JPL ENTRY VEHICLE DESIGN
 COMPUTER PROGRAM USERS ${ }^{1}$ MANUAL

Prepared by
SPACE SYSTEMS DIVISION AVO CORPORATION
Lowell, Massachusetts
AVSSD-0001-66-RR
Contract JPL 951070

THIS REPORT WAS PREPARED IN ACCORDANCE WITH JPL CONTRACT 951070. IT 15 SUBMITTED IN PARTIAL FULlFILLMENT OF THIS CONTRACT.

Reproduced by
NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springitiold, VA 22151

JPL ENTRY VEHICLE DESIGN

COMPUTER PROGRAM USERS' ${ }^{1}$ MANUAL

JPL REV. 1 DEC 1966

APPROVED
-

Associate Manager. Special Projects

Prepared for
JET PROPULSION LABORATORY CALIFORNLA INSTITUTE OF TECHNOLOGY

Pasadena, Califorma

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

This Program Users Manual and the associated computer programs represent the final objectives of JPL Contract 951070 . Several of the computer programs covered in the manual were largely developed under a prior contract (JPL950626) and are partially described in the final report Avco/RAD Mars Venus Capsule Parameter Study, Vol. I, "Introduction and Analysis, "TR-64-1, dated 21 March 1964.

The two JPI contracts leading to the development of the computer programs and the Users Manual were performed in the Advanced Space Systems Directorate at the Space Systems Division of Avco, Lowell, Massachusetts. Mr. P. Levine was the Project Engineer responsible for all technical work, and was assisted by other members of Avo's technical staff, including Messes. P. Dicarlo, A. Rob, M. Russell, J. Cloutier, O. Zappa, M. Moge, J. Brown, P. Norton, G. Waldman, J. Serpico, R. Davis, and D. Fin. The program ming was done principally by Miss S. Sillers, Mr. D. Gillespie and Mr. J. Klugerman of Avo's Technical Programming Staff with assistance from Messrs. A. Picado, M. Greenberg, E. Sova, C. Berndtson, and with overall guidance from Dr. J. Warga, Manager of the Mathematics Department.

Minor typographical corrections made by JPL I December 1966. The following pages are affected:

Program 1880; pg 16, 23, 48, 49, 67, 69
Program 1882; pE 31, 47, 48
Prograin 1883; pg 33, 50
Program 1885; pg 3, 12, 18, 92

CONTENTS

This manual has been divided into a number of sections, each treated as a separate document with its own table of contents and list of illustrations. The sections are listed below, and each section may be easily located by referring to its tabbed cover.

BOOK I

INTRODUCTION

- Objective
- Information Flow
- Program Format
- Programming Method

PROGRAM 1880

- Trajectory Kinematics
- Rigid Body Dynamics
- Laminar Heating Pulse
- Turbulent Heating Pulse
- Radiant Heating PuIse
- Loads

PROGRAM 1881

- Newtonian Coefficients
- Radii of Gyration

PROGRAM 1882

- Parachute System Size and Weight
- Impact System Size and Weight
- Packaging
- Internal Structure
- Center of Gravity
- Moments of Inertia

PROGRAM 1883

- Gas Dynamics
- Radiation Heating

PROGRAM 1884

- Heat Shield Weight
- Ablated Weight
- Insulation Weight

PROGRAM 1885

- Pressure Distributions
- Heating Distributions
- Shock Shape

PROGRAM 1886

- Buckling of Shells
- - Structural Weight

SPECIAL ROUTINES

- Mathematical Routines
- Numerical Methods

BOOK II
PROGRAM 1887

- Integrated Design Program
- Linking Programs 1880, 1882, 1884, 1885 , and 1886
- Component Weights
- Center of Gravity
- Moments of Inertia

PROGRAM 1888

- Displacement and Bending of Shells
- Structure Weight
- Integrated Design Program
- Linking Programs 1880, 1882,1884, 1885, 1886, and 1888
- Component Weights
- Center of Gravity
- Moments of Inertia

INTRODUCTION

A. OBJECTIVE

The objective of this manual is to provide the program user with the necessary understanding of the approximations contained in the sexies of entry, vehicle design programs) developed under contracts JPL 950626 and 951070 (and of the input procedures, so that the programs can be utilized with ease and confidence. In view of the státed objective, (the manual contains a description of each program and its specific purpose. The mathematical model used in each program and a list of basic limitations is provided, so that the user can establish the applicabillty of the program to the particular problem at hand.)

Should the program user wish additional information about the calculations being performed in the program, the specific equations which are programmed are provided. Furthermore, should questions arise as to the manner in which the programming was done, (a section describing the IBM routines is also provided in the manual.)

The intent of the set of computer programs is to ascertain the effects of all important parameters known to influence significantly the choice of vehicle shape and the calculation of the heat shield, structural, descent, and landing system weights. To cover the complete design problem, one must consider the interrelated aspects of the vehicle aerodynamics, heat transfer, thermal protection, and structural design. Furthermore, the entry problem is often bounded by overall systems considerations as to vehicle diameter and weight limitations, range of entry conditions, descent and impact system requirements, and special heat shield and structuxe material and shape requirements.

Although it is indeed commendable to achieve a complete set of computer programs which utilize the very "best" calculation models, the use of such a set of programs would not be compatible with the overall objectives to provide a set of computer programs suitable for preliminary tradeoff and parametric studies. A compromise was sought in formulating the computer programs, whereby the necessary inputs are not unduly excessive and are readily avail-

able. Programming compromises were also needed to avord excessive computational time and wasteful generation of information that is not directly usable for the problem at hand. The computer programs are not intended to be used for detailed design studies but rather to screen the range of design parameters, to narrow their scope, and to establish trends.

B. INFORMATION FLOW

The thermo-structural design problem of evolving the heat shield and structural weights centers about the heating and loads predictions arising from the entry trajectory calculations. The degree of sophistication in the whole design approach is therefore related to the nature of the approximations used in computing the trajectory. The simplest trajectory approximation considers the vehicle as a particle without lift and of constant drag coefficient. For the particle trajectory calculation, the exact shape of the vehicle is not necessary to compute the trajectory as the entry vehicle is completely characterized by its ballistic coefficient $\left(M / C_{D} A\right)$.

The limitations of a particle trajectory are often prohibitive for the prediction of accurate heating and loads environment, except in the cases of spherical bodies or where the entry angle of attack and angular rates are very small. Hence, in the most general case, an aerodynamic configuration and the corresponding aerodynamic force and moment coefficients must be assessed prior to a trajectory calculation. Program 1881 provides a first estimate of the hypersonic aerodynamic coefficients based on Newtonian flow theory if wind tunnel data is not available. Frequently, limited test data is sufficient for preliminary design studies when combined with the results of Program 1881.

Specification of the entry vehicle geometry provides only part of the information necessary to calculate the angle-of-attack motions during entry. A major aspect of the entry motion centers about the vehicle's stability, which is highly dependent on the center-of-gravity location and the moments of inertia. The first estimate of the centex of gravity and the corresponding moments of inertia can be obtained from Program 1881, based on prescribed stability criteria. As the preliminary design studies progress, the estimates of center of gravity and moments of inertia must be updated and certain changes could significantly alter the entry vehicle's stability and further change the heating and loads environments. The information flow diagram depicted in Figure 1, indicates the manner in which Program 1881 can provide aerodynamic coefficients and the first pass estimates of the center of gravity (XCG) and the moments of inertia about the roll and pitch axes given in terms of the respective radii of gyration (RGX) and (RGY). The trajectory computation performed by Program 1880 provides the angle of attack, velocity, and altitude history during entry. The variation of the drag and lift forces arising from the angle of attack motions is computed, and the effect of their variation on the trajectory kinematics is accounted for. As part of Program 1880, dynamic pressure

$$
\begin{aligned}
& \text { - xiv- }
\end{aligned}
$$

86-2952

Figure 1 INFORMATION FLOW WITHIN VEHICLE DESIGN PROGRAMS (XCG = DISTANCE OF CG FROM STAGNATION POINT, RGX, RGY = RADII OF GYRATION ABOUT X, AND Y AXES, RESPECTIVELY)
and convective and radiative heat pulses are computed based on the instantaneous flight conditions; hence, the heating and loads environment is related to the vehicle dynamics which, in turn, depends on the estimates of the coefficients, center of gravity, and the moments of inertia.

The heat pulses calculated in Program 1880 are considered to be reference values, and the heating at a point of the body is expressible as a fraction (or multiple) of this value. Similarly, the pressures about the body are expressible as fractions (or multiples) of the dynamic pressure. The factors by which the reference pulses evolved from Program 1880 must be multiplied to provide the local pressure and heating may be found using Program 1885, if test data is unavailable. As shown in Figure l, the output of Programs 1880 and 1885 are required simultaneously to compute the first pass on the structural weight. Program 1885 requires the vehicle geometry, atmosphere composition, and flight conditions as input, as well as the angles of attack for which the pressure and heating distributions are required. The output of Program 1885 is set forth as factors which can be applied directly to the heating and dynamic pressure pulses using the results of Program 1880. The distributions of Program 1880 are given for the windward and leeward meridians only. In actuality, a point on the vehicle is subject to a heating and • loads environment which is affected by the roll attitude of the vehicle as well as its angle of attack. From the viewpoint of structural design, identification of the roll history of a particular point on a shell is unnecessary, provided thermal effects axe not important. In order to perform an exact heat shield analysis, a streamline pattern around the complete vehicle would be required and a statistical treatment of the entry conditions would generally be required to establish the design requirements. With the view of obtaining preliminary design evaluations with assurance that the heat shield weights will be conservative, a simple approach can be taken (and is used in Programs 1887 and 1889) which considers the heating on the vehicle as if it were in a lunar motion utılizing the maximum angle-of-attack envelope generated by Program 1880.

An important structural consideration is that environments obtained from other trajectories on launch conditions may be more critical than the one for which the heating environment is most severe. By permitting optional inputs on peak dynamic pressure and deceleration (or acceleration) arbitrary combinations of heating and loads environments can be studied.

The information flow diagram of Figure 1 , indicates that the appropriate outputs of Programs 1880 and 1885 are input to Program 1886. In addition, structural materials data and design criteria are input for Program 1886. Program 1886 provides for several options of construction; sandwich, stiffened, or monocoque. The failure criteria considers buckling and yield stress with further limitations due to minimum gage.

As the structural weight may be dependent on its temperature rise due to loss of strength at elevated temperatures, an interaction exists between the heat shield and the structural analyses. Furthermore, the heat shreld interacts with the structural calculation by creating inertial loads on the structure.

Following the initial sizing of the structure, from Program 1886, and the heat pulses via Programs 1880 and 1885, sufficient information is on hand to perform the heat shield analysis. Program 1884 calculates the heat shield requirements, if indeed one is needed. The heat shield material properties and design criteria are required input as well as the results of Programs 1880 and 1885. There are several interaction mechanisms between the heat shield and structure, two of which are noted above; hence, the flow diagram of Figure 1 indicates a thermo-structural loop.

The internal payload is dependent on the total entry weight, the heat shield and structural weight, internal structural weight, and various system constraints placed on the descent and impact systems. Program 1882 integrates the system constraints and the results of Programs 1884 and 1886 to determine the net usable payload weight. In order to provide sufficient flexibility in a program of this sort, numerous options are possible, e.g. single chute, two parachutes, parachute and retro-rocket combinations, spherical payloads, cylindrical payloads, and conical payloads. System constraints (as impact deceleration limits) are inputs to Program 1882. Upon solving for the weight of the subsystem and determing the size and weight of each element, and of the payload, a packaging calculation is performed to ascertain whether the payload fits into the vehicle satisfactorily and provides a suitable centex-of-gravity position. In addition, the overall moments of inertia are computed based on the detailed heat shield and structures and subsystems information evolved. As noted at the very outset, the initial estimates of center of gravity and moments of inertia may be sufficient for preliminary design purposes; however, the refined values arising from Program 1882 can now be tested by rerunning Program 1880 and observing the changes in the heating and loads environment. If the heating and loads change significantly due to the moment of inertia and center-of-gravity changes, then a complete iteration on the structure, heat shield, and subsystem weights is required.

The last step in the design study is the complete shell analysis by Program 1888, inciuding the effects of payload attachment, bending, and shear. In order to perform this analysis, detailed pressure distribution information is required for which Program 1885 may be used. The inputs to Program 1888 include the preliminary structural sizing and the heat shield thicknesses, as well as the structural material properties and failure criteria. As a result of the refined structural analyses of Program 1888, any significant changes in structural weight can alter the complete internal structure and subsystem weight breakdown, requiring further iteration on these weights.

$$
\begin{aligned}
& -x v i i- \\
& E B<
\end{aligned}
$$

The final overall loop，including Programs 1888 and 1887， 1 s considered as Program 1889．The input of Program 1889 is clearly the input and output of all the other programs and／or experimental data when available．The results of Program 1889 are the complete vehicle weight breakdown of the heat shield，structure，internal structure，descent system，impact system，and usable payload．Program 1889 closes the aero－thermo－structures－systems loop，and as such arrives at a preliminary design suitable for a particular entry problem．

C．PROGRAM FORMAT

A primary objective sought throughout all the programs is the achievement of uniformity of format，such as notation，units，and input procedures．The problem of units arises due to the multidiscipline nature of the various pro－ grams．In dealing with each program a set of units was established which appeared both convenient in that they are in widespread use and logical． In dealing with gas dynamics and atmosphere calculations，temperature is commonly given in degrees Kelvin（ K ），whereas in dealing with the heat shield and structure calculations，temperatures are commonly given in degrees Fahrenheit（ ${ }^{\circ} \mathrm{F}$ ）．

The aerodynamicist deals with density in slugs／ft ${ }^{3}$ ，whereas the thermo－ dynamicist and structural analyst prefers lb （mass）／ft t^{3} and these conventions are observed．The gas dynamicist deals with pressures in terms of atmos－ pheres，the aerodynamicist in PSI or PSF，and similarly the thermo－and structural analysts．The units of length are restricted to either feet or inches throughout the programs．

D．PROGRAMMING METHOD

All programs are written in Fortran IV computer language．All data is read into the computer through use of the NAMELIST feature of Fortran IV．The use of machine language subroutines（other than the standard IBM library subroutines）are avoided whenever possible．All Fortran IV input and output statements refer to specific logical tape units．

The program linking for 1887 and 1889 employs the IBSYS overlay feature． As much independence as possible is retained among the links．

This users＇manual provides input forms and the Fortran variable names of input and output quantıties．This manual includes sample results，along with instructions for preparing data and running the programs．
I. INTRODUCTION 1
A. General Description 1
B. Calculation Model 1
C. Program Limitations 14
II. USAGE 15
A. Input Definitions 15
B. Input Procedures 24
C. Output Definitions 36
D. Sample Problem 38
E. Diagnostics 39
III. COMPUTATIONS 66
A. Block Diagram 66
B. Symbols 67
C. Equations 67
IV. IBM ROUTINES 78
A. Program Flow 78
B. Common Storage 79
C. Subroutines 84
D. Main Program 88
E. Significant Equations 93
V. REFERENCES. 101
-131
i es

ILLUSTRATIONS

Figure 1 Coordinate System for Entry Trajectories 3
2 Aerodynamic Coefficients Conventions 4
3 Trajectory Comparisons with Six Degree of Freedom Results. 8,9
4 Stagnation Poınt Heating Comparısons with Data 11
5 Radiation Feating Comparisons with Data. 12
6 Nonequilibrium Radiation Calculation Model 13
7 Stagnation Point Velocity Gradient with Varying Bluntness and Density Ratio 29
8 Stagnation Point Shock Standof£ Distance with Varying Bluntness and Density Ratio 30
9 Hypersonic Correlations of Stagnation Point Standoff Distance and Velocity Gradient 31
10 Methods for Estimating VGFDR and DEL/RC for Various Nose Shapes 32
11 Viscosity-Temperature Model 34
12 Block Diagram Illustrating Operation of Program 1880 66
13 Flow Diagram of Program 1880 78TABLES
Table I Mars Model Atmospheres 26

.I. INTRODUCTION

A. GENERAL DESCRIPTION

The purpose of this program is to determine the flight path, angle of attack envelope, heating, and loads as a function of time for an axisymmetric vehicle during its entry trajectory into planetary atmospheres. The general inputs required include:

1. Vehicle mass and moment of inertia data
2. Aerodynamic coefficients
3. Entry conditions
4. Planet and atmospheric data
5. Heating factors based on vehicle shape.

Convective heat pulses are computed at the stagnation point (laminar) and at the sonic point (laminar and turbulent). In addition, both equilibrium and nonequilibrium radiative heat pulses are computed.

B. CALCULATION MODEL

A detailed description at the calculation model is given in Reference 1. A brief summary description is provided herein for the program user.

1. Coordinate Systems

The treatment of the force equations during atmospheric entry is smplified by considering a coordinate system which uses only the elevation angle gamma to define its orientation relative to the local hormzontal space plane. A heading angle is unnecessary because of the assumption of a spherical, nonrotating planet The velocity vector is specified by its scalar value and the elevation angle γ measured positive above the horizon.

Since planar trajectories are of primary interest, only two equations of motion are required to calculate the flight path of the vehicle in the plane of the velocity and gravity vectors.

The body axes are oriented with respect to a system oi wind axes using a conventional system of Euler angles. The curvature of the flight path is reflected in a rotation of the wind axes with respect to a set of fixed (inertial) axes.

The coordinate systems used in deriving the force and moment equations are depicted in Figure 1. The wind axes are X_{0}, Y_{0}, and Z_{0}, where X coincides with the velocity vector, and Z Iles in the plane of the velocity and gravity vectors. The origin of the body axes X_{B}, Y_{B}, Z_{B}, and of the wind axes are taken at the c.g. of the vehicle. The total angle of attack α^{\prime} is the angle between the body axis X_{B} and the velocity vector (or X_{0}).
2. Aerodynamic Coefficients

The aerodynamic coefficients utilized in the program may be either experimental or theoretical values. The coefficients can be input as a double table of angle of attack and Mach number dependency, including C_{N}, C_{X}, C_{m} (or $\left.X_{c p}\right),\left(C_{m_{q}}+C_{m}\right)$. The coefficients can also be input to solve
the angle-of-attack motions using linear coefficients in which case the values are required only at zero angle of attack, but as functions of Mach number including $C_{D^{\prime}}, C_{L_{\alpha}}, C_{m_{\alpha}}$, and $C_{m_{q}}+C_{m_{\dot{\alpha}}}$. The sign and axes conventions used in the aerodynamic coefficients are depocted in Figure 2. The damping coefficient is nondimensionalized by $\frac{d}{2 V}$, for example,

$$
C_{m \hat{\alpha}}=\frac{\partial C_{m}}{\partial\left(\frac{\hat{\alpha} d}{2 V}\right)}
$$

The reference area corresponds to the reference length, which is the vehicle diameter.

3. Force Equations

The calculation model assumes a spherical nonrotating planet. The force equations are written in wind axes (X_{0}, Y_{0}, Z_{0}) aligned along the instantaneous velocity vector as shown in Figure 1. The side force equation was omitted, and the resulting drag and lift equations describe the motion of the vehicle's center of gravity in the instantaneous plane of the trajectory.

The component of the total lift that lies in the plane of the trajectory depends on the orientation of the vehicle. Using a set of Euler angles, ψ, θ, φ as shown in Figure 1 , which determine the orientation of the body fixed axes (X_{B}, Y_{B}, Z_{B}) with respect to the wind axes, the force equations have the form,

DRAG: $\quad m \dot{V}=-C_{D} A q-m g \sin \gamma$
LIFT: (In the plane of \bar{g} and $\overline{\mathrm{V}}$.

$$
\begin{gathered}
m V \dot{\gamma}=\frac{m V^{2}}{\mathrm{R}_{Z}} \cos \gamma-m g \cos \gamma+C_{I} A q^{2} \frac{\sin \theta}{\sin \alpha^{\prime}} \\
-2-
\end{gathered}
$$

Figure 1 COORDINATE SYSTEM FOR ENTRY TRAJECTORIES

ANGULAR RATE CONVENTIONS

Figure 2 AERODYNAMIC COEFFICIENTS CONVENTIONS

$$
\begin{aligned}
& -4- \\
& 189
\end{aligned}
$$

where α^{\prime} is the total angle of attack and is related to the Euler angles by,

$$
\sin ^{2} \alpha^{\prime}=\sin ^{2} \psi+\cos ^{2} \psi \sin ^{2} \theta
$$

The gravity vector $1 s$ taken as radial, and pointed towards the center of the planet. The gravitational field assumes an inverse square relationship. The force coefficients required to solve the force equations can be specified as a function of angle of attack and Mach number.

4. Moment Equations

The moment equations are derived using the body axes indicated in Figure 1 and the total angular rates are taken with respect to a fixed set of axes. 'The angular rates are divided into two parts; those with respect to the wind axes, and those due to the motion of wind axes with respect to the fixed axes. The motion of the body axes with respect to the wind axes is given by the changes in Euler angles and also in a set of rate components P, O, R about each axis, where P, Q, R axe related only to the changes in the Euler angles. The additional angular rate effects arise because of flight path curvature (changes in the direction of the velocity vector) due to lift and gravity.

The changes in flight path curvature due to lift is used mits entirety, i. e., the total lift force is used including the out of plane component. The analysis proceeds along the lines of Reference 1. An order of magnitude analysis is made and only those terms which could affect the results significantly are retained.

The total angular rate $\vec{\Omega}$ with respect to a set of fixed axes has components $P^{\prime}, Q^{\prime}, R^{\prime}$ along the body axes such that,

$$
\bar{\Omega}=\bar{i} P^{\prime}+\bar{j} Q^{\prime}+\bar{k} R^{\prime} .
$$

The calculation model is restricted to axisymmetric ballistic vehicles for which the products of inertia are zero, and $\mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{\mathrm{Z}}$, hence, the external
moment vector is related to the rate of change of angular momentum by

$$
\begin{aligned}
\bar{M}=\bar{i} I_{X} \dot{P}^{\prime} & +\overline{\mathrm{J}}\left[\mathrm{I}_{Y} \dot{Q}^{\prime}-\operatorname{P'R}^{\prime}\left(I_{Y}-I_{X}\right)\right] \\
& +\overline{\mathrm{k}}\left[\mathrm{I}_{Y^{\prime}} \dot{R}^{\prime}+\operatorname{P}^{\prime} Q^{\prime}\left(I_{Y}-I_{X}\right)\right]
\end{aligned}
$$

The external moment vector may be expressed as

$$
\bar{M}=M^{\prime}\left(\frac{\overline{\mathrm{J}} \sin \alpha}{\sin \alpha^{\prime}}+\frac{\overline{\mathrm{k}} \sin \beta}{\sin \alpha^{\prime}}\right)+\mathrm{N}^{\prime}\left(-\frac{-\overline{\mathrm{j}} \sin \beta}{\sin \alpha^{\prime}}+\frac{\overline{\mathrm{k}} \sin \alpha}{\sin \alpha^{\prime}}\right)
$$

The aerodynamic moments (M^{\prime}) and (N^{\prime}) are given approximately by

$$
M^{\prime}=C_{m} q A d+\left(C_{m_{q}}+C_{m_{\dot{\alpha}}}\right) \frac{q A d^{2}}{2 V} \ddot{\alpha}^{\prime} ; N^{\prime}=\left\langle C_{m_{q}}+C_{m_{\dot{\alpha}}}\right) \frac{q A d^{2}}{2 V} \grave{\eta} \sin \alpha^{\prime} .
$$

where $\dot{\eta}$ is the rate of precession of the plane containing $\overline{\mathrm{V}}$ and $\overline{\mathrm{i}}$.
The wind axes pitch about the Y_{0} axis due to gravity at a rate,

$$
\dot{\gamma}_{T}=-\frac{g \cos \gamma}{V}
$$

(Gravity term in above lift equation.)
Due to lift, the flight path curvature can be out of the plane of the trajectory and is given by

$$
\dot{\gamma}_{L}=\frac{L}{m V} \quad \begin{aligned}
& \text { (Lift term in above lift equation is in-plane } \\
& \text { component only.) }
\end{aligned}
$$

As $\bar{\gamma}_{L}$ lies along \bar{M}^{\prime}, the expressions for $P^{\prime}, Q^{\prime}, R^{\prime}$ can be written as,

$$
\mathrm{P}^{\prime}=\mathrm{P}+\dot{\gamma}_{\mathrm{TX}}
$$

$$
Q^{\prime}=Q+\dot{\gamma}_{I} \frac{\sin \alpha}{\sin \alpha^{\prime}}+\dot{\gamma}_{T Y}
$$

$$
\mathrm{R}^{\prime}=\mathrm{R}+\dot{\gamma}_{\mathrm{I}} \frac{\sin \beta}{\sin \alpha^{\prime}}+\dot{\gamma}_{\mathrm{TZ}}
$$

where $\dot{\gamma}_{T X}, \dot{\gamma}_{T Y}$ and $\dot{\gamma}_{T Z}$ are the components of $\dot{\gamma}_{T}$ along the body axes X_{B}, Y_{B}, and Z_{B}, respectively.

Introducing the further approximations,

$$
\begin{aligned}
& \ddot{\gamma}_{L}=C_{L_{\alpha}} \frac{A}{m} \quad q \quad \frac{\dot{\alpha}^{\prime}}{\bar{V}} \\
& \dot{\gamma}_{L} \ll \dot{\alpha}^{\prime} \\
& \dot{\gamma}_{T X} \ll P
\end{aligned}
$$

then the resultant expression for the moment equations are,

$$
\begin{aligned}
& \dot{Q}=\frac{q A d}{I_{Y}}\left[C_{m} \frac{\sin \alpha}{\sin \alpha^{\prime}}+\frac{Q d}{V}\left(\frac{C_{m_{q}}+C_{m}}{2}-\frac{C_{L_{\alpha}} I_{Y}}{m d^{2}}\right)\right]+P R 1-\frac{I_{X}}{I_{Y}} \\
& -\frac{\mathrm{PI}_{\mathrm{X}}}{\mathrm{I}_{\mathrm{Y}}} \frac{\mathrm{C}_{\mathrm{L}}{ }^{\mathrm{Aq}}}{\mathrm{mV}} \frac{\sin \beta^{\prime}}{\sin \alpha^{\prime}}+\frac{\mathrm{PI}_{\mathrm{X}}}{\mathrm{I}_{\mathrm{Y}}} \frac{\mathrm{~g} \cos \gamma}{\mathrm{~V}}(\sin \psi \sin \theta \cos \varphi-\cos \psi \sin \theta) \\
& \text {-6- } \\
& 19<
\end{aligned}
$$

$$
\begin{aligned}
\dot{R} & =\frac{q_{A d}}{I_{Y}}\left[C_{m} \frac{\sin \beta}{\sin \alpha^{\prime}}+\frac{R d}{V}\left(\frac{C_{m_{q}}+C_{m_{\alpha}}}{2}-\frac{C_{L_{\alpha}} I_{Y}}{m d^{2}}\right)\right]-P Q\left(1-\frac{I_{X}}{I_{Y}}\right) \\
& +\frac{P I_{X}}{I_{Y}} \frac{C_{L} A q}{m V} \frac{\sin \alpha}{\sin \alpha^{4}}-\frac{P I_{X}}{I_{Y}} \frac{g \cos \gamma}{V}(\cos \psi \cos \varphi+\sin \psi \sin \theta \sin \varphi) \\
\dot{P} & =0
\end{aligned}
$$

The moment equations display the coupling of the plunge damping term ${ }^{C} L_{\alpha}$ frequently found, e. g., References 3, 4, and 5. It should be noted that the $\mathrm{C}_{\mathrm{L}^{\prime}}$ is now a function of angle of attack (and also of Mach number if desired).

The terms yielding the coupling effects of flight path curvature due to lift and gravity with spin have also been retained.
The occurrence of the $C_{L_{\alpha}}$ explicitly is of interest as the usual six-degree of freedom computation effectively computes ${ }^{C_{L}}{ }_{\alpha}$ implicitly by interpolating C_{N} and C_{X} from input tables. Hence differences between the two formulations are likely at small values of $\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}+{ }^{\mathrm{C}_{\mathrm{m}}}$, and especially at large negative values of ${ }^{C_{L}}{ }_{\alpha}$ where the $C_{L_{\alpha}}$ controls the angle-of-attack envelope below peak dynamic pressure. The present program provides for accurate simulation of ${ }^{C_{L}}$ by direct input tables or by curve fitting computed values of C_{L} obtained from C_{N} and C_{X} input data.
To permit elementary studies of lifting vehicles, the ((\boxed{Q}) equatıon given above has the additional aerodynamic term,

$$
\frac{-\mathrm{C}_{\mathrm{X}} \cdot \mathrm{Z}_{\mathrm{CG}} \mathrm{qAd}}{\mathrm{I}_{\mathrm{Y}}}
$$

By input of the quantity $Z_{C G}$, a trim condition at other than zero angle of attack can be achieved, resulting in a lifting trajectory. The use of the off-set center of gravity is restricted to planar motions, i.e. zero spin, and zero sideslip angle.

The dynamic solution is programmed for the two moment equations discussed above and also for the linearized solution discussed in Reference 1. The adequacy of the approximate dynamical treatment for most practical entry problems of ballistic vehicles has been studred and comparisons made with six-degree-of-freedom solutions in Reference 1(Vol. II) and a typical result is shown in Figure 3, for a planar oscillation and for a spin case.

Figure 3a TRAJECTORY COMPARISONS WITH SIX DEGREE OF FREEDOM RESULTS

Figure 3 b TRAJECTORY COMPARISONS WITH SIX DEGREE OF FREEDOM RESULTS

5. Heat Pulses

Convective and radiative heat pulses are computed along the trajectory. The convective pulse at the stagnation point utilizes the stagnation point velocity gradient data for the particular shaped vehicle being studied. The stagnation heating is based on the correlations of Reference 1 for $\mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ mixtures. Turbulent heating at the sonic point 18 computed by testing against a specified local (not ambient) transition Reynolds number criterion. The turbulent heating correlation is for air as given by Detra. ${ }^{2}$ Comparison of the program calculations with data of Reference 3 is shown for the stagnation point in Figure 4. Limited data on turbulent heating in $\mathrm{N}_{2}-\mathrm{CO}_{2}$ mixtures given in Reference 4, indicates a negligible dufference in the heat rates due to composition when compared with air data.

The equilıbrium radiationheating is calculated via Program 1883 which is connected directly to the trajectory computation. A description of the equilibrium radiation model is given in Program 1883. A comparison of the program calculations with data and other predictions is given in Figure 5.

The nonequilibrium model is discussed in Reference 1 and summarized in Figure 6. The relative features of the model can be controlled using experimental data to adjust the ratios of $\mathrm{r}_{\mathrm{NE}} / \mathrm{r}_{\mathrm{E}}$ by input of IRNE, and the extent of the nonequilibrium zone by input of KNE.

An alternate, nonequilibrium model is possible wherein the nonequilibrium radiation contribution is assumed to be independent of density (except for truncation effects) and only a function of velocity. A simplified model is utilized such that $I_{N E} \Delta_{N E}=f(V)$, with the nonequilibrium intensity specified as a function of velocity based on experimental data, e, g., References 5 and 6.

6. Summary of Calculation Model

The calculation model can be used to study any of the following problems.
a. Parachute Problem-The vehicle $m / C_{D} A$ requirements for achieving a prescribed Mach number at/or prior to a specified altitude.
b. Vehicle Stabılity--The adequacy of the vehicle's stability as a function of entry pitch, yaw, roll rates, and angle of attack.
c. Vehicle Performance--The change in the trajectory, heating, and loads caused by the effects of the angle-of-attack motions on the flight path (velocity-altitude history).

Figure 4 STAGNATION POINT HEATING COMPARISONS WITH DATA

Figure 5 RADIATION HEATING COMPARISONS WITH DATA

$$
\begin{aligned}
& -12- \\
& 25<
\end{aligned}
$$

Figure 6 NONEQUILIBRIUM RADIATION CALCULATION MODEL
d. Convective Heating--The stagnation-point and sonic-point convective heating pulses as well as an indication of transition.
e. Radıative Heating--The stagnation-point equilibrium and nonequilibrium radiative heating pulses,
f. Loads--The dynamic pressure, and axial and normal load pulses,
g. Atmosphere--The effects of atmosphere composition and vertical structure on all the trajectory variables.
h. Planet--The effects of planet parameters on all the trajectory variables.
i. Scaling--The effects of changing vehicle diameter and/or mass.

C. PROGRAM LIMITATIONS

The calculation model imposes several basic limitations on the range of trajectory problems that can be simulated with the program. These limitations include:

1. The approximations utilized prevent the entry vehicle from developing an angle of attack due to flight path curvature alone; hence, vehicles entering with zero rates and $\alpha_{e}=0$ or $a_{e}=180$ will remain at the same angle of attack throughout entry.
2. The vehicle motions which can be simulated are limited by the assumptions of an axisymmetric inertia ellipsoid (spin rate stays constant throughout entry).
-14-7
II. USAGE
A. INPUT DEFINITIONS

$\frac{\text { External }}{\text { Name }}$	Preset Values	Symbol	Parameter	Units
CMQFM		$\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}+\mathrm{C}_{\mathrm{m}_{\alpha}}$	Table of damping coefficient variation as a function of Mach number only. Maximum number of entries $=10$. Used with M $\varnothing \mathrm{NLY}$ table.	per radian
CNFA		C_{N}	Table of normal force coefficient specified as a function of angle of attack and Mach number. Maximum number of entries: 19 angles of attack (corresponding to TABAL) and 5 Mach numbers when used with MANDAL table.	--
CXFA		c_{x}	Table of axial force coefficient, specified as a function of angle of attack and Mach number. Maxmum number of entries. I9 angles of attack (corresponding to TABAL) and 5 Mach numbers, when used with MANDAL table.	--
		d	Vehicle diameter (reference length).	feet
DATE			Number used to ldentify the problem being run.	--
DELMAC	0.5		When the Mach number ≤ 5, output will be provided whenever the difference in Mach number from the last output value is \geq DELMAC	--
DELMT	0.00001		This is the lower limit in Δt to which the predictor-corrector integration method is allowed to cut Δt to improve accuracy. See description of ADAMS4.	--
DEL \quad R RC		$\Delta / \mathrm{R}_{\mathrm{C}}$	Table of stagnation shock standoff distance $\left(\frac{\Delta}{D / 2}\right)$ corresponding to	--
			TABDR, Maximum of 10 entries.	

Name	Preset Values	Symbol	Parameter	Units
IRNE	10.	${ }^{\mathrm{I} E} / \mathrm{I}_{\mathrm{E}}$	Non equilibrium intensity ratio.	--
KNE	2.3		Multiplicative constant used to compute the nonequilibrium thickness $\Delta_{\text {NE }}$.	--
LS	-5.		Sentinel used to control the pre-dictor-corrector integration method, used for initialization and to follow the course of the integration. See description of ADAMS4.	--
LTH		L_{TH}	Temperature gradient in thermosphere.	$o_{K / f t}$
MANDAL			(Preset $=0$ for coefficients as a function of a only). Mach number table (maximum 5 values) for coefficients as function of both Mach number and angle of attack. When this table is specried, tables CXFA, CNFA, CMQFA, and either XCPFA or CMFA must be specified for each Mach number in MANDAL. At Mach numbers below (or above) those specufied in MANDAL table, program uses coefficients corresponding to lowest (or highest) Mach number listed.	(
MASS		m	Mass of vehicle.	slugs
MEM \varnothing			Number, used to identafy the problem being run.	--
M $¢ \mathrm{NLY}$			Independent variable table of Mach numbers used to compute coefficients as a function of Mach number only. Maximum number of entries is 10 . See CDFM, CMAFM, CLAFM, CMQFM.	--

Name	Preset Values	Symbol	Parameter	Units
MVE	1.		If MVE $=1.0$ (preset value), the atmosphere is computed from the input parameters. If $\mathrm{MVE}=2.0$, the atmosphere 1 s computed from tables in which the altitude (ZTBL) is the independent variable.	--
NPTST	51		Maximum number of lines of tràjectory output per page.	line/page
PE		$\mathrm{P}_{\text {e }}$	Spin rate at entry.	rad/sec
PTH		$\mathrm{P}_{\text {TH }}$	Atmospheric pressure at base of thermosphere.	$\mathrm{lb} / \mathrm{ft} t^{2}$
PTMAC	-100.		If PTMAC >0, linearly interpolated values of the trajectory output quantities will be printed at the Mach number = PTMAC Do not use simultaneously with QDYPT (see below).	--
QDYPT	-100.		If $\cap D Y P T>0$, linearly interpolated values of the trajectory output quantrties will be printed at the dynamic pressure $=$ QDYPT . Do not use simultaneously with PTMAC (see above)	$1 \mathrm{~b} / \mathrm{ft}^{2}$
QE		$\mathrm{Q}_{\text {e }}$	Pitch rate at entry.	rad/sec
QTST	200.		When the reference convective heat pulse is ≥ 1, output will be provided if the difference of the integrated reference convective heat pulse from the last output value is \geq QTST.	$\mathrm{Btu} / \mathrm{ft}{ }^{2}$
RE		R_{e}	Yaw rate at entry.	$\mathrm{rad} / \mathrm{sec}$
REYT	3. E5	$\mathrm{R}_{\mathrm{e}_{\mathrm{t}}}$	Transition Reynolds number for QSTAR based on SS \varnothing D.	--

Name	Preset Values	Symbol	Parameter	Unıts
RGX		σ_{x}	Nondimensional radius of gyration for roll moment of inertia.	--
RGY		σ_{y}	Nondimensional radius of gyram tion for pitch moment of mertia.	--
RHめSL		$\rho_{\text {SL }}$	Density of the atmosphere at the planet surface.	slug/ft ${ }^{3}$
RøTBL		ρ	Dependent varıable table of density used with ZTBL to compute atmospheric density when MVE = 2.0 (see above). Maximum number of entries is 101 .	slug/ft ${ }^{3}$
RSL		$\mathrm{R}_{\text {SL }}$	Radius of the planet.	feet
SS¢D		S^{*} / d	Ratio of distance from sonic point to the stagnation point at zero angle of attack to the vehicle diameter.	--
TABAL		a	Independent variable of angle of attack used to compute coefficients as a function of Mach number and angle of attack. Maximum number of entries is 19.	degrees
TABDR		$\rho_{s} / \rho_{\text {a }}$	Independent variable table of stag nation point density ratios ($\rho_{\mathrm{s}} /$ $\left.\rho_{\mathrm{a}}\right)_{\mathrm{s}}$ used with DEL $D R C$ (see above) and VGFDR (see below). Maximum number of values is 10 .	--
TETBI,		T	Dependent variable table of temperature used with ZTBL to compute atmospheric temperature when MVE $=2.0$ (see above). Maximum number of entries is 101.	${ }^{\circ} \mathrm{K}$
THF	1.		Turbulent heating factor used to compute QSTAR after transition has occurred.	--
			-21-	

Name	Preset Symbol Values	Parameter	Units
TSL	$\mathrm{T}_{\text {SL }}$	Atmospheric temperature at the planet surface.	${ }^{\circ} \mathrm{K}$
TST	$\mathrm{T}_{S T}$	Atmospheric temperature in the stratosphere.	${ }^{\circ} \mathrm{K}$
TST \varnothing P	1000.	Maximum permitted value of the independent variable time for the integration of the trajectory equations.	seconds
TZER \varnothing	0.	Initial value of the independent variable time for the integration of the trajectory equations.	seconds
UPBND	$\begin{aligned} & 0.01, \text { I.E-5, } \\ & 0.1,0.001,0.001, \\ & 0.0001,0.0001, \\ & 0.0001 \end{aligned}$	Array of upper limits used by the predictor-corrector subroutine ADAMS4 as accuracy bounds on $\mathrm{V}, \gamma, \mathrm{Z}, \mathrm{Q}, \mathrm{R}, \psi, \theta, \varphi$, respec. tively.	--
UPDN	0.2	Factor by which the predictorcorrector method increases or decreases Δt (depending on ac- . curacy) during the integration. See description of ADAMS4.	--
VE	$\mathrm{V}_{\text {e }}$	Entry velocity,	ft/sec
VEHICL		Identification number for vehzcle.	--
VIRNE		Velocity: table used when DIRNE is specified maximum of 10 values.	$\mathrm{ft} / \mathrm{sec}$
VGFDR	$\frac{d}{2 V}\left(\frac{d u}{d s}\right)_{s}$	Dependent table of velocity gradient, used with TABDR (see above). Maximum number of entries is 10 .	--

PRERES in $66-417$

REPD Pa

B. INPUT PROCEDURES

1. General

a. Decimal points can be used on all inputs. However, omitting decimal points on integers will not cause difficulty.
b. A preset variable need not be input unless a different value is desired.
c. After the first data case of a set of stacked cases, only changed inputs must be specified.
d. Inputs DATE, MEM , CASE, ATM \varnothing, and VEHICL have no def. fect on the computation and may be omitted. They appear at the top of the trajectory printout as a convenience in identification.
e. All independent variable tables must be specified in monotonic ascending order.
f. The output is adjusted to allow for a maximum of 150 lines of printout; the amount of printout is adjusted by optional program controns.
g. A set of computer input forms are provided for the user. All the data shown on the form is keypunched when the variable is supplied.
2. Atmosphere
a. The atmosphere may be specified by either of two methods, parametric or tables. Optional input MVE,preset for parametric inputs, selects the input method.
b. The parametric input method is more convenient for theoretical atmospheres such as JPI, Mars models G, F, I, J, and K^{7} and NASA Maxs models 1,2 , and 39 . The program inputs are readily obtainable from the definitions of these atmospheres (see Table I).
c. For precise atmosphere specification, e.g. Earth, complete tables of density and temperature versus altitude may be input.
d. Additional to the temperature and density properties of the atmosphere, the composition is input as mole fractions of oxygen, nitrogen, carbon dioxide, and argon. The sum of these fractions must equal 1. The nitrogen fraction must not be less than 0.001 .

3. Calculation Time

The input CDR $\varnothing P$ was introduced to permit a reduction in computation time where a vehicle undergoing large oscillations has reached close to terminal velocity at high altitude. Calculation of the angle of attack motions until impact, using the moment equations, would consume a great deal of time for such a case. Hence, specifying CDR $\varnothing \mathrm{P}$ places a restraint on the computational time.

Other controls on calculation time are possible by specifying TST ϕP, the maximum permitted trajectory time, or by specifying ZST $\varnothing \mathrm{P}$ as the altitude at which the trajectory calculation must be stopped.

Use of the linearized dynamics solution below peak dynamic pressure, when appropriate, also can save considerable time.

4. Amount of Output

The output is limited to 150 lines, which can be regulated by program controls on the interval of printout. The printout interval controls include successive output points in integrated stagnation point heating, altitude, and velocity.

*Note Values of FALR have been adjusted to account for the difference between the C_{P} specified for the atmosphere model and the C_{P} computed in the program to provide the intended temperature variation (see Equations (3) and (6).

5. Vehicle Data.

a. Mass and diameter are the key inputs which affect the trajectory, coefficient calculation, heating, and scaling.
b. The radii of gyration and center of gravity, which affect the dymamics, are input as fractions of the diameter to simplify scaling. If these ratios can be assumed independent of size, only the mass and diameter need be respecified when the vehicle size is changed.

6. Aerodynamic Coefficients

a. Coefficients which are functions of angle of attack are specifred only from 0 to 180 degrees, corresponding to the angles of attack listed in TABAL (up to 19 values). The program computes values of coefficients between 180 and 360 degrees.
b. When MANDAL table $1 s$ specified, tables of all coefficients based on TABAL must be specified for each Mach number in MANDAL (maximum 5 values). At Mach numbers smaller (or larger) than those listed in MANDAL, the program uses coefficients corresponding to the smallest (or largest) Mach number specified.
c. An option is provided to input CMFA in place of XCPFA. To use this option, CMIN is set $=1.0$ and specify CMCめD. With either CMFA or XCPFA input, the program computes the correct pitching moment for the input center-of-gravity location XCG $\varnothing \mathrm{D}$.
d. For constant coefficients (invariant with Mach number) MANDAL is set $=0$, in which case the program uses the first table of coefficients (lowest Mach number).
e. Computation of the dynamic motions can be switched to the linear solution at peak dynamic pressure by specifying ALPCR larger than the angle of attack envelope at that time.
f. Coefficients which are functions of Mach number only are specified for each Mach number listed in MดNLY (maximum 10 values). These are used by the program in the linear equations of motion, and to compute $D / W, M / C_{D} A$, and frequency.
g. CMAFM must be specified if printout is desired in the $F R E Q$ column.
h. CDFM must always be specified (will switch to CDR \varnothing P at peak dynamic pressure otherwise).
7. Entry Conditions
a. ZE; VE, and GAME must always be specified.
b. As the integration interval is determined by accuracy limits, large angular rates may lead to excessive computational time. To prevent usage of excessive computer time, a stop exists in the program, whereby a requirement for an integrating interval less than a prescribed value stops the calculations and a message is printed out DELTAT TOO SMALL. A possible source of this problem are inputs which create very large angular rates.
8. Particle Trajectories

Trajectories which do not allow for any effects of angle of attack can be computed by using the MANDAI coefficient table and specifying
$A L P H A E=0.0$ and $A I P C R=0.0$.

The MANDAL table must have data at $a=0$ and for at least one other nonzero angle of attack. Tabular input for CDFM is required if M/CDA and D / W printout is desired.
9. Heating Data
a. Velocity gradient (VGFDR) and shock standoff distance (DEI $\rho_{\mathrm{R} C}$) at the stagnation point are input (wind tunnel data or theory) as functions of the stagnation point density ratio (TABDR). Figures 7 and 8 obtained from Vinokur's results show how these parameters vary theoretically with nose shape; comparison with the methods of References 10 and 11 are also shown. Correlation of Vinokur's ${ }^{9}$ results with those of Traugott 12 and Kaattari ${ }^{10}$ is shown in Figure 9 , wherein all of Vinokur's ${ }^{9}$ results are seen to compress into a single correlation curve at low density ratios (which agrees with Kaattari's ${ }^{10}$ recommended correlation).
b. The stagnation point quantities $V G F D R$ and $D E L \varnothing R C$ are required to predict the convective and radiative heating. Sufficient information is provided to estimate these quantities using Figures 6 and 7. The suggested use of these curves for vehicles with various nose shapes is_depicted in Figure 10.
c. SS $\varnothing \mathrm{D}$ defines the approximate sonic point for turbulent heating calculation, and is determined by the nose shape of the vehicle.

Figure 7 STAGNATION POINT VELOCITY GRADIENT WITH VARYING BLUNTNESS AND DENSITY RATIO

Figure 8 STAGNATION POINT SHOCK STANDOFF DISTANCE WITH VARYING BLUNTNESS AND DENSITY RATIO

65-11587
Figure 9 HYPERSONIC CORRELATIONS OF STAGNATION POINT STANDOFF DISTANCE AND VELOCITY GRADIENT

Ftgure 10 METHODS FOR ESTIMATING VGFDR AND DEL/RC FOR VARIOUS NOSE SHAPES
d. REYT specries the Reynolds number (based on $S *$) at which transition occurs at the sonic point. The Reynolds number computation is based on the viscosity-temperature dependency of Jos ${ }^{13}$ for nitrogen and is shown in Figure 11.
e. IRNE and KNE are nonequilibrium radiation heating parameters, preset at typical arr values. ${ }^{14}$ Additional data for $\mathrm{N}_{2}-\mathrm{CO}_{2}$ mixtures 15 given in Reference 5 .
f. DIRNE specifies the nonequilibrium radiation intensity as a tabular function of the velocity (VIRNE). When DIRNE is used, IRNE must be specified as equal to zero.

10. Tabular Inputs of Coefficients

Since much of the input data for Program 1880 consists of one- and twodimensional tables, time and effort can be saved by understanding the following facts.

All independent variable tables must be specified in monotonic ascending order.

The total range of the variable of interest should be covered by the independent variable table. If the variable is smaller than the first entry of the array, then the table lookupis done by a linear extrapolation. If the independent variable is greater than or equal to the last entry in the array, then either an incorrect answer, a loop, or an unexpected stop is the result. The only exception to this in Program 1880 is in the calculation of coefficients of a function of angle of attack, since for angles between 180 and 360 degrees the coefficient is computed by a change of variable and a simple transformation of the coefficient in the range between 0 and 180. Hence the independent variable table TABAL need be specified only to the value 180.

Constant functions must be described for the table lookup by at least two different values of the independent variable.

The only (optional) exception to the above rule, applied to tables of coefficients as a function of angle of attack and Mach number, and in the special case where there is no Mach number dependence for the coefficient, is described below.

65-11588 A
Figure 11 VISCOSITY-TEMPERATURE MODEL

The tables of aerodynamic coefficients have as independent variable tables TABAL for angle-of-attack dependence and MANDAL for Mach-number dependence. The coefficient tables are matrices of maximum size 19 rows and 5 columns (or 19 angles of attack and 5 Mach numbers). The program has assumed that for Mach numbers less than the first (smallest) Mach number in the array MANDAL, the coefficient is equal to its value at the angle of attack and the smallest Mach number in MANDAL. Similarly, for Mach numbers greater than the largest entry in MANDAL, the coefficient is assumed to have the value of the angle of attack and the largest Mach number in the array MANDAL. Thus the Mach number dependence of the coefficient is treated as piecemmeal constant off the ends of the table.

The coefficient matrices may be regarded as of the form $a_{i j}$, where i references the angle-of-attack value and J the Mach number. The coefficient is specified on a punched cardas, for example,

$$
\operatorname{CNFA}(1,1)=1 ., 2 ., 3 ., 4 ., \operatorname{CNFA}(1,2)=4 ., 3 ., 2 ., 1 .
$$

The double subscript specufies that the array 15 two-dimensional and that the left-most index varies the most rapidly. Hence, given a starting location such as CNFA $(1,1)$, the program loads information into successive storage locations (columnwise, in matrix notation), until a new starting location is specified. Since the maximum dimensions of the array are referenced for loading, here (19,5), the above example could not be rewritten as

```
CNFA (1,1) = 1., 2., 3., 4., 4., 3., 2., 1.
```

All columns of the matrix do not have to be filled, but there must be a one-to-one correspondence between columns and entries in MANDAL.

It was stated above that for constant functions at least two different values of the independent variable must be specified with the corresponding (equal) values of the dependent variable. The single exception to this rule in Program 1880 is for aerodynamic coefficients which are dependent on angle of attack and independent of Mach number. For this case, two different values of Mach number may be specified, and the first two columns of the coefficient matrix made identical ($\mathrm{a}_{\mathrm{I}, 1}=\mathrm{a}_{\mathrm{I}}, 2, \mathrm{I}=1,2 \ldots, 19$). However, the same effect may be achieved by making all entries of MANDAL $=0$ and specifying only the first column of the coefficient matrix. This latter may be done either by the CNFA $(1,1) a_{11}, a_{2,1}, a_{31}, \ldots$

C. OUTPUT DEFINITIONS

External Name	Internal Name	Symbol	Parameter	Units
ALBAR	ALENV	$\bar{\alpha}$	Total angle of attack envelope (max. envelope, interpolated Inearly between peak amplitudes).	degrees
ATM	ATM \quad S	--	Atmosphere identification.	---
CASE	CAS	--	Case identification.	---
D	D	d	Diameter of vehicle (reference length).	feet
DATE	DATE		Date identification.	---
D/W	X \quad W	D/W	Zero angle-of-attack deceleration.	Earth g
DYN-PR	QDY	Q	Dynamic pressure.	$\mathrm{lb} / \mathrm{ft}^{2}$
FREQ	FRNAT	f	Natural undamped frequency of the vehicle based on CMAFM input.	cps
GAMMA	GAM	γ	Local flight path angle.	degrees
HD/HS	HDHS	$\mathrm{H}_{\mathrm{D}} / \mathrm{H}_{S}$	Ratio of dissociation enthalpy to total gas enthalpy.	---
HMRT \varnothing	HRT	$\mathrm{HM} / \mathrm{RT}_{0}$	Stagnation enthalpy.	---
IX	ZIX	I_{X}	Moment of inertia about roll axis.	slug/ft ${ }^{2}$
IY	ZIY	$\mathrm{I}_{\mathbf{Y}}$	Moment of inertia about pitch and yaw axes.	slub/ft ${ }^{2}$
MACH	XMCH	M	Flight Mach number.	---
M/CDA	EM \varnothing CDA	$m / C_{D}{ }^{\text {A }}$	Ballistic coefficient.	slug/ft ${ }^{2}$
MEM \varnothing	MEM \varnothing		Memo identification.	---
			-36-	
			S35	

External Name	Internal Name	Symbol	Parameter	Units
N/W	ENФW	- N/W	Normal acceleration at angle-of-attack value.	Earth g
$P E$	PI	P_{e}	Spin rate at entry.	$\mathrm{rad} / \mathrm{sec}$
QE	QI	Qe	Pitch rate at entry.	$\mathrm{rad} / \mathrm{sec}$
QI	QI*	$\mathrm{q}_{1}{ }^{*}$	Radıative heating contribution of each specie.	Btu/ft ${ }^{2}-\mathrm{sec}$
QR	QSUM	q_{R}	Same as QRE (below).	
QRE	QR	${ }^{q} E$	Zero angle-of-attack equilibrium radiation heating rate at the stagnation point.	Btu/ft ${ }^{2}-\mathrm{sec}$
QRNE	QRNE	$q_{\text {RAD }}$	Corrected value of $Q R E$ account ing for nonequilibrium effects.	$-\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$
QS	QS	qs	Zero angle-of-attack stagnation point convective heating rate.	Btu/ft ${ }^{2}-\sec$
QSTAR	QT	q^{*}	Zero angle-of-attack convective heating rate at the sonic pount (laminar before transition, turbulent after transition).	$\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$
RE	RI	Re_{e}	Yaw rate at entry.	$\mathrm{rad} / \mathrm{sec}$
REY	RTX	--	Free stream Reynold's number based on vehicle diameter.	---
RHI ${ }_{\text {A }}$	R \varnothing	ρ_{a}	Ambient density.	slug/ft ${ }^{3}$
RHD $/$ /RH \varnothing	¢ RHøST	$\rho_{\mathrm{s}} / \rho_{\mathrm{a}}$	Normal shock density ratio at stagnation point.	---
TIME	TIME	ᄃ	Flight time measured from en try.	seconds
TS	T	${ }^{T}$ S	Stagnation temperature,	${ }^{\circ} \mathrm{K}$
V	V		Flight velocity.	$\mathrm{ft} / \mathrm{sec}$

External Name	Internal Name	Symbol	Parameter	Units
VEHICL	VEHICL		Case identification	---
X	X	X	Specie Concentration	moles
XCG/D	XCG $\varnothing \mathrm{D}$	$\mathrm{X}_{\mathrm{CG}} / \mathrm{D}$	Center-of-gravity location as a fraction of vehicle diameter	-- -
Z	Z	z	Altitude	feet
ZS	Z		Compressibility factor; number moles per initial mole cold gas	- -
ZST	ZST	$\mathrm{Z}_{\text {ST }}$	Altitude of the base of the strato sphere	- feet
ZTH	ZTH	$z_{\text {TH }}{ }^{\text { }}$	Altitude at the base of the thermosphere	feet

D. SAMPLE PROBLEM

1. Statement of Problem -- Determine the angle-of-attack envelope and heating history for a Mars entry of a blunt cone configuration. The vehicle parameters entry conditions, atmosphere, and planet data are to be prescribed as input. An orbital entry was chosen, for which the entry velocity is low.

Two trajectories were computed to provide both the heating and load data, for a typical entry to Mars following the orbit.
2. Computer Input Forms -- The computer input forms for the two sample cases containing all the necessary input data to be keypunched are shown on the following pages. All of the input on these forms are written with decimals, and everything shown on the forms are keypunched. Unused copies of the input forms are provided on pages in this report, from which the program user can make copies and use for further cases.
3. Output -- The output lists the cards read in and should be checked to ensure that the data have been keypunched correctly. The trajectory output format lists key data across the top of the page. The output of the two cases are given on pages following the input pages.

The trajectory of Case 1 indicates a peak deceleration of 25.8 g (Earth g), negligible radiation, an impact time of 301.28 seconds, and a subsonic impact. The time of transition was 189.97 seconds at which time the free stream Reynold's number was $2.1 E+06$, occurring at peak laminar heating. The data requested at Mach 1.2 are given at the end of the output as well as integrals of the heat pulses.

The trajectory for Case 2, which has the smaller entry angle and is the heat shreld design trajectory, has a peak deceleration of 6.7 g and an impact time of 473 seconds. Transition did not occur on this trajectory. Additional messages are printed out for this case indicating (no valid solutions in zones) which refers to points along the trajectory where no solutions were obtained for the equilibrium gas composition. The reason for this occurrence is because of the nature of the approximate solution and requirements that the solution, in order to be valid, satisfy physical criteria.

E. DIAGNOSTICS

A number of messages are given in the printout reflecting the following program diagnostics.

1. $N \varnothing W \varnothing B B L E S$

The angle of attack did not oscillate, and the envelope value $A L B A R$ is equal to the current angle of atack.

2. DELTAT T $\phi \phi$ SMALL

The integration interval required decreased to less than the input (preset) minimum allowable value.

3. N \varnothing VAIID S ϕ LUTI ϕN

The equilibrium gas dynamics (1883) solution was not able to obtain a solution with positive concentrations for all the species satisfying the elemental and charge conservation relationships. In this case the data is linearly interpolated between the last and the next point for which a solution is found.

4. N \dagger T $C \phi N V E R G E D$ IN 30 ITERATI ϕ NS

The equilibrium gas dynamics (1883) solution was unable to converge within 30 iterations to within 1 percent on the enthalpy; use the last value found.

-43-

-44-
$53 \times$

TABAL =

\qquad

\qquad

. \qquad -

\qquad

\$

REDRER 第. $66-417$

CXFA. (1,2) \qquad ,
$=\frac{1.47}{0.56}, \frac{-0.21}{-1.45}$,

1.37
-0.38
-1.54
1.35

 $\underline{-1.55}$,-1.57,
$\operatorname{CXFA}(1,3)=$ \qquad
,
$\frac{\text { I. } 46}{0.54}$, \qquad , 1.17
CXFA $(1,3)=$

$$
\frac{0.76}{-0.04},
$$ $=\frac{0.54}{-0.23}$, , 0.2 \qquad , -1.47 , 1.58 -2.74 , -1.02 $\operatorname{CXFA} \quad(1,4)=$

\qquad $\frac{1.51}{0.52}$
-1.3 \qquad , -1.60 [.,

$$
\frac{0.74}{-0.07}, \frac{0.52}{-1.3}, \frac{-0.26}{-1.51},
$$ - 1,12 \qquad 0.94

$$
0.34
$$ -0.49 0.17 , , 0.06 .0 , , $\frac{0.02}{-1.24}$

\qquad , 1.56 -1.62 -0.78 , -1.06 _,
$\operatorname{CXFA} \quad(1,5)=$
\qquad , 0.57 \qquad , 0.38 \qquad , 0.2
$.15 \quad$.
$\therefore 0.97 \quad$,

$$
0.76
$$

.

, $=0.47$ $-0.77 \quad,-1.05$
\qquad
\qquad
$\operatorname{XCPFA}(1,1)=$, _

$$
\operatorname{XCPFA}(1,2)=
$$

\qquad
\qquad
\qquad
 ,
 ——, , \qquad

—,

\qquad , \qquad

QS INTEGRAL $=1.63741 E 03$ QSTAR INTEGRAL $=1.28206 E 03$ QRE TNTEGRAL = $1.13303 E-03$ QRNE INTEGRAL = $3.49088 E-03$ -AS MACH $=1.20000 \mathrm{E}$ OO, THE DATA ARE AS-FOLLOWS.

TINE AT TRANSTTION $=169.99$

TRANSITION DID NGT GCCUR.

III. COMPUTATIONS

A. BLOCK DIAGRAM

In the following pages are presented a block diagram (Figure 12) illustrating the operation of Program 1880, and a list of equations which are solved by the computer. The block diagram is arranged to indicate the sequence of operations as they are performed within the computer. Input data are located at the top of the diagram, computations are shown in the center, and outputs are grouped at the bottom. The list of equations which follow the diagram is divided into groups corresponding to the computation blocks in the diagram. Symbols used precede the equations.

Figure 12 BLOCK DIAGRAM ILLUSTRATING OPERATION OF PROGRAM 1880

B. SYMBOLS:

a
a
$A \quad$ reference area $\left(\frac{\pi d^{2}}{4}\right), \mathrm{ft}^{2}$
b (with subscript) velocaty exponent in convective heating formula
$c_{p} \quad$ specific heat at constant pressure, Btu/lb
$C_{D} \quad$ drag coefficient
$C_{L} \quad$ lift coefficient
$C_{\text {La }} \quad$ lift coefficient derivative, per radian
$C_{m} \quad$ pitching moment coefficient
$C_{m \dot{a}} \quad$ pitching moment derivative, per radian
$\mathrm{C}_{\mathrm{m}} \quad$ pitch damping coefficient, per radıan
C_{N} normal force coefficient
C_{X}. axial force coefficient
d reference length (diameter) feet
D drag, pounds
g local acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{g}_{\oplus} \quad$ Earth gravity at sea level, $32.17 \mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{H} \quad$ enthalpy, $\mathrm{ft}^{2} / \mathrm{sec}^{2}$
I_{X} roll moment of inertia, slug-ft ${ }^{2}$
$I_{Y} \quad$ moment of inertia in pitch and yaw, slug-ft ${ }^{2}$. -67-

80s

K (with subscript) heating constant
L temperature gradient, ${ }^{\circ} \mathrm{K} / \mathrm{ft}$
m mass, slugs

M molecular weight and Mach number
N normal force, pounds
p pressure, $1 b / \mathrm{ft}^{2}$
$P \quad$ vehicle roll rate, rad/sec
radus from center of planet, feet

Re Reynolds number
distance from stagnation point to sonic point, feet
time, seconds

T
temperature, ${ }^{\circ} \mathrm{K}$
V
velocity, $\mathrm{ft} / \mathrm{sec}$
Earth weight, pounds
X_{cg}
$X_{c m}$
x_{cp}
$X_{A} \quad$ mole fraction of argon in atmosphere
$X_{C} \quad$ mole fraction of carbon dioxide in atmosphere -68-.

814

PREGEP 黄 $66-417$

$\mathrm{X}_{\mathrm{N}} \quad$ mole fraction of nitrogen in atmosphere
$X_{0} \quad$ mole fraction of oxygen in atmosphere
z altitude, feet
a angle of attack, degrees
$a^{\prime} \quad$ total angle of attack (angle between vehicle axis of symmetry and velocity vector), degrees
$\bar{a} \quad$ total angle of attack envelope, degrees (max. value)
β angle of sideslip, degrees
$\dot{\beta} \quad$ inverse scale height, feet ${ }^{-1}$
γ flight path angle (positive in climb), degrees
$\gamma \quad$ adiabatic exponent
θ pitch angle, degrees
$\mu \quad$ viscosity, $\mathrm{Ib}-\mathrm{sec} / \mathrm{ft}^{2}$
$\rho \quad$ density, slug/ft ${ }^{3}$
$\sigma \quad$ non-dimensional radius of gyration $\left(\sqrt{\frac{I}{\mathrm{md}^{2}}}\right)$
$\phi \quad$ roll angle, degrees
ψ. yaw angle, degrees
ω_{n}. undamped natural frequency, rad/sec

Superscript:

* sonic point

Subscripts:

a	ambient
L	laminar
RE	radiant equilibrium

RNE radiant nonequilibrium

S stagnation point
SL sea level
ST stratosphere
T turbulent
TH thermosphere
TR troposphere
Z at altitude Z
C. EQUATIONS

1. Molecular Weight and Specific Heat

$$
\begin{align*}
& X_{N}+X_{O}+X_{C}+X_{A}=1.0 \tag{1}\\
& M=28 X_{N}+32 X_{O}+44 X_{C}+40 X_{A} \tag{2}\\
& \frac{c_{P}}{R}=\frac{3.5 X_{N}+3.5 X_{O}+4.0 X_{C}+2.5 X_{A}}{M} \tag{3}
\end{align*}
$$

2. Atmosphere Calculations
a. Troposphere

$$
\begin{aligned}
& T=T_{S L}+I_{T R} Z \\
& -\left\{\frac { M _ { g _ { S L } } } { R _ { (T _ { S L } - L _ { T R } R _ { S L }) } } \left[\frac{z R_{S L}}{R_{S L}+Z}\right.\right.
\end{aligned}
$$

$-70-$
$83<$
where,

$$
\begin{equation*}
\mathrm{L}_{\mathrm{TR}}=-\mathrm{L}_{1} \mathrm{~g}_{S_{L}} / c_{\mathrm{P}} \tag{6}
\end{equation*}
$$

$L_{1}=$ temp gradient in troposphere expressed as a fraction of the adrabatic lapse rate
b. Stratosphere

$$
\begin{align*}
& \rho=\rho_{\mathrm{ST}} \dot{e}^{\beta_{\mathrm{ST}} Z_{\mathrm{ST}}} e^{-\beta_{\mathrm{Z}} Z} \\
& \beta=\frac{\mathrm{Mg}_{\mathrm{SL}} \mathrm{R}_{\mathrm{SL}}}{\mathrm{R}_{\mathrm{ST}}\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}\right)} \\
& \rho_{S T}=\rho_{S L} \frac{T_{S L}}{\mathrm{~T}_{S T}} \quad e^{-\left\{\frac{\mathrm{Mg}_{S L}}{\left.\mathrm{R}_{\mathrm{ST}} \mathrm{~T}_{\mathrm{SL}}-\mathrm{L}_{\mathrm{TR}} \mathrm{R}_{\mathrm{SL}}\right)}\right.} \quad\left[\frac{\mathrm{Z}_{\mathrm{ST}}{ }^{\mathrm{R}_{\mathrm{SL}}}}{\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{ST}}}\right. \\
& \left.\left.+\frac{\mathrm{L}_{\mathrm{TR}} \mathrm{R}_{\mathrm{SL}}{ }^{2} \ln \left\{\frac{\mathrm{R}_{\mathrm{SL}}\left(\mathrm{~T}_{\mathrm{ST}}+\mathrm{L}_{\mathrm{TR}} \mathrm{Z}_{\mathrm{ST}}\right)}{\mathrm{T}_{\mathrm{SL}}\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{ST}}\right)}\right\}}{\mathrm{T}_{\mathrm{SL}}-\mathrm{I}_{\mathrm{TP}} \mathrm{R}_{\mathrm{SL}}}\right]\right\} \tag{9}\\
& \beta_{S T}=\frac{M_{g_{S L}} \mathrm{R}_{\mathrm{SL}}}{\mathrm{R} \mathrm{~T}_{S T}{ }^{\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{S T}\right)}} \tag{10}\\
& z_{S T}=\frac{\left(T_{S T}-T_{S L}\right)}{L_{T R}} \tag{11}
\end{align*}
$$

c. Thermosphere:

$$
\begin{align*}
& \mathrm{T}=\mathrm{T}_{S T}+\mathrm{L}_{\mathrm{TH}}\left(Z-Z_{T H}\right) \tag{12}\\
& \left.\rho=\rho_{T H} \frac{\mathrm{~T}_{\mathrm{ST}}}{\mathrm{~T}_{Z}} e-\mathrm{M}_{\mathrm{SL}} \mathrm{R}^{\mathrm{R}\left[\mathrm{~T}_{\mathrm{ST}}-\mathrm{L}_{\mathrm{TH}}\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{TH}}\right)\right]} \right\rvert\, \frac{\mathrm{R}_{\mathrm{SL}}^{2}\left(\mathrm{Z}-\mathrm{Z}_{\mathrm{TH}}\right)}{\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}\right)\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{TH}}\right)} \\
& \left.\left.+\frac{\mathrm{L}_{\mathrm{TH}} \mathrm{R}_{\mathrm{SL}}{ }^{2} \ln \left\{\frac{\left[\mathrm{~T}_{\mathrm{ST}}+\mathrm{L}_{\mathrm{TH}}\left(\mathrm{Z}-\mathrm{Z}_{\mathrm{TH}}\right)\right]\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{TH}}\right)}{\mathrm{T}_{\mathrm{ST}}\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}\right)}\right\}}{\mathrm{T}_{\mathrm{ST}}-\mathrm{L}_{\mathrm{TH}}\left(\mathrm{R}_{\mathrm{SL}}+\mathrm{Z}_{\mathrm{TH}}\right)}\right\}\right) \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \rho_{\mathrm{TH}}=\mathrm{P}_{\mathrm{TH}}{ }^{\mathrm{M} / \mathrm{R} \mathrm{~T}_{\mathrm{ST}}} \tag{14}\\
& \mathrm{Z}_{\mathrm{TH}}=\frac{{ }_{\mathrm{R} \mathrm{~T}_{\mathrm{ST}} \mathrm{R}_{\mathrm{SL}} \ln \left(\bar{\rho} / \rho_{\mathrm{TH}}\right)}^{\mathrm{M}_{\mathrm{SLL}} \mathrm{R}_{\mathrm{SL}}-\mathrm{RT}_{\mathrm{ST}} \ln \left(\bar{\rho} / \rho_{\mathrm{TH}}\right)}}{\rho=\rho_{\mathrm{ST}} \mathrm{e}^{\left(\beta_{\mathrm{ST}} \mathrm{z}_{\mathrm{ST}}\right)}} \tag{15}
\end{align*}
$$

d. Speed of Sound:

$$
\begin{equation*}
a=\left[\frac{\left(\frac{c_{p}}{R}\right)_{R T}}{\left(\frac{c_{p}}{R}\right)_{M-1}}\right]^{1 / 2} \tag{17}
\end{equation*}
$$

3. Trajectory Calculations

a. Equations of Motion:

$$
\begin{equation*}
\dot{\mathrm{v}}=\frac{-\mathrm{C}_{\mathrm{D}} \mathrm{qA}}{m}-g \sin ^{\prime} \gamma \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{v} \dot{\gamma}=\frac{\mathrm{v}^{2} \cos \gamma}{\mathrm{R}_{Z}}-\mathrm{g} \cos \gamma+\frac{\mathrm{C}_{\mathrm{L}} \mathrm{Aq}}{\mathrm{~m}} \frac{\sin \theta}{\sin \alpha^{\prime}} \tag{19}
\end{equation*}
$$

b. Supplementary Relationships

$$
\begin{align*}
& \dot{Z}=\mathrm{V} \sin \gamma \tag{20}\\
& \mathrm{M}=\mathrm{V} / \mathrm{a} \tag{21}\\
& \mathrm{q}=\rho_{\mathrm{a}} \mathrm{~V}^{2} / 2 \tag{22}\\
& \mathrm{~g}=\mathrm{g}_{\mathrm{SL}}\left(\mathrm{R}_{\mathrm{SL}} / \mathrm{R}_{\mathrm{Z}}\right)^{2} \tag{25}\\
& \mathrm{R}_{\mathrm{Z}}=\mathrm{R}_{\mathrm{SL}}+\mathrm{Z} \tag{24}\\
& \rho=\mathrm{f}(\mathrm{Z}) \text { from atm calcs. } \\
& \mathrm{Re}=\rho_{\mathrm{a}} \mathrm{Vd} / \mu \\
& \mu=\mathrm{f}(\mathrm{~T}) \text { from bult in viscosity table }
\end{align*}
$$

$$
-72-
$$

$$
85=
$$

$T=f(Z)$ from atm. calcs.
$D / W=\left(C_{D}\right)_{a=0} \mathrm{qA} / \mathrm{m} g_{\Theta}$.
$C_{D}=f\left(M, a^{\prime}\right)$ from coefficient calculations
4. Dynamics Calculations
a. Equations of Motion

The \dot{Q} equation is given in Section I. B. 4 (Calculation Model)

The \dot{R} equation $1 s$ given in Section I.B. 4 (Calculation Model)
b. Supplementary Relationships:
$\dot{\psi}=(\mathrm{R} \cos \phi+\mathrm{Q} \sin \phi) \sec \theta$
$\dot{\theta}=(\mathrm{Q} \cos \phi-\mathrm{R} \sin \phi)$
$\dot{\phi}=(P+\dot{\psi} \sin \phi)$
$\mathrm{I}_{\mathrm{X}}=\mathrm{m} \sigma_{\mathrm{x}}{ }^{2} \mathrm{~d}^{2}$
$\mathrm{I}_{\mathrm{Y}}=\mathrm{m} \sigma_{\mathrm{y}}{ }^{2} \mathrm{~d}^{2}$
-
$\sin \alpha=(\sin \theta \cos \psi \cos \phi+\sin \psi \sin \phi)$
$\sin \beta=(\sin \psi \cos \phi-\sin \theta \cos \psi \sin \phi)$
$\sin \alpha^{\prime}=\left(\sin ^{2} \psi+\cos ^{2} \psi \sin ^{2} \theta\right)^{1 / 2}$
$\mathrm{N} / \mathrm{W}=\mathrm{C}_{\mathrm{N}}(\bar{a}) \mathrm{qA} / \mathrm{mg}_{e}$
$C_{N}, C_{m}, C_{m_{q}}, C_{L_{a}}=f\left(M, a^{\prime}\right) \quad$ from coefficient calculations

$$
\begin{align*}
& \text { c. Linearized Equations of Motion } \\
& \left(\frac{\bar{a}}{\bar{a}_{o}}\right)_{\mathrm{P}=0}=\left[\frac{-\mathrm{C}_{\mathrm{m}_{a, 0}} \mathrm{q}_{\mathrm{o}}}{-\mathrm{C}_{\mathrm{m}_{a}} \mathrm{q}}\right]^{1 / 4} \mathrm{e}^{\mathrm{t}} \mathrm{e}_{0}^{1 / 2} \mathrm{P}_{1} \mathrm{Vdt} \tag{38}
\end{align*}
$$

$$
\begin{align*}
& P_{1}=-\frac{\rho A}{2 m}\left(C_{L_{a}}-\frac{C_{m_{q}}}{2 \sigma_{y}^{2}}\right) \tag{39}\\
& \frac{\bar{a}}{\bar{a}_{0}}=\left(\frac{\bar{a}}{\vec{a}_{0}}\right)_{\mathrm{P}=0}\left[\frac{1+\left(\frac{\mathrm{I}_{\mathrm{X}} \mathrm{P}}{2 \mathrm{I}_{\mathrm{Y}} \omega_{\mathrm{n}}}\right)_{0}^{2}}{1+\left(\frac{\mathrm{I}_{\mathrm{X}} \mathrm{P}}{2 \mathrm{I}_{\mathrm{Y}} \omega_{\mathrm{n}}}\right)^{2}}\right]^{1 / 4}\left[\frac{(1+K) e^{\mathrm{e}} \mathrm{e}_{0}^{\mathrm{L}} \Delta \lambda \mathrm{dt}}{2}\right. \\
& \left.+\frac{(1-K) e^{-\int_{0}^{t} \Delta \lambda d t}}{2}\right] \tag{40}\\
& \omega_{\mathrm{n}}{ }^{2}=-\frac{\mathrm{C}_{\mathrm{m}_{a}} \mathrm{qAd}}{\mathrm{I}_{\mathrm{Y}}} \tag{41}\\
& \Delta \lambda=\frac{\frac{\mathrm{I}_{\mathrm{X}}}{\mathrm{I}_{\mathrm{Y}}} \frac{\mathrm{P}}{2} \frac{\rho \mathrm{AV}}{\mathrm{~m}}\left[\mathrm{C}_{\mathrm{L}_{a}}+\frac{\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}}{2 \sigma_{\mathrm{y}}{ }^{2}}\right]}{4\left[\omega_{\mathrm{n}}^{2}+\left(\frac{\mathrm{I}_{\mathrm{X}} \mathrm{P}}{2 \mathrm{I}_{\mathrm{Y}}}\right)^{2}\right]^{1 / 2}} \tag{42}
\end{align*}
$$

$$
\begin{equation*}
\text { Freq }=\omega_{n} / 2 \pi \tag{43}
\end{equation*}
$$

5. Coefficients Calculations

$$
\begin{align*}
& c_{D}=c_{X} \cos a+c_{N} \sin a \tag{44}\\
& c_{m}=c_{N}\left(\frac{x_{c g}}{d}-\frac{x_{c p}}{d}\right) \tag{45}\\
& \text { or } \tag{46}\\
& c_{m}=c_{m_{x_{c m}}}+c_{N}\left(\frac{x_{c g}}{d}-\frac{x_{c m}}{d}\right)
\end{align*}
$$

84-

$$
\begin{equation*}
C_{L_{a}}=\frac{\left(C_{L}\right)_{a+\Delta \alpha}-\left(C_{L}\right)_{a}}{\Delta \alpha} \tag{47}
\end{equation*}
$$

where,

$$
\begin{align*}
& \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{N}} \cos a-\mathrm{C}_{\mathrm{X}} \sin a \tag{48}\\
& \left(\mathrm{C}_{\mathrm{N}}\right)_{a>180}=-\left(\mathrm{C}_{\mathrm{N}}\right)_{180-(a-180)} \tag{49}\\
& \left(\mathrm{C}_{\mathrm{X}}\right)_{a>180}=\left(\mathrm{C}_{\mathrm{X}}\right)_{180-(a-180)} \tag{50}\\
& \left(\mathrm{C}_{\mathrm{m}}\right)_{a>180}=-\left(\mathrm{C}_{\mathrm{m}}\right)_{180-(a-180)} \tag{51}\\
& \left(\mathrm{X}_{\mathrm{cp}}\right)_{a>180}=\left(\mathrm{X}_{\mathrm{cp}}\right)_{180-(a-180)} \tag{52}\\
& \left(\mathrm{C}_{\mathrm{L}_{a}}\right)_{a>180}=\left(\mathrm{C}_{\mathrm{L}}\right)_{180-(a-180)} \tag{53}
\end{align*}
$$

7. Convective Heating
a. Laminar

$$
\begin{equation*}
\mathrm{q}_{\mathrm{S}}=\frac{\mathrm{K}_{\mathrm{L}}}{(\mathrm{~d} / 2)^{\mathrm{I} / 2}} \quad \rho_{\mathrm{a}}{ }^{\mathrm{I} / 2}\left(\frac{\mathrm{~V}}{10^{4}}\right)^{\mathrm{b}_{\mathrm{L}}} \tag{54}
\end{equation*}
$$

where,
$K_{\mathrm{L}}=(1.1+0.075 \mathrm{M}) \times 10^{4} \times\left[\frac{\mathrm{d}}{2 \mathrm{~V}}\left(\frac{\mathrm{du}}{\mathrm{ds}}\right)_{\mathrm{S}}\right]^{1 / 2}$
$\mathrm{b}_{\mathrm{L}}=3.909-00229 \mathrm{M}$
$\mathrm{M}=$ molecular wesght
$\frac{d}{2 V}\left(\frac{d u}{d s}\right)_{S}=$ velocity gradient at stagnation point
b. Turbulent

$$
\begin{equation*}
q_{T}=K_{T} \times \rho_{\mathrm{a}}^{0.8} \times\left(\frac{\mathrm{V}}{10^{4}}\right)^{3.18} \tag{57}
\end{equation*}
$$

where,
$\mathrm{K}_{\mathrm{T}}=\left[540000 /\left(\mathrm{S}^{*}\right)^{0.2}\right](\mathrm{THF})$
$S^{*}=$ distance from stagnation to some point at zero angle of attack
$\mathrm{T}_{\mathrm{HF}}=$ turbulent heating factor
$\operatorname{Re}^{*}=\frac{\rho_{\mathrm{a}}}{\mu^{*}}\left(\frac{\rho_{\mathrm{S}}}{\rho_{\mathrm{a}}}\right)\left(\frac{\rho^{*}}{\rho_{\mathrm{S}}}\right) \mathrm{u}^{*} \mathrm{~S}^{*}$
where,
$\rho_{\mathrm{S}} / \rho_{\mathrm{a}}=$ density ratio at stagnation point
$\mu^{*}=f\left(T^{*}\right)$ from built-in viscosity table
$\rho^{*} / \rho_{S}=\left(\frac{2}{y+1}\right)^{\frac{1}{\gamma-1}}$
$\mathrm{u}^{*}=\left(\frac{2 \mathrm{H}}{\rho_{\mathrm{S}} / \rho_{\mathrm{a}}}\right)^{1 / 2}$
$H=\left(H M / R_{0}\right) 24.4522 \times 10^{6} / \mathrm{M}$
$T^{*}=2 T_{S} /(\gamma+1)$
$T_{S}=$ temperarure at stagnation point
$\gamma=\frac{\left(\rho_{\mathrm{S}} / \rho_{\mathrm{a}}\right)+1}{\left(\rho_{\mathrm{S}} / \rho_{\mathrm{a}}\right)-1}$
$H M / R T_{0}=\frac{V^{2} M}{2 R T_{0}}+\frac{M c_{p} T a}{R T_{0}}$
8. Nonequilibrium Radiation Heating

$$
\begin{align*}
& \Delta_{\mathrm{NE}}=\frac{\mathrm{K}_{\mathrm{NE}} \times 10^{-6}}{\rho_{\mathrm{a}}\left(\frac{\mathrm{v}}{10^{4}}\right)^{4.3}} \tag{66}\\
& \Delta_{\mathrm{P}}=\frac{0.23 \times 10^{-6}}{\rho_{\mathrm{a}}\left(\frac{\mathrm{~V}}{10^{4}}\right)^{3.3}} \tag{67}
\end{align*}
$$

$\Delta>\Delta_{\mathrm{NE}}$
$q_{R N E}=q_{E}\left[1-\frac{1}{2} \frac{\Delta_{p}}{\Delta}-\frac{1}{2} \frac{\Delta_{N E}}{\Delta}+\frac{\mathrm{I}_{N E}}{\mathrm{I}_{\mathrm{E}}} \frac{\Delta_{\mathrm{NE}}}{2 \Delta}\right]$

$$
\Delta_{\mathrm{p}}<\Delta<\Delta_{\mathrm{NE}}
$$

$$
q_{R N E}=q_{E}\left[1-\frac{1}{2} \frac{\Delta_{\mathrm{p}}}{\Delta}-\frac{1}{2} \frac{\Delta_{\mathrm{NE}}}{\Delta}+\frac{\mathrm{I}_{\mathrm{NE}}}{\mathrm{I}_{\mathrm{E}}} \frac{\Delta_{\mathrm{NE}}}{2 \Delta}-\frac{1}{2} \frac{\left(\Delta_{\mathrm{NE}}-\Delta\right)^{2}}{\left(\Delta_{\mathrm{NE}}-\Delta_{\mathrm{p}}\right) \Delta}\left(\frac{\mathrm{I}_{\mathrm{NE}}}{\mathrm{I}}-1\right)\right](69)
$$

$$
\Delta<\Delta_{P}
$$

$$
\begin{equation*}
\mathrm{q}_{\mathrm{RNE}}=\mathrm{q}_{\mathrm{E}} \frac{1}{2} \frac{\mathrm{I}_{\mathrm{NE}}}{\mathrm{I}_{\mathrm{E}}} \frac{\Delta}{\Delta_{\mathrm{P}}} \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{q}_{\mathrm{E}}=\frac{\mathrm{r}_{\mathrm{E}} \Delta}{2 .} \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{E}}\left(\epsilon_{1}, \mathrm{~N}_{1}, \mathrm{~T}\right) \rightarrow \text { see Program } 1883 \tag{72}
\end{equation*}
$$

9. Alternate Nonequilibrium Model

$$
\begin{equation*}
\frac{I_{\mathrm{NE}}}{\mathrm{I}_{\mathrm{E}}}=\frac{\Delta}{\Delta_{\mathrm{NE}}} \cdot \frac{\text { DIRNE }}{Q E} \tag{73}
\end{equation*}
$$

DIRNE (VIRNE)

A. PROGRAM FLOW

The program flow 1 s illustrated in Figure 13.

