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ABSTRACT

/; ///

An analysis is given for liquid sloshing in a rigid cylindrical tank
under conditions of moderately low gravitational acceleration; the theory is
valid for Bond numbers that are larger than 10. The results are put in the
form of an equivalent mechanical model. It is found thaf both the fundamental
sloshing mass and the natural frequency, for a liquid having a zero degree
contact angle, are smaller than for the usual high-g sloshing.

A series of experiments was conducted to determine the sloshing force
and the natural frequency for Bond numbers between 10 and 200. The test
results are compared to the theoretical predictions of the mechanical model,

and good correlation between theory and experiment is shown.
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potential

a, = A, cos QT

B, - amplitude of the time variation of the nth component of the surface
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b, = B, sin Q7T

Clums

C2,m» - Fourier-Besscl cocfficients in Egs. (21) and (22)

C3nm

F - lateral force exerted on the tank by the liquid

Fr - interfacial tension force at contact line

f(F) - height of meniscus above z = 0, see Figure 1l
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hg - height of mgy above tank bottom

M
In = z anJl()‘-m)ean/)\m: see Eq. (34)

Jq - 15 order Bessel function of the first kind

spring constant for nth mode

e
o]
'

M
Ly = 21 (h/Rg - P - 1/3) PomI10hm)e P /A, see Eq. (43)
m=

*Symbols in parenthesis are the nondimensional equivalents of the preceding

quaniities.



M - number of terms in potential equation or number of slosh masses
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Oc - contact angle of liquid on tank wall, measured in the liqtiid

\n - roots of J'l()\n) =0

p - density of liquid

(D) - velocity potential

Q. - dimensionless natural frequency of nth mode
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I. INTRODUCTION

The free surface wave motions (''sloshing') of liquid fuel in large
rocket boosters is a well-recognized problem in technology. While nearly
all the experimental and theoretical work on the practical side of this problem
is limited to situations in which the steady axial acceleration (gravity or
thrust or both) is so large that only the body forces in the liquid and the forces
between the tank walls and the liquid need be considered for determining the
liquid's motion, there are occasions when the axial acceleration is small, as
for example when the booster is coasting in an Earth orbit, and then other
forces must be taken into account; the most important of these forces is usu-
ally the interfacial tension between the liquid fuel and the ullage gas. Under
these conditions, the resulting free surface motion has been called low-gravity
sloshing.

Most of the previous research on low-gravity fluid mechanics is
reviewed in Ref. [1], which also contains a lengthy list of references. The
reports by Reynolds and his coworkers [2, 3] are especially recommended.
More recent developments are given in Refs. [4] and [5]. To the authors!'
knowledge, however, there are no experimental or theoretical results avail -
able for the important problem of the sloshing of the liquid during forced
excitation of the tank (although the generalized analysis given in Ref. [4] can
supposedly be specialized to include this).

In this report, an analysis and experimental correlations of low-gravity
sloshing in a cylindrical tank are presented for the case of simple harmonic

translation of the rigid tank. Now, experimental data for low-gravity sloshing



are not easily obtained. Ground facilities that can duplicate an actual low-
gravitational acceleration, such as drop towers, are not able to provide the
low-gravity field for a sufficiently long time to get consistent and reliable
sloshing data because the testing time available is on the order of only five
seconds; drop towers, though, are quite valuable for experiments on other
aspects of low-gravity fluid mechanics. Another method of simulating low
gravity is to use small models in a bench test; the interfacial or capillary
forces can be made comparable to, or greater than, the gravity forces even
in the one-g field, so this is a suitable '"low-gravity'' test for some purposes.
The available test time is not a problem with this kind of simulation, but the
liquid motion and the slosh forces are, of course, quite small because of the
small dimensions of the model. In the experiments reported here, the low-
gravity simulation was accomplished by this method of using émall models;
such a simulation required that an extremely sensitive dynamometer system
be designed and constructed (slosh forces smaller than 0.001 pound were
expected). The resulting data, to the authors' knowledge, are the first (and

the only up to now) that present sloshing forces and frequencies as a function

of Bond number; these are the parameters that are of most value in missile
and space applications. (Some data for natural frequencies have been pub-
lished previously [3].)

The axial acceleration and the tank dimensions used in the tests were
small enough that the Bond number, Ngq = pgR(Z)/T, an indication of the size

of body forces relative to interfacial forces, was in the range of 10 to 100.



Very low-gravity fluid mechanics are characterized by Bond numbers of less
than one, while high-g problems are in the range of Ngg > 1000. Thus,

10 < Ng(o £ 100 should be classified as moderately low gravities*. Even
though body forces are still dominant for these Bond numbers (but not over-
whelmingly so) interfacial tension causes the undisturbed equilibrium free
surface to depart considerably from a flat surface, and, thus, interfacial
curvature and forces must be included in the analysis.,

Effects such as stratification and thermally driven motions are ignored
in the analysis and are absent in the experimental tests. Moreover, the influence
of viscosity is neglected in the analysis since experience has shown it to be
small; the main effects can be accounted for a posteriori by adding suitable
linear damping. The circular cylindrical tank is assumed to be rigid.

The theoretical analysis is given first; the experimental procedure and
test results follow, and the correlations between theory and experiment are

then presented.

#Bond numbers of this size, for example, are encountered in coasting orbits
of large boost stages such as Saturn IVB [6].




II. ANALYSIS

A. Basic Equations

An r, 0, z cylindrical coordinate system is f_i_zc_e_d_in the tank and
centered along the axis at the point the axis intersects the undisturbed free
surface, as shown in Figure 1. % The depth of liquid below z = 0 is taken to
be large enough that the tank bottom is essentially at z = - oo; this assumption
greatly simplifies the algebraic work and is valid if h/ZRO > 1. The height,
f(r), of the undisturbed axisymmetric free surface is measured positively
above z = 0; the wave height, n(r, 6, t), is then measured from the undisturbed
surface and not from z = 0.

By assuming that the ideal liquid is incompressible and its motion
irrotational, a velocity potential, ¢(r, 6, z, t), may be defined such that the
ligquid velocity relative to the tank is V= Vé. The potential must satisfy

Laplace's equation

2, 52
b o .0
v2e-L B (;00), L2, 2o, (1)
r 3 \"0r)" Z 502 3,2

and two conditions at the tank boundaries

o (2)

o] o0
H o
1
=]
L]

i"
=

’ z = -0 (3)

Q1O
N
1]
o

If the velocities and density of the ullage gas are neglected, the first

integral of the equations of motion evaluated just below the free surface gives

*All figures grouped in Appendix B.




one relation for determining the wave height from the velocity potential;

it is

ity , z=¢ (4)

9,2, Lig,. - x w?
at+p+2[V¢ Vol + gt Xo,w“T cos 6 cos wt

0, and Y(t) is a function

L(r, 6, t) = n(r, 6, t) + f(r) is the wave height above z
of time at most.

