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JOINT ACCEPTANCE FOR CYLINDERS IN A REVERBERANT FIELD

INTRODUCTION .

The problem of finding joint acceptance for any body undergoing random vibration can be
divided into two parts. The first part involves finding the normal modes of vibration of the,

- body and writing the equation for the joint acceptance squared as a function of the nomal

modes and the cross spectral density of the(random)forcing function. The second part
involves finding or approximating the cross spectral density of the forcing function. The
problem of the vibration of a thin cylinder or shell in an acoustic field is complicated by
the fact that o scattering problem must be solved in order to obtain the cross spectral
density of the forcing function. In such problems the second part usually presents much

more: difficulty than the first.

In the discussion which follows we shall consider each part of the problem separately. A
‘brief derivation of the equation for the joint acceptance squared is given for the case of

a general body undergoing random vibration. The discussion of the scattering problem will
be limited to the case of a plane acoustic wave impinging on an infinite rigid cylinder.

Derivation of Equation for Joint Acceptance

The equation of motion of a body undergoing forced vibration can be written in the form

(1) 2 U, +dU, + LU =-f

where U(x,t) isthe displacement of the body, c is the characteristic wave speed of the
body, d isthe damping coefficient, f isthe external force, and L is a symmetric,
positive definite linear differential operator involving only space derivatives. It is
understood that the variable x is actually a vector x = (x] y -, xn) , where

n=1,2, or 3 depending on the dimension of the problem. We assume ﬂ'@t the body
occupies a domain £ in x space, so that equation (1) holds for x in &, gnd U must
satisfy the necessary boundary conditions on the boundary of /.

If #(x) isof the form

fxt) = gb) et

we assume a solution of the form
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Ulx,t) = V(x) e
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Substituting into (1) we obtain
2,2 .
(~w/c” + iwd) V +LV = =g , or

(w2/c2—iwd) V -LV =g

Letting \ = (.)2/c2 - iwd we have

(2) | (A-L V=g

os the equation to be solved, subjected to the same boundary conditions as before.

The solutions )\n ond q;n(x) ,n=1,2, --,of (2), obtained by setting g =0, are
the eigenvalues and orthogonal eigenvectors,respectively,of the system, where the q)n's

are normalized by setting

(@m ' ¢n) = f q>m(x) qan(x) dx = Smn
Jol

Here smn is the Kronecker delta, while the bar denotes complex conjugate.

We are interested in obtaining a solution of (1) when f(x,t) = &(x - &) &(t), where

& is the Dirac delta function, and £ is inﬁ}. Substituting this into (1) and taking the
Fourier transform of both sides we obtain

2,2 . A A 1
(—N/C +“‘)d)G(xI£lu)+LG(xl€Iu): = S(X-g)
2n
i.e.,
A 1
(3) (A-L)G = 8(x - &)
27

Where G{x,{ w) is the transform of the desired solution G(x,t) , and w is the transform
variable. Assuming a solution of (3) of the form
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(4) G = Z c, ¢
n=1"

where the én's are constants to be determined,
we obtain, after substituting into (3),

Qo
h-1)8 = D c (\-1) ¢ = —— 8(x-£)
n=1 2n

i

&Y
DN e,

since ()\n -L) ¢, = 0. Therefore we have that

2 : ]
c (N -X) ¢ = I——-,S(x-é’)
n; n n n 2"

Multiplying both sides of the expression by Q)m(x) and integrating over 9’Iwe obtain

— ¢ (&)
cm()\—km): ! £¢m(x)8(x—g)dx:___l___

2n J 2n ’

so that
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We now assume that f(x,t) is a random forcing function, and proceed to obtain an
expression for the cross spectral density Su(x,y,u) of the response as a function of the

cross spectral density Sf(x,y,u) of the forcing function. The formula for SU_(x,y,w)

in terms of Sf(x,y,w) and G(x,&,w) is (see Reference 1) , where x and y are any
two points in

{ { -
(6) SU(_x,y,m)

A
!/ G(x,x],u) Gly, x 2,(.)) S( 2,u) .dx] dx2

From (4) and (5) we have that

so that

3

A -~ |

® ¢, (x) q>m(><5 ¢ (xo) o (¥)
G(X,x]r“’) G(YIleU) = 2~" Z
n=1 a o] (>\->\m ()'\_xn)

Substituting this into (6) we obtain

0

|

™ Q ¢ (x) ¢ (y)
‘7) Su(x,)’,u) § : § :[f[ Sf(x]’XZ’U) ¢m(x1) ¢n(x2) dx1dx2] ._(_____)\_m___n_— )\m)(x_)\n)
N . e

Sf(XO"‘O"")

2
The quantity ff Sf(x], x2,u) q>m(x]) q:n(xz) dx] dx2/ (/‘dx> ,
e L

where X0 is an arbitrary reference point, isknown as the joint acceptance squared

'rznn(m) of the body for this particular type of loading.
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the only remaining problem is to compute or estimate the cross spectral density Sf(x,y,w).