$65-11590 \mathrm{~A}$
Figure 13 FLOW DIAGRAM OF PROGRAM 1880

B．C $\varnothing \mathrm{MM} \varnothing \mathrm{N}$ STORAGE

Much data are transferred between the main program and the subroutine DERQO which computes the values at time（ t ）of the eight possible differential equations being integrated．Many other tables are placed in CめMMめN storage to prevent an overlap of the loading tables and the program when Program 1880 is placed in core．CめMMめN data are as follows：

DERRO

Name	Quantity	Source	Input or Output	Description
ZST	$z_{S T}$	Main	Input	Stratosphere altitude．Used to compute atmospheric properties，
Z TH	$\mathrm{Z}_{\text {TH }}$	Main	Input	Thermosphere altitude．Used to compute atmospheric properties．
RH ${ }^{\text {¢ }}$	ρ	DERQ0	Output	Ambient density at trajectory time t ．
ZTBL		Program Input	Input	Altitude table for tabular atmosphere．
TETBL		Program Input	Input	Temperature table for tabular atmosphere．
$R \varnothing T B L$		Program Input	Input	Density table for tabular atmosphere．
$C D$	$C_{\text {D }}$	Program Input	Input	Drag coefficient as a function of Mach number XMACH．
XMACH		Program Input	Input	Mach number table used wath $C D$ above．
Xİ	L_{1}	Program Input	Input	Troposhere temperature grad－ sent．Used to compute at－ mospheric properties．
GSL	G_{SL}	Program	Input	Sea level gravitational accel－ eration．Used to compute atmospheric properties and trajectory．

Name	Quantity	Source	Input or Output	Description
CPФR	$\mathrm{CP} / \mathrm{R}_{\mathrm{R}}$	Main	Input	Specific heat divided by gas constant. Used to compute atmospheric properties.
TST	${ }^{T} \mathrm{ST}$	Program Input	Input	Stratospheric temperature. Used to compute atmospheric properties.
TSI	$\mathrm{T}_{\text {SL }}$	Program Input	Input	Sea level temperature. Used to compute atmospheric properties.
RH \varnothing SL	$\rho_{\text {SL }}$	Program Input	Input	Sea level density. Used to compute atmospherıc properties.
RSI	$\mathrm{R}_{S \perp}$	Program Input	Input	Planet radius. Used to compute atmospheric properties and trajectory.
XM	M	Main	Input	Mean molecular weight of atmosphere. Used to compute atmospheric properties.
AR	R	Main	Input	Gas constant. Used to compute atmospheric properties.
XL2	$\mathrm{L}_{\text {TH }}$	Program Input	Input	Thermosphere temperature gradient. Used to compute atmospheric properties.
MVE	-	Program Input	Input	If $=1$, parametric atmosphere $1 f=2$, tabular.
XLø	L_{0}	Main	Input	Troposphere temperature gradient. Used to compute atmospheric properties.
CSUBD	C_{D}	DER@O	Output	Drag coefficient at trajectory time t.
$\mathrm{C}_{\text {L }}$	$\mathrm{C}_{\text {L }}$			No current use.

DERQO

Name	Quantity	Source	Input or Output	Description
XMAC	M	DERQ0	Ontput	Mach number at trajectory time t.
SMA	a	DERQ0	Output	Ambient speed of sound at trajectory time t.
A	A	Mann	Input	Vehicle area. Used to compute trajectory.
SMM	m	Program Input	Input	Mass of vehicle. Used to compute trajectory.
TEMP	T	DERQO	Output	Ambient temperature at trajectory time t.
$\mathrm{R} \varnothing \mathrm{BAR}$	\bar{p}	Main	Input	Stratosphere density used to compute atmospheric properties.
RHФТ	$\bar{\rho}_{\mathrm{TH}}$	Mann	Input	Thermosphere density Used to compute atmospheric properties.
TABAL		Program Input	Input	Angle-of-attack table. Used as independent variable table for coefficients as functions of a and M to compute trajectory.
CNFA	C_{N}	Program Input	Input	C_{N} table as function of a and M to compute trajectory.
XCPFA	X_{cp}	Program Input	Input	X_{CP} table as function of a and M to compute trajectory.
CMQFA	C_{mq}	Program Input	Input	$C_{m q}$ tables as function of a and M to compute trajectory.
CLAFM	$\mathrm{C}_{\mathrm{L}_{a}}$	Program Input	Input	C_{L} table as function of M to compute trajectory.
CMQFM	C_{mq}	Program Input	Input	$C_{\text {mq }}$ table as function of M to compute trajectory.
-81-				
988				

Name	Quantity	Source	Input or Output	Description
XMBCH	M	Program Input	Input	Independent variable. Mach number table used to compute coefficients as a function of a and M for trajectory.
CXFA	C_{X}	Program Input	Input	C_{X} table as a function of α and M used to compute trajectory.
CLAFA	$\mathrm{C}_{\mathrm{L}_{a}}$	GETCLA	Input	$C_{L_{a}}$ table as a function of α and M used to compute trajectory.
CMFA	C_{m}	Program Input	Input	C_{M} table as a function of a and M used to compute trajectory.
XøW	D/W			Drag force ratio.
ENDW	N/W			Normal force ratio.
XMAX		Main	Input	Largest value of XMBCF.
XMIN		Main	Input	Smallest value of XMBCH.
IXMAX		Mann	Input	Index of XMAX in XMBCH.
IXMIN		Ma.n	Input	Index of XMIN in XMBCH.
CMIN		Program Input	Input	If CMIN >0, use CMFA and $C M C \not D$ for C_{M} if CMIN $\leq \mathrm{O}$, use XCPDD for C_{M}.
CMCøD		Program Input	Input	Used to compute C_{M} for trajectory if CMIN >0.

C. SUBROUTINES

COOL	Variable	NXG, Atmos table дumber	$X \phi_{1} \phi_{2}$ mole fraction	$\mathrm{XN}, \mathrm{N}_{2}$ mole fraction	XC, coz_{2} mole fraction
	Input or Output SOURCE	$\left\lvert\, \begin{aligned} & \text { Irput } \\ & \text { MAIN } \end{aligned}\right.$	Input Program Input	Input Program Input	Inqut Program Input
XA_{A}, A mole fraction	IPRG. print sentionol	RHO, ambient density	VY, Vehzcle velocity	ORIG, total equilibrium radiation	ZNAMI, table of 7 specie ratzes
Input	Input	Input	Input	Output	Input
Program Input	Program Input	DEREQ	ADM4RK	GETN	MAIN
ZNAM2, table of radiation source mames	ENT Φ T, stagnation enthalpy	RøRZ density ratiou	DELФRC, table of $\Delta / R C$	TSSZ Stagnation Temperature	TIM, Trajectory traze
Input	Input	Oatput	Input	Output	Input
MAIN	Maln	HEAT	Program Input	HEAT	ADM4RK
IITBL, Zone 1 temperature table	T2TBL, Zone 2 temperature table	T3 TBL. Zone 3 temperature table	HITBL, Zone 1 eathalpy table	H2TBL, Zone 2 enthalpy table	F3TBL, Zone 3 enthalpy table
Infut	Input	Input	Input	Input	Input
HVST	HVST	HVST	HVST	HVST	HVST
DENR, table of density ratios	D_{2} vehicle dxameter	DELDG, A detachment distance			
Input	Input	Output			
Program Input	Program Input	HEAT			

HEAT	Variable	Y. Velocity	RHO, ambient denarty	$\mathrm{XN}, \mathrm{N}_{2}$ mole fraction	$\mathbf{x} \phi . \phi 2$ mole fractron
	Subroutine Input or Output SSURRCE	Input ADMARK	Input DEREQ	Lnput Erogram Input	Input Program Input
$\mathrm{XC}, \mathrm{CO}_{2}$ mole fraction Input Program Input	XA, A mole fraction Input Program Ingut	NX atmosphere fable numbera Input MALN	P, Stagnation pressure Output HEAT	T. Stagration temperature Output HEAT	2, moles of gas moxture at $T \& P$ Output Z ϕ NES
RHOSTI, denszty ratio As/p. Output heat	QSUM-total raduation heating Output GETN	QI-component raduation heating Output GETN	X -moles of apecias in muture of $T \& P$ Output ZめNES	HDHS dyacociation energy-enthalpy Output FENDH	HRT, enthalpy Output FINDH
DELGRC, table of $\Delta / R C$ Input Program Input	DUM-moles of 0^{+}, N^{+}; Ct, e^{-}in Zone 2 Output 2.ONES	ENTOT-stagration enthalpy (FRT) Input MAIN	rHiTBI, Zone 1 enthalpy table Input HVST	H2TBL Zone 2 cathalpy table Input HVST	H3TBL Zone 3 enthalpy table Input HVST:
TlTBL, Zone 1 temperature table Input: HVST -	T2TBL, Zone 2 temperature table Input HVST	T3TBL, Zone 3 temperature table Input HVST	DENR, table of density ratio Input Program Input	D, vehicle dameter Input Programa Input	DEL, Δ detachment dietance Output HEAT

"Calling sequences for ADAMS4 and DERQO are described ins the section of special routines

Calling sequences for HVST, GETN, ZONES, GETK, FINDT, FINDH, and GETQ are the same as for those routines in the 1883 program description.

nonequ	1				
	Varrable Subrouting Input or Output Source	DELDG, detachment distance Input HEAT	DSP, diatance to peak nonequilibrium intersity	- DNE ñonequilibrium distance	XIRN, noneqütimuinn intensity zatio
			Input	Input	Input
			MAIN	MAIN	Program Input
QR(I), Equilibrium raduation heating	QRNE (i) monequilibrium raciation heating				
Input	Output				
GETN	N¢NEQU				

1. Subroutine DERQ0

Purpose: DERQO computes the atmospheric properties for the altitude at each time step of the numerical integration of the trajectory and dynamics differential equations, and provides the values of the derivatives of the differential equations for the succeeding integration step.

Method: The values of the dependent variables of the integration are contained in the array X of the calling sequence, at time $=$ TIM, and the derivatives are computed and stored in the array DERX. All other data are passed through $C \varnothing M M \phi N$. The quantities in each X are: Velocity (V), flight path angle (γ), altitude (Z), pitch rate (Q), yaw rate (R), and the Euler angles ($\psi, \theta, \dot{\phi}$). .

Knowing the altitude at time TIM, DERQ0 first computes the atmosphere temperature TEMP and density RH \varnothing corresponding to that altitude. It does this with tables (MVE = 2, Statements 10 and 12) or from a parametric representation (MVE = 1, Statements 20 to 70). By the execution of Statement 93 the Mach number and speed of sound (XMAC and SMA) are calculated, as well as the value of $\mathrm{dz} / \mathrm{dt}$.

After Statement 92 the number of equations (NOEQD) is tested, and If this is 8 the remanning trajectory and dynamics derivatives must be evaluated using coefficients that are functions of angle of attack and Mach number. If $N \varnothing E Q D=3$, only the two remaining particle trajectory derıvatıves (dv/dt, dy/dr) are evaluated using a drag coefficient as a function of MACH number (XMACH) only, and the RETURN before Statement 99 returns control to ADAMS4 so that the integration may be continued. If all eight derivatives must be evaluated, transfer is made to Statement 99 and by Statement 1000 the angle of attack at time TIM is computed from the Euler angles. Statements from 1000 to 1019 compute the aerodynamic coefficients by double interpolation in angle of attack (through ARTLU and ALPHA) and Mach number. Tests are first made (before 1000 or before 1001), and if the Mach number is lower (higher) than the lowest (highest) value in XMBCH. In addition, for values of ALPHA above 180 a transform is made to the value of the coefficient in the range between 0 and 180. The values of the derivatives are computed between statements 1019 and 9999.
2. Subroutme $C \emptyset \varnothing$ L

Purpose: Subroutine $C \varnothing \varnothing \mathrm{~L}$ accepts data from the trajectory calculation in such form as is suitable for the radiation heatmg calculation, initiates the heating calculation, and returns radiation and gas dynamic data to the main program. If IPRQRD is $\geq 1.0, C \varnothing \varnothing \mathrm{~L}$ also causes data to be printed out each time it is called.

$$
-86-`
$$

$99<$

Method: Subroutine C $\varnothing \varnothing \mathrm{L}$ is analogous to the main program of Program 1883 (see 1883 description). The program flow for 1880 described above contains the logacal position of the subroutine and, in fact, the "radiation heating Program 1883" division reflects the logical flow of Program 1883 (call HEAT, and so forth). If the sentinel TPRQRDis ≥ 1.0, subroutine $C \varnothing \varnothing L$ will provide the normal 1883 output each time it is called, along with the trajectory time for identification.

3. Subroutine NФNEQU

Purpose: To compute the value of the nonequilibrium radiation heating for each time recorded on the output tables.

Method: Immediately before $N \varnothing N E Q U$ is called for some TIME entry, the equilıbrium radiation heating calculation (subroutine C $\varnothing \varnothing \mathrm{L}$, et al) has provided the equilibrium radiation and the detachment distance (QR (I) and DELDG). Given the distance to peak nonequilibrıum intensity and the nonequilibrium density (computed in the main program as DSP and DNE, plus the input factor IRNE, the nonequilibrium radiation is computed from one of three relations (Reference 1, p. I04. Equation (78)) which relation is used to compute QRNE at time TIM, depending on the relative magnitude of DELDG, DNE, and DSP.
4. Subroutine CKTRB

Purpose: Subroutine CKTRB computes the local Reynolds number at the sonic point each time the equilibrium radiation calculation is successfully performed during the trajectory.

Method: Using output from the equilibrium radiation calculation, density ratio, stagnation temperature, and stagnation enthalpy, plus the ambient density, viscosity (known as a function of temperature), and S^{*} from SS $\varnothing \mathrm{D}$ in the program input, the Subroutine CKTRB evaluates the local Reynold's number at the sonic point from a straight-forward algebralc solution.

5. Subroutine HEAT

Purpose: See 1883 description
Method: The method used by HEAT in Program 1880 is the same as in 1883 with the following changes. HEAT no longer calls the subroutine HVST, but has the output from that subroutine given to it by subroutine $C \varnothing \varnothing I$, which recevves it from the 1880 mam program which calls HVST once for each trajectory. HEAT does not compute the stagnation enthalpy, but receives it via $C \phi \phi L$ from the trajectory
calculation. Also the detachment distance is not supplied by direct input or the correlation in b/a and inverse density ratio, but from a durect correlation between detachment distance and density ratio supplied as program input (tables DEL ϕ RC and TABDR in the input).
6. Subroutine GETN

Purpose: See 1883 description
Method: Same as in 1883, but the effective emissivities and detachment distance are deleted from the program output.

Subroutines HVST, GETK, GETQ, FINDH, FINDT, and ZQNES are the same as in Program 1883.
7. Subroutine GETCLA

Purpose: GETCLA will compute a table of C_{L} from the input tables C_{N} and C_{X}.

Method: Subroutine GETCLA computes the coefficient $C_{L_{a}}$ by a linear approximation of the derivatives which depend upon tables of C_{N} and C_{X}. A value of $C_{L_{a}}$ is computed for each of 5 Mach numbers and 19 angles of attack in the loop ending at Statement 1005.
8. Subroutine INTRP

Purpose: To interpolate trajectory data at a specified Mach number or dynamic pressure, and print the results.

Method: Linear interpolation.
D. MAIN PROGRAM

Purpose: The purpose of the main program is to acquire input, provide for the integration of the trajectory and vehicle dynamics equations (done by ADAMS4), exercise suitable options during the course of the trajectory calculations (depending on the value of certain input quantities), provide for the calculation and storage of all quantities which appear in the output tables, and provide output from the calculation.

Method: To easily follow the logical flow of the main program, one must remember two facts. First, the integration of the trajectory equations is arranged under normal operating procedure so that ADAMS4 returns control to the main program after each integration step. The size of this time interval depends only upon the behavior of the differential
equations and the accuracy requirements. Second, since these time steps are usually rather small, to provide output for each step would be quite time consuming. Therefore, only some integration data appear on the output tables and the points selected depend upon the rates of change of physical quantities of interest to the user. For example, if the altitude is changing rapidly, finer resolution is shown on the output for the time span in which this occurs. All output points selected are stored on tables which are printed after the entire trajectory has been calculated.

The maximum number of lines of output is 150 , and it is solely the responsibility of the problem submitter to assure (by judicious selection of values for VTST, GTST, ZTST, QTST, and DELMAC) that these tables are not exceeded. All statements before 500 either specify variables, or define preset input or tables. ZNAM1 and ZNAM2 are arrays of Hollerith names which define species and radiation contributors for the radiation heating block. The tables TMPVS and VISC define viscosity as a function of temperature. TBSUM is the sum of $\mathrm{O}_{2}+\mathrm{CO}_{2}$ for each of the eleven atmospheric tables of enthalpy and temperature (see main description).

After Statement 500, sentinels are initialized for each case, and data is read in through the Namelist array INPUT. The values of the highest and lowest Mach numbers in the array XMBCH have been computed by Statement 3003, and subroutine GETCLA is called to provide a table of values for C_{L} for the tables of C_{N} and C_{X}. Foll owing the call GETCLA, the modes of certain input variables are changed, the moments of inertia computed from the radii of gyration, S^{*} computed, and by Statement 3018 the appropriate tables for the atmosphere being run have been selected by the calculation of NXG (i.e. the tables whose sum of O_{2} and CO_{2} mole fractions is closest to the sum of the input XO and XC). Call HVST obtains these enthalpy and temperature tables for use by the radiation heating calculation. Diagnostic tests are performed before Statement 3048 to assure that the sum of the mole fractions is 1. - . 001, and that $X N \geq .001$. By Statement 24, further mitialization has been completed, constants computed for the theorized dynamic calculation, and the quantities which determine output points defined from the input. The statements immediately following 24 define atmospheric properties and constants for the computation of the convective heat pulses. The heat pulses which appear in the output tables are computed only at output points (not for every integration time step), since the pulses $Q S$, QSTAR, and QRNE all depend upon the density ratio computed by the radiation heating calculation, and it is prohibitively expensive to compute the radiation for each integration step. However, the selection of an output point itself depends upon the rate of change of the stagnation point convective heating. For this reason an approximate
heat pulse is computed and integrated by the program so that output points may be selected. The quantities XKL, QS1, QS2, and SMQS are used for this pulse. Then the initial values for the eight differential equations are defined, along with other parameters used by the pre-dictor-corrector integration routine ADAMS4.

The statements between 220, CALL ADAMS4 and the computed G \varnothing $T \phi$ numbered 105 toward the end of the program form a logical loop completed for each time step of the trajectory calculation until the vehicles trajectory has been entirely computed (either until impact or $t=T S T D P$). Immediately after the enthalpy (ENTDT), velocity (VY), and dynamic pressuxe (DYNPR) are computed, the sentinel NITWIT (preset to 0 after Statement 500) is checked. If NITWIT is >0, this means that the linearized dynamic calculations were not done because the angle-of attack envelope at peak dynamic pressure was $>A L P C R$, and the five dynamics equations are to be integrated until impact unless the dynamic pressure becomes larger than a quantity proportional to CDRDP. When NITWIT >0, this quantity is computed and tested against the dynamic pressure for each time step (Statement 367). If larger than the dynamic pressure, only the first three (particle trajectory) differential equations are integrated; all remaining angle-of-attack envelope values (ALENV) are set equal to the last angle-of-attack envelope computed (D$\varnothing 615$) and no further angles of attack are computed (ILATE $=1$, $12 B I G=1$).

At Statement 368, the current value of the dynamic pressure is tested against the value computed for the previous time step. If itis smaller, the last value of the dynamic pressure in the output'tables ($\mathrm{QD}(\mathrm{I})$) is taken as the peak dynamic pressure, and the values of all variables at TIME (I) are used to compute all quantities of interest at peak dynamic pressure, including inntial values of the integrals and constants of interest in the Innearized dynamic calculations (GM10, PHIlO, PHIOGM, PSIIO, TMIG1). ILATE, preset to 0 , is set equal to 1 to delete any further testing for peak dynamic pressure.

Statements 601 to 605 complete the consideration of data for angle-of-attack calculation dependent upon the integration of the (last) five dynamics differential equations. Since only the value of the angle of attack at time (TIM) is known for each time step, additional calculations are necessary to compute the value of the angle-of-attack envelope at time t. The angle of attack at TIM is ALDG, and the previously computed value is AOLD. If the angle of attack has been increasing (IPK $=2$), but the current $A L D G<$ $A \varnothing L D$, then a peak is defined (PKNEW at TALNEW), and with a knowledge of the previously defined peak (PK $(P I D$ at TAL $\varnothing L D$), an angle-of-attack
envelope value for some output point such that TAL $\varnothing \mathrm{LD} \leq \operatorname{TIME}(\mathrm{JPAL}) \leq$ TALNEW may be computed by linear interpolation (Statement 805). Here, $J P A L$ is the number of envelope values already computed +1 . The statements between 3055 and 807 serve only to compute, as a function of angle of attack and Mach number, the coefficients necessary in the calculation of N/W (ENDW). If ILATE >1 (first computation for angle of attack after peak dynamic pressure), the statements following 606 are executed to compute quantities for the linearized dynamics which depend on the angle-of-attack envelope at peak dynamic pressure. If this envelope value is less than the input $A L P C R$, the dynamics differential equations are deleted, the integration reinitialized (Statement 1090), and ISKIP (preset to 0) is set to 1 . The ISKIP value deletes all consideration of the angle of attack from the dynamics differential equations by skipping the statements between 700 and 605 . If $A L P C R$ is too small (no linearized dynamic option), the eight differential equations are retanned, ISKIP is set to 0, ILATE is set to 0, and NITWIT (see discussion of CDR $\boldsymbol{C D}$ above) is set to 1 (Statement 613). Statement 605 ends the angle-of-attack envelope portion, except for the linearized calculation.

If NPASS $=1$, only the intial conditions of the integration have been computed, and the convective heat pulse used only for the determination of an output point is initialized (see the statements following 302). A transfer is made into the portion of the main program whech generates the output tables (Statements 222 to 105), thus making the initial conditions the first line of the tabular program output. If NPASS $=2$ for each time step, the integrals for the linearized dynamics and the output-determining heat pulse are integrated for each time step by the trapezoidal method (Statements 320 to 338). If I2BIG >0, the linearized dynamic integrals are not computed since the sentinel indicates that the angle-of-attack envelope computed by the linearized method is unreasonably large. If ISKIP ≤ 0, the angle-of-attack envelope is being computed from the 5 dynamics differential equations, and the linearized dynamics integrals are not evaluated. The statements between 7010 and 7011 provide output for each time step (IPRINT ≥ 1).

After 7011 are ten tests used to select the time steps which appear in the output tables. The criteria for an output point are as follows: TIM = TZER \varnothing (initial point), TIM>TSTDP (maximum) value of independent variable TIM), $X(3) \leq Z S T \emptyset P$ (impact), Mach number ≤ 5 and the difference from the last outputine (XM $\overline{\text { l }}) \geq$ DMK; only if the approxmate heat pulse is greater than 1 Btu/ft2-sec, do the following tests determine an output point, velocity difference from last output velocity \geq VTEST, flight path angle (γ) difference from last output point \geq GTEST, altıtude difference from last output point \geq ZTEST, approximate convective heat pulse integral difference from last output point \geq QSTST. Statement 222 begins the calculation of the output table for TIME (I) = TIM, where I is the line number in the output tables.

The statements to 358 compute a Mach number index for use at the end of the program in interpolating data at some input value of Mach number (PRTMAC). QDY (I) is computed, and the statements to 1076 compute the interpolation index if a specified dynamic pressure ($Q D Y P R T$) is to be used instead of the Mach number. Next the $\gamma, \mathrm{Z}, \rho, \mathrm{t}$, and Mach tables are filled, plus the natural frequency (FRNAT). If the dynamics dufferential equations have been deleted at peak dynamic pressure (NITWIT $=0$, ISKIP $=1$), and the linearized integrals are not too large (T GMIG ≤ 15, I2BIG ≤ 0), the linearized dynamics integrals are evaluated and the angle-of-attack envelope and N/W based on that envelope value are computed by Statement 8005. IZBIG is set $=1$ if the angle-of-attack envelope value from the linearized calculation is ≥ 90 degrees.

Next the Reynolds number $\operatorname{RTX}(\mathrm{I})$ and enthalpy $\operatorname{HRT}(\mathrm{I})$ are calculated, along with the nonequilibrium distance (DNE) and distance to peak nonequilibrium intensity (DSP). If the velocity is greater than VSTФPQ(VSD), the dynamic pressure is ≥ 1, and $I=1$ (first output line) transfer is made to Statement 1999, for the equilibrium radiation heating calculation, the computation of the nonequilibrium radiation by subroutine NONEQU, the computation of the stagnation point convective heating (dependent upon the density ratio $R \not \subset R Z$ computed with the radiation heating) and the call of CKTRB to see if the locial Reynolds number REYS is > REYT. If REYS > REYT, transition has occurred, and the time for transition is stored as TIMTR. A transfer is made out o, of the radiation heating block to Statement 1997. If the velocity $>$ VST 0 PQ , dynamic pressure >1, and $I>1$, transfer is riade to Statement 2002. If $I Q R G O=1, T I M \phi D$ is calculated and $I Q R G \varnothing=2$. The equilibrium and-nonequilibrium radiation is computed by C $\varnothing \varnothing L$ and NONEQU, the stagnation convective heating is calculated, and the same calculation done for REYS- to check for transition. On occasion the radiation heating calculation fails to find a solution (N \varnothing VALID S $\varnothing \mathrm{LN}$. in output). This is recognized by the fact that the equilibrium radiation from $C \varnothing \varnothing L$, QRIG, has the value 0 . When this happens, the index MINUS is incremented for each such case and as soon as a valid solution is given linear interpolations are done to compute the appropriate values of laminar and turbulent convective heating and equilibrium radiation heating (Statements 2007 to 2009). The nonequilibrium radiation is then based on the interpolated value of the equilibrium radation when NめNEQU is called (after Statement 3052). These interpolations are thought reasonable because of the fact that experience indicates N \varnothing VALID S \varnothing LN. generally occurs away from peak heating and in areas where the radiation heating is quite small. The interpolation requires the continuous updating of TIM $\varnothing \mathrm{D}$ for the interpolation (Statement 2009). If 149 lines of output have occurred, an attempt is made to eliminate all addition points from the output, except for impact (Statement 8001). This does not invariably work. Statement 105 ends the integration loop (see ADAMS4 description).

Except for the case DELTA-T T $\varnothing \varnothing /$ SMALL (Statement 130), the output tables from the entire trajectory are now printed with appropriate headings (Statements 1520 to 1660). First, however, all values of X / W (XøW (I)), and the values of laminar and, if applicable, turbulent heating, which occur after the last time C $\varnothing \varnothing \mathrm{L}$ was called, are computed in the loop ending 3043. The heating integrals are also computed in this loop by a trapezoidal approximation. The reason for the QSTAR and SQS calculation is that the restrictions V $>V S T \phi P Q$ or dynamic pressure >1 usually deletes the radation heating before impact in order to save machine time calculating low radiation. The aerodynamic heating, however, depends upon the density ratio computed in the radiation block and hence the approximation is that this density ratio is constant between the last time radiation heating is computed and the impact time.

The values of the heating integrals are printed after Statement 400, and if interpolations are asked for at a specific Mach number (or dynamic pressure), the interpolations are completed and the answers written out in subroutine INTRP. The transition time is noted between 3060 and 3063 , and indication of the deletion of the five dynamics differential equations is provided by Statement 3057 if such deletion occurred.

IF IPHEAT >1.0 punched cards are provided on Tape 7 which includes tables of TIME, QS, QSTAR, HM/RTด, and QRNE suitable for direct use in the heat shzeld calculation.

A transfer is then made to Statement 500 , to begin the next case.

E. SIGNIFICANT EQUATIONS

1. MAIN

a. Molecular Weight

$$
\begin{equation*}
M=X M=28 \cdot X N+32 \cdot X \emptyset+44 \cdot X C+40 \cdot X A \tag{24}
\end{equation*}
$$

b. Specıfıc Heat

$$
C P / R=C P \emptyset R=3.5(X N+X \varnothing)+4 \cdot X C+25 \cdot X A) / X M
$$

c. Velocity Exponent for $Q S$ (I)

$$
b_{L A M}=B L A M=3.909-0.0299 \cdot X M
$$

d. Stagnation Enthalpy

$$
\mathrm{HM}_{\mathrm{RT}}^{0} \mathrm{ENT} \emptyset \mathrm{~T}=\mathrm{V}^{2} /\left(64.4 .778 \cdot \cdot \frac{1.987 \cdot 454 \cdot 273.16}{252 \cdot \mathrm{XM}}\right)+\frac{\mathrm{XM} \cdot \mathrm{CP} \varphi \mathrm{R}}{273.16} \cdot \mathrm{TEMP}(298)
$$

e. Dynamic Pressure

$$
\begin{equation*}
q_{d}=D Y N P R=\frac{1}{2} \rho V^{2} \tag{700}
\end{equation*}
$$

f. Ballistic Coefficient
$M / C_{D} A=E M \not \subset C D A=S M M /\left(C_{D D} \cdot A\right), C_{D D}=$ drag coefficient at peak q_{d}
g. Normal Force, when Coefficients $=F(a, M)$
$N / W=E N \not \subset W(I)=C_{N} \cdot Q_{D Y}(I) \cdot A /(32.16 \cdot S M M), C_{N}$ from $C N F A$
$Q_{D Y}(I)=I^{\text {th }}$ dynamic pressure in output table
h. Normal Force when Coefficients $=F(M)$
$N / W=E N \varnothing W(I)=\left(C_{L A D}+C_{D D}\right) \cdot A L E N V(I) \cdot Q D Y(I) \cdot A /(57.3 \cdot 32.16 \cdot S M M)(8007)$
$C_{L A D}$ and $C_{D D}=C_{L_{\alpha}}$ and C_{D} at same MACH number, (ALENV (I) $=i^{\text {th }}$ angle-of-attack envelope in output table).
i. Natural Frequency

FREQ $=\operatorname{FRNAT}(I) \cdot=\frac{1}{2 \pi}\left(-\operatorname{CMAD} \cdot Q_{D Y}(I) \cdot A \cdot D / Z I Y\right)^{1 / 2}$
CMAD $=C_{m_{\alpha}}$ at same Mach number, ZIY $=$ moment of inertia.
j. Ambient Reynolds Number .
${ }^{\prime}$ REY $=$ RTX (D). RHø $\cdot \mathrm{V}(\mathrm{I}) \cdot \mathrm{D} / \mathrm{VIS}$, VIS $=$ viscosıty at temperature TEMP (8005)
k. Axial Force
$X / W=X \emptyset W(I)=C_{D D} \cdot Q_{D Y}(1) \cdot A /(32.16 S M M)$ where $C_{D D}=C_{D}$ at same Mach number

1. Stagnation Point Convective Heating
-94-
角范

$$
\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{S}}(\mathrm{I})=\left\{\frac{\mathrm{VLG}}{\frac{1}{2} \mathrm{D}}\right\}^{1 / 2} \cdot(1.1+0.075 \mathrm{XM}) 10^{4} \cdot\left(\frac{\mathrm{~V}}{10^{4}}\right)^{\mathrm{BLAM}} \cdot(\mathrm{RH} \varnothing) \quad \text { ALAM } \quad(304 \mathrm{I})
$$

VLG $=$ velocity gradient evaluated at same density ratio
m. Convective Sonic Point Heating

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{STAR}}=\mathrm{Q}_{\mathrm{T}}(\mathrm{I})=\mathrm{Q}_{\mathrm{S}}(\mathrm{I}) \text { if lamınar } \\
& \mathrm{Q}_{\mathrm{STAR}}=\frac{5.4 \times 10^{5} \mathrm{THF}}{((\mathrm{SSTAR} / \mathrm{D}) \cdot \mathrm{D})^{0.2}} \cdot(\mathrm{RHO})^{\text {ATRB }}\left(\frac{\mathrm{V}}{10^{4}}\right)^{\text {BTRB }}{ }^{\text {If turbulent }} \tag{3054}
\end{align*}
$$

Linearized dynamics - no spin
n. Angle-of-Attack Envelope - no spin

$$
\begin{aligned}
\operatorname{ALENV}(\mathrm{I})= & \frac{\text { ENVPQ }(-\mathrm{CMAPK} \cdot \operatorname{PKDYN})^{1 / 4}}{\left(\left(-\mathrm{CMAD} \cdot \mathrm{Q}_{\mathrm{DY}}(\mathrm{I})\right)^{1 / 4}\right.} \cdot \operatorname{EXPF} \frac{1}{2} \int_{\mathrm{t}_{0}}^{t_{i}} \frac{\rho A}{2 S M M} \\
& \left(-\operatorname{CLA}+\frac{1}{2} \frac{\mathrm{CMQ}}{\text { SIGMA }}\right) \quad \mathrm{V} \cdot \mathrm{dt}
\end{aligned}
$$

where ENVPQ, - CMAPK, and PKDYN are the angle-of-attack envelope, C_{m}, and $1 / 2 \rho V^{2}$ at peak dynamic pressure, $C M A D$ and $Q D Y$ (I) are the $C_{m}=f(M)$ and $1 / 2 \rho V^{2}$ at the $i^{\text {th }}$ time in the output table, and the exponential argument is integrated trapezodially with $C M Q=C_{i n q}=f(M)$ and SIGMA $=Z I Y / S M M D^{2} \quad t_{0}$ is the trajectory time at the beganning of the linearized calculation, t_{1} is the $i^{\text {th }}$ tume in the output table, where $t_{1}>$ t_{0}.
o. Linearized Dynamics, Spin Correction

Angle-of-attack envelope, spin:
p. Angle of Attack, Spin

$$
\vec{a}=\operatorname{ALENV}(\mathrm{I})=\frac{1}{2}(\bar{a})_{\text {NO SPIN }}\left[\mathrm{DUM} \cdot \operatorname{EXPF}-\frac{1}{2} \text { TGMIG }+ \text { DUM EXPF } \frac{1}{2} \mathrm{TGMI}\right. \text { (8007) }
$$

$$
\begin{aligned}
& \text { TGMIG }=\int_{r_{0}}^{t_{1}} \frac{-\pi \frac{\mathrm{RH} \varnothing \cdot \mathrm{~A} \cdot \mathrm{~V}}{4 \mathrm{SMM}} \cdot \frac{\mathrm{ZIX}}{\mathrm{ZY}} \cdot\left(\mathrm{CLA}+\frac{\mathrm{CMQ}}{2 \cdot \mathrm{SIGMA}}\right)}{\left\{\frac{\mathrm{RH} \varnothing \cdot \mathrm{~A} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{SMM} \cdot \mathrm{D}} \cdot\left(\frac{-\mathrm{CMA}}{\mathrm{SIGMA}}\right)+\frac{\pi^{2}}{4}\left(\frac{\mathrm{ZIX}}{\mathrm{ZIY}}\right)^{2}\right\}^{1 / 2}} \mathrm{dt}
\end{aligned}
$$

For the integral TGMIG, $R H \varnothing, V, C \dot{L} A, C M Q, C M A$, are the density, velocity, $C_{L_{\alpha}}, C_{m_{q}}, C_{m_{\alpha}}$ (evaluated as $f(M)$) for each time SIGMA $=\frac{Z I Y}{S M M \cdot D^{2}}$. For DUM, RHOPK, VYPK, CMA are the density velocrty, and $C_{m_{a}}$ evaluated at peak dynamic pressure. RHO, V, CMAD are these quantities evaluated at the $i^{\text {th }}$ time in the output table, $t_{i}>t_{0}$ where t_{0} is the trajectory time at the start of the linearized calculation.
q. Atmosphere Constants

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{O}}=\mathrm{XLO}=-\mathrm{XLI} \cdot \mathrm{GSL} / \mathrm{CP} \\
& \mathrm{Z}_{\mathrm{ST}}=\mathrm{Z}_{\mathrm{ST}}=(\mathrm{TST}-\mathrm{TSL}) / \mathrm{XLO} \\
& \rho_{\mathrm{th}}=\mathrm{RH} \varnothing \mathrm{TH}=\mathrm{PTH} \cdot \mathrm{XM} /(\mathrm{AR} \cdot \mathrm{TST})
\end{aligned}
$$

$$
\bar{\rho}=\operatorname{ROBAR}=\mathrm{RH} \emptyset S T \cdot e^{\left[\frac{\mathrm{XM} \cdot \mathrm{GSL} \cdot \mathrm{RSL} \cdot \mathrm{ZST}}{\mathrm{AR} \cdot \mathrm{TST} \cdot(\mathrm{RSL}+\mathrm{ZST})}\right]}
$$

$$
\mathrm{Z}_{\mathrm{TH}}=\mathrm{ZTH}=\ln \frac{\mathrm{R} \emptyset \mathrm{BAR}}{\mathrm{RH} \emptyset \mathrm{TH}} \cdot \frac{\mathrm{AR} \cdot \mathrm{TST} \cdot \mathrm{RSL}}{\left[\mathrm{XM} \cdot \mathrm{GSL} \cdot \mathrm{RSL}-\ln \left(\frac{\mathrm{R} \emptyset \mathrm{BAR}}{\mathrm{RH} \dot{T H}}\right) \cdot \mathrm{AR} \mathrm{TST}\right]}
$$

2. DERQO

Atmosphere

```
Z\leqZST
T = TEMP = TSL + XLO }\cdot\textrm{Z
```

RHCSL TSL
$\mathrm{ZST}<\mathrm{Z} \leq \mathrm{ZTH}$

$$
T=T E M P=T S T
$$

$$
\rho=\mathrm{RH} \varnothing=\mathrm{R} \emptyset \mathrm{BAR} / / \mathrm{e}^{\left[\frac{\mathrm{XM} \cdot \mathrm{GSL} \cdot \mathrm{RSL} \cdot \mathrm{Z}}{\mathrm{AR} \cdot \mathrm{TST} \cdot(\mathrm{RSL}+\mathrm{Z})}\right]}
$$

$\mathrm{Z}>\mathrm{ZTH}$

$$
T=T E M P=T S L+X L 2(Z-Z T H)
$$

$a=S M A=\left[\begin{array}{ll}A R \quad \text { TEMP } \cdot C P \emptyset R \\ X M \quad C P \emptyset R-1 \cdot\end{array}\right]^{1 / 2}$
$\mathrm{M}=\mathrm{XMAC} \mathrm{V} / \mathrm{SMA}$
$\mathrm{V}, \gamma, Z, \mathrm{Q}, \mathrm{R}, \psi, \theta, \phi=\mathrm{X}(1-8)$ respectively
$\frac{d Z}{d t}=\operatorname{DERX}(3)=V \cdot \operatorname{stn}(\gamma)$
$\frac{\mathrm{dV}}{\mathrm{dt}}=\operatorname{DERX}(1)=\frac{1}{\operatorname{SMM}}\left[-\operatorname{CSUBD} \frac{1}{2} \operatorname{RH} \varnothing \quad \mathrm{~V}^{2} A-\operatorname{SMM} \cdot \mathrm{GSL}\left(\frac{\mathrm{RSL}}{\operatorname{RSL}+Z}\right)^{2} \cdot \sin (\gamma)\right]\left(\begin{array}{l}\text { partacle } \\ \text { trajectory }\end{array}\right.$
CSUBD $=$ Drag coeff. $f(M)$
$\frac{d y}{d \tau}=\operatorname{DERX}(2)=\frac{1}{\operatorname{SMM} V}\left[\frac{\operatorname{SMM} \cdot \cos (y)}{\text { RSL }+Z} \mathrm{~V}^{2}\right.$
partucle trajectory, $\mathrm{C}_{\mathrm{D}}=\mathrm{f}(\mathrm{M})$ only
$\sin (a)=\operatorname{SAL}=\sin (\theta) \quad \cos (\psi) \cdot \cos (\phi)+\sin (\phi) \cdot \sin (\phi)$
$\sin (\beta)=\operatorname{sBE}=\sin (\psi) \cos (\phi)-\sin (\theta) \quad \cos (\psi) \cdot \sin (\phi)$
$\sin \left(a^{\prime}\right)=\operatorname{SALPHA}=\left[\sin ^{2}(\psi)+(\cos (\psi) \sin (\theta))^{2}\right]^{1 / 2}$
$\cos \left(a^{\prime}\right)=$ CALPHA $=\cos (\theta) \quad \cos (\psi)$
$a^{\prime}=\operatorname{ALPHA}=\tan ^{-1}\left(\frac{\text { SALPHA }}{\text { CALPHA }}\right)$
$\left.\begin{array}{l}\frac{d V}{d t}=\operatorname{DERX}(1)=\frac{d V}{d t} \text { above, but } \operatorname{CSUBD}=\mathrm{CX} \operatorname{CALPHA}+\mathrm{CN} \quad \text { SALPHA, } \\ \mathrm{CX} \text { and } \mathrm{CN}=f\left(a^{\prime}, \mathrm{M}\right) \\ \frac{\mathrm{d} y}{\mathrm{dt}}=\operatorname{DERX}(3)=\frac{1}{\operatorname{SMM} \cdot \mathrm{~V}}\left[\frac{\operatorname{SMM} \cdot \cos (y) \quad \mathrm{V}^{2}}{\mathrm{RSL}+\mathrm{Z}}+\mathrm{CL} \frac{\sin (\theta)}{\sin \left(a^{\prime}\right)} \frac{A \cdot \operatorname{RHD} \mathrm{~V}^{2}}{2}-\operatorname{SMM~GSL}\left(\frac{\mathrm{RSL}}{\operatorname{RSL}+Z}\right)^{2} \cos (y)\right.\end{array}\right\}$

[^0]\[

$$
\begin{aligned}
& \frac{d Q}{d t}=\operatorname{DERX}(4)=\left\{\frac{1}{2} \quad \mathrm{RH} \phi \cdot \mathrm{~V}^{2} \mathrm{~A} \cdot \mathrm{D}\left[\frac{\mathrm{CM} \cdot \mathrm{SAL}}{\mathrm{SALPHA}}+\frac{\mathrm{D} \cdot \mathrm{CMQ} \cdot \mathrm{Q}}{2 \cdot \mathrm{~V}}-\frac{\mathrm{Q} Z I Y \cdot \mathrm{CLA}}{\mathrm{SMM} \cdot \mathrm{~V} \cdot \mathrm{D}}-\mathrm{CX} \quad Z C G \phi \mathrm{D}\right]\right. \\
& +(\mathrm{ZIY}-\mathrm{ZTX})^{\prime} \mathrm{P} \cdot \mathrm{R}+\mathrm{SPINER} \operatorname{SBE}-\mathrm{P} \cdot \mathrm{ZIX} \mathrm{GD} \phi T \mathrm{~T} . \\
& [\sin (\psi) \sin (\theta) \cos (\phi)-\cos (\psi) \cdot \sin (\phi)]\} \cdot\left(\frac{1}{Z I Y}\right) \\
& \frac{d R}{d t}=\operatorname{DERX}(5)=\left\{\frac{1}{2} R H \emptyset \cdot V^{2} \cdot A \cdot D\left[\frac{C M \cdot S B E}{S A L P H A}+\frac{D Q M Q R}{2 \cdot V}-\frac{R \cdot Z I Y \cdot C L A}{S M M \cdot V D}\right]\right. \\
& +(Z \mathrm{IX}-\mathrm{ZIY}) \cdot \mathrm{P} \quad \mathrm{Q}-\mathrm{SPINER} \cdot \mathrm{SAL}+\mathrm{P} \cdot \mathrm{ZIX} \cdot \mathrm{GDOTT} . \\
& [\cos (\psi) \cos (\phi)+\sin (\psi) \sin (\theta) \sin (\phi)]\} \frac{1}{Z I Y}
\end{aligned}
$$
\]

where,

$$
\begin{equation*}
\text { SPINER }=\frac{-\mathrm{P} \cdot \mathrm{ZIX} \text { RHळ } \mathrm{V} A \cdot[\mathrm{CN} \cdot \mathrm{CALPHA}-\mathrm{CX} \cdot \mathrm{SALPHA}]}{2 \cdot \mathrm{SMM} \cdot \mathrm{SALPHA}} \tag{8001}
\end{equation*}
$$

and,

$$
\begin{aligned}
& \text { GDOTP }=-\frac{\mathrm{GSL}}{V} \cdot\left(\frac{\mathrm{RSL}}{\mathrm{RSL}+Z}\right)^{2} \cdot \cos (\gamma) \\
& \frac{d \psi}{d t^{-}}=\operatorname{DERX}(6)=\frac{R \cdot \cos (\phi)+Q \cdot \sin (\phi)}{\cos (\theta)} \\
& \frac{d \theta}{d t}=\operatorname{DERX}(7)=Q \cos (\phi)-R \cdot \sin (\phi) \\
& \frac{d \phi}{d t}=\operatorname{DERX}(8)=P+\operatorname{DERX}(6) \cdot \sin (\theta)
\end{aligned}
$$

3. C $\varnothing \varnothing I_{-}$- (No Significant Equations)
4. NøNEQU
$\mathrm{DELDG}<\mathrm{DSP}$

$$
\mathrm{QRNE}=\frac{1}{2} \cdot \mathrm{QR} \cdot \mathrm{XRN} \quad\left(\frac{\mathrm{DELDG}}{\mathrm{DSP}}\right)
$$

$$
\begin{aligned}
& \mathrm{DSP} \leq \mathrm{DELDG} \leq \mathrm{DNE} \\
& \qquad \mathrm{QRNE}=\mathrm{QR} \quad\left(\mathrm{I}-\frac{1}{2} \frac{\mathrm{DSP}}{\mathrm{DELDG}}-\frac{1}{2} \frac{\mathrm{DNE}}{\mathrm{DELDG}}+\mathrm{XIRN} \frac{\mathrm{DNE}}{2 \operatorname{DELDG}}-\frac{1}{2} \frac{1}{\mathrm{DELDG}}\left(\frac{(\mathrm{DNE}-\mathrm{DELDG})^{2}}{(\mathrm{DNE}-\mathrm{DSP})}\right)(\mathrm{XIRN}-1 .)\right)(3)
\end{aligned}
$$

DNE < DELDG

$$
\begin{equation*}
\text { QRNE }=\mathrm{QR}\left(1-\frac{1}{2} \frac{\mathrm{DSP}}{\mathrm{DELDG}}-\frac{1}{2} \frac{\mathrm{DNE}}{\mathrm{DELDG}}+\mathrm{XIRN} \frac{\mathrm{DNE}}{2 \operatorname{DELDG}}\right) \tag{4}
\end{equation*}
$$

5. CKTRB

$$
\text { REYS }=\frac{\mathrm{R} \varnothing}{\mathrm{VLS}} \cdot \operatorname{R\emptyset RZ} \cdot \operatorname{R\emptyset S\emptyset R\emptyset } \operatorname{SST} \cdot\left(\begin{array}{cccc}
2 & \text { ENTøT } \quad 24 & 4522 & 10^{6} \\
\hline \mathrm{R} \phi \mathrm{RZ} & \mathrm{XM}
\end{array}\right)^{1 / 2}
$$

ENTøT = stagnation enthalpy, $\mathrm{XM}=$ molecular weight.

$$
y=\mathrm{GAMMA}=\left(\mathrm{R} \emptyset_{\mathrm{R}} Z+1\right) /\left(\mathrm{R} \emptyset_{\mathrm{R}} Z-1\right)
$$

$$
\rho_{S} / \rho=R \varnothing S \emptyset R \emptyset=\left(\frac{2}{G A M M A+1}\right)^{1 / G A M M A-1}
$$

$$
\text { VIS }=\text { viscosity at cemperature } \mathrm{T}^{*}=\mathrm{TSTR}=\left(\frac{2}{\text { GAMMA }+1}\right) \cdot \mathrm{TSSZ}, \mathrm{TSSZ}=\underset{\substack{\text { stagnation } \\ \text { temperature }}}{\substack{\text { a }}}
$$

GETCLA

$$
\begin{aligned}
& C_{L_{a}}(\alpha, M)=573\left\{2 C_{L}(a+10, M)-\frac{3}{2} C_{L}(a, M)-\frac{1}{2} C_{L}(\alpha+20, M)\right\} \\
& C_{L}=C N \cdot \cos (\alpha)-C X \sin (a)
\end{aligned}
$$

6. HEAT

Same as 1883, but inverse density ratio, b/a correlation for detachment distance replaced by (input) detachment distancedensity ratio correlation in table look-up after Statement 502. GETH, HVST, GETK, GETQ, FINDE, FINDT, ZDNES - Same as 1883

V. REFERENCES

1. RAD, Mars Venus Capsule Parameter Study, Vol. I, Avco/RAD TR-64-1 JPL Contract 950626 (21 March 1964).
2. Detra, R. W., and H. Hidalgo, Generalized Heat Transfer Formulae and Graphs, Avco Everett RR72 (March 1960).
3. Collins, D. J., Convective Heat Transfer in Planetary Atmospheres, JPL TR No. 32-629 (1 July 1964).
4. Sones, P., Laminar and Turbulent Convective Heating on Conical bodies in Planetary Atmospheres, Avco/RAD TM-64-68 (January 1965).
5. Thomas, G., and G. W. Menard, Experimental Measurements of Nonequillbrium and Equilibrium Radiation from Planetary Atmospheres, AIAA Entry Technology Conference, American Institute of Aeronautics and Astronautics, pp. 170-185, New York (1964).
6. Arnold, J. O., V. H. Reis, and H. T. Woodward, Theoretical and Experimental Studies of Equilıbrıum, and Nonequilibrium Radiation of Bodies Entering Postulated Martian and Venusian Atmospheres at High Speeds, AIAA paper No. 65-116, AIAA 2nd Aerospace Science Meeting, N. Y. (25 to 27 January 1965).
7. Haurlan, P. N., private communication, Jet Propulsıon Lab, JPL Contract 95086 (8 May 1964).
8. Levin, G. M., E. D. Evans, and V. Stevens, NASA Engineering Models of the Mars atmosphere for Entry Vehicle Design, NASA TN D-2525 (November 1964).
9. Vinokur, M., Hypersonic Flow around Bodies of Revolution whose Shock Waves are Generated by Comic Sections, IMSD, TR IMSD - 288139, General Research in Flight Sciences Vol. I, Part I, Fluid Mechanics, January 1959 to 1960).
10. Kaattari, G. E., Shock Envelopes of Blunt Bodies at Large Angles of Attack NASA TND-1980 (December 1963).
11. Hayes, W. D., and R. F. Probstern, Hypersonic Flow Theory, Academic Press, N. Y. (1959).
12. Traugott, S. C., An Approximate Solution of the Direct Supersonic Blunt Body Problem for Arbitrary Axisymmetric Shapes, JAS, 27, No. 5 pp. 361-370 (May 1960).
13. Jos, J. M., Transport Properties of Nitrogen, Hydrogen, Oxygen and Air to 30, $000^{\circ} \mathrm{K}$, Avco/RAD-TM-63-7 (March 1963).
14. Teare, J. D., S. Georgiev, and R. A. Allen, Radiation from Nonequilibrium Shock Fronts, Avco Everett RR112 (October 1961).

PROGRAM 1881

ILLUSTRATIONS

Figure 1 Vehicle Shape Parameters 2
2 Tension Shell and General-Shape Geometries 3
3 Coordinate System for Calculation Model 4
4 Radius of Gyration Model 6
5 Plot of Vehicle Coordinates 16
6 Block Dägran of Prögràm 1881 24
7 Flow Diagram of P̈ogram 1881 30
TABMLES
Table I- Tension Shell Check 9.

-1v-
117 ${ }^{1}$

A.ERODYNAMIC COEFFICIENTS PROGRAM (1881)

CONTENTS

I. Introduction 1
A. General Description 1
B. Calculation Model 1
C. Program Limitations 8
II. Usage 10
A. Input Definitions 10
B. In put Procedures 12
C. Output Definitions 14
D. Sample Problem 15
III. Computations 24
A. Block Diagram 24
B. Symbols 25
C. Equations 26
IV. IBM Routines 30
A. Program Flow 30
B. Subroutines 31
C. Significant Equations 34
V. References 39
VI. Bibliography 40
A. Force and Moment 40
B. Dynamic Stability 40

I. INTRODUCTION

A. GENERAL DESCRIPTION

This program computes the aerodynamic coefficients of axisymmetric shapes as a function of angle of attack uthlizing ampact (Newtonan) theory. In addition, radii of gyration are computed based on uniform densities forward and rearward of the specified center-of-gravity location. The general inputs required include.

1. Shape geometry,
2. Mass and center-of-gravity location, and
3. Desired angle of attack range.

Option 15 provided for determining the center-of-gravity location based on specified minimum values of the static margin and static moment coefficient derivative.

Configurations possible are bodies of revolution containing up to 10 sections of various geometries, including spherical segments, cones, tori, cylinders, and an optional section which may be a tension shape or a general shape input by coordinates. A typical shape containing 10 basic sections is illustrated in Figure 1. Figure 2 shows the alternate geometry for the tension shell and the general shape.

The program output includes the axial, drag, laft, and normal force coefficients, the static and pitch damping moment coefficients, the lift curve slope, and the center of pressure. The aerodynamic coefficient data generated are sufficient to facilitate the inputs to Program 1880. The lift curve slope is utilized in Program 1880, but it is not necessary as an input to that program as it is computed from the axial and normal force coefficients.
B. CALCULATION MODEL

1. Newtonian Coefficients

Using the coordinate system shown in Figure 3, consider an arbitrary surface in three dimensional space ($g=g(x, y, z)=0$) which is continuous in the first derivative in the region of interest. The unit vector which is normal to the surface at any point, P, and which is positive into the surface 15 given by

$$
\vec{n}=-\bar{\nabla} g /|\bar{\nabla} g| .
$$

Figure 1 VEHICLE SHAPE PARAMETERS

Figure 2 TENSION SHELL AND GENERAL SHAPE GEOMETRIES

Denote the component of the relatave wind vector, \bar{V} that lies along ${ }_{\mathrm{n}}$ "as $\overline{\mathrm{V}}_{\mathrm{n}}$, the normal velocity vector. Hence,

$$
\overline{\mathrm{V}}_{\mathrm{n}}=(\overline{\mathrm{V}} \cdot \overline{\mathrm{n}}) \overline{\mathrm{n}} .
$$

60-11628
Figure 3 COORDINATE SYSTEM FOR CALCULATION MODEL
The Newtonian pressure approximation, used herein is then given by,

$$
C_{P}=2\left(\frac{\left|\bar{v}_{n}\right|}{\left|\bar{v}_{\infty}\right|}\right)^{2}=2\left(\frac{\bar{v}}{V} \cdot \vec{n}^{2}\right.
$$

where,

$$
v=\left|\bar{v}_{\infty}\right|
$$

Defming $d \bar{C}_{F}$ as the element of the vector force coefficient acting normal to the surface at point P and $\stackrel{\rightharpoonup}{C}_{F}$ as the sum of all such elements.

$$
\begin{aligned}
& d \overline{\mathrm{C}}_{\mathrm{F}}=\frac{\mathrm{C}_{\mathrm{P}} \mathrm{~d} \overline{\mathrm{~S}}}{A} \text {, (A is the reference area.) } \\
& \overline{\mathrm{C}}_{\mathrm{F}}=\frac{1}{A} \int_{\mathrm{S}} \mathrm{C}_{\mathrm{P}} \mathrm{~d} \overline{\mathrm{~S}}=\frac{2}{A} \int_{\mathrm{S}}\left(\frac{\overline{\mathrm{~V}}}{\mathrm{~V}} \cdot \stackrel{\rightharpoonup}{\mathrm{n}}\right)^{2} \mathrm{~d} \overline{\mathrm{~S}}^{2}
\end{aligned}
$$

and, inasmuch as

$$
\begin{aligned}
& \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{~S}}=\stackrel{\rightharpoonup}{\mathrm{n}} \mathrm{~d} S \\
& \overline{\mathrm{C}}_{\mathrm{F}}=\frac{2}{\mathrm{~A}} \iint\left(\frac{\overline{\mathrm{~V}}}{\mathrm{~V}} \overline{\mathrm{n}}\right)^{2} \overline{\mathrm{n}} \mathrm{~d} \mathrm{~S} .
\end{aligned}
$$

It follows that the aerodynamic normal and axial force coefficients are found from:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{X}}=\bar{i} \cdot \overline{\mathrm{C}}_{\mathrm{F}}, \text { and } \\
& \mathrm{C}_{\mathrm{N}}=\overline{\mathrm{k}} \cdot \overline{\mathrm{C}}_{\mathrm{F}}, \text { respectrvely } .
\end{aligned}
$$

We define a position vector \bar{r} as the vector extending from the origin to the point P. The moment vector arm, \bar{l} is defined as that vector extending from the center of gravity of the vehicle to the point P. Thus,

$$
\bar{l}=\overline{\mathrm{r}}-\overline{\mathrm{d}},
$$

where \bar{d} is the vector position of the center of gravity.
The differential moment about the center of gravity is found from:

$$
\mathrm{d} \overline{\mathrm{C}}_{\mathrm{M}}=\frac{\bar{l} \times \mathrm{d} \overline{\mathrm{C}}_{\mathrm{F}}}{\mathrm{D}}=\frac{\bar{l} \times \mathrm{C}_{\mathrm{P}} \mathrm{~d} \overline{\mathrm{~S}}}{\mathrm{AD}}=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{AD}} \bar{l} \times \mathrm{d} \overline{\mathrm{~S}}
$$

Integrating,

$$
\bar{c}_{\mathrm{M}}=\frac{2}{\mathrm{AD}} \int_{\mathrm{S}}\left(\frac{\overline{\mathrm{~V}}}{\mathrm{~V}} \quad \overline{\mathrm{n}}\right)^{2} \bar{l} \times \mathrm{d} \overline{\mathrm{~s}}
$$

which may be evaluated as

$$
\overline{\mathrm{C}}_{\mathrm{M}}=\frac{2}{\mathrm{AD}} \int_{\mathrm{S}}\left(\frac{\overline{\mathrm{~V}}}{\mathrm{~V}} \cdot \overline{\mathrm{n}}\right)^{i_{r}}(\bar{l} \times \bar{n}) \mathrm{dS} .
$$

The aerodynamic pitching moment coefficient is found from:

$$
c_{m}=\bar{\jmath} \cdot \bar{c}_{M}
$$

The velocaty at point P consists of two parts, one part from the velocity of the vehrcle and one part from the rotation of the vehrcle about its center of gravity. Hence,

$$
\overline{\mathrm{v}}=\overline{\mathrm{v}}_{\infty}-\bar{\omega} \times \bar{l}
$$

where $\bar{\omega}$ is the total vector angular rate of the body about its center of gravity.

Developed expressions for the forces and moments on connc section are readily available, e. g., see References 1 through 3.

The computer program treats all sections, except the spherical nosecap section, as consisting of a series of conical frustra. The effects of shadowing of the incident flow are included to ensure that the local pressure coefficient is never less than zero (negative).

2. Radii of Gyration

A simplified method for estimating the radil of gyration is meluded in the program by considering the vehicle to be of uniform density fore and aft of the center of gravity as depicted in Figure 4. Specifying the desired center-of-gravity location and the total vehicle mass, then by elementary volume considerations, the relative densities fore and aft of the center of gravity can be determined and then the pitch and roll radii of gyration can be computed.

Figure 4 RADIUS OF GYRATION MODEL

3. Center of Pressure

The integration of the pressure forces over the complete surface of the vehicle yields the component forces on the vehicle and the lime of action of the resultant force. Location of the center of gravity on the line of action elimanates any moments on the body arising due to aerodynamic forces, in which case the body is neutrally stable. The intercept of the line of action and the body longitudinal axis is designated as the center of pressure. Restricting the forces and moments to the static values, i.e., $\bar{\omega}=0$, and with the center of gravity on the axis, the center of pressure as given in the output (XCP) is then defined as

$$
\frac{x_{C P}}{D}=\frac{-\left(C_{m}\right)_{o}}{C_{N}}
$$

where $\left(C_{m}\right)_{o}$ is the pitching moment evaluated about the nose of the vehicle At zero angle of attack,

$$
\frac{\mathrm{X}_{\mathrm{CP}}}{\mathrm{D}}=\lim _{a \rightarrow 0} \frac{\left(-\mathrm{C}_{\mathrm{m}}\right)_{o}}{\mathrm{C}_{\mathrm{N}}}=\frac{-\mathrm{C}_{\mathrm{m}_{a}}}{\mathrm{C}_{\mathrm{N}_{\alpha}}}
$$

The reference length (D) is taken as equal to ($2 \mathrm{R}_{\mathrm{C}}$) throughout all the programs.

4

Moment Transfer

The center of pressure is independent of the center-of-gravity location but the moment coefficients must be modified if the center-of-gravity location is changed. Program 1880 provides for automatic static moment transfer, however, to transfer the damping moment coefficient, Program 1881 must be rerun for the new center-of-gravaty position.

5. Pitch Damping Moment Coefficient

The pitch damping moment coefficient $C_{m_{q}}$ is based on the normalized pitch rate $q D / 2 V$ and is evaluated as $\left(\frac{q D}{2 V}\right) \rightarrow 0$, i. e.,

$$
c_{m_{q}} \equiv \lim _{\left(\frac{q D}{2 V}\right) \rightarrow 0} \frac{\partial C_{m}}{\partial\left(\frac{q D}{2 V}\right)}
$$

C. PROGRAM LIMITATIONS

Program limatations are listed below:

1. Coefficients are based on the Newtonian pressure distribution, with the ass umption that each section of the body has self-shadowing, but does not cast shadows on other sections.
2. Radii of gyration are based on uniform densitıes fore and aft of the center of gravity, the ratio of these densities being determined by the specified center-of-gravity location.
3. The effect of an off-axis center-of-gravity location can be accounted for in the coefficient calculation, but $2 s$ not reflected in the radil of gyration.
4. Configurations are limited to axisymmetric shapes composed of spherical segments, cones, cylinders, tori, and an optional section which may be a tension shell or a general shape specified by up to 25 consecutive pomets in rectangular coordinates.
5. The Newtonian flow approximation assumes that the normal component of momentum is lost, while the tangential component is unchanged. All viscous forces and base pressures are neglected.

Comparisons have been made ${ }^{l}$ between Newtonian predictions and hypersonic experimental aerodynamic characteristics for varıous sharp and blunt bodies of revolution.

In general, the theory was found to agree quite well with expermental results for sharp nose cones and for configurations having large blunted noses and steep surface slopes. However, agreement between theory and experiment generally is poor for the more slender ($\theta<20$ degrees) slightly blunted conic bodies. Real flow phenomena, such as viscous effects, sharp cornex effects, gas composition, gas kinetics, and heat transfer are all neglected by Newtonian theory and may, in some cases, have a sizable effect on the aerodynamic characteristics of the configuration and the adequacy of the theoretical predictrons.

The agreement between theory and experiment can be improved by using the actual stagnation pressure coefficient behind the normal shock rather than
.. the Newtonian value of two (2). The stagnation pressure cocfficient can be
estimated by the following relation:

$$
C_{P}=\frac{\gamma+3}{\gamma+1}\left[1-\frac{2}{\gamma+3} \frac{1}{M_{a}^{2}}\right]
$$

where γ is the ratio of specific heats $\left(C_{p} / C_{V}\right)$.
6. The tension shell equations contained in Program 1881 are derived in Reference 4, and correspond to the case of zero hoop stress and a Newtonian pressure distribution. A comparison of the numerical integration results for the shape coordinates with the results of Reference 4 are given in Table I below.

TABLEI
TENSION SHELL CHECK

Shape		Length/Base Radius	
A^{2}	β	Ref. 4	1881%
0.5	62.50	0.343	0.343
1.2	33.50	0.939	0.943
1.6	22.835	1.413	1.417

$\because \mathrm{NDIV}=20.0$
II. USAGE
A. INPUT DEFINITIONS

Name	Preset Value	Symbol	Parameter	Units
$\begin{aligned} & \text { A1, A1L } \\ & \text { A2, A2L } \\ & \text { A3, A3L } \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0 ., \\ & 0 ., \end{aligned}$		First and last values of angle of attack for each range of printout, these are all used only when the printout requirements differ for each range of angle of attack.	degrees
BETA	0 .	β	Initial angle for third section in case of tension shell.	degrees
CASE			Identification number for case.	
CMAG (1)	0.	$\mathrm{C}_{\mathrm{m}_{\alpha 0}}$	Minimum pitching moment derıvative at $\alpha=0$ degrees.	per radian
CMAG(2)	0.	$\mathrm{C}_{\mathrm{m}}{ }^{180}$	Minımum pitching moment derivatuve at $\alpha=180$ degrees.	per radxin,
DA1	0.		Intervals of angle of attack	degrees
DA2	0.		for which printout is desired;	
DA3	0.		three ranges can be requested if data are needed more finely over a speczfic angle of attack range. Hence, the interval of printout is specrfied jointly with the range of angle of attack for which the printout frequency is desired.	
DATE			Date identification number.	
DERDEL	. 005		Interval of independent variable used to evaluate derivatives.	
GSめ	0.		This symbol is input 1.0 when the third section is a general shape; otherwise, need not be input.	

LC	0.	L_{C}	Length of cylinder	feet
MASS	0.	m	Mass of vehicle	slugs
M2	10		Number of straight-line seg-	
M4	10		ments into whrch the second,	
M7	10		fourth, seventh, eighth, and	
M8	10		tenth sections (curved sections)	
M10	10		are to be divided for computational purposes.	
MEM \varnothing			Identification number for computer run.	
NDIV	20		Increments of radius for which points are determined on tension shell.	
NPGS \varnothing	0.		Number of input points when third section is a general shape (includes last point but omits first point; max 25 points).	
RA	0.	$\mathrm{R}_{\text {A }}$	Aft body radus.	feet
RB	0.	R_{B}	Flare radius,	feet
RC	0.	${ }^{R_{C}}$	Cylinder radus.	feet
RINP		r	Ordinates of input points in case of general shape (third section).	
RN	0.	RN	Nose radius.	feet
RSB	0.	$\mathrm{R}_{\text {SB }}$	Toroidal radius (adjacent to flare cone).	feet
RSC	0.	$\mathrm{R}_{S C}$	Torondal radius (adjacent to cone).	feet

RSN	0.	R_{SN}	Toroidal radus (adjacent to nose).	feet.
RT	0.	R_{T}	Aft cone base radius.	feet
SN1	0.	SMi	Minimum static marein at zero angle of attack.	feet
TH2G	0.		Initial angle when third section is a general shape.	degrees
TH3G	0.		Final angle when thard section 15 a general shape.	degrees
THA	0.	$\theta_{\text {A }}$	Aft cone angle.	degrees
THB	0.	θ_{B}	Flare section angle.	degress
THC	0.	${ }^{\theta} \mathrm{C}$	Cone angle.	degrees
THN	0.	θ_{N}	Complement of nose angle.	degrees
XCG	0.	${ }^{\mathrm{X}} \mathrm{CG}$	Center of gravity position measured from nose.	feet
XINP	0.	X	Abcissas of input point: in. case of general shape (third section).	
ZCG	0.	${ }_{C}$	Center of gravity posilus. for cases where center of gravity 1 s not on the ax:s	feet

B. INPUT PROCEDURES

Input procedures are listed below

1. $\quad R_{c}$ must iiways be specified. Aetodynanime coeificients 三re bared ait the reference iength, $D=2 R_{c}$
2. Contour angles (θ) are measured relative to free stream, progressing aft of the nose. Positive values indicate increasmg body radius, negative values, decreasing radius (e.g., θ_{A} is negative).

3 Sections may be omitted provided the starting point of each section $1 s$ compatible with the final point of the previous section. The first and last points on the body must be on the axis.
4. If several cases are run on a single memo, only changed mputs need be specified (inputs which are not repeated must be set $=0$)
5. The tension shell option is specified by inputing RN, BETA, RC, and RSC the defining parameters of the tension shell as shown in Figure 2.
6. In the general shape option ($G S \phi=1.0$), up to 25 points may be specified along the desired contour. In addition, the mitial slope, TH2G (which defines the final point on the preceding arc) and the final slope, TH3G, must be specified.
7. The center of mass may optionally be determined by specifying restraints on the stability at 0 - and 180 -degree angles of attack. The program checks the computed XCG to ensure a single, stable trim point from $0-$ to 180 -degree angles of attack. This option is activated by specifying $\mathrm{XCG}=0$, and inputting the restraints on SM, CMAG (1), and CMAG (2)
8. The length and mass units of inputs called for in the definitions are feet and slugs. However, any coasistent system of units may be employed with corresponding changes in the units of the outputs.
9. For shapes with flat bases, a value of R_{T} must be specified if $\theta_{A}=-90$.
10. An input form is provided on page 17 for the user. All the information shown is keypunched, provided the variable is specified. All numerical values have decimal ponts.
11. A brief bibliography of experimental measurements of aerodynamic coefficients is provided at the end of the text. These data can be used to improve the theoretical values obtained from Program 1881 where applicable.

C. OUTPUT DEFINITIONS

External Name	Internal Name	Symbol	Parameter	Unts
ALPHA	ALPHA		Angle of attack.	degrees
$C D$	$\mathrm{CD}(1)$	$C_{\text {D }}$	Drag coefficient as a function of angle of attack.	
CL	$\mathrm{CL}(1)$	c_{L}	Lift coefficients as a function of angle of attack.	
$\mathrm{CL} /{ }_{\mathrm{CD}}$	$C L(1) / C D$	cL/ CD	Luft/Drag ratio as a tunction of angle of attack.	
CLA	CLA	C_{L}	Derivative of 1ift coefticrent	per radian
CM	CMI	C_{m}	Pitching moment coeificient as a function of angle of attack.	
CMQ	CMQ	$\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}$	Damping coefficient.	per radian
CN	CNI	C_{N}	Coefficıent of normal force as a function of angle of attack	
CX	CXI	c^{2}	Coefficient of axial force as a function of angle of attack.	
R	R	r	Ordinates of all points computed along the body surface.	feet
RGX /D	RGXDD		Radius of gyration about roil axis as a fraction of diameter	
RGY/D	RGYDD		Radius of gyration about patch axis as a fraction of diameter.	
RHDA	RHDA	${ }^{\circ} \mathrm{A}$	Density of vehicle aft of center-of-gravity position.	slus/ft ${ }^{3}$

RHD ${ }^{\text {d }}$	RHDN	ρ_{N}	Density of vehicle forward of center-of gravity position.	slug/ft ${ }^{3}$
X	X	x	Abcissas of all points computed along the body surface.	feet
XCG	GX		Center-of-gravaty position measured from nose.	fe et
$\mathrm{xCG} / \mathrm{D}$	XCGDD	$\mathrm{X}_{\mathrm{CG}} / \mathrm{D}$	Center-of-gravity distance as a fraction of capsule diameter.	
XCP/D	XCPDD	$\mathrm{X}_{\mathrm{CP}} / \mathrm{D}$	Center-of-pressure distance as a fraction of capsule diameter.	

D. SAMPLE PROBLEM

1. Statement of Problem

Determine the Newtonian coefficients and estimated radil of gyration for a blunt cone configuration. The vehicle parameters, range of angle of attack, and XCG location are to be prescribed as input. The final plot of the configuration, as performed automatically, is shown in Figure 5.
2. Gomputer Input Form

The computer input form containing all the necessary input data to be keypunched is shown on page 18. All the input on this form is written with decimals.

3. Output

The output is given on page 19. The data keypunched is shown in the output and should be verified with the input form. An array of vehicle coordinates (X, R) are given which are useful for drawing the configuration; the first coordinates given correspond to the last point on the nose cap, which is spherical.

The coefficient data has two rows for each angle of attack; the first row corresponds to the XCG at the nose and the second row provides the moment data for the XCG specified. Following the coefficient data, are the densities fore and aft of the XCG necessary to yield the desired XCG location, and also the desired radil of gyration are given. A plot of the vehicle coordinates can be obtaned, as shown on page 16 ; a Stromberg Carlson 4020 plotter was used for this purpose.

Figure 5 PLOT OF VEHICLE COORDINATES

-17
135

-18.
$136=$

2663 LINES DUTPUT.
SIBSYS
tpAUSF
OPFR. ACTION PAUSE
. . CONT INUING
*PAIISE
OPFP. ACTION DAUSE
. . CONTINUTNG
EIBSYG
$000000000000 Q 00000800011-0101 G Q 0000080001 F 000000 I B S Y S T-00001090006400700000000$, 1 LINES DUTPUT THIS JDB.
III. COMPUTATIONS
A. BLOCK DIAGRAM

A block diagram illustrating the information flow within the Program 1881 is given in Figure 6.

65-11632

Figure 6 BLOCK DIAGRAM OF PROGRAM 1881

B. SYMBOLS

$A_{1}(\mathrm{x})$	function defined by equation(10)	R_{B}	radius of flare
$B_{1}(x)$	function defined by equation(11)	R_{c}	characteristic radius (cylinder radius, usually)
$C_{\text {D }}$	drag coefficient		
C_{L}	lift coefficient	${ }^{R_{N}}$	radus of spherical nose cap
		$\mathrm{R}_{\text {SB }}$	torodal radius between flare
C_{m}	moment coefficient (based on characterıstic radus R_{c} and characteristic length d)	${ }^{\mathrm{R}} \mathrm{SC}$	and aftcone toroidal radus following cone
$c_{m a}$	$\left(\partial \mathrm{C}_{\mathrm{m}} / \partial \alpha\right)$	$\mathrm{R}_{\text {SN }}$	toroidal radius following nose cap
$\mathrm{c}_{\mathrm{m}_{\mathrm{q}}}$	$\left(\partial \mathrm{C}_{\mathrm{m}} / \partial \mathrm{Q}\right)$	R_{r}	radus of truncated afterbody
C_{N}	coefficient of force normal to body	SM	static margin
		$\mathrm{V}_{\text {A }}$	volume rear of c.g. position
c_{x}	coefficient of force along body axis		volume forward of c.g. position
d	characteristic length, diameter $(\text { feet })=2 R_{c}$	x	axial coordınate; nose is located at $x=0$
dQ	increment in Q used to compute derivatives (radians) $d Q=0.005$	x_{f}	length of body
		$\mathrm{x}_{C G}$	distance of center of gravity
da	ancrement in a used to compute derivatives (xadians) d $a=0.005$		from nose
$\mathrm{G}_{1}(\mathrm{x})$	function defined by equation 12	x_{CP}	distance of center of pressure from nose
L_{c}	length of cylindrical section	$z_{\text {CG }}$	offset distance of center of gravity
M	vehacle mass	$z_{i}(\mathrm{x})$	function defined by equation (14)
q	angular pitch speed ($\mathrm{rad} / \mathrm{sec}$)	α	angle of attack
Q	pitching speed parameter. $\mathrm{Q}=\mathrm{qd} / 2 \mathrm{~V} \text { (radians) }$	β	slope at start of tension shell

$\rho_{A} \quad$ density aft of $c g$ position $\quad \theta_{2 G} \quad$ slope at start of general shape
$\rho_{\mathrm{N}} \quad$ density forward of cog. position
$\theta_{3 G}$ slope at end of general shape
0 body contour slope
$\theta_{A} \quad$ slope of aftcone slope at end of tension shell
$\theta_{B} \quad$ slope of flare
$\omega_{1} \quad$ Function defined by Equation (15)
θ_{C} slope of cone
θ_{N} slope at end of nose cap

Subscripts

$1=0$ denotes moments taken about the nose
$1=g \quad$ denotes moments taken about the center of gravity

C. EQUATIONS

1. Coefficient Calculation
a
Newtonian Coefficients

$$
\begin{align*}
\mathrm{C}_{\mathrm{N}_{\mathrm{i}}}= & -\frac{2}{\pi R_{c}^{2}} \int_{0}^{X_{f}}\left[-A_{1}(x) \cos \omega_{i}^{*}+B_{1}(x)\left(\frac{\omega_{1}^{*}}{2}-\frac{1}{4} \sin 2 \omega_{1}^{*}+\frac{\pi}{4}\right)(\right. \tag{1}\\
& \left.-\frac{2}{3} G_{1}(x) \cos \omega_{1}^{*}\left(\sin ^{2} \omega_{1}^{*}+2\right)\right] r(x) d x \\
C_{X_{i}}= & \frac{2}{\pi R_{c}^{2}} \int_{0}^{X_{f}}\left[A_{1}(x)\left(\omega_{1}^{*}+\frac{\pi}{2}\right)-B_{1}(x) \cos \omega_{1}^{*}\right. \tag{2}\\
& \left.+2 G_{i}(x)\left(\frac{\omega_{1}}{2}-\frac{1}{4} \sin 2 \omega_{1}^{*}+\frac{\pi}{4}\right)\right] r(x) \tan \theta d x
\end{align*}
$$

$$
\begin{aligned}
& C_{m_{1}}=\frac{2}{\pi R_{c}^{2}} \int_{0}^{x_{f}}\left[-A_{1}(x) \frac{Z_{i}}{l} \sin \theta\left(\omega_{1}^{*}+\frac{\pi}{2}\right)-A_{1}(x) K_{1}(x)(3)\right. \\
&\left.-B_{1}(x) \frac{Z_{1}}{l} \sin \theta\right) \cos \omega_{i}^{*}+\left(B_{1}(x) K_{1}(x)-2 G_{1}(x) \frac{Z_{i}}{l} \sin \theta\right) \\
&\left(\begin{array}{c}
\omega_{1}^{*} \\
2
\end{array}-\frac{1}{4} \sin 2 \omega_{1}^{*}+\frac{\pi}{4}\right)-\frac{2}{3} G_{1}(x) K_{i}(x) \cos \omega_{i}^{*}\left(\sin ^{2} \omega_{1}^{*}\right. \\
&+2)] \frac{r(x)}{\cos \theta} d x
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{1}}=-\mathrm{C}_{\mathrm{X}_{1}} \sin a+\mathrm{C}_{\mathrm{N}_{1}} \cos a \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{D}_{1}}=\mathrm{C}_{\mathrm{X}_{1}} \cos a+\mathrm{C}_{\mathrm{N}_{1}} \sin a \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}_{\mathrm{CP}} / \mathrm{d}=-\mathrm{c}_{\mathrm{m}_{0}} / \mathrm{C}_{\mathrm{N}_{\mathrm{o}}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}_{\alpha_{1}}}=\frac{\partial \mathrm{C}_{\mathrm{m}_{1}}}{\partial a}=\frac{\mathrm{C}_{\mathrm{m}_{\mathrm{i}}}(a+\mathrm{d} a, \mathrm{Q})-\mathrm{C}_{\mathrm{m}_{1}}(a, Q)}{\mathrm{d} a} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{\mathrm{L}_{a_{\mathrm{i}}}}=\frac{\partial \mathrm{C}_{\mathrm{L}_{\mathrm{I}}}}{\partial a}=\frac{\mathrm{C}_{\mathrm{L}_{\mathrm{i}}}(\alpha+\mathrm{d} a, \mathrm{Q})-\mathrm{C}_{\mathrm{L}_{\mathrm{i}}}(a, \mathrm{Q})}{\mathrm{d} a} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
C_{m_{q_{1}}}=\frac{\partial C_{m_{1}}}{\partial Q}=\frac{C_{m_{2}}(a, Q+d Q)-C_{m_{1}}(a, Q)}{d Q} \tag{9}
\end{equation*}
$$

b. Auxiliary Equations

$$
\begin{equation*}
A_{1}(x)=2 \sin ^{2} \theta \cos a\left(\cos a+2 Q \frac{Z_{1}}{l}\right) \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{B}_{1}(\mathrm{x})=-2 \sin \theta\left[\cos \theta \sin 2 \alpha+2 \mathrm{Q}\left(\mathrm{~K}_{1}(\mathrm{x}) \cos \alpha+\frac{Z_{1}}{l} \cos \theta \sin a\right)\right] \tag{11}\\
& \mathrm{G}_{1}(x)=\cos \theta \sin a\left(\cos \theta \sin a+2 Q \mathrm{~K}_{1}(x)\right) \tag{12}\\
& \mathrm{K}_{1}(\mathrm{x})=\frac{\mathrm{r}(\mathrm{x})}{l} \sin \theta+\frac{\mathrm{x}-\mathrm{x}_{\mathrm{I}}}{l} \cos \theta \tag{13}\\
& Z_{1}=\quad \begin{array}{c}
0 \text { IF } 1=0 \\
Z_{g} \text { IF } 1=
\end{array} \tag{14}\\
& \omega_{1}^{*}=\left\{\begin{array}{l}
\text { ARC } \sin \left(\frac{\sin \theta \cos \alpha}{\cos \theta \sin a}\right) \text { IF }\left|\frac{\sin \theta \cos a}{\cos \theta \sin a}\right| \leq 1 \\
\pi / 2 \text { If } \cos \theta \sin a=0 \text { and } \sin \theta \cos \alpha \geq 0 \\
-\pi / 2 \text { If } \cos \theta \sin \alpha=0 \text { and } \sin \theta \cos a<0 \\
\pi / 2 \text { If } \frac{\sin \theta \cos a}{\cos \theta \sin \alpha}>1 \\
-\pi / 2 \text { If } \frac{\sin \theta \cos a}{\cos \theta \sin a}<-1
\end{array}\right. \tag{15}
\end{align*}
$$

c. Center of Gravity Determanation

1) $\mathrm{C}_{m_{\alpha}}$ Criterıa

$$
\begin{align*}
& \left(\mathrm{X}_{\mathrm{CG}}\right)_{\alpha=0}=\frac{\mathrm{d}}{\mathrm{C}_{\mathrm{N}_{a}}}\left[\left(\mathrm{C}_{\mathrm{m}_{a}}\right)_{\text {spec. }}-\left(\mathrm{C}_{a}\right)_{1=0}\right]_{a=0} \tag{16}\\
& \left(\mathrm{X}_{\mathrm{CG}}\right)_{a=180}=\frac{\mathrm{d}}{\mathrm{C}_{\mathrm{N}_{a}}}\left[\left(\mathrm{C}_{\mathrm{m}_{a}}\right)_{\text {spec. }}-\left(\mathrm{C}_{\mathrm{m}_{a}}\right)_{1=0}\right]_{a=180} \tag{17}
\end{align*}
$$

2) Static Margin Criteria

$$
\begin{aligned}
& \text { At } a=0, \mathrm{X}_{\mathrm{CG}}=\mathrm{X}_{\mathrm{CP}}-\mathrm{SM} \\
& \text { At } 0<a \leq 180, \mathrm{X}_{\mathrm{CG}} \leq \mathrm{X}_{\mathrm{CP}}
\end{aligned}
$$

2. Moments of Inertia

a. Density Distribution

$$
\left.\begin{array}{l}
\mathrm{X}_{\mathrm{CG}}=\left[\frac{\int_{0}^{\mathrm{X}_{\mathrm{CG}}} \mathrm{xr}^{2} \mathrm{dx}+\frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{N}}}}{\int_{\mathrm{X}_{\mathrm{CG}}}^{\mathrm{X}_{\mathrm{f}}} \mathrm{xr}^{2} \mathrm{dx}}\right. \\
\int_{0}^{\mathrm{X}_{\mathrm{CG}}} \mathrm{r}^{2} \mathrm{dx}+\frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{N}}} \int_{\mathrm{X}_{\mathrm{CG}}}^{\mathrm{X}_{\mathrm{f}}} \mathrm{r}^{2} \mathrm{dx} \tag{19}
\end{array}\right]
$$

where,

$$
\begin{align*}
& \mathrm{v}_{\mathrm{N}}=\pi \int_{0}^{\mathrm{X}_{\mathrm{CG}}} \mathrm{r}^{2} \mathrm{dx} \tag{20}\\
& \mathrm{v}_{\mathrm{A}}=\pi \int_{\mathrm{x}_{\mathrm{CG}}}^{\mathrm{x}_{\mathrm{f}}} \mathrm{r}^{2} \mathrm{dx} \tag{21}
\end{align*}
$$

b. Moments of Inertia

$$
\begin{align*}
& I_{y}=\pi \rho_{\mathrm{N}} \\
& {\left[\int_{0}^{\mathrm{X}_{\mathrm{CG}}} \mathrm{x}^{2} \mathrm{r}^{2} \mathrm{dx}+\frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{N}}} \int_{\mathrm{X}_{\mathrm{CG}}}^{\mathrm{X}_{\mathrm{f}}} \mathrm{x}^{2} \mathrm{r}^{2} \mathrm{dx}+\frac{1}{4} \int_{0}^{\rho_{\mathrm{A}}} \mathrm{X}_{\mathrm{CG}}\right.} \tag{22}\\
& \mathrm{r}_{\mathrm{N}}^{4} \mathrm{dx} \tag{23}\\
& \mathrm{I}_{\mathrm{x}}=\frac{\pi \rho_{\mathrm{N}}}{2}\left[\int_{\mathrm{x}_{\mathrm{CG}}}^{\mathrm{X}_{\mathrm{f}} \ddots} \mathrm{r}^{4} \mathrm{dx}\right]-\mathrm{M} \mathrm{X}_{\mathrm{CG}}^{2} \\
&\left.\mathrm{r}_{\mathrm{CG}}^{4} \mathrm{dx}+\frac{\rho_{\mathrm{A}}}{\rho_{\mathrm{N}}} \int_{\mathrm{x}_{\mathrm{CG}}}^{\mathrm{X}_{\mathrm{f}}} \mathrm{r}^{4} \mathrm{dx}\right] \\
&-29-
\end{align*}
$$

IV. IBM ROUTINES

A. PROGRAM FLOW

A flow dragram of Program 1881 is shown as Figure 7.