A second condition between { and ¢ is obtained by requiring that the
normal stress across the free surface must be discontinuous by an amount

proportional to the product of the interfacial tension, T, and the mean surface

curvature:
9¢
SpeT|L2 ~or
pg P r Or 2 5 1/2
RORE
or r 96
aL
1 9o 0
rZ 00 2 > 1/2

A final condition between { and ¢ arises from the fact that the motion of the
free surface and the fluid velocity at the free surface must be consistent with

each other, or

ié__éé+3ﬁ(?£)+ _L(ié)("’_é)w . z=t (6)

ot 8z Or\or rZ 00



The final requirement for a well-posed problem is knowledge of the
angle at which the free surface meets the tank walls. ¥ Here it is assumed
that the contact angle measured in the liquid, for the undisturbed surface, is
zero, which is typical of several existing fuel-tank systems; any other angle
could be used in the analysis just as easily. It is entirely possible that the
angle at which the sloshing wave meets the walls differs from the undisturbed
angle; this phenonemon is known as ''contact angle hysteresis.'' Some research-

ers have tried to account for the hysteresis by assuming that

on

a—r'=C1n, z=¢{ r=R

which seems to imply that the change in the contact angle depends only on the
distance the free surface is displaced from equilibrium. (C; is an experi-
mentally determined constant. ) But the hysteresis, should also be a strong
function of the contact line velocity because, in a sufficiently slow movement,
the contact angle should stay reasonably close to its static value. Thus, rather
than assume an arbitrary functional relationship, hysteresis is neglected in

the analysis, and the contact line is allowed to slide easily alohg the tank

walls — the so-called '"free edge' condition. Hence, the contact line condition

used here is

n
—=0 ,
or

: 1)38% 8t \? He
Actually, the contact angle is defined by 6. = cot~ ™ 1 +(_36—)
r r

(at r= R,) so that Eq. (7) allows 6, to vary from its static value, which is

z=0 r=R (7)

*In high-g analyses, the free surface is flat at equilibrium and is assumed to
deform to whatever shape the dynamics require, regardless of the value of
the contact angle.



cot™1 (d¢f/dr). However, since 94/9r = df/dr + 9n/0r, if the equations are
linearized with respect to n (which will be done presently), then Eq. (7) says
that 0. always equals its static value.

B. Equilibrium Interface

The equilibrium free surface shape, f(r), must be known as an input to
the sloshing analysis. It can be computed as part of the analysis, say, in the
form of a series of the gigenfunctions of Eq. (1) [4], but this process does
not converge very quickly; or it can be obtained from a numerical solution of
the equations, but this virtually forces the entire sloshing analysis to be
numerical. Fortunately, very good approximate algebraic expressions can
be derived for f(r) in the range of Bond numbers of interest here.

In Eq. (4)let $ =0, and in E-q. (5) let Y(t) = po/p, where po'is the
liquid pressure atr = 0, z = 0. Now, the pressure a;t any other_ point on the

free surface in the liquid is

P =P, - pgflr) (4")

and the interface tension-curvature relation is

4 dr (5")

where pg is the ullage gas pressure. Thus, combining Eqs. (4') and (5'),

it is found that

s ;oL
Ld dr - dr 4 PE= o
r dr 1/2 r dr T

(8)



This equation with the boundary conditions f = df/dr = 0 at r = 0 and
df/dr = cot 6. = o0 at r = R, completely determines f(r)
At very small Bond numbers, the equilibrium interface is nearly

1/2
2) / ]. As the Bond number increases,

spherical [i.e., f(r) = R, - (RZ - r

the interface becomes flatter. Using this as a guide, Satterlee and Chin [7]
o : 2 21/2,

showed that a modified spherical shape, f(r) = B[Ry - (R§ - r°) " '] with B

a function of N4, was an approximate solution of Eq. (8) which agreed well

with experiments and exact solutions if Ngg < 10; for larger Bond numbers,

the assumed shé.pe, however, was not '""flat'" enough. Thus, for a range of

Np@ greater than 10, a reasonable assumption for f(r) is
3 1/2
' T
f(r) = [SRO 1 - (1 - —T) (9)
R
o
since the curvature of this is considerably less than that of a sphere except
very close to the walls. B is calculated such a way that Eq. (8) is approxi-
mately satisfied in some sense. Now, Eq. (9) already satisfies the proper
boundary conditions, and Eq. (8)at r = 0; if § is picked so that Eq. (8) is also

satisfied at r = Ry, then Eq. (9) should give a reasonable prediction of f(r).

Carrying out the details yields the result that
2
-3 0 (10)

Eqgs. (9) and (10) compare very well with Satterlee and Chin's experimental

data for Ngo >10 [7].

C. Linearized Sloshing Equations

The potential, ¢, and the wave height, 1, are now assumed to be

small enough that the equations may be linearized with respect to them; note



9

that neither f(r) nor {(r, 6, t) need be small, though. After combining Eqs. (4)
and (5) and subtracting out the equilibrium condition, Eq. (8), the linearized

pressure requirement at the free surface is found to be

90 an
5t &7 T \T Br 32 [ 7298 o172
(5] (5]
1+ =— 1 +[=—
dr dr
=xow2r cos Osinwt =0 z=f(r) (11)

and now this equation is evaluated on the undisturbed interface, z = f(r).

Linearizing Eq. (6), the kinematic condition, gives

On _9¢ . df (9¢)_ -
- 3z+dr(3r)_0 .z = f(r) (12)

This completes the linearization of the basic equations.

The entire set of equations are nondimensionalized by using the

following substitutions:

R=r/Rg ; Z=2z/Rg ;'T=t(g/Ro)1/'2 ; Npo = pgR3/T ;
-1/2

F:f/Ro ; €=‘n/Ro ; ‘I’=¢(8Rg) / ; Xo=xo/Ro

Q:w(Ro/g)I/Z*

For convenience, the nondimensional equations are listed below:

V28 = 0 in the liquid (13)

*For verg small Bond numbers, a better nondimensionalization of w is
Q= w(pRG/T) = QNB since this avoids any difficulties in the dimensionless

frequency as g—0,

O
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o® .
gﬁ— 0 , R=1 (14)
0%
—_—=0 - - 1
37 y 2 o) (15)
% . o R =1 = F(1) = 6
aR— 1 . - Z - F( )—‘3 (1 )
de 0® dF(ﬁ@)
—_— - et | == = O = 17
or 0Z dR\9R v 2=F (7

R 2 oe
e, 1 [1e R |, 18 39

dR dR

- X PR cos 0sin@=0 , Z=F (18)

3 l/2 : 3 2
and F(R) =8[1 - (1 - R?) ]| with B determined by B Nggo - B“ -2/3=0.