Calculation of Cross Spectral Density

In order to calculate the cross spectral density of the forcing function, it is necessary to
solve the problem of scattering by a cylinder of a plane acoustic wave whose incident ray
is not necessarily perpendicular to the axis of the cylinder. The simplest case occurs when
the cylinder is infinitely long, since then there are no boundary conditions at the ends ‘
of the cylinder. This problem has been solved for the cose when the incident ray is
perpendicular to the oxis of the cylinder by the method of separation of variables (see
Reference 3). During the past month this method was extended to the case of the oblique
incident wave as follows: In cylindrical coordinates the equation to be solved for the
scattered wave is

(8 L 9 + 1 82 + 82 +k2 =0
) © B\ @ 7 2 v -

The equation for the incident wave takes the form

ik( x cos B +z sin B) eik(r cos § cos P +z sin B)

¢. - Ae A

where B isthe angle between the normal to the incident wave front and the axis of the
cylinder. Taking the velocity potential ¢ of the total wave to be ¢t o, the boundary

condition for ¢ is —g% =0 on the surface of the cylinder. This impliesthot forr = a,
RASSA
ar - or ; 1€,
¢ : .
(9) ._aTS_ = —ik cos 8 cos ﬁAe'k(c cosB cos B+ zsinB)

when r = a. If we assume a solution of (8) of the form 9. G(r,8) F(z), then Equation (8)
takes the form

5.

Since the mode shapes and frequencies of a vibrating cylinder are well known (see Reference 2),
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r d8 dz
i.e., =
__1__|__a_(ae>‘1 %6 1 2, .
G r O o G r2 30 F dz2
or o
1 1a(aG>,1 1 aszkZ_]sz constant
—_ = =l = )i = - —= =— = constant = 5
G ooroor or G r2 an F d22 E:;
2 .
k3 say, s¢ that
] oG ] 826 2 2
(10) —_ | ; + (k" -kZ2) G =0 '
, v dr ar 2 2 3
r a0
2
an -d—; ; ‘«g F =0
dz
ik32
A solution of (11} i< F(z) = e ' , and from the poundary condition {(?) we see that
we must take k3 =k sin B. Then letting K2 _ k2 _ kg we have ‘

K2 k2 ok 6in%8 = k2 (1 < sin2p) =KkZ cos?p |

so that equation (10} becomes |
|
|
|

2
ha L3 ([ s\, 1 o 2o g
r or or

The boundary condition (9) takes the form
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. ik,z -
3G (a,8) F(z) = -K cosGAe'K<J cos 8 e 3 or,

or !
ik .z
since F(z) = e 3 ,
(13) —%? (0,8) = -iK cos 8 Ae @ 05O

The differential equaticr (12) and the boundary condition (13) are seen to be identical

(if we replace k by k' with those of the plane wave at normal incidence, the solution of
which is known. Theiefore, by taking this solution and multiplying by ik (sin 8)z
we obtain the solution for the oblique incident wave.

F(z) - e
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" s «wWilEbe developed along the lines outlined in the first section.

The?i;:é}:so‘!uﬁép for the joint acceptance of a cylindrical shell in a diffuse sound field

~ The joint acceptance for this case will differ from known solutions for a flat plate in a
progressive wave sound field for two obvious reasons. The structure is cylindrical instead
-~ of flot and located in a diffuse field instead of a progressive wave field. To indicate the
significance of the latter aspect, the joint acceptances for a simple supported beam in a
diffuse and progressive wave field are compared in the following.

The general expression for the joint acceptance of any structure may be given in the form

f7 f FoRe) o0 o) a, o (M

where x 'and x' represent two elemental areas on the surface with modal deflections
o(x) ond ¢(x') respectively. The quantity R(x,x') is the normalized space correlation
coefficient,

For a simply supported beam of length w

¢(x) = sin nmx/ W (2)

For a homogeneous plane progressive wave sound field, the space correlation coefficient is

Rix,x") = cos K(x - x") (3)

where K = 2m/\ and \ is the trace wavelength of the acoustic field along the length of
the beam.

For a diffuse sound field, the space correlation coefficient is

sin K(x = x')
K(x = x") (4)

R{x,x")

For the plane progressive wave, Equations 1,2, and 3 give the closed solution

+ N 2
i2 = 2 5 [ ] 5 ] [ 1 - cos {wn) cos Kw (5)
n ('rrn) } - (Kw//‘n'n)

.
.
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closed soluhon has not been found and the result must be left as.

i W sin K{x =x") . nmx .
2 K{x - x") o=y
0”0

wa

::Flgure T shows a companson of the results computed for the first three modes From Equations .
5 and 6 for a pcrtlcular beam where w = 25",

The rasuh's show that the diffuse field serves to smooth out the sharp nulls in joint
occeptcnce present for a progressive field. In addition, the joint acceptance for a
diffuse field fs-much hngher, at high frequencies and tends to become independent
of mode number. :
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Figure 1. Comparison of Jjoint Acceptance for First Three Modes of a Simply Supported
Beam in a Plane Progressive Sound Field and a Diffuse Sound Field

e