Figure 7 FLOW DIAGRAM OF PROGRAM 1881

B. SUBROUTINES

CALINT \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline VARIABLE \& THR \& DELR \& R3 \& RK \& SBETAR \& CBETAR \& RJ \& QOOOFL

\hline | SUBROUTINE |
| :--- |
| INPUT OR OUTPUT | \& INPUT \& INPUT \& INPUT \& INPUT \& INPUT \& INPUT \& OUTPUT \& OUTPUT

SOURCE \& INPUT \& MAIN \& MAIN \& MAIN \& MAIN \& MAIN \& \&

\hline
\end{tabular}

VARIABLE	X	R	L	T	RN	THETAN	RAD
CPL $\varnothing T$	SUBROUTINE						
INPUT OR OUTPUT	INPUT						
SOURCE	MAIN	MAIN	MAIN	INPUT	INPUT	MAIN	MAIN

1. Subroutine CALINT

a. Puxpose

Th2s subroutine 15 used in the case of the tension shell (third section) to compute the integrands Q000FL required to apply Simpson's Rule in subroutine ARSIMP.
b. Method

Starting whth initial angle BETA at the first point of the section, other points along the section for each DELR increment in the radius are computed. The section is subdivided into NDIV portions. To compute the abcissa X of the righthand point of each of these portions, an integration is performed over each portion. Thirty-two (32) intervals are considered for each portion and, therefore, a loop is set up to compute the integrands Q000FL at 33 points. For each of these points the ordinate RJ is computed in the same loop. The last computed RJ for each portion is the ordinate of the point corresponding to that portion.
-31-
149

2. Subroutine CPL \varnothing T

a. Purpose

To set up the array of points (X, R) to be plotted by library routme AICRT3.
b. Method

In MAIN, the first point computed is the end point of the first section. Therefore, for the purpose of plotting the whole body, compute 18 extra points in the first section of CPLDT. These extra points are then incorporated into the X and R arrays of points computed in MAIN. CPL $\varnothing T$ also computes the maximum values $X U$ and $Y U$ for X and R from the respective arrays and chooses the greater of the two to establish the scale of the plot.

All the variables in the calling sequence of library routine AICRT3 are set to the proper values and the total array of points XPT (abcissas) and RPT (ordinates) are then plotted on the 4020 .
3. Main Program
a. Purpose

The man program computes the array of coordinates (X, R) along the body, defines table of alphas to be considered, performs preliminary computations for the integration procedures, sets up the main logical flow of the problem and performs the final computations to obtain the aerodynamic coefficients.
b. Method

The program farst sets the values of all preset input, then reads in the data through the Namelist array INPUT.

After converting all input angles to radians and finding the values of their sines and cosines, the program proceeds to compute the coordinates (X, R) of the points considered for each section. The first point to be computed 15 the intersection of the nose radius with the body surface, i. e., the end point of the first section (Statement No. 302). All curved sections (except the first) are subdivided into the prescribed input number, M2, M4, M7, M8, and M10. If these are not input, the program will use the preset values. The third section may have one of the three different shapes, i.e., general, tension, or conic shape.

In the general shape (Statement No. 9141), the points along the section are input (XINP, RINP) and are merely incorporated in the (X, R) arrays of coordinates for the whole body.

In the case of the tension shape (Statement No. 486), the initial angle BETA is input and the program computes the points determined by the in put number of divisions NDIV. The angle θ along the section lies between BETA $\leq \theta \leq 90$ degrees and for the last point on the section $\theta=90$ degrees. The number of divisions is preset to 20. For each subdivision a point (X, R) will be computed. The ordinate R is obtained by adding an increment ΔR to the R of the previous point. Each $\Delta \mathrm{X}$ is obtained by integrating over the respective subdivision (Loop on Statement No. 5533). For integration purposes in each subdıvision, 32 intervals (or 33 auxiliary points) are considered. The integrands QOOOFL are computed in subroutine CALINT. Then library routine ARSIMP integrates using Simpson's Rule.

The ordinate R 1s, for each subdivision, the value RJ computed in CALINT. In the case of a conic shape (Statement No. 484), only the end point is computed. The remaining sections are handled by straightfor ward application of the given formulas. For RSB $\neq 0$ (internally RSCB), the program assumes that both toroldal sections 10 and 9 are gı ven.

Symbol L represents the number of points whose coordinates were computed along the body. These L points plus 18 extra points on the nose computed by subroutine CPL申T will be plotted (R versus X) by library routine AICRT3, using the first avallable tape on channel A.

Arrays $X(1-L)$ and $R(1-L)$ are then printed out (Statement No. 4999) and the program proceeds by forming the angle of attack table for the 3 possible ranges using the input A1, A2, A3, A1L, A. L, A3L and
the input increments DA1, DA2, DA3 (Statements between Statement Nos. 13 and 20).

A loop on ALPHAS (Statement number 1003) is set up comprising most of the rest of the program, a.e., for each ALPHA a set of force and moment coefficients $\left(C_{N_{1},} C_{X_{i}}, C_{m_{i},} C_{L_{i}}, C_{D_{i,}}(L / D)_{i}, X c p\right.$ and the corresponding derivatives $C_{N_{a_{i}}}, C_{m_{a_{i}}}, C_{N_{q_{i}}}$, and $C_{m_{q_{i}}}$ are computed.

The loop on ALPHAS is the outermost of a nest of loops which are completed as follows loop for subscript ϕ and XG (Statement number 345), loop to compute numerically the derivatives CNA, CMA, CNQ, and CMQ (DD 91 MM - 1, 3), loop for the integration of body sections L(Statement number 2774) (the body is subdivided into a number of portions equal to the number of computed points), and loop for computation of integrands ($D \varnothing 50 \mathrm{M}=1$, J) (each of the I sections is further subdivided into a maximum of 9 intervals before Simpson's Rule (subroutine ARSIMP) is applied).

After exiting from this nest of loops, (after Statement No. 389) ρ_{N} (internally $R H \varnothing N$), ρ_{A} (internally $R H \varnothing A$), XCG/D (internally XCGDD), RGX/D, RGY/D are computed.

Within the ALPHA loop, the program prints out for each ALPHA the coefficients CN, CM, CX, CMQ, CLA, CD, CL/CD, and XCP/D (immediately after Statement No. 370).

Outside this loop, at the very end of the program, the quantities $R H \oplus N$, RHDA, XCG, XCG/D, RGX/D, and RGY/D are printed out.
C. SIGNIFICANT EQUATIONS

1. Main Program

Section 1 (N \varnothing SE): $X(1)=R N \cdot[1-\cos (T H E T A N)]$

$$
R(1)=\sqrt{X(1)} \cdot[2 R N-X(1)]
$$

Section 2 (TめRめIDAL):

$$
\begin{aligned}
\mathrm{X}(\mathrm{~J}) & =\mathrm{X}(1)+\mathrm{RS} \cdot\left\{\cos (\text { THETAN })-\sin \left\{\mathrm{XJ} \quad \frac{[90-(\text { THETAN }+ \text { THETAC })]}{\mathrm{XM} 2}\right\}\right\} \\
& \text { where, } \mathrm{XJ}=1, \ldots, \mathrm{XM} 2 \\
\mathrm{R}(\mathrm{~J}) & =\mathrm{R}(1)+\mathrm{RS} \cdot\left\{\cos \left\{\mathrm{XJ}\left[\frac{90-(\text { THETAN }+ \text { THETAC })}{\mathrm{XM} 2}\right]\right\}-\sin (\text { THETAN })\right\}
\end{aligned}
$$

Section 3 (C \varnothing NIC):

$$
\begin{aligned}
& R(K)=R C-R S C A[1-\cos (\text { THETAC })] \\
& X(K)=X(K-1)+[R(K)-R(K-1)] \frac{\cos (\text { THETAC })}{\sin (\text { THETAC })}, 306
\end{aligned}
$$

Section 4 (T ϕ R \varnothing IDAL).

$$
\begin{aligned}
& X(J)= X(K)+\operatorname{RSCA}[\sin (T H E T A C)-\sin (T J)] \\
& R(J)=R(K)+ \operatorname{RSCA}[\cos (T J)-\cos (T H E T A C)] \\
& \text { where, } \\
& T J=\frac{(X J \cdot T M 4)}{\operatorname{RAD}}
\end{aligned}
$$

and, \quad TM4 $=$ THETAC/M4
Section 5 (CYLINDRICAL):

$$
\begin{aligned}
& \mathrm{X}(\mathrm{~K})=\mathrm{X}(\mathrm{~K}-1)+\mathrm{DXI} \\
& \mathrm{R}(\mathrm{~K})=\mathrm{RC}
\end{aligned}
$$312

Section 6 (C ϕ NIC):

$$
\begin{aligned}
& R(K)=R B-\operatorname{RSCB}[1-\cos (F T H E T A)] \\
& X(K)=X(K-1)+(R(K)-R C) \cdot \frac{\cos (\text { FTHETA })}{\sin (\text { FTHETA })}
\end{aligned}
$$314

Section 7 (T ϕ R ϕ IDAL) :

$$
\begin{aligned}
& \mathrm{X}(\mathrm{~J})=\mathrm{X}(\mathrm{~K})+\mathrm{RSCB}[\sin (\mathrm{FTHETA})-\sin (\mathrm{TJ})] \\
& \mathrm{R}(\mathrm{~J})=\mathrm{R}(\mathrm{~K})+\mathrm{RSCB} \cdot[\cos (\mathrm{TJ})-\cos (\mathrm{FTHETA})] \\
& \text { where, } \mathrm{TJ}=\mathrm{XJ} \cdot \frac{\mathrm{FTHETA}}{\mathrm{M} 7} / \mathrm{RAD}
\end{aligned}
$$

$$
-35-
$$

Section 8 (T ϕ R ϕ IDAL) :

$$
\begin{aligned}
& X(J)=X(K)+R S C B \cdot \sin (T J) \\
& R(J)=R B-R S C B \cdot[1-\cos (T J)] \\
& \text { where, } T J=X J \cdot \frac{\text { THETAA }}{M 8} / R A D
\end{aligned}
$$

Section 9 (C $\mathbf{C N I C)}$.

$$
\begin{aligned}
& R(K)=R A \\
& X(K)=X(K-1)+[R(K-1)-R(K)] \cdot \frac{\cos (\text { IHETAA })}{\sin (\text { THETAA })} 321
\end{aligned}
$$

Section 10 (SPHERICAL):

$$
\begin{aligned}
& X(J)=X(K)+R S A \cdot[\sin (T J)-\sin (\text { THETAA })] \\
& R(J)=R(K)-R S A \cdot[\cos (T H E T A A)-\cos (T J)] \\
& \text { where, } T J+[X J \cdot(90-\text { THETAA }) / M 10+\text { THETAA }] / R A D ~ \\
& \mathrm{R})
\end{aligned}
$$

$B \emptyset X=-2 \sin ($ THETA $)\{\cos ($ THETA $) \cdot \sin 2 A L P H A+2 Z A Q \quad[X K \cdot \cos (A L P H A)+$ $+\frac{\mathrm{ZZ}(\mathrm{II})}{\mathrm{SL}} \cdot \cos (\mathrm{THETA}) \sin$ (ALPHA) $\left.]\right\}$
where, $Z K=\operatorname{RX}(M) \cdot \frac{\sin (T H E T A)}{S L}+(X Z(M)-Z X) \cdot \frac{\cos (T H E T A)}{S L} 48$
$A \emptyset X=2 \sin ^{2}\left(T H E T A \cdot \cos (A L P H A) \cdot\left[\cos (A L P H A)+2 Z A Q \cdot \frac{Z Z(I I)}{S L}\right] \quad 48\right.$
$G \varnothing X=\cos (T H E T A) \quad \sin (A L P H A) \quad[\cos (T H E T A) \cdot \sin (A L P H A)+2 Z A Q \cdot Z K] \quad 48$
$C N(M)=\left[\begin{array}{lll}-A \phi X & \cos (\phi M E G A)+B \phi X & \phi Z-2 G \phi X \cdot \cos (\phi M E G A)\end{array} \frac{\left(\sin ^{2}(\phi M E G A)+2\right)}{3}\right]$

- $\mathrm{RX}(\mathrm{M})$
where, $\varnothing Z=5 \emptyset \mathrm{MEGA}-.25 \sin (2 \not \subset \mathrm{MEGA})+.78539816$

$$
\mathrm{RX}(\mathrm{M})=\sqrt{2 \mathrm{RN} \quad \mathrm{XZ}(\mathrm{M})-\mathrm{XZ}(\mathrm{M})^{2}}
$$

$C X(M)=[A \phi X \cdot(O M E G A+15707963)-B \emptyset X \cos (\varnothing M E G A)+2 \cdot \phi Z \cdot G \phi X] \cdot R X(M) \frac{\sin (T H E T A)}{\cos (T H E T A)}$

$$
\begin{aligned}
& C M(M)=\{-A \emptyset X \cdot Z Z(I I) \sin (T H E T A) \cdot(\emptyset M E G A+15707963)- \\
& -[A \emptyset \mathrm{X} \cdot \mathrm{ZK} \cdot \mathrm{SL}-\mathrm{B} \emptyset \mathrm{X} \cdot \mathrm{ZZ}(\mathrm{II}) \cdot \sin (\mathrm{THETA})] \cdot \cos (\emptyset \mathrm{MEGA})+ \\
& +\{B \emptyset X \quad Z K \quad S L-2 G \emptyset X \quad Z Z(I I) \cdot \sin (T H E T A)] \cdot \phi Z- \\
& \left.-2 \frac{\mathrm{G} \varnothing \mathrm{X}}{3} \cdot \mathrm{ZK} \cdot \mathrm{SL} \quad \cos (\emptyset \mathrm{MEGA})\left[\sin ^{2}(\emptyset \mathrm{MEGA})+2\right]\right\} \cdot \frac{\mathrm{RX}(\mathrm{M})}{\cos (\mathrm{THETA})} \quad 48 \\
& \mathrm{CD}(\mathrm{MM})=\mathrm{CXI} \cdot \cos (\mathrm{ALPHA})+\mathrm{CN1} \cdot \sin (\text { ALPHA }) \quad 48 \\
& \mathrm{CL}(\mathrm{MM})=\mathrm{CXI} \operatorname{stn}(\mathrm{ALPHA})+\mathrm{CN1} \cdot \cos (\mathrm{ALPHA}) \quad 93 \\
& \mathrm{CNA}=\frac{(\mathrm{CN} 3-\mathrm{CN} 1)}{\mathrm{DDL}} \quad 352 \\
& C M A=\frac{(C M 3-C M I)}{D D L} \\
& \mathrm{CNQ}=\frac{(\mathrm{CN} 2-\mathrm{CN} 1)}{\mathrm{DDL}} \\
& C M Q=2 \frac{(C M 2-C M I)}{D D L} \\
& \mathrm{XCP}=-\mathrm{SL} \cdot \frac{\mathrm{CMI}}{\mathrm{CN1}} \\
& 920
\end{aligned}
$$

2. Subroutine CALINT

$$
\begin{aligned}
\text { THR } & =\text { THR DELR * DERIN } \\
\text { RJ } & =\text { RJ DELR }
\end{aligned}
$$

where, \quad СФТМ $=($ СФТТ СФТТМ1)/2.

$$
A L \emptyset G B E=L \emptyset G\left[\frac{1+\cos (B E T A G)}{\sin (B E T A R)}\right]
$$

$D E R V R 1=\left\{\frac{R K^{2}-R 3^{2}}{A L \phi G B E} \cdot \frac{\sin (T H R)}{1+\cos (T H R)} \cdot\left[-1-\frac{(1+\cos (T H R)) \cos (T H R)}{\sin ^{2}(T H R)}\right]\right\}$
DERIN $=\mathrm{RJ} /(0.5 *$ DERVR1)

3. Subroutine CPL ϕ T

```
ANGL = (XK - DIVTHN)/RAD
    where, DIVTHN = THETAN/18.
    and, XK = 1,. . 18
XPT(I) = RN \cdot [1-\operatorname{cos(ANGL)] 60}
RPT (I) = RN smn(ANGL)
```

 -38-
 \(156=\)

V. REFERENCES

1. Wells, W. R., and W. O. Armstrong, Tables of Aerodynamic Coefficients Obtained from Developed Newtonian Expressions for Complete and Partial Conic and Spheric Bodies at Combined Angles of Attack and Side Slip with Some Comparısons With Hypersonic Experimental Data, NASA TR R-127 (1962).
2. Tobak, M., and W. R. Wehrend, Stabılity Derıvatives of Cones at Supersonic Speeds, NACA TN 3788 (September 1956).
3. Gray, J.D., Drag and Stabilıty Derivatives of Missile Gomponents According to the Modified Newtoman Theory; AEDC TN 60-191 (November 1960).
4. Anderson, M. S., H. G. Bush, and R. W. Frauch, A Tension Shell Structure for Application to Entry Vehicles, NASA TND - 2675 (March 1965).

VI. BIBLIOGRAPHY

A. FORCE AND MOMENT

Nıchols, J. O., and E. A. Nierengarten, Aerodynamic Characteristics of Blunt Bodies, Jet Propulsion Laboratory, Pasadena, California, Technical Report No. 32-677, (19 November 1964).

Robinson, J.C., and A. W. Jordan, Exploratory Experımental Aerodynamic Investigation of Tension Shell Shapes at Mach 7, Washington, D. C., NASA TN D-2994 (September 1965).

Wehrend, W. R., Jr., Wind-Tunnel Investigation of the Static and Dynamıc Stabılity Characteristıcs of a 10 Degree Semivertex Angle Blunted Cone, NASA TN D-1202 (January 1962).

Blaylock, R. B., Force Test of a Cold-Wall Blunt-Nose Cylinder-Flare Model in Air - Carbon Dioxide Mixtures in the JPL 21 -inch Hypersonic Wind Tunnel, JPL N64-332 18, Contract NAS 7-100 (15 March 1964).

Peterson, V. L., Motions of a Short 10-Degree Blunted Cone Entering a Martian Atmosphere at Arbitrary Angles of Attack and Arbitrary Pitching Rates, Ames, Moffett, California, NASA TN D-1326 (May 1962).

Boylan, D. E., and W. H. Sims, Experimental Determination of Aerodynamic Drag on a Blunted 10-Degree Cone at Angle of Attack in Hyper sonic Rarefied Flow, Arnold Engine ering Development Center, Air Force Systems Command, United States Air Force, AEDC-TDR 64-60 (April 1964).

Keyes, J. W., Aerodynamic Characteristics of Lenticular and Elliptic Shapes Configurations at a Mach Number of 6, NASA Langley, N65-15613, NASA TN D-2606 (February 1965).

B. DYNAMIC STABILITY

Marte, J. E., and R. W. Weaver, Low Subsonic Dynamic-Stability Investigation of Several Planetary-Entry Configurations in a Vertical Wind Tunnel, Part I, Jet Propulsion Laboratory, Technical Report No. 32-743 (1 May 1965).

Fisher, L. R., A. L. Keith, Jr., and J. R. DiCamillo, Aerodynamic Characteristics of Some Families of Blunt Bodies at Transonic Speeds, NASA Memo 10-28-581.

Kilgore, R.A., Aero Damping and Stability of a Sphere at Mach Number from 0.20 to 4.63 , Thesis, College of William and Mary.

Intrieri, P. F., Free Flight Measurements of the Static and Dynamic Stability and Drag of a $10-$ Degree Blunted Cone at Mach Numbers 3.5 and 8.5, NASA TN D-1299 (May 1962).

Wehrend, W. R., Jr., An Experimental Evaluation of Aexodynamic Damping Moments of Cones with Different Centers of Rotation, NASA TN D-1768 (March 1963).

Keyes, J. W., Longitudinal Aerodynamic Characterıstics of Blunted Cones at Mach Nos. of 3.5, 42 , and 6.0, Langley, NASA TN D-2201 (F ebruary 1964).

PROGRAM 1882

CONTENTS

I. Introduction 1
A. General Description 1
B. Calculation Model 1
C. Limitations 9
II. Program Usage 11
A. Input Definitions 11
B. Input Procedures 17
C. Output Definitions 21
D. Sample Problem 26
III. Compiatations 41
A. Block Diagram 41
B. Symbols 42
C. Engineering Equations 46
IV. IBM Program Routines 86
A. Program Flow 86
B. Common Storage 89
C. Subroutines 91
D. Main Program 102
E. Signuficant Equations 104
V. References 112

ILLUSTRATIONS

Figure 1 Vehicle Shape Parameters 2
2 Tension Shell and General Shape Geometries 3
3 Descent System Options 5
4 Landed Package Geometries 7, 8
5 Packaging Model 10
6 Crushing, Strength of Impact Materials 22
7 Block Dıagram of Program 1882 41
8 Method of Solution of Impact Attenuator Design 74
9 Packaging Logic Diagram 76
10 Program Flow for Descent System 86
11 Program Flow for Impact Attenuation System 87
12 Program Flow for Lander Packaging System 88

I. INTRODUCTION

A. GENERAL DESCRIPTION

The purpose of this program is to determine the component system weights for an axisymmetric entry vehicle. The program has four distinct segments within which exists a number of optaons. The four segments are as follows

1. Feat Shield and Structural Shell -- The inboard profile coordinates of the vehicle are generated based on body input parameters. The moments of inertia, center of gravity, area and weight of each section of the vehicle are then computed. The weights are based upon specified unt weights for the heat shield and structure of each section.
2. Descent System -- The descent system weight computation is based on specified deployment and mpact conditions. Three options exist (a) a two chute; (b) a single-chute, or (c) a drogue-chute retrorocket system.
3. Impact Attenuation System -- The amount of crushup weight is computed so as to assure a soft landing within impact velocity and acceleration limnts. Three options exist as to the landed package configuration: (a) spherıcal; (b) lenticular; or (c) conical. The latter option utilizes a spherıcal segment of crushup and assumes preferred impact orrentation. All of the options yield the geometric dimensions of the crushup and payload.
4. Packaging Design -- This portion of the program packages the landed package and descent system components within the inboard profile limits of the vehicle. A minimum overall specffied center of gravity must be satisfied. With the overall vehicle center-of-gravity position established, the moments of inertia are then computed for the entire capsule. The internal structural weight of the lander is also computed in this portion of the program.

B. CALCUL_A TION MODEL

The calculation model for each of the four segments of Program 1882 is as follows:

1. Heat Shield and Structural Shell
a. The evolved body coordinates of the vehicle reflect the bond line profile of the heat shield and structure shell. The heat shield and structural unit area weights are input for each vehicle section. The vehıcle sections are 1dentified parametically as shown in Figures 1 and 2 .

Figure 1 VEHICLE SHAPE PARAMETERS

TENSION SHELL OPTION (SECTION 4)

β-TENSION SHELL INPUT PARAMETER
R_{3} - BASE RADIUS OF TENSION SHELLL (NOT INPUT)

Figure 2 TENSION SHELL AND GENERAL SHAPE GEOMETRIES
b. The inertia, center of gravity, and area equations are based on a derivation assuming the heat shield and structure thickness to be small and uniform.

2. Descent System

a. The model atmosphere generated consists of a troposphere and stratosphere. Equations for the thermosphere are not utilized since it is reasonable to assume that chute deployment will always occur at an altitude well below the thermosphere region.
b. The equations of motion utilized in the trajectories are the two degree of freedom equations neglecting the centripetal acceleration and Inft terms.
c. The drogue chute descent calculation assumes that the chute opens instantaneously, and hence does not account for the loss in altitude due to the filling time. This $1 s$ a reasonable assumption since drogue chutes are usually farrly small in diameter with filling times in the order of 0.05 second. The drogue chute is suzed by the requirement of achieving a prescribed Mach number at a prescribed altitude.
d. The main chute descent accounts for the loss in altitude due to chute opening and assumes constant velocity during filling. Subṣonic chutes (Mach 0.8) in the order of 60 feet diameter would result in filling times of about 1.5 seconds, and hence incur an altitude loss of about 800 to 1000 feet.
e. Terminal descent velocity is assumed for the calculation of the main chute canopy size.
f. All trajectory calculations account for the correct vehicle and chute drag components where applicable.
g. Jettisoning of heat shield, structure, and drogue system weights are accounted for in the trajectory calculations where applicable.
h. A cluster of chutes is employed if the required diameter of a single main chute exceeds the maximum spectfied value DMCMAX.
i. The descent system options are depicted in Figure 3.
j. The parachute weight model (see below) accounts for materials, dynamic pressure and size.

Figure 3 DESCENT SYSTEM OPTIONS

Materials (K)

Dynamic Pressure (q)

$$
W_{T}=K\left[\begin{array}{ll}
\frac{d^{3}}{18.6} & \frac{q}{65}
\end{array}\right]
$$

Diameter (d)

3. Impact Attenuation System

a. The equations utilized are based on the analysis of Reference 1 which accounts for the variation of mass during the crush-up stroke and for materials with anisotropic properties.
b. Equations derived are for the particular case where the crushable material is in the shape of a spherical segment.
c. Grushing is assumed to start at the initial contact point and then the surface of crushing moves upward into the material during impact. Hence, at any time the mass below this surface has already been brought to rest such that the mass being decelerated is a varable with time.
d. The crushable material is assumed to be rigid and perfectly plastic, deforming at constant stress up to the total usable strain.
e. The conical and lentucular options which utilize a spherical segment of crushup assume preferred orientation upon impact, such that the resultant deceleration vector passes through the center of gravity of the landed package.
f. The impact surface is considered to be flat, smooth and infinitely rigıd.
g. Landed package geometries are shown in Figure 4.

4a. CONE-CYLINDER SHAPE LANDER

4b. CYLINDER SHAPE LANDER

65-11691
4c CONE SHAPE LANDER

Figure 4 LANDED PACKAGE GEOMETRIES

Figure 4 LANDED PACKAGE GEOMETRIES (Concl'd)

Lander Packaging Design

a．The thickness of the heat shield and structure is accounted for in the lander packaging by adding the thickness to the outer dimension of the landed package．
b．The internal payload is packaged with unform density．
c．A symmetrical cylindrical ring，placed at the maximum radus of the landed package，is uthlized for parachute packagıng as shown in Figure 5.
d．The landed package is located as far forward in the vehicle as possible as shown in Figure 5.

C．LIMITATIONS

Limatations of Program 1882 are listed below：
1．The heat shield and structure must be of unform unit weight and／or thickness for each section．

2．Parachute designs（drogue and／or main）do not account for reefing； however，the chute drag coefficients can be arranged so as to simulate reefing．

3．The parachute design does not include fabric heating effects which often result in Mach number deployment limitations for various fabrics．

4．The parachute design does not include stability considerations and／or losses in performance due to angle of attack or Reynolds number effects．

5．The retrorocket system design is based on a single－impulse system．
6．The impact crush－up design assumes homogeneous materials．
7．Only spherical segments of crushup can be utilized for the impact geometry．

8．The impact attenuation analysis assumes that crushing takes place only in the plane of the impact surface，that the payload is rigidly attached and that crushing cannot take place at an inner crushup surface and proceed outward．

$$
\begin{aligned}
& \text {-9- } \\
& \text { 首察是 }
\end{aligned}
$$

CONSTRAINTS.

I LANDER GEOMETRY $R_{v}(x)>R_{p}(x)$
2 Xegoverall < Xegipecified

5a. Location of landed package

5b. PARACHUTE AND ROCKET LOCATIONS
65-11692

Figure 5 PACKAGING MODEL
II. PROGRAM USAGE

A. INPUT DEFINITIONS

Name	Preset Value	Symbol	Parameter	Units
ALPHA		a	Empirically determined constant relating crushing stress and density.	--
AO		${ }^{\text {a }}$ 。	Empirically determined constant describing anisotropy of crushable material.	--
Al		${ }^{\text {a }} 1$	Empirically determined constant describing anisotropy of crushable material.	--
A 2		a_{2}	Empirically determined constant describing anisotropy of crushablé material.	--
A 3		a_{3}	Empirically determined constant describing anssotropy of crushable material.	--
BETA	0.	β	Tangent angle at beginning of tension shell.	degrees
CDD		$C_{\text {DD }}$	Table of drogue chute drag coefficients, Mach number dependent.	--
CDMC		$\mathrm{C}_{\text {DMC }}$	Table of main chute drag coefficients, Mach number dependent.	--
CDV		$C_{\text {DV }}$	Table of entry vehicle drag coefficients, Mach number dependent.	--
DELTA	0.01		Integration Δt.	seconds
DELMIT	I. $\mathrm{E}-5$		Smallest allowable Δt.	seconds

-11 -

Name	Preset Value	Symbol	Parameter	Units
DESSYS			Input sentinel to designate type of descent system.	--
DDMIN			Minimum drogue chute diameter.	feet
DLVFAC		$\Delta \mathrm{V}$	Velocity increment in rocket design.	$\mathrm{ft} / \mathrm{sec}$
DMCMAX	100.		Maximum main chute diameter.	feet
DMCMIN			Minimum main chute diameter.	feet
DNBND	$\begin{aligned} & \text { 1. } \mathrm{E}-3 \text {, } \\ & \text { 1. } \mathrm{E}-2 \end{aligned}$	-6,	Lower bounds on trajectory integration (velocity, angle, altitude).	--
DRV-EL	50.		Velocity interval for printout of drogue chute trajectory.	--
EF		E	Modulus of elasticity.	psi
EPSILN		ϵ	Total usable strain.	--
EPSI	1. E-3		Convergence factor for $\mathrm{y} / \mathrm{R}_{2}$.	--
EPS3	1. E-3		Convergence factor for $\mathrm{R}_{\mathrm{CO}}{ }^{\text {- }}$	--
FACT ϕ R	0.2		Factor by which to change Δt.	--
FALR		L_{1}	Temperature gradient in troposphere expressed as a fraction of the adiabatic lapse rate.	--
FREQ	0.5		Interval for exiting from integration routine.	--
FREQ2	2.		Time interval for exiting from ADAMS4 during main chute trajectory.	--
FREQ3	2.		Time interval for exiting from ADAMS4 during drogue-retrorocket trajectory.	--

Name	Preset Value	Symbol	Parameter	Units
GAMD		$\gamma_{\text {D }}$	Flight path angle at drogue chute deployment.	degrees
GAMMC		$\gamma_{\text {MC }}$	Flight path angle at man chute deployment.	degrees
GIMP		$\gamma_{\text {imp }}$	Maximum allowable impact acceleration.	Earth g
GSL		$\mathrm{g}_{\text {SL }}$	Gravitational acceleration at planet surface.	$\mathrm{ft} / \mathrm{sec}^{2}$
IMPSYS			Input sentinel to designate type of impact system.	--
ISP		${ }^{\mathrm{I}}$ SP	Required specific impulse of retrorocket.	1b-sec/1b
IYR2	0.4		Initial guess for Y/R2	--
JET			Input sentinel to indicate when jettisoning of heat shield and structure occurs.	--
LC	0.	L_{C}	Cylinder body section length.	feet
LC \varnothing RC \varnothing	0.	$\mathrm{L}_{\mathrm{CO}} \mathrm{R}_{\mathrm{CO}}$	Ratio of cone length to cylinder radius (internal geometry).	--
LCYRC \varnothing	0.	$\mathrm{L}_{\mathrm{CYL}} / \mathrm{R}_{\mathrm{CO}}$	Ratio of cylinder length to cylinder radius (internal geometry).	--
LRDR		L_{R} / D_{R}	Ratio of retrorocket length to diameter.	--
MACD		M_{D}	Drogue chute deployment Mach number.	--
MACH			Table of Mach numbers.	--
MACMC		M_{MC}	Main chute deployment Mach number.	--
MCVEL	50.		Velocity interval for printout of main chute trajectory.	$\mathrm{ft} / \mathrm{sec}$

1255

Name	Preset Value	Symbol	Parameter	Units
MR		M.R.	Mass-fuel ratio of retrorocket.	--
NRINGS	0.		Number of rings.	--
PSI		ψ	Empirically determined constant relating crushing stress and density.	--
RA	0.	${ }^{\text {R }}$ A	Radius of rear spherical cap.	feet
RB	0.	R_{B}	Flare radius.	feet
RC	0.	${ }^{R}{ }_{C}$	Reference vehicle radius.	feet
RCHUTE		$\rho^{\text {CHUTE }}$	Packaging density of the parachute system.	$\mathrm{lb} / \mathrm{ft}^{3}$
RHDCM		${ }^{o_{\mathrm{C}}^{\mathrm{C}}} \mathrm{MX}$	Maximum allowable crushup density.	slug/ft ${ }^{3}$
RHDCMI		$\rho_{C_{M I N}}$	Minimum allowable crushup density.	$\mathrm{slug} / \mathrm{ft}^{3}$
RH ¢ $^{\text {F }}$		$\rho_{f s}$	Density of internal structural face sheet.	$1 \mathrm{~b} / \mathrm{ft}^{3}$
RH ¢ $_{\text {I }}$		ρ_{i}	Packaging density of the internal payload.	slug/ft ${ }^{3}$
RH¢ $\mathrm{R}^{\text {d }}$ (ρ_{R}	Density of retrorocket,	$1 \mathrm{~b} / \mathrm{ft}^{3}$
RHDSL		$\rho_{\text {SL }}$	Density of the atmosphere at planet surface.	slug/ft ${ }^{3}$
RN	0.	R_{N}	Nose cap radius.	feet
$\mathrm{R} R$	0.	r	Ordinates for general shape.	feet
RSB	0.	$\mathrm{R}_{S B}$	Toroidal radius from flare to afterbody sections.	feet
RSC	0.	$\mathrm{R}_{\text {SC }}$	Toroidal radius following cone section.	feet

-14-
4 $18=$

Name	Preset Value	Symbol	Parameter	Units
RSN	0.	$\mathrm{R}_{\text {SN }}$	Toroidal radius following nose cap section.	feet
RT	0.	R_{T}	Base radus of truncated afterbody.	feet
SECTN	0.		Ordered array of vehicle sections. Each element is a number between 1 and 13.	--
SIGCYF		$\sigma_{c y}$	Yield stress of the internal structural face sheet.	psi
STRFAC	1.		Structural weight factor.	--
TFMIN		$\mathrm{t}_{\text {fmin }}$	Minimum allowable face sheet thickness.	inches
THA	0.	$\theta_{\text {A }}$	Aftcone section body angle (negative).	degrees
THB	0.	θ_{B}	Flare section body angle.	degrees
THC	0.	${ }^{\theta} \mathrm{C}$	Cone section body angle.	degrees
THCD	0.	${ }^{\theta} \mathrm{CO}$	Cone angle of the internal payload.	degrees
THM		θ_{M}	Angle subtended by the crushable material segment.	degrees
THN	0.	θ_{N}	Tangent angle at end of nose radius.	degrees
THS		$t^{\text {H/S }}$	Thickness of heat shield and structure combined.	feet
TH2G	0.	$\theta_{2 G}$	Tangent angle at beginning of general shape.	degrees
TH3G	0.	$\theta_{3 G}$	Tangent angle at end of general shape.	degrees
TN		n	Empirically determined exponent describing anisotropy of crushable material.	--

Name	Preset Value	Symbol	Parameter	Units
TSL		${ }^{T}$ SL	Atmospheric temperature at planet surface.	${ }^{\circ} \mathrm{K}$
TST		${ }^{T}{ }_{S T}$	Atmospheric temperature in the stratosphere.	${ }^{\circ} \mathrm{K}$
TZER \varnothing	0.	To	Initial time for trajectory.	seconds
UPBND	$\begin{aligned} & 0.01,1 \\ & 0.1 \end{aligned}$		Upper bounds for trajectory integration (velocity, angle, altitude).	--
VELW		v_{W}	Horizontal velocity component used in impact attenuation analysis.	$\mathrm{ft} / \mathrm{sec}$
VIMP		$\mathrm{V}_{\text {IMP }}$	Design impact velocity for retrorocket system. (Vertical and horizontal components included).	$\mathrm{ft} / \mathrm{sec}$
vv		V_{V}	Design vertical descent velocity for chate system.	$\mathrm{ft} / \mathrm{sec}$
WE		W_{e}	Total capsule entry weight.	pounds
WHSD			Array of corresponding heat shield weights.	--
WRING			Array of weights of rings.	--
WSTR			Array of corresponding structure weights.	--
XA		X_{A}	Mole fraction of Argon in the atmosphere.	--
XC		X_{C}	Mole fraction of CO_{2} in the atmosphere.	--
XGGMIN		$\mathrm{X}_{\mathrm{CG}}^{\mathrm{MIN}}$	Minimum overall CG requirement.	feet
XD		X_{D}	Dynamic opening shock load factor on drogue chute.	--

Name	Preset Value	Symbol	Parameter	Units
XMC		X_{MC}	Dynamic opening shock load factor on main chute.	--
XN		X_{N}	Mole fraction of N_{2} in the atmosphere.	--
XO		x_{0}	Mole fraction of O_{2} in the atmosphere.	-
XRING		,	Array of x-coordinates specyfying location of rings.	-
XX		X	Abcissas for general shape.	feet
ZD		Z_{D}	Drogue chute deployment altitude.	feet
ZMC		Z_{MC}	Main chute deployment altitude.	feet

B. INPUT PROCEDURES

1. Heat Shxeld and Structural Shell
a. The body sections are specified in the array SECTN in the order in which they appear on the vehicle. The specification for each section is an integer between 1. and 13., the correspondence being as follows:

NUMBER	SECTION	INPUT REQUIRED
1.	NOSE SPHERE	RN, THN
2.	TORUS	RSN
3.	CONE	THC
4.	TENSION SHELL,	BETA
5.	GENERAL SHAPE	TH2G, TH3G, X, R
6.	TORUS	RSC, RC
7.	CYLINDER	LC
8.	FLARE	THB
9.	TORUS	RSB

NUMBER	SECTION	INPUT REC
10.	TORUS	RSB
11.	AFTCONE	THA
12.	AFTSPHERE	RA
13.	BASE	RT

The nose sphere must always be the first section, i. e. SECTN (1) = 1 . A vehicle consisting of a nose sphere, cone, aftcone, and base would be specified as $\operatorname{SECTN}=1 ., 3 ., 11 ., 13$. The individual sections are depıcted in Figures 1 and 2.
b. Body Section 6 can be omitted or included only together with Sections 3, 4, and 5.
c. Body Section 9 can be omitted or included only together with Section 8.
d. The body radius R_{c} must always be specified
e. The body angle input θ_{A} (THA) describing the aftcone section must be input with a minus sign to be consistent with the coordinate system.
f. For the tension shell β (BETA) and $R_{s c}(R S C)$ must be specified
g. For the general shape the initial and final body angles $\theta_{2 G}$ (TH2G), and the approxmate x and r coordinates of that section must be specified A maximum of 25 and a minimum of 3 points can be specified.
h. If the Section 2 is deleted, then the initial angles β (BETA), θ (THC), and $\theta_{2 G}$ (TH2G) must be equal to the nose cap section body angle $\theta_{\mathrm{N}}^{\mathrm{c}}(\mathrm{THN})$.

1. For any of the body sections specified, all of the corresponding utilized body parameters must also be specified, i. e. as an example, If the aftcone section is specified, then $\theta_{A}(T H A), R_{A}(R A)$, and $R_{S B}$ (RSB) must also be specified. The body parameter R_{B} (RB) need not be specrfied unless a flare section is used.
j. For each body section specified, there must be a corresponding unit heat shield and structure weight. These are specified in the arrays WHSD and WSTR in the same order as the section appears in SECTN.
$k \quad$ A total vehicle entry weight W_{e} (WE) must always be input
2. A set of computer input forms are provided for the user. All the data shown on the form is keypunched when the variable is supplied
3. Descent System
a. Each of the three options are indrvidually specified by utilizing the sentinel DESSYS:
1) Two-chute drogue-main option \quad DESSYS $=1$.
2) Single-chute main option \quad DESSYS $=2$.
3) Drogue-retrorocket option DESSYS $=3$.
b. When to jettison the heat shield and structure in the two chute drogue-main system and single chute system is specified by the sentinel JET:
4) Jettisoning at main chute deployment JET $=1$.
5) Jettisoning just prior to impact JET $=2$.
c. Drag coefficients of the vehicle (CDV), drogue chute (CDD), and the main chute (CDMC) are input as a function of Mach number. As an example.

$$
\begin{aligned}
& \mathrm{MACH}=0.0,3.0,5.0 \\
& \mathrm{CDV}=1.0,1.5,1.6 \\
& \mathrm{CDD}=0.7,0.8,0.9 \\
& \mathrm{CDMC}=0.6,0.6,0.6
\end{aligned}
$$

d. The parameters used for calculating the atmosphere and/or trajectory are input for all options. These parameters list nine and are GSL, TSL, TST, RH \varnothing SL, FALR, XN, X $\varnothing, X C$, and XA.
e. The main chute trajectory for DESSYS Options 1, and 2. is calculated based on a required vertical input descent velocity (VV). The horizontal wind velocity component, however, is not accounted for.
f. The retrorocket system is designed on a specified input velocity (VIMP). Horizontal wind velocity can be accounted for by the input (VELW). The input (VV) is not an input for this option.
g. The minimum size drogue chute input DDMIN must be specified for the drogue-main option and the drogue-retro option. There is no requirement as to how small or how big this input should be. Note however, if a smaller drogue is actually required (in the drogue-main option), the minimum input value is utilized.
h. The minimum drogue diameter input DDMIN is the actual size of the drogue chute for the drogue-retrorocket option. There is no iteration involved in this option.
i. The minimum size main chute mput DMCMIN must be specified for the drogue-main option and the single main chute option. There is no requirement as to how small this input should be. Note however, if a smaller main chute is actually required (for either option), the minimum input value is utilized.
j. The maximum size mann chute input DMCMAX must be specified for the drogue-main option and the single main option. If the first pass design requires a chute which exceeds DMCMAX, then a cluster of chutes will automatically be employed. Note, DMCMAX must be greater than DMCMIN.
k. Additional specific inputs to be specified for the retrorocket are as follows. ISP, MR, RHDR $\varnothing C$, VIMP, VELW, LRDR, and DLVFAC.

1. Parachute data suitable for input are given in References 2 and 3.

3. Impact Attenuation System

a. Each of the two options are individually specified by utilizing the sentinel IMPSYS :

$$
\begin{array}{ll}
\text { 1) Lenticular option } & \text { IMPSYS }=1 . \\
\text { 2) Cone-cylinder option } & \text { IMPSYS }=2 .
\end{array}
$$

b. A sphere can be utilized as the lander in the lenticular option by specifying $\theta_{\mathrm{M}}(\mathrm{THM})$ as 90 degrees.
c. The cone portion of the internal payload can be deleted in the conecylinder option by specifying $\mathrm{L}_{\mathrm{co}} / \mathrm{R}_{\mathrm{co}}(\mathrm{LC} \varnothing \mathrm{RC} \varnothing$) as zero.
d. The cylinder portion of the internal payload can be deleted in the cone-cylinder option by specifying $L_{\text {cyl }} / R_{c o}(L C Y R C ~(\varnothing)$ as zero.
e. If it is desired to neglect the anistropy of the crushable material, merely set $a_{o}(A D)$, $a_{2}(A 2)$, and $a_{3}(A 3)$ equal to zero.
f. The specified input value of θ_{M} (THM) cannot exceed 90 degrees.
g. The specrfied input value of $\mathrm{L}_{\mathrm{co}} / \mathrm{R}_{\mathrm{co}}(\mathrm{LC} \varphi \mathrm{RC} \varphi)$ must be equal to or less than $\cot \theta_{\text {co }}$.
h. The inputs for the crushing stress PSI and ALPHA, relate the stress to the density as

$$
\mathrm{s}_{\mathrm{m}}=\left[(\mathrm{ALPHA}) \rho_{\mathrm{c}}\right]^{1 / \mathrm{PSI}}
$$

where $\left(S_{m}\right)$ is the maximum crushing stress, $\left(\rho_{c}\right)$ is the density in slugft^{3}, and ALPHA and PSI are empirical constants. A summary of crushup datal is given in Figure 6 , from which the following correlations for ALPHA and PSI occur:

MATERIAL	ALPHA	PSI
Al Honeycomb	2090	0.554
Plastic Foams	3980	0.662
Balsa Wood	1.65×10^{10}	1.81

4. Lander Packaging Design
a. Additional required inputs for the lander packaging design are as follows: THS, XCGMIN, RCHUTE, EF, RHめF, TFMIN, and SIGCYF.
C. OUTPUT DEFINITIONS

External Name	Internal Name	Symbol	Parameter	Units
AD	AD	AD	Area of drogue chute.	ft^{2}
ALT	Z	Z	Altitude.	feet

65-11693

Figure 6 CRUSHING STRENGTH OF IMPACT MATERIALS

External Name	Internal Name	Symbol	Parameter	Units
AMC	AMC	A_{MC}	Mann chute area.	$f t^{2}$
AREA	AREA	A	Area.	$f t^{2}$
DELXF		$\Delta \mathrm{x}_{\mathrm{f}}$	Distance between vehicle nose and payload nose.	feet
DD	DI	$D_{\text {D }}$	Diameter of drogue chute.	feet
DMC	DMC	D_{MC}	Diameter of main chute.	feet
DR	DR	D_{R}	Diameter of retrorocket.	feet
GAMMA	GAM	γ	Flight path angle.	degrees
GPEAK	PGCALC		Maxımum value from PGCAL, array.	g
GPEAKS	PGCAL		Array of impact acceleration values.	g
IX	R $\emptyset \mathrm{LL}$	I_{x}	Moment of inertia about the x -axis.	slug-ft ${ }^{2}$
IXTФTCG			Roll moment of inertia of the entire vehicle about the c.g.	$\operatorname{slug}-\mathrm{ft}^{2}$
IY	PITCH	I_{y}	Moment of inertia about the y-axis.	slug-ft ${ }^{2}$
IYTФTCG			Pitch moment of inertia of the entire vehicle about the c.g.	$\operatorname{slug}-\mathrm{ft}^{2}$
LCD		L_{co}	Length in the internal payload cone.	feet
LCYL		$\mathrm{L}_{\text {cyl }}$	Length in the internal payload cylander.	feet
LR	XLR	L_{R}	Length of retrorocket.	feet

External Name	Intermal Name	Symbol	Parameter	Units
MACH.	XMAC	M	Mach number.	--
MC		${ }^{m} c$	Mass of the crushable material.	slugs
MI		m_{1}	Mass of the internal payload.	slugs
PD	PD	${ }^{P}{ }_{D}$	Opening shock load on drogue chute.	pounds
PMC	PMC'	$\mathrm{P}_{\text {MC }}$	Opening shock load on main chute.	pounds
R	R	r	Ordinates of all points computed along the body surface.	feet
R		R	Small radius of the internal payload cone.	feet
R1		R_{1}	Inner radius of the crushup segment.	feet
R2		R_{2}	Outer radus of the crushup segment.	feet
$R C D$			Internal payload cylinder radius.	feet
RHDC		${ }^{\rho}{ }_{c}$	Density of the crushable material utzlized.	slug/ft ${ }^{3}$
S		S_{m}	Maximum crushing stress.	$1 \mathrm{~b} / \mathrm{ft}{ }^{2}$
SECTİN			Section specification number.	--
T	T	t_{0}	Total time of descent system trajectory.	seconds
T		t_{c}	Thickness of crushup material.	feet

Esternal Name	Internal Name	Symbol	Parameter	Units
TD	T	${ }^{\text {t }}$ b	Total time on the drogue chute.	seconds
TF	TF		Main chute filling time.	seconds
TIME	T		Time,	seconds
T (INS)			Thickness of the internal structure face sheet.	nnches
VEL	V	v	Velocity.	$\mathrm{ft} / \mathrm{sec}$
VFINAL	VFINAL	v_{0}	Final resultant descent velocity for the drogue retro system.	$\mathrm{ft} / \mathrm{sec}$
W (LBS)			Itemized section weights of the internal structure.	pounds
W INTER STRUC	RE		Total weight of the internal structure.	pounds
WD	WD	${ }^{W}$	Drogue chute system weight.	pounds
WF	WF	w_{F}	Final weight for sizing retro system.	pounds
WHS	WHS		Unit weight heat shield factor tımes area.	pounds
WI	WI	W_{11}	Initial weight for sizing retro system.	pounds
WL	WL	${ }_{\text {w }}$	Landed weight.	pounds
WMC	WMC	$W_{M C}$	Main chute system weight.	pounds
WST	WST		Unit weight structure (includes weight factor)	pounds

External Name	Internal Name	Symbol	Parameter	Units
WR	WR	${ }^{\text {FRR }}$	Entry weight less heat sheeld and structure weight.	pounds
WR $¢ \mathrm{C}$	WRøC	${ }^{\text {W }}$	Retrorocket system welght.	pounds
WHST \varnothing T	WHSTDT		Total heat shreld weight.	pounds
WSTT \varnothing T	WSTT \varnothing T		Total structural shell weight.	pounds
WSTRAPS	WSTRAP	${ }^{\text {w }}$ STRAPS	$0.05\left(\mathbb{F}_{\mathrm{D}}+\mathrm{w}_{\mathrm{MC}}\right)$.	pounds
X	X	x	Abscissas of all points computed along the body surface.	feet
XCGH/S	$\mathrm{xCGH} / \mathrm{S}$		C.g. position of the heat shield and structural shell.	feet
XCG	XCG	$\overline{\mathrm{x}}_{\mathrm{NN}}$	Centrold of each section from the nose of the vehicle.	feet
$X C G \varnothing$		$\mathrm{X}_{\text {CGo }}$	Total vehicle center of gravity measured from vehicle nose.	feet
YDD/G	PGCALC	$\dot{y}_{\text {imp }}$	Peak 1 mpact acceleration.	g
Y/R2 VALU	ES YR2	y / R_{2}	Nondimensional parameter.	

D. SAMPLE PROBLEM

1. Statement of Problem

Determine the residual weight for the blunt cone configuration used in the sample problems of Programs 1880, 1881, 1884, and 1886.

The descent system is to utilize a single main chute system. The chute is to be deployed at Mach 1.2 at an altitude of 21451. feet and a fiight path angle of -35.19 degrees. The heat shield and structure is to be jettisoned at its deployment. Vertical impact velocity is to be $60 \mathrm{ft} / \mathrm{sec}$.

The lander geometry $1 s$ to be a spherical shape utilizing balsa wood as the crushable material. The horizontal wind velocity is $30 \mathrm{ft} / \mathrm{sec}$ and the maximum impact acceleration is not to exceed $1000_{3} g$. The balsa density cannot exceed 0.4 slug $/ \mathrm{ft}^{3}$ or be less than $0.1 \mathrm{slug} / \mathrm{ft}^{3}$.

The internal payload is to have a packaging density of $1.5 \mathrm{slug} / \mathrm{ft}^{3}$, and the parachute system packaging density is $35 \mathrm{lb} / \mathrm{ft}^{3}$. Internal structure is to be constructed of aluminum face sheet with a minimum thickness of 0.010 inch. Final design is to have a maximum center of gravity position of 3.75 feet.

2. Input Form

The input data required is shown on the following pages. Decimals are used for all input and all the variable names are keypunched wherever an input quantity is given. An additional unused input form $\mathbf{2 s}$ provided in the following page for the program user.

3. Output

The output is shown on the following pages. The keypunched data are listed and should be verified with the mput form.

The vehicle coordinates (X, R) are provided for use in drawing the configuration. Detailed section data are given regarding the surface area, heat shield weight, structure weight, moments of inertia, and center of gravity. The coordinates refer to the exterior of the structural shell and are used to evaluate all the weights by considering that the thicknesses of the structure and heat shmeld are small with respect to the size of the vehicle.

The heat shield and structural weights for the individual sections are totaled and the remaining weight (WR) is given. The overall center of gravity of the heat shield and structure is also given.

The trajectories during descent on the drogue and main chutes are given, including velocity, Mach number, flight path angle, altitude, and density. The parachute designs are given in terms of their area, diameter, and weight. Other pertinent information is given, including the parachute filling time, opening shock load, and the dynamic pressure at chute deployment. The number of clustered chutes required for the main system is also given, as well as the estimated parachute harness weight and the landed weight (WL).

The impact attenuator design results indicate the density of the attenuator material, the peak deceleration, the crush up stroke and history of deceleration versus stroke. The size of the impact attenuator, the mass of crush-up, and the residual mass are determined. Details of the internal structure are also provided.

The overall vehicle center of gravity and moments of inertia are finally determined and given as output.

\$

-31.

-40-
III. COMPUTATIONS

In the following pages are presented block diagrams illustrating the operation of each portion of Program 1882 and the engineering equations which are solved.

The block diagrams and engineering write-ups are broken down into the four portions of the program, namely; heat shieldand structural shell, descent system, impact attenuation system, and the lander packaging design. Symbols used precede the equations.
A. BLOCK DIAGRAM

A block diagram of Program 1882 is shown below as Figure 7.

86-2953
Figure 7 BLOCK DIAGRAM OF PROGRAM 1882

B. SYMBOLS

$a_{0}, a_{1}, a_{2}, a_{3}$	Coefficients of the $S(\theta)$ equation in the anisotropic crushup analysis
A	Area, ft^{2}
a	Speed of sound, ft/sec
C_{D}	Drag coefficrent
c_{p}	Specific heat at constant pressure, Btu/lb
d	Diameter, feet
D	Drag force, pounds
E	Modulus of elasticity, psi
g	Acceleration due to gravity, ft/sec ${ }^{2}$
I_{sp}	Required specific impulse of retrorocket system, $\mathrm{lb}-\mathrm{sec} / \mathrm{lb}$
${ }^{1} \times$	Roll moment of inertia, slug-ft ${ }^{2}$
${ }_{\text {y }}$	Pitch moment of inertia, slug-ft ${ }^{2}$
L_{1}	Temperature gradient in the troposphere expressed as a function of the adiabatic lapse rate
L_{c}	Length of cylindrical vehicle section, feet
L_{co}	Length of internal cone, feet
$\mathrm{L}_{\text {cyl }}$	Length of internal cylinder, feet
$L_{\text {o }}$	Temperature gradient in the troposphere, ${ }^{\circ} \mathrm{K} / \mathrm{ft}$
$L_{\text {R }}$	Length' of a retrorocket, feet
m	Mass, slugs
M	Mach number
M	Molecular weight
MR	Mass-fuel ratio of retrorocket

$\mathrm{V}_{\text {Imp }}$	Design impact velocity for the retrorocket system (vertical and horizontal component included), ft/sec
V_{0}	Total resultant impact velocity, ft/sec
v_{v}	Design vertical descent velocity for chute systems, ft/ sec
V_{w}	Horizontal velocity component, ft/sec
w	Unit weight, $1 \mathrm{~b} / \mathrm{ft}^{2-}$
W	Weight, pounds
W_{e}	Total vehicle entry weight, pounds
${ }^{W}$ RR	Entry weight less the total heat shield and structure weight, pounds
x	Vehrcle abcıssa dimension, feet
$\overline{\mathrm{x}}$	Centroidal distance as measured from the vehicle nose, feet
$\mathrm{X}_{\text {A }}$	Mole fraction of argon in the atmosphere
x_{C}	Mole fraction of CO_{2} in the atmosphere
X_{D}	Dynamic opening shock load factor on the drogue chute
X_{MC}	Dynamic opening shock load factor on the main chute
X_{N}	Mole fraction of N_{2} in the atmosphere
X_{O}	Mole fraction of O_{2} in the atmosphere
ΔX	Distance between vehicle nose and lander nose, feet
y	Crushup stroke coordinate, feet
Z	Altitude, feet
a	Curve fit constant relating crushing stress and density
β	Initial body angle in the tension shell section, degrees
γ	Flight path angle (positive in climb), degrees
	-44-
	36°

$\epsilon \quad$ Total usable strain
$\theta_{2 G} \quad$ Initial body angle of the general shape section, degrees
$\theta_{3 G} \quad$ Final body angle of the general shape section, degrees
$\theta_{\mathrm{A}} \quad$ Aft cone section body angle, degrees
$\theta_{B} \quad$ Flare section body angle, degrees
$\theta_{\mathrm{C}} \quad$ Cone section body angle, degrees
$\theta_{\mathrm{CO}} \quad$ Internal lander cone angle, degrees
$\theta_{M} \quad$ Angle subtended by the crushable material segment, degrees
$\theta_{\mathrm{N}} \quad$ Complement of nose cap angle, degrees
$\rho \quad$ Density, slug/ft ${ }^{3}$
$\sigma \quad$ Yield strength of face sheet, psi
$\psi \quad$ Curve fit constant relating crushing stress and density

Subscripts:

$1,2,3$, erc. Designated points on the vehicle surface
c Crushup
cl Parachute cluster
c.g. Center of gravity

D Drogue parachute conditions
$f \quad$ Final utilized value
fs Face sheet (internal structure)

HS Heat shield
$\mathrm{H} / \mathrm{S} \quad$ Heat shield and structure

1	Internal lander (payload and crushup)
11	Initial weight just prior to retrorocket ignition
1 mp	Impact conditions
m	Maximum
MC	Main chute conditions
R	Retrorocket conditions
SL	Sea level conditions
ST	Stratosphere conditions
STR	External structure
susp	Suspended weight on chute system
v	Vehicle profile
vert	Vertical component
w	Wind component
-	Earth conditions
ENGINEERING EQUATIONS	
1. Heat Shield	and Structural Shell System

There are 13 possible body sections which exist for the overall general shape. The x and r coordinates can be evolved for any shape via equations which are provided. These coordinates are evolved from input body parameters.
For the tension shell option, the x and r coordinate equations are provided, and for the general shape option the x and r coordinates are specfied as inputs.

With the body coordinates in hand for the desired vehicle shape, the area, centroid, moments of inertia, and weight of each section are then calcula. ted.

The final calculation in this portion of the program is to establish the center of gravity of the heat shield and structural shell.
2. Shape Generation Equations
a. SECTI $\varnothing \mathrm{N}$ 1. Spherical Nose Cap
Coordinates Formula Independent Variable Limits

x_{0}	$x_{0}=0$	$\theta_{0}=90^{\circ}$
$x_{0} \rightarrow x_{1}$	$x=R_{N}(1-\sin \theta)$	$\theta_{1}=\theta_{\mathrm{N}}$

${ }^{x} 1$

$$
x_{\mathrm{I}}=\mathrm{R}_{\mathrm{N}}\left(1-\sin \theta_{\mathrm{N}}\right) \quad \theta_{0} \leq \theta \leq \theta_{1}
$$

r_{0}
$r_{0}=0$
$r_{0} \rightarrow r_{1}$
$\mathrm{r}=\mathrm{R}_{\mathrm{N}} \cos \theta$
r_{1}
$\mathrm{r}_{1}=\mathrm{R}_{\mathrm{N}} \cos \theta_{\mathrm{N}}$
b. SECTIDN 2. Torus
$x_{1} \rightarrow x_{2} \quad z=x_{I}+R_{S N}\left(\sin \theta_{N}-\sin \theta\right)$
x_{2}
$x_{2}=x_{1}+R_{5 N}\left(\sin \theta_{N}-\sin \theta_{2}\right)$
$r_{1} \rightarrow r_{2}$
$\boldsymbol{r}=r_{1}+R_{\mathrm{SN}}\left(\cos \theta-\cos \theta_{\mathrm{N}}\right)$
${ }^{r_{2}}$
$r_{2}=f_{1}+R_{S N}\left(\cos \theta_{2}-\cos \theta_{N}\right)$
θ_{2} depends on which option is utilized:
SECTION 3.
$\theta_{2}=\theta_{c}$
SECTION 4.
$\theta_{2}=\beta$
SECTION 5.
$\theta_{2}=\theta_{2 G}$
c. SECTIQN 3 .

| $x_{2} \rightarrow x_{3}$ | x | $=x_{2}+\left(r-r_{2}\right) \cot \theta_{c}$ |
| ---: | :--- | ---: | :--- |
| x_{3} | x_{3} | $=x_{2}+\left(r_{3}-r_{2}\right) \cot \theta_{c}$ |
| $r_{2} \rightarrow r_{3}$ | | |
| r_{3} | r | $=r$ |
| d. SECTIDN 4. | r_{3} | $=R_{C}-R_{S C}\left(I-\cos \theta_{c}\right)$ |

$$
\begin{align*}
& r=\left[r_{3}^{2}+\left(r_{2}^{2}-r_{3}^{2}\right) \frac{\ln \left(\frac{1+\cos \theta}{\sin \theta}\right)}{\ln \frac{1+\cos \beta}{\sin \beta}}\right]^{1 / 2} \beta \leq \theta \leq 90^{\circ} \tag{1}\\
& x=x_{2}+\int_{r_{2}}^{r} \cot \theta d r \tag{2}\\
& r_{3}=R_{C}-R_{S C} \tag{3}
\end{align*}
$$

e. SECTIONN 5.

Table of x and r coordinates (maximum of 25 points)
First pair of coordinates are $\quad x_{2}, r_{2}$
Last pair of coordinates are $\quad x_{3}, r_{3}$
Also specify $\theta_{2 G}$ and $\theta_{3 G}$

$$
\begin{align*}
& x_{2}=\dot{x}_{1}+R_{S N}\left(\sin \theta_{N}-\sin \theta_{2 G}\right) \tag{4}\\
& r_{2}=r_{1}+R_{S N}\left(\cos \theta_{2 G}-\cos \theta_{N}\right) \tag{5}\\
& x_{3}=x_{2}+\left(r_{3}-r_{2}\right) \cos \theta_{2 G} \tag{6}\\
& r_{3}=R_{C}-R_{S C}\left(1-\cos \theta_{2 G}\right) \tag{7}
\end{align*}
$$

f. SECTIDN 6.

$$
\begin{array}{ll}
x_{3} \rightarrow x_{4} & x_{2}=x_{3}+R_{S C}\left(\sin \theta_{3}-\sin \theta\right) \\
x_{4} & x_{4}=x_{3}+R_{S C} \sin \theta_{3} \\
r_{3} \rightarrow r_{4} & x_{3}=r_{3}+R_{S C}\left(\cos \theta-\cos \theta_{3}\right) \\
r_{4} & x_{4}=R_{C}
\end{array} \theta_{3} \leq \theta \leq 0^{\circ}
$$

$\dot{\theta}_{3}$ depends on which option section (2-3) utilizes, i. e:
SECTIDN 3.

$$
\theta_{3}=\theta_{c}
$$

SECTIDN 4.

$$
\theta_{3}=90^{\circ}
$$

SECTIQN 5.

$$
\theta_{3}=\theta_{3 \mathrm{G}}
$$

$$
\overbrace{2}^{-48-}
$$

g．SECTIФN 7.

$\mathrm{x}_{4} \rightarrow \mathrm{x}_{5}$	x	$=\mathrm{x}$
x_{5}	$\mathrm{x}_{5}=\mathrm{x}_{4}+\mathrm{L}_{\mathrm{c}}$	$\mathrm{x}_{4} \leq \mathrm{x} \leq\left(\mathrm{x}_{4}+\mathrm{L}_{\mathrm{c}}\right)$
$\mathrm{r}_{4} \rightarrow \mathrm{r}_{5}$	r	$=\mathrm{R}_{\mathrm{C}}$
r_{5}	r_{5}	$=\mathrm{R}_{\mathrm{C}}$

h．SECTIDN 8.
$x_{5} \rightarrow x_{6}$
$x=x_{5}+\left(r-R_{C}\right) \cot \theta_{B} \quad r_{5} \leq r \leq r_{6}$
$\mathrm{x}_{6} \quad \mathrm{x}_{6}=\mathrm{x}_{5}+\left(\mathrm{r}_{6}-\mathrm{R}_{C}\right) \cot \theta_{B}$
$\mathrm{r}_{5} \rightarrow \mathrm{r}_{6}$
r $=\mathbf{r}$
${ }^{5} 6$

$$
\begin{equation*}
r_{6}=R_{B}-R_{S B}\left(1-\cos \theta_{B}\right) \tag{18}
\end{equation*}
$$

i．SECTIDN 9 ．
$x_{6} \rightarrow x_{7}$
$x=x_{6}+R_{S B}\left(\sin \theta_{B}-\sin \theta\right)$
$\theta_{\mathrm{B}} \leq \theta \leq 0^{\circ}$
x_{7}
$\mathrm{x}_{7}=\mathrm{x}_{6}+\mathrm{R}_{\mathrm{SB}} \sin \theta_{\mathrm{B}}$
$r_{6} \rightarrow r_{7}$
$r=r_{6}+R_{S B}\left(\cos \theta-\cos \theta_{B}\right)$
${ }^{5} 7$
$r_{7}=R_{B}$
J．SECTI $\varphi \mathrm{N} 10$ ．

$\mathrm{x}_{7} \rightarrow \mathrm{x}_{8}$	$\mathrm{x}=\mathrm{x}_{7}-\mathrm{R}_{\mathrm{SB}} \sin \theta$	$0^{\circ} \leq \theta \leq \theta_{\mathrm{A}}$
x_{9}	$\mathrm{x}_{8}=\mathrm{x}_{7}-\mathrm{R}_{\mathrm{SB}} \sin \theta_{\mathrm{A}}$	
$\mathrm{r}_{7} \rightarrow \mathrm{r}_{8}$	$\mathrm{r}=\mathrm{R}_{\mathrm{B}}-\mathrm{R}_{\mathrm{SB}}(1-\cos \theta)$	
r_{8}	$\mathrm{r}_{8}=\mathrm{R}_{\mathrm{B}}-\mathrm{R}_{\mathrm{SB}}\left(1-\cos \theta_{A}\right)$	

k．SECTIDN 11.
$x_{8} \rightarrow x_{9}$
$x=x_{8}+\left(r-r_{8}\right) \cot \theta_{A}$
$r_{9} \leq \mathrm{r} \leq \mathrm{r}_{8}$
x_{9}
$x_{9}=x_{8}+\left(r_{9}-r_{8}\right) \cot \theta_{A}$
${ }_{5} \rightarrow{ }^{-} 9$
$\mathbf{r}=\mathbf{r}$
r_{9}

$$
\mathrm{r}_{9}=\mathrm{R}_{A} \cot \theta_{A}
$$

1. SECTIDN 12.

$$
\begin{array}{ll}
x_{9} \rightarrow x_{10} & x=x_{9}+R_{A}\left(\sin \theta_{A}-\sin \theta\right) \\
x_{10} & x_{10}=x_{9}+R_{A}\left(\sin \theta_{A}+1\right) \\
r_{9} \rightarrow r_{10} & r=R_{A} \cos \theta \\
r_{10} & r_{10}=0
\end{array}
$$

m. SECTIめN 13.

$$
\mathrm{x}_{9} \rightarrow \mathrm{x}_{10} \quad \mathrm{x}=\mathrm{x}_{9} \quad 0 \leq \mathrm{r} \leq \mathrm{R}_{\mathrm{T}}
$$

x_{10}
$x_{10}=x_{9}$
$\mathrm{r}_{\mathrm{g}} \rightarrow \mathrm{r}_{10}$
$\mathrm{r}=\mathrm{R}_{\mathrm{T}}-\mathrm{r}$
${ }^{\mathrm{r}} 10$

$$
\begin{equation*}
\mathbf{t}_{10}=0 \tag{39}
\end{equation*}
$$

3. Shape and Body Parameter Logic

a. The nose cap, SECTION 1. cannot be omitted.
b. If the $R_{S N}$ torus, $\operatorname{SECTIPN} 2$. is omitted, then:
$\theta_{2}=\theta_{\mathrm{N}}$
$x_{2}=x_{1}$
$\mathrm{t}_{2}=\mathrm{r}_{1}$
c. When SECTIDNS 3., 4., 5., and SECTIDN 6, are omatted,

$$
\begin{aligned}
& x_{2}=x_{4} \\
& x_{2}=r_{4}
\end{aligned}
$$

d. If the cylinder, SECTION 7. is omitted, then:

$$
\begin{aligned}
& x_{5}=x_{4} \\
& r_{5}=r_{4}
\end{aligned}
$$

e. SECTIØN 8. and SECTIめN 9. can be omitted together only in which event:
$x_{7}=x_{6}=x_{5}$
$r_{7}=r_{6}=r_{5}$
f. If SECTI \quad N 10. 15 omitted:

$$
x_{8}=x_{7}
$$

${ }^{5} 8=r_{7}$
g. If SECTIDN 11. is omitted, then;

$$
x_{8}=x_{9}
$$

$$
r_{8}=r_{9}
$$

h. Either the aft sphere, SECTIDN 12. or the base, SECTIDN 13. has to be specafied. Both can not be simultaneously present or deleted.:

Listed below are the equations for the surface area, centroid, and moments of inertia of each section. The centroid and moments of inertia are measured about the nose of the vehicle.
a. SECTIDN 1.

1) Area

$$
\begin{equation*}
A=2 \pi R_{N}^{2}\left(1-\sin \theta_{N}\right) \tag{40}
\end{equation*}
$$

2) Centroid

$$
\begin{equation*}
\bar{X}=\frac{\pi R_{N}^{3}}{A}\left[2\left(1-\sin \theta_{N}\right)-\cos ^{2} \theta_{N}\right] \tag{41}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{gather*}
I_{x}=\frac{2 \pi w_{01} R_{N}^{4}}{3 g_{\Theta}} \quad\left[2-\sin \theta_{N}\left(\cos ^{2} \theta_{N}+2\right)\right] \tag{42}\\
-51-
\end{gather*}
$$

$213<$
4) Pitch moment of inertia

$$
\begin{equation*}
\mathrm{I}_{\mathrm{y}}=\frac{2 \pi{ }^{w_{01}} \mathrm{R}_{\mathrm{N}}^{4}}{3 g_{\theta}}\left[1-3 \sin \theta_{\mathrm{N}}+3 \sin ^{2} \theta_{\mathrm{N}}-\sin ^{3} \theta_{\mathrm{N}}\right]+\frac{\mathrm{L}_{\mathrm{x}}}{2} \tag{43}
\end{equation*}
$$

where w_{01} is the sum of the unit heat shield and structure (the structure includes the weight factor STRFAC)
b. SECTIDN 2.

1) Area

$$
\begin{align*}
A & =2 \pi R_{S N}\left[\frac{R_{S N} \cos \theta_{N}}{57.3}\left(\theta_{\mathrm{N}}-\theta_{2}\right)+\mathrm{R}_{\mathrm{SN}}\left(\sin \theta_{\mathrm{N}}-\sin \theta_{2}\right)\right. \\
& \left.+\frac{\mathrm{R}_{\mathrm{SN}} \cos \theta_{\mathrm{N}}\left(\theta_{2}-\theta_{\mathrm{N}}\right)}{573}\right] \tag{44}
\end{align*}
$$

2) Centroid

$$
\begin{align*}
\overline{\mathrm{x}} & =\frac{2 \pi \mathrm{R}_{\mathrm{SN}}}{\mathrm{~A}}\left[\frac{A_{12} \mathrm{~B}_{12}}{57.3}\left(\theta_{\mathrm{N}}-\theta_{2}\right)+\mathrm{B}_{12} \mathrm{R}_{\mathrm{SN}}\left(\sin \theta_{\mathrm{N}}-\sin \theta_{2}\right)\right. \\
& \left.+\mathrm{A}_{12} \mathrm{R}_{\mathrm{SN}}\left(\cos \theta_{\mathrm{N}}-\cos \theta_{2}\right)-\frac{\mathrm{R}_{S N}{ }^{2}}{2}\left(\sin ^{2} \theta_{\mathrm{N}}-\sin ^{2} \theta_{2}\right)\right] \tag{45}
\end{align*}
$$

3) Roll moment of inertia

$$
\begin{align*}
I_{x} & =\frac{2 \pi w_{12} R_{S N}}{g_{\theta}}\left[\frac{A_{12}^{3}\left(\theta_{N}-\theta_{2}\right)}{57.3}+3 A_{12}^{2} R_{S N}\left(\sin \theta_{N}-\sin \theta_{2}\right)\right. \\
& +\frac{3}{2} A_{12} R_{S N}^{2}\left(\frac{\theta_{N}-\theta_{2}}{57.3}+\frac{\sin 2 \theta_{N}-\sin 2 \theta_{2}}{2}\right) \\
& \left.+\frac{\mathrm{R}_{S N}{ }^{3}}{3}\left\{\sin \theta_{N}\left(\cos ^{2} \theta_{N}+2\right)-\sin \theta_{2}\left(\cos ^{2} \theta_{2} \div 2\right)\right\}\right] \tag{46}
\end{align*}
$$

-52-
6 是 $4 \leq$
4)

Pitch moment of inertia

$$
\begin{aligned}
I_{y} & =\frac{2 \pi w_{12}}{g_{\theta}} R_{S N}\left[\frac{A_{12} B_{12}{ }^{2}\left(\theta_{N}-\theta_{2}\right)}{573}+2 A_{12} B_{12} R_{S N}\left(\cos \theta_{N}-\cos \theta_{2}\right)\right. \\
& +\frac{A_{12} R_{S N}^{2}}{2}\left(\frac{\theta_{N}-\theta_{2}}{57: 3}-\frac{\sin 2 \theta_{N}-\sin 2 \theta_{2}}{2}\right)+B_{12}^{2} R_{S N}\left(\sin \theta_{N}-\sin \theta_{2}\right) \\
& \left.-B_{12} R_{S N}{ }^{2}\left(\sin ^{2} \theta_{N}-\sin ^{2} \theta_{2}\right)+\frac{R_{S N}}{3}\left(\sin ^{3} \theta_{N}-\sin ^{3} \theta_{2}\right)\right]+\frac{I_{x}}{2}
\end{aligned}
$$

where,

$$
\begin{aligned}
& A_{12}=r_{l}-R_{S N} \cos \theta_{N} \\
& B_{12}=x_{1}+R_{S N} \sin \theta_{N}
\end{aligned}
$$

and θ_{2} depends on which option is utilized:
$\operatorname{SECTI} \varnothing \mathrm{N} 3 . \quad \theta_{2}=\theta_{\mathrm{c}}$
$\operatorname{SECTI} \varnothing \mathrm{N} 4 . \quad \theta_{2}=\beta$
$\operatorname{SECTIDN} 5 . \quad \theta_{2}=\theta_{2 \mathrm{G}}$
c. SECTIDN 3.

1) Area
$A=\frac{\pi}{\sin \theta_{c}} \quad\left(r_{3}{ }^{2}-r_{2}{ }^{2}\right)$
2) Centroid

$$
\begin{equation*}
\overline{\mathrm{X}}=\frac{\pi}{\mathrm{A} \sin \theta_{c}}\left[\left[A_{23}\left(\mathrm{r}_{3}^{2}-\mathrm{r}_{2}^{2}\right)\right]+\frac{2 \cot \theta_{c}}{3}\left(\mathrm{r}_{3}{ }^{3}-\mathrm{r}_{2}{ }^{3}\right)\right] \tag{49}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
I_{x}=\frac{\pi{ }^{w} 23}{2 g_{\theta} \sin \theta_{c}} \quad\left(r_{3}^{4}-r_{2}^{4}\right) \tag{50}
\end{equation*}
$$

4) Pitch moment of inertia

$$
\begin{align*}
\mathrm{F}_{\mathrm{y}} & =\frac{\pi \mathrm{w}_{23}}{\mathrm{~g}_{\theta} \sin \theta_{c}}\left[\mathrm{~A}_{23}^{2}\left(\mathrm{r}_{3}^{2}-\mathrm{r}_{2}^{2}\right)+\frac{4 \mathrm{~A}_{23}}{3} \cot \theta_{c}\left(r_{3}^{3}-r_{2}^{2}\right)\right. \\
& \left.+\frac{\cot ^{2} \theta_{c}}{2}\left(r_{3}^{4}-r_{2}^{4}\right)\right]+\frac{r_{x}}{2} \tag{51}
\end{align*}
$$

where,

$$
\mathrm{A}_{23}=\mathrm{x}_{2}-\mathrm{r}_{2} \cot \theta_{\mathrm{c}}
$$

d. SECTIDN 4. and 5.

1) Area

$$
\begin{equation*}
A=2 \pi \int \frac{\mathrm{rdx}}{\cos \theta} \tag{52}
\end{equation*}
$$

2) Centroid

$$
\begin{equation*}
\overline{\mathrm{X}}=\frac{2 \pi}{\mathrm{~A}} \int \frac{\mathrm{Ixdx}}{\cos \theta} \tag{53}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
I_{x}=\frac{2 \pi \cdot w_{23}}{g_{\theta}} \int \frac{r^{3} d x}{\cos \theta} \tag{54}
\end{equation*}
$$

4) Pitch moment of inertia
$\mathrm{I}_{\mathrm{y}}=\frac{2 \pi{ }^{\mathrm{w}} 23}{\mathrm{~g}_{\mathrm{e}}} \int \frac{\mathrm{r} \mathrm{x}^{2} \mathrm{dx}}{\cos \theta}+\frac{\mathrm{I}_{\mathrm{x}}}{2}$
SECTIDN 5.
$\theta_{2 G} \leq \theta \leq \theta_{3 G}$
SECTION 4.

$$
\beta \leq \theta \leq 90^{\circ}
$$

e. SECTIDN 6 .

1) Area

$$
\begin{equation*}
A=2 \pi R_{S C}\left[\frac{r_{3} \theta_{3}}{573}+R_{S C}\left(\sin \theta_{3}-\frac{\theta_{3} \cos \theta_{3}}{57.3}\right)\right] \tag{56}
\end{equation*}
$$

2) Centroid

$$
\begin{align*}
\overline{\mathrm{X}} & =\frac{2 \pi \mathrm{R}_{S C}}{A}\left[\frac{A_{34} \mathrm{~B}_{34} \theta_{3}}{57.3}+\mathrm{B}_{34} \mathrm{R}_{S C} \sin \theta_{3}\right. \\
& \left.+A_{34} \mathrm{R}_{\mathrm{SC}}\left(\cos \theta_{3}-1\right)-\frac{\mathrm{R}_{S C}^{2}}{2}\left(\sin ^{2} \theta_{3}\right)\right] \tag{57}
\end{align*}
$$

3) Roll moment of inertiz

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}} & =\frac{2 \pi w_{34} \mathrm{R}_{\mathrm{SC}}}{g_{\oplus}}\left[\frac{\mathrm{A}_{34}{ }^{3} \theta_{3}}{57.3}+3 A_{34}{ }^{2} \mathrm{R}_{\mathrm{SC}} \sin \theta_{3}\right. \\
& \left.+\frac{3}{2} A_{34} \mathrm{R}_{\mathrm{SC}}{ }^{2}\left(\frac{\theta_{3}}{57.3}+\frac{\sin 2 \theta_{3}}{2}\right)+\frac{\mathrm{R}_{\mathrm{SC}}{ }^{3}}{3} \sin \theta_{3}\left(\cos ^{2} \theta_{3}+2\right)\right]
\end{aligned}
$$

4) Pitch moment of inertia

$$
\begin{align*}
\mathrm{I}_{\mathrm{y}} & =\frac{2 \pi \mathrm{w}_{34} \mathrm{R}_{\mathrm{SC}}}{\mathrm{~g}_{\oplus}}\left[\frac{\mathrm{A}_{34} \mathrm{~B}_{34}^{2} \theta_{3}}{57.3}+2 \mathrm{~A}_{34} \mathrm{~B}_{34} \mathrm{R}_{\mathrm{SC}}\left(\cos \theta_{3}-1\right)\right. \\
& +\frac{\mathrm{A}_{34} \mathrm{R}_{\mathrm{SC}}{ }^{2}}{2}\left(\frac{\theta_{3}}{57.3}-\frac{\sin 2 \theta_{3}}{2}\right)+\mathrm{B}_{34}^{2} \mathrm{R}_{\mathrm{SC}} \sin \theta_{3} \\
& \left.-\mathrm{B}_{34} \mathrm{R}_{\mathrm{SC}}{ }^{2} \sin ^{2} \theta_{3}+\frac{\mathrm{R}_{\mathrm{SC}}}{3} \sin ^{3} \theta_{3}\right]+\frac{\mathrm{I}_{\mathrm{x}}}{2} \tag{59}
\end{align*}
$$

where,

$$
\begin{aligned}
& A_{34}=r_{3}-R_{S C} \cos \theta_{3} \\
& B_{34}=x_{3}+R_{S C} \sin \theta_{3}
\end{aligned}
$$

and θ_{3} depends on which option section 2-3 utilizes:
$\operatorname{SECTI} \phi \mathrm{N} 3 . \quad \theta_{3}=\theta_{\mathrm{C}}$
$\operatorname{SECTI} \varnothing \mathrm{N} 4 . \quad \theta_{3}=90^{\circ}$
$\operatorname{SECTIDN} 5 . \quad \theta_{3}=\theta_{3 G}$
f. SECTIDN 7 .

1) Area

$$
\begin{equation*}
A=2 \pi R_{C} L_{c} \tag{60}
\end{equation*}
$$

2) Centroid

$$
\begin{equation*}
\overline{\mathrm{X}}=\mathrm{x}_{4}+\frac{\mathrm{L}_{c}}{2} \tag{61}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
I_{x}=\frac{2 \pi{ }^{w_{45}} R_{C} C^{3}}{g_{\theta}} \quad\left(x_{5}-x_{4}\right) \tag{62}
\end{equation*}
$$

4) Pitch moment of inertia

$$
\begin{equation*}
I_{y}=\frac{2 \pi w_{45} R_{C}}{g_{\oplus}}\left(x_{5}^{3}-x_{4}^{3}\right)+\frac{I_{x}}{2} \tag{63}
\end{equation*}
$$

g. SECTIDN 8.

1) Area
$A=\frac{\pi}{\sin \theta_{B}} \quad\left(r_{6}^{2}-\Sigma_{5}^{2}\right)$
2) Centroid

$$
\begin{equation*}
\overline{\mathrm{X}}=\frac{\pi}{\mathrm{A} \sin \theta_{\mathrm{B}}}\left[A_{56}\left(\mathrm{r}_{6}^{2}-\mathrm{r}_{5}^{2}\right)+\frac{2 \cot \theta_{\mathrm{B}}}{3}\left(\mathrm{r}_{6}{ }^{3}-\mathrm{r}_{5}{ }^{3}\right)\right] \tag{65}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
I_{x}=\frac{\pi w_{56}}{2 g_{\theta} \sin \theta_{B}}\left(5_{6}^{4}-r_{5}^{4}\right) \tag{66}
\end{equation*}
$$

4) Pitch moment of inertia

$$
\begin{align*}
\mathrm{I}_{\mathrm{y}} & =\frac{\pi \mathrm{w}_{56}}{\mathrm{~g}_{\theta} \sin \theta_{\mathrm{B}}}\left[A_{56}^{2}\left(\mathrm{r}_{6}^{2}-\mathrm{r}_{5}^{2}\right)+\frac{4 A_{56}}{3} \cot \theta_{\mathrm{B}}\left(\mathrm{r}_{6}^{3}-\mathrm{r}_{5}^{3}\right)\right. \\
& \left.+\frac{1}{2} \operatorname{cor}^{2} \theta_{\mathrm{B}}\left(\mathrm{r}_{6}^{4}-\mathrm{r}_{5}^{4}\right)\right]+\frac{\mathrm{I}_{\mathrm{x}}}{2} \tag{67}
\end{align*}
$$

where,

$$
A_{56}=x_{5}-R_{C} \cot \theta_{B}
$$

h. SECTIDN 9 .