D. Solution

Unfortunately, no function or set of functions known to the authors will
exactly satisfy the field equation, Egq. . (13), and all the boundary conditions,
Eqs. (14) through (18). Of several approximate methods, the one selected
here is to construct a solution from the known set of solutions for sloshing
at very large Bond numbers for which F = 0. This seems reasonable because
body forces are still the largest forces when Npn > 10. Thus, a velocity
potential of the following form is assumed to be acceptable:

S AnZ
¥R, 0,Z,7) = ) ap(r): Jy(\yR)- cos 6- e " | (19)

n=1
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If the \, are determined from J'l()»n) = 0, Eq. (19) identically satisfies term
by term Eqs. (13), (14), and (15). * This will also insure that each Jl()\nR)
is orthogonal to all the rest in the interval 0 < R < 1, with the weighting
function R.

Boundary condition, Eq. (16), is satisfied if

Q0
€R, 6, 7)= ) by(7): I;(\yR)* cos 6 (20)

n=1
This type of expansion for € cannot be made to satisfy a contact line condition
of the form de¢/OR = C;€, and consequently only the free edge condition
(C; = 0) can be analyzed with >Eq. (20).

Now, if F =0 (i.e., if Ngg = o) Egs. (17) and (18) reduce to
b, - \yap = 0 (17)

2X 0
anp + by - sin QT = 0 (18')

2 - 1)3,0\,)

These equations result from dividing through by J;(X\;)cos 6 in each of the
orthogonal equations. Thus, a,, and b, can be easily determined, and the
potential and the wave shape are completely defined.** Using Eqs. (17') and
(18') as a guide, evlery term in Eqs. (17) and (18) is expanded in a Bessel-

Fourier series of the form:

#n) = 1. 84118, %, = 5.33144, \3 = 8.53632, g = 11.70600,...,
S =\, + 7w [8].
- 2X,03

*%¥It turns out that a,, = cos 2T and, in particular,

1. 438 X 0> 05 - D000 - )
* O

ay = - ————2" 05 QT
17 7 q2 77, 841 €057




Now,

12
o
Z CmJl(%R) cos 0
m=1
Eq. (17) reduces to

QO (e 0]
> 1bn+ . Clamam( J;(AnR)cos 6= 0 (21)
n=1 m=1 .

and Eq. (18) reduces to

00 0 0©
Z by + z CZnmém + Z C3nmbm
=1 " m=1 m=1

2X 9

0& - 13,00

sin Q’T} Jl()\nR) cos 8=0 (22)

where Cl,,,,, C2,p, and C3,,, are the functions of B and NBO given in

Appe

ndix A. Since the Jl(XnR) are orthogonal, each term in the sums over

n in Eqs. (21) and (22) must be identically zero. Hence, after combining

Eqgs

to be

(21) and (22) to eliminate the b,(7), the equation for each an(7) is found

§ C2, b }: Clymam -il( i smm)

3
__ 2X@
(A& - 1)T;(0)

cos 2T =0 (23)

It follows that each a,, depends on all the rest. Adequate results, however,

can be obtained for the first few modes by truncating the equations at, say,

m =

M, and then treating the resulting set of equations by ordinary methods.
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Fach of the set of M equations in M unknowns can then be put into a form such

as

. M
e .. - 3 —
dpt € jant Zl(g J8m + £ _jam) = Xo¢  cos @1, n=1,2,...,M

m#n

(24)
‘r where the gij are numerical constants. For example, with Ngn = 20 (B = 0. 340)

and m = 3, the equations to be solved are

a, + 1. 7503.1 + (- 0. 37552 + 1. 138a2) + (0. 608a

1 - 2. 093a3)

3

= 1. 147X,23 cos Q7
(-0.1298) - 0.365a)) + &, + 9.304a, + (-0. 66645 - 1.427a3)

= - 0. 130X,92° cos QT

= 0. 042X 0> cos Q7

The b,'s are calculated from Eq. (21), which for this case is

by = 0.345a; - 3.213a, + 17.083a,
by = 2.07la; - 0.456a, + 1.554a;
by = - 0.373a, + 7. 445a, - 3.993a,

Only the steady state response of Eqs. (24) is desired, so letting
a, = A, cos Q7, substituting this expression into Eqs. (24), and then solving
for the A, shows that the A, are of the following general form:

2n 2n -2
A = Klnﬂ +K2nQ +...+KMSZ
n =

o — - XoR (25)
ne-
Q°" + K, Q oo 4Ky, 9%+ Ky -
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Kij and K; are various products of the constants in Egs. {24). This equation
| .
. can be put into a more revealing form by rearranging it according to the

ideas of partial fractions:

pln PZn PMn

QZ-Q% 92-95 QZ-Q%VI

The Qiz, which are the factors of the denominator in Eq. (25), can be identified
as the square of the natural frequency of the ith sloshing mode; they are
2 2 2 . . . .
ordered such that @) <Q; <... <€),. Physical reasoning implies that all
the le > 0, and this turns out always to be the case.

By substituting these results into Eq. (19) and rearranging the terms

according to natural frequency, the velocity potential may be expressed as

M M
X
d = XOQ3 cos 0 cos QT 2—1-—2— z PomJ;(AmR)e mZ (27)
n=1% -9 Im=1
The sum in braces in Eq. (27) is the normal mode function for the nth sloshing

mode (not normalized to one). Note that the index n in P, in Eq. (27)
occupies the first position in the subscript, while, in Eq. (26), it occupies the
second; thus, all the A, contribute to each mode of &.

Now, by letting b, = By, sin Q7, Eq. (21) shows that

Q Q Q
B, = 21n2+ 22n2+...+TM—n-Z- X 0% (28)
QF -Q7 Q-9 Q -QM

in which the Qij are various products of the constants in Eq. (21) and the

Pij' Thus, the dimensionless wave shape is:
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M M
€ = XOQZ cos 8 sin QT z —Z—l—'—z z QnmJI()\m)} (29)
n=1 -2 m =1

The velocity potential, ® and the wave shape, €, have now been
determined. The appr-opriate terms can be easily picked out of & and € for
studying any particular mode; as will be_seen, this is of considerable help
in formulating an equivalent mechanical model.

