K = 21r,'X and X i s  the trace wavelength of the acoustic f ield along the length of 
the beam. 

I 

For a diffuse sound field, the space correlation coefficient i s  

sin K(x - x ' )  
K(x - x ' )  

R(x,x') = 

For the plane progressive wave, Equations 1,2, and 3 give the closed solution 



closed solution has not been found and the result must be left 

n+x' nnx sin K(x - XI) sin -sin - dx dx' [ K(x - XI) W W 

rammed for a numerical integration. 

n of the results computed for the first three modes from Equation 
am where w = 25". 

*- 

use field serves to smooth out the sharp nulls in joint 
ssive field. In  addition, the joint acceptance for a 
high frequencies and tends to become independent 

. 1  

t 

. ' .- 
1 .  

.* r . 
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F1guie 1 .  Cornparisori of jo int  Acceptance for F i rs t  Three Modes of a Simply Supported 
Beam in  a Plone Progressive Sound Field and a Diffuse Sound Field 