The area, centroid and inertia equations for this section are identical to SECTICN 6. with the following changes:
x_{3} is replaced by x_{6}
R_{SC} is replaced by R_{SB}
θ_{3} is replaced by θ_{B} (for all options)
5_{3} is replaced by r_{6}

1. SECTIDN 10 .
1) Area

$$
\begin{equation*}
A=2 \pi \mathrm{R}_{\mathrm{SB}}\left[\mathrm{R}_{\mathrm{SB}}\left(\frac{\theta_{\mathrm{A}}}{573}-\sin \theta_{\mathrm{A}}\right)-\frac{\mathrm{R}_{\mathrm{B}} \theta_{\mathrm{A}}}{57.3}\right] \tag{68}
\end{equation*}
$$

2) Centroid

$$
\begin{align*}
\overline{\mathrm{x}} & =\frac{2 \pi \mathrm{R}_{\mathrm{SB}}}{\mathrm{~A}}\left[\frac{\mathrm{R}_{\mathrm{SB}}}{2} \sin ^{2} \theta_{\mathrm{A}}-\frac{\mathrm{A}_{78} \mathrm{~B}_{78} \theta_{\mathrm{A}}}{573}-\mathrm{B}_{78} \mathrm{R}_{\mathrm{SB}} \sin \theta_{\mathrm{A}}\right. \\
& \left.-A_{78} \mathrm{R}_{\mathrm{SB}}\left(\cos \theta_{\mathrm{A}}-1\right)\right] \tag{69}
\end{align*}
$$

3) Roll moment of inertia

$$
\begin{gathered}
I_{x}=-\frac{2 \pi w_{78} R_{S B}}{\varepsilon_{\theta}}\left[\frac{\left[A_{78} 8^{\theta_{A}}\right.}{(57.3)}+3 A_{78}^{2} R_{S B} \sin \theta_{A}\right. \\
\left.+\frac{3}{2} A_{78} R_{S B}^{2}\left(\frac{\theta_{A}}{57.3}+\frac{\sin 2 \theta_{A}}{2}\right)+\frac{R_{S B}^{3}}{3} \sin \theta_{A}\left(\cos ^{2} \theta_{A}+2\right)\right] \\
,-57- \\
R \hat{S}\}
\end{gathered}
$$

4) Pitch moment of inertia

$$
\begin{align*}
\mathrm{I}_{\mathrm{y}} & =-\frac{2 \pi \mathrm{w}_{78} \mathrm{R}_{\mathrm{SB}}}{g_{\oplus}}\left[\frac{\mathrm{A}_{78} \mathrm{~B}_{78}^{2} \theta_{\mathrm{A}}}{57.3}+2 \mathrm{~A}_{78} \mathrm{~B}_{78} \mathrm{R}_{\mathrm{SB}}\left(\cos \theta_{\mathrm{A}}-1\right)\right. \\
& +\frac{\mathrm{A}_{78} \mathrm{R}_{\mathrm{SB}}{ }^{2}}{2}\left(\frac{\theta_{A}}{57.3}-\frac{\sin 2 \theta_{A}}{2}\right)+\mathrm{B}_{78}^{2} \mathrm{R}_{\mathrm{SB}} \sin \theta_{A} \\
& \left.-\mathrm{B}_{78} \mathrm{R}_{S B}{ }^{2}\left(\sin ^{2} \theta_{A}\right)+\frac{\mathrm{R}_{S B}{ }^{3}}{3} \sin ^{3} \theta_{A}\right]+\frac{\mathrm{I}_{\mathrm{x}}}{2} \tag{71}
\end{align*}
$$

where,

$$
\begin{aligned}
& A_{78}=R_{B}-R_{S B} \\
& B_{78}=x_{7}
\end{aligned}
$$

j. SECTIDN II.

1) Area

$$
\begin{equation*}
A=\frac{\pi}{\sin \theta_{A}}\left(r_{9}^{2}-r_{8}^{2}\right) \tag{72}
\end{equation*}
$$

2) Centroid

$$
\begin{equation*}
\overline{\mathrm{x}}=\frac{\pi}{\mathrm{A} \sin \theta_{\mathrm{A}}}\left[A_{89}\left(r_{9}^{2}-\mathrm{r}_{8}^{2}\right)+\frac{2 \cot \theta_{\mathrm{A}}}{3} \quad\left(r_{9}{ }^{3}-\mathrm{r}_{8}{ }^{3}\right)\right] \tag{73}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
I_{x}=\frac{\pi w_{89}}{2 g_{\theta} \sin \theta_{A}}\left(r_{9}^{4}-r_{8}^{4}\right) \tag{74}
\end{equation*}
$$

4) Pitch Moment of inertia

$$
\begin{align*}
\mathrm{I}_{\mathrm{y}} & =\frac{\pi \mathrm{w}_{89}}{\mathrm{~s}_{\otimes} \sin \theta_{A}}\left[\mathrm{~A}_{89}{ }^{2}\left(\mathrm{r}_{9}^{2}-\mathrm{r}_{8}^{2}\right)+\frac{4 A_{89}}{3} \cot \theta_{\mathrm{A}}\left(r_{9}^{3}-\mathrm{r}_{8}^{3}\right)\right. \\
& \left.+\frac{\cot ^{2} \theta_{\mathrm{A}}}{2} \quad\left(\mathrm{r}_{9}{ }^{4}-\mathrm{r}_{8}^{4}\right)^{4}\right]+\frac{\mathrm{I}_{\mathrm{x}}}{2} \tag{75}
\end{align*}
$$

where,

$$
A_{89}=x_{8}-r_{8} \cot \theta_{A}
$$

k. SECTIDN 12 .

1) Area

$$
\begin{equation*}
A=2 \pi R_{A}{ }^{2}\left(\sin \theta_{A}+1\right) \tag{76}
\end{equation*}
$$

2) Centroid

$$
\begin{equation*}
\overline{\mathrm{X}}=\frac{2 \pi \mathrm{R}_{A}}{A}\left[A_{910} R_{A}\left(\sin \theta_{A}+1\right)+\frac{R_{A}^{2}}{2}\left(1-\sin ^{2} \theta_{A}\right)\right] \tag{77}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
I_{X}=\frac{2 \pi w_{910} R_{A}^{4}}{3 g_{\oplus}}\left[\sin \theta_{A}\left(\cos ^{2} \theta_{A}+2\right)+2\right] \tag{78}
\end{equation*}
$$

4) Pitch moment of inertia

$$
\begin{align*}
I_{y} & =\frac{2 \pi{ }^{w_{910}} R_{A}^{2}}{g_{\oplus}}\left[A_{910}{ }^{2}\left(\sin \theta_{A}+1\right)+A_{910} R_{A}\left(1-\sin ^{2} \theta_{A}\right)\right. \\
& \left.+\frac{R_{A}^{2}}{3}\left(\sin ^{3} \theta_{A}+1\right)\right]+\frac{r_{x}}{2} \tag{79}
\end{align*}
$$

where,

$$
A_{910}=x_{9} \div R_{A} \sin \theta_{A}
$$

1. SECTIDN 13.
1) Area

$$
\begin{equation*}
A=\pi R_{T}^{2} \tag{80}
\end{equation*}
$$

2) Centroid

$$
\begin{equation*}
\bar{X}=x_{10} \tag{81}
\end{equation*}
$$

3) Roll moment of inertia

$$
\begin{equation*}
\mathrm{I}_{\mathrm{x}}=\frac{\pi{ }^{\mathrm{w}_{910}} \mathrm{R}_{\mathrm{T}}^{4}}{2 \mathrm{~g}_{\oplus}} \tag{82}
\end{equation*}
$$

4) Pitch moment of inertia

$$
\begin{equation*}
\mathrm{I}_{\mathrm{y}}=\frac{\pi{ }^{w_{910}} \mathrm{X}_{10}^{2} \mathrm{R}_{\mathrm{T}}^{2}}{g_{\theta}}+\frac{\mathrm{I}_{\mathrm{x}}}{2} \tag{83}
\end{equation*}
$$

The weight of each section of the vehicle 1 s calculated in the following manner.

Example
SECTIDN 1.

$$
\begin{array}{ll}
W_{H S}={ }^{W} 01_{H S} A & \text { pound } \\
W_{S T R}=\left(W_{01}{ }_{S T R}{ }^{A}\right)(\operatorname{STRFAC}) & \text { pound } \\
W_{R R}=W_{e}-\sum\left(W_{H S}+W_{S T R}\right) & \text { pound }
\end{array}
$$

The center of gravity of the heat shield and structural shell is calculated, with respect to the nose of the vehicle, by the following expression:

$$
\begin{equation*}
X_{C G_{H / S}}=\frac{W_{01} \bar{x}_{01}+W_{12} \vec{X}_{12}+\cdots \cdots W_{910} \bar{x}_{910}}{W_{01}+W_{12}+\cdots W_{910}} \tag{84}
\end{equation*}
$$

4. Descent System

The descent system portion of this program consists of three options, as shown in Figure 3; namely:
a. Option One -- Two Chute System

1) Drogue chute

Chute diameter \geq specified minimum diameter
2) Main chute
a) Single chute diameter \geq specified minimum diameter
b) Cluster of n chutes if the diameter of a single chute \geq maximum input diameter.
b. Option Two -- Single Chute System

1) Main chute
a) Single chute diameter \geq specifıed minimum diameter
b) Cluster of n chutes if the diameter of a single chute \geq maximum input diameter.
c. Option Three -- Drogue Chute - Retrorocket System
2) Drogue chute

Specified chute diameter
2) Retrorocket

Sized on required ΔV

5. Atmosphere Equations

To solve the equatıons of motion utilized in each of the descent system options, a model atmosphere relating the atmospheric density and speed of sound as a function of altitude must be generated. The model atmosphere wall consist of a troposphere and stratosphere. Equations are not generated for the thermosphere since it is assumed that chute deployment conditions will always be well below the thermosphere region. The inputs required to establish the atmosphere are sea-level temperature, stratosphere temperature, the temperature gradient in the troposphere expressed as a fraction of adiabatic lapse rate, the acceleration of gravity at sea level, the mole fraction of the concentrations of oxygen, nitrogen, carbon droxide, and argon in the atmosphere, and the sea-level density. Nine quantities are used to specify the atmosphere. The atmosphere is assumed to be in hydrostatic equilibrium.
a. Troposphere

$$
\begin{align*}
\mathrm{M} & =28 \mathrm{X}_{\mathrm{N}}+32 \mathrm{X}_{\mathrm{O}}+44 \mathrm{X}_{\mathrm{C}}+40 \mathrm{X}_{\mathrm{A}} \tag{85}\\
\mathrm{R} & =89,516 \\
\mathrm{C}_{\mathrm{P}} & =\frac{R}{M}\left(3.5 \mathrm{X}_{\mathrm{N}}+35 \mathrm{X}_{\mathrm{O}}+4.0 \mathrm{X}_{\mathrm{C}}+2.5 \mathrm{X}_{\mathrm{A}}\right) \tag{86}
\end{align*}
$$

$$
\begin{align*}
& L_{o}=-L_{1}\left(\frac{g_{S L}}{C_{p}}\right) \tag{87}\\
& Z_{S T}=\frac{T_{S T}-T_{S L}}{I_{o}} \tag{88}
\end{align*}
$$

$$
\rho=\rho_{S L}\left(1+\frac{I_{0} z}{T_{S L}}\right)^{-\left(1+\frac{M g_{S L}}{\mathrm{RL}_{0}}\right)}
$$

$$
\begin{equation*}
T=T_{S L}+L_{0} Z \tag{90}
\end{equation*}
$$

$$
\begin{equation*}
a=\sqrt{\frac{C_{p}^{T}}{\frac{C_{p}^{M}}{R}-1}} \tag{91}
\end{equation*}
$$

$$
\text { b. Stratosphere } z>z_{S T}
$$

$$
\begin{equation*}
a=\sqrt{\frac{C_{p} T_{S T}}{\frac{C_{p} M}{R}-1}} \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{S T}=\rho_{S L}\left(\frac{T_{S T}}{T_{S L}}\right)^{-\left(i+\frac{M_{S_{S L}}}{R L_{\mathrm{o}}}\right)} \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
\rho \equiv \rho_{S T} e^{-\frac{M_{g_{S L}}}{\mathrm{RT}_{\mathrm{ST}}}}\left(z-z_{\mathrm{ST}}\right) \tag{94}
\end{equation*}
$$

6. Equations of Motion

For purposes of short-range parachute trajectories, the two-degree-offreedom equations of motion are utilized neglecting the centripetal acceleration and lift component of the vehicle. The equations are as follows:

$$
\begin{align*}
& \mathrm{m} \dot{\mathrm{~V}}=-\mathrm{D}-\mathrm{m} \mathrm{~S}_{\mathrm{SL}} \sin \gamma \tag{95}\\
& \mathrm{v} \dot{\gamma}=-\mathrm{g}_{\mathrm{SL}} \cos \gamma \tag{96}\\
& \dot{\mathrm{z}}=+\mathrm{v} \sin \gamma \tag{97}
\end{align*}
$$

a. Two Chute System - Option 1

1) Drogue chute

It is desired to deploy a drogue chute at some specified Mach number (M_{D}) and altitude (Z_{D}) so as to have the vehicle decelerate to a specified set of main chute deployment conditions of Mach number (M_{MC}) and altitude (Z_{MC}). The intent is to determine the drogue chute canopy area which will satisfy these end conditions (see Figure 3b).

To start the drogue chute trajectory, a minımum specified diameter chute is used in the drag component:

$$
\begin{equation*}
D=\frac{1}{2}\left(C_{D} A\right){ }_{\text {eff }} \rho(Z) V^{2}(Z) \tag{98}
\end{equation*}
$$

where,

$$
\begin{align*}
& \left(C_{D}^{A}\right)_{e f f}=\left(C_{D}^{A}\right)_{v}+\left(C_{D}^{A}{ }_{D}\right. \tag{99}\\
& m=\frac{W_{e}}{g_{\theta}} \tag{100}
\end{align*}
$$

and,

$$
\begin{equation*}
A_{V}=\pi R_{C}^{2} \tag{101}
\end{equation*}
$$

If the minimum specified drogue chute diameter satisfies the main chute deployment conditions such that the main chute deployment Mach number ($M_{M C}$) is reached at a higher altitude than the specified deployment altitude (Z_{MC}), then the drogue is allowed to decelerate to the specified deployment altitude ($Z_{M C}$) and some new somewhat lower Mach number. In this case the design drogue chute diameter is the minimum specified value and the main-chute descent commences at the specified deployment altitude (Z_{MC}) with the newly established Mach number.

If the min imum specified drogue chute diameter does not satisfy the deployment conditions of the main chute, then increasing drogue chute areas (A_{D}) are used until the end conditions are satisfied withun ± 500 feet of the specified main chute deployment altitude ($Z_{M C}$).
a) Drogue Diameter

$$
\begin{equation*}
d_{D}=\sqrt{\frac{4 \Lambda_{D}}{\pi}} \tag{102}
\end{equation*}
$$

b) Drogue Weight

$$
W_{D}=0.11\left[\frac{d_{D}}{18.6} \frac{q_{D}}{65}\right] \quad A_{D}
$$

$\left[\begin{array}{ll}\text { Curve fit from }\end{array}\right.$
c) Opening Drogue Shock Load

$$
\begin{equation*}
P_{D}=x_{D} q_{D}\left(C_{D}^{A)}{ }_{D}\right. \tag{103}
\end{equation*}
$$

[Reference 2]
where,

$$
\begin{equation*}
q_{D}=1 / 2 \rho_{D} v_{D}^{2} \tag{104}
\end{equation*}
$$

2) Main chute

The main chute canopy area is sized such that the suspended package decelerates to a specified vertical descent velocity (see Figure 3b). Terminal descent velocity is assumed such that

$$
\begin{equation*}
A_{M C}=\frac{{ }^{2} g_{S L}{ }^{m_{\text {susp }}}}{\rho_{S L} C_{D_{M C}} v_{v e r t}^{2}} \tag{105}
\end{equation*}
$$

The calculated main chute canopy diameter must be \geq a minimum specified diameter. If the calculated diameter is less than the minimum specified value, then the specified diameter is utilized. In the above equation $m_{\text {susp }}$ is dependent upon when the heat shield and structure is jettisoned from the vehicle. There are two options; namely,
a) Jettison at main chute deployment

$$
\begin{equation*}
m_{\text {susp }}=\frac{W_{R R}-W_{D}}{g_{\oplus}} \tag{106}
\end{equation*}
$$

b) Jettison just prior to impact

$$
\begin{equation*}
m_{\text {susp }}=\frac{W_{e}-W_{D}}{g_{\oplus}} \tag{107}
\end{equation*}
$$

Main Chute Diameter

$$
\begin{equation*}
d_{\mathrm{MC}}=\sqrt{\frac{4 A_{\mathrm{MC}}}{\pi}} \tag{108}
\end{equation*}
$$

b. Main Chute Cluster Option

If the diameter of the mann chute exceeds the maximum specified diameter, then a cluster of n chutes are employed so as to reduce the size of each chute to less than the maximum allowable value. The area of each chute in the cluster is defined as:

$$
\begin{equation*}
A_{M C}=\frac{2 g_{S L} m_{\text {susp }}}{n \rho_{S L} C_{D_{c l}} V_{\text {vert }}^{2}} \tag{109}
\end{equation*}
$$

where n is the number of chutes in the cluster and $C_{D_{c I}}$ the drag coefficient of each chute in the cluster.

$$
\begin{equation*}
C_{D_{c l}}=C_{D_{M C}}(0.95-0.03 \mathrm{n}) \quad[\text { Reference } 2] \tag{110}
\end{equation*}
$$

The diameter of each chute in the cluster is

$$
\begin{equation*}
d_{\mathrm{cl}}=\sqrt{\frac{4 A_{\mathrm{MC}}}{\pi}} \tag{111}
\end{equation*}
$$

hence n should be increased until this diameter \leq the maximum specified diameter.

The number of chutes n is increased in odd increments, i.e., n equal to $3,5,7, \ldots 15$.

The weight of the clustered main chute system is:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{MC}}^{\mathrm{cl}}{ }=\frac{0.013 \mathrm{q}_{\mathrm{MC}}{ }^{A_{\mathrm{MC}}}}{10}(0.98+0.045 \mathrm{n}) \mathrm{a} \tag{112}
\end{equation*}
$$

c. Main Chute Descent Trajectory

With the area of the main chute canopy established via either a single chute or cluster, the actual main chute descent trajectory can be determined from the equations of motion. In general, because of the large size of the main chute, the filling time and/or loss in altitude has to be accounted for before the trajectory commences.

The main chute filling time is expressed as:

$$
\mathrm{t}_{\mathrm{f}}=\mathrm{d}_{\mathrm{MC}}\left(0.05-3.0 \times 10^{-5} \mathrm{~V}_{\mathrm{MC}}\right) \quad[\text { Reference } 2]
$$

Assuming no change in velocity during inflation, the loss in altitude is:

$$
\Delta z_{f}=V_{M C} t_{f} ;
$$

hence the main chute trajectory commences at $\gamma_{M C}, V_{M C}$, and ($Z_{M C}-$ ΔZ_{f}^{-}). The mass(m) used in the equations of motion is $m_{\text {susp }}$ and is dependent upon when the heat shield and structure are jettisoned.

1) Jettison at Main Chute Deployment

$$
\begin{align*}
& m_{\text {susp }}=\frac{\mathbb{W}_{R R}-W_{D}}{g_{\theta}} \tag{114}\\
& \left(C_{D}^{A}\right)_{\text {eff }}=\left(C_{D}^{A}\right)_{M C} \tag{115}
\end{align*}
$$

2) Jettison Just Prior to Impact

$$
\begin{align*}
& m_{\text {susp }}=\frac{W_{e}-W_{D}}{g_{\oplus}} \tag{116}\\
& \left(C_{D}^{A}\right)_{\text {eff }}=\left(C_{D}^{A}\right)_{v}+\left(C_{D} A\right)_{M C} \tag{117}
\end{align*}
$$

Note that if the cluster option is utilized, then $C_{D_{M C}}$ is replaced by (n) $\mathrm{C}_{\mathrm{D}_{\mathrm{c} 1}}$.

3) Single Main Chute Weight

$$
\begin{equation*}
W_{M C}=\frac{0.013 \mathrm{q}_{M C}{ }^{A_{M C}}}{10} \tag{118}
\end{equation*}
$$

4) Opening Maın Chute Shock Load (Single or Cluster)

$$
\begin{array}{r}
P_{M C}=X_{M C} q_{M C}\left(C_{D}^{A}\right)_{M C} \tag{119}\\
- \\
-66= \\
R_{1}, 8<
\end{array}
$$

where,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{MC}}=\frac{1}{2} \rho_{\mathrm{MC}} \mathrm{~V}_{\mathrm{MC}}^{2} \tag{120}
\end{equation*}
$$

5) Landed Impact Weight (Crushup, Payload and Internal Structure)

$$
\begin{equation*}
W_{L}=W_{R R}-W_{D}-W_{M C}-W_{S T R A P S} \tag{121}
\end{equation*}
$$

where,

$$
W_{\text {STRAPS }}=0.05\left(W_{D} \div W_{M C}\right)
$$

d. Single Chute System-Option 2

It is desired to deploy a main chute at a specified Mach number $\left(\mathrm{M}_{\mathrm{MC}}\right)$ and altitude $\left(\mathrm{Z}_{\mathrm{MC}}\right)$ so as to decelerate the package to a specified impact velocity at zero altitude. This option is identical to the main chute portion of Option 1 , including clusters.

e. Drogue Retrorocket System-Option 3

Option 3 consists of a specified drogue chute diameter and a retrorocket. The intent is to deploy the drogue chute at specified deployment Mach number (M_{D}) and altitude (Z_{D}) conditions. The drogue is allowed to decelerate down to impact and the drogue chute impact velocity (V_{D}) is obtained via the equations of motion and/or descent trajectory. The retrorocket is then sized on the ΔV which exists between the resultant of the drogue impact velocity (V_{D}) and horizontal wind velocity (V_{W}), and the required specrfied impact velocity ($V_{\text {amp }}$).

1) Resultant Velocity at Retro Ignition

$$
\begin{equation*}
v_{R}=\sqrt{v_{D}^{2}+v_{W}^{2}} \tag{122}
\end{equation*}
$$

2) Required Rocket ΔV

$$
\begin{equation*}
\Delta V=V_{R}-V_{1 m p} \tag{123}
\end{equation*}
$$

3) Retrorocket Weight (Structure and Fuel)

$$
\begin{equation*}
W_{R}=\frac{W_{i_{1}}-W_{\text {final }}}{M R} \tag{124}
\end{equation*}
$$

where,

$$
\begin{equation*}
w_{f \text { inal }}=w_{11}\left(-\frac{\Delta v}{T_{s p} g_{e}}\right) \tag{125}
\end{equation*}
$$

4) Initial Weight Prior to Retro Ignition

$$
\begin{equation*}
W_{H}=W_{E}-W_{D}-W_{H S}-W_{S T R}-W_{S T R A P S} \tag{126}
\end{equation*}
$$

5) Drogue Chute Weight

$$
\begin{equation*}
W_{D}=0.11\left[\frac{d_{D} q_{D}}{18.6(65)}\right] A_{D} \tag{127}
\end{equation*}
$$

6) Strap Weight

$$
\begin{equation*}
W_{S T R A P S}=005 W_{D} \tag{128}
\end{equation*}
$$

7) Rocket Volume

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OL}}=\frac{\mathbb{W}_{\mathrm{R}}}{\rho_{\mathrm{R}}}=\pi \mathrm{d}_{\mathrm{R}}^{3}\left(\frac{\mathrm{~L}_{\mathrm{R}}}{\mathrm{~d}_{\mathrm{R}}}\right) \tag{129}
\end{equation*}
$$

8) Rocket Diameter

$$
\begin{equation*}
\mathrm{d}_{\mathrm{R}}=\left(\frac{\mathrm{W}_{\mathrm{R}} \mathrm{~d}_{\mathrm{R}}}{\pi \rho_{\mathrm{R}} \mathrm{~L}_{\mathrm{R}}}\right)^{1 / 3} \tag{130}
\end{equation*}
$$

9) Landed Impact Weight (Cīushup, Payload, and Internal Structure)

$$
W_{L}=W_{11}-W_{R}
$$

10) Opening Drogue Shock Load

$$
\begin{equation*}
P_{D}=X_{D} q_{D} \quad\left(C_{D}^{A}\right)_{D} \tag{132}
\end{equation*}
$$

where,

$$
\begin{equation*}
q_{D}=\frac{1}{2} \rho_{D} V_{D}^{2} \tag{133}
\end{equation*}
$$

$$
\begin{aligned}
& -68 \\
& 4 \cos =
\end{aligned}
$$

Since the retrorocket system has some inherent ΔV error, it should be accounted for so as to ascertain a correct resultant impact velocity which is required in the impact attenuation system.
11) Final Resultant Impact Velocity

$$
\begin{equation*}
v_{0}=V_{1 m p}\left(1+\Delta v_{\text {error }}\right) \tag{134}
\end{equation*}
$$

7. Impact Attenuation System

This portion of the program is the impact dynamics of the lander package using crushable material. The intent is to determine the weight and geometric dimensions of the crushable material and residual payload.

The equations presented herein are based on an analysis which accounts for the variation of mass during the crushup stroke and for materials with anisotropic properties. The equations have been derived for the particular case where the crushable material is in the shape of a spherical segment.

There are two options for the type lander configuration and three special cases therein.
a. Option One - Lenticular Shape

1) Lenticular (see Figure 4d).
2) Sphere -- The sphere is a special case of the lenticular with θ_{M} set equal to 90 degrees (see Figure 4 e).
b. Option Two - Spherical Segment Cone-Cylinder Shape
3) Cone-Cylinder--A spherical segment of crushup ($\theta_{M} \leq 90$ degrees) with a cone and cylinder payload package (see Figure 4a).
4) Cylinder .- A special case of the cone-cylinder with the exception that the cone portion of the payload is deleted (see Figure 4b).
5) Cone--A special case of the cone-cylinder with the exception that the cylinder portion is deleted (see Figure 4c).
a. Lenticular - Option One

This option $1 s$ capable of handling either a lenticular or spherical shape lander. The sphere portion of the option is utilized by setting θ_{M} equal to 90 degrees whereas the lenticular utilizes a θ_{M} of anything between 0 and 90 degrees (see Figures 4 d and $4 e$).

1) Geometry Expression

$$
\mathrm{R}_{2}=\left[\frac{3\left(\mathrm{~m}_{1}+\mathrm{m}_{\mathrm{c}}\right)}{2 \pi\left[\rho_{\mathrm{i}} \mathrm{~K}_{1}^{2} \mathrm{~K}_{2}+\rho_{\mathrm{c}}\left\{\left(1-\cos \theta_{M}\right)^{2}\left(2+\cos \theta_{M}\right)-\mathrm{K}_{1}^{2} \mathrm{~K}_{2}\right\}\right]}\right]_{(135)}^{1 / 3}
$$

where,

$$
\begin{aligned}
& m_{1}+m_{c}=\frac{\nabla_{L}}{g_{\oplus}} \\
& K_{I}=\left(1-\frac{y_{m}}{\epsilon R_{2}}-\cos \theta_{M}\right) \\
& K_{2}=\left(2-\frac{2 y_{m}}{\epsilon R_{2}}+\cos \theta_{M}\right)
\end{aligned}
$$

2) Internal Payload and Mass

$$
\begin{equation*}
m_{1}=\frac{2 \pi}{3}\left(\rho_{1} \mathrm{R}_{2}^{3} \quad \mathrm{~K}_{1}^{2} \mathrm{~K}_{2}\right) \tag{136}
\end{equation*}
$$

3) Crushup Mass

$$
\begin{equation*}
m_{C}=\frac{2 \pi}{3} \quad \rho_{\mathrm{C}} \mathrm{R}_{2}^{3}\left[\left(1-\cos \theta_{\mathrm{M}}\right)^{2}\left(2+\cos \theta_{\mathrm{M}}\right)-\mathrm{K}_{1}^{2} \quad \mathrm{~K}_{2}\right] \tag{137}
\end{equation*}
$$

4) Maximum Crushing Stress

$$
\begin{equation*}
S_{\mathrm{m}}=\left(\alpha \rho_{\mathrm{c}}\right)^{1 / \psi} \tag{138}
\end{equation*}
$$

5) Crushup Thickness

$$
\begin{equation*}
\mathrm{t}_{\mathrm{C}}=\left(\frac{\mathrm{y}_{\mathrm{m}}}{\mathrm{R}_{2}}\right) \frac{\mathrm{R}_{2}}{\epsilon} \tag{139}
\end{equation*}
$$

6) Velocity Expression

$$
\frac{\mathrm{v}_{\mathrm{o}}^{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{\mathrm{c}}\right)}{4 \pi \mathrm{~S}_{\mathrm{m}} \mathrm{R}_{2}^{3}}=\int_{0}^{\mathrm{y}_{\mathrm{m}} / \mathrm{R}_{2}} \frac{\left(1-\frac{y}{\epsilon \mathrm{R}_{2}}\right)^{2}\left[\mathrm{I}\left(\frac{\mathrm{y}}{\mathrm{R}_{2}}\right)\right] \mathrm{d}\left(\frac{\mathrm{y}}{\mathrm{R}_{2}}\right)}{\left[1-\frac{\rho_{\mathrm{c}} \pi R_{2}^{3}}{m_{1}+\mathrm{m}_{\mathrm{t}}}\left\{\left(\frac{y}{\epsilon \mathrm{R}_{2}}\right)^{2}-\frac{1}{3}\left(\frac{y}{\epsilon \mathrm{R}_{2}}\right)^{3}\right\}\right]}
$$

where,

$$
\begin{aligned}
& V_{0}=\left(v_{v}{ }^{2}+V_{w}{ }^{2}\right)^{1 / 2} \\
& u=1-\frac{y}{\epsilon R_{2}} \\
& I\left(\frac{y}{R_{2}}\right)=\frac{a_{o}}{(N-2)}\left[1-u^{N-2}\right]+\frac{a_{1}}{2} \frac{\left(1-u^{2}\right)}{\left(u^{2}\right)} \\
& \\
& +\frac{a_{2}}{2 u}\left[\frac{\cos ^{-1} u}{u}-\sqrt{1-u^{2}}\right] \\
& \\
& \quad+\frac{a_{3}}{2}\left[\frac{\left(\cos ^{-1} u\right)^{2}}{u^{2}}-2 \frac{\left(\cos ^{-1} u\right)}{u} \sqrt{1-u^{2}}-2 \ln u\right]
\end{aligned}
$$

The constants $a_{0}, a_{1}, z_{2}, a_{3}$, and N are empirically determined and are used to describe the materials anistropy, i. e. the variation of crushing stress with the direction of loading (see Reference 1).

$$
S(\theta)=a_{0} \cos ^{N} \theta+a_{1}+a_{2} \theta+a_{3} \theta^{2}
$$

7) Acceleration Expression

$$
\begin{equation*}
G_{\text {tmp }}=\frac{2 \pi S_{m} R_{2}^{2}}{\left(m_{1}+m_{c}\right) g_{\oplus}}\left[\frac{\left(1-\frac{y}{\epsilon R_{2}}\right)^{2}\left[I\left(\frac{y}{R_{2}}\right)\right]}{1-\frac{\rho_{c} \pi R_{2}^{3}}{m_{i}+m_{c}}\left\{\left(\frac{y}{\epsilon R_{2}}\right)^{2}-\frac{1}{3}\left(\frac{y}{\epsilon R_{2}}\right)^{3}\right\}}\right] \tag{141}
\end{equation*}
$$

b. Cone-Cylinder-Option Two

This option is capable of utilizing a cone-cylinder, a cone, and a cylinder as the lander payload geometry (see Figures $4 \mathrm{a}, \mathrm{b}$, c). The special case of the cylinder is made possible by setting $L_{c o} / R_{c o}$ equal to zero, whereas the special case of the cone is evolved by setting $L_{c y l} / R_{c o}$ equal to zero.

1) Geometry Expression

$$
\mathrm{R}_{2}=\left[\begin{array}{l}
\left(\mathrm{m}_{1}+\mathrm{m}_{\mathrm{c}}\right)-\frac{\pi \rho_{1}}{3}\left(\frac{\mathrm{~L}_{\mathrm{CO}}}{\mathrm{R}_{\mathrm{CO}}}\right) \mathrm{R}_{\mathrm{CO}}^{3}\left(1+\mathrm{K}_{3}+\mathrm{K}_{3}^{2}\right\}-\frac{\pi \rho_{1}}{3}\left(\frac{\mathrm{R}_{\mathrm{CO}}}{\sin \theta_{\mathrm{M}}}-\frac{\mathrm{R}_{\mathrm{CO}}}{\tan \theta_{\mathrm{M}}}\right)^{2}\left(\frac{2 \mathrm{R}_{\mathrm{CO}}}{\sin \theta_{\mathrm{M}}}+\frac{\mathrm{R}_{\mathrm{CO}}}{\tan \theta_{\mathrm{M}}}\right)-\pi \rho_{1} \mathrm{R}_{\mathrm{CO}}^{3}\left(\frac{\mathrm{~L}_{\mathrm{cyl}}}{\mathrm{R}_{\mathrm{CO}}}\right) \\
\frac{2 \pi}{3} \rho_{\mathrm{c}}\left(1-\cos \theta_{\mathrm{M}}\right) \tag{142}
\end{array}\right.
$$

where,

$$
\mathrm{K}_{3}=\mathrm{I}-\frac{\mathrm{L}_{\mathrm{CO}}}{\mathrm{R}_{\mathrm{CO}}{ }^{\tan \theta_{\mathrm{CO}}}}
$$

2) Internal Payload Mass

$$
\begin{equation*}
\mathrm{m}_{\mathrm{I}}=\frac{\pi \rho_{1} \mathrm{~L}_{\mathrm{CO}}}{3}\left(\mathrm{R}_{\mathrm{CO}}^{2}+\mathrm{R}_{\mathrm{CO}} \mathrm{R}+\mathrm{R}^{2}\right)+\frac{\pi \rho_{1}}{3}\left(\mathrm{R}_{1}-\frac{\mathrm{R}_{\mathrm{CO}}}{\tan \theta_{\mathrm{M}}}\right)^{2}\left(2 \mathrm{R}_{1}+\frac{\mathrm{R}_{\mathrm{CO}}}{\tan \theta_{\mathrm{M}}}\right)+\pi \rho_{1} \mathrm{R}_{\mathrm{CO}}^{2} \mathrm{~L}_{\mathrm{cyl}} \tag{143}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{I}} & =\frac{\mathrm{R}_{\mathrm{CO}}}{\sin \theta_{\mathrm{M}}} \\
\mathrm{R} & =\mathrm{R}_{\mathrm{CO}} \mathrm{~K}_{3}
\end{aligned}
$$

$$
\frac{\mathrm{y}_{\mathrm{m}}}{\mathrm{R}_{2}}=\epsilon\left(1-\frac{\mathrm{R}_{\mathrm{Co}}}{\mathrm{R}_{2} \sin \theta_{\mathrm{M}}}\right)
$$

3) Crushup Miass

$$
\begin{equation*}
\mathbf{m}_{c}=\frac{2 \pi \rho_{c}}{3}\left(1-\cos \theta_{M}\right)\left(R_{2}^{3}-R_{1}^{3}\right) \tag{144}
\end{equation*}
$$

Note that the velocity and acceleration equations are identical as those utilized in the lenticular option.
4) Cylinder Length

$$
\begin{equation*}
\mathrm{L}_{\mathrm{cyI}}=\left(\frac{\mathrm{L}_{\mathrm{cyl}}}{\mathrm{R}_{\mathrm{CO}}}\right) \mathrm{R}_{\mathrm{CO}} \tag{145}
\end{equation*}
$$

5) Cone Length

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CO}}=\left(\frac{\mathrm{L}_{\mathrm{CO}}}{\mathrm{R}_{\mathrm{CO}}}\right) \quad \mathrm{R}_{\mathrm{CO}} \tag{146}
\end{equation*}
$$

8. Engineering Logic

In order to satisfy the geometry constraints of the lander, the impact velocity, and impact G simultaneously, iteration is required between specufred values of the crushup density, i. e. $\rho_{c \operatorname{man}}$ and $\rho_{c \max }$. Both the lenticular option and the cone-cylinder option are started by using ρ_{c} max and then satisfying the geometry and velocity expressions. With these two expressions satisfied, the acceleration equation is checked to see that Gpeak \leq $G_{s p e c i f i e d . ~ I f ~ t h i s ~ r e q u i r e m e n t ~}^{1 s}$ not satisfied, then ρ_{c} is decreased by increments towards $\rho_{c \min }$ until $G_{\text {peak }} \leq G_{\text {specified }}$ If at $\rho_{c m i n}, G_{p e a k}$ is still greater than $G_{\text {specified }}$, then these are the values used, min e., $P_{c m i n}$ and the assocrated G and geometry. The method of solution is depicted by a flow diagram in F'igure 8.

9. Lander Packagmg Design

The intent in this portion of the program is to package the lander (payload and crushup) and descent system within the vehicle such that it both fits within the inboard profile of the vehicle and also satisfies a minimum center of gravity constraint. To include the thickness of the heat shield and structure in the packaging design it is necessary to redefine the lander outer radius as.

$$
\begin{equation*}
\mathrm{R}_{2}^{\prime}=\mathrm{R}_{2}+\mathrm{t}_{\mathrm{H} / \mathrm{S}} \tag{147}
\end{equation*}
$$

where $\mathrm{t}_{\mathrm{H}} / \mathrm{S}$ is the thickness in feet.
The design is started by placing the lander at the nose of the vehicle, $1 . e$. $\Delta x=0$; if the constrants are not met, then the lander is moved aft a given Δx untrl design is made possible. The geometry constraints are cated below
(DOUBLE ITERATION ON t_{c} AND P_{C})

65-11695

Figure 8 METHOD OF SOLUTION OF IMPACT ATTENUATOR DESIGN
-74.
$E 236$
a. Lenticular Option

$$
\begin{aligned}
& 2 \mathrm{R}_{2}^{\prime}\left(\mathrm{I}-\cos \theta_{\mathrm{M}}\right)<\mathrm{X}_{V_{\mathrm{final}}}-\Delta \mathrm{x} \\
& \mathrm{R}_{2}^{\prime} \sin \theta_{M} \leq \mathrm{R}_{\mathrm{C}}
\end{aligned}
$$

b. Cone-Cylinder Option

$$
\begin{aligned}
& \left(\mathrm{R}_{2}^{\prime}-\frac{\mathrm{R}_{\mathrm{CO}}}{\tan \theta_{\mathrm{M}}}+\mathrm{L}_{c y l}+\mathrm{L}_{\mathrm{CO}}\right) \leq \mathrm{x}_{\mathrm{V}_{\mathrm{final}}}-\Delta \mathrm{x} \\
& \mathrm{R}_{2}^{\prime} \sin \theta_{\mathrm{M}} \leq \mathrm{R}_{\mathrm{C}}
\end{aligned}
$$

If the above geometry constraints are not satisfied, then return to the 1 m pact attenuation system and increase ρ_{C} to $\rho_{C_{m a x}}$ and find new, smaller lander dimensions. With these new dimensions, check the geometry constraints again.

If $\rho C_{m a x}$ were already utilized in the impact attenuation system, then stop the problem realizing that packagang is impossible for the given design constraints.

Once the overall geometry constraints are satisfied, one can proceed to check the x and r coordinates of the lander (x_{p} and r_{p}) agannst the anboard profile coordınates x_{v} and r_{v} (see Figure 5). An overall logic diagram is shown in Figure 9, depicting the manner in which the packaging is done.
a. Lenticular (Sphere) Option

$$
\begin{align*}
& x_{p}=R_{2}^{\prime}(I-\cos \theta)+\Delta x, r_{p}=R_{2}^{\prime} \sin \theta \quad 0<\theta \leq \theta_{M} \tag{148}\\
& x_{p}=R_{2}^{\prime}\left(1-2 \cos \theta_{M}+\cos \theta\right)+\Delta X, r_{p}=R_{2}^{\prime} \sin \theta \quad \theta_{M} \leq \theta<0 \tag{149}
\end{align*}
$$

b. Cone-CyIinder Option

$$
\begin{align*}
& x_{p}=R_{2}^{\prime}(1-\cos \theta)+\Delta x r_{p}=R_{2}^{\prime} \sin \theta \quad 0 \leq \theta \leq \theta_{M}(1 \tag{150}\\
& x_{p}=R_{2}^{\prime}\left(I-\cos \theta_{M}\right)+t \cos \theta_{M}+\Delta X+L \quad r_{p}=R_{C O} \quad 0 \leq L \leq L_{c y l}(1 \\
& x_{p}=R_{2}^{\prime}\left(1-\cos \theta_{M}\right)+t \cos \theta_{M}+L_{c y l}+\Delta X+L, r_{p}=R_{C O}-\frac{L}{R_{C O}-R}(1 \tag{151}\\
& 0 \leq I \leq L_{C O} \tag{152}
\end{align*}
$$

Figure 9 PACKAGING LOGIC DIAGRAM

Vehicle Coordinate Logic -- Solve for x_{p} from the given equations and then determine which body section x_{p} occurs. With this establushed, go to that section and find r_{v} noting that r_{p} must be equal to or smaller than r_{v}.

1) $\operatorname{SECTI} \Phi \mathrm{N} 1.0$

$$
\begin{equation*}
r_{v}=R_{N} \cos \theta \tag{153}
\end{equation*}
$$

where,

$$
\theta=\arcsin \left(\frac{\mathrm{R}_{\mathrm{N}}-x_{\mathrm{p}}}{\mathrm{R}_{\mathrm{N}}}\right)
$$

2) SECTIDN 2.

$$
\begin{equation*}
r_{\mathrm{v}}=\mathrm{r}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\cos \theta-\cos \theta_{\mathrm{N}}\right) \tag{154}
\end{equation*}
$$

where,

$$
\theta=\arcsin \left(\frac{\mathrm{R}_{\mathrm{SN}} \sin \theta_{\mathrm{N}}-\mathrm{x}_{\mathrm{p}}+\mathrm{x}_{1}}{\mathrm{R}_{\mathrm{SN}}}\right)
$$

3) $\operatorname{SECTI} \phi \mathrm{N} 3$.

$$
\begin{equation*}
r_{v}=\frac{x_{p}+r_{2} \cot \theta_{c}-x_{2}}{\cot \theta_{c}} \tag{155}
\end{equation*}
$$

4) SECTIゆN 4. and 5.

Linear extrapolation is used for both of these options.
5) SECTIดN 6.

$$
\begin{equation*}
r_{v}=r_{3}+R_{S C}\left(\cos \theta-\cos \theta_{3}\right) \tag{156}
\end{equation*}
$$

where,

$$
\theta=\arcsin \left(\frac{\mathrm{x}_{3}+\mathrm{R}_{\mathrm{SC}} \sin \theta_{3}-\mathrm{x}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{SC}}}\right)
$$

and,
a) SECTIDN 3.

$$
\begin{aligned}
& \theta_{3}=\theta_{C} \\
& r_{3}=R_{C}-R_{S C}\left(1-\cos \theta_{C}\right) \\
& x_{3}=x_{2}+\left(r_{3}-r_{2}\right) \cot \theta_{c}
\end{aligned}
$$

b) SECTIDN 4.

$$
\begin{aligned}
& \theta_{3}=90 \text { degrees } \\
& \mathrm{r}_{3}=\mathrm{R}_{\mathrm{C}}-\mathrm{R}_{\mathrm{SC}} \\
& \mathrm{X}_{3} \text { is the last point in this section. }
\end{aligned}
$$

c) SECTIDN 5 .

$$
\theta_{3}=\theta_{3 G}
$$

r_{3} and x_{3} are the last values of the input tables.
6) SECTIDN 7.

$$
F_{v}=R_{C} \quad \text { for all } x_{P}^{\prime} s \text { in this section. }
$$

7) SECTIQN 8.

$$
\begin{equation*}
r_{v}=\frac{x_{p}+R_{C} \cot \theta_{B}-x_{5}}{\cot \theta_{B}} \tag{157}
\end{equation*}
$$

8) SECTIDN 9.

$$
\begin{equation*}
r_{\mathrm{v}}=\mathrm{r}_{6}+\mathrm{R}_{\mathrm{SB}}\left(\cos \theta-\cos \theta_{\mathrm{B}}\right) \tag{158}
\end{equation*}
$$

where,

$$
\theta=\arcsin \left(\frac{x_{6}+\mathrm{R}_{S B} \sin \theta_{B}-x_{\mathrm{p}}}{\mathrm{R}_{\mathrm{SB}}}\right)
$$

9) SECTIDN 10.

$$
\begin{equation*}
r_{v}=R_{B}-R_{S B}(1-\cos \theta) \tag{159}
\end{equation*}
$$

where,

$$
\theta=\arcsin \left(\frac{\mathrm{x}_{7}-\mathrm{x}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{SB}}}\right)
$$

1'0) SECTIDN 11.

$$
\begin{equation*}
r_{v}=\frac{x_{p}+r_{8} \cot \theta_{A}-x_{8}}{\cot \theta_{A}} \tag{160}
\end{equation*}
$$

11) SECTIดN 12.

$$
\begin{equation*}
r_{v}=R_{A} \cos \theta \tag{161}
\end{equation*}
$$

where,

$$
\theta=\arcsin \frac{x_{9}+R_{A} \sin \theta_{A}-x_{p}}{R_{A}}
$$

12) SECTIDN 13.

$$
\begin{equation*}
r_{v}=0 \tag{162}
\end{equation*}
$$

If for a limiting value of $\Delta \mathrm{X}$, the lander still cannot fit within the inboard profile of the vehicle, then the design must return to the impact attenuation system and increase ρ_{C} to $\rho_{C_{m a x}}$ so as to assure a smaller dimensional lander which may or may not fit into the vehicle.

If the lander is finally positioned within the vehicle, the overall center of gravity position must be found such as to check the requirement that
c.g. overall \leq c.g. specified

Overall Vehicle Center of Gravaty
a. Lenticular (sphere) Option

$$
\begin{equation*}
x_{\mathrm{CG}_{\mathrm{o}}}=\frac{\left[105\left(w_{\mathrm{D}}+w_{\mathrm{MC}}\right)+w_{\mathrm{c}}+w_{1}\right]\left[\Delta x_{f}+\mathrm{R}_{2}\left(1-\cos \theta_{\mathrm{M}}\right)\right]+w_{\mathrm{H} / \mathrm{S}} \mathrm{x}_{\mathrm{CG}} / \mathrm{S} /{ }_{\mathrm{R}}\left(\Delta \mathrm{x}_{\mathrm{f}}+\frac{\mathrm{L}_{\mathrm{R}}}{2}\right)}{w_{\mathrm{C}}} \tag{163}
\end{equation*}
$$

b. Cone Cylinder Option

$$
x_{C G_{0}}=\frac{\bar{w}_{H / S} x_{C G_{H} / S}+w_{R}\left(\Delta x_{f}+\frac{L_{R}}{2}\right)+w_{c}\left(\Delta x_{f}+x_{C G C}\right)+w_{1}\left(\Delta x_{f}+\varepsilon+x_{C G_{1}}\right)+1 \cos \left(w_{D}+w_{M C}\right)\left(\Delta x_{f}+x \cos \theta_{M}+\frac{R_{2}}{10}\right)}{\bar{w}_{e}}
$$

where,

$$
\begin{equation*}
\mathrm{X}_{\mathrm{CGC}}=\frac{\left[\mathrm{R}_{2}\left(\mathrm{R}_{2}^{3}-\mathrm{R}_{1}^{3}\right)\left(1-\cos \theta_{\mathrm{M}}\right)-\left(\frac{3 \mathrm{R}_{2}^{4}-\mathrm{R}_{1}^{4}}{8}\right) \sin ^{2} \theta_{\mathrm{M}}\right]}{\left(\mathrm{R}_{2}^{3}-\mathrm{R}_{1}^{3}\right)\left({ }_{1}-\cos \theta_{\mathrm{M}}\right) \vdots} \tag{164}
\end{equation*}
$$

where,

$$
\begin{aligned}
& X_{C G i}=\frac{W_{C A P} X_{C A P}+W_{c y l}\left(h+\frac{L_{c y l}}{2}\right)+W_{c o n e}\left(h+L_{c y l}+X_{c o n e}\right)}{\left(W_{C A P}+W_{c y l}+W_{c o n e}\right)} \\
& { }^{W_{C A P}}=\frac{\pi h^{2} \rho_{1}}{3}\left(3 R_{1}-h\right) g_{\theta} \\
& W_{c y 1}=\pi \rho_{1} R_{C O}{ }^{2} L_{c y l} g_{\theta} \\
& \tilde{W}_{\text {cone }}=\frac{\pi \rho_{1} L_{C O}}{3} \quad\left(\mathrm{R}_{\mathrm{CO}}{ }^{2}+\mathrm{R}_{\mathrm{CO}} \mathrm{R}+\mathrm{R}^{2}\right) g_{\oplus} \\
& \mathrm{X}_{\mathrm{CAP}}=\frac{\pi}{\mathrm{V}_{\mathrm{CAP}}}\left(\frac{2 h^{3} \mathrm{R}_{1}}{3}-\frac{h^{4}}{4}\right) \\
& V_{C A P}=\frac{\pi h^{2}}{3}\left(3 R_{1}-h\right) \\
& X_{\text {cone }}=\frac{L_{C O}\left(R_{C O}-\frac{2 L_{c o}}{3 \tan \theta_{C O}}\right)}{2 R_{C O}-\frac{L_{c o}}{\tan \theta_{C O}}} \\
& \mathrm{~h}=\mathrm{R}_{1}\left(\mathrm{I}-\cos \theta_{\mathrm{M}}\right)
\end{aligned}
$$

If $x_{c g_{o v e r a l l}}>x_{c g_{\text {specIfied }}}$ then the design returns to the impact attenuation system and increases ρ_{c} to $\rho_{\mathrm{c}_{\text {max }}}$. If $\rho_{\mathrm{c}_{\text {max }}}$ was already utilized, then packaging is impossible for the given design constraints. If the center of gravity constraint is satisfied, i. e. $X_{C G}<X_{C G}$ specified, then the moments of inertia of the entire vehicle about the overall center of gravity can be established.

Total Moments of Intertia

1) Lenticular (sphere) option

$$
\begin{align*}
\mathrm{I}_{\mathrm{x}_{\mathrm{TOT} / \mathrm{X}_{\mathrm{CG}_{\mathrm{O}}}}} & =\sum \frac{\mathrm{I}_{\mathrm{H} / \mathrm{S}}}{}+\frac{1}{2} \frac{\mathbb{W}_{\mathrm{R}}}{\mathrm{~g}_{\theta}}\left(\frac{\mathrm{D}_{\mathrm{R}}}{2}\right)^{2}+\frac{4 \pi}{15} \rho_{\mathrm{C}_{\mathrm{f}}}\left(\mathrm{R}_{2}{ }^{5}-\mathrm{R}_{1}^{5}\right)\left[2-\cos \theta_{\mathrm{M}}\left(\sin ^{2} \theta_{\mathrm{M}}+2\right)\right] \\
& +\pi \rho_{1}\left(\frac{4}{3} \mathrm{R}_{\mathrm{I}}{ }^{2} \mathrm{~h}^{3}-\mathrm{R}_{1} \mathrm{~h}^{4}+\frac{\mathrm{h}^{5}}{5}\right)+\frac{1.05\left(\mathbb{W}_{\mathrm{D}}+\mathbb{W}_{M C}\right)}{2 g_{\theta}}\left[\left(\mathrm{R}_{2}+\mathrm{tcc}\right)^{2}-\mathrm{R}_{2}{ }^{2}\right] \tag{165}
\end{align*}
$$

where,

$$
t_{c c}=\frac{080\left(W_{D}+W_{M C}\right)}{P_{c h u t e} R_{2}^{2}}
$$

$$
\mathrm{y}_{\mathrm{TOT} / \mathrm{x}_{\mathrm{CG}_{\mathrm{O}}}}=\sum \mathrm{Y}_{\mathrm{H} / \mathrm{s}}+\frac{\mathrm{w}_{\mathrm{H} / \mathrm{S}}}{\mathrm{~g}_{\mathrm{\oplus}}}\left[\left(\mathrm{x}_{\mathrm{CG}_{\mathrm{O}}}-\mathrm{x}_{\mathrm{CG}}^{\mathrm{H} / \mathrm{S}}\right)^{2}-\mathrm{x}_{\mathrm{CG}}^{\mathrm{H} / \mathrm{S}}{ }^{2}\right]
$$

$$
+\frac{\mathrm{E}_{\mathrm{R}}}{g_{\Theta}}\left(\frac{\mathrm{L}_{\mathrm{R}}^{2}}{12}+\frac{\mathrm{D}_{\mathrm{R}}^{2}}{16}\right)+\frac{\mathrm{W}_{\mathrm{R}}}{\mathrm{~g}_{\oplus}}\left(\mathrm{x}_{\mathrm{CG}_{\mathrm{O}}}-\Delta \mathrm{x}_{\mathrm{f}}-\frac{\mathrm{L}_{\mathrm{R}}}{2}\right)^{2}
$$

$$
+\frac{4 \pi}{3} \rho_{\mathrm{c}_{\mathrm{f}}} \mathrm{R}_{2}^{2}\left(\mathrm{R}_{2}^{3}-\mathrm{R}_{1}^{3}\right)\left(1-\cos \theta_{\mathrm{M}}\right)-\pi \mathrm{R}_{2} \rho_{\mathrm{c}_{\mathrm{f}}}\left(\mathrm{R}_{2}^{4}-\mathrm{R}_{1}^{4}\right) \sin ^{2} \theta_{\mathrm{M}}
$$

$$
+\frac{4 \pi}{15} \rho_{\mathrm{c}_{\mathrm{f}}}\left(\mathrm{R}_{2}^{5}-\mathrm{R}_{1}^{5}\right)\left(1-\cos ^{3} \theta_{\mathrm{M}}\right)+\frac{2 \pi}{15} \rho_{\mathrm{c}_{\mathrm{f}}}\left(\mathrm{R}_{2}^{5}-\mathrm{R}_{1}^{5}\right)\left[2-\cos \theta_{M}\left(\sin ^{2} \theta_{\mathrm{M}}+2\right)\right]
$$

$$
-2 \rho_{c_{f}} V_{s} \bar{X}_{s}^{2}+2 \rho_{c_{f}} V_{s}\left[R_{2}\left(1-\cos \theta_{M}\right)-\bar{X}_{s}\right]^{2}
$$

$$
\begin{aligned}
& +\frac{W_{c}+W_{1}+1.05\left(W_{D}+W_{M C}\right)}{g_{\theta}}\left[X_{C G_{O}}-\Delta X_{f}-R_{2}\left(1-\cos \theta_{M}\right)\right]^{2} \\
& +\pi \rho_{1}\left(\mathrm{R}_{1} \mathrm{~h}^{4}-\frac{2 h^{5}}{5}\right)+\frac{\pi \rho_{1}}{2}\left(\frac{4}{3}{R_{1}}^{2} \mathrm{~h}^{3}-\mathrm{R}_{1} \mathrm{~h}^{4}+\frac{\mathrm{h}^{5}}{5}\right)-2 \rho_{1} \mathrm{v}_{\mathrm{CAP}} \mathrm{X}_{\mathrm{CAP}}{ }^{2} \\
& +2 \rho_{1} \mathrm{~V}_{\mathrm{CAP}}\left(\mathrm{~h}-\mathrm{x}_{\mathrm{CAP}}\right)^{2}+\frac{105\left(W_{\mathrm{D}}+W_{M C}\right)}{\mathrm{g}_{\oplus}}\left[\frac{\mathrm{R}_{2}^{2}}{300}+\frac{\left(\mathrm{R}_{2}+\mathrm{t}_{\mathrm{cc}}\right)^{2}}{4}\right]
\end{aligned}
$$

where,

$$
\begin{aligned}
& v_{S}=\frac{2 \pi}{3}\left(1-\cos \theta_{m}\right)\left(R_{2}^{3}-R_{1}^{3}\right) \\
& \bar{x}_{S}=\frac{2 \pi}{v_{S}}\left[\frac{R_{2}\left(R_{2}^{3}-R_{1}^{3}\right)}{3}\left(1-\cos \theta_{M}\right)-\frac{\left(R_{2}^{4}-R_{1}^{4}\right)}{8} \sin ^{2} \theta_{M}\right]
\end{aligned}
$$

b. Cone-cylinder option

$$
\begin{align*}
& +\frac{\pi \rho_{\mathrm{I}}}{2}\left[\frac{4}{3} \mathrm{R}_{\mathrm{I}}^{2} \mathrm{~h}^{3}-\mathrm{R}_{1} \mathrm{~h}^{4}+\frac{\mathrm{h}^{5}}{5}\right]+\frac{W_{\mathrm{cyl}}}{2 g_{\theta}} \mathrm{R}_{\mathrm{CO}}{ }^{2} \\
& +\frac{3}{10} \rho_{i} \frac{\pi L_{c o}}{3}\left(R_{C O}{ }^{2}+R_{C O} R^{2}+R^{2}\right)\left(\frac{R_{C O}^{5}-R^{5}}{R_{C O}^{3}-R^{3}}\right)+\frac{105}{2} \frac{\left(\mathbb{V}_{D}+W_{M C}\right)}{g_{\theta}}\left[\left(R_{2}^{1}+t_{c c}\right)^{2}-R_{2}{ }^{2}\right] \\
& { }_{\mathrm{y}_{\mathrm{TOT} / \mathrm{x}_{\mathrm{CG}_{\mathrm{O}}}}}=\sum{ }^{\mathrm{I}_{\mathrm{H} / \mathrm{s}}}+\left(\frac{{ }^{W} \mathrm{H} / \mathrm{s}}{\mathrm{~s}_{\theta}}\right)\left[\left(\mathrm{x}_{\mathrm{CG}_{\mathrm{O}}}-\mathrm{x}_{\mathrm{CG}_{\mathrm{H} / \mathrm{S}}}\right)^{2}-\mathrm{X}_{\mathrm{CG}_{\mathrm{H} / \mathrm{s}}}{ }^{2}\right] \tag{168}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{W_{R}}{g_{\oplus}}\left[\frac{L_{R}{ }^{2}}{12}+\frac{D_{R}^{2}}{16}\right]+\frac{W_{R}}{g_{\theta}}\left[X_{C G_{O}}-\Delta X_{f}-\frac{L_{R}}{2}\right]^{2} \\
& +\frac{2 \pi}{3} \rho_{\mathrm{c}_{\mathrm{f}}} R_{2}^{2}\left(R_{2}^{3}-R_{1}^{3}\right)\left(1-\cos \theta_{M}\right)-\frac{\pi R_{2} \rho_{c_{f}}}{2}\left(R_{2}^{4}-R_{1}^{4}\right) \sin ^{2} \theta_{M} \\
& +\frac{2 \pi}{15} \rho_{c_{f}}\left(R_{2}^{5}-R_{1}^{5}\right)\left(1-\cos ^{3} \theta_{M}\right)+\frac{\pi}{15} \rho_{c_{\mathrm{F}}}\left(\mathrm{R}_{2}^{5}-R_{1}^{5}\right)\left[2-\cos \theta_{M^{\prime}}\left(\sin ^{2} \theta_{M}+2\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\rho_{\mathrm{C}_{\mathrm{f}}} \mathrm{~V}_{\mathrm{S}} \overline{\mathrm{X}}_{\mathrm{S}}^{2}+\frac{2 \pi}{3} \rho_{\mathrm{c}_{\mathrm{f}}}\left(1-\cos \theta_{\mathrm{M}}\right)\left(\mathrm{R}_{2}{ }^{3}-\mathrm{R}_{1}{ }^{3}\right)\left(\mathrm{X}_{\mathrm{CG}} \mathrm{O}-\Delta \mathrm{X}_{\mathrm{f}}-\overline{\mathrm{X}}_{\mathrm{S}}\right)^{2} \\
& +\pi \rho_{1}\left[\frac{R_{1} h^{4}}{2}-\frac{h^{5}}{5}\right]+\frac{\pi}{4} \rho_{1}\left[\frac{4}{3} \mathrm{R}_{1}{ }^{2} h^{3}-R_{1} h^{4}+\frac{h^{5}}{5}\right]-\rho_{1} V_{C A P} \bar{X}_{C A P}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{W_{c y l}}{g_{\oplus}}\left(X_{C G_{O}}-\Delta X_{f}-t_{c}-h-\frac{L_{c y l}}{2}\right)+ \\
& +\frac{W_{\text {cone }}}{g_{\theta}}\left[\frac{\mathrm{L}_{\text {co }}{ }^{2}}{10}\left\{\frac{\mathrm{R}_{\mathrm{CO}}{ }^{2}+3 \mathrm{R}_{\mathrm{CO}} \mathrm{R}+6 \mathrm{R}^{2}}{\mathrm{R}_{\mathrm{CO}}{ }^{2}+\mathrm{R}_{\mathrm{CO}} \mathrm{R}+\mathrm{R}^{2}}\right\}+\frac{3}{20}\left\{\frac{\mathrm{R}_{\mathrm{CO}}{ }^{5}-\mathrm{R}^{5}}{\mathrm{R}_{\mathrm{CO}}{ }^{3}-\mathrm{R}^{3}}\right\}\right] \\
& -\frac{W_{\text {cone }}}{g_{\oplus}}\left(X_{\text {cone }}\right)^{2}+\frac{W_{\text {cone }}}{g_{\Theta}}\left(X_{C G_{O}}-\Delta X_{f}-\tau_{c}-h-L_{\text {cyl }}-\bar{X}_{\text {cone }}\right)^{2} \\
& +\frac{1.05\left(W_{M C}+W_{D}\right)}{g_{\theta}}\left[\frac{R_{2}{ }^{2}}{300}+\frac{\left(R_{2}+t_{c c}\right)^{2}}{4}\right]+\frac{1.05\left(W_{M C}+W_{D}\right)}{g_{\theta}}\left[X_{C G_{O}}-\Delta X_{f}-R_{2}\left(1-\cos \theta_{M 1}\right)-\frac{R_{2}}{10}\right]^{2}
\end{aligned}
$$

10. Internal Structure

The internal structure consists of a cap or spherical segment, a cylinder, and a cone for all possible lander geometrics. The cap is designed for a buckling mode of failure assuming the maximum stress to be that applied to the crushup during impact. The cylinder is also designed for a buckling mode of fallure and assumes the internal payload in the cylinder to be reacted at one end. The cone is designed by assuming it reacts the parachute opening shock load in tension.
a. Lenticular (Sphere) Option

1) Face sheet thickness

$$
\begin{equation*}
\mathrm{f}_{\mathrm{s}}=0117\left(\frac{\mathrm{~S}_{\mathrm{m}}}{144 \mathrm{E}_{\mathrm{fs}}}\right)^{3 / 7}\left(1-\cos \theta_{\mathrm{M}}\right)^{1 / 7} \mathrm{R}_{1} \tag{169}
\end{equation*}
$$

t_{s} must be \geq than a minimum gage face sheet $t_{f_{m i n}}$
2) Area

$$
\begin{equation*}
A=4 \pi R_{1}^{2}\left(1-\cos \theta_{M}\right) \tag{170}
\end{equation*}
$$

3) Internal structure weight

$$
\begin{equation*}
w=\frac{\rho_{\mathrm{fs}} A \mathrm{t}_{\mathrm{fs}}}{12} \tag{171}
\end{equation*}
$$

b. Cone-Cylinder Option

1) CAP

$$
\begin{align*}
& { }^{A_{C A P}}=2 \pi R_{1}{ }^{2}\left(1-\cos \theta_{\mathrm{M}}\right) \tag{172}\\
& { }^{\mathrm{t}_{\mathrm{fs}}}{ }_{\mathrm{CAP}}=0.117\left(\frac{\mathrm{~S}_{\mathrm{m}}}{144 \mathrm{E}_{\mathrm{fs}}}\right)^{3 / 7}\left(1-\cos \theta_{\mathrm{M}}\right)^{1 / 7} \mathrm{R}_{1} \tag{173}\\
& { }^{W_{C A P}}=\frac{\rho_{\mathrm{fs}} A_{\mathrm{CAP}}{ }^{\mathrm{t}_{\mathrm{f}}} \mathrm{CAP}}{12} \tag{174}
\end{align*}
$$

2) Cylinder

$$
\begin{align*}
& A_{\mathrm{cyl}}=2 \pi \mathrm{R}_{\mathrm{CO}} \mathrm{~L}_{\mathrm{cyl}} \tag{175}\\
& \mathrm{t}_{\mathrm{fs}}=\left(\frac{\mathrm{y}_{\mathrm{cyl}} W_{\mathrm{icyl}} \mathrm{~L}_{\mathrm{cyl}}{ }^{2}}{546 \mathrm{R}_{\mathrm{CO}} \mathrm{E}_{\mathrm{fs}}}\right)^{1 / 3} . \tag{176}\\
& W_{\mathrm{cyl}}=\frac{\rho_{\mathrm{fs}} A_{\mathrm{cyl}} \mathrm{t}_{\mathrm{fs}}}{\mathrm{I}_{\mathrm{cyl}}} \tag{177}
\end{align*}
$$

where,

$$
\begin{aligned}
& W_{1 c y l}=W_{1}\left[\frac{\pi R_{C O}^{2} L_{c y l}}{\frac{2 \pi R_{1}^{3}}{3}\left(1-\cos \theta_{\mathrm{Al}}\right)+\pi \mathrm{R}_{\mathrm{CO}}{ }^{2} \mathrm{~L}_{\mathrm{cyl}}+\frac{\pi \mathrm{L}_{\mathrm{co}}}{3}\left(\mathrm{R}_{\mathrm{CO}}{ }^{2}+\mathrm{R}_{\mathrm{CO}} \mathrm{R}^{2}+\mathrm{R}^{2}\right)}\right] \\
& \\
& \tilde{R}, \mathrm{GQ}^{-84-}
\end{aligned}
$$

3）Cone

$$
\begin{align*}
&{ }^{\mathrm{A}} \mathrm{CO}=\pi\left(\mathrm{R}_{\mathrm{CO}}+\mathrm{R}\right)\left[\mathrm{L}_{\mathrm{co}}{ }^{2}+\left(\mathrm{R}_{\mathrm{CO}}-\mathrm{R}\right)^{2}\right]^{1 / 2} \div \pi \mathrm{R}^{2} \tag{178}\\
& \pi \tag{179}\\
&{ }^{\mathrm{t}_{\mathrm{fs}}} \mathrm{CO}=\frac{\mathrm{P}_{\mathrm{MC}}}{2 \pi \mathrm{R}_{\mathrm{CO}}{ }^{\sigma} \mathrm{cy}} \tag{180}\\
&{ }^{\mathrm{W}} \mathrm{CO}_{\mathrm{CO}}=\frac{{ }^{\mathrm{A}_{\mathrm{CO}} P_{\mathrm{fs}} \mathrm{t}_{\mathrm{fs}}}}{12}
\end{align*}
$$

If the drogue－retrorocket option is used in the descent system then

$$
\begin{equation*}
\mathrm{t}_{\mathrm{fs}}^{\mathrm{CO}}, ~=\frac{\mathrm{P}_{\mathrm{D}}}{2 \pi \mathrm{R}_{\mathrm{CO}}{ }^{\sigma_{\mathrm{cy}}}} \tag{181}
\end{equation*}
$$

The total internal structural weight is the sum of the components； namely，

$$
\begin{equation*}
\mathrm{w}=W_{\mathrm{CAP}}+\mathrm{w}_{\mathrm{cyl}}+\mathrm{w}_{\mathrm{CO}} . \tag{182}
\end{equation*}
$$

A. PROGRAM FLOW

1. Descent System

The program flow for the descent system 15 shown in Figure 10.

Figure 10 PROGRAM FLOW FOR DESCENT SYSTEM

$$
\begin{array}{r}
-86- \\
248<
\end{array}
$$

2. Impact Attenuation System

The program flow for the impact attenuation is shown in Figure 11.

Figure 11 Program flow for impact attenuation system

3. Lander Packaging Design

The program flow for the lander packaging system is shown in Figure 12.

Figure 12 PROGRAM FLOW FOR LANDER PACKAGING SYSTEM

$$
\stackrel{-88-}{5080}
$$

B. COMMON STORAGE

Name	Quantity	Source	Input or Output	Description
$A D$	${ }^{\text {A }}$ D	Main	Output	Drogue chute area.
AMC	${ }^{\text {A }} \mathrm{MC}$	Main	Output	Main chute area.
AS	a	ATMDS	Output	Speed of sound.
AV	A_{v}	DERQZ		Area of vehicle.
CDD	$C_{\text {DD }}$	Input	Input	Table.
CDDD	$C_{\text {DD }}$ value	ATMDS	Output	Interpolated value at XMAC.
CDM	$\mathrm{C}_{\text {DMC }}$ value	ATM $¢ \mathrm{~S}$	Output	Interpolated value at XMAC.
CDMC	${ }^{\text {C }}$ DMC	Input	Input	Table.
CDV	$C_{\text {DV }}$	Input	Input	Table.
CDVV	$C_{\text {DV }}$ value	ATM \quad S	Output	Interpolated value at XMAC.
DV	D_{v}	Main		Diameter of vehicle.
FALR	L_{1}	Input		Temperature gradient in troposphere expressed as a fraction of adiabatic lapse rate.
G	$\mathrm{G}_{\text {SL }}$	Input		Gravitational acceleration at planet surface.
IJET	JET	Input		Input sentinal.
IISYS	DESSYS	Input		Input sentinal.
MACH	M	Input	'	Table of Mach numbers.

a $51<$

Name	Quantity	Source	Input or Output	Description
PI	π	Main		
RH \varnothing	0	ATM $¢$ S	Output	Density.
RHCDSL	$\rho_{\text {SL }}$	Input		Density of atmosphere at planet surface.
TSI	$\mathrm{T}_{\text {SL }}$	Input		Atmospheric temperature at planet surface.
TST	$\mathrm{T}_{S T}$	Input		Atmospheric temperature in stratosphere.
V	V	Main	Output	Velocity.
WD	W_{D}	BL $\emptyset \mathrm{CK} 2$	Output	Drogue chute weight.
WE	We	Input		Total entry weight.
WR	WR.	Main	Output	WE - WHST \varnothing - WSTT \varnothing T.
XA	$\mathrm{X}_{\text {A }}$	Input		- Mole fraction of Argon in atmosphere.
Xc	${ }^{X_{C}}$	Input		Mole fraction of CO_{2} in atmosphere.
XMAC	M	ATM \dagger S	Output	Mach number.
XN	X_{N}	Input		Mole fraction of N_{2} in atmosphere.
XZER \varnothing	X_{O}	Input	,	Mole fraction of O_{2} in atmosphere.

-90-
2586

C. SUBROUTINES

Calling Sequences and Defintions

ATMDS	Variable Input or Output Source	AS Output ATM $\overline{\text { A }}$	CDD Input Main	CDDD Output ATMDS	CDM Output ATMDS
CDMC Input Main	CDV Input Main	CDVV Output ATMøS	FALR Input Main	G Input Main	RHめ Output ATMDS
RHOSL Input Main	TSL Input Main	TST Input Main	V Input Main	XA Input Main	XC Input Main
XMAC Output ATMDS	XN Input Main	XZER \varnothing Input Main	Z Input Main		

ADAMS4
(See the writeup of ADAMS4 under the section SPECIAL SUBROUTINES.)
ARSIMP
(See the writeup of ARSIMP in the section SPECIAL SUBROUTINES.)

BLOCK2	Variable Input or Output Sòurce	AMVEL Input	BEL Input Input	CDD Input Input	Input
Input Input	DD	Input			
Output	BLOCK2	Input	Input	Input	Input

BLøCK2 (Continued)	Variable Input or Output Source	FALR Input Input	FREQ Input Input	FREQ2 Input Input	FREQ3 Input Input
G Input Input	GAMMAD Input Input	GAMMC Input Input	$I G \varnothing \varnothing F X$ Output	IJET Input Input	IISYS Input Input
PD Output $\text { BL } \emptyset \mathrm{CK} 2$	PMC Output BLФCK2	RHDR Input Input	RHめSL Input Input	TSL Input Input	TST Input Input
TZER \varnothing Input Input	UPBND Input Input	VIMP Input Input	VFINAL, Output BL $\varnothing \mathrm{CK} 2$	VW Input Input	W Input Main
$\begin{aligned} & \text { WD } \\ & \text { Output } \\ & B L \Phi C K 2 \end{aligned}$	WE Input Input	WL Output BL $\triangle C K 2$	WMC Output $B L \not \subset C K 2$	WR Input Main	WRDC Output BL $\varnothing \mathrm{CK} 2$
WWHS Input Main	WWSTR Input Maın	XA Input Input	XC Input Input	XD Input Input	XISP Input Input
XLRDR Input Input	XI Input Input	XMACH Input Input	XMC Input Input	XMD Input Input	XMMC Input Input
XMR Input Input	XN Input Input	XZER \varnothing Input Input	ZD Input Input	ZMC Input Input	

BL \varnothing CK3	Variable Input or Output Source	ALPHA Input	AO, Al, A2, A3 Input Input	BETA Input Maın	```CTH1, CTH2, CTH3, СтН6, СТН9 Input Main```
CTHM Output Main	DIAM Input	DR Input BLDCK2	EF Input Input	EPSI, EPS3 Input Input	ETA Input Input
GS Input Impact	IBLK3 Output	$\operatorname{IG} \varnothing \varnothing F \mathrm{X}$ Output	IISYS Input Input	P Input Mann	PD Input BLDCK2
PMC Input BL $\varnothing \mathrm{CK} 2$	PSI Input Input	Q Input Main	R3, R12, R34, R67 Input Main	$\mathrm{RA}, \mathrm{RB},$ RC Input Main	RCHUTE Input Input
RHดF Input Input	RH $\varnothing \mathrm{I}$ Input Input	RHøMN Input Input	RHDMX Input Input	R \varnothing Output BL \varnothing CK3	SIGCYF Input Input
$\begin{aligned} & \text { STH1, STH2 } \\ & \text { STH3, STH6, } \\ & \text { STH9 } \\ & \text { Input } \\ & \text { Input } \end{aligned}$	STHM Output Maın	SẎSIMC Input	TFMIN Input Input	THC Input Main	THETAM Input Input
THETCD Input Input	THS Input	TTC \varnothing Output Main	TTHM Output	VFINAL Input Main	VV Input Main
VW Input Main	WC Output BL $\varnothing \mathrm{CK} 3$	WD Iñut BLDCK2.	WE Input Input	WHSTФT Input Mann	WI Output BL $\varnothing \mathrm{CK} 3$
WMC Input BL $\varnothing \mathrm{CK} 2$	WRDC Input BLめCK2	WSTTDT Input Maın	$\mathrm{X} 3$ Input	XCGHS Input Man	XCGMIN Input
XIRDR Input	$\begin{aligned} & \text { XITФT } \\ & \text { Input } \end{aligned}$	XLCRC Input Input	XLCYRC Input Input	XN Input Input	YIR2 Input
$\text { YIT } \varnothing \mathrm{T}$ Input					

BL3INT	Variable Input or Output Source	$\begin{array}{\|l\|} \hline \text { A0, A1, A2, } \\ \text { A3 } \\ \text { Input } \\ \text { Input } \end{array}$	DYR2 Input Main	ETA Input Input	FUNC Output BL3INT
GSTAR	GUNC	IISYS	PI	RH¢C	RDFX
Input	Output	Input	Input	Input	Input
Main	BL3INT	Main	Main	Main	Main
SM	SMIMC	VFINAL	vv	vW	WW4
Input	Input	Output	Input	Input	Output
Main	Maın	BL3INT	Main	Main	BL3INT
WW5	XN	YR2I			
Output	Input	Output			
BL3INT	Input	BL3INT			

	Variable Input or Output Source	DERN Output DERQZ	K Input ADAMS4	NPAR Input	NZ Input
PAR Input	T Input Main	VALUE Input ADAMS4			

FINDRV	Variable Input or Output Source	BETA Input Main	CTHI, CTHZ, CTH3, CTH6, CTH9 Input Main	I Output FINDRV	P Input Man
Q Input Main	$\begin{aligned} & \text { R01, R3, R12 } \\ & \text { R34, R67 } \\ & \text { Input } \\ & \text { Main } \end{aligned}$	RA, RB, RC Input Main	RV Output FINDRV	STHI, STH2, STH3, STH6, STH9, Input Main	THC Input Main
X3 Input	XP Input Main				

	Variable	AREAG	NX	PG	RGEN
GENSHP	Input or Output	Output	Output	Output	Input
Source	GENSHP	GENSHP	GENSHP	Input	
ROLLG	THET2G	THET3G	WLB	XGGG	XGEN
Output	Input	Input	Input	Output	Input
GENSHP	Input	Input	Main	GENSHP	Input

PEAK	Variable Input or Output Source	DYR2 Input Maın	ETA Input Input	GSTAR Input Main	PI Input Main
PGGAL Output PEAK	PGGALC Output Р玉AK	R3BLK3 Input Main	RHめC Input Main	SM Input Main	SMIMC Input Main
YR2 Input Input	YR2I Input Mann	YR2P Output PEAK			

R2B3	Variable Input or Output Source	Input Main	ETA Input Input	PI Input Main	R2BIK3 R2B3
RHDC	RHด̆I	SMIMC			
Input	Input Input	Main			

R2B34	Variable Input or Output Source	A0, A1, A2 A3, Input Input	CTHM Input Main	DRY2 Output R3B34	EPS3 Input
ETA Input Input	GSTAR Input Main	IISYS Input Main	PI Input Main	RC \varnothing Input Main	RHøC Input Main
RHøI Input Input	RดFX Output R2B34	SM Input Main	SMIMC Input Main	STHM Input Main	TTCD Input Man
VFINAL Input Main	VV Input Main	VW Input Man	XLCRC Input	XLCYRC Input	XN Input Input
YR2I Output					

	Varsable	PIT3	R \varnothing L3	RR	RRR
RP3467	Input or Output	Output	Output	Input	Input
Source	RP3467	RP3467	Main	Main	
THH	W	XX			
Input	Input	Input			
Main	Main	Main			

TENSHL	Variable Input or Output Source	AREAT Output TENSHL	BETA Input Input	CTH2 Input Main	PITT Output TENSHL
RC	R3	R34	RDLLT	RT2	RTEN
Input	Output	Inpat	Output	Input	Output
Input	TENSHL	Input	TENSHL	Main	TENSHL
STH2	THETA3	WLB	XCGT	XT2	XTEN
Input	Input	Input	Output	Input	Output
Main	TENSHL	Main	TENSHL	Max	TENSHL

1. GENSHP
a. Purpose

This subroutine computes the surface area, centroid from the nose, and moments of inertia for the general shape.
b. Method

The trapezordal rule is used, with as many as 25 input values for the coordinates XGEN and RGEN. The number of XGEN and RGEN values are counted.
2. TENSHL
a. Purpose

This subroutine computes the surface area, centroid from the nose and moments of inertia for the tension shell.
b. Method

A set of five ordinate values between R2 and R3 are computed corresponding to five abscissas and the trapezoidal rule is utilized.
3. RP3467
a. Purpose

This subroutine computes the moments of inertia of Sections 6 and 9.
b. Method

The given equations are utilized with the input variables for Sections 6 and 9.
4. BL \varnothing CK2
a. Purpose

This subroutine performs a trajectory calculation with three options, a drogue and main chute or cluster, a main chute or cluster, or a drogue chute with a retrorocket.

b. Method

First the program checks which of these three options mentioned above are to be used, and presets initial conditions, including those for the derivative equations. In the drogue chute trajectory, the minimum diameter is used first and the Mach number is repeatedly checked unitl the time it becomes $\leq M A C D$ input. If the corresponding altitude is above $2 M C$, the program continues with this size drogue chute and prints the trajectory down to ZMC, where it switches to the man chute logic If this altitude is below ZMC , an equation is used to calculate the next drogue chute area. If the altitude is zero, $A D$ is increased by 1.5 (Statement 250) and the program begins again This process of checking the Mach number MACMC against the altitude ZMC is repeated. When again the altutide is tested and it is not within 100 feet of ZMC, the present drogue area is multiplied by ZMC/S at Statement 249 Eventually an area will be found where MACMC occurs within 100 feet of ZMC. Then the trajectory is recalculated, and printed out at intervals specified by DRVEL, the change in velocity Output values for the drogue trajectory are also computed and printed before starting the main chute trajectory.

For the main chute portion, first the area is calculated. Then, if the diameter is less than DMCMIN, the minimum main chute size is used If the diameter is greater than DMCMAX, a cluster of three to fifteen chutes is used. (The number is increased from three to fufteen by intervals of two until a diameter less than DMCMAX is found (See DD L $\varnothing \emptyset P$ at Statement 351)). Then the program calculates the filling time for the main chute or cluster, and the initial conditions for the main chute trajectory. The trajectory printout proceeds at intervals of MCVEL changes in velocity until impact. Then final output quantities describing the man chute are calculated and printed

For the drogue-retrorocket option, a trajectory is computed utilizing a specified drogue chute size diameter DDMIN. The program prints out at intervals of DRVEL in velocity from ZD (drogue deployment altitude) to impact The impact velocity on the drogue VD is then taken with a specified horizontal wind velocity $V W$ and the resultant velocity VR is evolved. The required retrorocket ΔV is the difference between the required specified impact velocity VIMP and the resultant velocity VR. With the ΔV established, the sizing of the rocket system commences, i.e diameter, length, and weight.
5. DERQZ
a. Purpose

This subroutine computes the values of the derivatives of velocity, flight path angle, and altitude for the trajectory.
b. Method

Subroutine $A T M \phi S$ is called to obtain C_{D} values from which the drag is calculated. The value of the suspended weight Msusp is calculated depending on when the heat shield and structure is to be jettisoned
6. ATMDS
a. Purpose

This subroutine computes the density RHD and speed of sound AS variations with altitude \mathbf{Z}.
b. Method

Initially, $Z_{S T}$ is calculated and compared with the altitude Z in the calling sequence. Then, depending on whether Z is greater or less than $Z_{S T}$, one or two sets of equations are used to compute the density RHD and the speed of sound AS.

7. BL $\varnothing \mathrm{CK} 3$

a. Purpose

This subroutine determines the crushup density $\left(\rho_{c}\right)$ required to absorb the impact energy.
b. Method

First the program determines whethex to use the lenticular (sphere) option or the cone-cylinder option. For the lenticular option, the program starts with $\rho_{c}=\rho_{\text {cmax }}$. Then Subroutine R2B3 is called to get $\mathrm{R}_{2}{ }^{3}$. Next
BL3INT is called, then ARSIMP. If the $y / R 2$ value is good enough, the program calls PEAK, otherwise it uses a Newton-Raphson approximation
to converge on $y / R 2$. The chosen PGCALC is compared with the input GIMP until PGCALC is less than GIMP. If it is not, ρ_{c} is reduced by ($\rho_{\text {cmax }}-\rho_{\text {cmin }}$)/10 and the loop starting at Statement 822 continues. If no satisfactory values are found before $\rho_{\text {cmin }}$, is reached, the program continues with the values it has at that time to calculate output equations. Then it goes on to the lander packaging design.

If the cone-cylinder option is used, the iteration starts with $\rho_{c}=\rho_{\text {cmax }}$. Then Subroutine R2B34 is called with a starting value of $R_{c o}$. Next PEAK is called to determme if PGCALC is less than GIMP. If it is, the program computes output equations and goes on to the packaging design. If PGCALC is "still too large, ρ_{c} is reduced by ($\rho_{\mathrm{cmax}}-\rho_{\mathrm{cmin}}$)/10 and the iteration continues from Statement 726. If $\rho_{\text {cmin }}$ is reached without a satisfactory PGCALC, the program continues with the $\rho_{\text {cmin }}$ value and calculates the output equations and continues on to the packaging design.