As a numerical example, let Npo =20, $ = 0.340, and M = 3 as

before. Then, using the previous results, the A, are

.
1.158 0. 002 0. 007 3
i ) "2 Xof2
Q° - 1.819 % -10.373 9% - 31.797]
Ap=|-20027 0016 0012 |y
Q% -1.819 9%-10.373 9% -31.797
r. ... o : 1
A e v + Ve VAo + Ve Vv X QJ
> ,I_QZ - 1.819 % -10.373 @2 - 31.797J ©

(A3 is not determined quite so accurately as A, which in turn is probably
less accurately detexmined than A;. In general, one would expect that the
A, for n near M will not be as accurately calculated as for smaller n; i.e.,
if another M' > M is picked, then the previously calculated A, for n near M
will be changed somewhat. This is not an important limitation because only
the first mode results are needed in most applications. ) For the numerical

example, the B, are

22.384 + 20. 023 : 20.012 XOQZ
Q“ -1.819 Q~ - 10,373 Q° - 31,797

Blz -
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B __r 0.22 0.170 0.012 -l-- ~2
2~ 2 - > + > KOJ
Q° -1.814 Q -10.373 Q° - 31.797

-3

By = |- 20.2.95 + - 0.272 + 20.336 XOQZ
Q@ -1.819 Q° -10.373 Q° - 31.797

Thus, the fundamental sloshing mode for Ngp = 20 is

XOQ3 cos QT cos 6
Q% - 1,819

[-1.1587,(1. 841R)e - 841Z _ 0, 0277 (5. 331R) &>+ 3312

+0.0017;(8. 536R)e8: 536Z]

and the fundamental wave shape is

XOQZ sin Q7 cos 6

[-2.3847,(1.841R)+0.227J;(5.331R) - 0.295J,(8. 536R)]
Q% - 1.819

For comparison purposes, the first three dimensionless sloshing frequencies

when Npg = o are (1. 841)1/2, (5.331)1/2, and (8.536)1/2. When Npg = 20

but 0. = w/2, i.e., No suriace cCurvaiture, wuic sicyuvicace wew oo )‘ /7‘,
(12. 906)1/2, and (39. 634)1/2 [9]1*. According to the present analysis, the

frequencies for Np = 20 and 6, = 0 are (1.819)1/2, (10.373)1/2, ang
(31, 797)1/2. Thus, the conclusion is that interfacial tension ''stiffens
the free surface but that surface curvature, which depends greatly on the
contact angle, ''relaxes' it, .
The dimensionless natural frequency parameter .Q% = w%Ro/g for the
first mode is shown as a function of the Bond number in Figure 2. Q% for
2

10 £ Ngp <€ 100 is always less than the high-g limit, Q7 = 1. 841, and approaches

this value rather slowly as Ngo—=o. The frequency equation of Ref. [3],

*The set of Eqs. (13) through (18) can be solved exactly for this case since
F = 0 and the boundary conditions ''separate'' term by term.



17
Q] = 1.841 + (6.26 - 4.76 cos 0.}/ Npg = 1. 841 + 1.50/Npq for 6 = 0, is also
shown for comparison purposes; as will be seen, however, the results of the
present theory give the best comparison with the trend of Q2 vs Ngo from
our experiments; in any case, the difference between the present theory, the
theory of Ref. [3] and the high-g theory is always less than about 5 percent
for 10 < Ngo < 100.

E, Equivalent Mechanical Model

The sloshing characteristics important in missile applications are
primarily the slosh frequencies and the forces and moments exerted on the
tank. These characteristics are displayed in a more convenient from for
stability and control analyses by an equivalent (mathematical) me cﬁanical
model. Moreover, the results of the partially numerical analysis must be
presented in graphical form, which is a form especially suited for a set of
lumved parameters such as springs and masses. Finally, damping can be
introduced in a straightforward manner in the mechanical model. |

The proposed model, shown in Figure 3, is outwardly similar to
other slosh models; as can be seen, one spring-mass oscillat01; is included
for each of the M slosh modes. In order to calculate the parameters my,
my, ..., kl’ kz, «esy hg, hl’ ..., the forces and moments exerted on the
tank by the liquid must be known.

The interfacial tension forces acting on the tank walls along an element
ds of the contact line is shown in the sketch at the top of page 18; these forces.
arise as a consequence of considering the interfacial tension tc; be similar to

a stretched membrane., The force in the plane of the wall, Fp = T cos 6. ds,

acts as shown; since here 6 is always 0, thus Fp = TR, d0 because ds = Ry df
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Contact Line

(r.o,)

i 8 S E

when higher order products of n are neglected. The vertical component of

Fr is also Fq, to the first order in 1, and the component of Fp tangential

to the tank walls in the increasing 6 direction is Fp g = Fo an . Thus, the
H

00
net force on the tank is composed of a vertical force, which is not important
here, and the vector sum of the FT 9° ds forces, which turns out only to
] -

. | I oL [ [P S DU SR, 1 B SV R N I PO Y N Tk nmé el cmméad

force, then, caused directly by interfacial tension is

2
on(r=Rg) _ .
F]. = - f ———-a—e—T sin 646
0

Since n = Rpe, after the integration this equation becomes

M
F. = mX, QTR sin Q1 ) o (30)
1 o o 2 -2
n=1 &
M
where Hy = Z QnmJl()‘m) is the dimensionless wave height at the wall for
m=1

the nth mode. Now, T = pgR%/NBO so Eq. (30) reduces to:
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Hp

1
F, =(N )ﬂpRg w? sin wt E (31)
BO g
=1w -Q
Ro

OWIW

=J 3

after resubstituting dimensional variables back in.

The part of the force directly attributable to the liquid's motion
can be calculated with the aid of the velocity potential. Since ® can be used
only in an accelerating reference frame moving with the tank, a velocity
potential for particles moving with the tank must be added to @ before
forces in an inertial frame can be computed. Thus, let ¥ = & + X QR cos 8§ X

cos 27, Then, if products of ¥ with itself are neglected, the liquid pressure

is
v
P=-peRo\z;t 2
or
(2 2 .
P = - pgRy -8—7_--XOQ R cos 0 sin QT + Z

In this equation p, has its usual dimensions but is expressed in terms of the

dimensionless coordinates R, 6, Z, 7. Thus, the force is

o
L2 R

2
F, = obf

where § = L{r = R,) = ROF(I) + Rye(R = 1) = BRy + Rye,. Hence

RO
[ 7 [pR=1)] cos 6azas
LS
R

27 B+eo _

F, = - peR] [ f [8<I>(6P; D _ x 92 cos OsinQr+ z] cos 6dZ d8
L
Rg

0
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The last term in the integral is

27

Ogﬁ

0

° 1 72 2 {h
}j: Z cos 9dZd9=-2—f [[3 +ZBeo+ € -(E:)]cosede
R,

The first and last terms in Eq. (32) integrate to zero; the next-to-last term

is a second order quantity in € and is negligible;* Eq. (32) thus reduces to

2m B+ ey 27
f f Z cos 9dZd6=[3f eocosede
0 _h 0
R
M H
= ﬂBXOQZ sin QT z —_— (33)

2 2
mzlg -Qn

Similarly, since products of ® and € are negligible, the first term in

the force integral is

2m B+eg M I
[ f %{:cos 0dzd6 = - nXQtsin@r S B (34)
0 h T A28 -Q
"R,

M
where I, = z Pnm J ()\ e mﬁ, and it already has been assumed that h/Rg

is so large that e-)‘mh/Ro = 0. The results then show that

H, £&- M
3 2 R, 2 In
F, = mpRx,w sin wt -B z 2£_+w z T—Z—_
= - Q = -t £
1“’ n R, n=1w QnRo
(35)

*The entire integral is negligible for very large Bond numbers.
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and the total force, F, + F,, acting on the tank walls is

M Hnﬁ_
F-n'pR3x w® sin wt B+—h-—-([3-—-) Z RO
o Ro Npo W22 B
o
M I
+ wl z SO
n:]_(&)z-QerRL

After combining and rearranging various terms, it can be seen that

. M
-n-prw smwt{—-+ B+ g - NBO) Zl—%;]

1 Hp
+ w? I\ZA In-(ﬁ N—_)q} (36)
w2 rzlki

L T E SEE ) PR WS, PR LA IS~ NOUDR VNG R F Y Ry

Now, by calculating the late: -’

of masses and springs in the mechanical model, one finds that

M M
m
Frmodel =xooo2 sin wt [mg + Z my, - w? z SR nKn (37)
n=1 n=1% - 7=
n

The mechanical model will give forces equivalent to the sloshing, then, if

= - 1,,-(5-513—5)5—5- (38)

2|

- 02
-Qni% ’ (39)
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and
M M 4
31h 1 n
m. + m, = wpR —-+B+(B-—) — (40)
o 3wl ) S =
n=1 n=1
M
The numerical calculations show that 1'rpR3 2y p+ (f) - —-1—) z -I—-{-n—
°| R, Ngpo Q2
n=1 %n

is always very nearly equal to the total mass of the liquid, which is
mq = pTng(h/Ro‘ + 0.264B); as M—eom, it is reasonable to believe that it
would equal the liquid mass exactly, although this would probably be difficult
to prove in complete generality. Assuming, then, that the term is equal to
mq, Eq. (40) shows that

M

mg + z mp = mq (40'")
n=1

It would be surprising if the part of the force directly proportional to the
acceleration of the tank were not equal to the product of the liquid mass and
the acceleration. Note that both m, and k, can be computed from knowledge
of only the ntP sloshing mode and surface wave; in other words, my and k,
are not coupled to the other modes.

A slightly more exact estimate of m; can be obtained by noting the

difference between the term P + (f - - E —— and its correct value of
N 2
BO/n=18;

0. 264p (the differences are always small), attributing this error to Hl/Q%
(HI/Q% is muchlarger numerically than the other Hn/ﬂrzl), corre<cting HI/Q%
so that the difference is zero, and then using the corrected HI/Q% to calculate

m, in Eq. (38).

1
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For example, using the previous results for Ngy = 20 and M = 3:

Hy = -1. 546, H, = 0. 146, Hy = 0.095; I = - 0. 672, I, = 0.015, I3 = 0. 007;

3
H

Q% = 1. 819, 05 = 10.373, szg = 31.797. Then, B +((3 - —l—-) z —2“-= 0. 340
NBO/nZ'1 94

+ (0.290)(- 0. 833) = 0, 098, instead of the exact value of 0.264p = 0. 090. Thus,
correcting HI/Q% = - 0. 850 by -0.008, as outlined above, one finds that
m; = 0.4171'rpRg, m, = mg3 = 0 and m, = (h/R, - O. 327)'rrpRg; and k; = 0. 7601rpgR%.
For comparison, when Ngp = 00, known results [10] predictthat m, = 0. 4551rpRg
and kl = 0. 8371’(pgRg. * In Figure 4, the fundamental sloshing mass, my, is
shown as a fﬁnction of the Bond number; in every case, the amount of liquid
participating in the sloshing motion is smaller than that for NBO = oo, and,
in fact, for Ngg = 10, the sloshing mass is almost 10 percent less than the
high-g case. The spring constant, k;, is also shown in Figure 4. The amount
of liquid participating in the second and higher modes is very small.

The moment exerted on the tank is caused both by the direct action of .
the surface tension and by the sloshing pressures. Taking a reference axis
in an inertial reference frame whose origin coincides with z = -h, r = 0,

for t = 0, in the direction 6 = +7w/2 (i.e., the axis is perpendicular to the

excitation), the moment due directly to interfacial forces is

2

In(r =R,) _
M; = - (h+(3RO)>—3-9——T sin 6d6
0
*The difference between the values of my for N =20and N o= ® is sub-

stantially larger than the probable error of 0. 0081'rpR(3)’ in the calculations for
Npo = 20; this is always the case.
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when higher order products of n are neglected. Thus,
h+BR, 3 M Hy igg
= (h+BR) F| = ——=mpR3x,w’ sinwt D — (41)
BO n=1 w? - Q2 £
n RO

The direct contribution of the liquid pressure to the moment is*
21 B+e,
= R3 h
= RJ f f (z +——)[p(R= 1)] cos 6dZd6
- b o
Ro

2w )

+R(3)6f _([ Rz[p(Zz-

The second integral in Eq. (42) is the moment exerted on the bottom of the

)]cos 6dR d6 (42)

&=

tank; since ® ® 0 for Z = - h/R, this integral reduces to E— pR‘(l.)xo(.o'2 sin wt.
Hence, altogether M; is
M Hn _&_
4 1/ h 2 R0
M=11'prw sin wt< —={=——+ P - z
2\R, -2 &

2 = Lp 1
+ w z ————+Z
n:lwz-Qﬁf{&O-

m)e )\mﬁ. After combining M; and

M,, the total dynamic moment on the tank is:

*The contribution arising from the displacement of the entire mass of liquid
as a rigid body relative to the inertial frame (which equals myx, sin wt) is

neglected because it can be computed statically.