Geometry constraints are checked at 901 or 902 depending on which option was used in the impact system, the lenticular (sphere) or cone-cylinder. For the lenticular (sphere) option an array of θ_{M} values is set up and each x_{p} and r_{p} is calculated. Subroutine FINDRV is then called to get r_{v}. All r_{p} values must be less than the corresponding $r y$ values If not, the package must be moved back a distance of $0025 \mathrm{R}_{2}$ along the vehicle axis until a position $1 s$ found where all the r_{p} values are acceptable If no such position can be found, the program returns to the impact system with ρ_{c} equal to $\rho_{\mathrm{c} \max }$

If all the geometry constraints are satisfied, then the overall $X_{C G O}$ is calculated and tested against $X_{\text {CGmin }}$. If $X_{C G O}$ is less than $X_{C G m i n}$, the program continues; otherwise it goes back to the impact system with ρ_{c} equal to $\rho_{\text {cmax }}$. With $X_{C G O}$ satisfied, the overall moments of inertia are calculated and finally, the internal structural weight.
8. R2B3

a. Purpose

Subroutine R2B3 calculates the value of R2 for the lenticular and sphere option.
b. Method

The program evaluates the expressions for R2, using the values of ρ_{c} from BL $\phi \mathrm{CK} 3$.
9. BL3INT
a. Purpose

Subroutine BL3INT evaluates the integrand of Equation (140) in preparation for integration by Simpson's Rule.
b. Method

The expressions for the integrand of Equation 140 is evaluated at 11 points between 0 and y_{m} / R_{2}.
10. PEAK
a. Purpose

This subroutine determines the maximum value of G during impact.
b. Method

Eleven (11) values of G corresponding to $0 \leq y / R_{2} \leq y_{m} / R_{2}$ are computed and the maximum of these values is chosen as PGCALC, the output of the routine.
11. R2B34
a. Purpose

This subroutine computes the value of R_{2} for the cone cylinder option.

b. Method

Subroutine R2B34 computes the value of R_{2} for the cone-cylinder option and calls it R $\varnothing F X$. Then it calls Subroutine BL3INT to evaluate the expression whthin the velocity integral using this $R 2$. Next R_{2} is corrected by a Newton-Raphson approximation. This process is repeated until the $R 2$ value gives a solution within EPS3.
12. FINDRV
a. Purpose

This subroutine determines whether the payload package fits within the vehicle envelope.
b. Method

This subroutine compares the X computed in the main program with the abscissas computed in the hedt shield and structural shell system until it finds the section in which X falls. Then it calculates the ordinate r_{v} which will correspond to X_{p} from the equations in that section.

D. MAIN PROGRAM

The program first sets the values of any preset input, then reads the data into storage as specified by the namelist array INPUT.

After converting angle to radians and computing their sines and cosines, the program begins at Statement 20, computes five (x) and (x) values for the nose cap section which is required to be the first segment. Area, moments of inertia, and centroid from the nose are also calculated after the (x) and (x) values are written on the output tape.

The program then tests to see if the toroidal section following the nose is included. If it is not, starting at Statement 31 , theta 2 is set equal to theta 1 , and $x 2$ and $r 2$ are set equal to $x l$ and $r 1$ If the section is included, five (x) and (x) values are computed and written on the output tape. Then the moments of inertia and centroid from the nose are computed.

Next, at Statements 21 and 28, the program determines which, if any, of the three options (3., 4 , and 5.) for Section 23 is to be used. If none are included, theta 4 is set equal to theta 0 , and r4 and $x 4$ are set equal to r2 and $x 2$ Section 34, a toroidal section, has to be included if Section 23 is used.

If the tension shell option is used, five (x) and (x) points are computed and written on the output tape The area, moments of inertia, and centroid from the nose are also calculated. All of these calculations use the trapezordal ruie and subroutine TENSHL, and occur between Statements 34 and 44.

For the general shape option, as many as 25 points may be used to describe the curve. The program proceeds in steps simılar to those used for the tension shell, but with subroutine GENERI, between Statements 44 and 42

For the conic section, two (x) and (r) values are computed and written out, followed by area, moments of inertia, and centroid from the nose calculations, between Statements 42 and 52

Then, from Statements 52 to 22, Section 34, is handled a toroidal shape, with five (x) and (r) values which are written on the output tape. Next the area, moments of inertia, and centroid from the nose are calculated. The moments of mertia are calculated in Subroutine RP3467.

Section 45, if included, is a cylinder described by two points. If it is not used, $x 5$ and $r 5$ are set equal to $x 4$ and $r 4$ If used, the two (x) and (r) values are computed and written out. Then the area, moments of inertia, and centroid from the nose are calculated, (Statements 45 to 46).

Section 56, a flared section, is described by two points. If it is not used, $x 6$ and $x 7$ are set equal to $x 5$, and $r 6$ and $r 7$ are set equal to $r 5$. After the two (x) and (r) values are written on the output tape, the area, moments of inertia, and centroid from the nose are calculated. If section 56 is used, section 67 a torondal segment must be included Five (x) and (r) values are written on the output tape, then the area and centroid from the nose are calculated The moments of inertia are computed in subroutine RP3467. These computations occur between Statements 46 and 24

If section 78, a toroidal section, is not included, $x 8$ is set equal to $x 7$ and $r 8$ is set equal to $r 7$ If used, five (x) and (r) values are computed and written on the output tape. Then the area, moments of inertia and centroid from the nose are calculated, (Statements 24 to 25).

Section 89, if used, is a cone described by two points If it is not included $x 9$ is set equal to $x 8$ and $r 9$ is set equal to $r 8$. When this section is used, two values of (x) and (x) are written on tape, and then the area, moments of inertia, and centroid from the nose are computed, (Statements 25 to 53).

There are two options, 12. and 13 , for the final section, one of which must be used. The first is a cap described by five (x) and (r) values which are written on the output tape. Then the area, moments of inertia, and centrond from the nose are calculated. The other option is a two point base section. Two values of (x) and (r) are written on the output tape, and then the area, moments of inertia and centroid from the nose are calculated. (Statements 51 to 40).

Next, output values for the total heat shield and structure weights, WHS and WST, for each section are calculated. If one or more rings is to be added to the vehicle, the appropriate moments of inertia are computed and printed Then the total vehicle shield and structure weights called WHSTळT and WSTTФT, are calculated along with the vehicle center of gravity XCGHS and moments of mertia RøLLT and PITCHT. Depending on which sections have been included, a tabular printout of section number, area, WHS, WST, and moments of inertıa is provided, followed by values of WHSTøT, WSTTDT, XCGHS, and WR, the entry weight less heat shield and structure weights. If WR is found to be less than or equal to zero, work on the present case is terminated, a transfer to Statement 1000 being made for consideration of the next case. If WR is greater than 0 , subroutines BLФCK2 and BL \varnothing CK 3 are called to carry out the rest of the computations for the case Then the transfer to 1000 is made.

E. SIGNIFICANT EQUATIONS

1. MAIN

The programmed expressions for surface areas, center of gravity, moments of inertia, and weight, are very straightforward, and only the case of Section 2 is given here as an example.

Subroutines GENSHP and TENSHL perform similar calculations for the general and tension shell shapes.
$A=\operatorname{AREA}(2)=2 \cdot \pi \cdot \mathrm{Rl2} \cdot(\mathrm{RO1} \cdot \mathrm{CTHI} \cdot(\mathrm{THETAl}-\mathrm{THETA} 2)+\mathrm{Rl} 2 \cdot$

$$
\begin{equation*}
(S T H 1-S T H 2)+\text { R12 . CTH1 • (THETA2 - THETA1)) } \tag{Statement1002}
\end{equation*}
$$

where,


```
X = XCG(2) = WSl ( (WS2 + WS3)
WSI = 2.*\pi.R12/AREA(2)
WS2 = Al2I - Bl2 (THETAl - THETA2) +_B12 R R12.(STH1 - STH2)
WS3 = Al21•R12\cdot(CTHI - CTH2) - (R12) 
```

where,

CTH2 $=\cos \theta$

$\mathrm{WSI}=2 . \cdot \pi \cdot \mathrm{WL}_{\mathrm{BS}}(2) \cdot \mathrm{R}_{12} / 32.17$
Al21 = R1 - R12. CTH1
$\mathrm{Bl2}=\mathrm{XI}+\mathrm{R} \mathrm{J}_{2} \cdot \mathrm{STH1}$
$\mathrm{WS} 2=(\mathrm{Al21})^{3}($ THETA1 - THETA2 $)+3 .(\mathrm{Al21})^{2} \cdot \mathrm{R12} \cdot($ STHI - STH2 $)$
WS3 $=3 . \cdot \operatorname{Al21} \cdot(\mathrm{Rl} 2)^{2} \cdot((T H E T A 1-T H E T A 2) / 2-(\operatorname{SINF}(2 . \operatorname{THETAZ})) / 4)$
WS4 $=\frac{(\mathrm{Rl} 2)^{3}}{3} \cdot\left(\mathrm{STH} 1 \cdot\left((\mathrm{CTH1})^{2}+2,\right)-\right.$ STH2 $\left.\cdot\left((\mathrm{CTH} 2)^{2}\right)\right)$
$\mathrm{R} \varnothing \mathrm{LL}(2)=\mathrm{WSl} \cdot(\mathrm{WS} 2+\mathrm{WS} 3+\mathrm{WS} 4) \quad$ (Statement 1002)
where,

```
WLBS(2) = WHS(2)+WST(2)}\cdot\textrm{STRFAC
```



```
    B12\cdotR12.(CTH1 - CTH2)
    WS3 = A12I ( (R12) ' ((THETA1 - THETA2)/2. - (SINF(2. THETA1) -
    SINF (2. . THETA2)Y/4) + (B12) 2. R12 ( (STH1 - STH2)
    WS4 = B12\cdot(RI2)}\mp@subsup{}{}{2}\cdot((STH1\mp@subsup{)}{}{2}-(STH2\mp@subsup{)}{}{2})-\frac{(\textrm{R}12)}{3}\cdot((\textrm{STHI}\mp@subsup{)}{}{3}-(STH2\mp@subsup{)}{}{3}
    PITCH(2) = WS1•(WS2 + WS3 - WS4) +.5 R RDLL(2) (Statement 9210)
    WHSTDT = \Sigma WHS(I)
    WSTTDT = \Sigma WST(I)
(Statement 1016)
```

2. BLDCK2
```
W
```


where,
CDDGGI is value from CDD table versus Mach

```
Amc = AMC = (2. . G . SUSPM)/(RH\emptysetSL \cdot CDM (VV) ')(Statement 501)
C}\mp@subsup{D}{D}{}\mathrm{ cluster = CDCL = CDM - ( 95 -.03 AN)
```

$A_{m c}=$ area of each chute in a cluster $=A M C=(2 \cdot \cdot G \cdot S U S P M) /$
$\left(\mathrm{RH} \varnothing \mathrm{SL} \cdot \mathrm{CDCL} \cdot(\mathrm{VV})^{2} \cdot \mathrm{AN}\right)$
W_{mc} cluster $=\mathrm{WMC}=.0013 \cdot \mathrm{QMC} \cdot \mathrm{AMC} \cdot \mathrm{AN} \cdot\left(98+.045 \cdot\right.$ AN) $\left.{ }_{\text {ment }}^{(\text {State }} 215\right)$

```
\(t_{f}=T F=D M C \cdot(05-3 \cdot E-5 \cdot V M C)\)
(Statement 214)
```

$\stackrel{\mathrm{V}}{\mathrm{R}}^{\mathrm{V}}=\mathrm{VR}=\operatorname{SQRTF}\left((\mathrm{VD})^{2}+(\mathrm{VW})^{2}\right)$
(Statement 406)
$\Delta V=D E L V=V R-V I M P$
$W_{f} / W_{i}=W F W I=\operatorname{EXPF}(-D E L V /(X I S P \cdot G T H E T))$
(Statement 411)
3. DERQZ

```
\dot{V}}=\operatorname{DERN(1)}=(-D-SM\cdotG\cdotSGAM)/S
(Statement 2)
\dot{y}}=\operatorname{DERN}(2)=(-G\cdotCGAM)/
Z = DERN(3) = V SGAM
```

4. ATM $\varnothing \mathrm{S}$
$\mathrm{M}=\mathrm{AM}=28 . \cdot \mathrm{XN}+32 . \cdot \mathrm{XZERD}+44 . \cdot \mathrm{XC}+40 \cdot \cdot \mathrm{XA}$
$C_{p}=C P=R / A M \cdot(3.5 \cdot(X N+X Z E R \varnothing)+4 \cdot \cdot \mathrm{XC}+2.5 \cdot \mathrm{XA})$
$L_{0}=A L=-F A L R \cdot G / C P$
$\mathrm{ZST}=\mathrm{ZST}=(\mathrm{TST}-\mathrm{TSL}) / \mathrm{AL}$
$T=T S L+A L \cdot Z$
Troposphere
FAC $=-1 .-A M \cdot G /(R \cdot A L)$
$\rho=R H D=\left((T S L+A L \cdot 2) /(T S L)^{F A C}\right) \cdot R H \varnothing S L$
$\mathrm{FACl}=\mathrm{CP} \cdot \mathrm{AM} / \mathrm{R}-1$.
(Statement 4)
$a=A S=S Q R T F((C P \cdot T) / F A C 1)$
Stratosphere
```
\(\rho S T=R H \varnothing S T=\left(\left(T S T /(T S L)^{F A C}\right) \cdot\right.\) RHDSL
    (Statement 2)
\(\rho=\operatorname{RH} \phi=\operatorname{RH} \varnothing S T \cdot \operatorname{EXPF}(-(\mathrm{AM} \cdot \mathrm{G}) /(\mathrm{R} \cdot \mathrm{TST}) \cdot(\mathrm{Z}-\mathrm{ZST})\)
\(a=A S=S Q R T F((C P \cdot T S T) / F A C 1)\)
```

 -106-
 $\therefore \mathrm{E}^{\circ}=$

5. BLøCK3

```
SMIMC \(=W L / 32.2\)
\(\mathrm{Sm}=\mathrm{SM}=\mathrm{SBLK} 3=\left(\mathrm{ALPHA} \cdot(\mathrm{RHDC})^{(1 . / \mathrm{PSI})}\right)\)
\(t=T B L K 3=Y R 2 \cdot R 213 / E T A\)
\(\mathrm{R} 213=(\text { R2BLK3 })^{(1 . / 3 .)}\)
\(I\left(y / R_{2}\right)\)
\(\mathrm{WSI}=1 .-\mathrm{YR} 2 / \mathrm{ETA}\)
(Statement 832)
\(\mathrm{WS} 2=2 \cdot \cdot \pi / 3 . \cdot \mathrm{R} 2 \mathrm{BL} \mathrm{K} 3\)
\(\mathrm{WS} 3=\left(\mathrm{WSI}-(\mathrm{CTHM})^{2}\right) \cdot(2 \cdot \cdot \mathrm{WSI}+\mathrm{CTHM})\)
\(F M I=\) RHめI \(\cdot W S 2 \cdot W S 3\)
WS4 \(=\left(1 .-(C T H M)^{2}\right) \cdot(2 .+\) CTHM \()-W S 3\)
\(\mathrm{FMC}=\mathrm{RH} \phi \mathrm{C} \cdot \mathrm{WS} 2 \cdot \mathrm{WS} 4\)
\(\mathrm{WSI}=\pi \cdot \mathrm{RH} \varnothing \mathrm{I} \cdot \mathrm{C} \phi P / 3 \cdot\left((\mathrm{RC} \phi)^{2}+\mathrm{RC} \phi \cdot \mathrm{RWS}+(\mathrm{RWS})^{2}\right) \quad\) (State- \(\quad\) ment 925)
WS6 \(=\pi \cdot \mathrm{RH} \varnothing \mathrm{I} / 3 . \cdot\left(\mathrm{RP} 1-\mathrm{RC} /(\mathrm{TTHM})^{2}\right) \cdot(2 . \mathrm{RPI}+\mathrm{RC} / \mathrm{T} / \mathrm{THM})\)
        \(+\pi \cdot \mathrm{RH} \varnothing \mathrm{I} \cdot(\mathrm{RC} \varnothing)^{2} \cdot \mathrm{CYP}\)
FMI \(=\mathrm{WS} 1+\mathrm{WS} 6\)
\(F M C=2 \cdot \cdot \pi \cdot\left(\right.\) RH \(\left.\varnothing \mathrm{C} / 3 \cdot \cdot(1 .-\mathrm{CTHM}) \cdot \mathrm{R} \varnothing \mathrm{FX}-\mathrm{RC} \varnothing /(\mathrm{STHM})^{3}\right)\)
WS3 \(=\) WHSSTT \(\cdot X C G H S+W R D C \cdot(D E L 4+X L R \cdot .5)\) (Statement 987)
\(\mathrm{WSl}=(1.05 \cdot(\mathrm{WD}+\mathrm{WMC})+\mathrm{WC}+\mathrm{WI}) \cdot \mathrm{DEL} 4+\mathrm{R} 2 \mathrm{BK} 3 \cdot(1 .-\mathrm{CTHM}))(\) Statement
\(\mathrm{XCG} D=(\mathrm{WSI}+\mathrm{WS3}) / \mathrm{WE} \quad\) (Statement 991)
988)
```

where,

```
WHSSTT = WHST \(\varnothing \mathrm{T}+\mathrm{WSTT} \mathrm{\varnothing T}\)
\(\mathrm{X}_{\mathrm{CG}}^{\mathrm{CR}} \mathrm{F}=\mathrm{XCGCR}=3 \cdot \cdot\left(\mathrm{R} 2 \mathrm{BK} 3 \cdot \mathrm{WS1} / 3 \cdot \cdot(1 .-\mathrm{CTHM})-\left((\mathrm{R} 2 \mathrm{BK} 3)^{4} \begin{array}{c}\text { (Statement } \\ 987)\end{array}\right.\right.\)
    \(\left.\left.-(\text { RIBK3 })^{4}\right) / 8 \cdot \cdot(\text { STHM })^{2}\right) /((1-\) CTHM \() \cdot W S 1)\)
\(\mathrm{WS1}=(\mathrm{R} 2 \mathrm{BK} 3)^{3}-(\mathrm{R} 1 \mathrm{BK} 3)^{3}\)
\(\mathrm{h}=\mathrm{H}=\mathrm{R} 1 \mathrm{BK} 3 \cdot(1\). - CTHM \()\)
\(\mathrm{X}_{\mathrm{CG}}^{\mathrm{i}}{ }=\mathrm{XCGI}=(\mathrm{WCAP} \cdot \mathrm{XCAP}+\mathrm{WCYL} \cdot(\mathrm{F}+\mathrm{XLCY} \cdot .5)\)
    \(+W C \not \subset N \cdot(H+X L C Y+X C \emptyset N)) / W C A P+W C Y L+W C \varnothing N)\)
WCAP \(=W S 2 \cdot(H)^{2 / 3 .}(3 \cdot \cdot\) RIBK3 \(-H)\)
\(\mathrm{WCYL}=\mathrm{WSZ} \cdot(\mathrm{RC} \Phi)^{2} \cdot \mathrm{XICY}\)
\(\mathrm{WC} \varnothing \mathrm{N}=\mathrm{WS} 2 \cdot \mathrm{XLC} / 3 \cdot \cdot\left((\mathrm{RC} \phi)^{2}+\mathrm{RC} \phi \cdot \mathrm{RBK} 3+(\mathrm{RBK} 3)^{2}\right)\)
\(\mathrm{XC} \varnothing \mathrm{N}=\mathrm{XLC} \cdot(\mathrm{RC} \varnothing-(2 . \mathrm{XLC}) /(3 . \cdot \mathrm{TTC} \varnothing)) /(2 \cdot \cdot \mathrm{RC} \Phi-\mathrm{XLC} / \mathrm{TTC} \Phi)\)
\(\mathrm{VCAP}=\pi \cdot(\mathrm{H})^{2 / 3} \cdot(3 \cdot \cdot \operatorname{RlBK} 3-\mathrm{H})\)
\(\mathrm{XCAP}=\pi / \mathrm{VCAP} \cdot\left(2 . / 3 \cdot(\mathrm{H})^{3} \cdot \mathrm{R1BK} 3-.25 \cdot(\mathrm{H})^{4}\right)\)
\(W S 2=\) RH \(\varnothing \mathrm{I} \cdot \pi\)
```


Lenticular

```
\(\mathrm{I}_{\mathbf{x}}\)
\(T \varnothing T / X C G\)
\(\mathrm{WS} 1=\mathrm{WR} \varnothing \mathrm{C} /(2 . \cdot \mathrm{GSTAR}) \cdot\left(.5 \cdot(\mathrm{DR})^{2}\right) \quad \quad\) (Statement 990)
WS2 \(=2 . \cdot \pi / 15 . \cdot\) RH \(\varnothing \mathrm{C} \cdot\) WS1O \(\cdot\left(2 .-\right.\) CTHM \(\left.\left((S T H M)^{2}+2.\right)\right)\)
WS10 \(=(\text { R2BK3 })^{5}-(\text { R1BK3 })^{5}\)
WS3 \(=\pi \cdot \operatorname{RH} \varnothing \mathrm{I} / 2 \cdot \cdot\left(4 . / 3 \cdot \cdot(\mathrm{R} 1 \mathrm{BK} 3)^{2} \cdot(\mathrm{H})^{3}-\operatorname{RlBK3} \cdot(\mathrm{H})^{4}+(\mathrm{H})^{5 / 5}\right)\)
WS4 \(=1.05 / 2 . \cdot(W D+W M C) / G S T A R \cdot\left(\left(R 2 B K 3+(T C)^{2}\right)-(\text { R2BK3 })^{2}\right)\)
XIT \(\varnothing\) T \(=\Sigma\) R \(0 \mathrm{LL}(\mathrm{I})\)
XT ТТСG \(=\mathrm{XIT} \Phi \mathrm{T}+\mathrm{WSI}+\mathrm{WS2}+\mathrm{WS} 2+\mathrm{WS} 3+\mathrm{WS} 3+\mathrm{WS} 4\) \(T C=(8 \cdot(\mathrm{WD}+\mathrm{WMC})) /\left(\mathrm{RCHUTE} \cdot(\mathrm{R} 2 \mathrm{BK} 3)^{2}\right)\)
```

Cone - Cylinder
$\mathrm{I}_{\mathrm{x}_{\mathrm{T}}} \mathrm{TT} / \mathrm{SCG}$
$\mathrm{WSI} 6=. .5 \mathrm{WCYL} / \mathrm{GSTAR} \cdot(\mathrm{RC} \varnothing)^{2}+.3 \cdot \mathrm{RHDI} \cdot \pi \cdot \mathrm{XILC} / 3 \cdot\left((\mathrm{RCD})^{2}\right.$ (State ment $\left.^{2} 994\right)$
$+\mathrm{RC} \varnothing \cdot \mathrm{RBK} 3+(\mathrm{RBK} 3)^{2} \quad\left(\left((\mathrm{RC} \phi)^{5}-(\mathrm{RBK} 3)^{5}\right) /\left((\mathrm{RC} \varnothing)^{3}-(\mathrm{RBK} 3)^{3}\right)\right)$
XTФTCG $=\mathrm{XIT} \Phi \mathrm{T}+\mathrm{WS} 1+\mathrm{WS} 2+\mathrm{WS} 3+\mathrm{WS} 16+\mathrm{WS} 4$
Lenticular

```
I
WS5 = WHSTT/GSTAR
WS6 = (XCGD - (XCGHS)}\mp@subsup{)}{}{2})-(XCGHS) 2,
WS7 = WR\emptysetC/GSTAR ( ((XLR)}\mp@subsup{)}{}{2})/12.+(DR\mp@subsup{)}{}{2/16. ) + (XGG\emptyset - DEL4 -
    (XLR/2.)}\mp@subsup{}{}{2}
```



```
    RH\varnothingC/2. ((R2BK3) }\mp@subsup{}{}{4}-(\textrm{R}1\textrm{BK}3\mp@subsup{)}{}{4})\cdot(\textrm{STHM}\mp@subsup{)}{}{2}+2./15\cdot\cdot\textrm{RH}\varnothing\textrm{C}
    \pi\cdotWSIO*(1. - (CTHM) }\mp@subsup{)}{}{3})+\pi/15.\cdotRH\emptysetC\cdotWS10\cdot/(2. - CTHM .
    ((STHM)}\mp@subsup{)}{}{2}+2.)
WS11 = (R2BK3)3 - (R1BK3)
VS = 2.\cdot\pi/3.•(1. - CTHM)}\cdot\textrm{WSll
XBARS = 2 \cdot\pi/VS (R2BK3\cdotWS11/3. (1. - CTHM) - ((R2BK3)}\mp@subsup{)}{}{4
    - (R1BK3)}\mp@subsup{)}{}{4})/8.(STHM) (S
WS9 = RHDC.VS. (XBARS)}\mp@subsup{}{}{2
```

```
WS12 = I 05.(WMC + WD)/GSTAR•(R2BK3 2/300. +((R2BK3 +TC) 2/4.}
WS13 = 2. RH\varnothingC\cdotVS•((R2BK3. (1. - CTHMM) - (XBARS))}\mp@subsup{)}{}{2
WS14 = (WI + WC + 1.05\cdot(WD + WMC))/GSTAR.((XCGD - DEL4
    - R2BK3.(I. - CTHM))}\mp@subsup{)}{}{2
WS15 = 2. ( ( }\pi\cdot\textrm{RHDI}\cdot(\textrm{R}1\textrm{BK}3\cdot(\textrm{H}\mp@subsup{)}{}{4/2}\cdot-(H)\mp@subsup{}{}{5/5}.)+\pi\cdot\textrm{RHDI/4.
    (4./3 (RlBK3)
```



```
YIT\emptysetT = \Sigma PITCH(I)
YTФTCG = YITФT + WS5.WS6 + WS7 + 2. . WS8 - 2. .WS9 + WS13
    +WS14 + WS15 + WS12
```

Cone - Cylinder

$$
\mathrm{I}_{\mathrm{Y}}^{\mathrm{T} \varnothing \mathrm{~T} / \mathrm{XCG}_{0}}
$$

WS17 $=2 \cdot{ }^{\circ} \cdot \pi / 3 \cdot R H \varnothing C \cdot(1 \quad C T H M) \cdot\left((R 2 B K 3)^{3}-(R 1 B K 3)^{3}\right) \cdot((X C G \varnothing$ - DEL4 - XBARS) $)^{2} \quad$ (Statement 994)

WS19 $=$ WCAP/GSTAR•((XCGO - DEL4 - TBK3 - XCAP $))^{2}+\mathrm{WCYL} /$
GSTAR $\cdot\left(\left((X L C Y)^{2 / 12 .}+(R C \phi)^{2 / 4 .}(+(X C G \emptyset-D E L 4-\right.\right.$ TBK3

- H - XLCY/2.)
 WS20 $=W C \emptyset N / G S T A R \cdot\left((X L C)^{2} \cdot .1 \cdot\left((R C \varnothing)^{2}+3 \cdot \cdot R C \varnothing \cdot(R B K 3)^{2}\right) /\right.$
$\left((R C \phi)^{2}+R C \varnothing \cdot R B K 3+(R B K 3)^{2}\right) \cdot 15 \cdot\left(\left((R C D)^{5}-(R B K)^{5}\right) /\right.$ $\left.\left((\mathrm{RC} \phi)^{3}-(\mathrm{RBK} 3)^{3}\right)\right)$
WS21 $=\mathrm{WCDN} / G S T A R \cdot(X C \emptyset N)^{2}-((X C G \varnothing-D E L 4-T B K 3-H-$ XLCY-XCDN) $\left.)^{2}\right)$
WS22 $=1.05 \cdot(W M C+W D) / G S T A R \cdot((X C G \varnothing-D E L 4-R 2 B K 3 \cdot(1 .-$ GTHM) - . $1 \cdot \mathrm{R} 2 \mathrm{BK} 3))^{2}$
YT ФTCG $=\mathrm{YITDT}+\mathrm{WS} 5 \cdot \mathrm{WS} 6 \cdot \mathrm{WS} 7+\mathrm{WS} 8-\mathrm{WS} 9+\mathrm{WS} 17+\mathrm{WS18}$ $+\mathrm{WS} 19+\mathrm{WS} 20-\mathrm{WS} 21+\mathrm{WS} 12+\mathrm{WS} 22$

6. R2B3 (Lenticular Option Only)
```
WS1 \(=((1 .-Y R 2 / E T A-C T H M))^{2}\)
\(\mathrm{WS} 2=2 .-2 . \cdot\) YR2/ETA + CTHM
\(\mathrm{WS} 3=\mathrm{RH} \varnothing \mathrm{I} \cdot \mathrm{WSI} \cdot \mathrm{WS} 2\)
WS \(4=\) RH \(\varnothing \mathrm{C} \cdot\left(((1 .-\mathrm{CTHM}))^{2} \cdot(2 .+\mathrm{CTHM})-\mathrm{WS} 1 \cdot \mathrm{WS} 2\right)\)
R2BLK3 \(=(3 \cdot \operatorname{SMIMC}) /(2 \cdot \pi \cdot(\mathrm{WS} 3+\mathrm{WS} 4))\)
```


7. BL3INT

where,

$$
\mathrm{B} \emptyset=\mathrm{A} 0, \mathrm{~B} 1=\mathrm{A} 1, \mathrm{~B} 2=\mathrm{A} 2, \mathrm{~B} 3=\mathrm{A} 3
$$

$$
U=1 .-Y R 2 P(I) / E T A
$$

$$
\mathrm{YR} 2 \mathrm{P}(\mathrm{I})=(\mathrm{I}-1) \cdot \mathrm{DYR} 2
$$

Vo \quad VFINAL $=$ SQRTF $\left((\mathrm{VV})^{2}+(\mathrm{VW})^{2}\right)$
WSI $=$ YR2P(I)/ETA
WS3 $=$ RHDC $\pi /$ SMIMC
$\mathrm{WW} 4=((1 . \mathrm{WS} 1))^{2} \operatorname{YR2II}(\mathrm{I})$
$\operatorname{GUNC}(\mathrm{I})=\mathrm{WS} 3\left((\mathrm{WS} 1)^{2}-(\mathrm{WSI})^{3} / 3\right.$
WW5(I) $=1 .-\operatorname{RDFX} \operatorname{GUNC}(\mathrm{I})$

$$
\int_{0} \operatorname{FUNC}(\mathrm{I})=\int_{0}^{\mathrm{Y}_{\mathrm{m}} / R_{2}} \mathrm{WW4}(\mathrm{I}) / \mathrm{WW} 5(\mathrm{I})
$$

8 PEAK

$$
\begin{aligned}
& \text { WS1 }=\text { YR2P(I)/ETA } \\
& \text { WS2 }=2 . \pi \text { SM (R213) }{ }^{2} / \text { (SMIMC GSTAR) } \\
& \text { WS3 }=\text { RH } \varnothing C \pi \text { R2BLK3/SMIMG } \\
& \text { WS4 }=\left((1 .- \text { WS1) })^{2}\right. \text { YR2I(I) } \\
& \text { WS5 }=1 .- \text { WS3 ((WS1) }-(\text { WS1 })^{3 / 3 .) ~} \\
& \text { PGCAL(I) }=\text { WS2 WS4/WS5 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{WSI}=\operatorname{SQRTF}\left(1 .-(\mathrm{U})^{2}\right) / \mathrm{U} \\
& \mathrm{WS2}=\mathrm{ACDS}(\mathrm{U}) \\
& W S 3=(U)^{2} \\
& \begin{array}{ll}
W S 4=0 \text { or } B \phi /(X N-2 .)(1 .-(U)(X N-2)
\end{array} \\
& Y \operatorname{R2I}(\mathrm{I})=\mathrm{WS} 4+\mathrm{Bl} . . \quad 5(1 . / \mathrm{WS} 3-1 .)+\mathrm{B} 2.5 \cdot(\mathrm{WS} 2 / \mathrm{WS} 3-\mathrm{WS} 1) \\
& +\mathrm{B} 3 \cdot 5 \cdot\left((\mathrm{WS} 2)^{2} /(\mathrm{U})^{2}-2 . \cdot \mathrm{WS} 2 \cdot \mathrm{WS} 1-2 . \cdot \mathrm{L} \phi \mathrm{GF}(\mathrm{U})\right) \text { (Statement 4) }
\end{aligned}
$$

9. R 2 B 34
```
YMR2 = ETA (1. - RC\emptyset/(R\emptysetFX).33333333 STHM)
WS2 = 1. - XLCRC/TTC\emptyset
WS3 = 2. \pi/3. RH\varnothingC (1. - CTHM)
WS1 = SMIMC/WS3
WS4 = \pi/3. RHOI XLRC (I +WS2 +(WS2) )
WS5 = \pi RH\emptyset\emptysetI/3. ((1./STHM - STHM) )
WS6 = (WS4 - WS5 - \pi RHDI XLCYRC)/WS3
WS7 = WS6 + I./(STHM)}\mp@subsup{}{}{3
R\emptysetFXX = WSI + WS7 (RCD)}\mp@subsup{}{}{3
(Statement 8)
```


V. REFERENCES

1. Cloutier, G. J., Dynamic Analysis of Crushable Material Impact Energy Absorbers, Avco/RAD Technical Report KHDR-15 (June 1965).
2. Performance of and Design Criteria for Deployable Aerodynamic Decelerators, Wright-Patterson Air Force Base Technical Report No. ASD-TR-61-579 (December 1963).
3. Turner, R. D., A Parachute Design Study for a Mars Entry Vehicle, Cook Electric Company, Report No. FR-3707B (September 1964).

PROGRAM 1883

RADIATION HEATING PROGRAM (1883)

CONTENTS

I. Introduction 1
A. General Description 1
B. Calculation Model 1
II. Usage 10
A. Input Definitions 10
B. Input Procedures 11
C. Output Definitions 11
D. Sample Problem 13
E. Diagnostics 14
III. Computations 21
A. Block Diagram 21
B. Symbols 21
C. Equations 22
IV. IBM Routines. 34
A. Program Flow 34
B. Man Program 34
C. Subroutines 35
D. Signuficant Equations 45
V. References 52

ILLUSTRATIONS

Figure 1 Typıcal Zone Model for Program 1883 2
2 Calculation Model for Option to Compute Delta 7
3 Shock Detachment Distance for Oblate Ellipsoids 7
4 Comparative Results for 30 Percent $\mathrm{CO}_{2}-70$ Percent N_{2}. 9
5 Block Diagram for Program 1883 21
6 Flow Diagram for Program 1883 34
TABLES
Table I Tabular Values of $\bar{\epsilon}$ 8

-iv-

I. INTRODUCTION

A. GENERAL DESCRIPTION

Program 1883 computes the equilibrium gas properties in the stagnation region behind a normal shock, and the associated radiative heating, 'given ambient condıtions of densıty, temperature, and molecular composition of the atmosphere, the shock standoff distance and the flight velocity. The shock standoff distance can also be computed, provided sufficient body shape data are given, based on the correlation of standoff distance stored in the program.

B. CALCULATION MODEL

During hypervelocity entry, the state of the gas behand. a bow wave can vary from a highly ionized state to a molecular and atomic state. Enumerating all the likely species to be encountered throughout entry to solve the thermodynamic state of the gas would require an equal number of equations to be solved simultaneously. The present approach is an approximate method which divides the thermodynamic states into 4 zones, wherein only a few major reactions govern the state of the gas result in simplified and more rapid solutions for the state conditions. For example, Figure lillustrates the variation in specie concentrations with temperature, and typical zone demarcation lines are indicated for mitially pure CO_{2} The zone division is performed automatically by testing enthalpy and pressure.

Assumptions include:

1. Rigid rotator molecules
2. Harmonic oscillators
3. Electronic energy states are not consadered beyond $70,000^{\circ} \mathrm{K}$
4. The enthalpy of all molecules is taken as 0 at $0^{\circ} \mathrm{K}$
5. Equilibrium thermodynamics apply
6. Only several major reactions govern the thermodynamic state at any time.

The calculation model is described in detail in Reference 1 , and a summary is presented herein for completeness.

Figure 1 TYPICAL ZONE MODEL FOR PROGRAM 1883

1. Stagnation Point Conditions

During hypervelocity entry, the state of the gas behind a bow shock can vary from highly ronized to atomic and molecular states. Enumerating all the likely species to be encountered throughout entry would require an equal number of equations to be solved simultaneousiy. In general, a sufficient number of chemical reaction equations,

$$
\sum a_{1} A_{i} \rightleftarrows \sum b_{1} B_{1}
$$

(where A_{1} are the reactants, B_{1} the products, and a_{1}, b_{1}, the storchiometric coefficients) must be formulated, such that taken together with the element and charge conservation equations, we are able to solve for the specie concentrations. The present program considers 19 species, 4 elements and electrons and hence there are 14 reaction equations and 5 conservation equations.

The elements considered are carbon, oxygen, nitrogen, and argon; however, the conservation relationships are utilized in terms of the molecular concentrations of nitrogen, carbon dioxide, oxygen, and argon as they appear in the atmosphere. The complete reaction matrix is given in Table I-13, page 46, of Reference 1.

The 14 reactions could be solved at each point along the trajectory using the method of the minmmation of free energy, e. g. Reference 2, page 207. Since the reactions cover the whole range of species to be encountered, at any one time only a few of them will be important, which leads to the alternate method of solving a small number of concentration equations simultaneously. The latter approach, dernonstrated by Hansen ${ }^{3}$ for alr, is utilized in the present program.

For each reaction, an equation involvang an equilibrium constant is formulated: ${ }^{2,3}$

$$
K_{P}=\frac{I I\left[X\left(B_{1}\right)\right]^{b_{1}}}{I I\left[X\left(A_{1}\right)\right]^{a_{1}}}\left(\frac{P}{Z}\right)^{b_{1}-a_{1}}
$$

where Z is the compressability factor and represents the number of moles of gaseous products per mole of reactants，and $X\left(A_{1}\right)$ and $X\left(B_{1}\right)$ are the moles of reactants and products，respectively．

The equilibrium constants are，in turn，calculated from kinetic theory using spectroscopic and structural aspects of the individual molecules，atoms and ions．2，3

The equilibrium constants are expressible as

$$
\ln K_{\mathrm{p}}=-\frac{\Delta \mathrm{E}_{\mathrm{o}}}{\mathrm{RT}}+\sum \mathrm{b}_{\mathrm{i}} \ln \mathrm{Q}_{\mathrm{p}}\left(\mathrm{~B}_{\mathrm{i}}\right)-\sum \mathrm{a}_{\mathrm{i}} \ln \mathrm{Q}_{\mathrm{p}}\left(A_{\mathrm{i}}\right)
$$

where $Q_{p}\left(A_{1}\right)$ and $Q_{p}\left(B_{1}\right)$ are the partition functions of the individual molecules， atoms，ions，and electrons，and ΔE_{0} is the change in the zero point energy for the reaction．The expressions for the equilibrium constants and parti－ tion functions are given in Reference l，Tables I－15 and I－18．

The partition functions and equilibrium constants are given in terms of pressure and temperature and hence the solution to the species concentra－ tions is obtamed for these two－state variables．During entry，sufficient trajectory data exist to compute the total enthalpy and to estimate the stag－ nation pressure closely，and hence an iterative solution of the specie con－ centrations is required to determine the temperature of the gas as well， such that the stagnation enthalpy is matched．The enthalpy of the gas given by：

$$
\frac{H M}{R T_{0}}=\sum X_{1}\left(\frac{{ }^{H_{1} M}}{R T_{0}}\right)
$$

must equal the stagnation enthalpy during flight：

$$
\frac{H M}{R T_{o}}=\frac{v^{2}}{2} \frac{M}{R T_{0}}+\frac{h_{a} M}{R T_{o}}
$$

The stagnation pressure is approximated as：

$$
p \cong \frac{\rho v^{2}}{2116}
$$

The velocity (V) is input in fps , the density $\mathrm{o}_{\mathrm{o}} \mathrm{RH} \phi_{\mathrm{A}}$ in slug/ft ${ }^{3}$, and the ambient temperature TA in degrees Kelvin(${ }^{\circ} \mathrm{K}$).

For the approach selected, of solving a limited number of key concentration relationships simultaneously, a priori knowledge is required of the relative importance of the reactions for various flight conditions. Hence, tabular data were computed and stored in the program as Table I. 19 in Reference 1, which specifies zones of $H M / R T_{0}$ and P, where the number of simultaneous algebraic equations for the species concentrations can be optimized. The dominant reactions in each zone are discussed in Reference 1 .

The general nature of the solution proceeds as follows
Trajectory Data

The radiation heating is computed for a parallel slab of gas at uniform stagnation temperature and pressure of thickness (\triangle) DELTA. The heating is given by•

$$
\mathrm{QR}=\vec{\epsilon} \sigma \mathrm{T}^{4}
$$

where $\sigma=$ the Stefan-Boltzmann constant. The calculated emissivity of the gas accounts for absorption, and is given as:

$$
\bar{\epsilon}=1-2 E_{3}\left(\Sigma_{\tau_{1}}\right)
$$

where τ_{1} is the optical path length of each radiating specie,

$$
\tau_{\mathrm{I}}=1524 \frac{\epsilon_{1}}{\mathrm{~L}} \Delta
$$

and $E_{3}(r)$ 1s defined as:

$$
E_{3}(\tau)=\int_{0}^{1} s e^{-t / s} d s
$$

Tabular values of $1-2 E_{3}(\tau)$ are shown in Table I and are used in the computer program.

$$
\frac{\epsilon_{1}}{L}=C_{1} \frac{N_{1}}{54 \times 10^{19}} \cdot \frac{e^{-T_{1} / T}}{\left(T \times 10^{-4}\right)^{n_{i}}}
$$

where N_{i} is the particle density of the radiating species.

The values of C_{1}, T_{i}, n_{i} for the corresponding species X_{1} are given in Table I- 20 in Reference 1. A detailed discussion of the radiation heating model is given in Reference 1 also. The standoff distance (Δ) may be input, or the nose geometry can be input, in terms of RN, RSN, THN as shown in Figure 2 which utilizes the correlations of Reference 5 as shown in Figure 3.

2. Limitations

The limitations of the calculation model are discussed in Reference 1 , page 49, from the pount of view of the kinetic theory approximations.

The flight speed range and atmosphere limits are governed by the range of species considered. Doubly ionized carbon, oxygen, and nitrogen ions

Figure 2 CALCULATION MODEL FOR OPTION TO COMPUTE DELTA

65-11702

Figure 3 SHOCK DETACHMENT DISTANCE FOR OBLATE ELLIPSOIDS
and singly ionized argon are considered in the.extreme temperature range, hence, the calculable flight speed regime is higher for mixtures without argon. As the program was developed primarily for high-speed studies, its use for low-temperature work, corresponding to flight velocities below 8000 fps , is not recommended.

Because of the nature of the algebraic equations, several limitations arise in specifying concentrations; both the concentrations of argon and oxygen can be specified as zero, but the concentrations of CO_{2} and N_{2} should be greater than 10^{-3}.

The radiation model uses the parallel slab approximation and assumes an isothermal gas layer of uniform composition; hence, the results will tend to be conservative, especially at large radiative heating rates when the radiation heat loss approaches the energy content of the gas. This limit has been treated by Wick, 6 Yoshikawa and Chapman. 7

The limitations of the model to predict the standoff distance are discussed under Program 1880.

Comparative results obtained from Program 1883 with those obtained from JPL and Ames Programs are given in Figure 4.

Figure 4 COMPARATIVE RESULTS FOR 30 PERCENT $\mathrm{CO}_{2}-70$ PERCENT N_{2}

II. USAGE

A. INPUT DEFINITIONS

External Name	Preset Values	Symbol	Parameter	Units
ATM			A number of the form XX. XX for identrfication.	--
CASE			A number of the form XX. XX for ıdentification.	--
DATE			A number of the form $X X, X X$ for identafication.	--
DELTA	0.	Δ	Shock detachrnent distance. If $=0, \Delta$ is computed from a geometry correlation.	feet
MEMø			A number of the form XX. XX for identufncation.	--
RC	0.		Cylinder radius.	feet
RHめA	0.	$\rho_{\text {a }}$	Ambient density.	slug/feet ${ }^{3}$
RN	0.	R_{N}	Nose radius used for Δ correlan tion (see DELTA).	feet
RSN	0.	RSN	Shoulder radus for Δ correlation (See DELTA).	feet
TA	0.	T_{a}	Ambient temperature.	${ }^{\circ} \mathrm{K}$
THN	0.	$\theta_{\text {N }}$	Nose angle used for Δ correlation (See DELTA).	degrees
V	0.	V	Vehicle velocity.	$f t / s e c$
VEHICL		-	A number of the form XX. XX for vehicle identification.	-
XA	0.	XA	Mole fraction of A in atmosphere.	--

-10.
2876

Exterñal Name	Preset Values	Symbol	Parameter	Unıts
XC	0.	XC	Mole fraction of CO_{2} in atmos- phere. XN	0.

B. INPUT PROCEDURES

The following procedures are to be observed when formulating inputs for Program 1883:

1. All data are numerical and may be wratten with decimal points.
2. Since all variables have been preset to 0 ., before the first case, only those which are to be non-zero must be input.
3. The concentrations of oxygen and argon may be equal to zero; however, the concentrations of nitrogen and carbon dioxide should not be less than 0.001 .
4. Argon is moluded only in Zones 1 and 2 and hence, if the flight conditions are outside of these limits, one must ensure that the concentrations of oxygen, carbon dioxide, and mitrogen total unity.
5. A set of computer input forms are provided for the user. All the data shown on the form is keypunched when the variable is supplied.
C. OUTPUT DEFINITIONS

$\begin{gathered} \text { External } \\ \text { Name } \\ \hline \end{gathered}$	Preset Values	Symbol	Parameter	Units
ATM \dagger S	ATM $¢$ S		Number of the form XX. XX used for identification of the atmosphere.	--
CASE	CASE		Number of the form XX. XX used for identification of the case.	--
DATE	DATE		Number of the form XX. XX used for identification of the problem run.	--
DELTA	DEL	Δ	Detachment distance.	feet
EPSIL $\emptyset \mathrm{N}$	EPBAR	$\bar{\epsilon}$	Total effective emissivity.	--

External Name	Internal Name	Symbol	Parameter	Units
EPSILON (I)	EPS	ϵ_{1}	Table of emssivities for each radiation source.	--
HD/HS	HDHS	$\mathrm{H}_{\mathrm{D}} / \mathrm{H}_{S}$	Ratio of dissociation enthalpy to stagnation enthalpy.	---
FM/RTD	HRT	$\mathrm{HM} / \mathrm{RT}^{\text {o }}$	Stagnation enthalpy ratio,	---
MEM \varnothing	MEMD		Number of the form XX. XX used for identification of the problem run.	---
QI	QI		Radiative heating contribution of each source.	Btu/ft ${ }^{2}-\mathrm{sec}$.
$Q \mathrm{R}$	QSUM		Total radiation heating at stagnation point. .	Btu/ft ${ }^{2}-\mathrm{sec}$.
RH $\overline{\mathrm{H}}$ / R RH ¢	RH \quad ST	$\rho_{\mathrm{S}} / \rho_{\mathrm{a}}$	Ratio of stagnation density to ambrent density.	---
TS	T	$\mathrm{T}_{\text {S }}$	Stagnation temperature.	${ }^{\circ} \mathrm{K}$
VEHICL	VEFICL		Number of the form XX. XX for vehicle identification.	--
X	X	x_{i}	Specie concentration.	moles
ZS	z	z	Total moles of species.	moles

1. Chemical Terms

Aithough conventional chemical symbols are utilized in the text and especially in writing chemical reactions, the symbols used in the program and occurring on the program printout sheets must include only captial letters without subscripts. The following table summarizes the nomenclature for all the species considered in the program:

Program Symbol	Chemical Symbol	Chemical Name
ϕ	0	Atomic oxygen
$\phi 2$	O_{2}	Molecular oxygen

Program Symbol	Chemical Symbol	Chemical Name
C	C	Atomic carbon
C $\varnothing 2$	CO_{2}	Carbon dioxide
CФ	CO	Carbon monoxide
N	N	Atomic nxtrogen
N2	N_{2}	Molecular mitrogen
A	A	Argon (monatome)
$\phi+$	O^{+}	Singly ionzed atomic oxygen
$\phi++$	O^{++}	Doubly ionized atomic oxygen
C+	C^{+}	Singly ionized atomyc carbon
C+t	C^{++}	Doubly ionized atomic carbon
$\mathrm{N}+$	N^{+}	Singly $10 n i z e d$ atomic nitrogen
N++	N^{++}	Doubly ionized atomic nitrogen
N2+	$\mathrm{N}_{2}{ }^{+}$	Single ionized molecular mitrogen
At	A^{+}	Singly 1 onized argon
CN	CN	Cyanogen
Nめ	NO	Natric oxide
E-	e^{-}	Electrons

D. SAMPLE PROBELM

1. Statement of Problem

Determine the radiation heating for a specified flight condition for a gas mixture of 51.2 percent nitrogen and 48.8 percent carbon dioxide.

2. Input Form

The input form containing the necessary data is shown on a following page. Case 1 typifies the input when the vehicle geometry is specified, and Case 2 is the optional input of specifying the shock stand off distance. All the variable names for which data are given should be keypunched.

3. Output Form

The output is shown on the following pages. The keypunched data are shown and should be compared with the input form. The emissivities of each specie contributing to the radiation are given as well as the total emissivity including self absorption (grey gas approximation).

The stagnation temperature, compressibilıty factor, shock density ratıo, radiation heating, enthalpy, and dissociation energy are given. The concentrations of the individual constituents are given as well as the radiation contributions of the species considered.

E. DIAGNOSTICS

The number of messages are given in the printout reflecting the following program diagnostics.

1. Nめ VALID S \varnothing LUTI $\varnothing N$

The equilibrium gas dynamics (1883) solution was not able to obtain a solution with positive concentrations for all the species satisfying the elemental and charge conservation relationships. In this case, the data is linearly interpolated between the last and the next point for which a solution is found.

2. NめT C \varnothing NVERGED IN 30 ITERATI $\phi N S$

The equilibrium gas dynamics (1883) solution was unable to converge within 30 iterations to withan 1 percent on the enthalpy; use the last value found.

$\mathrm{mad}_{563}^{2.0903}$	DIGITAL COMPUTER INPUT REQUEST FORM			problem no 1883			programmer D. Gullespie		
				ritie Radiation Heating Program					
	MEMO NO	section no	WORK ORDER NO		[EE20 USE ONLY]	REQUESTED EY	ExT	EST TIME	Page 1 of 1 pages

\$INPUT

-15-
242π

III. COMPUTATIONS

A. BLOCK DIAGRAM

The block diagram for Program 1883 is given in Figure 5.

65-11703
Figure 5 BLOCK DIAGRAM FOR PROGRAM 1883
B. SYMBOLS
$\mathrm{E}_{\mathrm{o}} \quad$ zero point energy
$\mathrm{H}_{1} \quad$ total enthalpy of $1^{\text {th }}$ specie, Btu/mole
H total enthalpy, Btu/mole
$\mathrm{K}_{\mathrm{pt}} \quad$ equilibrium constant for $1^{\text {th }}$ reaction
M mean molecular weight of atmosphere
$N_{1} \quad$ number density of $1^{\text {th }}$ specie, particles $/ \mathrm{cm}^{3}$

1. Basic Equations
a. Enthalpy

$$
\begin{align*}
& \frac{H_{1} M}{R T_{o}}=\frac{E_{O_{1}}}{R T_{0}}+\frac{T^{2}}{T_{0}}\left(\frac{\partial \ln Q_{1}}{\partial T}\right)_{P} \tag{1}\\
& \frac{H M}{R T_{0}}=\Sigma \cdot X_{i}\left(\frac{H_{1} M}{R T_{o}}\right) \tag{2}
\end{align*}
$$

b. Energy of Dissociation

$$
\begin{equation*}
\frac{{ }_{\mathrm{H}^{M}}}{\mathrm{RT}_{0}}=\sum_{1} \mathrm{X}_{\mathrm{i}} \frac{E_{01}}{\mathrm{RT}_{0}} \tag{3}
\end{equation*}
$$

c. Equilibrium Constants

The equilibrium constants for all the reactions used in the program are given as a function of (T, P) in Reference 1 , Table I-15.
d. Partition Functions

The partition functions for all the species considered in the program are given as a function of (I, P) in Reference 1, Table I-18.
e. Zero Point Energies

The zero point energies used are given in Reference I, Table I-I4. It is important to note that the values for all molecules are zero.
2. Zone 1
a. Major Specres

1) Six major species considered:

Six major species considered
$\mathrm{X}(\mathrm{N} 2), \mathrm{X}\left(\mathrm{CO}_{2}\right), \mathrm{X}\left(\mathrm{O}_{2}\right), \mathrm{X}(\mathrm{A}), \mathrm{X}(\mathrm{CO}), \mathrm{X}(\mathrm{O})$
b. Major Specie Reactions
$\mathrm{CO}_{2} \rightarrow \mathrm{CO}+1 / 2 \mathrm{O}_{2}$
$\mathrm{O}_{2}+20$
c. Major Specie Conservation Equations
$X\left(N_{2}\right)=X N$
$\mathrm{X}\left(\mathrm{CO}_{2}\right)=\mathrm{XC}-\mathrm{X}(\mathrm{CO})$
$X\left(\mathrm{O}_{2}\right)=\mathrm{XO}+(1 / 2) \mathrm{X}(\mathrm{CO})-(1 / 2) \mathrm{X}(\mathrm{CO})$
$X(A)=X A$

d. Equilibrium Constants for Major Species Reactions

$$
\begin{align*}
& \mathrm{K}_{\mathrm{P} 1}=\frac{[\mathrm{X}(\mathrm{CO})] \sqrt{\left[\mathrm{X}\left(\mathrm{O}_{2}\right)\right]} \sqrt{\mathrm{P}}}{\left[\mathrm{X}\left(\mathrm{CO}_{2}\right)\right] \sqrt{\mathrm{Z}}} \tag{8}\\
& \mathrm{~K}_{\mathrm{P} 2}=\frac{[\mathrm{X}(\mathrm{O})]^{2} \mathrm{P}}{\left[\mathrm{X}\left(\mathrm{O}_{2}\right)\right] \mathrm{Z}} \tag{9}
\end{align*}
$$

Total moles:

$$
\begin{equation*}
Z=\Sigma X_{1}=1+(1 / 2) x(C O)+(1 / 2) X(0) \tag{10}
\end{equation*}
$$

e. General Solution

There can be as many as six major species governing the thermodynamic state of the gas. Hence, six equations are required to be solved (identified as Equations (4) through (9)). The auxiliary equation for the compressibility factor Z is given by Equation (10). Making use of Equations (5) and (6), and combining Equations (8) and (9), an explicit solution for the CO concentration can be found, namely,

X(CO) Polynomial

$$
\begin{equation*}
\sum_{1=1}^{4} c_{1} x(C O)^{4-1}=0 \tag{II}
\end{equation*}
$$

$$
\begin{aligned}
& C_{1}=K_{P 1} \sqrt{K_{P 2}}\left(\frac{K_{P 1}}{\sqrt{K_{P 2}}}-1\right)-P \\
& c_{2}=K_{P 1} \sqrt{K_{P 2}}\left\{\frac{2 K_{P 1}}{\sqrt{K_{P 2}}}(1-\mathrm{XC})+\mathrm{xC}-1-\mathrm{XO}\right\}-2 \mathrm{PXO} \\
& C_{3}=K_{P 1} \sqrt{K_{P 2}} \mathrm{xC}\left\{\mathrm{XO}+1+\frac{\mathrm{K}_{\mathrm{P} 1}}{\sqrt{\mathrm{~K}_{\mathrm{P} 2}}}(\mathrm{XC}-4)\right\} \\
& C_{4}=2(\mathrm{XC})^{2} \mathrm{~K}_{\mathrm{P} 1}^{2}
\end{aligned}
$$

3. Zone 2

a. Major Species

Six major species are considered in Zone 2:
$X\left(N_{2}\right), X(N), X(A), X(0), X(C)$, and $X(C O)$.
b. Major Specie Reactions

$$
\begin{aligned}
& \mathrm{N}_{2} \rightarrow 2 \mathrm{~N} \\
& \mathrm{CO} \rightarrow \mathrm{C}+\mathrm{O}
\end{aligned}
$$

c. Major Species Conservation Equations

$$
\begin{align*}
& X\left(N_{2}\right)=X N-(1 / 2) x(N) \tag{12}\\
& X(C O)=X C-X(C) \tag{13}\\
& X(O)=2 X O+X C+X(C) \tag{14}\\
& X(A)=X A \tag{15}
\end{align*}
$$

d. Equilibrium Constants for Major Specres Reactions

$$
\begin{equation*}
\mathrm{K}_{\mathrm{P} 3}=\frac{[\mathrm{X}(\mathrm{~N})]^{2} \mathrm{P}}{\mathrm{X}\left(\mathrm{~N}_{2}\right) Z} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{P} 4}=\frac{[\mathrm{X}(\mathrm{C})][\mathrm{X}(\mathrm{O})] \mathrm{p}}{\mathrm{X}(\mathrm{CO}) Z} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Z}=\mathrm{I}+\mathrm{XO}+\mathrm{XC}+\frac{\mathrm{X}(\mathrm{~N})}{2}+\mathrm{X}(\mathrm{C}) \tag{18}
\end{equation*}
$$

e. Minor Species

A large number of minor concentrations are considered in Zone 2 because of theur importance in the radiative heating calculations. Eight minor species are considered:
$\mathrm{X}(\mathrm{CN}), \mathrm{X}(\mathrm{NO}), \mathrm{X}\left(\mathrm{N}^{+}\right), \mathrm{X}\left(\mathrm{C}^{+}\right), \mathrm{X}\left(\mathrm{O}^{+}\right), \mathrm{X}\left(\mathrm{A}^{+}\right), \mathrm{X}\left(\mathrm{N}_{2}^{+}\right)$, and $\mathrm{X}\left(\mathrm{e}^{-}\right)$.
f. Minor Species Reactions
$N \rightarrow N^{+}+e^{-}$
$0 \rightarrow \mathrm{O}^{+}+\mathrm{e}^{-}$
$C \rightarrow C^{+}+e^{-}$
$A \rightarrow A^{+}+e^{-}$
$\mathrm{N}_{2}^{+} \rightarrow \mathrm{N}^{+}+\mathrm{N}$
$\mathrm{C}+\mathrm{N}+\mathrm{CN}$
$\mathrm{N}+\mathrm{O} \rightarrow \mathrm{NO}$.
g. Minor Species Concentrations

$$
\begin{equation*}
X\left(O^{+}\right)=K_{P 7} \frac{Z}{P} \frac{X(O)}{X\left(e^{-}\right)} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{X}\left(\mathrm{~N}^{+}\right)=K_{\mathrm{P} 8} \frac{\mathrm{Z}}{\mathrm{P}} \frac{\mathrm{X}(\mathrm{~N})}{\mathrm{X}\left(\mathrm{e}^{-}\right)} \tag{20}
\end{equation*}
$$

$X\left(C^{+}\right)=K_{P} q \frac{Z}{P} \frac{X(C)}{X\left(e^{-}\right)}$
$\mathrm{X}\left(\mathrm{N}_{2}^{+}\right)=\frac{\mathrm{K}_{\mathrm{P} 8}}{\mathrm{~K}_{\mathrm{P} 13}}{\frac{[\mathrm{X}(\mathrm{N})]}{\mathrm{X}\left(\mathrm{e}^{-}\right)}}^{2}$
$X(C N)=X(C) X(N) K_{P S} \frac{P}{Z}$
$X(N O)=X(N) X(O) K_{P G} \frac{P}{Z}$
$[X(e-)]^{2}=\frac{Z}{P} \quad X(0) K_{P 7}+X(N) K_{P 8}+X(C) K_{P 9}+X(A) K_{P 14}+\frac{K_{P 8}}{K_{P 13}}[X(N)]^{2}$
h. General Solution

$$
X(\mathrm{~N}) \text { Polynomıal }
$$

$$
-27
$$

$$
\begin{aligned}
& \sum_{i=1}^{5} C_{1} x(N)^{5-1}=0 \\
& c_{1}=-\left(K_{P 4}\right)\left(4 \mathrm{P}+\mathrm{K}_{\mathrm{P} 3}\right)-2 \mathrm{P}\left[2 \mathrm{P}-\mathrm{K}_{\mathrm{P} 3}\right]-\frac{\mathrm{K}_{\mathrm{P} 3}^{2}}{8} \\
& c_{2}=\frac{\left(\mathrm{K}_{\mathrm{P} 3}\right)\left(\mathrm{K}_{\mathrm{P} 4}\right.}{2}[\mathrm{XN}-(1+\mathrm{xC}+\mathrm{xO}+\mathrm{XC})]+\frac{\mathrm{K}_{\mathrm{P} 3}}{8}[4 \mathrm{P}(2 \mathrm{XN}-2-\mathrm{XC})] \\
& -\frac{\mathrm{K}_{\mathrm{P} 3}^{2}}{8}(2-2 \mathrm{XN}+\mathrm{XC}) \\
& \mathrm{C}_{3}=\left(\mathrm{K}_{\mathrm{P} 3}\right)\left(\mathrm{K}_{\mathrm{P} 4}\right) \frac{\mathrm{XN}}{2}(1+\mathrm{XO}+2 \mathrm{XC})+\frac{\mathrm{P}}{2}\left(\mathrm{~K}_{\mathrm{P} 3}\right) \mathrm{XN}(2+\mathrm{XC}) \\
& -\frac{\mathrm{K}_{\mathrm{P} 3}^{2}}{8}\left[\mathrm{XN}^{2}-2 \mathrm{XN}(2+\mathrm{XC})+\left(1+\mathrm{XC}-\mathrm{XOXC}-\mathrm{XO}^{2}\right)\right] \\
& C_{4}=-\frac{\mathrm{K}_{\mathrm{P} 3}^{2}}{8}\left[\mathrm{XN}^{2}(2+\mathrm{XC})-2 \mathrm{XN}\left(1+\mathrm{xC}-\mathrm{xOXC}-\mathrm{xo}^{2}\right)\right] \\
& \mathrm{C}_{5}=-\frac{\mathrm{K}_{\mathrm{P} 3}^{2} \mathrm{XN}^{2}\left(1+\mathrm{XC}-\mathrm{XOXC}-\mathrm{Xo}^{2}\right)}{8} \\
& x \text { (CN) Polynomal } \\
& \sum_{1=1}^{4} c_{1}[x(C N)]^{4-1} \\
& C_{4}=-[\mathrm{X}(\mathrm{C})]^{2} \mathrm{~K}_{\mathrm{P},}^{2} \mathrm{X}(\mathrm{~N}) \mathrm{P}[\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}] \mathrm{K}_{\mathrm{P} 6} \\
& \mathrm{C}_{3}=\left(\mathrm{K}_{\mathrm{P} 5}\right) \mathrm{X}(\mathrm{C})\left[\mathrm{X}(\mathrm{C}) \mathrm{K}_{\mathrm{P} 5} \mathrm{H}+\mathrm{D}+2 \mathrm{WSG}\right] \\
& \mathrm{H}=\mathrm{PK}_{\mathrm{P} \sigma}[\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}=\mathrm{P}\left(\mathrm{~K}_{\mathrm{P} G}^{2}\right)[\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}][\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}+\mathrm{X}(\mathrm{~N})] \\
& \left.+\left[1+\mathrm{XC}+\mathrm{XO}+\mathrm{X}(\mathrm{C})+\frac{1}{2} \mathrm{X}(\mathrm{~N})\right][\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}) \mathrm{K}_{\mathrm{P} 6}\right] \\
& \text { WSG }=-\left(K_{P 6}-K_{P S}\right) X(N) P K_{P 6}[X(C)+X C+2 X O] \\
& C_{2}=X(C) K_{P 5}(F+2 W S H)+F(W S 2)+\left(K_{P 6}-K_{P 5}\right)(D+W S G) \\
& F=-\mathrm{K}_{\mathrm{P} 6}[\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}]-\mathrm{K}_{\mathrm{P} 6}^{2} \mathrm{P}[\mathrm{X}(\mathrm{C})+\mathrm{XC}+2 \mathrm{XO}] \\
& \text { WSH }=\left(K_{P 6}-K_{P 5}\right) P_{K_{P 6}}[X(C)+X C+2 X O] \\
& W S 2=K_{P 6}[X(C)+X C+2 X O] \\
& C_{1}=\left(K_{P 6}-K_{P 5}\right)(F+W S H)
\end{aligned}
$$

4. Zone 3

a. Major Species

Seven major species are considered in zone 3:
$X(N), X(C), X(O)$, and $X(e-)$.
b. Major Species Reactions
$\mathrm{N} \rightarrow \mathrm{N}^{+}+\mathrm{e}^{-}$
$C \rightarrow C^{+}+e^{-}$

$$
0 \rightarrow 0^{+}+e^{-}
$$

c. Major Specie Conservation Equations

$$
\begin{align*}
& \mathrm{X}(\mathrm{~N})=2 \mathrm{XN}-\mathrm{X}\left(\mathrm{~N}^{+}\right) \tag{28}\\
& \mathrm{X}(\mathrm{C})=\mathrm{XC}-\mathrm{X}\left(\mathrm{C}^{+}\right) \tag{29}\\
& \mathrm{X}(0)=2 \mathrm{XO}+2 \mathrm{XC}-\mathrm{X}\left(\mathrm{O}^{+}\right) \tag{30}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{X}\left(\mathrm{e}^{-}\right)=\mathrm{X}\left(\mathrm{~N}^{+}\right)+\mathrm{X}\left(\mathrm{C}^{+}\right)+\mathrm{X}\left(0^{+}\right) \tag{31}
\end{equation*}
$$

d. Equilibrium Constants for Major Species Reactions

$$
\mathrm{K}_{\mathrm{P} 7}=\frac{\mathrm{X}\left(\mathrm{O}^{+}\right) \mathrm{X}\left(\mathrm{e}^{-}\right) \mathrm{P}}{\mathrm{X}(0) Z}
$$

$$
\begin{equation*}
K_{P 8}=\frac{X\left(N^{+}\right) X\left(e^{-}\right) P}{X(N) Z} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
K_{\mathrm{P} 9}=\frac{\mathrm{X}(\mathrm{C}) \mathrm{X}\left(\mathrm{e}^{-}\right) \mathrm{P}}{\mathrm{X} / C) Z} \tag{34}
\end{equation*}
$$

Total moles

$$
\begin{equation*}
\mathrm{Z}=1+\mathrm{XN}+\mathrm{XO}+2 \mathrm{XC}+\mathrm{X}\left(\mathrm{e}^{-}\right) \tag{35}
\end{equation*}
$$

e. Minor Species

A number of minor concentrations heavily influence the radiative heating and the following additional specie concentrations are required$\mathrm{X}(\mathrm{CN}), \mathrm{X}(\mathrm{NO}), \mathrm{X}\left(\mathrm{N}_{2}^{+}\right)$
f. Minor Species Reactions
$\mathrm{C}+\mathrm{N} \rightarrow \mathrm{CN}$
$\mathrm{N}+\mathrm{O} \rightarrow \mathrm{NO}$
$\mathrm{N}^{+}+\mathrm{N} \rightarrow \mathrm{N}_{2}^{+}$
g. Minor Species Concentration
$X(C N)=X(C) X(N) K_{P S} \frac{P}{Z}$
$X(N O)=X(N) X(O) K_{P G} \frac{P}{Z}$

$$
\begin{equation*}
\mathrm{X}\left(\mathrm{~N}_{2}^{+}\right)=\frac{\mathrm{X}\left(\mathrm{~N}^{+}\right) \mathrm{X}(\mathrm{~N})}{\mathrm{K}_{\mathrm{Pl} 3}} \frac{\mathrm{P}}{Z} \tag{38}
\end{equation*}
$$

h. General Solution
$X\left(C^{+}\right)$polynomial

$$
\begin{aligned}
& \sum_{i=1}^{5} C_{1}\left[x\left(C^{+}\right)\right]^{5-1}=0 \\
& C_{1}=\left(K_{P 8}-K_{P 9}\right)\left(K_{P 7}-K_{P 9}\right)\left(K_{P 9}+P\right) \\
& \mathrm{C}_{2}=\left(\mathrm{K}_{\mathrm{P} 9}+\mathrm{P}\right)\left\{2 \mathrm{XNK}_{\mathrm{P} 8}\left(\mathrm{~K}_{\mathrm{P} 7}-\mathrm{K}_{\mathrm{P} 9}\right)+2(\mathrm{XC}+\mathrm{XO}) \mathrm{K}_{\mathrm{P} 7}\left(\mathrm{~K}_{\mathrm{P} 8}-\mathrm{K}_{\mathrm{P} 9}\right)\right. \\
& \left.+\mathrm{XCK}_{\mathrm{P} 9}\left(\mathrm{~K}_{\mathrm{P} 8}+\mathrm{K}_{\mathrm{P} 7}-2 \mathrm{~K}_{\mathrm{P} 9}\right)\right\}+\left\{\left(\mathrm{K}_{\mathrm{P} 8}-\mathrm{K}_{\mathrm{P} 9}\right)\left(\mathrm{K}_{\mathrm{P} 7}-\mathrm{K}_{\mathrm{P} 9}\right) \cdot\right. \\
& \left.\left[(1+2 \mathrm{XC}+\mathrm{XO}+\mathrm{XN}) \mathrm{K}_{\mathrm{P} 9}-\mathrm{XCK}_{\mathrm{P} 9}\right]\right\} \\
& \mathrm{C}_{3}=\mathrm{XCK}_{\mathrm{P} 9}\left\{\left(\mathrm{~K}_{\mathrm{P} 9}+\mathrm{P}\right)\left[2 \mathrm{XNK} \mathrm{P}_{\mathrm{P}}+2 \mathrm{~K}_{\mathrm{P} 7}(\mathrm{XC}+\mathrm{XO})+\mathrm{K}_{\mathrm{P} 9} \mathrm{XC}\right]\right. \\
& +\left(\mathrm{K}_{\mathrm{P} 8}+\mathrm{K}_{\mathrm{P} 7}-2 \mathrm{~K}_{\mathrm{P} 9}\right)\left[(\mathrm{t} \div 2 \mathrm{XC}+\mathrm{XO}+\mathrm{XN}) \mathrm{K}_{\mathrm{P} 9}-\mathrm{XCK}_{\mathrm{P} 9}\right] \\
& -\left[2 X_{N K} K_{P 8}\left(\mathrm{~K}_{\mathrm{P} 7}-\mathrm{K}_{\mathrm{P} 9}\right)+2(\mathrm{XC}+\mathrm{XO})\left(\mathrm{K}_{\mathrm{P} 7}\right)\left(\mathrm{K}_{\mathrm{P} 8}-\mathrm{K}_{\mathrm{P} 9}\right)\right] \\
& \left.-(1+2 \mathrm{XC}+\mathrm{XO}+\mathrm{XN})\left(\mathrm{K}_{\mathrm{P} 8}-\mathrm{K}_{\mathrm{P} 9}\right)\left(\mathrm{K}_{\mathrm{P} 7}-\mathrm{K}_{\mathrm{P} 9}\right)\right\} \\
& \mathrm{C}_{4}=\mathrm{XC}^{2} \mathrm{~K}_{\mathrm{P} 9}^{2}\left\{(1+2 \mathrm{XC}+\mathrm{XO}+\mathrm{XN}) \mathrm{K}_{\mathrm{Pq}}-\mathrm{XC} \mathrm{~K}_{\mathrm{Pq}}\right. \\
& -2(\mathrm{XC}+\mathrm{XO}) \mathrm{K}_{\mathrm{P} 7}-2 \mathrm{XN} \mathrm{~K} \mathrm{P}_{\mathrm{P}} \\
& \left.-(1+2 \mathrm{XC}+\mathrm{XO}+\mathrm{XN})\left(\mathrm{K}_{\mathrm{P} 8}+\mathrm{K}_{\mathrm{P} 7}-2 \mathrm{~K}_{\mathrm{P} 9}\right)\right\} \\
& \mathrm{C}_{5}=-\mathrm{K}_{\mathrm{P} 9}^{3} \mathrm{XC}^{3}(1+2 \mathrm{XC}+\mathrm{XO}+\mathrm{XN})
\end{aligned}
$$

5. Zone 4

Seven major species are considered in Zone 4: $\mathrm{X}\left(\mathrm{N}^{+}\right), \mathrm{X}\left(\mathrm{C}^{+}\right), \mathrm{X}\left(\mathrm{O}^{+}\right), \mathrm{X}\left(\mathrm{N}^{++}\right), \mathrm{X}\left(\mathrm{S}^{++}\right), \mathrm{X}\left(\mathrm{O}^{++}\right)$, and $\mathrm{X}\left(\mathrm{e}^{-}\right)$.
a. Major Species Reaction

$$
\begin{aligned}
& \mathrm{N}^{+} \rightarrow \mathrm{N}^{++}+\mathrm{e}^{-} \\
& \mathrm{C}^{+} \rightarrow \mathrm{C}^{++}+\mathrm{e}^{-} \\
& \mathrm{O}^{+} \rightarrow \mathrm{O}^{++}+\mathrm{e}^{-}
\end{aligned}
$$

b. Major Species Conservation Equations

$$
\begin{align*}
\mathrm{X}\left(\mathrm{~N}^{+}\right) & =2 \mathrm{XN}-\mathrm{X}\left(\mathrm{~N}^{++}\right) \tag{40}\\
\mathrm{X}\left(\mathrm{C}^{+}\right) & =\mathrm{XC}-\mathrm{X}\left(\mathrm{C}^{++}\right) \tag{41}\\
\mathrm{X}\left(\mathrm{O}^{+}\right) & =2 \mathrm{XO}+2 \mathrm{XC}-\mathrm{X}\left(\mathrm{O}^{++}\right) \tag{42}\\
\mathrm{X}\left(\mathrm{e}^{-}\right) & =1+\mathrm{XN}+\mathrm{XO}+2 \mathrm{XC}+\mathrm{X}\left(\mathrm{C}^{++}\right) \tag{43}\\
& +\mathrm{X}\left(\mathrm{O}^{++}\right)+\mathrm{X}\left(\mathrm{~N}^{++}\right)
\end{align*}
$$

c. Equilıbrium Constants for Major Species

$$
\begin{equation*}
\mathrm{K}_{\mathrm{P} 10}=\frac{\mathrm{X}\left(\mathrm{C}^{++}\right) \mathrm{X}\left(\mathrm{e}^{-}\right) \mathrm{P}}{\mathrm{X}\left(\mathrm{C}^{+}\right) Z} \tag{44}
\end{equation*}
$$

$K_{P 11}=\frac{X\left(N^{+}\right) X\left(e^{-}\right) P}{X\left(N^{+}\right) Z}$
$K_{P 12}=\frac{X\left(O^{++}\right) X\left(e^{-}\right) P}{X\left(O^{+}\right) Z}$

Total moles:

$$
\begin{equation*}
Z=1+X N+2 X C+X O+X\left(e^{-}\right) \tag{47}
\end{equation*}
$$

d. General Solution

$$
\begin{aligned}
& X\left(\mathrm{O}^{++}\right) \text {polynomial } \\
& \sum_{i=1}^{5} c_{1}\left[x\left(0^{+7}\right)\right]^{5-1}=0 \\
& C_{1}=\left(K_{P 12}+P\right)\left(K_{P 10}-K_{P 12}\right)\left(K_{P 11}-K_{P 12}\right) \\
& C_{2}=\left(K_{P 12}+P\right)\left\{K_{P 12} 2(X C+X \phi)\left[K_{P 10}+K_{P 11}-2 K_{P 12}\right]\right. \\
& \left.+\mathrm{XC}_{\mathrm{P} 10}\left(\mathrm{~K}_{\mathrm{P} 11}-\mathrm{K}_{\mathrm{P} 12}\right)+2 \mathrm{XN} \mathrm{~K}_{\mathrm{P} 11}\left(\mathrm{~K}_{\mathrm{P} 10}-\mathrm{K}_{\mathrm{P} 12}\right)\right\} \\
& +\left(\mathrm{K}_{\mathrm{P} 10}-\mathrm{K}_{\mathrm{P} 12}\right)\left(\mathrm{K}_{\mathrm{P} 11}-\mathrm{K}_{\mathrm{P} 12}\right)\left\{1+5 \mathrm{XC}+3(\mathrm{XO}+\mathrm{XN}) \mathrm{K}_{\mathrm{P} 12}\right. \\
& \left.+[2(\mathrm{XN}+\mathrm{XO})+3 \mathrm{XC}] \mathrm{P}-\mathrm{K}_{\mathrm{P} 12} 2(\mathrm{XC}+\mathrm{XO})\right\} \\
& \mathrm{C}_{3}=\mathrm{K}_{\mathrm{P} 12} 2(\mathrm{XC}+\mathrm{XO})\left\{\left(\mathrm{K}_{\mathrm{P} 12}+\mathrm{P}\right)\left[\mathrm{K}_{\mathrm{P} 12} 2(\mathrm{XC}+\mathrm{XO})+\mathrm{XC}_{\mathrm{P} 10}+2 \mathrm{XN} \mathrm{~K}_{\mathrm{P} 11}\right]\right. \\
& +\left(\mathrm{K}_{\mathrm{P} 10} \mathrm{~K}_{\mathrm{P} 11}-2 \mathrm{~K}_{\mathrm{P} 12}\right)\left\{[1+5 \mathrm{XC}+3(\mathrm{XO}+\mathrm{XN})] \mathrm{K}_{\mathrm{P} 12}\right. \\
& \left.+\left[2(\mathrm{XN}+\mathrm{XO})^{\circ}+3 \mathrm{XC}\right] \mathrm{P}-2 \mathrm{~K}_{\mathrm{P} 12}(\mathrm{XC}+\mathrm{XO})\right\} \\
& -[1+5 \mathrm{XC}+3(\mathrm{XO}+\mathrm{XN})]\left(\mathrm{K}_{\mathrm{P} 10}-\mathrm{K}_{\mathrm{P} 12}\right)\left(\mathrm{K}_{\mathrm{P} 11}-\mathrm{K}_{\mathrm{P} 12}\right) \\
& \left.\left.-\left[\mathrm{XC} \mathrm{~K}_{\mathrm{P} 10}\left(\mathrm{~K}_{\mathrm{P} 11}-\mathrm{K}_{\mathrm{P} 12}\right)+2 \mathrm{XN} \mathrm{~K}_{\mathrm{P} 11}\left(\mathrm{~K}_{\mathrm{P} 10}-\mathrm{K}_{\mathrm{P} 12}\right)\right]\right\}\right\} \\
& \mathrm{C}_{4}=\left[2 \mathrm{~K}_{\mathrm{P} 12}(\mathrm{XC}+\mathrm{XO})\right]^{2}\left\{[1+5 \mathrm{XC}+3(\mathrm{XO}+\mathrm{XN})] \mathrm{K}_{\mathrm{P} 12}\right. \\
& +[2(\mathrm{XN}+\mathrm{XO})+3 \mathrm{XC}] \mathrm{P}-\mathrm{K}_{\mathrm{P} 12} 2(\mathrm{XC}+\mathrm{XO}) \\
& -\mathrm{XCK}_{\mathrm{P} 10}-2 \mathrm{XNK}_{\mathrm{P} 11}-[1+5 \mathrm{XC}+3(\mathrm{XO}+\mathrm{XN})] . \\
& \left.\left[\mathrm{K}_{\mathrm{P} 10}+\mathrm{K}_{\mathrm{P} 11}-2 \mathrm{~K}_{\mathrm{P} 12}\right]\right\} \\
& C_{5}=-[1+5 \mathrm{XC}+3(\mathrm{XO}+\mathrm{XN})]\left[\mathrm{K}_{\mathrm{P} 12} 2(\mathrm{XC}+\mathrm{XO})\right]^{3}
\end{aligned}
$$

6. Equations Defining the Radiation Heating
a. Basic Equations

$$
\begin{equation*}
\mathrm{QR}=\bar{\epsilon} \sigma \mathrm{T}^{4} \tag{49}
\end{equation*}
$$

where,

$$
\begin{align*}
& \sigma=\text { Stefan -Boltzmann constant } \\
& \bar{\epsilon}=1-2 \mathrm{E}_{3}\left(\Sigma_{\mathrm{i}} r_{\mathrm{i}}\right) \tag{50}\\
& \cdot \tag{51}\\
& r_{1}=15.24 \frac{\epsilon_{\mathrm{i}}}{\mathrm{~L}} \text { (DELTA) } \tag{52}\\
& \cdot \\
& \mathrm{E}_{3}(r)=\int_{0}^{1} \mathrm{se}^{-r \cdot 3} \mathrm{ds} .
\end{align*}
$$

The tabular values of $\bar{\epsilon}(r)$ given in Table I are used in the computer program.
b. Emissivities

The emissivities are taken to have the form:

$$
\begin{equation*}
\frac{\epsilon_{i}}{L}=C_{1} \frac{N_{i}}{5.4 \times 10^{19}} \frac{e^{-T_{i} / T}}{\left(T \times 10^{-4}\right)^{n_{1}}} \tag{53}
\end{equation*}
$$

where,

$$
\begin{equation*}
N_{i}=\frac{2.7-\frac{(\mathrm{RHO})(\mathrm{M})}{2116}}{(89516)(273.16)}{ }^{19} \mathrm{X}_{\mathrm{i}} \tag{54}
\end{equation*}
$$

The values of C_{1}, T_{i}, and n_{i} for the corresponding species X_{1} are given in Reference l, Table I-20.

$$
\begin{align*}
& P=\frac{\rho_{\mathrm{a}} \mathrm{~V}^{2}}{2116} \tag{55}\\
& \frac{\mathrm{HM}}{R T_{0}}=\frac{\mathrm{V}^{2} \mathrm{M}}{2 R T_{0}}+\left(\frac{M C_{\mathrm{p}}}{R}\right) \frac{T_{\mathrm{a}}}{\mathrm{~T}_{0}} \tag{56}\\
& \frac{\mathrm{M} C_{\mathrm{P}}}{\mathrm{R}}=3.5 \mathrm{XN}+3.5 \mathrm{XO}+4.0 \mathrm{XC}+2.5 \mathrm{XA}
\end{align*}
$$

IV. IBM ROUTINES

A. PROGRAM FLOW

A diagram depicting the flow of information within the program is shown in Figure 6.

Figure o FLOW DIAGRAM FOR PROGRAM 1883

B. MAIN PROGRAM

The purpose of the main program is to define tables used with output from the calculation, to acquire program input and provide output. The main program defines tables of Hollerith words (ZNAM1 and ZNAM2) which appear in the output of Program 1883. ZNAMl contains the array of specie names in the same order as their concentrations are stored in the array X, and the table ZNAM2 contains the names of the radiation heating sources as they are arrayed in the table QI. The arrays ZNAM1 and ZNAM2 should be referred to for any changes on the computation of an individual specie or radiation component.

There are eleven tables of temperature and enthalpy which, with a pressure table, are used to define the zone ${ }^{l}$ in which a solution is computed. . The selection of the proper set of tables from the 11 possibilities is determined by the value of the quantity NX. Each of the 11 tables is based on a specific composition of $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~A}$, and CO_{2} in the undissocrated mixture, and the main program selects NX by choosing the table whose sum of mole fractions of O_{2}
-34-
政1《
and CO_{2} is closest to the input sum XO and XC . The array TBSUM contains the $\operatorname{sum} \mathrm{O}_{2}+\mathrm{CO}_{2}$ for each of the 11 tables.

All input varıables are read in through the namelist array INPUT.
Subroutine HEAT1, called after Statement 2001, begins all of the signaficant calculations done by the program. When control is passed back to the main program, the only remaming task is to provide the program output, all of which is contaned in the calling sequence of HEATI, save for the effectave emissivities written out by Subroutine GETN1.
C. SUBROUTINES

1. HEAT 1

a. Purpose

HEATl defines the heats of formation of each specie in the equilibrium mxxture, provides data for the computation of the detachment distance if this quantity is not specified as input and defines the zone on which the equilibrium solution wall be found. Moreover, it controls the temperature iteration which computes an equilibrium mixture of some known pressure and enthalpy at the stagnation point, and obtains total radiation heating and individual radiation components.

b. Method

The major function of subroutine HEATI is to control the iteration in T_{s}, this stagnation temperature being such that the equilibrium maxture has pressure (P) and an enthalpy (HRT) whose relative error to the known stagnation enthalpy (HRTZ) is less than some number (PCNT).