2 M Hpg-
M = TrpRgxom2 sin wt l(—h—+ B) -(f} - _1_)(_11_+ (3) z o
# \Ro Npo /\Ro /2 (2 - a2 &

. . . 1 Hy
Using the previous observation that  + ([3 - -——) z ——~= 0. 264 and

NBO n=1 ngl
rearranging the terms in a manner similar to that used in Eq. (36), Eq. (43)

is finally written as

h 2 R,
E-+ 0.528p + 0.128p o

(o]

M = wagxowZ sin wt (Eh-+ 0. 264B) R
© 2 (1 + 0.264p —hP-)

(44)

+ (0.25 - 0.382) + w? z

n=1

Since the distance from the bottom of the tank to the center-of-mass of the

liquid is*

R
Rl+ 0.528p + 0. 12882 —>
he.m. = Ro = (45)

Ry
2 (1 40,2648 T)

it turns out that Eq. (44) is equivalent to:

*This distance equals the distance to the c. m. of the undisturbed liquid in
the linearized approximations used here.
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mmsh
M = mpRax w? sin wt {._‘-E-'-‘&-+ (0. 25 - 0.3p°)
TrpR4
(o)
1 h Hp
Moo R
ro2 ¥ (46)

Carrying out the calculations for the mechanical model, the moment
of the system of vibrating masses about the same reference axis is

2

M mp g
Miodel = xowz sin wt¢hymg + z h,ym, + 5
n=1 - n-= 1 wn

L2 @ mnlhy - gled) (47)
n=1 002 - 0)121

. M
Since hymg + z h,my is, by definition, equal to h. , mq, Eq. (44) and
n=1 '

Eq. (46) give the same resulting moment if m,, mg, and w, are calculated

as previously indicated and if in addition
R

h = -%[Ln -(B 'N';;(;)(R%Jr ﬁ) ;“—;]wpki gf

= RO —
Ro Q%n Mn Im=1
H
R (48)
Npo/@Z
and
M
1
hO = Fo-(mThC- m. - nz: mnhn) (49)
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Note. again, that hp depends only on the n
these expressions cannot be simplified a great deal, but for Ngy = o, in

which case QIZ1 = Mn and Py, = 0 for n # m, Eq. (48) reduces to

2R,
M

'hn:h_

which is the correct result [10].
Another apparent requirement for moment equality from Eqs. (46)

and (47) is

=(—- 0.3p )'n'pRg (50)

When Ngp = o, Eq. (50) is not independent of the previous requirements since

©
Z ()\2 - 1Y, W= Mg/Rgy, and my = anRg[\n(k}?{ - 1)1-1; hence,

Eq. (50) is satisfied identically [10]. For P # 0, it cannot be proved that
Eq. (50) is not an independent requirement; yet, within the accuracy of the
numerical examples, it seems that satisfying Eq (50) is not necessary if
mp, mg, k,, h,, and hj are calculated by the previous equations; furthermore,
the selection of the model parameters would be overdetermined if Eq. (50)
were independent, Thus, Eq. (50) will be assumed not to be another independent
requirement and henceforth will be neglegted.

For the previous numerical example (NBO =20, M = 3), it turns out
that hy =h, - 1.179R,, as compared to h) = hy, - 1. 086R, for Npy = o

where h,. is defined by h,,, = mT/npR(Z); thus, the line of action of the-spring-

av

mass system is slightly nearer the bottom of the tank than for Ngg = co. The



variation of h; wi
mass heights, h,, h3, ..., are not shown because the extremely small magni-
tude of mj, mgy, ..., prevents their being accurately calculated.

The average liquid depth, h_ , and the center-of-mass distance, h¢, m,
are shown in Figure 6; using this information, h, can be computed in any
particular case from Eq. (49) when it is recognized that the products mjh;,

ms3hs, ..., can be neglected in comparison to mjh;.



29

III. EXPERIMENTAL APPARATUS AND PRCCEDURES

An overall view of the experimental setup is shown in Figure 7a,
although the probe used to determine the displacement of the tank (a '""Bently"
electromagnetic probe) has been removed for the purposes of clarity. A
closeup view of the tank and dynamometer system is shown in Figure 7b, which
in this case also shows the displacement probe. The tanks shown are made of
glass and are approximately 1 in. in diameter; they are attached directly to
the flexure arm structure of the dynamometer; semiconductor strain gages
(gage factor = 118) are mounted on the flexure arms, which are strips of
aluminum 0.0055 in. thick, 0.312 in. wide, and about 7/16 in. long. The
dynamometer structure is bolted to a base which is then mounted on the arma-
ture of the electrodynamic shaker; this arrangement allows the tanks to be
excited in pure translation.

As can be seen in Figure 7b, there are two test tanks. One tank,
called the active tank, contains the test liquid, and the other tank, called the
balance tank, is used to cancel the inertial signal of the empty active tank by
appropriate electrical connections and the adding of balance weights; thus,
the signal reaching the oscillograph is that due only to the inertia of the slosh-
ing liquid plus any slight residual forces which could not be cancelled. The
electrical leads from the tension and compression sides of the balance tank
(the gages marked Ty and Cp in Fig. 8) are connected to the gages from the
active tank through a Wheatstone bridge. Details of the wiring and an electri-

cal schematic are shown in Figure 8.



Before each series of tests, the tanks were carefully cleaned in a
detergent-and-water solution and rinsed with ethanol and distilled water. In
some of the tests for which distilled water was used, the tanks were also
cleaned in both a NaOH solution and a hot chromic acid solution. The top of
the tank was then covered with a clean plastic wrapper (''Saran Wrap') which
was removed only to put in the test liquid. All of the hardware that came into
contact with the test liquid was cleaned in the same manner. In this way,
the liquid surface was kept free of contamination.

After a set of tanks was installed in the dynamometer rig, the signal
from the empty active and the balance tanks was cancelled as nearly as possi-
ble by adding tare weights to the balance tank, as described previously. Next,
the displacement probe was calibrated by setting known static displacements
of the shaker armature with a dial indicator and recording the probe signal
on the oscillograph. After this calibration, any residual force signal not
entirely cancelled out was recorded by exciting the empty active and balance
tanks at various frequencies and amplitudes. A test liquid was then put in the
active tank. (The first liquid in each series of tests was always distilled water
because this was the most easily contaminated liquid. The other test liquids,
methanol and carbon tetrachloride, are both good ''cleaners' and not very
susceptible to contamination, but, even so, the active tank was always rinsed
with distilled water before each change in test liquids. All of the test liquids
were reagent grade.) The sloshing forces were next recorded for various |

excitation amplitudes in a frequency range centered about the fundamental
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sloshing frequency. * After the sloshing tests, the residual signalé with an
empty active tank were again recorded. Then, measured weights (usually
rolled up strips of brass shim stock) were put in the active tank and the force
output of these weights recorded for various amplitudes and frequencies.
Because the amplitude of the actual force exerted by tiue weights can be cal-
culated exactly (= wzxo times mass of the weights), the dynamometer force
signal was calibrated by subtracting whatever residual signal was previously
noted from the signal of the known weights (taking into account the phase angles
of the two signails with respect to the displacement) and plotting the resulting
amplitude of the signal against the calculated force. The sloshing force was
finally obtained by subtracting the residual signal from the sloshing force
signal and comparing the result with the force calibration curves.