HEATl first defines PCNT, then the heats of formation of each specie (the array E) and the quantities necessary for the detachment distance DELTA. DEITA is computed by a two-dimensional table lookup, unless it is specified in the program input as some number >0. The lookup has, as independent variables, the inverse density ratio which appears in the output (RH $\mathrm{RH} / \mathrm{RH} \varnothing$), and the geometry parameter b / a (see Reference 1): The corresponding tables are called RKTBL and BATBL. The two-dimensional dependent variable table of detachment distance 1 s called DELTBL.

312<
-35-

HEATl then calls subroutine HVSTl which provides a set of tables -T1TBL, T2TBL, T3TBL, H1TBL, H2TBL, and H3TBL. This set is selected from 11 possible sets, and depends on the value of NX and thus on the 02 and CO_{2} concentrations of the ambient mixture. These temperature and enthalpy tables are used with a pressure table (PTBL) to define the upper boundaries of the zone, m which a solution will be found, T1TBL being Zone 1, T2TBL being Zone 2, and so forth

After calling HVST1, subroutine HEATl defines the pressure (P) and enthalpy (HRTZ) at the stagnation point. If the pressure is lower (higher) than the lowest (highest) value in the array PTBL, it is set equal to the lowest (highest) value (Statements 11 to 14).

Subroutine FINDTl provides a furst guess for temperature, the number of the zone for the solution (NUM), and upper and lower bounds in temperature and enthalpy from the proper zone tables (TlTBL), and 'so forth Statements 1007 to 1009 test to be certain that no argon wall be calculated in Zones 3 or 4 , where argon species are not computed. If argon is present in Zones 3 or 4, no solution is provided (GO TO 999). Between Statements 1010 and 106 successive values of the temperature are computed by redefining the bounds in temperature and enthalpy (TUP, TLOW, HUP, and HL $\varnothing W$) and interpolating linearly to the value T which, with P, would give (for a lmear variatıon) an enthalpy HRT=HRTZ. For each iteration subroutine FINDH1 is called; this routine solves the equation of state of the equilibrium mixture at the pressure P and approximate temperature T. In addition to specie concentration, the enthalpy HRT is computed and compared to HRTZ. If it is close enough, the iterative procedure is terminated (Statement 106); if not, TUP and HUP or TL $\varnothing W$ and HL $\varnothing W$ are recalculated, and a new temperature is interpolated. If no adequate solution is found within 30 iteratrons, this fact is noted in the output and the last value of temperature is used to provide the solution. Experience indicates that a failure to converge occurs close to the boundary of a zone, and generally where the total radiation heating is small.

Statement 106 deletes the computation of the radiation for velocities lower than $8000 \mathrm{ft} / \mathrm{sec}$. Statements 116 and 107 define the "trace" specie N in Zone 4. If a positive detachment distance has not been provided as program input, Statements 503 to not including, 504 compute the density ratio $\rho_{\mathrm{a}} / \rho_{\mathrm{s}}$, and a / b and compute the detachment distance from a two-dimensional table lookup performed by AR2 TLU (see description of AR2TLU).

If the species O^{+}, N^{+}, C^{+}, and E^{-}are present in Zone 2, in which zone they are treated as trace species, their concentrations are entered in the regular array X of specie concentrations from the trace specie table DUM (Statements 504 to 502).

The normalized stagnation density is computed, and this with the list of concentrations, temperature, and detachment distance 1 s used to compute effective emissivities, radiation components, and total radiation in Subroutine GETNI.

2. HVST-1

a. Purpose

Subroutine HVSTl provides subroutine HEATl whth a set of six tables-TlTBI, T2TBL, T3TBL, H1TBL, F2TBL, and H3TBL--which are used to determine zone boundaries and to obtain a first guess for the stagnation temperature.

b. Method

The quantity NX, computed by the main program as the index of that set of tables which most closely approximates the concentrations of O_{2} and CO_{2}, is used in a computed "go to" statement at the beginning of HVSTl to select the appropriate set of TITBL, T2TBL, T3TBL, H1TBL, H2TBL, and H3TBL.

These tables are the same as in Reference 1 (pp. 59 to 69), except that for the first nine sets of tables each value in the enthalpy tables is modified from Reference 1 by the subtraction of a constant times the concentration of argon. The indices 1 through 7 correspond to values of PTBL in HEATI with indrces 1 through 7.

3. FINDT1

a. Purpose

Subroutine FINDTI provides a first guess for the stagnation temperature iteration, upper and lower bounds for the stagnation temperature and enthalpy, and the number of the zone in which the solution will be found.
b. Method

The quantities Fl and Tl are first found by table lookups using the pressure P and the independent variable table PTBL. If the Hl is within a specafied pexcent of HRTZ, then the zone number as' I and the first guess T is Tl. If the Hl is < HRTZ, but not sufficrently close, the
zone number is 1 , enthalpy bounds are Hl and 0 , temperature bounds are Tl and 0 , and the transfer to Statement 100 provides a first guess T by linear interpolation. If Hl>HRTZ, but not sufficiently close, then the next higher zone is considered and an H2 and T2 obtained by table lookup from P and the array PTBL. Then H2 is compared to HRTZ as was H1, and the process is carried on until the zone containing HRTZ, the first guess temperature, is obtained from the interpolation at Statement 100.
4. FINDHI
a. Purpose

Subroutine FINDH1 provides the HRT for each of the temperature iterations controlled by subroutine HEATl. In doing so, the equation of state for the equilibrium mixture must be computed at the pressure and approximate temperature T. Hence, the concentrations of each specie and total values of mixture are also computed.

b. Method

Subroutine FINDHI first obtains the logs of pertinent partition functions ($Q P$) and their partial derivatives (QPAR) from subroutine GETQ1. Which partition functions are computed depends upon the species in which zone the solution lies. The symbol QP is really the log of the partition function times pressure, and hence the $-\ln P$ term in the equations of Reference 1 , page 54 is not included in the computations of subroutine GETQ1. With these partition functions, the relevant equilibrium constants for the zone are computed by subroutine GETKl, and are stored in the array PK.

The arrays of specie concentrations are then cleared to zero (X and DUM) and subroutine ZONESI called. If a solution is found in ZONESl, the X array will contain some nonzero elements. The doloop ending at Statement 104 uses the heats of formation, molar concentration, and partial derivative of the partition function of each of the first 16 species to compute the dissociation enthalpy and total enthalpy (SUMD and SUMH, respectively). If species A and At exist ($\mathrm{XCl8}, \mathrm{XCl} 9$), their contributions to the enthalpy are included (the partial derivatives of their partitions having first been computed), since these have not been previously computed in GETQI (Statements 107 to 110). $\mathrm{N}_{2}+$ does not contribute in this model to the enthalpy; hence, its heat of formation is not stored in the array E, and for this reason the 17 th heat of formation 1 s for the 18 th specie (A), and the 18 th heat of formation $1 s$ for the l9th specie (At). Having computed the HRT and HDHS, the subroutine returns control to subroutine HEATl.
5. GETQ1
a. Purpose

Subroutine GETQI provides the log of the partition functions times pressure and their partial derivatives with respect to temperature for those species which are included in the relevent zone.
b. Method

The evaluation of the logs of the partition functions times pressure ($Q P$) and their partial derivatives ($Q P A R$) are merely algebraic evaluations of the equations of Reference l, fage 54. Since the equations of reference are $\ln Q$, but our evaluation is for $\ln Q P$, the $-\ln P$ term of the reference is not included in the GETQ1 calculations.

If the solution 1_{i} es in Zone 1 , the functions evaluated are for $\mathrm{N}_{2}, \mathrm{CO}_{2}$, $\mathrm{CO}, \mathrm{O}_{2}$, and O (QP and QPAR 1 to 5, respectively). For Zone 2, the functions are evaluated only for $N_{2}, C O, O, N, C N, N O$, and C (QP and QPAR 1, 3, 5, 6, 7, 8, and 9, respectively). For Zone 3, the functions are evaluated for $O, N, C, O^{+}, N^{+}, C^{+}$, and $e^{-}(Q P$ and QPAR 5, 6, 9, 10, 11, 12, and 13 respectively). For Zone 4, the functions are evaluated for $\mathrm{N}, \mathrm{O}^{+}, \mathrm{N}^{+}, \mathrm{C}^{+}, \mathrm{e}^{-}, \mathrm{N}^{++}, \mathrm{O}^{++}$, and $\mathrm{C}^{++}(Q P$ and QPAR 6, 10 , 11, 12, 13, 14, 15, and 16, respectively).
6. GETK1

a. Purpose

Subroutine GETKl evaluates appropriate equilibrium constants given In $P Q$ for the relevant species.
b. Method

The equations for the equilibrium constants are given in Reference 1 , page 48. In Zone 1, the constants computed are for the reactions $\mathrm{CO}_{2} \rightarrow \mathrm{CO}+1 / 2 \mathrm{O} 2$ and $\mathrm{O}_{2} \rightarrow 2 \mathrm{O}(\mathrm{PK} 1$ and 2 , respectively). For Zone 2 , the reactions are $\mathrm{N}_{2} \rightarrow 2 \mathrm{~N}, \mathrm{CO} \rightarrow \mathrm{C}+\mathrm{O}, \mathrm{C}+\mathrm{N} \rightarrow \mathrm{CN}$, and $\mathrm{N}+\mathrm{O} \rightarrow \mathrm{NO}$ (PK 3, 4, 5, and 6, respectively). In Zone3, the reactions are $0 \rightarrow$ $\mathrm{O}^{+}+\mathrm{e}^{-}$, and $\mathrm{C} \rightarrow \mathrm{C}^{+}$+e ($\mathrm{PK} 7,8$, and 9 respectively). In Zone 4, the reactions are $N \rightarrow N^{+}+e^{-}, C^{+} \rightarrow \mathrm{C}^{++}+\mathrm{e}^{-}, \mathrm{N}^{+} \rightarrow \mathrm{N}^{++}+\mathrm{e}^{-}$, and $\mathrm{O}^{+} \rightarrow \mathrm{O}^{++}+\mathrm{e}^{-}$ (PK 8, 10, 11, and 12 , respectively).

a. Purpose

Subroutine Z Z NESl computes the concentrations of each specie of the equalibrium maxture at the given pressure and temper ature of the iteration controlled by subroutine HEATl.

b. Method

Given temperature, pressure, mole fractions of $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$, and A in the undissociated atmosphere, along with the zone number and pertinent equilibrium constants, subroutine $Z \varnothing N E S 1$ will compute the moles of each specie in the equilibrium mixture at the stagnation point, and the total moles of gas.

The method of solution depends on finding the roots of a polynominal whose argument is equal (or proportional) to one of the important species in the equilibrium mixture. The root which is used may be determined by physical constraints (e.g. it must be real and positive). If no such root is found, "NO VAIID SOLU" is printed and the case deleted. Which specie is solved for depends upon the zone in which the solution is found. The coefficients of the polynominal are functions of the mole fractions of $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}$, and A in the atmosphere, and the equilibrıum constants of the reactions assumed to be important in the zone. The important reactions thus considered for equilibrium constants are those (and only those) computed by the subroutine GETKl. Where trace species are considered (Zones 2 and 3), their concentrations are purely ancillary to the principal reactions considered, and the partition functions and equilibrium constants pertinent to these trace species are computed in subroutine ZØNESI, not in subroutines GETQ1 and GETK1.

In Zone I, no trace species are present and the species considered from principal reactions are $\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{CO}, \mathrm{O}_{2}$, and O the reactions being $\mathrm{CO}_{2} \rightarrow \mathrm{CO}+1 / 2 \mathrm{O}_{2}$, and $\mathrm{O}_{2} \rightarrow 20$. In Zone 2, the species considered from principal reactions are $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{O}, \mathrm{N}, \mathrm{CN}, \mathrm{NO}$, and C , the reactions being $\mathrm{N}_{2} \rightarrow 2 \mathrm{~N}, \mathrm{CO} \rightarrow \mathrm{C}+\mathrm{O}_{+}^{2} \mathrm{C}+\mathrm{N} \rightarrow \mathrm{CN}, \underset{+}{ }$ and $\mathrm{N}+\mathrm{O} \rightarrow \mathrm{NO}$. Trace species considered are $\mathrm{O}^{+}, \mathrm{N}_{-}^{+}, \mathrm{C}^{+}, \mathrm{e}^{-}$, and $\mathrm{A}_{+^{+}}^{+}$which come from reactions $\mathrm{O} \rightarrow \mathrm{O}^{+}+\mathrm{e}^{-}, \mathrm{N} \rightarrow \mathrm{N}^{+}+\mathrm{e}^{-}, \mathrm{C} \rightarrow \mathrm{C}^{+}+\mathrm{e}^{-}, \mathrm{N}_{2}^{+{ }^{+}} \rightarrow \mathrm{N}^{+}+\mathrm{N}$, and $\mathrm{A} \rightarrow \mathrm{A}^{+}+\mathrm{e}^{-}$. The equilibrium constants and necessary partition functions for these last five reactions are computed at the beginning of the subroutine before Statement 100 (DLPQ5, DLPQ6, DLPQ9, DLPQ10, and DLPPQ11 are the logs of the partition functions times pressure for $\mathrm{O}, \mathrm{N}, \mathrm{C}, \mathrm{N}^{+}$, and $\mathrm{N}_{2}{ }^{+}$; DGK13 is the equilibrium constant for the reaction $\mathrm{N}_{2}{ }^{+} \rightarrow \mathrm{N}^{+}+\mathrm{N}$), and in the Zone 2 calculations between Statements 55 and 8512^{2} (DLPQ12, DLPQ13, DLPQ14, DLPQ15, DLPQ16 are the logs of the partition function times pressure $\mathrm{O}^{+}, \mathrm{e}^{-}, \mathrm{C}^{+}, A$, and A^{+}; DGK7, DGK8, DGK9, DGKI4 are equiliprium constants for the reactions $\mathrm{O} \rightarrow \mathrm{O}^{+}+\mathrm{e}^{-}, \mathrm{N} \rightarrow \mathrm{N}^{+}+\mathrm{e}^{-}, \mathrm{C} \rightarrow \mathrm{C}^{+}+\mathrm{e}^{-}$, and $\mathrm{A} \rightarrow$ $A^{+}+e^{-}$). In Zone 3, the species considered from principal reactions are O, N, C,
$\mathrm{O}^{+}, \mathrm{N}^{+}, \mathrm{C}^{+}$, and e^{-}, the reactions being $\mathrm{O} \rightarrow \mathrm{O}^{+}+\mathrm{e}^{-}, \mathrm{N} \rightarrow \mathrm{N}^{+}+\mathrm{e}^{-}$, and $C \rightarrow C^{+}+e-$. Trace species are CN, NO, and N^{+}which come from the reactions $\mathrm{C}+\mathrm{N} \rightarrow \mathrm{CN}, \mathrm{N}+\mathrm{O} \rightarrow \mathrm{NO}, \mathrm{N}_{2}^{+} \rightarrow \mathrm{N}^{+}+\mathrm{N}$. The equilibrium constants and logs of the necessary partation functions times pressure are computed at the beginning of the subroutine before Statement 100 (DGK13 is the equilibrium constant for the reaction $N_{2}{ }^{+} \rightarrow N^{+}+N$, DLPQ5, DLPQ6, DLPQ9, DLPQ10, and DLPQ11 are the logs of the partition function times pressure for O, N, C, N^{+}, and $\left.N_{2}^{+}\right)$. In the Zone 3 calculation between Statements 28 and 8112, (DLPQ7 and DLPQ8 are the logs of the partition function times pressure for the species CN and NO. DGK5 and DGK6 are equilibrium constants for the reactions $\mathrm{C}+\mathrm{N} \rightarrow \mathrm{CN}$ and $\mathrm{N}+\mathrm{O} \rightarrow \mathrm{NO}:$

In Zone 4 no trace species are present and the species considered from principal reactions are $\mathrm{O}^{+}, \mathrm{N}^{+}, \mathrm{C}^{+}, \mathrm{e}^{-}, \mathrm{N}^{++}, \mathrm{O}^{++}$, and C^{++}from the reactions $\mathrm{N} \rightarrow \mathrm{N}^{+}+\mathrm{e}^{-}, \mathrm{C}^{+} \rightarrow \mathrm{C}^{++}+\mathrm{e}^{-}, \mathrm{N}^{+} \rightarrow \mathrm{N}^{++}+\mathrm{e}^{-}$, and $\mathrm{O}^{+} \rightarrow \mathrm{O}^{++}+\mathrm{e}^{-}$.
8. GETN1
a. Purpose

Subroutine GETN1 computes the effective emissivities of each component of the total radiation heating and from them computes the total radiation heating and the radiation component of each contributor.

b. Method

Subroutine GETN1 first defines the tables TAUTBL and EPSTBL, a tabulation of $1-2 E_{3}(\tau)$ (EPSTBL) as a function of the independent variable, (TAUTBI). Next the table of emissivities EL is cleared to zero, and then the concentration of each specie in the equilibrium mixture is converted to particles per cm^{3} (ZNI). The DO LOOP ending' on Statement 199 then computes the emissivities of each component to the total radiation which may come from a positive concentration of any of the first 12 species contained in the array X. These emissivities ($E L_{i}, i=1$ to 21 correspond to the radiation contributors in the same order as the Hollerith names in the table ZNAM2 of the main program. No radiation contribution is made from the species $\mathrm{X}(13-16)\left(\mathrm{e}^{-}, \mathrm{N}^{++}, \mathrm{O}^{++}, \mathrm{C}^{++}\right)$, but contributions are made by X (17-19), and the emissivities for these species are computed from Statement 213 to 218. The emissivity formula and constants used to obtain the average emissivity of the gas (EP BAR) may be found in Reference 1, page 102. The total radiation and contribution of each component is then computed based on the $\bar{\epsilon}$ and ϵ_{1} (DO LOOP ending on 301). Output is provided, which includes the $\bar{\epsilon}, \epsilon_{1}$, and Δ.

$$
\begin{gathered}
308< \\
-41-
\end{gathered}
$$

CALLING SEQUENCE

HEAT1	Variable Name Input Or Output of subroutine Source	V, Velocity Input Program Input	RH©, density Input Program Input	$\mathrm{XN}_{\mathrm{N}} \mathrm{N}_{2}$ mole fraction Input Program Input	$\mathrm{XO}, \mathrm{O}_{2} \mathrm{~mole}$ fraction Input Program Input	$\mathrm{XC}, \mathrm{CO}_{2}$ mole fraction Input Program Input
XA, A mole fraction Input Program Input	NX, enthalpy table no. Input Man Program	P, pressure Output HEAT1	THN, θ_{N} nose angle Input Program Input	RN, R_{N}, nose radus Input Program Input	RS, R_{S}, shouldes radıus Input Program Input	$R C, R_{C}$, cone radius Input Program Input
T, temperature Output HEAT1	2, moles of mixture Output ZONESI	RH $\phi \mathrm{ST}$, $p_{\mathrm{s}} / \rho_{p_{a}}$ density ratio Output HEAT1	QSUM, Q_{R} radiation heating Output GETN 1	QL, radiation by specie Output GETN1	X , apecre concentration Output ZONES 1	HDHS, dissociation energy * enthalpy Output FINDH 1
HRT, HM/RTo, total enthalpy Output FINDHI	DEL, detachment distance Input Program Input	DUM, concentra$\mathrm{t}_{10 \mathrm{on}} \mathrm{ofO}^{+}, \mathrm{N}^{+}, \mathrm{C}^{+}, \mathrm{e}^{-}$ Output 2GNESI	TINF, ambient temperature Input Program Input			

HVST1	Variable Input Or Output of subroutine Source	NX, atmos. table number Input Mann	T1TBL Zone 1 temp table Output HVSTI	T2TBI. Zone 2 temp. table Output HVS'T	T3TBL Zone 3 temp. table Output HVSTI	HITBL Zone 1 enthalpy table Output HVST 1
H2TBL Bone 2 enthalpy table Output HVST1	H3TBL Zone 3 enthalpy table Output HVSTI	XA, mole fraction of A Input Program Input				

FINDT1	Variable Input or Output for subroutine Source	p, pressure Input HEAT1	HRTZ, stagnation enthalpy Input HEATI	PTBL, pressure table (used with T\&H tables) Input HEAT1
TITBL-Zone 1 temp table (used with PTBL \& H1TBL) Input HVST1	T2TBL-Zone 2 temp table (used with PTBL \& H2TBL) Input HVSTI	T3TBL-Zone 3 temp. table (used with PTBL \& H3TBL) Input HVSTI	H1TBL, Zone 1 enthalpy table (used with PTBL \& TITBL) Input HVST 1	```H2TBL-Zone 2 enthalpy table (used with PTBL & *T2TBL) Input HVSTl```
H3TBL Zone 3 enthalpy table (used with PTBL \& T3TBL) Input HVST1	TUP-Eighest temp. for lst enthalpy iteration Output FINDTI	TL $\phi \mathrm{W}$-Lowest temp.for lst enthalpy teration Output FINDT1	HUP-Highest enthalpy for lst enthalpyiterataon Output FINDTI	HL $\emptyset W-L o w e s t$ enthalpy for lst enthalpyiteration Output FINDT1
T-furst guess for an enthalpy iteration Output FINDT 1	NUM-Zone number for enthalpy iteration Output FINDT1	PCNT-percent error acceptable $2 n$ enthalpy Input heatl		

FINDHI	Variable	NUM, Zone Number	P, pressure	T, temperature for current enthalpy iteration Input HEAT1
	Input or Output for Subroutine	Input	Input	
	Source	HVST1	HEATI	
E, Heats of formation at $0^{\circ} \mathrm{K}$ Input HEATI	PK, equilibrium constants	XO, mole fraction of $\mathrm{O}_{2} \mathrm{in}$ atmosphere	XC, mole fraction of CO_{2} in atmosphere	XN , mole fraction of N_{2} in atmosphere
	Output	Input	Input	Input
	GETK1	Program Input	Program Input	Program Input
XA, mole fraction of A in atmosphere	7 , total moles of equilibrium muxture	X , specie moles in equilibrium mixture	HRT, enthalpy at T and P (HRTZ for lastiteration)	HDHS, dissociation energy - enthalpy
Input	Output	Output	Output	Output
Program Input	30NES1	\%めNES1	FINDH1	FINDH 1

DUM-moles of $\mathrm{O}^{+}, \mathrm{N}^{+}, \mathrm{C}_{4}$
and e^{-}in Zone 2
Output
Z \emptyset NES1

D. SIGNIFICANT EQUATIONS

Man Program None

1. HEATI

$$
\begin{aligned}
& \mathrm{M}=\mathrm{ZM}=28 \mathrm{XN}+32 \mathrm{XO}+44 \mathrm{XC}+40 \mathrm{XA} \quad \text { Molecular weight of cold gas } \\
& \mathrm{C}_{\mathrm{p}} / \mathrm{R}=\mathrm{CP} \phi \mathrm{R}=(35(\mathrm{XN}+\mathrm{XO})+4 \mathrm{XC}+2.5 \mathrm{XA}) / \mathrm{ZM} \quad \text { Specific heat of cold gas/R } \\
& \mathrm{H} / \mathrm{RT} T_{\mathrm{O}}=\mathrm{HRTZ}=\frac{\mathrm{v}^{2}}{\left(64.4 \cdot 778 \cdot \frac{1987 \cdot 4535 \cdot 273.16}{2522 \mathrm{ZM}}\right)}+\mathrm{ZM} \cdot\left(\frac{\mathrm{CP} \phi \mathrm{R}}{273.16}\right) \cdot \text { TINF stagnation } \\
& \mathrm{p} \text { pont enthalpy }
\end{aligned}
$$

The above are computed prior to the execution of the IF test before Statement 11.

If $\Delta_{1 s}$ not specified as program input, the following quantities are computed (Statements 503 to 604)

$$
\begin{aligned}
& \mathrm{b} / \mathrm{a}=\mathrm{BA}=\left[\frac{\mathrm{RN}}{\mathrm{RC}}(1-\cos (\mathrm{THN}))+\frac{\mathrm{RS}}{\mathrm{RC}} \cos (\mathrm{THN})\right] /\left[\frac{\mathrm{RN}}{\mathrm{RC}} \sin (\mathrm{THN})+\frac{\mathrm{RS}}{\mathrm{RC}}(1-\sin (\mathrm{THN}))\right] \\
& \rho_{S} / \rho_{\mathrm{a}}=\mathrm{V}^{2} /\left[Z \frac{89516}{2 \mathrm{M}} \mathrm{~T}\right] \quad \text { Density ratio } \\
& \Delta=\operatorname{DEL} A[\mathrm{RN} \sin (\mathrm{THN})+\mathrm{RS}(1-\sin (\mathrm{THN}))] \quad \text { Detachment discance }
\end{aligned}
$$

The radiation depends upon the normalized stagnation density
$\rho=$ RH $\phi S=\frac{P}{Z} \frac{27316}{I}$
HVSTl - Trivial modifications of Reference 1, pp. 59-69.
2. FINDT1 =

Linear interpolations to find a first guess for the stagnation temperature, the zone number, and the ranges of enthalpy and temperature for the stagnation temperature iteration.
3. FINDH1
$\frac{\mathrm{H}_{1} \mathrm{M}}{\mathrm{RT}_{\mathrm{o}}}=\mathrm{HI}_{(\mathrm{i})}=\mathrm{E}_{(\mathrm{i})}+\frac{\mathrm{T}^{2}}{273.16} \operatorname{QPAR}_{(\mathrm{i})}-$ Enthalpy of $\mathrm{i}^{\text {th }}$ specie (reference 1, p. 58)
$\frac{H M}{R_{0}}=\mathrm{SUMH}=\sum_{1} \mathrm{X}(\mathrm{t}) \cdot \mathrm{HI}(\mathrm{i})-$ Enthalpy at P and approximate stag. temperature T
${ }^{H_{D}}=S U M D=\sum_{1} X(i) E(i)-$ Dissociation enthalpy

This subroutine evaluates $\ln P Q\left(X_{i}\right)$, pressure times the \log of the partition and the partial derivative of the partition function with respect to temperature for some set of specres dependent on the zone numbers. The correspondence between $Q P A R(1)=\left(\frac{\partial \ln Q_{1}}{\partial T}\right)_{P}$ and $Z L P Q(1)=\ln \left(P Q_{\Lambda}\right)$
is explained on the description of $G E T Q$, the $Z L P Q(i)$ are contanned in the set of functions documented in Referencel, p. 54, and the derivatives are obtainable by inspection.

5. GETKl

The subroutine evaluates equilibrium constants for the principal reactions assumed to exist in the appropriate zone. The equations are in Reference 1. p, 48.

6. ZดNESI

The partation functions, their derivatives, and equilibrium constants computed in $Z \emptyset N E S$ are explained in the subroutine description and documented in Reference 1 (p. 48 and 54).

The Zone 1 equations are solved between Statements 100 and 200 . The specie concentrations are computed by finding on the appropriate root of a polynomial.

$$
f\left(\Sigma_{1}\right)=\sum_{i=1}^{4}\left(C \phi E D(i) \Sigma_{1}^{(4-1)}\right.
$$

Real and imaginary roots are computed by the library subroutine POLROT (see subroutine description). The "appropriate" root must be real. positive, and such that no negative specie concentrations result. If no such root is found, the message "N \varnothing VALID S $\varnothing L N$ " is written in the output and the case deleted. The equationsfor the specre concentrations are as follows:

$$
\begin{aligned}
& \Sigma_{2}=\Sigma_{1} \mathrm{XO}+\frac{\Sigma_{1}}{2} /\left[2 \frac{\mathrm{PK}_{1}}{\sqrt{\mathrm{PK}_{2}}}\left(\mathrm{XC}-\Sigma_{1}\right)+\Sigma_{1}\right] \\
& \mathrm{X}\left(\mathrm{~N}_{2}\right)=\mathrm{X}(1)=\mathrm{XN} \\
& \mathrm{X}\left(\mathrm{CO}_{2}\right)=\mathrm{X}(2)=\mathrm{XC}-\Sigma_{1} \\
& \mathrm{X}(\mathrm{CO})=\mathrm{X}(3)=\Sigma_{1} \\
& \mathrm{X}\left(\mathrm{O}_{2}\right)=\mathrm{X}(4)=\mathrm{XO}+\frac{\Sigma_{1}}{2}-\Sigma_{2} \\
& \mathrm{X}(0)=\mathrm{X}(5)=2 \Sigma_{2} \\
& \mathrm{Z}=1+\frac{\Sigma_{1}}{2}+\Sigma_{2}
\end{aligned}
$$

In Zone 2, the computations are done between Statements 200 and 300. First P $\varnothing \mathrm{L} R \not \subset \mathrm{~T}$ is used to find the roots of the polynomal

$$
f\left(\Sigma_{6}\right)=\sum_{1=1}^{5} \operatorname{cosD}(1) \Sigma_{6}^{(5-1)}
$$

Then the roots are computed for the polynomial

$$
f\left(\Sigma_{7}\right)=\sum_{6=1}^{4} \operatorname{coED}(1) \Sigma_{7}^{(4-1)}
$$

As in Zone 1, the root used must be real, positive, and such that no negative concentrations are permitted. The principal species are as follows:

$$
\begin{aligned}
& \Sigma_{4}=\left(4 \Sigma_{6}^{2} P /\left(P K_{3}\left(X N-\Sigma_{6}\right)\right)-1-X C-X O-\Sigma_{6}\right. \\
& \Sigma_{8}=\frac{\Sigma_{7}\left(\Sigma_{4}+X C+2 X O\right) P K_{6}}{\left(\Sigma_{4}-\Sigma_{7}\right) P K_{5}+\Sigma_{7} P K_{6}} \\
& X\left(N_{2}\right)=X(1)=X N-\Sigma_{6} \\
& X(C O)=X(3)=X C-\Sigma_{4} \\
& X(0)=X(5)=\Sigma_{4}+2 X O+X C-\Sigma_{8}
\end{aligned}
$$

$$
\begin{aligned}
& x(N)=x(6)=2 \Sigma_{6}-\Sigma_{8}-\Sigma_{7} \\
& x(C N)=X(7)=\Sigma_{7} \\
& V(N O)=V(8)=\Sigma_{8} \\
& X(C)=X(9)=\Sigma_{4}-\Sigma_{7} \\
& z=I+X C+X O+\Sigma_{4}+\Sigma_{6}-\Sigma_{7}-\Sigma_{8}
\end{aligned}
$$

For trace species,

$$
\begin{aligned}
& X\left(e^{-}\right)=X(13)=\operatorname{DUM}(2)=\left\{\frac{Z}{P}\left(X(0) \quad P K_{7}+X(N) \cdot P K_{8}+X(C)-P K_{14}\right)+\frac{X(N)^{2} K P_{8}}{K P_{13}}\right\} \\
& X\left(N^{+}\right)=X(11)=\operatorname{DUM}(1)=K P_{8}\left\{\frac{Z}{P} \frac{X(N)}{X\left(e^{-}\right)}\right\}
\end{aligned}
$$

$$
X\left(0^{+}\right)=X(10)=\operatorname{DUM}(3)=K P_{7}\left\{\frac{Z}{P} \frac{X(0)}{X\left(e^{-}\right)}\right\}
$$

$$
\mathrm{X}\left(\mathrm{C}^{+}\right)=\mathrm{X}(12)=\mathrm{DUM}(4)=K \mathrm{P}_{9}\left\{\begin{array}{ll}
\mathrm{Z} & \left.\frac{\mathrm{X}(\mathrm{C})}{\mathrm{X}\left(\mathrm{e}^{-}\right)}\right\}
\end{array}\right\}
$$

$$
X\left(\mathrm{~N}_{2}^{+}\right)=\mathrm{X}(17)=\frac{\mathrm{K} \mathrm{P}_{8} X(\mathrm{~N})^{2}}{K \mathrm{P}_{13} X\left(\mathrm{e}^{-}\right)}
$$

$$
X(A)=X(18)=X A
$$

$$
X\left(A^{+}\right)=X(19)=X P_{14}\left\{\frac{Z}{P} \frac{X A}{X\left(e^{-}\right)}\right\}
$$

In Zone 3, the calculations are done between Statements 300 and 400. POLROT is used to fune the roots of a polynomial

$$
F\left(\Sigma_{11}\right)=\sum_{i=1}^{5} \operatorname{coED}(1) \quad \Sigma_{11}^{(5-1)}
$$

The root used must be real, positive, and such that there are no negative concentrations. The specie equations are as follows:

$$
\begin{aligned}
& \Sigma_{10}=\frac{2 \Sigma_{11}(\mathrm{XC}+\mathrm{XO}) \mathrm{PK}_{7}}{\left[\mathrm{XC} \cdot \mathrm{PK}_{9}+\Sigma_{11}\left(\mathrm{PK}_{7}-\mathrm{PK}_{9}\right)\right]} \\
& \Sigma_{9}=\frac{2 \cdot \Sigma_{11} \cdot \mathrm{XN} \cdot \mathrm{PK}_{8}}{\left[\mathrm{XC} \cdot \mathrm{PK}_{9}+\Sigma_{11}\left(\mathrm{PK}_{8}-\mathrm{PK}_{9}\right)\right]} \\
& X(0)=X(S)=2(X C+X \phi)-\Sigma_{10} \\
& X(N)=X(6)=2 X N-\Sigma_{9} \\
& X(C)=X(9)=X C-\Sigma_{11} \\
& X(0)=X(10)=\Sigma_{10} \\
& X\left(N^{+}\right)=X(11)=\Sigma_{9} \\
& X\left(C^{+}\right)=X(12)=\Sigma_{11} \\
& X\left(e^{-}\right)=X(13)=\Sigma_{y}+\Sigma_{10}+\Sigma_{11} \\
& Z=1+2 X C+X O+X N+\Sigma_{9}+\Sigma_{11} \\
& \text { For trace species, } \\
& X(C N)=X(7)=\frac{P \cdot \mathrm{PK}_{5}}{Z}\left(2 X N-\Sigma_{9}\right)\left(X C-\Sigma_{11}\right) \\
& X(N O)=X(8)=\frac{P \cdot P K_{6}}{Z}\left(2 X N-\Sigma_{9}\right)\left(2 X O+2 X C-\Sigma_{10}\right) \\
& \mathrm{X}\left(\mathrm{~N}_{2}{ }^{+}\right)=\mathrm{X}(17)=\frac{\Sigma_{9}\left(2 \mathrm{XN}-\Sigma_{9}\right) \mathrm{P}}{\mathrm{Z} \cdot \mathrm{PK}_{13}}
\end{aligned}
$$

In Zone 4, the calculations are done between Statements 400 and 900. POLROT is used to find the roots of a polynomial

$$
f\left(\Sigma_{12}\right)=\sum_{i=1}^{5} \operatorname{coED}(1) \Sigma_{12}(E-i)
$$

The root used must be real, positive, and such that there are no negative concentrations. The equations for the concentrations are:

$$
\begin{aligned}
& \Sigma_{13}=\frac{\Sigma_{12} \cdot \mathrm{XC} \cdot \mathrm{PK}_{10}}{\left[2 \cdot \mathrm{PK}_{12}(\mathrm{XC}+\mathrm{XO})+\Sigma_{12}\left(\mathrm{PK}_{10}-\mathrm{PK}_{12}\right)\right]} \\
& \Sigma_{14}=\frac{2 \cdot \Sigma_{12} \cdot \mathrm{XN} \cdot \mathrm{PK}_{11}}{\left[2 \cdot \mathrm{XO}_{12}(\mathrm{XC}+\mathrm{XO})+\Sigma_{12}\left(\mathrm{PK}_{11}-\mathrm{PK}_{12}\right)\right]} \\
& X\left(0^{+}\right)=\mathrm{X}(10)=2(\mathrm{XC}+\mathrm{XO})-\Sigma_{12} \\
& X\left(\mathrm{~N}^{+}\right)=\mathrm{X}(11)=2 \mathrm{XN}-\Sigma_{14} \\
& X\left(\mathrm{C}^{+}\right)=\mathrm{X}(12)=\mathrm{XC}-\Sigma_{13} \\
& X\left(\mathrm{e}^{-}\right)=\mathrm{X}(13)=2(\mathrm{XN}+\mathrm{XO})+3 \cdot \mathrm{XC}+\Sigma_{12}+\Sigma_{13}+\Sigma_{14} \\
& X\left(\mathrm{~N}^{++}\right)=\mathrm{X}(14)=\Sigma_{14} \\
& X\left(0^{++}\right)=\mathrm{X}(15)=\Sigma_{12} \\
& X\left(\mathrm{C}^{++}\right)=\mathrm{X}(10)=\Sigma_{13}
\end{aligned}
$$

One trace specie is considered,

$$
\mathrm{X}(\mathrm{~N})=\mathrm{X}(6)=\frac{\mathrm{X}\left(\mathrm{~N}^{+}\right) \cdot \mathrm{X}\left(\mathrm{e}^{-}\right) \cdot P}{Z \cdot \mathrm{PK}_{8}}
$$

This specie is unique in that it is computed in subroutine HEAT.
7. GETN1

$$
\begin{aligned}
& \frac{\epsilon_{1}}{L}=E L_{i}=C_{i}\left(\frac{Z N I_{i}}{5.4 \times 10^{19}}\right) \frac{1}{\left(T \times 10^{-4}\right)_{i}} e^{-T_{i} / T} t=1,21 \\
& \text { Emissivities without self-absorption } \\
& \text { correction. } C_{i}, n_{i} \text {, and } T_{i} \text { from } \\
& \text { Reference 1, P } 102 \\
& r_{i}=\operatorname{TAUTP}=1 / 2 \Delta \frac{\epsilon_{i}}{L} \\
& \text { Argument of } E_{3}\left(r_{1}\right) \text { for effective } \\
& \text { emissivities }
\end{aligned}
$$

$$
\begin{aligned}
& T=\text { TSUM }=\sum_{1=1}^{21} \tau_{1} \\
& \epsilon_{\mathrm{i}}=\operatorname{EPS}(1) \quad 1=1,21 \\
& \epsilon=\text { EPBAR } \\
& q_{1}=Q I(1)=\frac{0.174 \times 10^{-8}(1.8 \times T)^{4}}{3600} \operatorname{EPS}(i), i=1,21 \\
& Q=Q S U M=\operatorname{EPBAR} \frac{0.174 \times 10^{-8}(1.8 \times T)^{4}}{3600} \\
& \text { Argument of } \mathrm{E}_{3}(\tau) \text { for total effective } \\
& \text { emssivity. } \\
& \text { Value of (} 1-2 \mathrm{E}_{3}\left(\tau_{1}\right) \text {), effective } \\
& \text { emissivities } \\
& \text { Value of (} 1-2 \mathrm{E}_{3}(\mathrm{f}) \text {), total } \\
& \text { effective emissivisty } \\
& \text { Component radiation heating } \\
& \text { Total radiation heating }
\end{aligned}
$$

V. REFERENCES

1. RAD, Mars-Venus Capsule Parameter Study, $\underset{\sim}{1}$, Introduction and Analysis JPL Contract 950626, Avco/RAD-TR-64-1 (21 March 1964).
2. Mayer, J. E., and M. G. Mayer, Statistical Mechanics, John Wiley and Sons, New York (1961).
3. Hansen, C. F., Approxmations for the Thermodynamic and Transport Properties of Figh Iemperature Air, NASA TR R-50 (1959).
4. Kıvel, B., and K. Baıley, Tables of Radiation from High-Temperature Air, Avco-Everett Research Lab, Research Report 21 (October 1959).
5. Vinokur, M. Hypersonic Flow around Bodies of Revolution Whose Shock Waves are Generated by Convc Sections, LMSD-288139 General Research In Flight Sciences, I, Part I, Fluid Mechanics (January 1959 to 1960).
6. Wick, B. H., Radiative Heating of Vehicles Entering the Earths AtmosFhere, NASA N6212453 (April 1962).
7. Toshikəwa, K. K., and D. R, Chapman, Radiative Heat Transfer and Absorption Behind a Hypersonic Normal Shock Wave, NASA TN D-1424.
8. Wolf, F. and J. Speigel, Analysis of Equilibrium Shock-Layer Radiation for Atmospheric Entry to Mars, JPL Space Programs Summary No. 37-33, IV.
9. Williams, M. J. and C. E. Treanors A Method for Calculating Diatomic Spectra Using a Digital Computer, CAI Report No. QM-1626-A-5, Cornell Aeronautical Laboratory, Inc., Buffalo, New York (May 1962).

$$
2894
$$

PROGRAM 1884
$330=$

HEAT SHIELD PROGRAM (1884)

CONTENTS

I. Introduction 1
A. General Description 1
B. Calculation Model 2
C. Limitations 5
II. Usage 7
A. Input Definitions. 7
B. Input Procedures 10
C. Output Definntions 11
D. Sample Problem 13
III. Computations 42
A. Block Diagram 42
B. Symbols 43
C. Equations 44
IV. IBM Routines 48
A. Program Flow. 48
B. Main Program 49
C. Subroutines 50
D. Significant Equations 59
V. References 66

LLIUSTRATIONS

Figure 1 Heat Shield Calculation Model 1
2 Nonablatıng Heat Shield Calculation Model 3
3 Ablating Heat Shield Calculation Model 3
4 Block Diagram for Program 1884 42
5 Flow Diagram for Program 1884 48

I. INTRODUCTION

A. GENERAL DESGRIPTION

The purpose of this program $1 s$ to determine the heat shield thickness and weight requirements to protect the heat shield substructure from exceeding a specified temperature limit at any time during the entry trajectory. The general inputs include:

1. Convective heat rates as a function of time in tabular form and an indication if, and when, turbulent flow occurs
2. Radiation heat rates as a function of time in tabular form
3. Supporting heat transfer data as the stagnation enthalpy varration with time, atmospheric composition, and heat pulse scaling factors
4. Heat shield material properties, including the density, conductivity, specific heat, emissivity, ablation temperature, heat of vaporization, and convective blocking factor
5. Desıgn constraints as the maximum allowable substructure temperature, the total entry time during which the substructure must be protected, the substructure thermal capacitance, and bond thickness and thermal properties.

The calculation model simulates a one-dimensional, heat-conduction problem into a slab of finite thickness, subject to various thermal boundary conditions as depicted in Figure 1.

65-11912
Figure 1 HEAT SHIELD CALCULATION MODEL
$233^{<}$

The primary output is the heat shield unit area weight ($\mathrm{lb} / \mathrm{ft}^{2}$) required to satisfy the design constraints. If ablation occurs, the relative proportions of ablative and insulative weights are indicated also.

B. CALCULATION MODEL.

The calculation model 1 s described in detarl in References 1 and 2 ; hence only a brief summary is given here. The approach utilized considers that aerodynamic heating data are available based on a cold wall consideration (i. e.the heating calculations are developed without a knowledge of the wall temperature history with time, and the assumption is made that $\frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{s}} \ll 1$). Hence, the convective heating inputs must be corrected for the hot wall reduction, ($1-\frac{H_{w}}{H_{s}}$), as the
wall temperature history is computed.

To arrive at a rapid method suitable for parametric studies, an approximate calculation model which permits a direct solution for the unit area heat shield werght is utilized. The approximate model replaces the actual heating history with an equivalent one having the same total integrated heating, but also having a constant surface temperature. The solution for the time wise variation of the temperature distribution in a finite slab whth constant surface temperature, and hence the solution to the equivalent simulation model, is well known and the solution is given in Reference 3

As shown in Figure 1, the calculation model allows for the inclusion of a bond and substructure and a composite heat shield material and considers the effects of lammar or turbulent heating, radiative heating, rexadiation, the hot wall reduction, and convective heating blockage due to ablation.

In order to apply the approximate method, a number of detailed assumptions regarding the nature of the heat pulse were made. Key features of the calculation model are summarized below.

1. Initial Time (TI)

The heating data input to the program is usually based on the flight time history during the entry flight. For the simulated calculation model, an effective initial time is defined such that the portion of the heat pulse up to the combined peak heating rate (1.e. add the convective and radiatıve pulse and determine the time for their peak) is triangular, and the integrated cold wall heating is identical with the actual data. The location of the initial time (TI) is shown in Figures 2 and 3 for nonablating and ablating cases, respectively.

 65-11913

Figure 2 NONABLATING HEAT SHIELD CALCULATION MODEL

OTBL COLD WALL CONVECTIVE HEATING
HTBL DIMENSIONLESS STAGNATION ENTHALPY
RTBL RADIATIVE HEATING
TI
TADITAL TIME OF CQNSTANT TEMPERATURE PROBLEEM
HADJ AVERT TIME OF IHSULATION PROELEM AFTER END OF ABLATION
TOOI TIME WHEN QTBL =OOI GTBLMAX
TSTOP TIME AT END OF THERMAL PROBLEM

65-11914
Figure 3 ABLATING HEAT SHIELD CALCULATION MODEL

$$
\frac{-3-}{2+5}
$$

2. Final Time (Actual TSTDP)

The final time of the simulation model is dependent on a number of program test criteria. The input value of TSTOP reflects the trajectory flight time and also the post-flight time during which the substructure must be thermally protected by the heat shield. The input TSTDP is therefore a test criterion for the actual TST ϕ P. The linearization of the calculation model by utilizing an average stagnation enthalpy for the nonablating cases, and when obtaining the insulative requirements of the heat shield during the post-ablation period, depends on the actual TSTDP. Experience has shown that the actual TSTดP should be limited to less than twice the length of the heat pulse (the length of the heat pulse being defined as the time from TSTART to the point where the convective heating is 1 percent of the maximum value). The above two criteria are compared and the smaller value used for the actual TSTDP.

In addition to the criteria above, program tests are performed in the case of nonablating slabs that reduce TSTDP if the slab equilibrates at a time smaller than the TSTOP, in which case the actual TST \varnothing, is taken as the time to equilibrate (i.e. for this case, the slab temperature reaches a peak, which is equal to TREAR at the actual TSTDP).

3. Ablation Model

The steady-state ablation model is used to estimate the mass loss and heat stored in the heat shield during ablation. A discussion of this approach is given in Reference 1. The calculation model provides for blockage of the convective heating only, during ablation as a result of either radiative or convective heating.

4. Wall Enthalpy

The wall enthalpy is required to correct the cold wall convective heating. Tables are built into the program, which automatically evaluate the wall enthalpy as a function of temperature based on the atmosphere composition which is input.

5. Material Properties

The material properties input are taker' as average values commensurate with the range of heating and enthalpy levels expected in the problem. A special consideration has been given to the calculations where radiation heating predommates by permitting an effective radiative heat of vaporization to be input as well as an effective convective heat of vaporization.

The heat shields considered can be homogencous or composed of two separate materials, as a plastic resin with glass fibers, in which case the material properties for each and the relative proportions of each are specified.

An allowance is made for incomplete vaporication of the melted surface by specifying the vaporizing fraction.

Under ablating conditions, the material propertıes can be dependent on whether the flow is laminar or turbulent and provision is included for handing both sets of inputs and specifying the transition time; in this case, the convective heat pulse input must contain the laminar and turbulent heating rates.

6. Heat Shield Bond

The calculation model can handle the effects of a bond by specrfying the average bond thickness and the bond thermal properties The heat shield weight is reduced by the thermally equivalent (insulative) weight of the bond. The total werght of bond and heat shield is an output.

7. Structural Thermal Capacıtance

The calculation model provides for the effects of substructure thermal capacitance on reducing the heat shield weight requirements. Program tests are performed to determine whether a heat shield is needed by com paring the structural thermal capacitance with the total heating and with the peak heat rate to ascertan whether an excessive temperature rise occurs. The possible combinations of tests could yield the result that (a) no heat shield or bond 15 required, (b) no heat shield is required as the bond and structure are adequate; or (c) a heat shield and bond are required.

C LIMITATIONS

The $l_{1 m i t a t i o n s ~ o f ~ t h e ~ p r o g r a m ~ a r i s e ~ b e c a u s e ~ o f ~ t h e ~ a s s u m p t i o n s ~ m a d e ~ i n ~ t h e ~}^{\text {a }}$ calculation model, namely:

1. The ablation model does not simulate the detalled phenomena of charring.
2. The choice and performance of heat shield materials could be limited by mechanical forces encountered in flight or while on the ground. These forces are not considered in the program.
3. Minimum thickness limits on the heat shield are not considered.

The smplicity of the calculation model results in the need for spot-checking results with the results of more sophisticated programs, and either modifying the inputs to adjust the agreement or to adjust the outputs with a scale factor. The program is aimed at determining trends parametrically.

A INPUT DEFINITIONS

Name	$\begin{aligned} & \text { Preset } \\ & \text { Values } \end{aligned}$	Symbol	Parameter	Units
AHR	1	$\mathrm{H}_{\mathrm{F}} / \mathrm{H}_{5}$	Recovery factor.	--
CASE	0		A number of the form XX XX used for identification	--
$C P B$	0	$\mathrm{C}_{\mathrm{P}_{\mathrm{B}}}$	Specrific heat of bond.	Btu/lb- ${ }^{\circ} \mathrm{F}$
CPHS	0	${ }^{C_{P}}{ }^{\text {HS }}$	Specrfic heat of heat shield.	$\mathrm{Btu} / \mathrm{Lb}-{ }^{\circ} \mathrm{F}$
GPSTR	0	${ }^{C_{P}}{ }_{\text {STR }}$	Specrfic heat of structure.	Btu/lb-OF
DATE	401		A number of the form XX. XX used for 1 dentification.	--
DTI	01	Δt	Time step for graphical integration of q_{C} and $\mathrm{Hg} / \mathrm{RT}_{\mathrm{o}}$ and computation of $\stackrel{\circ}{W}_{A}$.	seconds
EMIS	. 0	ϵ	Emıssivity	--
EPSIL	0.005		Maxımum relative error allowed in terations for structural capacitance correction.	--
FACTDR	0.1		Initial relative change in heat shield weight for structural capacitance correction iteration	--
HTBL		$\mathrm{H}_{\mathrm{s}} / \mathrm{RT}_{\mathrm{o}}$	Free stream gas enthalpy table, maximum number of entries $=$ 150 .	--
HVIR	0	$\mathrm{H}_{\text {VIR }}$	Heat of vaporization of solid when convective heating 15 blocked.	Btu/1b

Name	Preset Values	Symbol	Parameter	Units
HV2R	0.	$\mathrm{H}_{\text {V2R }}$	Heat of vaporization of resin when convective heating $1 s$ blocked.	Bta/lb
KB	0.	K_{B}	Thermal conductivity of bond.	$\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$
KHS	-	K_{HS}	Thermal conductivity of heat sh1eld.	$\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-\mathrm{O}^{\mathrm{F}}$
KSTR	0.	$\mathrm{K}_{\text {STR }}$	Thermal conductivity of structure.	Btu/hr-ft-OF
LAM	0.		Array of material properties for laminar flow, arranged as follows:	--
		f_{1}	Vaporization fraction of solid	--
		${ }^{\mathrm{H}} \mathrm{V}_{1}$	Heat of vaporization of solid	Btu/lb
		η_{1}	Transpiration fraction of solid	--
		x	Solid fraction	--
		f_{2}	Vaporization fraction of resin	--
		$\mathrm{H}_{\mathrm{V} 2}$	Heat of vaporization of ressn	Btu/lb
		η_{2}	Transpiration fraction of resin.	--
MEM \varnothing	0.		A number of the form XX XX used for identification.	--
MXIT	50.		Maximum number of iterations in structural capacitance correction.	--
QCMULT	1.		Convective heat pulse multıplier.	--
QRMULT	1.		Radiative heat pulse multiplier.	--
QTBL		${ }^{q}$	Convective heat pulse table, maximum number of entries $=$ 150.	Btu/ft ${ }^{2}-\mathrm{sec}$

Name	Preset Values	Symbol	Parameter	Units
RH ¢ $^{\text {B }}$	0.	$\rho_{\text {B }}$	Density of bond.	$1 \mathrm{l} / \mathrm{ft}^{3}$
RHøHS	0.	$\rho_{\text {HS }}$	Density of heat shield.	$1 \mathrm{~b} / \mathrm{ft}^{3}$
RH\%STR	0.	$\rho_{\text {STR }}$	Density of structure.	$\mathrm{lb} / \mathrm{ft}^{3}$
RTBL		$\mathrm{q}_{\text {r }}$	Radiative heat pulse table, maximum number of entries $=150$.	Btu/ft ${ }^{2}-\mathrm{sec}$
TABL	0.	$\mathrm{T}_{\text {A }}$	Ablation temperature	${ }^{\text {of }}$
TBLI	See program		Table of ($\left.\Delta \mathrm{T}_{\mathrm{R}} / \Delta \mathrm{T}_{\mathrm{S}}, \mathrm{at} / \mathrm{L}^{2}\right)$, arranged whth first a value of $\Delta T_{R} / \Delta T_{S}$ then $a t / L^{2}$, then the next pair, etc. Maximum number of entries $=25$ pairs.	---
TBL2	See program		Table of ($\alpha \mathrm{t} / \mathrm{L}^{2}, \Delta \mathrm{~T}_{\mathrm{M}} / \Delta \mathrm{T}_{\mathrm{S}}$), arranged with first a value of a_{t} / L^{2}, then $\Delta T_{M} / \Delta T_{S}$, then the rext pair, etc. Maximum number of entries $=25$ pairs.	--
TEMPI	0.	T_{i}	Initial Temperature.	${ }^{\circ} \mathrm{F}$
TIME	0.	t	Table of independent variable time for use with HTBL, RTBL, and QTBL dependent variable arrays. Maximum number of entries $=150$.	seconds
TMSTR	0	$\mathrm{T}_{M_{S T}}$	Melting temperature of structure	${ }^{\circ} \mathrm{F}$
TREAR	0.	$\mathrm{T}_{\text {R }}$	Maxımum allowable design rear temperature.	${ }^{\circ} \mathrm{F}$
TSTART	0.	t_{0}	Start of reentry heating.	seconds
TSTDP	0.	${ }_{\text {c }}$	Fnd of reentry heating	seconds
TTRANS	1000.	${ }^{t_{f}{ }_{\text {con }}}$	Time transition occurs in heating	secord

Name	Preset Values	Şymbol	Parameter	Units
TURB	0.		Array of material properties for turbulent flow, arranged as LAM (see above)	--
WTB	0.	${ }^{W}$ B	Weight of bond.	$\mathrm{ib} / \mathrm{ft}^{2}$
WTSTR	0.	${ }^{\text {m }}$ STR	Weight of structure.	$1 \mathrm{~b} / \mathrm{ft}^{2}$
XA	0.	$\mathrm{X}_{\text {A }}$	Mole fraction of argon in undissociated mixture.	--
XC	0.	x_{C}	Mole fraction of CO_{2} in undissociated mixture.	--
XN	0.	X_{N}	Mole fraction of N_{2} in undissoctated mixture.	--
X \varnothing	0.	x_{0}	Mole fraction of O_{2} in undissociated mixture.	--

B INPUT PROCEDURES

Input procedures include the following:

1. Input heat shield, structure, and bond properties.
2. Input QTBL, HTBL, and RTBL as a function of TIME (NOTE: for each TIME input, there must be a QTBL, HTBL, and RTBL input; maximum 150 values for each table).

In stacking cases it is necessary to add at least one 0 , value at the end of the TIME table after the first case if the number of entries in the table is decreased. This 0 . is used internally as an indication of the end of the table.
3. If transition does not occur during the convective heat pulse, input only the LAM array of material properties.
4. If transition occurs during convective heat pulse, input both IAM and TURB arrays and TTRANS, the time at which pulse swatches from laminar to turbulent flow.
5. Input atmospheric constituents, initial tempera'ture, and stop time of problem.
6. Input design rear temperature of problem.
7. For succeeding cases, input only the changes desired. However, note (2) above if TIME, HTBL, QTBL, and RTBL are to be changed.
8. A set of computer input forms are provided for the user. All the data shown on the form is keypunched when the variable is supplied.

C OUTPUT DEFINITIONS

External Name	Internal Name	Parameter	Units
ACTUAL TST $\varnothing \mathrm{P}$	TST ϕ_{P}	${ }^{t_{f}}$ used for problem.	seconds
CASE	CASE	Identification number	--
C \varnothing RRECTED WINS	WEIGHT	Insulation werght corrected for structural capacitance and bond capacitance.	$\mathrm{lbs} / \mathrm{ft}^{2}$
CRMAX	RQCMAX	Maximum combined heating rate.	Btu/ft $\mathrm{t}^{2}-\mathrm{sec}$
DATE	DATE	Identification number.	
DTM	DTM	Average temperature rise.	${ }^{\circ} \mathrm{F}$
HADJ		Average stagnation enthalpy	--
MEM M $^{\text {d }}$	MEM M $^{\text {a }}$	Identification number.	-
MINCRABL	QR	Minimum combined heat rate necessary for ablation.	$B t u / f t^{2}-s e c$
$Q \subset T \varnothing T$	QTФT	Integrated convective heating including multiplier.	$B t u / f t^{2}$
$Q \mathrm{QT}$ T	QRRA	Integrated radiative heating including multiplier.	$B t u / \mathrm{ft}^{2}$
$Q T \phi$ TREQ	QTREQT	Combined integrated heating necessary to require heat shield.	Btu/ft ${ }^{2}$

-11.
$333<$

External Name	Internal Name	Parameter	Unıts
TADJ	TADJ	Start time of insulation problem after end of ablation,	seconds
TCRMAX	RTQMAX	Time of maximum combined heating rate.	seconds
TI	TI	Initial time of constant temperature problem.	seconds
TR	TR	Time of maximum rear temperature.	seconds
TSMAX	TS2	Maximum surface temperature of insulation material.	OF
TTESTI	TTEST1	Structural surface temperature attained without heat shield, must be \leq TMLTSTR to stop problem.	${ }^{\circ} \mathrm{F}$
TTEST2	TTEST2	Structural rear temperature attained without heat shield, must be \leq TREAR to stop problem.	${ }^{\circ} \mathrm{F}$
TURB	$F \mathrm{C} \phi \mathrm{N}(1,1-7)$	Array of material properties for turbulent flow.	--
T1A	TlA	Start time of ablation.	seconds
T2A	T2A	Time ablation ends.	seconds
WA	WA	Ablated weight.	$1 \mathrm{~b} / \mathrm{ft}^{2}$
WINS	WT, W9	Insulation weight before capacitance corrections.	$\mathrm{lb} / \mathrm{ft}^{2}$
WTøT	WTøTAL	Total heat shield weight including bond.	$\mathrm{lb} / \mathrm{ft}^{2}$

When ablation occurs, there are printed out 8 columns arranged time, ablation rate, time, ablation rate, etc., from left to right. Time is in seconds, ablation rate is in $1 \mathrm{~b} / \mathrm{sec}-\mathrm{ft}^{2}$. Internally, these are called A27A(J), $W D \varnothing T(J)$.

D. SAMPLE PROBLEM

1. Statement of Problem

Determine the heat shield weight for the configuration and trajectory used in the sample problems of Programs 1880, 1885. The heat shield material properties are to be specified as well as the necessary data on the bond and substructure.

2. Input Form

The input form containing all the necessary input is shown on the following pages. A number of cases are shown, representing the heating at several stations on the vehicle. The keypunched input shown should be checked with the input form.

The results indicate the integrated radiation and convective heating, and the heat load for which a heat shield is required. The maximum combined heating rate, and the time at which it occurs is shown. The minimum combined rate necessary for ablation is shown, and can be seen to be larger than the maximum rate occurring. The intial time and adjusted enthalpy are given.

The solution indicates that no ablation occurs and that the heat shield has not fully equilibrated at the time TST \varnothing P; this is further shown by the time required to achieve the maximum rear face temperature. The surface temperature and maximum mean temperature of the heat shield are given. The insulation weight (nonablating) required with and without the effects of thermal capacitance of the structure and bond are shown. Finally, the total weight, including the bond weight is given.

Case 4 indicates that the required convergence was not achieved and the results must be interpreted with caution. Case 5 -indicates that the heating level has been reduced to the point where no heat shield is required.

-15-
$3{ }^{2} 96$

－16－
248く

-17-

-18-
$350^{<}$

DIGITAL COMPUTER INPUT REQUEST FORM			Problem no	1884		PROGRAMMER:		
			TITLE			,		
MEMO NO	$\begin{aligned} & \text { SECTION NO } \\ & \mathrm{K} 420 \end{aligned}$	$\begin{aligned} & \text { WORK O } \\ & \text { W305. } \end{aligned}$	$\begin{aligned} & \text { RDER NO } \\ & .050-0005 \end{aligned}$	[E24O USE ONLY]	Requested by P. Levine	EXT:	EST Tis	page 1 Of Gpages

\$INPUT

DATE	-	MEM \varnothing	$=\ldots$	CASE	1.0 ,
AHR	3	KHS	. 0.058	TREAR $=$	400,
CPB	$=.25$,	KSTR.	$=\ldots$	TSTART $=$	
CPFHS	$=\ldots .44$,	MXIT	$=$ =	TSTOP $=$	411.6
CPSTR	$=\ldots$	QCMULT	- 1....	TTRANS =	-
DTI	= _ـ_	QRMUET	-	WTB	. 16
EMIS	. 76	RH \varnothing B	-30.	WTSTR $=$	0.5075 ,
EPSIL	$=$ =	RHDHS	39.4 ,	XA	,
FACTDR	-'	RHOSTR	$=172.0$	XC	. 20
HV1R	$=10000$.	TABL	$=3700$.	XN	. 80 ,
HV2R	\longrightarrow -	TEMPI	$\underline{100 .}$	$\mathbf{X} \varnothing$	[.]'
KB	$=.1$	TMSTR	$=1000$.		

TURB = \qquad , \qquad , \qquad
\qquad , ——_-_ , \qquad ,

TBLI

-22-

-23-

-0.29097000E 03\%	0729542000E-037,		$0=30947000 \mathrm{E} 03$ $0.33692000 \mathrm{E} 03 \text {, }$	$\begin{aligned} & -0.311750005-93, \\ & 0.34561000 \mathrm{E} 03, \end{aligned}$
0.31780000503.	0.32333000 E 03,	$0.32762000 \text { ē 03, }$	0.33692000 E O3,	$0.34561000 \mathrm{E}_{0}^{03 \text {. }}$
- $0.35633000 \mathrm{E}-03$.	$0 \cdot 37026909$ ¢ 03 ,	O. $38943000 \mathrm{E}-03$.		$0.00000000 \mathrm{E}-38$,
0,00000000E-38.	$0.00000000 \mathrm{E}-38$.	0.00000000E-38,	$0.00000000 \mathrm{E}-38$ *	
0.000060006	9.00000000 50 ,			
$0.00000000 \mathrm{E}-38$.	$0.00000000 \varepsilon^{-36 .}$	$0.00000000 \mathrm{E}^{-38,}$	$0.0000000 \mathrm{E}^{\text {a }}$	0.000000005-38.-
$0.00000000 \mathrm{~L}-387$	0.0000000t) -30 ,	0.00000000E-30,	$0.0000000 \text { OE- } 38$	$0.00000000 \mathrm{E}-38$,
$0.00000000 \mathrm{E}-38$.	$0.00000000 \mathrm{E}-38$,	$0.00000000 \mathrm{E}-38$,		0.00090000\%-39,
$0.00000000 \mathrm{E}-30$	O.000000006-30,	0.000000005-38,	0.00000000E-38,	$0.00000000 \mathrm{E}-38$,
-6.0c000009E-387	$0 \div 000000005$	$0.000000005-30$	0.00000000E-38,	0,000000005-38-
$0.00000000 \mathrm{E}^{-38}$,	0. $00000000 \mathrm{E}-38$,	$0.000000005-38$,	$0.00000000 \mathrm{E}-38$,	$0.00000000 \mathrm{E}-36$
$0.0000000 \mathrm{E}-38$	$0.00000000 \mathrm{E}-30$	O.00000000E		$0.00000000 \mathrm{E}-38 \mathrm{~F}$
$0.00000000 \mathrm{E}-38$,	0.00000000E-38.	0.0000000 EF 38 ;		
C.00000000E- 38,	O. $0.000000000 \mathrm{E}-3 \mathrm{~B}$,	$0.00000000 \mathrm{E}-391$	0.00000000E-3B,	$0.00000000 \mathrm{E}-38$.
0.00000000E-38,	0.00000000E-38,		$0 \cdot 000000000^{\circ}$	0.0909000
$0.00000000 \mathrm{E}-38$,	0. $00000000 \mathrm{E}-38$.	0.00000000E-38,	$0.00000000 \mathrm{E}-38$,	0.00000000E-38.
-0,00000000E-98\%	$0.000000005-36$ F	$0.00000000 \mathrm{E}-39$	0.090000005	C.00090000E-36,
$0.00000000 \mathrm{E}-3 \mathrm{~S}^{2}$	0.00000000E-38.	$0.00000000 \mathrm{E}-38$,	0.00000000E-38,	.00000000E-38.
$0.000000005-305$	0×000000050	0.000000005 30,	$0.40000000{ }^{\text {a }}$ -	
$0.00000000 \mathrm{E}-38$.	0.00000000E-38.	0.00000 C00E-38,	$0.00000000 \mathrm{E}-38$,	$0.00000000 \mathrm{E}-36$.
$0.00000000 \mathrm{E}^{-38}$	0.000d0000E-36,	$\begin{aligned} & 0-00000000=-39+ \\ & 0.00000000 \mathrm{E}-38, \end{aligned}$	$0.00000000 \mathrm{E}-3 \mathrm{~B}$,	0.00000000F-38.
$0.00000000 \mathrm{E}-38$.	0.00000000E-38			
	0.10000000E O1.	0.12000000 E 01.	0.15000000E 01,	0. 19000000 E 01.
	0.20000000E-01.	0.340000005015	Or41000000e-01.	00
0.62000000 E Ol .	0.76000000 E 01,	0.94000000 El 01,	0.11400000 E O2,	0.14100000 E 02.
-0.15000000E-024	0.203000006 02,	0.230000005	0.272009005021	$9.283000005-02$
$0.29400000 \mathrm{E}^{02 .}$	0.30400000E 02,	0.28700000 E 02,	0.26400000 E 02,	0.23
-027r0000ce-02.	$0.18500000 \mathrm{C}-027$	0.1590000E-02,	1	
0.92000000 E 01.	0.74000000 E 01.	0.580000008 O1,	0.440000000014	0.320000000^{01}
	$0.270000005-01$	0.120000000^{0}	C.00000000E 00	
0.30000000E 00,	0.200000000^{007}	0.10000000500.	0,00000000E-38,	0.00000000E-38\%
-0.00000000E-197	0,000000000-19.	$0.000000005-27$	-00000000E-19,	
-0.00000000E-19.	-0.00000000E-19.	-0,00000000E-19,	-0.00000000E-19\%	-0.00000000E-
-0.00000000E-19.	-0.00000060¢ 19 ,	0.000000,	-0.000000000 -19 ,	
-0.00000000E-19.	-0.00000000F-19,	-0.00000000E-19,	-0.00000j00E19,	
-0.060000060 497	-0.00000000E-19.	-0.000000000-19.		
-0.00000000E 19 ,	-0.00000000E-19,	-0.00000000E-19.	$\begin{aligned} & F=0.00000000 \mathrm{E}=19, \\ & -0=00000000 \mathrm{E}-19 \end{aligned}$	$-0.00000000 \mathrm{E}-197$
-0.00000000E-19,	-0.00000000F-19,	-0.00000000E-19,	-0.00000000F-19*	-0.00000000E-19*
-0.0000000000-17\%	-000000000E-i97	-0.00000000E-197	0.00000000F-49,	
-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-19.	-0.00000000E-19,	$=0.00000000 \mathrm{E}$
-0.000000008-19,	-0.0000tubot	-0.0000000E-9\%		
-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-19,	-0.00000000F-19,	
-0.0c000000E-19\%	-0.00000000E-19,		$\begin{aligned} & -0.00000000 \mathrm{~F} \\ & -0.00000000 \mathrm{E}-19, \end{aligned}$	-0.00000000E-19.
-0.00000000E-19,	-0.00000000E-19,	-0.000000000E- 19	$-9.000000006-19$	-0.00000000E-19,
$\begin{aligned} & -0.000000005-197 \\ & -0.00000000 E-19, \end{aligned}$	-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-15,	-0.000000000E-19,
-0.0ectafoet-19.	-0.00000000E-191	0.000000005	0.00060000E 17.	$0.00000000 \mathrm{E}-19$
-0.00000000E-19;	-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-19,	$-0.00000000 \mathrm{E}=$
-0.00000000E-197	$0.000000005-19$,	0.00000000E -	$0.00000000=19 \%$	
-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-19,	-0.00000000E-19
- $0.00009600 \mathrm{E}^{-15}$	-0.00000000E-19\%	-00000020E-亡		9.000000066-19\%
0.127500000-037	0.13090000009 \%	0.13110000050	0.13140000 E	
$0.132000000^{03 .}$	0.13220000103.	0.13250000503.	0.13270000 E 03,	$0.13290000 E^{03}$,
0.13300000e-03.	$0.139100608-057$	0.13900000005	$0.13280000 \mathrm{~F}-03$.	0.732300400°
0.131400000^{03}	0.12990000E 03,	0.12800000503 ,	0.12640000 E 03.	0.12290000403 ,

LAM

III. GOMPUTATIONS

A. BLOCK DIAGRAM

The block diagram for Program 1884 is given in Figure 4.

65-11915

- Figure 4 BLOCK DIAGRAM FOR PROGRAM 1884
B. SYMBOLS

Symbol	Definition	Units
$\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{HS}}, \mathrm{C}_{\text {ST }}$	Specific heat of bond, heat shield, and structure.	Btu/ $\mathrm{lb}^{\text {- }}{ }^{\text {F }}$
$\mathrm{K}_{\mathrm{B}}, \mathrm{K}_{\mathrm{HS}}, \mathrm{K}_{\mathrm{ST}}$	Conductivity of bond, heat shield, and structure.	$\mathrm{Btu} / \mathrm{ft}-\mathrm{hr}-\mathrm{OF}$
$\rho_{\mathrm{B}}, \rho_{\mathrm{HS}}, \rho_{\mathrm{ST}}$	Density of bond, heat shield, and structure.	$1 \mathrm{~b} / \mathrm{ft}^{3}$
ε	Emissivity.	
σ	Stefan-Bolzmann constant.	$\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}-{ }^{\circ} \mathrm{R}$
${ }_{\text {t }}$	Intral time.	seconds
${ }_{\text {m }}^{\text {m }}$	Time at peak combined heating.	seconds
${ }^{\text {c }}$	Final time of problem.	seconds
${ }_{\text {ta }},{ }_{\text {ta }}$	Times when ablation starts and stops.	seconds
${ }^{\text {t }}$ R	Time when rear temperature equals specified. value.	seconds
${ }^{\text {a }}$ ad	Start time for post-ablation insulation problem.	seconds
T_{1}	Inital temperature.	${ }^{\circ} \mathrm{R}$
T1, T2	Temperature defined by Equations (6) and (7).	${ }^{\circ} \mathrm{R}$
$\mathrm{T}_{\text {A }}$	Ablation temperature.	o_{R}
ΔT_{m}	Mean temperature rise.	${ }^{\circ} \mathrm{R}$
q_{m}	Maximum combined heat rate.	$\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$
$\mathrm{q}_{\mathrm{C}}, \mathrm{q}_{\mathrm{R}}$	Convective and radiative heat rates.	Btu/ft ${ }^{2}-\mathrm{sec}$
$\mathrm{H}_{\mathrm{s}}, \mathrm{h}_{\mathrm{w}}$	Stagnation and wall enthalpy.	Btu/lb
Q_{c}, Q_{R}	Integrated convective and radiative heating -	$\mathrm{Btu} / \mathrm{ft}^{2}$
Q_{PA}	Total heat load for post-ablation insulation analysis.	$\mathrm{Btu} / \mathrm{ft}{ }^{2}$

$$
\begin{array}{lll}
\dot{W}_{\mathrm{a}}, \dot{\mathrm{~W}}_{\mathrm{aR}} & \begin{array}{l}
\text { Ablation rates for convection and radıation } \\
\text { and for radration only. }
\end{array} & \mathrm{lb} / \mathrm{ft}^{2}-\mathrm{sec} \\
W_{\mathrm{A}} & \text { Total ablated weight. } & \mathrm{lb} / \mathrm{ft}^{2}
\end{array}
$$

C. EQUATIONS

1. Initial Ime

$$
\begin{equation*}
t_{1}=t_{m}-2 \int_{0}^{t_{m}} q_{c} d t+2 \int_{0}^{t_{m}} q_{R} d t \tag{1}
\end{equation*}
$$

2. Integrated Heating

$$
\begin{align*}
& Q_{c}=\int_{t_{1}}^{t_{f}} q_{c} d t \tag{2}\\
& Q_{R}=\int_{t_{1}}^{t_{f}} q_{R} d t \tag{3}
\end{align*}
$$

3. Average Total Enthalpy
a. Nonablating Case

$$
\begin{equation*}
H_{S A}=\frac{1}{\left(t_{f}-t_{1}\right)} \int_{t_{1}}^{\tau_{f}} H_{s} d t \tag{4}
\end{equation*}
$$

b. Ablating Case

$$
\begin{equation*}
H_{S A}=\frac{1}{\left(t_{f}-t_{a d j}\right)} \int_{t_{\text {ad }}}^{t_{f}} H_{s} d t \tag{5}
\end{equation*}
$$

4. Heat Shield Requırement Tests
$\mathrm{T} 1=\mathrm{T}_{1}+\frac{33 \mathrm{q}_{\mathrm{m}} \sqrt{2\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}_{\mathrm{i}}\right)}}{\sqrt{\mathrm{K}_{\mathrm{ST}} \hat{\rho}_{\mathrm{ST}} \mathrm{C}_{\mathrm{ST}}}}$
$T_{2}=T_{1}+\frac{\left(Q_{C}+Q_{R}\right)}{W_{S T} C_{S T}}$
5. Thermal Capacitance of Bond

$$
\begin{equation*}
\Delta w_{\mathrm{HS}}=w_{\mathrm{B}} \sqrt{\frac{\mathrm{~K}_{\mathrm{HS}} \rho_{\mathrm{HS}} c_{\mathrm{B}}}{\mathrm{~K}_{\mathrm{B}} \rho_{\mathrm{B}} \mathrm{c}_{\mathrm{HS}}}} \tag{8}
\end{equation*}
$$

6. Insulation Werght - Nonablating Case
a. Test Time for Equilibration (t_{R})

$$
\begin{equation*}
\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{1}+\left\{\frac{\sqrt{\rho_{H S} \mathrm{~K}_{\mathrm{HS}} \mathrm{C}_{\mathrm{HS}} \Delta \mathrm{~T}_{\mathrm{R}}{ }^{2}+4 \epsilon \sigma \mathrm{~T}_{\mathrm{R}}^{4}\left[\mathrm{Q}_{c}\left(1-\frac{\mathrm{h}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{SA}}}\right)+\mathrm{Q}_{\mathrm{R}}\right]}}{2 \epsilon \sigma \mathrm{~T}_{\mathrm{R}}^{4}}-\frac{\Delta \mathrm{T}_{\mathrm{R}} \sqrt{\rho_{\mathrm{HS}} \mathrm{~K}_{\mathrm{HS}} \mathrm{C}_{\mathrm{HS}}}}{2 \epsilon \sigma \mathrm{~T}_{\mathrm{R}}^{4}}\right\} \tag{9}
\end{equation*}
$$

b. Weight for $t_{R} \leq t_{f}$

$$
\begin{equation*}
W_{\mathrm{HS}}=\sqrt{\frac{\rho_{\mathrm{HS}} \mathrm{~K}_{\mathrm{HS}}}{\mathrm{C}_{\mathrm{HS}}}} \sqrt{\tau_{\mathrm{R}}-\tau_{\mathrm{L}}} \tag{10}
\end{equation*}
$$

c. Weight for $t_{R}>t_{f}$

$$
\begin{equation*}
Q_{C}\left[1-\frac{h_{w}}{H_{S A}}\right]+Q_{R}-\epsilon \sigma T_{w}^{4}\left(t_{f}-t_{1}\right)=W_{H S} C_{H S} \Delta T_{M} \tag{11}
\end{equation*}
$$

Where $\Delta \mathrm{T}_{\mathrm{M}} / \Delta \mathrm{T}_{\mathrm{W}}$ and $\Delta \mathrm{T}_{\mathrm{R}} / \Delta \mathrm{T}_{\mathrm{W}}$ are assumed to be a function of $\left(\frac{\rho_{\mathrm{HS}} \mathrm{K}_{\mathrm{HS}}\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{1}\right)}{\mathrm{C}_{\mathrm{HS}}{ }^{W_{H S}^{2}}}\right)$ in accordance with the constant surface temperature
model and the solution given in Reference 3. The solution is found via iteration on (T_{W}) using the relationsh ps for $\Delta \mathrm{T}_{\mathrm{m}} / \Delta \mathrm{T}_{\mathrm{W}}$ and $\Delta \mathrm{T}_{\mathrm{R}} / \Delta \mathrm{T}_{\mathrm{W}}$ developed in Reference 3.
7. Ablation Weaght
a. Test for Occurrence of Ablation

$$
\begin{equation*}
q_{c}\left(1-\frac{h_{w}}{H_{S}}\right)+q_{R}>1.82 \sqrt{\frac{\rho_{H S} K_{H S} C_{H S}}{2\left(t_{m}-t_{i}\right)}}+\epsilon \sigma T_{A}^{4} \tag{12}
\end{equation*}
$$

b. Ablatıon Rate $\left(\dot{W}_{a}\right)$

1) Convective and Radiation Heating

$$
\dot{\mathrm{W}}_{\mathrm{a}}=\frac{\mathrm{q}_{\mathrm{c}}\left[1-\frac{\mathrm{h}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{s}}}\right]+\mathrm{q}_{\mathrm{R}}-\sigma \epsilon \mathrm{T}_{A}^{4}}{\mathrm{C}_{\mathrm{HS}} \Delta \mathrm{~T}_{A}+\mathrm{X} \mathrm{f}_{1}\left[\mathrm{H}_{\mathrm{V} 1}+\eta_{1}\left(\mathrm{H}_{\mathrm{S}}-\mathrm{h}_{\mathrm{w}}\right)\right]+(1-\mathrm{X}) \mathrm{f}_{2}\left[\mathrm{H}_{\mathrm{V} 2}+\eta_{2}\left(\mathrm{H}_{\mathrm{S}}-\mathrm{h}_{\mathrm{w}}\right)\right]}
$$

c. Test for Blockage of all Convective Heating

$$
\begin{align*}
& \dot{W}_{\mathrm{aR}}\left\{\eta_{1}\left(\mathrm{H}_{\mathrm{s}}-\mathrm{h}_{\mathrm{w}}\right) \mathrm{Xf} \mathrm{f}_{1}+\eta_{2}\left(\mathrm{H}_{\mathrm{s}}-\mathrm{h}_{\mathrm{w}}\right)\right\}> \tag{14}\\
& \mathrm{q}_{\mathrm{c}}\left[\mathrm{I}-\frac{\mathrm{h}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{s}}}\right] \\
& \dot{\mathrm{W}}_{\mathrm{aR}}=\frac{\mathrm{q}_{\mathrm{R}}-\epsilon \sigma \mathrm{T}_{A}^{4}}{\mathrm{C}_{\mathrm{HS}} \Delta \mathrm{~T}_{A}+\mathrm{Xf} \mathrm{f}_{1} \mathrm{H}_{\mathrm{V} 1 \mathrm{R}}+(\mathrm{I}-\mathrm{X}) \mathrm{f}_{2} \mathrm{H}_{\mathrm{V} 2 \mathrm{R}}} \tag{15}
\end{align*}
$$

If Equation (14) is satisfied, then ablation rate calculation switches from Equations (13) to (15).
d. Start and Stop of Ablation

Ablation starts and stops when:

$$
\begin{equation*}
q_{c}\left(1-\frac{h_{w}}{H_{s}}\right)+q_{R}=\epsilon \sigma T_{A}^{4} \tag{16}
\end{equation*}
$$

e. Insulation Weight for Ablation Period

$$
\begin{equation*}
W_{\mathrm{INA}}=\frac{4\left(t_{\mathrm{fa}}-t_{1 a}\right)}{W_{a}}\left(\frac{\rho_{\mathrm{HS}} K_{\mathrm{HS}}}{C_{\mathrm{HS}}}\right) \tag{17}
\end{equation*}
$$

g. Post-Ablation Heat Stored

$$
\begin{equation*}
Q_{P A}=\int_{t_{a d j}}^{t_{f}}\left[q_{c}\left(1-\frac{h_{w}}{H_{S}}\right)+q_{R}\right] d t-Q_{A} \tag{19}
\end{equation*}
$$

The coefficients A and B are computed automatically by specifying the $\quad, 0, \infty$ atmospheric compositionuandrutilizing tabulawuthermochemical data stored in the program. All modules are assumed to have zero enthalpy at $0^{\circ} \mathrm{K}$.

IV. IBM ROUTINES

A. PROGRAM FLOW

The program flow is shown in Figure 5.

Figure 5 FLOW DIAGRAM FOR PROGRAM 1884
B. MAIN PROGRAM

1. Purpose

The purpose of the main program is to acquire the necessary input data, and to transmit this data to subroutine PRI884 within which the computations are completed.
2. Method

The input variables are defined by their inclusion in the namelist array INPUT, and their types and dimensions specified. The data statements and the axithmetic statements setting the elements of TBL_1 and TBL2 preset values are of the solution for a finite slab with one end insulated and the other at constant temperature (Reference 1, p. 244, Equation (9)). These tables are arranged so that for TBLI add indices are monotonic increasing values of the parameter $\Delta \mathrm{T}_{\mathrm{R}} / \Delta \mathrm{T}_{\mathrm{W}}$ and even indices are monotonic increasing values of $\alpha t / L^{2}$ and even indices are values of $\Delta T_{m} / \Delta T_{w}$.

The program input is read through namelist at Statement 100. The identification numbers DATE, MEMD, and CASE are written on the output tape followed by the namelist data. The call to Subroutine PRI884 initiates all of the calculations and output of results for the case. After this call control is transferred immediately back to Statement 1000 for consideration of the next case.

C. SUBROUTINES

CALLING SEQUENCES

PR1884	Variable Input ox Output Source	AHR Input Program Input	TABL Input Program Input	TREAR Input Program Input	TEMEI Input Program Input
EMIS Input Program Input	TSTART Input Program Input	DTI Input Program Input	TBLI Input Program Input	TBL2 Input Program Input	CP2DG(CPSTR) Input Program Input
W2DG(WTSTR) Input Program Input	XITDG(MXIT) Input Frogram Input	EPSDG(EPSIL) Input Program Ingut	FCTDG(FACT \varnothing R) Input Program Input	DDG1(TIME) Input Program Input	DDGZ(QTBL) Input Program Input
DDG3(HTBL) Input Program Input	DDG4(RTBL) Input Program Input	XIAM(IAM) Input Program Input	XTURB(TURB) Input Program Input	QMULT(QCMULT) Inpat Drogram Input	ERT(QRMULT) Input Frogram input
ZK1 (KHS) Input Program Input	TECDN(TTRANS) Input Program Input	RHゆ(RH申HS) Input Program Input	CP(CPHS) Input Program Input	XN Input Program Input	$\mathrm{X} \rho$ Input Frogram Input
XA. Input Program Input	xC Input Program Input	ZKSTR(KSTR) Input Program Input	WTB Input Program Input	CPB Imput Program Input	TSTPD(TSTDP) Input Progxam Input
ZKB(KB) Input Program Input	RDST(RHDSTR) Input Program Input	TMST(TMSTR) Input Program Input	R $0 \mathrm{~B}(\mathrm{RHDB})$ Input Program Input	HVIR Input Program Imput	HV2R Input Program Input

TLUQ \begin{tabular}{ll|l|l|l|}

\& \begin{tabular}{l}
Variable

Input or Output

Source

 \&

Input

Calling program

 \&

TBL, table of

alternate indep.

and dep. vars.