The accuracy of the various measurements can be estimated from the
following considerations. The excitation freqﬁency could be determined and
maintained to the fourth significant digit in the period (in seconds); e.g., a
nominal frequency of 5 cps could be set and held with a variation in the true
period (0.2 seconds) of aboqt +0.0003 seconds. The excitation amplitude
could be determined and maintained to within %0.0005 inch. Phase angles between
excitation and force traces, which were used only in subtracting the small

residual signals from the larger dynamic force signals, could be determined

*The forces were quite small sothat, to prevent their being masked by external
noise, the dynamometer signal was passed through an electronic {filter with .
a band pass of 2 to 30 cps. A plastic dust cover, which can be seen in Fig-
ure 7a, was put over the tanks and the dynamometer to prevent stray air
currents from giving spurious signals in the frequency range of the band
pass of the filter. A clean sinusoidal force signal was usually obtained by
these methods.



from the oscillograph records to within about £20 degrees. The amplitude
of the force signals could be read to about 1 part in 100, with the exception
that for extremely small amplitudes the accuracy was about 1 part in 10.

The deviation of any experimental point in the force calibration was within

+5 percent of the "best-fit" straight line through the data and the zero point.

The height of the liquid in the tank was determined to within #0.01 in., and
the meniscus height could be determined to about #0.015 inch. The overall
accuracy of the sloshing force data, after being reduced, is estimated to

be within %5 per'cent of their true values.

32
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IV. TEST RESULTS AND COMPARISON WITH THEORY

A. Test Results

The main objective of the experimental program was to determine the
sloshing force (for incompressible liquids in rigid cylindrical tanks) as a
function of the excitation frequency for a band of frequencies centered about
the fundamental mode, with the Bond number as a parameter. No attempt was
made to measure the sloshing moments since this would have greatly compli-
cated both the experimental setup and the experimental procedures; for exam-
ple, not only would residual forces (no liquid in the active tank) have had to be
kept as close to zero as practical, but the residual moments would also have
had to be cancelled by tare weights.

Four different sized tanks, with diameters from 1. 36 in. to 0. 384 in.,
were used in the tests with three different test liquids: distilled water, methanol,
and carbon tetrachloride (CCly). Except for one series of tests with a 1.00-in.
diameter Lucite tank, all of the tests were run in glass tanks. As nearly as
could be determined from visual observations, the contact angle of all the
liquids against the glass tanks were zero degrees, although, with the Lucite
tank, the water's contact angle was nearly ninety degrees. The sloshing motion
of the liquids, except as discussed subsequently, appeared to approximate the
"free edge' condition very well.

Figures 9 and 10 show the force response curves for CCly and methanol
in a 1.36-in. diameter glass tank; the Bond numbers were 175 and 100, respec-
tively. The solid lines in these figures are faired curves through the experi-

mental data. There is a pronounced resonance for both liquids in the vicinity
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of 5.1 cps, as can be seen from the curves; the curves, in fact, are qualita-
tively quite similar to resonance curves for ordinary high-g sloshing. Near
the resonant frequency, the sloshing is of the rotary or "swirling' type
encountered in high-g sloshing [11,12] in which the surface wave rotates
around the tank. The shaded areas shown in the figures indicate in a very
crude fashion the swirl-zone boundaries. Once swirling is encountered, the
sloshing force, of course, rotates around the tank also, and, thus, the forces
in this zone cannot be determined nor the exact resonant frequency found.
The curves for water, methanol, and CC14 in a 1.04-in. diameter glass
tank are shown in Figures 11, 12, and 13, and for methanol in a 1.00-in.
diameter Lucite tank in Figure 14. The methanol and CCly (Bond numbers
about 55 and 98, respectively) again display a marked resonance, this time
near 5.75 cps because of the smaller tank. However, water (Bond number
of 24) responded in a quite different fashion, as shown in Figure 11. The
resonance peak, for one thing, is near 6.5 cps instead of the expected value
of about 5.75 cps. For another, the response curves appear to be heavily
damped; note the difference between the peak force for water and CCly for
X * 0.005 inch. Furthermore, the boundaries of the swirling motion, which
are highly dependent on the amount of damping present, are not encountered
except for large values of the excitation amplitude. The apparent conclusion
is that the water's motion is much more highly damped than either the CCly

or the methanol. Yet, the viscosity and hence the Reynolds number for all

three liquids are approximately the same¥*; certainly, the differences in the

*VHZO = 0.0101 cm?2/sec; veely = 0.00969 cm?/sec; Ymethanol =
0.0059 cm?/sec.
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viscous action are not sufficient to explain the discrepancies in the response

of the water and that of the other two liquids, ¥ The difference, then, must

be due to the water's sticking to the tank walls, and visual observations indi-
cated that, indeed, the water did not slide freely along the tank walls (it was

.not completely stuck, however), even though extreme care was used to pre-

vent contamination of the water and the tanks (see Section III). The shift in
frequency can be explained by a contact line condition of the form 9n/dr = Cin,
as has been noted before [3], but this equation, if Ciisa numericé.l éonstant,
does not seem able to explain the additional damping caused by ''sticking.' The
entire subject of contact angle hysteresis and surface wave damping has recently
been reviewed by Miles [13]; he points out that the important physical processes,
are far from being fully understood.

The water behaved in. the same anomalous manner in the other glass
tanks, and, since the interest here is in the 'free edge'' condition, the other
response curves for water‘ are not shown.

The response of methanol in a 1.00-in. diameter Lucite tank is shown
in Figure 14; it is quite similar to that shown in Figure 12 for a 1.04-in. diam-
eter glass tank. Because of this, and because water has almost a ninety
degree contact with Lucite and CCly attacks it, the tests with Lucite tanks were
not pursued further.

Curves for methanol and CClyg in a 0. 688-in. diameter glass tank (Bond

numbers 26 and 45) and for CCly in a 0.384-in. diameter glass tank (Bond '

*The shift in resonant frequency because of the lower Bond number of the
water is not nearly enough to explain the observed frequency shift. See
Figure 2.



number 14) are shown in Figures 15, 16, and 17.
number is small enough that the interfacial forces are almost as important as

the body forces. It can be seen that a pronounced resonance still exists.

B. Comparison with Theory

The experimental value of the natural frequency is determined from
each response curve by assuming it is halfway between the éwirl boundaries
for the lowest excitation amplitude; this is not an exact procedure, of course.
These values are compared with the theoretical predictions in Figure 2. There
is considerable scatter of the data about the theoretical curve, but the general
trend of the data and the theory is in agreement. In particular, the experi-
mental frequencies, except for Ngp = 14, are below the high-g limit as the
theory predicts. In fact, for several cases, the high-g theoretical frequency
lies to the right of the observed swirl boundaries, especially for the higher
Bond numbers, whereas the true natural frequency must lie within the swirl
region.

Comparison of the theoretical values of p and the observed value of
the meniscus height at the wall agree fairly well, but the inaccuracies in
measuring the meniscus (+0.015 in.) make quantitative comparisons very
difficult. vFor example, with Ny = 14, the meniscus height is about 0.07 in.
in the 0.384-in. diameter tank; this gives a value of B £ 0. 365 compared to the
theoretical prediction of 0.442.

The force response of the proposed mechanical model, with only the

fundamental sloshing mass included, is compared with the experimental

results in Figures 18 through 23, The solid lines in the figures are the
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theoretical predictions, andthe small squares and circles indicate actual
experimental data taken from the previous curves. The ordinate and abscissa
scales deliberately have not been nondimensionalized in order to facilitate
direct comparisons. In these curves, the excitation amplitude, X5, for use
in the theory has been adjusted within the #0.0005-in. accuracy lim-its men-
tioned in Section III until the model and the test results agree at the lowest
experimental frequency below the resonance; at this frequency, the force is
almost entirely equal to total liquid mass times acceleration (i.e., no mag-
nification due to resonance), and, hence, adjusting xo can be interpreted as
mainly accounting for inaccuracies in measuring both x, and the force ampli-
tude. The adjustments in x, are relatively small, and all the curves in
Figures 9 through 23 have been labeled with these adjusted values. With this
exception, it can be seen that the mechanical model and the test results agree
very well, especially for that part of the response curve for frequencies
below the natural frequency. The upper part of the response curves do not
agree quite so well, but at least part of this discrepancy is caused by the
influence of higher order modes, which are not included in the single sloshing-
mass model used to derive the theoretical curves.

There are more serious discrepancies between theory and experiment
for the smallest Bond number tested, Ngg = 14. The compariéon is shown in
Figure 23. If the theoretical natural frequency, Q% = 1.841 or f1 =9,66 cps, _
is used in the mechanical model, the predicted forces near resonance are
much too large in comparison to the test results. However, if the experi-

mental natural frequency, f; = 9.80 cps, is used in the model, the predicted
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forces and the observed forces agree considerably better. It appears from
this, then, that the theoretical calculations have not converged to the proper
values for Bond numbers near 10. Perhaps by retaining more terms in the
potential and wave height equations, this situation could be corrected.

The actual damping was not determined in the tests or used in the
theory, but visual observations of the number of cycles required for the
sloshing to decay indicated that the total damping was not large (except for
the water); this is verified by the good comparison between the idealized theory
and the test results. Also, by using the well-estabiished equation for large

tanks [14]

where § is the log decrement, it is found that, for the smallest (0.384 in.)
diameter tank, § £ 0.097 to 0.13, and that, for the largest (1. 36 in.) diameter
tank, § # 0.04 to 0.05 for the methanol and CClg. While these are larger
values of the log decrement than are usually employed in sloshing tests, they
are still not so large as to affect materially either the natural frequency or
the force response, with the possible exception that the boundaries for swirl-
ing motion are wider in the present tests than are found in tests with larger
tanks. Thus, the liquid damping is not considered to be a serious limitation

in small-model testing.
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This study of lateral sloshing for moderately small Bond nunﬁbers
has revealed a number of interesting features. The analysis shows that the -
fundamental sloshing frequency for 10 £ Ny < 100 is always less than the
high-g limit of wy = (1. 841 g/Ro)l/2 if the liquid's contact angle is zero and
if the liquid obeys the ''free edge'' contact line condition. The amount of liquid
taking part in the sloshing motion is also less than the high-g limit; this is a
reasonable result because, for the same size tank and the same total amount
of contained iiquid, more of the liquid is in contact with the walls for small
Bond numbers than for large Bond numbers; thus, more of the liquid must
follow the motion of the tanks, i.e., more of the liquid must be assigned to

the rigid mass, m and less to the sloshing mass, my, in the mechanical

o
model. The sloshing masses, moreover, are located slightly nearer the
bottom of the tank than for Ng~ = co.

The experimental tests have verified the force response of the proposed
mechanical model with about the same degree of accuracy as similar mechani-
cal models for high-g sloshing. There is some doubt about the natural fre-
quency for Ngy = 10, but, in general, the correlation between theory and
experiment is good. The experiments, furthermore, have demonstrated that
it is possible to simulate low-gravity sloshing (i.e., sloshing with small Bond
numbers) by the use of small models and still get usable results for the slosh-

ing forces and frequencies. The amount of damping with such small tanks did

not appear to be critical. However, considerable care must be used in these
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kinds of tests to insure that the tanks are very clean and the liquids pure;
also, test liquids and tank materials must be chosen which will duplicate the

desired conditions of ''free edge, ' ""partially stuck edge, ' or "stuck edge"

contact lines.
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DEFINITION OF FOURIER-BESSEL COEFFICIENTS

The constants, or Fourier-Bessel coefficients, in Eqs. (21) and (22)

are:
nm (kIZ1 - 1)[J1(xn)]2 J
R - A -(1-r3}1!/2
+___3£T/2_J'1(MnR)}J1()‘nR)e mPBl1 -(1-R3) ]d
2(1 - 3)
: 2 1 A A 5[1-(1-R3)1/2]
2 = RJ ( )J ( R)e ™m .
n (Xg-l)[Jl()‘nnZ! 1R
and R
202 1

nm 2 3/2
OF - DN g (0 (1_R3 +%52R4)

X 2(1-R3) A2 5,00_R) +Z—{32R2(1 -R3)J(\,R)

5 3 1/2
. [952R3(1 - 0.25R>)(1 '-?/; ]J'l()\mR) J1(*pR) dR
(1 -Rr3 +%ﬁ2R4)
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Figure 1. Cylindrical Tank And Coordinate System
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Figure 9. Response Curve For Methanol, Bond Number = 100
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