Input

 \&

ANS, result of

table look-up
\end{tabular}

\hline
\end{tabular}

GURVE	Variable Input or Output Source	$\mathrm{ZK}, \mathrm{~K}_{\mathrm{HS}}$ Input Program Input	RFO, $\rho_{\text {HS }}$ Input Program Input	$\mathrm{CP}_{,} \mathrm{C}_{\mathrm{PHS}}$ Input Program Input	$T R, t_{R}$ Input MAIN
$\text { TSS, } T_{S}$ Input MAIN	TEMPI, T_{1} Input Progxam Input	WW, W INS Input CURVE	$T S T \phi P, t_{f}$ Input Program Input or MAIN	TI, t_{1} Input MAIN	ANS Input TLUQ
ANSE Output CURVE	TBLI Input Program Input	TBL2 Input Program Input	DTM, $\Delta_{T m}$ Output CURVE	TREAR Input Frogram Input	

CめRFIT	VARIABLE Subroutine Input or Output Source	MITDG, max zterations for corrected WINS Input Program Input	EFSDG, convergence tolerance for corrected WINS Input Program Input	FCTDG, relative change iteration for corrected WINS Input Program Input	CPIDG, C ${ }_{\text {PHS }}$ Spectife heat of heat shreld Input Program Input
CPZDG, C Specific heat of structure Input Program Input	W2DG, WSTR, weight of structur Input Program Input	$\begin{gathered} \text { RHDIDG, } \rho, \\ \text { heat shield } \\ \text { density } \end{gathered}$	$\begin{gathered} \text { 2KlDG, } K_{\mathrm{HS}}, \\ \text { heat sheld } \\ \text { thermal cond } \\ \text { Input } \\ \text { Program } \\ \text { Input } \end{gathered}$	TrMiDG, t_{1}, effective mintial time Input Man	WW, WINS, uncorrected heat shield weight Input Mann
TSTPDG, t_{f}, actual TSTEP Input Man	TSRDG, T_{R}, max allowable rear temp Input Program Input	TSBID, T_{1},intial tempera-tureInputProgram Input	TSSDG, T_{s}, average surface temperature Input Mam	QTDURZ, duration of heat pulse Input Mann	TSTTDG, t_{1}, initial time of problem Input Program Input
DTMZ, $\Delta \mathrm{T}_{\mathrm{m}}$, mean temperatur Input Man	WEIGHZ, c corrected heatshield wetght Output CORFIT				
FINW 1	VARLABLE Subroutine Input or Output Source	R. $1 / \phi_{3}$ thermalcapacitance ratıo Input CORFIT	TAU, + dimensionless time Input CDRFIT	$\mathrm{DV}_{\mathrm{t}} \mathrm{V}_{2}$, dimensionless temperature Output FINW 1	RT, indepvar table of R Input CORFIT
TAUT, indep ver.table of t Input CDRFIT	DVT, dep var. table of dimensiop less temp Input CDRFIT				

SUBROUTINE DESCRIPTIONS

1. PR 1884
a. Purpose

The purpose of Subroutine PR 1884 is to compute the heat shield weight necessary to limit the backface temperature to some (input) design limit gaven a knowledge of the heating environment, and provide the necessary output from the calculation.

b. Method

Immediately following the subroutine and dimension statements is the definition of the wall enthalpy function HWALL(T), where T is some temperature in degrees F and the coefficients A27N and B27N are computed as functions of the input atmosphere.

The first executable statements initialize WTDTAL, WA, and NM, the $D \varnothing 50$ loop counts the number of values entered in the TIME table (DDGI), by checking for the first zero entry beyond the first table element.

By Statement 8003, the sum of the atmosphere constituent mole fractions has been checked to see if it $1 \mathrm{~s}=1 \pm 0.001$, and by the Statement $D \phi 8000$, the wall enthalpy coefficients $\bar{A} 27 \mathrm{~N}$ and $B 27 \mathrm{~N}$ have been computed. The D $\varnothing 10$ loop arranges the tables QTB, HTBL, and RTBL so that odd indices contain values of the TIME table, and even indices contain the corresponding values of the input convective heating, enthalpy, and radiation heating, respectively.

The tests and calculations preceding Statement 8005 redefine the value of TSTDP if necessary. The duration of the heat pulse ($\Omega T D U R$) is defined as the time after maximum convective heating that the convective heating is ≤ 1 percent of the maximum heating, minus the input TSTART. If the input TST \varnothing P minus the input TSTART is $>2 \cdot$ QTDUR, TSTDP is changed to $=2(Q T D U R-T S T A R T)$.

Between Statements 8005 and 7331 , constants are stored for use by subroutine C \varnothing RFIT, QTBL is defined (loop ending on 102) to be the convective heating time QCMULT, RADR, RADA, DELTA, and DELTR are defined, the heat shield thermal conductivity $1 s$ changed for agreements in units, and the maximum combined radiative and convective heating is computed along with the time it occurred (RQGMAX and RTQMAX, respectively).

The $D \phi$ loop ending on 7332 computes three integrals by the trapezoidal method, the integrals from the first entry on the TIME table to TSTDP of the combined radiative and convective heating ($Q R T \varnothing T$) and of the radiative heating (QRRA), and the integral from the first entry in TIME to RTQMAX (see above) of the combined radiative and convective heating (RQINT).

The $D \varnothing$ loop 203 computes the maximum convective heating (QCMAX) and the time when it occurred (TQMAX). D \varnothing loop 207 computes by the trapezondal method two integrals, the integral from the first entry of the TIME table to TST ϕ P of the convective heating ($\Omega T \phi T$), and the integral from the first entry on the TIME table to TQMAX of the convective heating (QINT).

Statement 208 defines an effective initial time TI, and by Statement 6048 the enthalpy at TABL and TREAR (HWABL and HWABR), along with the output quantity MINGRABL (internally, $Q R$) and the quantity QPIMER are computed. By Statement 8008 the quantitues TTEST 1 and TTEST 2 are computed. If TTEST $1<T M S T$ (input as TMSTR) and TTEST $2<\operatorname{TREAR}$, no protective shıeld is required and the next case is considered (RETURN). Between Statements 8011 and 7248, the quantity QTREQT is computed and selected heating integrals, and time are provided as output. After Statement 7248 T 1 A is defined to be TSTART, and a test is made so that if $Q R<R Q M A X$, (Reference 1 , p 250, Equation(23)) the ablation case is solved (Statements 300 to, but not includang, 400). Otherwise the nonablating case 15 computed (Statements 400 to, but not including, 500).

Statements 301 to 308 compute the times T1A and T2A which define the time interval during which ablation is occurring. This logical loop - provides for successive evaluations of the quantity DIF as the independent variable. TIME is incremented by the input DTI, and TlA is defmed as that time before RTQMAX that DIF passes through zero, and T2A is the time after RTQMAX that DIF passes through zero. Test 302 indicates a change of sign in the residual and hence the existence of a near root, Test 1778 assures that the value of DTF is within ± 0.01 of zero. It should be noticed that if DIF >0.01 at TSTART + DTI, then T1A is arbitrarıly set equal to TSTART, and/or if DIF >
0.01 at TST $\varnothing \mathrm{P}, \mathrm{T} 2 \mathrm{~A}$ is arbitrarily set equal to TST $\boldsymbol{T} P$. For problems of this nature, the potential errors inherent are obvious.

The block of statements between 928 and 926 are executed twice, first with the control variable $K K K=1$, then with $K K K K=2$. For $K K K=1$, the $D \emptyset$ loop entry at 311 computes the ablation rate (WD $\varnothing \mathrm{T}(J)$) as a function of time (A32A(J)) between TIA and T2A. The test before Statement 826 determines if laminar or turbulent material properties will be used to compute $W D \varnothing T(J)$. The first row of the array $F C \phi N$ when the input TTRANS (internally TFC $\varnothing \mathrm{N}$) $15 \leq$ TTME, the second row when TTRANS $>$ TIME. The IF test before 3085 will modify the computation of WD $\varnothing \mathrm{T}(\mathrm{J})$ when the convective heating is "blocked". The $D \varnothing$ loop ending on 312 integrates $W D \varnothing T(J)$ by the trapezoidal rule to compute the total ablation rate (WA).

The statements between 313 and 6003 mitialize T_{11} and $K K K$ for the second pass through Statements 928 and 926 . This pass provides for the calculations of WDФT(J) between the times RTQMAX and T2A, which are used to compute the "adjusted" time TADJ. Again suitable properties are selected depending on whether the heating is lammar or turbulent, or the convective heating is blocked: The D \varnothing loop ending on Statement 6004 computes the cumulative sum WA7C, which is used after Statement 6005 to compute TADJ (Reference 1, p. 253, Equation (34)). For the purposes of the structural capacitance correction, TI is taken to be TADJ for ablating cases (after Statement 326, TIMIDG).

Between 6005 and 500, three integrals are computed for use in the insulation werght calculation. These are the enthalpy and convective heating integrals HGADJ and QINS between TADJ and TSTФP (loop ending on 326), and the radiation heating integral $Q R T \varnothing T 1$ between T2A and TST $\varnothing P$. The first two integrals are computed by the trapezoidal rule, and the third by a firts-order Euler method. After 326 the average enthalpy is computed and stored in HGTФT. Output is provided as HGTФT, TI, TIA, T2A, and WA before 3026. This ends the calculations made for ablation, and the $G \varnothing T \varnothing 500$ before Statement 700 transfers to the final insulation weight calculations.

The nonablation calculation is done between Statements 400 and 500 . Three entegrals are computed, the first of which, $Q C$, is simply equal to $Q T \phi T$ (see above), the integral of the convective heating from the first entry of the TIME table to TST $\varnothing \mathrm{P}$. In the $D \varnothing$ loop ending on 3325 the radiation heating integral QRT $\varnothing T 1$ between TSTART (equal to TlA for nonablating cases) and TSTゆP is computed by a first-order Euler method. The $D \varnothing$ loop ending on 404 computes the enthalpy integral HGTФT between the effective initial time TI and TST \varnothing.

After Statement 404, this enthalpy is averaged over the time range and stored in GHTФT. The nonablating calculation ends at Statement 500, where the insulation weight calculation starts for both ablating and nonablating cases.

The Statements from 500 to 132 check the validity of the average enthalpy calculation. The first restriction is that the average enthalpy times AHR \geq the enthalpy at temperature TREAR. If it is not, TST $\varnothing P$ is arbitrarily shortened by 5 seconds, $N \varnothing G \varnothing$ set $=1$, and the $G \varnothing T \varnothing$ 499 provides for reaveraging the enthalpy. More specifically, the variable $N \varnothing G \varnothing$ is 1 if $T S T \varnothing P$ is decreased, 2 if $T S T \emptyset P$ is increased, and 0 if no corrections were necessary.

If the average enthalpy is sufficiently large, then the quantity TR, the time at which the backface reaches the design limit temperatures is computed. If TST $\varnothing \mathrm{P}$ has not been adjusted to recompute the average enthalpy ($\mathrm{N} \varphi \mathrm{G} \varphi=0$), and $\mathrm{TR} \geq \mathrm{TST} \Phi \mathrm{P}-\mathrm{TI}$, then the slab has not equilibrated and the transfer to Statement 502 begins the insulation weight computation. If TR<TST $\varnothing \mathrm{P}-\mathrm{TI}, \mathrm{N} \Phi \mathrm{G} \varnothing$ is set to 1 and TST $\varnothing \mathrm{P}$ $1 s$ decreased by 5 seconds and the average enthalpy is recomputed ($G \varnothing T \emptyset 499$) and the tests start again.

If the average enthalpy is sufficiently large but TST \varnothing P has been decreased immediately before ($N \varnothing G \varnothing=1$), then $T R$ is agan compared to TST \varnothing P-TI; if <, $N \varnothing G \varnothing$ is set to 1 , TST $\varnothing P$ is decreased, and a new average enthalpy computed; if $=$, then the slab is in equilibrıum and the transfer to 501 starts the insulation weight calculation; if $>, N \varnothing G \varnothing$ is set to 2 , TST \varnothing P is increased by I second, and a new average enthalpy is computed. Resetting the counter NM assuresthat TST $\varnothing P$ cannot be thus increased more than 40 times.

If the average enthalpy 15 sufficiently large but TST $\varnothing \mathrm{P}$ has been m creased immediately before ($\mathrm{N} \varnothing \mathrm{G} \varnothing=2$), then $T R$ is compared to TST $\varnothing \mathrm{P}-\mathrm{TI}$. If the slab is in equilibrium, the transfer to 50I starts the insulation weight calculation. If $>, N \varnothing G \varnothing$ is set to 2 , TSTART is increased by 1 second and if $N M<4 Q$, a new average enthalpy is computed.

The calculation of the insulation weight is done in two ways, depending on whether the slab has equilibrated by the end of the problem. If so, then this fact is indicated and the statements from 501 to (not including) 502 compute the insulation weight (WT), corrected insulation weight (WEIGHT) and total werght (WTDTAL) from algebraic evaluations involving only mput and TR. Output 15 provided (after Statement 8015) and the next case is considered (RETURN before Statement 502).

When the slab has not equilibrated at the end of the problem, the insulation weight is computed between Statement 502 and the end of the program. There are two iterations necessary to compute the insulation weight. The outer iteration is for the werght (W9). Statements 600 to, but not including, 6605, and inner iteration is for the average surface temperature TSS from Statements 601 to, but not including 603. The statements from 502 to 600 define the first iteration coefficients for the function of TSS whose root is computed by an accelerated Newton-Raphson procedure in the temperature iteration loop. The first guess for weight is 0 , and the first guess for the temperature is a maximum value (TSR) from Reference 1, p. 245, Equation (13). The temperature iteration starts at 601 . If the temperature converges to within 1 degree R in less than 41 iterations (counted by IN \varnothing T), and is >460, subroutine CURVE is called at Statement 6606. CURVE uses the converged temperature to compute an insulation weight WW from the tables of the solution to the constant surface temperature problem, TBLI and TBL2. If this weight WW converges with a relative error less than 0.0001 to the weight computed in the previous iteration (W9), then the iteration stops. If not, then a successive approximation is done if the number of iterations (counted by III) is <20. If more than 20, the iterative procedure is terminated and the last values of TSS and W9 are used.

Statement 703 follows the iteration for msulation weight. The call C \varnothing RFIT statement provides Subroutine C \varnothing RFIT with the necessary information to compute the insulation weight (WEIGHT), corrected for structural capacitance. After the return from C $\boldsymbol{Q}_{\mathrm{RFIT}}$, the insulation weight (WEIGHT) is further corrected for the effective thermal resistance of the bond, and the total weight is computed. Before 8007 , output is provided ancluding the insulation weight (W9), the corrected insulation weight (WEIGHT, ≥ 0), and the total weight (WTФTAL). The RETURN provides for the consideration of the next case.
2. TLUQ

a. Purpose

TLUQ performs a linear interpolation on the tables in 1884 TBLl, TBL2, QTBL, HTBL, and RTBL:

b. Method

The value of the independent variable is ARG, and both dependent and independent variable tables are contained in TBL , the odd indexes referring to independent variable values and the even indexes to the corresponding values of the dependent variable. The result of the linear interpolation is placed in ANS. TLUQ is used instead of ARTLU, only because of the arrangement of the Tables TBL1, TBL2, QTBL, HTBL, and RTBL.

3. CURVE

a. Purpose

CURVE uses input data and tables plus a value of the average surface temperature to compute the insulation welght.

b. Method

Given mput constants and the tables TBLI and TBL2, CURVE first defines DTRTS, and performs a table look-up in TBL1 to obtain a value of ar/L ${ }^{2}$, which is stored in ANS. This value is then used to compute the insulation weight WW and is used as the value of the independent variable in the table look-up in TBL2 to define a value of $\Delta T_{m} / \Delta T_{S}$. This quantity is stored in ANS 2, and is used to compute the average temperature rise DTM.

4. $\mathrm{C} \varnothing \mathrm{RFIT}$

a. Purpose

For the case in which the slab has not equilibrated by the end of the problem. C \varnothing RFIT is used to compute the insulation weight corrected for structural capacitance (see Reference 1, p.p. 254, 255, and the first two lines of p. 256).
b. Method

CORFIT first defines DVT as a two-dimensional dependent variable table, the function of Reference 1, p. 255. The independent variable tables are TAUT (τ of Reference 1), and RT (1/ ϕ of References 1). By statement 30 these tables have been defined, along with the necessary input to C \varnothing RFIT for the calculation. By Statement 2, a value of ${ }^{t_{f}}$ (TLIL) is defined for computing T. TLII is first defined as the actual TST \varnothing P used by the main program minus the effective inntial time for the calculation the output TI for nonablating cases, TADJ for ablating cases). If the actual TST $\varnothing \mathrm{P}$ minus the input TSTART is greater than twice the duration of the heat pulse (see MAIN program description). TLTL is redefined (Statement l) to be twice the duration of the heat pulse minus the effective initial time.

The solution for W 1 must be an iterative procedure since τ and $\overline{1 /} \phi$ depend on W1. The procedure used here is a method of false position, with WI for the first guess corresponding to the largest value of r in the tables (10), as defıned by Statement 3. Immediately before Statement 3 , the reference temperature difference ratio $1 s$ defined as DTREF.

Having selected a Wl, τ and $1 / \phi$ are computed (TAU and R), therr values checked to see if they are inside the range of TAUT and RT, and the subroutine FINW 1 provides the temperature difference ratio (DV) corresponding to TAU and R. This value of DV is compared to DT REF (before Statement 9), and if the relative error is less than the input EPSIL, the iteration procedure is terminated. If greater than EPSIL, WI is decreased by the input quantity FCT (FACT $\varnothing \mathrm{R}$ externally) and a new DV computed by going to Statement 4 , etc. This continues until a change of sign in the residual indrcates a near root (Statement 12), at which time Wl is reset, but FCT is reduced by multiplying by 0.3 (Statement 13). This process contanues until convergence is reached, or until the number of iterations exceeds the input MIT (MXIT externally).

Errors are checked for by the program by four successive IF tests ending at Statement 7. If Wl is negative, a message 15 printed in the output and the corrected weight (WEIGFT) is not computed. If WI is too large (TAU Lower than first entry of TAUT, the upper limit for W1 is tried. If the sign of the residual has not changed, the quantity WEIGHT is not computed, and a message 15 written. If W 1 is too small (TAU larger than the last entry of TAUT), the lower bound for W1 is tried to see if the sign of the residual has changed. If there is a root, the iteration continues. If not, the corrected insulation weight is computed at Statement 14 (Reference 1, p. 257, Equation (41)). An additional error noted occurs when no convergence has occurred before MIT iterations (counted by IT), in which case this fact is noted and no WEIGHT is computed. The weight corrected for structural capacitance must be ≥ 0.

5. FINW1

a. Purpose

Given in tabular form the function of Reference 1, p. 255, FINW1 computes the temperature difference ratio (DV) given values of TAU and R as independent variables.
b. Method

FINW1 performs a two-dimensional table look-up using the independent variable table DVT whose rows correspond to the indepencent variable array TAUT and whose columns correspond to the independent variable arrat RT. Using the value of TAU, two table look-ups are done, the first for the entry in $R T \leq R$, the second for the first entry in $R T>R$.
; The results are interpolated linearly in R to compute $D V$. If $R=R T(1)$, only one table look-up is performed.

D. SIGNIFICANT EQUATIONS

1. MAIN Program
$h(T)=H W A L L F(T)=A 27 N(T+460)+.B 27 N(T+460)^{2}$

$$
\begin{aligned}
& \text { RADR }=\text { EMIS. }\left(\frac{\text { TREAR }+460}{1203.9}\right)^{4} \\
& \text { RADA }=\text { EMIS. }\left(\frac{\text { TABL }+460 .}{1203.9}\right)^{4}
\end{aligned}
$$

$K=Z K 1 / 3600$.
QR \& QC from RTBL \& QTBL
$q_{\max }=R Q C M A X=\operatorname{Max}_{\text {time }}\left(E R T \cdot Q R_{t}+Q C \cdot \in Q C M U L T\right)$ (Statement 7330)
$t_{q_{\max }}=R T Q M A X=$ time $R Q C M A X$ occurs
(Statement 7330)
$Q R T O T=\int_{\operatorname{TIME}(1)}^{\left(Q R_{t}+Q C_{t} \cdot Q C M U L T\right) d t} \begin{aligned} & , \begin{array}{l}\text { TSTOP } \\ \text { ment } 7335) \\ \text { QC from } Q T B L \text { input }\end{array}\end{aligned}$

$\mathrm{QCMAX}=\operatorname{MAX}\left(\mathrm{QC}_{\mathrm{t}} \cdot \mathrm{QCMULT}\right)$
$T Q M A X=$ time QCMAX occurs.
-59-
33 是

$$
\begin{aligned}
& Q T \phi T=\int_{\operatorname{TIME}(1)}^{T S T \phi P}\left(Q C_{t} \cdot Q C M U L T\right) d t \quad Q C \text { from } Q T B L \text { (Statemen't 207) } \\
& Q I N T=\int_{\operatorname{TIME}(1)}^{T Q M A X}(Q C \cdot Q C M U L T) d t, Q C \text { from } Q T B L \text { input (Statement 205) } \\
& t_{i}=T I=R T Q M A X-\frac{2 \cdot R Q I N T}{R Q C M A X} \\
& \text { (Statement 208) } \\
& \text { HWABL }=\text { HWALIF (TABL) - enthalpy } \\
& \text { HWABR }=\text { HWALLF (TREAR) - enthalpy } \\
& Q R=\frac{1.82\left\{\frac{\mathrm{ZK} \cdot \mathrm{RH} \emptyset \cdot \mathrm{CP}}{2(T Q M A X-T I)}\right\}^{1 / 2}(\mathrm{TABL}-\mathrm{TEMPI})+\mathrm{RADA}}{\left(\mathrm{AHR}-\frac{\mathrm{HWABL})}{\text { HGMAX }}\right.}
\end{aligned}
$$

HGMAX = enthalpy from HTBL at time TQMAX (Statement 6048)

$$
\text { TTEST } 1=\text { TEMPI }+33 \cdot \operatorname{RQCMAX}\left\{\frac{2(\mathrm{RTQMAX}-T I)}{Z K S T R \cdot \bar{R} \emptyset S T \cdot C P 2 D G}\right\}^{1 / 2}
$$

$$
T T E S T 2=T E M P I+\frac{(Q T \phi T+Q R R A)}{(W 2 D G \cdot C P 2 D G)} \quad \text { (Statement 8003) }
$$

$$
Q T R E Q T=W 2 D G \cdot C P 2 D G(T R E A R-T E M P I)
$$

If $Q R$ (above) <RQCMAX, ablation; \geqslant, nonablation Ablation equations

TIA $=$ Time before RTQMAX that
$\left.Q C M U L T \cdot Q C_{t}\left\{\begin{array}{c}\left.\text { AHR }-\frac{H W A B I}{H G_{t}}\right\}\end{array}\right\}+E R T \cdot R C_{t}-R A D A \right\rvert\, \leq 0.01 \begin{gathered}\text { (State- } \\ \text { ment } \\ 307)\end{gathered}$
where $Q C_{t}, H G_{t}, R C_{t}$ are from the tables $Q T B L$, HTBL, RTBL If such a time is not found, T1A = TSTART
$\mathrm{t}_{\mathrm{fa}}=\mathrm{T} 2 \mathrm{~A}=$ time after RTQMAX that the relation for T1A holds,
If such a time is not found, T2A = TSTOP
$\dot{\mathrm{W}}_{\mathrm{a}}=\mathrm{WD} \phi \mathrm{T}_{\mathrm{t}}=\frac{\left(\mathrm{QCMULT} \cdot \mathrm{QC}_{\mathrm{t}}\left(\mathrm{AHR}-\frac{\mathrm{HWABL}}{\mathrm{HC}}\right)+\mathrm{ERT} \cdot \mathrm{RC}_{t}-\mathrm{RADA}\right)}{\operatorname{CP}(\mathrm{TABL}-\mathrm{TEMPI})+\mathrm{FCRD}}$
when $W D D T_{t} \cdot W S A S Q C_{t} \cdot Q C M U L T\left(A H R-\frac{H W A B L}{H G_{t}}\right.$)
$\dot{W}_{a}=W D \phi T_{t}=C \frac{\left(E R T \cdot R C_{t}-R A D A\right.}{C P \cdot(T A B L-T E M P I)}+D E N D M \begin{aligned} & \text { when the above is not } \\ & \text { true. }\end{aligned}$
$Q C_{t}, H_{t}$, and RC_{t} are from tables $Q T B L$, $H T B L$, and RTBL at time t.
When TFCON $\leq T I M E, F C R D$ in above equation is
$\operatorname{TURB}(4) \cdot \operatorname{TURB}(1) \quad\left[\operatorname{TURB}(2)+T U R B(3) \cdot\left(\mathrm{HG}_{t}-H W A B L\right) \cdot 33.86\right]$ $+[1-\operatorname{TURB}(4)] \operatorname{TURB}(5)\left[\operatorname{TURB}(6)+\operatorname{TURB}(7)\left(\mathrm{HG}_{\mathrm{t}}-\mathrm{HWABL}\right) \cdot 33.86\right]$
when TFCON >TIME, FC $\varnothing \mathrm{N}$ is the same but TURB (1-7) is replaced by LAM (1-7). TURB and LAM are input tables, which are stored as the first and second rows of the matrix $F C D N(i, j)$

When TFCDN $\leq T I M E$,
$D E N \varnothing M=\operatorname{TURB}(4) \cdot \operatorname{TURB}(1) \cdot \operatorname{HV} 1 R+[1-T U R B(4)] \operatorname{TURB}(5) \cdot \operatorname{HV} 2 R$
When TFCON > TIME, TURB(i), alone are replaced by LAM(1)
When TFCON \leq TIME
$\mathrm{WSA}=\{\operatorname{TURB}(4) \cdot \operatorname{TURB}(1) \cdot \operatorname{TURB}(3)+[1-\operatorname{TURB}(4)] \cdot \operatorname{TURB}(5) \cdot \operatorname{TURB}(7)\}$
$\mathrm{x}\left(\mathrm{HG}_{\mathrm{t}}-\mathrm{HWABL}\right) \cdot 33.86$
when TFC \varnothing N $>$ TIME, TURB (i) above are replaced by LAM(i)
$W_{a}=W A=\int_{T 1 A}^{T 2 A} W D D T(t) d t$
(Statement 312)
$t_{a_{j}}=T A D J$ requires the computation of the above $W D \phi T(j)$ over the time interval from RTQMAX to T2A, D \varnothing loop ending at 6003 , Each increment to the WA integral over this time is computed (WA7), and if its squared inverse 15 individually larger than the quantity
$\mathrm{C}_{\mathrm{P}}(\mathrm{T} 2 \mathrm{~A}-\mathrm{TI}) /\left(.8 \cdot \mathrm{RH} \varnothing \cdot \mathrm{ZK} \cdot \mathrm{DT}^{2}\right)$, DT being the true time increment
the sum WA7C is incremented by the inverse of the above expression. If the integral increment's squared inverse is \leq the above expression, WA7C, is not incremented, (loop ending 6004)
$t_{a d j}=T A D J=T 2 A-\frac{0.8 \cdot Z K \cdot R H \varnothing \cdot D T^{2} \cdot W A 7 C}{C P \cdot Z N}$, where $Z N=$ the number of points (separated by DT time increments) between T2A and RTQMAX. $Q C=\int \begin{gathered}\text { TSTøP } \\ Q D I I_{t} d t\end{gathered}$
(Statement 326)
TIME (1)
where $Q D I I=Q C M U L T \cdot Q C_{t}-Q Q Q, \quad Q C_{t}$ from input table QTBI.

$$
Q Q Q=\left\{\begin{array}{l}
O, \quad t \leq T 1 A, t \leq T 2 A \\
Q C M U L T \cdot Q C_{t}\left[A H R-\frac{H W A B L}{H G}\right]-R A D A, T 1 A<t<T 2 A
\end{array}\right.
$$

HG_{t} and $Q \mathrm{C}_{\mathrm{t}}$ from input HTBL and QTBL at time t. (Statement 325)

$$
\operatorname{HGT} \phi \mathrm{T}=\frac{\int_{\mathrm{TADJ}}^{\mathrm{HSTOP}} \begin{array}{c}
\mathrm{dt} \\
(T S T D P-T A D J)
\end{array} \mathrm{HG}_{t} \text { from HTBL at time } t}{(\mathrm{TST}}
$$

$$
Q R T \phi T 1=\int_{T 2 A}^{T S T \phi P} \mathrm{RC}_{\mathrm{t}} \mathrm{dt}, \quad \mathrm{RC}_{t} \text { from input RTBL (Statement 6373) }
$$

This ends the ablation calculation. The nonablation equations are as follow:

$$
\begin{aligned}
& Q R T \emptyset T 1=\int_{\text {TSTART }}^{T S T \phi P} R C_{t} d t, \quad R C_{t} \text { from input RTBL, (Statement 3329) } \\
& Q C=Q T \phi T^{2} \text { (see above) }
\end{aligned}
$$

This ends the nonablation section. For the calculation of $T R$ between Statements 500 and 594, see main program write-up.
$t_{R}=T R=\left\{[Z K \cdot R H D \cdot C P]^{1 / 2}(T R E A R-T E M P I)-[Z k \cdot R H D \cdot C P \cdot\right.$
$(T R E A R-T E M P I)^{2}+4 . \operatorname{RADR}\left(Q C\left(A H R-\frac{H R E A R}{H G T \phi T}\right)\right.$
$\left.\cdot E R T \cdot Q R T \phi T I)]^{1 / 2}\right\} /(2 \cdot R A D R) \quad$ (Statement 599)
If the slab is equilibrated at the end of the problem,
WINS $=W T=\left[\frac{R H D \cdot Z k \cdot T R}{C P}\right] 1 / 2$
(Statement 501)
$\begin{aligned} & \text { Corrected } \\ & \text { WINS }\end{aligned}=$ WEIGHT $=$ WT. $\left\{1-\frac{\text { (W2DG. CP2DG }+ \text { WTB } \cdot C P B}{W T \cdot C P}\right\} \geq$

205
$\mathrm{WT} \Phi \mathrm{T}=\mathrm{WT} \Phi \mathrm{TAL}=\mathrm{WEIGHT}+\mathrm{WA}+\mathrm{WTB}$
If the slab is not equilibrated at the end of the problem, the weight is found as follows TSMAX = TSR , computed from an accelerated New-ton-Raphson iteration for the polynomial $f(t)=A \cdot T S R+B \cdot T S R^{2}+$ C. TSR $+D$, where the coefficients are a function of the current (iterated) insulation weight. (Statements 601 to 603)

WINS = WW -computed by subroutine CURVE based on value of TSS during current iteration for insulation werght (Statements 600 to 6604).

Corrected WINS = WEIGHT (computed from C \varnothing RFIT subroutine)WTB[$\left[\frac{\mathrm{ZK}}{\mathrm{Z}} \mathrm{K} \cdot \mathrm{RH} \cdot \mathrm{RO} / \mathrm{CP} / \mathrm{CPB}\right] 1 / 2$
$\mathrm{WT} \Phi \mathrm{T}=\mathrm{WT} \Phi \mathrm{TAL}=\mathrm{WEIGHT}+\mathrm{WA}+\mathrm{WTB}$.
2. Subroutine CURVE

$$
\frac{\Delta \mathrm{T}_{\mathrm{R}}}{\Delta \mathrm{~T}_{\mathrm{S}}}=\frac{(T R E A R-T E M P I)}{(T S S-460-T E M P I)} \text {, TSS from main program iteration }
$$

A table look up (TLUQ) produces a value of $a t / L^{2}$ from TBLI, and the weight is

$$
\begin{aligned}
& W W=\left[\frac{Z k \cdot R H \varnothing \cdot(T S T \phi P-T I)}{C p}\right] \quad,-\left(\frac{-a t}{\left.L^{2} /^{2}\right)_{T}} \quad\right. \text { from table look-up. } \\
& D T M=D T M=\left(\frac{\Delta T_{m}}{\Delta T_{S}}\right)(T S S-460-T E M P I), \\
& \left(\frac{\Delta T_{m}}{\Delta T_{S}}\right)_{a t / L^{2}} \text { from TLUQ look-up at current } a t / L^{2}
\end{aligned}
$$

3. Subroutine TLUQ -

No significant equations (linear interpolation table look-up).
4. Subroutine C \varnothing RFIT
$D T R E F=(T S R-T S I) /(T S S-T S I)$
-64-
$396<$

$$
\begin{gathered}
\text { TSR }=\text { input TREAR, TSI = input TEMPI, } \\
\text { TSS }=\text { output TSMAX } \\
\text { TIIL }=T S T D P-T I, T S T \phi P-T S T A R T \leq 2 \cdot Q T D U R \\
=2 \cdot Q T D U R-T I, T S T D P-T S T A R T>2 \cdot Q T D U R
\end{gathered}
$$

QTDUR is computed in the main program as the time after peak convective heating that $Q C_{t} \leq .01 \cdot Q C_{\text {max }}$, minus TSTART. .

CONTAU $=($ RH $\varnothing \cdot$ ZKI•TLIL $) /(C P \cdot 3600)$.
$C \not C N R=(W 2 \cdot C P 2) / C P I$
TAU $=C \emptyset N T A U /(W 1)^{2}$
$R=C \phi N R / W 1$

A method of false position is used with $W l$ changing TAU and R computed, and a table look-up done in FINW 1 to obtain a temperature difference ratio, Wl changing until this ratio is sufficiently close to DTREF. At that time the corrected insulation weight is set equal to W1.

If TAU >10. , WEIGHT is computed as
Weight $=W W\left(1-\frac{W 2 \cdot C P 2 \cdot(T S R-T S I)}{W W \cdot C P 1 \cdot D T M}\right), W 2, C P 2$ being the structure
weight and specific heat; TSR, TSI as above, DTM the average temperature rise, WW and CP1 the heat shield uncorrected weight and specific heat.
5. Subroutine FINW 1

No equations, two dimensional table look-up.

V. REFERENCES

1. RAD, Mars-Venus Capsule Parameter Study, V. I, Introduction and Analysis, JPI Contract No. 950626, Avco/RAD, TR-64-1 (1964).
2. Brown, J. E., and F.A. Shukis, An Approximate Method for Design of Thermal Protection System, Contract AF 33(616)-7483, Avco/RAD TM-62-3 (25 January 1962).
3. Carslaw, H.S., and J.S. Jaeger, Conduction of Heat In Solids, 2nd edition, p. 282, Oxford Press, London (1959).

PROGRAM 1885

PRESSURE AND HEATING DISTRIBUTIONS (1885)

CONTENTS

I. Introduction 1
A. General Description. I
B. Calculation Model. 6
C. Lumitations 23
II. Usage 24
A. 1885A Input Definitions 24
B. 1885 B Input Definitions 25
C. Input Procedures 31
D. Output Definitions 35
E. Sample Problem 38
F. Diagnostics 39
III. Computations. 74
A. Block Diagram 74
B. Symbols 74
C. Equatıons 81
IV. IBM Routines. 97
A. Program Flow 97
B. Common Storage 98
C. 1885A Subroutines 104
D. 1885B Subroutines 107
E. 1885A Main Program 122
F. 1885B Main Program 122
G. 1885A Significant Equation 124
H. 1885B Signıficant Equation 126
V. References 136

ILLUSTRATIONS

Figure 1 Functional Diagram of Program 1885 1
2 Vehicle Shape Parameters 3
3 Tension Shell and General Shape Parameters 4
4 Typical Wind Axes Locatıons for Several Angles of Attack 7
5 Translation and Rotation of Axes 8
6 Oblıque Shock Model 11
7 Pressure Distribution on a Hemisphere Cylinder 15
8 Heating Distributions on a Hemisphere Cylinder 22
9 Mass Flow Continurty Model 22
10 Mass Flow Distribution across the Shock Layer 34
11 Block Diagram for Program 1885 75
12 Program Flow 97
Table I Partial Table of Possıble Shapes 5
II Velocity Gradient Correlation 13
III Shock Parameters for Blunt Cylinder 13
IV Test Criteria for Pressure Method Selection 16
V Newtonian-Prandtl Meyer Match Points 16
VI Prandtl-Meyer-Tabular Data of $\mathrm{P} / \mathrm{P}_{\mathrm{T}}$ 17
VII Shock Stand Off Distance (Δ_{s} / y_{T}) for Convex Bodzes 17

I. INTRODUCTION

A. GENERAL DESCRIPTIOṄ

The object of this program is to compute the pressure distribution, laminar heating distribution, turbulent heating distribution, and radiative heating distribution at arbitrary angle of attack for axisymmetric bodies. The resultant distributions can be applied as multiplicative factors on the trajectory data of Program 1880, yielding the local pressure and heating histories at a point on the body. A general functional diagram of the program is given in Figure 1.

Figure 1 FUNCIIONAL DIAGRAM OF PROGRAM 1885

The general inputs include:

1. The pertinent shape parameters describing the vehncle geometry. The shape parameters are depicted in Figures 2 and 3 and a partial listing of parametric combinations is given in Table I.
2. The flight conditions, namely, the velocity, ambient temperature, density, and atmospheric composition
3. The angles of attack at which pressure and heating distributions desired
4. The option to consider the windward and leeward meridians as symmetric or two-dimensional bodies
5. A control on the boundary layer edge conditions by specifying the shock angle to which the total conditions correspond (temperature, pressure, etc.) adıabatic exponent γ_{s} is computed.
6. A control on the shock shape calculation by specifying the degree of the polynomial used to approximate the mass flow distribution across the shock layer
7. A control on the radiation heating calculation by specifying the degree of the polynomial used to approximate the radiation heating distribution across the shock layer.

The general outputs include.

1. The coordinates, surface distance, slope, and curvature of points on the windward and leeward meridians for each angle of attack (in body axes aligned with the relatuve wind vector, and having their origin at the stagnation point)
2. The location of the stagnation and sonic points
3. The pressure distribution as a fraction of the normal shock stagnation pressure
4. The stagnation point convective heating
5. The sonic point turbulent heating
6. The laminar and turbulent heating distributions
7. The local Reynolds number
-2 -

Figure 2 VEHICLE SHAPE PARAMETERS

Figure 3 TENSION SHELL AND GENERAL SHAPE PARAMETERS

PARTLAL TABLE OF POSSIBLE SHAPES

Shape	RN	THN	RSN	THIC	RC	THB	RSB	RB	THA	RA	RT	BETA	$\begin{aligned} & \text { TH2G } \\ & \text { TH3G } \end{aligned}$	R.SC	LC
1. Sphere	x	x	x		\times		x		\times	x					
2. Blunt Cones,	\times	\times		x	x		x			x				x	
a. Mod. nose	x	x	x	\times	x		x			x				x	
b. Mod, aft, body	x	\times	x	\times	\times		x		\times	x					
c. Mod. aft. body	\times	x	x	\times	x		x		x		x				
3. Cone Cyl., Flare	x	x		x	x	x	x	\times	\times	x					
a. Mod, nose	x	\times	x	x	x	\times	\times	x	${ }^{x}$	x					x
b. Mod. aft. body	x	x	x	\times	\times	x	x	x	x		x				x
c. Mod, aft, body	\times	x	\times	x	x	x	\times	\times		x					x
4. Capsule Type	x	x	x		\times		x		x	x					
a. Mod. aft. body	x	\times	\times	x	\times		x		\times		x				
b. A.dd. Cy1.	\times	x	x		x		\times		x	(x)	(x)				x
5. Tension Shell	x	x					x		x			*		x	
a. Mod. nose	\times	x	x								x	x		x	
'. General Shape	x	x									x		\mathbf{x}	*	
a. Mod. nose	x	\times	x										x		
7. Sphere, Cyl., Flare	x				\times	\times	x	\times	x	x					x
a. Mod. nose	\times	\times	x		\times	x	x	\times	\times						
b. Mod, aft, body	x				x	x	x	x	x	\times					
8. Sphere, Cone, Cone	x	x		\times	x	*	\times	x	x	x					

8. The local shock standoff distance and corresponding wave angle
9. The radiation heating distribution.

B. CALCULATION MODEL

1. Vehicle Shapes

Axisymmetric vehicle shapes are considered by prescribing a number of separate conic sections which, when mated together, form the desired shape. The sections allowed are spherical, conscal, toroidal, continuous flare(or tension shell), as shown in Figures 2 and 3 A general form for the continuous flare $1 s$ permitted as an option. A maximum of nine separate sections can be specified at one time. A minimum of two (a sphere) sections can be specified. Further discussion on the omission of various sections is given in the section on usage. Table I lists some of the shapes which can be studied.

2. Angle-of-Attack Geometry and Axes

The angle of attack is measured from the body axis of symmetry, and is the angle between this body axis and the relative wind vector. A new set of body axes are created at each angle of attack, lying along the wind vector and orthogonal to it; these axes are designated wind axes. Essentially, wind axes are utilized at all times, but only at $a=0$, 180 , does this result in an axisymmetric geometry about the relative wind vector (except for a sphere). The origin of these wind axes is taken at the stagnation point, which is assumed to be located at the most forward point on the body, measured in wind axes as shown in Figure 4. At angle of attack, therefore, there are two sets of body coordinates; one for the windward and one for the leeward meridian. The flow-field calculations are in general taken as dependent on the local body coordinates, slope, surface distance, and curvature, all measured in wind axes.

A special problem area arises when the angle of attack is such that the stagnation point occurs on a straight section (e.g. cone or cylinder), in which case the stagnation point is taken at the midpoint of the straight section. Another problem area is that of a sharp convex corner. In general, sufficient tori sections exist to preclude the occurrence of a sharp convex corner; however, when the flat base section (BASE) is specified, then a sharp convex corner can exist between the aft cone (AFTC $\varnothing N$) and the base (BASE).

The calculation model for the translation and rotation of the axes is shown in Figure 5 . The stagnation point is located by maximizing \bar{x}_{a} where

$$
\overline{\mathrm{x}}_{a}=\mathrm{y}_{\mathrm{os}} \sin \alpha-\mathrm{x}_{\mathrm{os}} \cos \alpha
$$

Figure 4 TYPICAL WIND AXES LOCATIONS FOR SEVERAL ANGLES OF ATTACK

530
-7-

COORDINATE TRANSFORMATION EQUATIONS:
$Y_{b}(a)=\left(Y_{0}-Y_{o s}\right) \cos a+\left(X_{0}-X_{o s}\right) \operatorname{SiNa}$
$X_{b}(a)=\left(X_{0}-X_{o s}\right) \cos a-\left(Y_{0}-Y_{0 s}\right) \sin a$

85-0256

Figure 5 TRANSLATION AND ROTATION OF AXES

Interpolation formulas are provided for each section to determine the location of the stagnation point precisely. Each section is uniformly divided mto a number of N divisions of surface distance, where N is an input number for each section. The coordinates of the N divisions are transformed for each angle of attack as shown in Figure 5. In addition, the local slope is transformed to be the slope with respect to the wind axis and the surface distance of each point is adjusted for the newly found stagnation point.

3. Sonic Point Location

The sonic point location is necessary to aid in determining the pressure distribution in the subsonic region and the stagnation point velocity gradient and shock standoff distance. The calculation model assumes that the sonic point location occurs at the smallest value of (x_{b}) where

$$
\sin ^{2} \theta_{\mathrm{b}}=\left(\frac{2}{\gamma_{\mathrm{s}}+1}\right)^{\frac{\gamma_{\mathrm{s}}}{\left(\gamma_{\mathrm{s}}-1\right)}}
$$

The sonic-point relationship given above assumes that the local slope where the flow first becomes sonic is given by Newtonian theory. The adiabatic exponent $\left(\gamma_{s}\right)$ may either be an input value or is calculated within the program, as discussed in the following section. The precise (x_{b}, y_{b}) coordinates corresponding to the sonic point angle are interpolated.

4. Adiabatic Exponent $\left(\gamma_{s}\right)$

An adiabatic exponent (γ_{s}) is utilized based on the density ratio across a normal shock at the specified flight conditions using the strong shock approximation:

$$
\gamma_{\mathrm{s}}=\frac{\rho_{\mathrm{w}} / \rho_{\mathrm{a}}+1}{\rho_{\mathrm{w}} / \rho_{\mathrm{a}}-1}
$$

The derivation of the above result from the normal shock equations is pre: mised on the thermodynamic relationship that

$$
h=\frac{\gamma_{s}}{\left(\gamma_{s}-1\right)} \frac{\mathrm{P}}{\rho}
$$

Since for isentropic flow,

$$
\mathrm{dh}=-\frac{1}{\rho} \mathrm{~d}_{\mathrm{p}}
$$

$$
.428<
$$

it can be seen that if $\left(\gamma_{s}\right)$ is assumed constant along a streamline, then

$$
\frac{h}{H}=\left(\frac{P}{P_{s}}\right)^{\frac{\gamma_{s}-1}{\gamma_{s}}} .
$$

The adiabatic exponent noted above is only an approximation for determining the speed of sound, and hence the Mach number as,

$$
\mathbf{a}^{2}=\left(\frac{\partial \mathrm{P}}{\partial \rho}\right)_{\mathrm{S} / \mathrm{R}} \cong \frac{\gamma_{\mathrm{s}} \mathrm{P}}{\rho}
$$

and further

$$
\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{s}}}=\left(\frac{\rho}{\rho_{\mathrm{s}}}\right)^{\gamma_{\mathrm{s}}}
$$

Comparisons of the adiabatic exponents for the enthalpy-pressure and for density-pressure are given in Reference 1. A single adiabatic exponent is used freely to compute all conditions along a streamline, including the Prandtl-Meyer variable in supersonic flow.

5. Oblique Shock Calculations

The oblique shock calculation employs Program 1883 as a subroutine. The conditions behind an oblique shock are needed to perform the shock shape and radiative heating calculations. An iteration is performed using the enthalpy and pressure equation, where

$$
\begin{aligned}
& \frac{\mathrm{h}_{\mathrm{w}} \mathrm{M}}{\mathrm{R} \mathrm{I}_{\mathrm{o}}}=\frac{\mathrm{HM}}{\mathrm{RT} T_{\mathrm{o}}}\left\{1-\frac{\mathrm{v}^{2}}{2 \mathrm{H}}\left[\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{w}}}\right)^{2} \sin ^{2} \theta_{\mathrm{w}}+\cos ^{2} \theta_{\mathrm{w}}\right]\right\} \\
& \frac{\mathrm{P}_{\mathrm{w}}}{\mathrm{P}_{\mathrm{o}}}=\frac{\rho_{\mathrm{a}} \mathrm{v}^{2}}{\mathrm{P}_{\mathrm{o}}} \sin ^{2} \theta_{\mathrm{w}} \quad\left(1-\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{w}}}\right)+\frac{\mathrm{P}_{\mathrm{a}}}{\mathrm{P}_{\mathrm{o}}} .
\end{aligned}
$$

The calculation model is depicted in Figure 6. The flight conditions are specified; hence the molecular weight of the atmosphere (M) and the velocaty (V), the ambient pressure (P_{a}) and density (ρ_{a}), and the total enthalpy (H) are all known. An initial estimate on ($\left.\rho_{\mathrm{a}} / \rho_{\mathrm{w}}\right)^{\mathrm{a}}$ is made and the enthalpy and pressure computed by the equations, Program 1883 computes the density ratio ($\rho_{\mathrm{a}} / \rho_{\mathrm{w}}$) for these conditions and the enthalpy and pressure are recomputed, tested for accuracy, and further iterated if necessary.

'85-0257
Figure 6 OBLIQUE SHOCK MODEL

6. Stagnation Point Velocity Gradient

The calculation of the velocity gradient on the windward and leeward meridians is performed as follows:
a. If no straight section $\left(\frac{d \theta}{d S}<0\right)$ exists between $0 \leq S_{b}<S_{b}^{*}$, evaluate , (du/ds)via Table II (from Reference 2), letting x_{T}, y_{T} correspond to the sonic point values.
b. If a straight section occurs between $0<\mathrm{S}_{\mathrm{b}}<\mathrm{S}_{\mathrm{b}}{ }^{*}$, and of

$$
\begin{aligned}
& \frac{\mathrm{d} \theta}{\mathrm{dS}}=0, \text { at } \mathrm{S}_{\mathrm{b}}=0 \\
& \mathrm{x}_{\mathrm{b}}^{*} \leq \Delta_{\mathrm{so}}
\end{aligned}
$$

then,

$$
\frac{\mathrm{dU}}{\mathrm{dS}}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{wo}}} \quad \sqrt{\frac{8}{3} \frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}}
$$

(Reference 4, Page 161)

Otherwise (dU/dS) is evaluated from Table II with x_{T}, y_{T} corresponding to the coordinates of meridian at the start of the straight section.
7. Subsonic Pressure Distribution $\left(S \leq s_{b}^{*}\right)$

Two pressure calculation methods are possible within the program, Newtonian or a polynomial distribution. The choice of either depends on the following tests:
a. $\left\{\begin{array}{l}\frac{d \theta}{d S}<0 \text { at all points } 0 \leq S_{b}<s_{b}^{*} \\ \text { and, } \\ x_{b}^{*} / y_{b}^{*} \geq \frac{1-\sin \theta_{b}^{*}}{\cos \theta_{b}^{*}}\end{array}\right.$
b. $\frac{d \theta}{d S}=0$ at one point or more $0<S_{b}<S_{b}^{*}$, and

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} S_{b}}<0 \text { at } S_{b}=0
$$

If either of the tests is satisfied, the Newtonian method is used; if not, the polynomial distribution is used. The polynomial distribution is of the form:

$$
\frac{P_{e}}{P_{s}}=1+c_{1} s_{b}^{2}+c_{2} s_{b}^{4}
$$

TABLE II:
VELOCITY GRADIENT CORRELATION

$$
\frac{y_{\mathrm{T}}}{\mathrm{~V}} \frac{\mathrm{du}}{\mathrm{dS}}\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}, \frac{x^{*}}{y^{*}}\right)
$$

ρ_{a}	$\mathrm{x}_{\mathrm{T}} \mathrm{y}_{\mathrm{I}}$					
	0	0.10	0.20	0.30	0.35	.40
0	0	0	0	0	0	0
0.005	0.004	0.007	0014	0035	0.050	0.110
0.01	0.008	0.015	0.025	0.060	0.090	0.150
0.02	0.016	0.022	0.050	0.100	0.140	0.195
0.04	0.032	0.052	0.087	0.150	0.195	0.255
0.08	0.070	0.098	0.145	0.225	0.278	0.324
0.16	0.143	0.183	0.238	0.325	0.380	0.455

\%Obtamed using the method of Reference 2
at some point where $\theta_{\mathrm{b}}^{*}=\sin ^{-1}\left(\frac{2}{\gamma_{\mathrm{s}}+1}\right)^{\frac{\gamma_{\mathrm{s}}}{2\left(\gamma_{\mathrm{s}}-1\right)}}$.

TABLE III
SHOGK PARAMETERS FOR BLUNT CYLINDER

$\Delta_{\text {so }} / y_{b}{ }^{*}$	$\mathrm{R}_{\mathrm{wo}} / \mathrm{y}_{\mathrm{b}}^{*}$	$p_{s}^{\prime} \rho_{\text {a }}$
1.20	2.40	1
0.72	3.40	3
0. 60	3.75	4
0. 53	4.05	5
0.47	430	6
0.40	4.90	8
0. 36	5.25	10
0.33	5. 55	12
028	620	16
0.13	930	50
-13-		
$4 \frac{2}{2} 5<$		

where the coefficients C_{1} and C_{2} are found by the conditions

$$
\begin{aligned}
& \text { a. } S_{b}=S_{b}^{*}, \quad \frac{P_{e}}{P_{s}}=\frac{P_{e}^{*}}{P_{s}} \\
& \text { b. } S_{b}=0, \quad \frac{d^{2} P_{e}}{d s^{2}}=-\rho_{s}\left(\frac{d U}{d S}\right)^{2}
\end{aligned}
$$

8. Pressure Distributions for $s_{b}>s_{b}^{*}$

The pressure distribution downstream of the sonic point ($s_{b}>s_{b}^{*}$) is found by selecting one of several possible methods. The possible methods included in the program are:
a. Newtonian theory
b. Constant pressure
c. Entropy Layer Theory
d. Prandtl-Meyer

The choice of the method to be used at each succeeding division (or section), along the meridian is dependent on tests of curvature, slope, and pressure at the last point calculated. The test criteria are summarized in Table IV. The MP data are given in Table V.

The entropy layer theory is described in References 5 and 6 and provision is included for considering the meridian as that of an axisymmetric or twodimensional body by input of the sentinel $\mathrm{XJ}=1$. or $\mathrm{XJ}=0$., respectively.

A limit is placed on the pressure distribution computation in that when the pressure first reaches the ambient value, then the pressure is kept constant at this value over the remaincer of the body.
The Prandtl-Meyer calculation $1 s$ performed via table lookup using the data in Table VI, obtained from Reference 7.

A comparison of the pressure distributions obtamed via Program 1885 with experimental data for a hemisphere cylinder is shown in Figure 7.

9. Total Pressure Option

For bodies of small bluntness, an option 1 s provided to compute the boundary layer edge conditions corresponding to flow through a specified oblique shock as discussed in Reference 9. The static pressure distribution is assumed to be unchanged. A shock wave angle other than 90 degrees is specified as mput, for which the new total conditions are computed

TABLE IV
TEST CRITERIA FOR PRESSURE METHOD SELECTION

$\begin{aligned} & \left(\frac{d \theta}{d S}\right)_{1,} x_{01} \leq x_{01}^{-} \\ & \left(\frac{d \theta}{d S}\right)_{1,} x_{0,}>x_{01} \end{aligned}$	$\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{s}}}$	θ_{b}	Method
+	$\leq \mathrm{MP}$	All	NEWT
+	$>\mathrm{MP}$	All	NEWT
0	$\rightarrow \mathrm{MP}$	≥ 0	PC
0	$\leq \mathrm{MP}$	≥ 0	EL
0	ALL	≤ 0	PC
-	$>\mathrm{MP}$	All	NEWT
-	$\leq \mathrm{MP}$	All	PM

TABLE V
NEWTONIAN-PRANDTL MEYER MATCH POINTS

γ_{s}	MP
1.15	0.4086
1.18	0.3985
1.20	0.3918
1.22	0.3854
1.24	0.3790
1.26	0.3728
1.28	0.3667
1.30	0.3607
1.40	0.3318
1.67	0.2678

TABLE VI
PRANDTL - MEYER - TABULAR DATA FOR P/PT

ν	$\gamma=1.15$	1.2	1.3	1.4
0	0.5744	0.5645	0. 5457	0. 5283
4	0.4567	0.4451	0. 4230	04029
8	0. 3867	0.3743	0. 3511	0.3298
12	0.3292	03165	0. 2927	0. 2712
16	0,2801	0.2673	0. 2436	0 2222
20	0. 2375	0.2249	0. 2016	01808
24	0. 2006	01882	0 1656	01459
28	0.1685	01564	01352	0.1165 -
32	0.1406	0.1294	0 1093	0.09202
36	0. 1174	0.1061	0.08747	0.07176
40	0. 09606	0.08635	0.06934	0.05519
44	0. 07860	007069	0.05433	0.04181
48	0.06381	0.05577	0.04206	0.03116
52	0. 05144	0.04421	0.03214	0.02280
56	0.04114	0.03471	0.02424	0.01635°
60	0 03296	0.02698	0.01800	0.01148
64	0.02565	0.02078	001317	0.00786
68	0.01998	0, 01580	0.00946	0.00524
72	0.01543	0.01189	0.00668	0.00339
76	0.01181	0.00883	0.00462	0.00212
80	0.00894	0.00649	0.00313	0.00127
84	0. 00670	0.00470	0.00207	0.00073
88	O 00497	0.00335	0.00133	0.00040
92	0. 00364	000237	- 00083	0.00020
96	O 00264	000163	- 00050	0.00010
100	0. 00189	0.00111	0 00029	000004
104	000134	0.00074	0.00016	0.00002
108	0. 00093	0. 00049	0. 00009	0.0
112	0. 00064	0.00031	- 00004	00
116	0.00044	0.00020	0.00002	0.0
120	0.00029	0.00012	0.00001	0.0

TABLE VII
SHOCK STAND OFF DISTANCE (Δ_{s} / y_{T}) FOR CONVEX BODIES

-17-
4192
($\mathrm{P}_{\mathrm{T}}, \rho_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$) and for which a new adiabatic exponent $(y) 15$ found, these quantities are then used to calculate the necessary flow variables needed to compute the convective heating.

10. Stagnation Point Convective Heating

The stagnation point heating 15 computed using the correlations of Reference 10 for air The stagnation point velocicy gradient on which the heating is based depends on what section of the body the stagnation point occurs If the stagnation point occurs on a spherical cap, then the velocity gradient, for the purposes of computing heat transfer, is taken as the average of the windward and leeward value. If the stagnation point occurs on a torus, cone, or cylinder, the velocity gradient, for the purposes of computing the heating, is taken as the average of the value found above and the value corresponding to a cylinder of radius $y_{o s} / \sin a$.

The stagnation point heating expression from Reference 10 1s:

$$
\mathrm{q}_{\mathrm{LS}}=\frac{0.76}{o^{0.6}}\left(\frac{\rho_{\mathrm{b}} \mu_{\mathrm{b}}}{\rho_{\mathrm{S}} \mu_{\mathrm{s}}}\right)^{0.1} \sqrt{\rho_{\mathrm{s}} \mu_{\mathrm{s}}} \frac{\mathrm{H}}{778} \sqrt{\left(\frac{\mathrm{dU}}{\mathrm{dS}}\right)}\left[1+\left(\mathrm{L}^{\mathrm{a}}-1\right) \frac{\mathrm{h}_{\mathrm{D}}}{\mathrm{H}}\right]
$$

The Lewis and Prandtl numbers are input as well as the exponent (a). The dissociation enthalpy (h_{D}) is computed in the oblique shock subroutine.

The stagnation point heating to a three dimensional stagnation point has been derived by Reshotko ${ }^{11}$. The result indicates that the heating can be found in a similar way as in the case of the axisymmetric stagnation point, except that the velocity gradient is given by

$$
\frac{d U}{d S}=\left(\frac{d V}{d y}+\frac{d W}{d z}\right) \frac{1}{2}
$$

where ($\mathrm{dV} / \mathrm{dy}$) and ($\mathrm{d} w / \mathrm{dz}$) are the gradients along the two principal radil of curvature. In axisymmetric flow the two velocity gradients are equal, whereas, in two dimensional flow, one is zero, hence, the heating to a cylinder is $\sqrt{1 / 2}$ of that to a sphere of the same radius.

The velocity gradient du/ds must be singly valued for both the leeward and windward mexidian When the stagnation point is on a spherical cap, the velocity gradient is approximated as.

$$
\frac{\mathrm{dU}}{\mathrm{dS}}=\frac{1}{2}\left(\frac{\mathrm{dU}}{\mathrm{dS}}\right)_{\text {leeward }}+\frac{1}{2}\left(\frac{\mathrm{dU}}{\mathrm{dS}}\right)_{\text {windward }}
$$

When the stagnation point is on a torus or straight section, the velocity gradient is approximated as

$$
\frac{\mathrm{dU}}{\mathrm{dS}}=\frac{1}{2}\left[\frac{1}{2}\left(\frac{\mathrm{dU}}{\mathrm{dS}}\right)_{\text {leeward }}+\frac{1}{2}\left(\frac{\mathrm{dU}}{\mathrm{dS}}\right)_{\text {windward }}\right]+\frac{\mathrm{V}}{2} \frac{\sin a}{\mathrm{Y}_{\mathrm{oS}}} \sqrt{\frac{3 \rho_{\mathrm{a}}}{\rho_{\mathrm{S}}}}
$$

where the last term on the right is the velocity gradient for a cylinder (Reference 4) of radius ($\left.y_{o s} / \sin \alpha\right)$.
-
11. Laminar Heating Distribution

The laminar heating equations are based on Reference 9 for air The distribution is obtaned by normalizing the results with the zero angle of attack stagnation point value. An option is provided to calculate the heating along the windward and leeward meridians assuming either a two-dimensional or axisymmetric body. The calculation includes the affect of local pressure gradient using the approach of local similarıty, however, unfavorable pressure gradients (e g., along a tension shell) are not accounted for, in which case the pressure gradient term is placed equal to zero.

The laminax distribution, generalized for either two-dimensional or axial symmetric flows, is given by

$$
\frac{q_{L}}{q_{L S}}=\frac{y_{b}^{j} \rho_{b} \mu_{b} U_{e}(1+0.096 \sqrt{\beta)}}{(1.068) \sqrt{2 \xi} \sqrt{2 \rho_{\mathrm{bs}} \mu_{b}\left(\frac{d U}{d S}\right)_{W, L}}} \sqrt{\frac{2}{1+1}}
$$

where,

$$
\begin{aligned}
& \xi=\int_{0}^{S} \rho_{\mathrm{b}} \mu_{\mathrm{b}} \mathrm{U}_{\mathrm{e}} \mathrm{y}_{\mathrm{b}}^{2 \mathrm{j}} \mathrm{dS}, \beta=2 \frac{\mathrm{~d} \ln \mathrm{U}_{\mathrm{e}}}{\mathrm{~d} \ln \xi} \\
& \left(\frac{\mathrm{du}}{\mathrm{dS}}\right)_{\mathrm{W}, \mathrm{~L}} \quad \begin{array}{l}
\text { is velocity gradient for either windward or leeward } \\
\text { meridian. }
\end{array}
\end{aligned}
$$

The tabulated output references the heating to the zero angle-of-attack stagnation point values and so,
12. Turbulent Heating

The turbulent heating calculation utilizes the flat plate reference enthalpy method of Reference 12. The inputs include the Prandti number and a correction term for axial symmetry if $\mathrm{J}=1 .(\mathrm{XJ}=1$.$) . The output is normalized with$ respect to the zero angle-of-attack sonic point value.

13 Radiation Heating

The radiation heating model is based on the following equation:

$$
q_{R}=\frac{\xi_{w}}{2}\left[\frac{m}{m+1} I_{b}+\frac{1}{m+1} I_{w}\right]
$$

where (m) defines the radiation profile across the shock layer as

$$
I=I_{b}+\left(I_{w}-I_{b}\right)\left(\frac{\xi}{\xi_{w}}\right)^{m}
$$

and where I_{b} and I_{w} are the radiation intensities at the body and at the shock along a line normal to the body at the coordinates x_{b}, y_{b}. The exponent (m) is an input quantity The intensities are computed by the subroutine contaming Program 1883. The quantities ($\xi_{\mathrm{w}}, \theta_{\mathrm{w}}$) are computed from the shock shape as described in the following section. The laminar, turbulent and radiative heating distributions on a hemisphere cylinder are shown in Figure 8, as computed by Program 1885.

14. Shock Standoff Distance

The shock shape calculation uses the approach of Reference 3 to compute the shock standoff distance and the shock curvature at the stagnation point. The value of the shock standoff distance at the stagnation point depends on whether,
a. $\quad 1=0,1$
b. $\quad \frac{d \theta}{d s}<0,0 \leq S_{b}<\mathrm{s}_{\mathrm{b}}^{*}$

$$
\text { c. } \quad \mathrm{x}_{\mathrm{b}}^{*}>\Delta_{\text {so }} .
$$

For $1=1$, and $1 \mathrm{f} \frac{\mathrm{d} \theta}{\mathrm{dS}}<0$ for $0 \leq \mathrm{S}_{\mathrm{b}}<\mathrm{S}_{\mathrm{b}}^{*}$, then Table VIl is utilized with $\mathrm{x}_{\mathrm{T}}=$ $x_{b}^{*}, y_{T}=y_{b}^{*} \quad$ If a stralght $\operatorname{section}\left(\frac{d \theta}{d S}=0\right)$ occurs at any point, $0 \leq S_{b}<S_{b}^{*}$, and $\mathrm{If} \mathrm{x}_{\mathrm{b}}^{*} \geq \Delta_{\text {so }}$, then utilize Table VII, and $\mathrm{x}_{\mathrm{T}}=\mathrm{x}_{\mathrm{bb}}, y_{T}=y_{b b}$ where $x_{b b}$ and $y_{b b}$ are the coordinates at the start of the straight section However, if $x_{b}^{*}<\Delta_{\text {so }}$, then utilize Table VII with $x_{T}=x_{b}^{*}, y_{T}=y_{b}^{*}$ and $\Delta_{s}=\Delta_{\text {so }}-x_{b}^{*}$. For $\mathrm{j}=0$, and if $\mathrm{d} \theta<0$ between $0 \leq \mathrm{s}_{\mathrm{b}}<\mathrm{s}_{\mathrm{b}}^{*}$ then,
ds

$$
\Delta_{s}=\rho_{\mathrm{a}} / \rho_{\mathrm{s}} \mathrm{~F}
$$

(Reference 4)
where,

$$
F=\frac{1}{\sqrt{1-3-\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}}}\left[\cosh ^{-1} \frac{1}{\sqrt{\frac{3 \rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}}}\right]\left(-\frac{\mathrm{dS}}{\mathrm{~d} \theta}\right)_{\mathrm{S}_{\mathrm{b}}=0}
$$

If $\frac{d \theta}{d S}=0$ at any point $0 \leq s_{b}<s_{b}^{*}$, and if $\mathrm{x}_{\mathrm{b}}^{*} \geqslant \Delta_{\text {so }}$ where,

$$
\Delta_{\mathrm{so}}=\frac{3}{2} \mathrm{y}_{\mathrm{b}}^{*}\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}\right)^{0.25}
$$

(Reference 4)
evaluate Δ_{s} as noted above. However, if $x_{b}^{*}<\Delta_{\text {so }}$, evaluate Δ_{s} as noted, above but with

$$
\left(-\frac{\mathrm{dS}}{\mathrm{~d} \theta}\right)_{S_{b}=0}=\frac{y_{o s}}{\sin a}
$$

15 Shock Curvature at Stagnation Point

Following an approach simılar to that of Reference 3, the shock is assumed to be of constant curvature between the stagnation and sonic points. By geometry the radius of curvature is a function of the shock standoff distance at the stagnation and at the sonic points By continulty of mass flow, the standoff distance is further related to the radius of curvature and hence the shock wave is determined. The continusty is invoked by estimating the unit mass flow distribution along a normal (S) to the body as

$$
\rho \mathrm{U} \cos \left(\theta_{\mathrm{WL}}-\theta_{\mathrm{b}}\right)=(\rho \mathrm{U})_{e}+\left[\rho \mathrm{U}_{\mathrm{W}} \cos \left(\theta_{\mathrm{WL}}-\theta_{\mathrm{b}}\right)-(\rho \mathrm{U})_{\mathrm{e}}\right]\left(\frac{\xi}{\xi_{\mathrm{W}}}\right)^{n}
$$

as depicted in Figure 9.
The exponent n is an input quantity. The conditions at the shock wave (sub w) are found via the oblique shock computations.
16. Shock Shape

The shock shape is assumed to have the form

$$
Y_{w}^{2}=2 R_{w}\left(X_{w}+\Delta s\right)+B\left(X_{w}+\Delta s\right)^{2}
$$

The value of R_{w} (the shock wave curvative at the stagnation point) is found as described in Section 15. above. The coefficient (B) 15 found by satisfying continuity at the first point where $\theta_{b} \leq 0$. The continuity check involves the input of the exponent (n) described above and the choice of the flow index $j=0,1$

$$
-21-
$$

Figure 8 heating distributions on a hemisphere cylinder

As options, the quantities Δ_{S}, R_{w}, B can be input for the windward and leeward meridians and varied for each angle of attack

C. LIMITATIONS

Program 1885 was developed primarily for determining the pressure and heating distribution for preliminary design purposes To handle the wide range of configurations and the whole range of angle of attack, within a reasonably sized and quick program, the approach selected was to utilıze simple but powerful analytical techniques. The techniques in general are based on the nature of the physics of the problem and should, in general, yzeld useful initial predictions The limitations which can be clearly identified include:

1. Separated flow effects are not considered

Experimental results of Larson ${ }^{13}$ for laminar and turbulent flows have shown that the average heat transfer for the separated lammar boundary layer was found to be 56 percent of that for the equivalent attached laminar boundary layer, independent of Mach number and Reynolds number in agreement with Chapman's ${ }^{14}$ theoretical results. Average turbulent heating for the separated case was found to be about 60 percent of that for the equavalent attached boundary layer, but a trend was observed where the reduction in heat transfer increases with increasing Reynolds number.

2 Three-dimensional flow effects are not considered, except in a minor way for the stagnation point heating as the calculation models presume, in general, that the flow field is either axisymmetric or two-dimensional.

3 The convective heating distributions are based on relationships developed for air
4. The viscosity table $1 s$ for nitrogen.
5. The shock shape and radiation predictions depend on a priori knowledge of (m) and (n) which are important in determining the distributions of mass flow and radiation intensity across the shock layer. These inputs can be adjusted so as to calibrate the program with more detanled numerical calculations or wath experiment.
6. The effects of shock interactions on the tension, general, and flareshaped bodies are not consıdered
7. Perfectly sharp nosed shapes cannot be considered.
8. Angle-of-attack conditions leading to attached shocks cannot be considered.
II. USAGE
A. 1885A INPUT DEFINITIONS

Due to the size of the program, it was necessary to divide the program into two parts, 1885A and 1885B. Program 1885A computes all the oblıquie shock data necessary for the heating and pressure distribution calculation. Program 1885B may be run separately provided tabular oblique shock data is input, to replace what would otherwise be computed by the 1885A Program.

The inputs for the 1885A Program are given initially.

Name	Preset Values	Symbol	Parameter	Units
CASE	0.		Identification number of the form XX. XX.	--
DATE	4.01		Identification number of the form XX. XX.	--
DELAL	2.		Calculation interval of oblıque shock data.	degrees
MEM \varnothing	0.		Identification number of the form XX. XX.	
RH ¢A $^{\text {a }}$	0.	ρ_{a}	Atmospherıc density.	slugs/ft ${ }^{3}$
TA	0.		Atmospheric temperature.	Kelvin
V	0.	V	Flight velocity.	$\mathrm{ft} / \mathrm{sec}$
XA	0.	$\mathrm{X}_{\text {A }}$	Mole fraction argon.	--
XC	0.	X_{C}	Mole fraction carbon dioxide.	--
XN	0.	X_{N}	Mole fraction nitrogen.	--
$X \varnothing$	0.	X_{0}	Mole fraction oxygen.	--
XPLAST	0.		Print out sentinel for all thermochemical data at each shock angle.	--

Name	Preset Values	Symbol	Parameter	Units
ILAST	0.		If >0., tape 8 is rewound at the end of the case. ILAST should normally be set >0 only for the last case of a run.	--
INSTめP	1.		Radiation intensity below which the equilibrium problem is not solved.	Btu/ft ${ }^{3}$
PRTAB	1.		If >0., will print tables of shock data.	--
PRTAPE	1.		If >0., the array TABLE and selected 1885A input are written on Tape 8 for linkage with an 1885B run.	--
XPEVER	0.		If >0., will print all thermochemical data for every ateration for each shock angle.	--

B. 1885B INPUT DEEINITIONS

Name	Preset Values	Symbol	Parameter	Units
ALPHA	0.	a	Array of angles of attack. Max number is 10 , of which the first must be 0 .	degrees
BETA	0.	β	Tension shell angle.	degrees
BSTH \varnothing CT		${ }^{\text {B }}$ S	10 by 2 matrix of values of the shock parameter β if the shock shape 1 s mput. The first column ($1-10$) corresponds to each α on the windward side, the second column (1I-20) to each a on the leeward side. See DELS and RW.	--
CASE	0.		CASE number for identification, of form XXXX. 0 .	--

Name	Preset Values	Symbol	Parameter	Units
$\mathrm{C} \emptyset \mathrm{MQRD}$	0.		Shock shape sentinel; if $0 .$, no shock shape and radiation is to be computed, >0 otherwise.	--
DATE	4.01		DATE number for identification of form X. XX	--
DELT		A.s	An array of at most 10 values of the shock detachment distance Δs, one for each α. It is to be specified if the shock shape is input. See BSH $\varnothing C T$ and RW.	feet
DN2	0.0001		Lower limit for accuracy in integrating $\mathrm{d}(\mathrm{Pe} / \mathrm{Ps}) / \mathrm{dx}$ by the entropy-layer formulation.	--
DTDSTB		$(\mathrm{d} \theta / \mathrm{dS})_{\mathrm{b}}$	Array of at most 25 values of $(\mathrm{d} \theta / \mathrm{dS})_{\mathrm{b}}$ for the general shape option.	$\mathrm{rad} / \mathrm{ft}$
ENTH	0.	${ }^{\text {h }}$ A	Ambient enthalpy when shock gas dynamics data are input, rather than from 1885A. See TABLE, RH $\varnothing \mathrm{A}, \mathrm{XA}, \mathrm{XC}, \mathrm{XN}$, $\mathrm{X} \phi$, TA, V, PRES, XM, MACH, HDHS90, and TAPE.	$\mathrm{ft}^{2} / \mathrm{sec}^{2}$
GAMS \varnothing	0.	γ_{s}	Value of adiabatic exponent at the stagnation point if it is different from the 1885A data, or if 1885A is not used. If $=$ 0 , 1885A or TABLE $(1,5)$ value is used.	--
HDHS90	0.	HD/HS	Ratio of dissociation enthalpy to stagnation enthalpy, specify when 1885A is not used.	--

Name	Preset Values	Symbol	Parameter	Units
ILAST	0.		If >0., the tape prepared by 1885A will be rewound. It must be >0 for the last case if 1885A data are used, and if >0 for an intermediate 1885 B case the gas dynamics data of the first 1885A case will be used, and the sequence of 1885A-1885B cases regenerated.	--
$\mathrm{X} \varnothing \mathrm{TBL}$	0.		If $\neq 1$., the $a=0$ body geometry data will be printed in the output.	--
LC	0.	${ }^{L_{C}}$	Cylinder length.	feet
LE	0.	L	Lewis number.	--
LX	0.		Lewls number exponent.	--
MACH	0.	M	Mach number, specify if 1885A is not used.	--
MEM \varnothing	0.		MEM \varnothing number for identification of form X. X.	--
MM	0.	m	A 10 by 2 matrix of exponents on the radıation polynomal, specified lıke BSH \varnothing CT above.	--
N	0.		An array of at most 10 numbers, each of which is the number of increments to be used on the $i^{\text {th }}$ body section. For Section 3, i.e. $\mathrm{N}(3), \mathrm{XX} .1, \mathrm{XX} .2$ and XX. 3 are the number of increments for cone, tension shell, or general shape, respectively. For Section 10, 1. e. N(10), XX, I, and XX. 2 are the number of increments for spherical cap or flat base, respectively.	--

Name	Preset Values	Symbol	Parameter	Units
NALPHA	0.		Number of a 's in the ALPHA array.	--
NN	0.	n	A 10 by 2 matrix of exponents on the mass flow polynomial. Specrfied like BSH $\varnothing \mathrm{CT}$ above.	--
PN	0.	σ	Prandtl number.	--
PRES	0.	PA	Ambient pressure, specrfied when 1885A 15 not used.	$1 \mathrm{~b} / \mathrm{ft}^{2}$
RA	0.	$\mathrm{R}_{\text {A }}$	Aft cap radius.	feet
RB	0.	R_{B}	Flare and aft cone base radius.	feet
R.C	0.	${ }^{\mathrm{R}} \mathrm{C}$	Cylinder and cone base radrus.	feet
RH \varnothing A	0.	ρ_{a}	Atmospheric density. Specify when 1885A is not used.	slugs/ft ${ }^{3}$
RN	0.	R_{N}	Nose radus.	feet
RSB	0.	$\mathrm{R}_{\text {SB }}$	Torondal radius at aft cone.	feet
RSC	0.	$\mathrm{R}_{\text {SC }}$	Toroidal radius at base of cone.	feet
RSN	0.	$\mathrm{R}_{\text {SN }}$	Toroidal radius aft of nose.	feet
$R T$	0.	R_{T}	Base truncation radius.	feet
RTBL	0.	Y_{i}	Array of ordinates for general shapes, maximum 25 points.	feet
RW \varnothing		$\mathrm{R}_{\text {WW }}$	A matrix of at most 10 by 2 numbers which are bow wave radı1, specifıed lıke BSH $\varnothing C T$ above. If any $R W(i, j)$ for an a and windward or leeward meridian is specified ≤ 0, it is assumed that DELT, BSH $\varnothing \mathrm{CT}$, and RW are to be computed by the program for use on the shock shape and radiation computations.	feet

Name	Preset Values	Symbol	Parameter	Units
TA	0.	T_{a}	Ambient temperature, specify if 1885A is not used.	Kelvin
TABIE			A matrix of at most 46 by 13 numbers, each of whose columns is a corresponding column from 1885A. For example, TABLE $(1-46)=$ THW ${ }_{i}$, TABLE (47-92) $=$ RW/RA ${ }_{1}$, TABLE (553-598) $=$ IB $_{1}$. See 1885A output. Specify in the same order as 1885A, and only when 1885A is not used.	--
TAPE	1.		If $>0,1885 \mathrm{~A}$ input is read in from A2. If ≤ 0, shock gas dynamics data is assumed to be program input.	--
TB	0.		Body temperature.	Kelvin
THA	0.	$\theta_{\text {A }}$	Aft cone angle.	degrees
THB	0.	θ_{B}	Flare angle.	degrees
THC	0.	$\theta^{\text {C }}$	Fore cone angle.	degrees
THETAT	0.	$\theta_{\text {TT }}$	Shock angle for stagnation conditions. Used only if $T I \leq 0$.	degrees
THN	0.	θ_{N}	Nose cap angle	degrees
TH2G	0.	θ_{2}	Angle at first point of general shape.	degrees
TH3G	0.	θ_{3}	Angle at last point of general shape.	degrees

Name	Preset Values	Symbol	Parameter	Units
TT \varnothing	0.		Total pressure sentinal. If \leq 0 uses normal shock, if >0, $\mathrm{P}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}, \rho_{\mathrm{T}}$ and γ_{s} come from shock gas dynamic data at THW = THETAT (above).	--
UP2	0.001		Upper limit for accuracy in integrating $\frac{d\left(P_{e} / P_{s}\right)}{d_{x}}$ by the entropy-layer formulation.	--
V	0.	v	Flight velocity, specify if 1885A is not used.	$\mathrm{ft} / \mathrm{sec}$
XA	0.	$\mathrm{x}_{\text {A }}$	Mole fraction of argon in atmosphere. Specify if 1885A not used.	--
xC	0.	${ }^{\text {x }}$ C	Mole fraction of $C \varnothing / 2$ n atmosphere. Specify if 1885A not used.	--
XJ	0.	j	A 10 by 2 matrix of flow field indixes, $1=$ axasymmetric, $0=$ two dimensional. Specıfy like BSH \varnothing CT above.	--
XM	0.	$\overline{\mathrm{M}}$	Mean molecular weight of atmosphere, specxfy if 1885A is not used.	--
XN	0.	${ }^{\mathrm{X}}$ N	Mole fraction of N_{2} in atmosphere. Specify if 1885A not used.	--
$\mathrm{X} \varnothing$	0.	x_{0}	Mole fraction of ϕ_{2} :n atmosphere. Specify if 1885A not used.	--
XTBL	0.	x_{1}	An array of at most 25 pomts which are the X_{i} for the general shape.	feet

C. INPUT PROCEDURES

1. Vehicles Section Specification (refer to Figures 2 and 3).

The vehicle sections are identified as follows:
Section 1-- Nose sphere - Specify \mathbb{N} (1) followed by number of points destred, i.e., if 8 points are desired, specrfy $N(1)=8$. Specify as input RN, THN, Section l cannot be omitted.

Section 2 -- Toroidal section following nose cap. If present, specify N (2) followed by number of points desired. Specify also RSN.

Section 3 -- Three options existing for Section 3, the cone, tension shell, or general shell. If, for example, 25 points are desired for any one of these, then for the cone the input would be $\mathbb{N}(3)=25$. 1 , and for the tension shell $\mathbb{N}(3)=25.2$, and for the general shell $\mathbb{N}(3)=$ 25.3. Specify THC for cone, BETA for the tension shell, and TH2G, TH3G for the general shape.

Section 4 -- Toroidal section aft of Section 3, specified as $N(4)$ and also specrfy RSC, RC. For example, if 12 points are desired, specify $\mathrm{N}(4)=12$.

Section 5 -- Cylinder section, specified as $\mathbb{N}(5)$ and also specify LC, RC. For example, if five points are desired, specify $\mathbb{N}(5)=5$.

Section 6 -- Flare cone specified as $N(6)$ and with RB, RSB, THB, and with number of points desired as above.

Section 7 -- Torordal radius aft of flare cone as N (7) and with RSB and with number of points desired as above.

Section 8 -- Toroidal radius at base of aft cone as $N(8)$ and with RSB number of points desired as above.

Section 9 -- Aft cone as N (9) and with THA, and either RA or RT and number of points desired.

Section 10 -- Base section 1s specified either as a spherical cap or as a flat base. A spherical cap 15 specified, for example, as $\mathrm{N}(10)=8.1$, where 8 is the number of points desired and RA is mput. A flat base is specified simularly as $N(10)=8.2$ and $R T$ is given.

2. Stagnation Conditions Option.

An option is provided for considering stagnation conditions, other than those for a normal shock, at the edge of the boundary layer, to compute the convective heat transfer. The option is used by specifying TT \varnothing as the desired shock angle.

3. Adiabatic Exponent Option.

An option is provided to input a value of (γ) rather than utilizing the value computed in the oblique and normal shock subroutine.

4. Straight Sections

On stralght sections, an odd number (N) of points is recommended because roundoff may confuse the point count.

5. Shock Shape Parameters

Values of the coefficients (R_{W}) and (B) have been correlated from numerical flow solutions in Reference 15 for spherical bodzes. The value of R_{w} was found to be given by

$$
\mathrm{R}_{\mathrm{w}}=\mathrm{R}_{\mathrm{N}}(2.09)\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}\right)^{0.1998}
$$

The value of B was found to be a function of (x_{W}) and the normal shock density ratio, however, an approximate form was found to provide good agreement when (B) was taken as a constant and equal to (-0.646).

Studies of the shock shapes about elipsoids and blunt cones are reported in References 16 and 17, but these are directed principally at the region downstream of the nose.

Additional shock shape studies are presented in References 18 and 19. The shock shape form utilized in Reference 18 is of a slightly different form, but the numerical results presented can be used to deduce the parameter (R_{W}) and (B) for elipsoidal and parabolic bodies as well as spheres.

The values of $\left(R_{W}\right)$, ($\left.B_{s}\right)$, and ($\left.\Delta_{s}\right)$ can be input for both the wandward and leeward meridians, as a function of angle of attack. The first ten values specified correspond to the windward meridian and values (11-20) correspond to the leeward meridian.

6. Value of (NN)

The value of (NN) to be used is found via comparison of shock calculations with results of "exact" calculations and/or experiment.

Values of (NN) can be found from the results given in Reference 18 for a point slightly downstream of the somic point for a sphere. A typical correlation of the theoretical distribution of mass flow rate across the shock layer is shown in Figure 10.

Values of NN can be input for both the windward and leeward meridians, as a function of the angle of attack. The first ten values specified correspond to the windward meridian and values (11-20) correspond to the leeward merıdıan.

7. Value of (MM)

The value of (MM) to be used is found via comparison of radiation predictions with more "exact" calculations and/or experımental data where available.

Values of MM can be input for both the windward and leeward meridians as a function of the angle of attack. The first ten values specified correspond to the windward merıdian and values (11-20) correspond to the leeward meridian.

8. Flow Field Option

By specifyıng $X J$ as 0 . or 1 , the calculations consider the body as either two dimensional or axasymmetric. The values of XJ can be specified for both the windward and leeward meridians as a function of angle of attack. The first ten values specified correspond to the windward meridian and values (11-20) correspond to the leeward meridian.

9. Two-Part Program

The program consists of two parts, 1885A and 1885B as the latter portion fills the core of the IBM 7094. An option is provided to read in the data of 1885A as tables or via tape. A typical output of 1885 A is shown in the following IBM listing. The tabular inputs must include the 13 listed tables as given by a typical 1885A calculation. In addition, several aerodynamic and thermodynamic variables must be input if 1885A is not used, including HDHS90, PRES, MACH, ENTH, XA, XN, XC, XФ, RH內́ळ, V, MACF, TA.

10. Angle-of-Attack Chouces

Avord angles-of-attack choices which place stagnation point close to discontinuities in body curvature because the sumplified flow model is inadequate to cope with strong 3 -dimensional effects.
11. Number of Output Points (N)

Specify (N) large enough for each section such that first (5) points on each side of stagnation point occur on the same section, the chorce of (N) is therefore related to the angle-of-attack choices. Discontinuities in curvature near the stagnation point may affect the accuracy of the laminar heating distribution.

Figure 10 MASS FLOW DISTRIBUTION ACROSS THE SHOCK LAYER
-34-
$436<$

12. Input Forms

An input form is provided for the user. All the information shown is keypunched for those variables specified. All mumerical values have decimal points.
D. OUTPUT DEFINITIONS

1885A OUTPUT

External Name	Parameter	Units
GAMMA W	Adiabatic exponent behınd shock.	--
HW/H	Ratio of local to total enthalpy behind shock.	--
IB	Radiation intensity at body.	Btu/ft ${ }^{3}$
IW	Radiation intensity behind shock.	$\mathrm{Btu} / \mathrm{ft}^{3}$
PW/Pめ	Pressure behind shock.	atmosphere
PWS/P禺	Stagnation pressure behind shock.	atmosphere
RW/RA	Ratio of density behind shock to ambient density.	--
RWS/RA	Ratio of stagnation density behind shock to ambient value.	--
RWUW / RAV	Ratio of specıfic mass flow rate behind shock to freestream value.	--
TH WL	Flow angle behind shock.	degrees
THW	Shock wave angle.	degrees
TW	Temperature behind shock.	${ }^{\circ} \mathrm{K}$
TWS	Stagnation temperature behind shock.	${ }^{\circ} \mathrm{K}$

1885B OUTPUT

External Name	Parameter	Units
ALPHA	Angle of attack.	degrees
DP/DSL, DP/DSW	Leeward and windward pressure gradients.	$\mathrm{lb} / \mathrm{ft}{ }^{3}$
DT/DSTBL	Body curvature.	$\mathrm{rad} / \mathrm{ft}$
DTDS ST	Body curvature at the stagnation point.	$\mathrm{rad} / \mathrm{ft}$
I ST	Coordinate location number for stagnation point.	--
IWSN, ILSN	Coordinate location for sonic point in windward and leeward meridıans.	--
M \varnothing TBL	Body section number.	--
PE/PSL, PE/PS W	Leeward and windward pressure distrıbution.	--
QLI, QLW	Leeward and windward laminar heating distribution; ratio of local to zero angle-of-attack stagnation point value.	--
QLS AL \varnothing	Laminar heating rate at stagnation point at zero angle of attack; used to normalize all laminar heating rates.	Btu/ $/ \mathrm{ft}^{2}-\mathrm{sec}$
QRL, QRW	Leeward and windward radiation heating distribution; ratio of local to zero angle-of-attack stagnation point value.	--
QRS AL \varnothing	Radiation heatmg rate at stagnation point at zero angle of attack; used to normalize all laminar heating rates.	$\mathrm{Btu} / \mathrm{ft}^{-2}-\mathrm{sec}$

External Name	Parameter	- Units
QTL, QTW	Leeward and windward turbulent heating distribution; ratio of local to zero angle-of-attack sonic point value.	--
QTS AL \varnothing	Turbulent heating rate at sonic point at zero angle of attack, used to normalize all turbulent heating rates.	Btu/ $\mathrm{ft}^{2}-\mathrm{sec}$
REI, REW	Leeward and windward Reynolds number distribution; ratio of local to free stream value.	--
REYA	Free stream Reynolds number based on vehicle diameter (2RC); used to normalıze all Reynolds numbers.	--
SECT	Section Number	--
THETBL, THETBW	Body slope of windward and leeward meridians.	degrees
THETOTBI	Body angle in zero angle-of-attack axes.	degrees
THET ST	Body angle at stagnation point in zero angle-of-attack coordinates.	degrees
THETW SN THETI SN	Windward and leeward sonic point angle in wind axes.	degrees
XBL, YBL, SBL XBW, YBW, SBW	Body windward and leeward coordinates and surface distance in wind axes.	feet
XBWSN, TBWSN, SBWSN, XBLSN, YBLSN, SBLSN	Coordinates and surface distance to windward and leeward sonic points measured in wind axes.	feet
$\begin{aligned} & \mathrm{X} Q \mathrm{~L}, \quad \mathrm{Y} \phi \mathrm{~L} \\ & \mathrm{X} \phi \mathrm{~W}, \\ & \mathrm{Y} \phi \mathrm{~W} \end{aligned}$	Body windward and leeward coordinates at angle of attack measured in zero angle-of-attack axes.	feet

External Name	Parameter	Units
$X \varphi T B L, Y \varphi T B L$, S \varnothing TBL	Body coordinates and surface distance at zero angle of attack as measured in zero angle-of-attach axes.	feet
X $\varnothing \mathrm{WSN}, ~ Y ~(\square W S N$, $X \varnothing$ LSN, Y	Location of windward and leeward sonic point at angle of attack in zero angle-of-attack axes.	feet
XSIL, XSIW	Leeward and windward shock detachment distance.	feet
XST, YST, SST	Body coordinates and surface distance to stagnation point at angle of attack as measured in zero angle-of-attack axes.	feet

E. SAMPLE PROBLEM

1. Statement of Problem

Determine the pressure and heating distributions on a blunt cone configuration for the trajectories obtanned in the Sample Problem for Program 1880. The angle of attack range as specified as 0 to 180 degrees.

2. Input Forms

The input forms for Programs 1885A and B containing all the necessary input data are shown on following pages. All the variable names should be keypunched where data is specified; decimals are used throughout. Additional input forms are also provided on following pages for the program user.
3. Output

The output of Program 1885A is also included in following pages. The oblique shock data are given as a function of the wave angle. In this case, only limited radiation intensity data is given as it is so low; an automatic test on IW and IB is done in the program such that their calculation is dropped if the last value calculated is less than 1.0.

The output of Program 1885B 15 shown on following pages. The first tabular array contans the basic geometric data of the vehicle.
Following the first array of data are rows of data summarizing pertinent results contaned in the subsequent data array, such as the locations of the stagnation and sonic points. The distribution of pressure, laminar heating, turbulent heating, Reynolds number, and radiation heating are given along with a list of axial coordinates in the zero angle of attack axes which identifies each point. The transformed body coordinates, meridian distance, and local body angles are also given for each point. The shock detachment distance (XSI) is given, permitting the shock shape to be drawn. Tests are provided on (QR) and (XSI) to terminate these quantities when QR becomes less than one percent of the stagnation point value and when (XSI) exceeds (RC), or if the shock angle becomes negative or less than the Mach angle. In the present case, as only one point was found for IB and IW, the radiation is interpolated between these values and zero until the shock angle decreases more than two degrees and the body pressure drops slightly, beyond which the IB and IW are both zero and hence $Q R$ is zero.

The values of (B) and (Δ_{s}) and (RW) which were used for the shockwave calculation are indicated.

Two cases are present for which the program was unable to determine shock shapes. These cases are the windward meridian at $a=20$ degrees the leeward meridian at $\alpha=40$ degrees. For these two points, inputs are required for (RW) and (B).
F. DIAGNOSTICS

1885A
A number of messages are given in the printcut reflecting the following program diagnostics.

1. N \varnothing VALID $\operatorname{S} \phi$ LUTI $\phi \mathrm{N}$

The equalibrum gas dynamics (1883) solution was not able to obtain a solution with positive concentrations for all the species satisfying the element and charge conservation relationships. In this case the data is linearly interpolated between the last and the next point, for which a solution is found.

2. NळT C \varnothing NVERGED IN 30 ITERATI \varnothing NS

The equilibrium gas dynamics (1883) solution was unable to converge within 30 iterations to within I percent on the enthalpy, uses last value found.

1885B

1. CANN \varnothing T FIND THETA FOR RW \varnothing R B, SKIP CASE

A shock shape cannot be found satisfying continuity for the assumed flow model; Requires mput DELT, RW \varnothing, BSH BCT .

2. SIN(THETAW) NEG. $F \phi$ R $X B=(\quad)$.

The shock shape curves toward body beyond given XB, stops the calculation at the last prior XB output.
3. THETAW BEL $\varnothing W$ LTMIT AT $X B=()$.

The shock shape calculation is stopped, as at the next output point, the wave angle is less than the mach angle.
4. YW LESS THAN YB:

The shock wave calculation is stopped as, at the next output point, the wave ordinate is less than the body ordinate.

PROGRAM WILI SELEGT TAPE A5
\$INPUT

DATE	$=$	MEM \varnothing	$=$	CASE	
DELAL	$=$	RHøA	$=$	XN	
ILAST	=	TA	$=$	$X \varnothing$	
INSTDP	$=$	V	$=$	XPEVER	$=\ldots$,
PRTAB	$=$	XA	$=$	XPLAST	$=\ldots$

\qquad
$\$$

-43-

DIGITAL COMPUTER INPUT REQUEST FORM			problem no	1885 A programmer				
			tithe					
MEMO NO	section no	WORK ORDER NOW305-050-0005		[E240 USE ONLY)	REqUESTED P. Levine	EXT	Est time	
PL169	K420					2996		PAGE 1 Of I PAgEs

\$INPUT

\$

$$
\begin{aligned}
& \text { 60. } \quad 90 ., 120 . \quad, 150 . \quad, \quad, \\
& \text { DELT = } \\
& \text { - } \quad, \\
& \text {, } \\
& \text {, } \\
& \text {, }
\end{aligned}
$$

${ }_{\text {RAD }}^{5-85}$		PROBLEEM	MEMO NO.	SECTIONNO	COntinlation sheet			
	DIGITAL COMPUTER INPUT REQUEST FORM	1885B	PLI 69	K420	page	2 of	pages	3

$\mathrm{BSH} \varnothing \mathrm{CT}=$ \qquad , \qquad , \qquad
\qquad _, \qquad ,
\qquad , \qquad , _ \qquad

\qquad , ——._-_ \qquad , \qquad _,

NN $=20 * 1$. , \qquad \longrightarrow \qquad —___ , \ldots _...................... \qquad
\qquad , \qquad _ , RWळ $=$ \qquad , ,
 \longrightarrow;
\qquad

\qquad
\qquad , \qquad ? \qquad 3.
\qquad
\qquad , _工__ \qquad -
XJ $=$

, \qquad , $\quad 5 * 1$. $5 * 0$. , \qquad
\qquad
 \qquad , \qquad
\qquad , \qquad ,

\qquad
\qquad , \qquad
\qquad

-47-
$439<$


```
158 LTNES TUTPUT.
            $IESYS
            OPER. ACTION PAUSH
            . .cont INIJING
            PAUISE
            GPER. ACTION PAUSF
```


. . CONT INUING

1 LINES DUTPIIT THIS JOB.

12/91/54
1301/54 535!うวうว
$\begin{array}{ll}\text { \$IBLDR } & \text { SGETB } \\ \text { \$IBLDR } & \text { SGETOR }\end{array}$
SIBLDR SGETOR
SIBLDR SFINDR
\$DATA
12/31/54

\qquad

* memdry map *

\qquad
\qquad
- .--
-

SE	EC $\quad \times 0 \mathrm{H}$				THETBW	PE／PS W	DP／OS	21 N	QT W	of W	29 H	XSI W
	$1+0.000 \varepsilon-39$	$+0.000 E-39$	$+0.000 E-39$	$+0.000 \mathrm{E}-39$	$+90.00$	$+1.009 E+00$	＋4．809E－J3	＋1：3J3E＋79	＋2．397F－39	＋0．01JE－39	－1．030E +00	＋9．089E－02
	$\begin{array}{r} 1+1.713 E-03 \\ -1+6.848 E-03 \end{array}$	$\begin{aligned} & +1.713 E-03 \\ & +6.848 \mathrm{E}-03 \end{aligned}$	$+6.542 E-02$ $+1.307 E-01$	$+6.545 E-02$ $+1.309 E-01$	+87.00 +84.00	$+7.973 \mathrm{E}-01$ $+9.891 \mathrm{E}-01$	$-5.857 \equiv+39$ $-1.157 E+31$	$+9.757 E-01$ $+7.972 \mathrm{E}-01$	$+4.899 E-71$ $+7.380 \mathrm{E}-01$	$+1.473 E-04$ $+5.857 E-04$	＋8．？ $11 \mathrm{E}-01$	$+9.101 E-02$ $+9.142 E-02$
	$1+1.539 E-02$	＋1．539E－02	＋1．955F－01	＋1．963E－01	＋81．00	＋9．755E－01	－1．735E＋31	＋7．532E－01	＋9．294E－71	＋1．301E－03	＋4．532E－01	02
	＋2．732E－02	$+2.732 \mathrm{E}-02$	＋2．599E－01	$+2.618 \mathrm{E}-01$	＋78．00	$+9.56 \mathrm{BE}-01$	－2．233Etj1		$+1.089 \mathrm{E}+00$	＋2．282E－03	＋1．27AE－01	＋9．402E－02
	$1+4.259 E-02$	＋4．259F－02	$+3.235 \mathrm{E}-01$	＋3．272E－01	$+75.00$	$+9.330 \mathrm{E}-01$	$-2.836 \pm+31$	＋9．375E－01	$+1.223 \mathrm{E}+37$	＋3．506F－33	＋0．000E－39	＋9．881E－02
	$\begin{aligned} & 1+6.1 \text { IBE }-02 \\ & 1+8.302 E-02 \end{aligned}$	＋6．118E－02	$+3.863 E-01$ $+4.480 \mathrm{E}-01$	$+3.927 \mathrm{E}-01$ $+4.581 \mathrm{E}-01$	+72.00 +69.00	$+9.045 \mathrm{E}-01$ $+8.715 \mathrm{~F}-01$	$-3.279 E+71$ -3.756 E （ 1	$+7.317 E-01$ $+7.311=-01$	$+1.335 \mathrm{E}+00$ $+1.425 \mathrm{~F}+90$	$+7.942 E-73$ $+5.559 E-03$	$+3.020 \mathrm{E}-39$ $+0.000 \mathrm{E}-39$	＋1．011E－6\％
	$\begin{array}{r} 1+8.302 \mathrm{E}-02 \\ \mathrm{I}+1.081 \mathrm{E}-01 \end{array}$	$+8.302 E-02$ $+1.081 E-01$	$+4.480 \mathrm{E}-01$ $+5.094 \mathrm{E}-01$	$+4.531 E-01$ $+5.235 E-01$	+69.00 +66.00	$+8.715 \mathrm{~F}-01$ $+8.346 \mathrm{E}-01$	$-3.756 E+31$ -4.171 ± 31	$+7.311 E-01$ $+8.752 E-01$	$+1.425 F+90$ $+1.497 \mathrm{E}+30$	$+5.559 E-03$ $+8.317 E-03$	$+0.000 E-39$ $+0.000 E-39$	$+1.071 \mathrm{E}=01$ $+1.553 \mathrm{E}=01$
	$1+1.362 \mathrm{E}-01$	$+1.362 \mathrm{E}-01$	$+5.675 \mathrm{E}-01$	＋5．890E－01	$+63.00$	＋7．939E－01	$-4.5+1 \equiv+31$	＋3．477E－01	$+1.550 E+00$	＋1．O1TE－J？	＋0．000E－39	259E－61
	$3+1.675 E-01$ $3+5.601 E-01$	$+1.675 \mathrm{E}-01$ $+5.601 \mathrm{E}-01$	$+6.250 E-01$ $+1.305 E+00$	$+6.545 E-01$	$+60.00$	$+7.500 \mathrm{E}-01$	$+0.0305-37$	＋7．515E－01	$+1.586 \mathrm{~F}+00$	$+1.279 E-02$	$+0.000 \mathrm{E}-39$	$1.392 \mathrm{E}-01$
	$\begin{aligned} & 3+5.601 \mathrm{E}-01 \\ & 3+9.527 \mathrm{E}-01 \end{aligned}$	$+5.601 \mathrm{E}-01$ $+9.527 \mathrm{E}-01$	$+1.305 E+00$ $+1.985 \mathrm{E}+00$	$+1.44 J E+00$ $+2.225 \tau+00$	+60.00 +60.00	$+7.500 E-01$ $+7.500 E-01$	$+0.0905-39$ $+7.030 \leq-39$	$+4.345 E-01$ $+3.739 E-01$	$+1.354 \mathrm{E}+00$ $+1.241 \mathrm{t}+30$	$+3.45 \mathrm{RE}-32$ $+4.159 \mathrm{~F}-02$	＋0．000E－39	$+2.511 \mathrm{E}-01$
	$3+1.345 \mathrm{E}+00$	$+1.345 \mathrm{E}+00$	$+2.665 E+00$	$+3.010 E+00$	$+60.00$	$+7.500 \mathrm{E}-01$	＋2．030	＋3．218E－01	＋1．159F＋70	＋5．557E－02	$+0.000 \mathrm{~F}$	
	$3+1.738 \mathrm{E}+00$	$+1.738 E+00$	$+3.345 \mathrm{E}+00$	＋3．795E＋00	$+60.00$	$+7.500 \mathrm{E}-01$	＋5．030－39	＋2．332E－01	$+1.116 \mathrm{E}+00$	$+7.007 \mathrm{~F}-02$	＋0．000	$5.130 \mathrm{E}=01$
	$3+2.130 \mathrm{E}+00$	＋2．130E＋00	＋4．025E＋00	＋4．583E＋00	$+60.00$	$+7.500 \mathrm{E}-01$	＋0．030ミ－37	$+2.533 \mathrm{E}-01$	$+1.074 \mathrm{E}+30$	＋8．455E－02	＋0．000E	＋5．893 $\mathrm{t}-01$
	$3+2.523 E+00$	$+2.523 E+00$	＋4．705E＋00	＋5．355E＋00	＋60．00	$+7.509 \mathrm{E}-01$	＋5．030E－39	$+2 .+38 \mathrm{E}-01$	$+1.041 \mathrm{~F}+00$	＋9．905E－02	＋0．000E－39	$+6.544 E-02$
	$\frac{3+2.916 E+00}{3-3.308 E}$	＋2．916E＋00	＋5．385E＋00	＋5．151E＋00	$+60.00$	＋7．500E－01	$+2.030$	＋2．231E－01	＋1．013E＋30	$+1.136 E-01$	$+0.000 \mathrm{E}-39$	$+7.389 \mathrm{E}-01$
	$\begin{aligned} & 3-3 * 308 E+00 \\ & 3+3 * 701 E+00 \end{aligned}$	$+3.3108 E 700$ $+3.701 E+00$	干6．065E＋00	＋6．936E＋00 $+7.721 E+00$	＋60．00	$+7.500 \mathrm{E}-01$	＋0．000三－39	F？${ }^{2} 151 \mathrm{E}-0 \mathrm{C}$	＋9．839E－01	$+1.281 \mathrm{E}-01$	$+0.000 E-39$	$+B .126 E-01$
	$4+4.093 E+00$	＋4．093E＋00	$+6.745 \mathrm{E}+00$ $+7.425 \mathrm{E}+00$	$+7.721 E+00$ $+8.506 \mathrm{E}+00$	$+60.00^{\circ}$	$+$	I	547	1	＋1．425E－01		
or	$4+4.102 \mathrm{E}+00$	＋4．102E＋00	$\pm 7.438 \mathrm{C}+00$	＋8．522E＋00	＋54．00	$+6.545 \mathrm{E}-01$	$4.449 E+32$	＋3．475E－01	＋9．960E－01	＋1．72t	＋0．000E－39	9．789E－01；${ }^{\text {a }}$
N	$4+4.102 E+00$	＋4．110E＋00	7． $449 \mathrm{E}+00$	＋8．535E＋00		$+5.685 \mathrm{E}-01$	－4．63＂3E－52	$+3.382 \mathrm{E}-01$	＋$+1.500 \mathrm{E}+30$	＋1．788		
	$4+4.123 E^{+100}$	＋4．123E＋00	$+7.450 E+00$ $+7.451 \mathrm{E}+00$	＋8． $554 \mathrm{E}+00$	＋42．00	$+5.539 E-01$ $+4.497 E-01$	－4．652E＋02	＋3．425E－31	＋9．976E－31	＋1．79	＋	007
	$4+4.135 E+00$	＋4．135E＋00	＋7．471E＋00	＋8．567E＋00	$+36.00$	$+3.478 \mathrm{E}-01$	$-4.449 E+3$ ？	＋2．713E－01	$+8.729 E-31$			
	4＋4．148E FOO	$4.148 E 700$	＋7．480E +00	＋8．535E＋00	＋30．00	$+2.706 \mathrm{E}=01$	－3．037E452	＋2．237E－01	＋7．800E－01	$+1.545 \mathrm{E}=01$	，	
	$4+4.162 E+00$	＋4．162E＋00	＋7．487E＋00	$+8.601 \mathrm{E}+00$	$+24.00$	＋2．097E－01	$-2.452 \equiv+52$	＋1．982E－01	＋6．853E－01	＋1．39	＋0．000	0
	$4+4.177 E+00$	＋4：177E＋00	＋7．493E＋00	＋8．615E＋00	＋18．00	＋1．599E－01	－1．957Erj2	＋1．555E－01	$+5.970 \mathrm{E}-31$	＋1．225E－51	＋0．000	480E＋03
	$4+4.192 \mathrm{E}+00$	＋4．192E＋00	＋7．497E＋00	＋8．532E＋00	$+12.00$	$+1.210 \mathrm{E}-01$	$-1.575 \equiv+92$	＋1．273	＋5．009E－31	$+1.052 \mathrm{E}-01$	$+0$	00E +00
	$4+4.208 \mathrm{E}+00$	＋4．208E＋00	＋7．499E＋00	$+8.648 \mathrm{E}+00$	＋6．00	$+8.933 \mathrm{E}-22$	$-1.227 \equiv+32$	$+1.518 \mathrm{E}-01$	＋4．150E－91	＋9．006E－0？	$+0.000 E$	$\mp 2.015 E+00$
	$8+4.223 E+00$	＋4．223E＋00	＋7．500F＋00	$+8.664 E+00$	0	$+6.548 \mathrm{E}-02$	-9.516 ＋5	＋ $8.106 \mathrm{E}-02$	＋3．415F－21	$+7.539 \mathrm{E}-02$	$+0.000 \mathrm{E}-39$	$+2.495 E+00$
	$8.74 .244 \mathrm{E}+00$	74．244E＋00	＋7．499E＋00	＋8．6845 +00	00	＋4．157E－02	－5．530E＋${ }^{\text {c }}$（ 1	$+5.555 \mathrm{E}-02$	$+2.535 \mathrm{E}-01$	$+5.740 \mathrm{E}-02$	$+0.000 \mathrm{E}-39$	$+3.697 E+00$
	8 4．4．265E＋00	＋4．265E＋00	＋7．494E＋00	＋8．735E＋00	-16.00	$+2.573 \mathrm{E}-02$	$-4.352 \equiv+21$	$+3.751 \mathrm{E}-12$	＋1．833E－31	＋4．253E－02	＋0．000E－39	$+7.151 \mathrm{E}+00$
	8－74．4．28 8 K +00	＋4．284E＋00	＋7．487E＋00	＋8．726E＋09	－24．00	$+1.533 \mathrm{E}-02$	$-2.836 三+91$	$+2.534 \mathrm{E}-02$	$+1.281 \mathrm{E}-01$	＋3．043E－02	＋5．090E－39	＋8．55EEADI
	$8+4.303 E+00$	＋4．303E＋00	＋7．477E＋00	＋8．747E＋00	-32.00	$+8.790{ }^{\text {c }}$－03	－1．739三＋71	＋1．7935－02	＋8．652F－02	$+2.104 \mathrm{E}-02$	＋0．000E－39	＋0．000E－39
	8＋4．320E＋00	$+4.320 \mathrm{E}+00$	＋7．465E＋00	＋8．763E＋00	-40.00	＋4．847E－03	$-1.036 \equiv+31$	＋1．15JE－02	＋5．665F－才2	＋1．403E－32	＋0．000E－39	＋0．000E 39
	$8+4.335 \mathrm{E}+00$	＋4．335E＋00	＋7．450E＋00	＋8．789E＋00	-48.00	＋3．598E－03	＋3．030ミ－39	$+3.3 \bigcirc J E-03$	＋4．547E－32	$+1.144 \mathrm{E}-0$ ？	＋0．000E－39	9
	＋4．348E＋00	$44.348 \mathrm{E}+00$	＋7．434E＋00	＋8．810E＋00	－56．00	$+3.598 \mathrm{E}-03$	$+0.030 E-39$	＋3．352E－03	＋4．545F－72	＋1．147E－3）	$+0.0$	39
	＋4．35 BE＋00	＋4．358E＋00	＋7．416E＋00	＋8．831E＋00	－64．00	＋3．598E－03	＋3．030 -37	＋3．344E－03	＋4．543E－02	＋1．153F－0？	$+0.090 E-30$	39
	$8+4.3665+00$	＋4．366E＋00	＋7．396E +00	＋8．852E＋00	－72．00	＋3．599 -03	+0.020 － 37	$+3.335 \mathrm{E}-03$	$+4.541 \mathrm{E}-\mathrm{0} 2$	＋1．152F－02	$+0.000 E-39$	$+0.000 \mathrm{E}=39$
	$9+4.371 E+00$	＋4．371E＋00	＋7．376E＋00	＋8．873E＋00	－80．90	$+3.598 \mathrm{E}-03$	＋ $7.030 \leq-37$	＋3．325E－03	＋4．539E－02	$+1.155 E-32$	$+0.000 E-39$	$+0.000 \mathrm{E}-39$
	$9+4.435 E+00$	$+4.435 \mathrm{E}+00$	＋7．013E＋00	＋9．2＋1E＋00	-80.00	＋3．598E－03	+7.090 E－37	＋3．159E－03	＋4．502E－32	＋1．203E－02	$+0.000 E-39$	
	$9+4.499 E+00$	＋4．499E＋00	＋6．651E＋00	＋9．609E＋00	－80．00	$+3.598 \mathrm{E}-03$	＋0．000こ－37	＋2．793E－03	＋4．447E－72	$+1.251 F-02$	$+0.000 F-39$	$+0.000 \mathrm{E}-39$
	$974.563 F+00$	＋4．563E＋00	＋6． $289 \mathrm{E}+00$	＋9．979E＋00	－80．00	$+3.5985-33$	$+3.030 \leq-37$	$+2 \div 327 E-03$	$+4.434 \mathrm{E}-32$	＋1．203E－32	$+0.000 \mathrm{E}-39$	$+0.000 E-39$
	$9+4.627 E+00$	＋4．627F＋00	$+5.926 \mathrm{E}+00$	＋1．035E＋01	-80.00	$+3.598 \mathrm{E}-03$	＋9．020 -37	＋2．552E－03	＋4．402F－32	＋1．347E－02	＋9．050E－39	＋0．000E－39
	$9+4.691 \mathrm{E}+00$	＋4．691E＋00	＋5．563E＋00	＋1．071t＋01	－80．00	$+3.598 \mathrm{E}-03$	$+3.030 \equiv-37$	$+2.498 \mathrm{c}-03$	＋4．371F－32	＋1．395E－3？	＋0．000E－39	＋0． $000 \mathrm{E}=39$
	$9+4.755 E+00$	＋4．755E＋00	＋5． $2005+00$	＋1．1085＋01	－80．00	＋3．598E－33	＋ 2.030 － 37	$+2.334 \mathrm{E}-03$	＋4．341E－32	＋1．443F－7	＋0．000E－39	＋0．000E－39
	$9+4.819 \mathrm{~F}+00$	＋4．819F＋00	$+4.838 \mathrm{~F}+90$	$+1.145 \mathrm{E}+01$	－80．00	＋3．598E－ก3	＋0．030 -33	＋2．17JE－03	＋4．313E－7？	＋1．483F－02	＋7．070F－39	$+0.000 \mathrm{E}=39$
	$9+4.883 \mathrm{E}+00$	＋4．883E＋00	$+4.475 \mathrm{E}+00$	＋1．1825＋01	－80．30	$+3.599 \mathrm{E}-33$	＋ $9.000 \leq-37$	＋2．705三－03	＋4．286Eーก2	$+1.539 \mathrm{~F} \rightarrow 37$	$+3.900 \mathrm{E}-39$	$+0.000 \mathrm{E}-39$
	＋4．947E＋00	＋4．947F＋00	＋4．113F＋00	$+1.219 \equiv+01$	－80． 10	＋3．509E－03	$+7.390 \equiv-37$	$+1.3+3 \mathrm{E}-03$	＋4．3S）F－3？	＋1．585E－0？	＋7．0าクE－39	＋5．000E－39
	$10+5.010 \mathrm{E}+00$	＋5．010E＋00	$+3.750 \mathrm{~F}+00$	＋1．255E＋01	－90． 50	＋3．598E－03	＋ 5.090 E－37	＋1．530E－03	＋4． $314 \mathrm{E}-79$	＋1．634E－02	＋0．000E－39	＋0．000E－39
	$10+5.010 \mathrm{~F}+90$	$+5.010 \mathrm{E}+00$	$+3.375 \mathrm{E}+00$	$+1.293 E+01$	－90． 20	$+3.598 \mathrm{E}-03$	$+3.030 \equiv-33$	$+1.512 \mathrm{E}-03$	＋4．2105－7？	+1.4 A3F－0）		$+0.000 \mathrm{~F}-39$
	$10+5.010 \mathrm{E}+00$	$+5,010 \mathrm{~F}+00$	$+3.000 E+00$	＋1．33．je＋01	－90．00	＋ $3.508 \mathrm{E}-03$	+0.03 กミ－37	$+1.3+42-73$	＋4．196F－72	＋1．732E－7）	$+7.0705-39$	＋5．000F－30

	SEC	XO W	XB y	YB W	St ${ }^{\text {d }}$	THETBH	PF／PS W	DP／OS 4	จしゃ	OT W	RE H	DQ H	XSI W	
		E－02	＋0．000E－39	＋0．000E－39	＋0．007E－37	$+90.00$	＋1．000E＋00	－4．839－35	$+1.333 E+0.7$	＋9．770E－39	＋0．00才E～39	32	＋5．365E－03	
		$2.732 \mathrm{E}-02$	＋7．615E－04	＋4．362E－02	＋4．333E－02	$+88.00$	＋9．9RRE－01	－3．915E＋3）	$+1.532 \mathrm{E}+50$	＋3．786E－71	＋5．427E－05	＋5．517E－02	＋6．091 E－03	
		＋4．259E－02	＋4．757E－03	＋1．089E－01	$+1.091 \mathrm{E}-01$	＋85．00	＋9．924E－01	$-9.747=+33$	＋1．324E＋00	＋6．529F－61	$+3.998 \mathrm{E}-04$	＋9．303E－02	$+9.917 \mathrm{E}-03$	
	1	＋6．IIBE－02	＋1．216E－02	＋1．740E－01	＋1．745E－01	$+82.00$	＋7．805E－31	$-1.547 E+31$	＋7．912E－ク1	$+8.672 \mathrm{~F}-31$	$+1.032 \mathrm{E}-03$	＋1－202E－01	＋1．707E－62	
		＋8．302E－02	＋2．297E－02	＋2．385E－01	＋2．400E－01	$+79.00$	＋9．635E－01	－2．1）3E＋21	＋9．377E－01	$+1.0395+79$	$+1.927 \mathrm{E}-03$	$\pm 1.0235-01$	＋2．765E－02	
	1	＋1．081E－01	$+3.713 E-02$ $+5.462 \mathrm{E}-02$	$+3.024 \mathrm{E}-01$	$+3.054 \mathrm{E}-01$	$+76.00$	$+9.415 \mathrm{E}-01$	$-2.635 E+31$	$+7.323 \mathrm{E}-01$	$+1.181 E+70$	$+3.073 \mathrm{E}-03$	73：914E－0？	＋4．179E－02	
		＋1．362E－01	＋5．462E－02	＋3．655E－01	＋3．739E－01	$+73.00$	＋9．145E－31	－3．139Er）1	$+7.377 \mathrm{~F}-21$	＋1．330E＋30	＋＇．442E－03	＋4．882E－02	＋5．985E－02	
		1，	＋3．439E－01	＋1．165E＋00	＋1．222こ＋00	$+70.00$	＋		357E－01 +2 FE－01	397F＋70	＋5．003E－03	＋5．377E－02	$+8.151 \mathrm{E}-02$ $+3.365 \mathrm{E}-01$	
	3	＋9．527E－01	$+6.125 \mathrm{E}-01$	$+1.903 \mathrm{~F}+00$	＋2．007E＋0n	＋70．00	＋8．830F－01	＋0．030E－39	＋3．395E－21	$+1.030 \mathrm{~F}+20$	＋2．761E－02	＋0．000E－39	＋5．626E－01	
		＋1．345E＋00	＋8．810E－01	＋2．641E＋00	＋2．792ミ＋30	＋70． 30	＋8．830E－01	－ 3.3$) 0$－ 37	$+3.987 \mathrm{~F}-01$	$+9.540 \mathrm{E}-31$	$+3.841 E-02$	＋0．000 -39	＋7．592F－01	
		F1．738F＋00	$+1.150 \mathrm{E}+00$	$+3.379 E+00$	$+3.577 \pm+00$	＋70．00	＋8．830E－01	＋7．3）0E－37	$+2.744 \mathrm{E}-31$	$+9.1745-21$	$+4.921 \mathrm{E}-02$	＋0．000E－30	$+9.251 \mathrm{E}-01$	
	3	＋2．130E＋00	$+1.418 \mathrm{E}+00$	＋4．117E＋00	$+4.352 \mathrm{E}+00$	＋70． 20	$+8.830 \mathrm{E}-01$	＋9．030E－39	＋2．944E－01	＋9．917E－21	＋5．001F－7？	＋ $0.000 \mathrm{E}-39$	$+1.058 \mathrm{E}+00$	
	3	＋2．523E＋00	＋1．687E＋00	＋4．855E＋00	$+5.148 \mathrm{E}+00$	＋75．30	$+8.830 \mathrm{E}-01$	＋3．039三－37	＋2．301E－31	＋8．530F－${ }^{\text {c }}$ 1	＋7．0nl F－02	＋0．000E	$+1.155 \mathrm{E}+00$	
		＋2．916E＋00	$+1.955 \mathrm{E}+00$	$+5.592 \mathrm{E}+00$	$+5.933 \mathrm{E}+00$	$+70.00$	$+8.830 \mathrm{E}-01$	＋0．0う0E－39	＋2．1＋5ニ－01	＋8．291E－ 21	＋8．152E－32	＋0．030E	$+1.211 \mathrm{E}+00$	
		$+3.308 E+00$ $+3.701 E+20$	$+2.224 E+00$	$+6.330 \mathrm{E}+00$	$+6.718 \mathrm{t}+00$	$+70.00$	＋9．830E－01	＋3．030E－39	＋2．019E－01	$+8.088 \mathrm{~F}-71$	+9.242 Emo ？	$+0.0005-39$	＋1．2185＋00	
		＋3．701E＋50	$+2.492 \mathrm{E}+00$	＋7．068E＋00	$+7.503 E+09$	$+70.00$	＋8．830E－31	＋9．330三－37	＋1．312E－01	＋7．911E－71	＋1．032E－01	＋0．050E－39	$+1.160 E+00$	
		F4．093E＋00	$+2.761 \mathrm{E}+00$	＋7．806E＋00	$+8.288 \mathrm{E}+00$	＋70．00	＋8．830E－01	$-3.007 E+32$	＋3．512E－01	＋7．755E－31	$+1.147 E-01$	＋0．000E－39	$+1.012 \mathrm{E}+00$	
		．102E＋00	＋2．767E＋00	＋7．820E＋00	$+8.304 \mathrm{E}+00$	＋54．30	＋8．078E－31	$-3.536 \equiv+32$	＋3．332E－21	＋8．972E－91	$+1.398 \mathrm{E}-01$	．000E－39	＋9．945E－01	
		－1T2E＋00	＋2．775E＋00	$+7.834 E+00^{-}$	$+6.320 E+00$	＋58．00	＋7．192E－01	$-4.204 \equiv+32$	＋3．350E－01	＋9．744E－01	$+1.50$	＋0．000E－39	＋9．672E－01	
		$4.123 \mathrm{E}+00$	$+2.784 \mathrm{E}+00$	＋7．847E＋00	$+8.335 \mathrm{E}+00$	$+52.00$	＋6．21JE＝01	$-4.539 \mathrm{E}+32$	＋3．7395－01	$+1.006 E+00$	＋1．71＇tE－01	$+0.00$	＋9．588E－01	
		＋4－123E＋00	＋2．789E＋ 00	＋7．853EF00	＋8．3436400	＋48． 94	＋5．685E－01	－4	＋3．372E－01	$+1.005 \mathrm{E}+70$	＋1．745E－01	$+0.0$	＋9．578E＝01	
		$+4.135 E+00$	$+2.794 \mathrm{E}+00$	＋7．859E＋0	＋ $8.351 E+00$	$+46.00$	＋5．192E－91	$-4.575 \equiv+02$	＋3．757E－01	＋9．928E－01	$+1.756 \mathrm{E}-01$	$+0.000 \mathrm{E}-39$	$+9.589 E-01$	
		＋4．148E＊ 000	F2．805E＋00	〒7．870E＋00	F8．367E＋00	$+40.00$	＋4．153E－01	$-4.636 \overline{+52}$	＋3．375E－01	$+9.356 E-31$	＋1．715F－01	70.000 E	＋9．673E－01	
		＋4．162E＋00	＋2．818E＋00	＋7．879E＋00	$+8.383 \mathrm{E}+00$	$+34.00$	$+3.152 \mathrm{E}-01$	－4．337E＋52	＋2．717E－01	$+8.439 \mathrm{E}-31$	$+1.594 \mathrm{E}-01$	＋0．000E－39	＋9．835E－01．	
		－4．177E＋00	＋2：831E＋00	＋7．887E－00	＋8．398E400	$+28.00$	＋2．457E－01	－2．797三＋32	＋2．389E－01	＋7．472F－01	$+1.454 \mathrm{E}-31$	＋0．000E－39	41.008 tab ．	
		4.1	$+2.846 \mathrm{E}+00$	$+7.894 \mathrm{E}+00$	$+8.414 \mathrm{E}+00$	$+22.00$	＋1．890E－01	$-2.253 \equiv+32$	＋1．391E－01	＋6．509E－51	＋1．297E－01	＋0．000E－39	$+1.040 E+00$	
		－208E＋00	＋2．861E＋00	$+7.899^{\circ} \mathrm{E}+50$	＋8．430E＋00	$+15.00$	＋1．440E－01	-1.8380	＋1．540E－01	$+5.579 \mathrm{E}-71$	＋$+1.137{ }^{-1}-01^{\circ}$	$\mp{ }^{\circ} \mathrm{C}$ ． $000 \mathrm{E}-39$	＋1．079E＋00	
		． $223 \mathrm{E}+00$	$+2.876 E+00$	$+7.902 \mathrm{E}+00$	$+8.445 \mathrm{E}+00$	$+10.00$	＋1．081E－01	$-1.4335+52$	＋1．32 3 E－21	$+4.700 \mathrm{E}-31$	$+9.778 \mathrm{E}-02$	＋1． 000	$+1.125 E+00$	
		＋4．244E＋00	＋2．897E＋00	$+7.905 E+00$	$+8.456 \equiv+70$	$+2.00$	＋7．201E－32	． $029 \mathrm{~F}+92$	＋7．537E－02	$+3.546 \mathrm{~F}-51$	＋7．7A9E－02	＋0．000	+1.196 E－00	
		＋4．265E＋00	$+2.918 E+00$	$+7.904 \mathrm{E}+00$	＋8．487E＋33	－6．00	＋4．587E－02	$-7.038 \mathrm{E}+71$	＋ 5.953 － 02	＋2．718E－71	＋5．953E－7？	$+0.00$	$+1.274 E+00$	
		＋4．284E＋000	$+2.938 \mathrm{E}+00$	$+7.900 E+00$	$+8.503 E+00$	－14．00	＋2．852F－02	－4．739E＋31	＋4．73SE－02	＋1．975E－31	＋4．439E－02	＋0．000E－39	＋1．352E＋00	
		＋4．303E＋00	$+2.958 \mathrm{E}+00$	＋7．894F＋00	$+8.529 \mathrm{E}+00$	－22．00	＋1．697F－02	$-3.051 \equiv+31$	＋3．224E－02	$+1.3818-01$	＋3．18JE－ 2	$+0.000 \mathrm{E}-39$	$+1.427 E+00$	
		＋4．320EF00	$\mp 2.977 \mathrm{E}+00$	＋7．R85E＋00	$+8.550 \mathrm{E}+00$	－30．00	＋9．712E－33	$-1.895 \pm+31$	$+2.122 \mathrm{E}-02$	＋9．329E－3？	＋2．199E－02	＋0．0000E－39	$+0.00 \mathrm{~F}^{\circ}=39^{-}$	
		＋4．335E＋00	$+2.994 \mathrm{E}+00$		$+8.571 E+00$	－38．00	＋5．325E－03	$-1.125 \equiv+91$	＋1．352E－02	＋6．069E－97	$+1.464 F-32$	＋7．000E－39	$\pm 0.000 \mathrm{E}=39$	
		4．348E＋00	＋3．010E＋00	7．859E＋00	$+8.592 \mathrm{E}+30$	－46．00	$+3.598 \mathrm{E}-03$	＋ $0.000 \mathrm{E}-37$	＋4．330E－03	$+4.568 F-07$	$+1.118 \mathrm{E}-5$ ？	＋0．0．005－39	＋0．000E 0 39	
		$4.358 \mathrm{E}+00$	$+3.023 E+00$	＋7．843E＋00	$+8.513 \mathrm{E}+00$	－54．00	$+3.598 \mathrm{E}-03$	＋7．000三－37	＋3．792E－03	$+4.556 \mathrm{~F}-3 ?$	$+1.171 \mathrm{E}-3$ ？	＋0．300E－39	＋0．000E－39	
		$+4.366 F+00$	$+3.034 E+00$	＋7．825E＋30	$+8.634 \mathrm{E}+00$	－62．30	＋3．598E－03	+5.030 － 39	＋3．983E－03	＋4．594F－79	＋1．124E－92	＋0．000F－39	$+0.000 \mathrm{E}-39$	
		＋4．371E＋00	＋3．043E＋00	＋7．806E＋00	＋8．555E＋00	－70．30	$+3.595 \mathrm{E}-03$	＋7．030	＋3．773E－03	$+4.552 \mathrm{~F}-37$	$+1.127 \mathrm{E}-52$	＋0．000F－39	$+0.000 \mathrm{E}-39$	
		$+4.435 \mathrm{~F}+00$	$+3.169 E+00$	＋7．460E＋00	$+9.023 E+00$	－70．00	$+3.598 \mathrm{E}-03$	＋0．050 -37	＋3．7ヲ1E－03	$+4.524 \mathrm{~F}-72$	$+1.175 \mathrm{~F}-92$	$+0.300 \mathrm{~F}-39$	$+0.000 \mathrm{E}=39$	
		＋4．499E＋00	$+3.295 E+00$	＋7．114E＋00	$+9.391 \mathrm{E}+00$	－70．00	＋3．598E－n3	$+3.020 E-37$	＋3．511E－03	＋4．488E－72	＋1．222E－02	＋0．070E－39	$+0.000 \mathrm{E}-39$	
		$+4.563 E+00$	＋3．421E＋00	＋6．768E＋00	$+9.759 E+00$	-70.00	$+3.598 \mathrm{E}-03$	$+3.050=-37$	$+3.432 \mathrm{E}-03$	$+4.453 \mathrm{~F}-32$	＋1．273E－02	＋0．000E－39	70．000E－39	
		$+4.627 E+00$	＋3．547F＋00	$6.422 \mathrm{E}+00$	$+1.013 E+01$	-79.00	$+3.598 \mathrm{E}-03$	＋9．030E－39	＋3． $253 \mathrm{E}-03$	＋4．429F－72	＋1．318E－32	＋0．03กE－39	＋0．300E－39	
		$4.691 E+00$	＋3．672E＋00	＋6．076E＋00	＋1．353E＋01	－70．30	$+3.598 \mathrm{E}-03$	+2.030 E－39	＋3．775E－03	＋4．389F－32	$+1.366 E-32$	＋0．000E－39	＋0．000E－39	
		． $755 \mathrm{E}+00$	$+3.798 \mathrm{E}+00$	＋5．730E＋00	＋1．385E＋01	－70．30	＋3．598F－93	＋0．020E－33	＋2．378E－03	＋4．359E－022	$+1.414 \mathrm{~F}-07$	＋0．000E－39	＋0．000E－39	
		$+4.819 \mathrm{E}+00$	$+3.924 E+00$	$+5.384 E+00$	＋1．123E＋01	-70.30	＋3．598E－03	＋ $3.030 \leq-39$	$+2.7215-03$	＋4．33n¢－ก2	$+1.452 \mathrm{E}-\mathrm{n} 2$	＋7．07クE－39	$+0.000 \mathrm{E}-39$	
		$+4.883 E+00$	＋4．050E＋00	$+5.0388+00$	$+1.163 E+01$	－70．00	＋3．598E－03	＋7．030－37	$+2.544 \mathrm{E}-03$	$+4.302 E-12$	＋1．51 5 E－02	＋0．02クE－39	$+0.000 \mathrm{E}-39$	
		$+4.947 E+00$	＋4．176E＋00	＋4．692E＋00	$+1.197 E+01$	-70.30	＋7．5981－23	＋2．030E－37	＋2．329E－03	＋4．7755－7？	$+1.559 \mathrm{~F}-02$	＋0．000E－39	$+0.000 \mathrm{E}^{-39^{-}}$	
		＋5．010E＋00	＋4．302F＋00	＋4．346E＋00	＋1． $2345+01$	－87． 30	$+3.598 \mathrm{r}-33$	$49.030=-37$	$+2.193 \mathrm{~L}-03$	＋4．749E－3	$+1.606 \mathrm{~F}-03$	$+7.020 \mathrm{E}-30$	$+0.300 \mathrm{E}-39$	
		＋5．010E＋00	＋4．367E＋00	$+3.977 E+00$	$+1.271 E+01$	－98．00	＋3．50ge－93	＋7．030ミ－37	＋2．325E－33	$+4.724 \mathrm{E}-77$	$+1.855 \mathrm{E}-52$	+n ＋970E－30	＋9．000E－39	
		＋5．010t＋00	＋4．432F＋00	$+3.607 E+00$	$+1.3075+01$	－82．20	＋3．598E－J3	＋3．720E－37	＋1．319－03	$+4.199 F-02$	＋1．707「－2？	＋0． $200 \mathrm{~F}-39$	＋0．000F－39	
		＋5．010c＋00	＋4．407E＋70	＋3．738E＋00	$+1.3452+111$	－80．00	$+3.599 \mathrm{~F}-03$	＋3．330 -37	$+1.532=-03$	＋4．175F－72	+1.75 25－02	$+0.000 E-39$	＋0．000E－39	
		$+5.010 \mathrm{~F}+00$	$+4.563 F+00$	$+2.869 \mathrm{E}+00$	$+1.334 E+31$	-80.70	＋3．509E－03	＋9． 300 － 37		＋4．153E－n）	＋1．8nlf－3？	$+7.000 \mathrm{~F}-39$	＋0．00nE－39	
		＋5．010E＋00	$+4.628 E+00$	$+2.500 E+00$	$+1.421 E+51$	－87． 30	$+3.598 \mathrm{E}-53$	＋3．0） 0 ¢－39	＋1．259E－73	＋4．131r－7）	$+1.85 j 5-7 ?$		＋0．000F－39	
		－प10E＋00	E＋00	2．13UE＋DO	$+1.459 \mathrm{E}+\mathrm{U} 1$	－ 20	＋3．598F－03	＋3．0）－	＋1．773E－73	＋．101R－10	＋1＊ヶう－72			

 $10+5.010 E+00+4.823 E+00+1.392 E+00+1.534 E+01-83.20+3.593 \mathrm{E}-33+3.330 E-39+7.313 \mathrm{E}-04+4.969 \mathrm{~F}-32+1.995 \mathrm{~F}-02+0.990 \mathrm{E}-39+3.703 \mathrm{~F}-39$ $-10+5.010 \mathrm{E}+00+4.823 \mathrm{E}+00+1.392 \mathrm{E}+00+1.534 \mathrm{E}+01-80.00+3.593 \mathrm{E}-73+0.030 \mathrm{E}-39+5.147 \mathrm{E}-04+4.049 \mathrm{E}-72+2.045 \mathrm{~F}-92+0.700 \mathrm{E}-39+0.000 \mathrm{E}-39$

 $10+5.010 E+00+5.084 E+00+8.561 E-02+1.584 E+01-80.00+3.598 E-03+0.030 E-37+4.312 E-05+3.993 E-32+7.192 E-02+0.030 E-39+0.000 E-39$

-

\qquad
\qquad
\qquad
\qquad
\qquad
-- ----
--. ...-.....

- --...
----. - .
\qquad
(
$1+1.899 E-02$
$1+1.539 E-02$ $+6.848 \mathrm{E}-03$ $+6.848 \mathrm{E}-03+3.045 \mathrm{E}-03+2.1 \mathrm{P} 2 \mathrm{E}-02$
+1.71 $1+1.713 E-03+9.317 \mathrm{~F}-03+1.523 E-02$ $+0.000 \mathrm{E}-39+1.899 \mathrm{~F}-02+2.171 \mathrm{E}-01$
$+1.713 \mathrm{E}-03+3.204 \mathrm{E}-02+2.812 \mathrm{E}-01$ $1+1.713 \mathrm{E}-03+3.204 \mathrm{E}-02+2.812 \mathrm{E}-01$ $1+6.848 \mathrm{E}-03+4.842 \mathrm{E}-02+3.445 \mathrm{E}-01$ $+1.539 \mathrm{E}-02+6.810 \mathrm{E}-02+4.079 \mathrm{~F}-01$ $1+1.899 \mathrm{E}-02+7.538 \mathrm{E}-07+4.275 \mathrm{E}-01$ $1+1.539 \mathrm{E}-02+6.810 \mathrm{E}-02+4.079 \mathrm{~F}-01+4.145 \mathrm{E}-01$
$1+1.899 \mathrm{E}-02+7.538 \mathrm{E}-02+4.275 \mathrm{E}-01+4.353 \mathrm{E}-01$
$1+2.732 \mathrm{E}-02+9.102 \mathrm{E}-02+4.683 \mathrm{E}-01+4.803 \mathrm{E}-01$
$1+4.259 \mathrm{E}-02+1.171 \mathrm{E}-01+5.283 \mathrm{E}-01+5.454 \mathrm{E}-01$ $+4.259 \mathrm{E}-02+1.171 \mathrm{E}-01+5.283 \mathrm{E}-01+5.454 \mathrm{E}-01$ $+6.118 \mathrm{~F}-02+1.463 \mathrm{E}-01+5.868 \mathrm{E}-01+6.109 \mathrm{E}-01$
$+8.302 \mathrm{E}-02+1.785 \mathrm{E}-01+6.438 \mathrm{E}-01+6.753 \mathrm{E}$ $1+1.081 \mathrm{E}-01+2.137 \mathrm{E}-01+6.938 \mathrm{E}-01$ $1+1.362 \mathrm{E}-01+$ $3+1.675 \mathrm{E}-01$ $3+9$ 527E-01 $3+1.345 \mathrm{E}+00$ $3+1.738 \mathrm{E}+00$ $3+2.130 E+00$ $3+2.523 E+00$ $+2.916 E+00$ $3+3.308 \mathrm{E}+00$ $+3.701 E+00+4.330 E+00+5.615 \mathrm{E}+00+7.154 \mathrm{E}+00$ $+4.093 E+00+5.340 E+00+6.818 E+00+8.725 E+00$ $4+4.093 \mathrm{E}+00+5.341 \mathrm{E}+00+6.821 \mathrm{~F}+00+8.727 E+00$ $4+4 \cdot 102 \mathrm{E}+00+5 \cdot 350 \mathrm{E}+00+6.830 \mathrm{E}+00$ $4+4.112 E+00+5.362 E+00+6.830 E+00+8.740 E+00$ $4+4.112 E+00+5.362 E+00+6.840 E+00+8.756 E+00$
$4+4.123 E+00+5.375 F+00+6.849 E+00+8.772 \mathrm{E}+00$ $4+4.123 E+00+5.375 F+00+6.849 E+00+8.772 E+00$
$4+4.135 E+00+5.389 E+00+6.857 E+00+8.797 E+00$ $4+4.135 \mathrm{E}+00+5.389 \mathrm{E}+00+6.857 \mathrm{E}+00+8.787 \mathrm{E}+00$
$4+4.148 \mathrm{E}+00+5.403 \mathrm{~F}+00+6.863 \mathrm{~F}+00+8.803 \mathrm{E}+00$ $4+4.148 \mathrm{E}+00+5.403 \mathrm{~F}+00+6.863 \mathrm{~F}+00+8.803 \mathrm{E}+00$
$4+4.162 \mathrm{E}+00+5.418 \mathrm{~F}+00+6.868 \mathrm{E}+00+8.819 \mathrm{E}+00$ $4+4.177 E+00+5.434 E+00+6.871 E+00+8.835 E+00$ $4+4.192 \mathrm{~F}+00+5.449 \mathrm{E}+00+6.872 \mathrm{E}+70+8.353 \mathrm{E}+00$ $4+4.208 \mathrm{E}+00+5.465 \mathrm{E}+00+6.872 \mathrm{E}+00+9.865 \mathrm{E}+00$ $8+4.223 E+00+5.481 \mathrm{E}+00+6.870 \mathrm{E}+00+8.882 \mathrm{E}+00$ $8+4.244 E+00+5.501 \mathrm{E}+00+6.865 \mathrm{E}+00+8.933 \mathrm{E}+00$ $8+4.255 E+00+5.520 E+00+6.857 E+00+8.924 E+00$ $8+4.284 E+00+5.538 E+00+6.846 E+00+8.945 E+00$ $8+4.303 \mathrm{~F}+00+5.555 \mathrm{E}+00+6.833 \mathrm{E}+00+8.965 \mathrm{E}+30$
$8+4.320 \mathrm{~F}+00+5.569 \mathrm{E}+00+6.818 \mathrm{E}+00+8.985 \mathrm{~F}+00$ $8+4.320 \mathrm{~F}+00+5.569 \mathrm{E}+00+6.818 \mathrm{E}+00+8.985 \mathrm{E}+00$
$8+4.335 \mathrm{E}+00+5.582 \mathrm{~F}+00+6.802 \mathrm{E}+00+9.927 \mathrm{~F}+00$ $8+4.335 \mathrm{E}+00+5.582 \mathrm{~F}+00+6.802 \mathrm{E}+00+9.307 \mathrm{E}+00$
$8+4.348 \mathrm{E}+00+5.592 \mathrm{~F}+00+6.783 \mathrm{~F}+00+9.028 \mathrm{t}+00$ $8+4.348 \mathrm{E}+00+5.592 \mathrm{~F}+00+6.783 \mathrm{~F}+00+9.028 \mathrm{E}+00$
$8+4.358 \mathrm{~F}+00+5.599 \mathrm{E}+00+6.763 \mathrm{E}+03+9.049 \mathrm{E}+00$
 $9+4.371 \mathrm{E}+00+5.604 \mathrm{E}+00+6.722 \mathrm{E}+00+9.091 \mathrm{E}+00$ $9+4.435 \mathrm{E}+00+5.604 \mathrm{~F}+10+6.354 \mathrm{~F}+00+9.757 \mathrm{E}+70$ $9+4.499 E+00+5.604 \mathrm{~F}+70+5.986 \mathrm{~F}+70+3.824 \mathrm{~F}+70$
$9+4.563 \mathrm{~F}+00+5.604 \mathrm{E}+03+5.617 \mathrm{~F}+00+1.427 \mathrm{E}+01$
 $9+4.627 E+00+5.5045+17+5.749[+103+1.1561++11$
$9+4.591 E+00+5.6045+07+4.881 E+00+1.391+191$ $9+4.591 E+00+5.504 F+4 n+4.8 B 1 E+00+1.393+01-1$
$9+4.755 \mathrm{~F}+00+5.664 \mathrm{E}+00+4.513 E+02+1.130 \equiv+171$ $9+4.819 \mathrm{~F}+00+5.6\left(4 \mathrm{E}+00+4.145 \mathrm{~F}+0 \mathrm{ON}+1.15 ? \mathrm{E}+\mathrm{Cl}^{\prime} 1\right.$ $9+40975+00+5.5045+00+3.409 \mathrm{E}+00+1 \cdot 204+21$

$+0.00 J E-39+$
$+2.182 E-02+$

$8.727 E-02$ +. $277 E-02$
$+1.527 E-01$ $+90.00+$
$+89.00+$
$+86.00+$
$+1.902 \mathrm{~F}+7 \mathrm{G}+4.839 \mathrm{E}-35$
\qquad 4.839E-75
$1.533=+0$
$+2.77 \mathrm{TF}-$
7. 797F-39
. $777 \mathrm{~F}-3$
$+5.9935-97$ 5.743E-02 $+5.365 F-93$

 $+80.00+7.698 \mathrm{E}-91$
$+77.00+9.494 \mathrm{E}-01$ $+77.00+9.494 \mathrm{E}-01$
$+74.00+9.243 \mathrm{E}-01$ $+74.00+9.243 E-01-2.974=+01$ $71.00+8.940 \mathrm{E}-01-3.455 \mathrm{E}+91$ $+7.345 E-01+9.959 \mathrm{E}-11$
$+9.35 \mathrm{SE}-01+1.137 \mathrm{~F}+\mathrm{no}$ $+9.355=-01+1.1375+00$
$+3.753=-91+1.375$ $+3.7325-01+1.7675+30$ $19.739 \mathrm{~F}-01+1.3475+9$ $+3.37+E-01$ $9.3392-21+1.4515+20+$ $48.353 E-01+1.544 E+77$
$+7.735 E-21+1.595$
$1.639 \mathrm{~F}-\mathrm{n}$
$2.6655-32$
$+3.962 \mathrm{~F}-73$ $+5.463 F-ก$
$+5.0735-0$ 7.137E-n $8.922 \mathrm{E}-33$ 1.021F$+5.346 F-0 ?$
$+7.020 F=39$ $+7.0 J 0 F-39$
$+7.070=-39$ +1.997 E-0 + . 0 no $=-39+2.767 E-07$ $+7.000 \mathrm{~F}-30+3.713 \mathrm{E}-02$ $+7.7005-39+4.369 \mathrm{~F}-02$ $+7.000 \mathrm{E}-39+4.346 \mathrm{E}-02$ $+65.0 n+8.214 \mathrm{~F}-31-3.899 \mathrm{E}-\mathrm{Cl}+3.339 \mathrm{E}-21+1.517 \mathrm{E}+7 \mathrm{n}+2.922 \mathrm{E}-33+0.000 \mathrm{~F}-39+6.176 \mathrm{E}-02$ $+52.00+7.795 \mathrm{~F}-71-4.653 \equiv+J 149.353 E-01+1.544 E+77+1.081 \mathrm{~F}-07$ + $7.000 \mathrm{~F}-39+7.717 \mathrm{~F}-02$ $+59.00+7.347 F-01-4.956 \mathrm{E}+71+7.735 E-71+1.592 \mathrm{E}+3 \mathrm{y}+1.272 \mathrm{E}-72+3.700 \mathrm{~F}-30+9.484 \mathrm{E}-02$
$+56.00+6.873 E-01-5.234 E+71+7.339 E-01+1.695=+77+1.452 \varepsilon-02+0.710 F-39+1.150 \mathrm{E}-01$ $+53.00+6.378 \mathrm{E}-31-5.396 \equiv+31+7.315 \mathrm{E}-01+1.591 \mathrm{~F}+79+1.545 \mathrm{E}-02+0.000 \mathrm{E}-39+1.379 \mathrm{E}-01$ $+50.90+5.869 \mathrm{~F}-91+7.320 E-37+5.155 E-\mathrm{N}_{1}+1.591 E+79+1.917 \mathrm{E}-97+9.000 \mathrm{E}-39+1.334 \mathrm{E}-01$ $+50.00+5.869 \mathrm{E}-31+9.090-37+4.15 \mathrm{AE}-71+1.397 \mathrm{~F}+3 n+3.457 \mathrm{~F}-22+0.0005-39+3.783 \mathrm{E}-01$ $+50.00+5.868 \mathrm{E}-01+0.000$ E-39 +3.439E-21+1.297F+70+5.087F-02+0.000E-39+5.065E-01 $+56.00+5$
$+50.00+5$. $+50.00+5.868 E-11$
$+50.00+5.868 E-01$ $50.00+5.868 \mathrm{E}-01+3$
$+50.30+5.868 \mathrm{E}-01+3$ $50.30+5.868 E-91+$
$+50.00+5.868 \mathrm{E}-01$ $50.00+5.868 \mathrm{E}-01+0.030 \mathrm{E}-39$
+50.030 $50.00+5.868 \mathrm{E}-01+3.030 E-37$
$50.00+5.86 \mathrm{E}-37$ $50.00+5.868 \mathrm{E}-01$ $48.94+5.685 \mathrm{E}-01$ $4.00+4.844 \mathrm{E}-01-4.633 \mathrm{z}+32$ $50.00+5.868 \mathrm{E}-01+3.030 \mathrm{E}-37+1.975 \mathrm{E}-71+1.015 \mathrm{~F}+37$
$50.00+5.868 \mathrm{E}-01-4.606 \mathrm{E}+32+3.274 \mathrm{E}-01+9.974 \mathrm{~F}-01$
$48.94+5.685 \mathrm{E}-01-4.633 E+32+3.235 \mathrm{E}-91+9.956 \mathrm{E}-01$
$44.00+4.844 \mathrm{E}-01-4.675 \mathrm{E}+32+2.938 \mathrm{E}-31+9.770 \mathrm{E}-91$
$38.00+3.813 \mathrm{E}-31-4.539 \mathrm{E}+32+2.555 \mathrm{E}-01+9.077 \mathrm{E}-01$
 $+25.00+2.309 E-01-2.655 E+32+2.235 E-01+9.1275-71+1.637 E-01+0.0505-39+9.315 E-01$

 $-10.00+3.743 E-02-5.931 E+31+5.317 E-02+2.353 E-71+5.503 F-32+0.000 E-39+1.993 E+00$
$-18.00+2.269 E-02-3.921 E+J 1+3.375 E-52+1.5745-11+4.711 F-37+7.000 E-39+7.770 E+00$

 $42.00+3.958 E-03-8.676 E+33+9.43 \mathrm{BF}-03+4.954 \mathrm{~F}-77+1.747 \mathrm{~F}-\mathrm{n} 2+0.000 \mathrm{E}-39+0.000 \mathrm{~F}-39$ $50.90+3.59 \mathrm{EE-73}+7.330$ E-37+3.395E-77+4.5275-92+i.175E-05+0.000E-39+0.700E-39 $58.00+3.598 \mathrm{E}-03+2.030 \mathrm{E}-37+3.297 \mathrm{E}-22+4.525 \mathrm{E}-72+1.172 \mathrm{~F}-32+0.020 \mathrm{~F}-39+0.000 \mathrm{E}=39$ $56.7 n+3.508 \mathrm{E}-03+2.730$ E-39 +3.279 E-03 $+4.523 \mathrm{~F}-72+1.175 \mathrm{E}-30+0.700 \mathrm{E}-39+0.000 \mathrm{E}-39$
 $82.70+3.598=03+5.090 \equiv-39+3.252 \mathrm{~F}-13+4.51 \mathrm{GF}-77+1.181 \mathrm{~F}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
 90 . $06+3.598 E-03+3.030 \equiv-37+2.1315-2144.4315-12+1.2315-77+7.0105-39+0.000 \mathrm{E}-39$ $90.7 \mathrm{H}+3.598 \mathrm{E}-02+3.030 \mathrm{E}-37+2.712 \mathrm{E}-12+4.4175-72+1.273 \mathrm{~F}-97+7.790 \mathrm{~F}-39+7.000 \mathrm{E}-39$ $90.79+3.599 E-33+7.017 \equiv-37+2.3437-12+4.414 \mathrm{~F}-17+1.327 \mathrm{~F}-72+2.71 \mathrm{MF}-39+2.009 \mathrm{E}-39$

$+5.931 \mathrm{E}-01$ $+6.570 \mathrm{E}-01$

$+7.073 E-01^{-}$

 $+7.487 E-01$ $+7.840 E-01$ $+8.150 E-01$ $+8.429 E=01$ $+8.663 \mathrm{E}-01$$\qquad$

AT ALPHA $=+2.0000 \mathrm{E}+01$ WINOWARD. RW $=+0.0000 \mathrm{~F}-30$ 0ELS $=+7.4505 \mathrm{f}-323343: く=+3.001 \mathrm{FF}-30$

SEC	xO W	X W	Y8 W	SB d	THFTBN	PE/PS W	DP/OS	3) N

 $1+1.081 E-01+3.045 \mathrm{E}-03+8.720 \mathrm{E}-02+8.727 E-02+86.00+9.951 \mathrm{E}-01-7.8125+30+1.121 E+02+7.442 \mathrm{E}-11+3.541 \mathrm{E}-74+0.000 \mathrm{~F}-39+0.002 \mathrm{E}-39$3 F1. $675 \mathrm{E}-01+1.899 \mathrm{E}-02+2.17 \mathrm{LE}-01+2.182 \mathrm{E}-01+80.00+9.65 \mathrm{EE}-01$$3+5.601 \mathrm{E}-01+1.553 \mathrm{~F}-01+9.903 \mathrm{E}-01+1.003 \mathrm{E}+00+80.00+9.698 \mathrm{E}-01$ $\begin{aligned} 3 & +9.527 \mathrm{E}-91 \\ 3+2.917 \mathrm{E}-01+1.764 \mathrm{E}+00 & +1.789 \mathrm{E}+00+80.00+9.698 \mathrm{E}-01\end{aligned}$ $3+1.738 \mathrm{E}+00^{-}+4.644 \mathrm{E}-01+3.537 \mathrm{E}+00+2.574 \mathrm{E}+00+80.00+3.359 \mathrm{E}+00+80.20+9.698 \mathrm{E}-01$
$3+2.130 \mathrm{E}+00+7.007 \mathrm{E}-01+4.083 \mathrm{E}+00+4.1+4 \mathrm{E}+90+80.00+9.698 \mathrm{E}-01$ $3+2.523 \mathrm{E}+00+8.371 \mathrm{E}-01+4.857 \mathrm{E}+00+4.929 \mathrm{E}+00+80.00+9.693 \mathrm{E}-01$
$3+2.916 \mathrm{E}+00+9.734 \mathrm{E}-01+5.630 \mathrm{E}+00+5.715 \mathrm{E}+00+80.00+9.698 \mathrm{E}-01$ $-3-3.308 E+00 \% 1.110 E+00 \mp 6.403 E+00+6.500 \mathrm{E}+00+87.00+9.698 \mathrm{E}-01$ $3+3.70 \mathrm{IE}+00+1.246 \mathrm{E}+00+7.176 \mathrm{E}+00+7.285 \mathrm{E}+07+80.00+9.699 \mathrm{~F}-01$ $4+4.093 \mathrm{E}+00+1.382 \mathrm{E}+00+7.950 \mathrm{E}+00+8.070 \mathrm{E}+00+80.00+9.698 \mathrm{E}-01$
$4+4.102 \mathrm{E}+00+1.386 \mathrm{E}+00+7.965 \mathrm{E}+00+8.086 \mathrm{E}+00+74.00+9.240 \mathrm{E}-01$ $4+4.102 \mathrm{E}+00+1.386 \mathrm{E}+00+7.965 \mathrm{E}+00+8.086 \mathrm{E}+0 \mathrm{ol}+74.00+9.240 \mathrm{E}-01$
$4+4.112 \mathrm{E}+00+1.391 \mathrm{E}+00^{-}+7.980 \mathrm{E}+00+8.102 \mathrm{E}+00+68.00+8.597 \mathrm{E}-31$ $4+4.123 E+00+1.398 \mathrm{E}+00+7.994 \mathrm{E}+00+8.117 \mathrm{E}+00+62.00+7.795 \mathrm{E}-01$ $4+4.135 E+00+1.406 E+00+8.008 E+00+8.133 E+00+56.00+6.873 E-01$ $4+4.148 \mathrm{E}+00+1.415 \mathrm{E}+00+8.020 \mathrm{E}+00+8.1+9 E+00+50.00+5.868 \mathrm{E}-01$ $4+4.148 E+00+1.417 E+00+8.022 E 700+8.15 I E+00+48.94+5.685 E-01$ $4+4.162 \mathrm{E}+00+1.426 \mathrm{E}+00+8.032 \mathrm{E}+00+8.164 \mathrm{E}+00+44.00+4.844 \mathrm{E}-01$ $4+4.177 E+00+1.438 E+00+8.042 E+00+E .180 \mathrm{E}+00+38.00+3.813 \mathrm{E}-01$
$4+4.192 \mathrm{E}+00+1.451 \mathrm{E}+00+8.051 \mathrm{E}+00+8.195 \mathrm{E}+00+32.00+2.981 \mathrm{E}-01$ $4+4.208 E+00$
$8+4.223 E+00$ $8+4.223 E+00+1.479 \mathrm{~F}+00$

0
+8.
+8.

$\qquad$$+4 \cdot 358 E+00$$+4.371 E+00+1.660 E+00+7.999 \mathrm{E}+00+8.437 \mathrm{E}+00-60.00+3.599 \mathrm{E}-03$
$9+4.595 \mathrm{E}$ $9+4.435 \mathrm{E}+00+1.844 \mathrm{E}+00+7.680 \mathrm{E}+00+8.805 \mathrm{E}+00-60.00+3.598 \mathrm{E}-03$ $-9+4.499 E+30+2.028 E+00+7.361 E+00+9.1 .73 E+00$ $9+4.563 \mathrm{E}+00+2.212 \mathrm{~F}+00+7.042 \mathrm{~F}+00+9.54 \mathrm{E} \mathrm{E}+00-40.00+3.599 \mathrm{E}-.33$ $+4.627 E+00+2.396 E+00+6.723 E+00+9.909 E+00$
$9+4.691 E+00+2.581 E+00+6.404 E+00+1.928 E+01$ $9+4.819 \mathrm{E}+00+2.949 \mathrm{E}+00+5.767 \mathrm{E}+00+1.065 \mathrm{E}+01-$ $9+4.883 E+00+3.133 E+00+5.448 E+00+1.133 E+J 1$
$9+4.947 E+00+3.317 E+00+5.129 E+00+1.175 E+01$. $\quad 10+5.010 \mathrm{E}+00+3.501 \mathrm{E}+00+4.810 \mathrm{E}+00+1.212 \mathrm{E}+01$ $10+5.010 E+00+3.629 E+00+4.459 E+00+1.2+9 E+01$ $10+5.010 E+00+3.758 F+00+4.105 E+00+1 . \geq 37 E+01$ $10+5.010 E+00+3.886 E+00+3.753 F+00+1.324 \tilde{\mathrm{E}}+71$ $10+5.010 \mathrm{E}+00$ $10+5.010 F+00+4.014 E+00+3.400 E+00+1.332 E+01$. $10+5.010 \mathrm{~F}+00+4.142 \mathrm{E}+00+3.048 \mathrm{E}+00+1.359 \mathrm{E}+11-70.00+3.599 \mathrm{E}-37$ $10+5.010 E+00+4.271 E+00+2.696 E+00+1.437 E+01-71+20+3.599 F-103$ $10+5.010 \mathrm{E}+00+4.399 \mathrm{~F}+00+2.343 \mathrm{~F}+00+1.474 \mathrm{E}+01-70.30+3.509 \mathrm{E}-33$ $10+5.010 E+00+4.527 \mathrm{E}+00+1.991 \mathrm{E}+9 \mathrm{n}+1.512 \mathrm{E}+21-70.00+2.598 \mathrm{~F}-03$
$10+5.010 \mathrm{E}+00+4.655 \mathrm{E}+00+1.639 \mathrm{E}+00+1.54 \mathrm{yE}+01-70.00+3.598 \mathrm{~F}-03$ $10+5.010 E+00+4.655 \mathrm{E}+00+1.639 E+00+1.549 \mathrm{E}+01-70.00+3.598 \mathrm{~F}-03+$
$10 \pm 5.010 \mathrm{O}+00+4.784 \mathrm{E}+00+1.286 \mathrm{~F}+\mathrm{OD}+1.537 \mathrm{E}+01-77.00+3.593 \mathrm{~F}-63$
$-1.359 E+31+3.373 E-01+8.049 F-11+7.923 E-04+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.050-37+8 .+4+5-01+9.857 E-01+1.602 F-03+3.000 E-39+0.000 E=39$ $+3.030-37+3+229 \mathrm{E}-01+7.268 \mathrm{E}-01+7.357 \mathrm{E}-\mathrm{j3}+0.030 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.00 \mathrm{E}-37+2.534 \mathrm{E}-01+6.473 \mathrm{~F}-91+1.311 \mathrm{E}-07+0.002 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+3.000-37+2.197 \mathrm{E}-01+6.01 \mathrm{BE}-71+1.887 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.000-37+2.197 E-01+6.018 \mathrm{E}-71+1.887 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+3.020 \mathrm{E}-37+1.737 \mathrm{E}-31+5.706 \mathrm{E}-01+2.463 \mathrm{E}-32+0.000 \mathrm{E}-39+0.006 \mathrm{E}-39$ $+3.030 \mathrm{E}-37+1.753 \mathrm{E}-61+5.477 \mathrm{E}-01+3.03 \mathrm{E}+3 \mathrm{E}-72+7.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+0.030 \mathrm{E}-37+1.753 \mathrm{E}-01+5.477 \mathrm{E}-7 \mathrm{I}+3.739 \mathrm{E}-72+7.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+0.030 \mathrm{E}-37+1.511 \mathrm{E}-01+5.785 \mathrm{E}-01+3.614 \mathrm{E}-77+7.000 \mathrm{~F}-39+0.000 \mathrm{E}-39$ $+7.030 \mathrm{E}-39+1.49 \partial \mathrm{E}-01+5.131 \mathrm{E}-91+4.193 \mathrm{E}-32+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+0.030 E-39+1.407 \mathrm{E}-01+5.711 \mathrm{E}-01+4.765 \mathrm{~F}-07+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+0.00 \mathrm{E}-39+0.000 \mathrm{E}-39$
 $+1.600-37+1.330 \mathrm{E}-01$
$-1.632+2.972 \mathrm{E}-01$ $-2.479 E+32+3.33$ SE-01 -3. 249 + $+32+4.353 \mathrm{E}-91$ -3. $878 E+52$ $-4.337 E+32$
 $+4.357 E-91+9.223 \mathrm{~F}-01+1.204 \mathrm{E}-01$ $+4 .+34 \mathrm{E}-91+9.323 \mathrm{~F}-21+1.436 \mathrm{E}-01$ $+4.375 \mathrm{E}-01+1.046 \mathrm{E}-01+1.603 \mathrm{E}-01$ $+4.413 E-01+1.011 F+30+1.697 E-01$ $+4.413 E-01+1.000 \mathrm{~F}+70+1.705 \mathrm{E}-71$ $-4.633 \mathrm{E}+32+4.413 \mathrm{E}-0 \mathrm{I}+1.000 \mathrm{~F}+70+1.705 \mathrm{E}-71+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$-4.675 \mathrm{E}+32+4.122 \mathrm{E}-01+9.833 \mathrm{~F}-71+1.711 \mathrm{E}-01+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
-4.539 $-4.539 E+52+3.555 \mathrm{E}-31+9.131 \mathrm{E}-51+1.546 \mathrm{E}-01+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $-3.310 \mathrm{E}+32+3.394 \mathrm{E}-01+8.239 \mathrm{E}-01+1.529 \mathrm{E}-01+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $-2.655 \mathrm{E}+32+2.53 J \mathrm{E}-5 \mathrm{I}+7.273 \mathrm{E}-01+1.385 \mathrm{E}-01+0.000 \mathrm{E}=39+0.000 \mathrm{E}=39$ $-2.142 \equiv+32+2.15$ 上E-01 +6.317E-31 +1.232E-01 +0.000E-39 +0.000E-39 $-1.597 E+32+1.527 E-01+5.096 \mathrm{E}-01+1.022 \mathrm{E}-01+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $-1.1+8 E+32+1.201 \mathrm{E}-21+3.987 \mathrm{E}-21+8.219 \mathrm{E}-02+0.000 \mathrm{E}-39+0.009 \mathrm{E}-39$ $-8.043 E+51+3.591 \mathrm{E}-02+3.019 \mathrm{~F}-01+6.387 E=52+0.000 \mathrm{E}-39+0.000 \mathrm{EF}-39$ $-5.412 \equiv+31+5.334 \mathrm{E}-02+2.220 \mathrm{E}-31+4.816 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $-3.592 \bar{E}+51-4.046 E-02 \mp 1.576 E-01+3.503 E-02$ $-2.254 \mathrm{E}+31+2.571 \mathrm{E}-07+1.084 \mathrm{~F}-21+2.457 \mathrm{~F}-02$ $-1.379 z+j 1+1.721 E-02+7.212 \mathrm{E}-72+1.579 \mathrm{E}-02$
$-8.037 E+3 j+1.391 \mathrm{E}-02+4.616 \mathrm{E}-\mathrm{n} 2+1.099 \mathrm{~F}-72$ $-8.037 E+3 j+1.931 \overline{1}-02$ $+3.000=-37+4.704=-03$ $+4.704 E-03$ $+4.704 E-03$
$+4.57 \mathrm{E}-03$

$+4.493=-03$

$+4.493=-03$
$+4.297 E-03$
$+4.397 E-03$
 $+3.89 \mathrm{EE}-03+4.44 \mathrm{JE}-92+1.297 \mathrm{~F}-37+7.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.88 \mathrm{BE}-03+4.407 \mathrm{~F}-72+1.33 \mathrm{BE}-72+0.000 \mathrm{E}-39+0.00 \mathrm{~F}-39$
$+3.53 \mathrm{JE}-03+4.375 \mathrm{E}-72+1.38 \mathrm{EE}-77+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.53 \mathrm{E}-03+4.37 \mathrm{E}=-72+1.38 \mathrm{EE}-3 ?+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3 .+91 \mathrm{E}-33+4.347 \mathrm{E}-72+1.434 \mathrm{E}-32+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+3.294 \mathrm{E}-03+4.31 \mathrm{E}-02+1.497 \mathrm{E}-72+7.010 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.294 E-03+4.31 \mathrm{BE}-02+1.497 \mathrm{E}-32+7.010 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+3.299 \mathrm{E}-33+4.27 \mathrm{E}-32+1.53 \mathrm{E}-02+0.020 \mathrm{E}-39+0.000 \mathrm{E}-39$ +3. $299 E-03+4.271 E-32+1.535 E-02+0.020 E-39+0.000 \mathrm{E}-39$
$+2.702 E-03+4.255 E-32+1.577 \mathrm{~F}-02+0.000 E-39+0.000 \mathrm{E}-39$ $+2.702 \mathrm{E}-03+4.255 \mathrm{E}-32+1.577 \mathrm{~F}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+2.537 \mathrm{E}-03+4.239 \mathrm{E}-22+1.526 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+2.537 \mathrm{E}-03+4.739 \mathrm{E}-22+1.526 \mathrm{E}-02+9.000 E-39+0.000 \mathrm{E}-39$
$+2.773 \mathrm{E}-73+4.214 \mathrm{~F}-37+1.475 \mathrm{E}-92+0.090 \mathrm{~F}-39+0.000 \mathrm{E}-39$
 $+2.345 \mathrm{~F}-33+4.156 \mathrm{~F}-72+1.773 \mathrm{E}-\mathrm{n} 7+0.090 \mathrm{E}-39+0.000 \mathrm{~F}-39$ $+1.3345-03+4.1445-32+1.722 \mathrm{~F}-72+0.920 \mathrm{~F}-39+7.000 \mathrm{E}-39$ $+1.521 E-03+4.172 E-27+1.879 F-02+9$. MONF-39 +0.000E-39 $+1.477 E-33+4.171 F-77+1.919 E-32+7.900 E-39+0.009 E-30$
 +7.347 En- $14+4.747 \mathrm{~F}-77+2.917 E-(3)+2.000 \mathrm{E}-39+0.000 \mathrm{E}-3$ $37+7.730 E-74+4.1411-77+7$. nSSE-22 +7.3ñE-39 +0.000F-39 $+2.090 \mathrm{E}-30+0.000 \mathrm{E}-39$ $+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+0.300 E-39+0.000 E=3$ $0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$. 10 E-39 +0.000 . 000 E-39 +0.003E-39 $0.000 E-39+0.000 E-39$ $0.000 \mathrm{E}-39+0.002 \mathrm{E}-39$
$0.000 \mathrm{E}-39 \div 0.00 \mathrm{E}-39$ $+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $4.616 F-n 2+1.097 f-72+3.000 \mathrm{~F}-39+3.005 \mathrm{E}-39$ $4.587 \mathrm{~F}-02+1.795 \mathrm{E}-02+0.0002+3.000 \mathrm{E}-39$ $4.585 E-22+1.799 \mathrm{E}-32+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+3.030=-3$ $+7.030=-39$ $+3.030 \equiv-37$ $+5 \cdot 3 J 0=-33$
$+5 \cdot 230 E-39$ $+7.000 \equiv-37$ $+3.030 E-37$ $+9.030 \equiv-3$ $+7.030=-39$ $+7.037=-33$
$+7.05 ก=-39$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 $10+5.010 E+00+5.040 E+00+5.814 E-31+1.562=+01-70.00+3.598 E-03+3.030 E-37+3.474 E-74+4.034 \Gamma-72+2.163 E-72+0.2005-39+0.003 E-39$ $10+5.010 \mathrm{E}+00+5.168 \mathrm{E}+00+2.290 \mathrm{E}-01+1.579 \mathrm{E}+01-70.00+3.592 \mathrm{E}-33+3.300=-37$ $10+5.010 E+00+5.297 E+00+1.234 E-01+1.737 E+71-73.30+3.599 E-73+7.000 E-37+7.715 E-35+3.938 E-72+2.751 F-07+n .707 E-29+0.203 E-39$

- - -

...
-. -
-

$$
\begin{aligned}
& \text { - - } \\
& \text {--......- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - -.. } \\
& \text {-- } \\
& \text {-- }
\end{aligned}
$$

 $+6.118 \mathrm{~F}-02+7.615 \mathrm{E}-04+4.362 \mathrm{~F}-02+4.353 \mathrm{E}-02+90.09+1.003 \mathrm{E}+00+4.839 \mathrm{E}-33+1.123 \mathrm{E}+00+7.710 \mathrm{r}-30+0.007 \mathrm{~F}-37+8.197=-01+7.450 \mathrm{E}-02$ (

 $1+6.848 \mathrm{E}-03+3.713 \mathrm{E}-02+3.024 \mathrm{E}-01+3.054 \mathrm{E}-01+76.00+9.415 \mathrm{E}-01-2.635 \mathrm{E}+71+7.730 \mathrm{E}-01+1.181 \mathrm{E}+70+3.073 \mathrm{E}-03+0.000 \mathrm{E}-39+\mathrm{B} .028 \mathrm{E}-02$ $1+1.713 E-03+5.462 E-02+3.655 E-01+3.7 J 7 E-01+73.00+9.145 E-01+3.139 E+31+7.535 E-01+1.320 E+77+4.442 E-03+3.0 J 0 E-39+8.343 E-025$
 $1{ }^{1-}+1.713 \mathrm{E}-03+9.937 \mathrm{E}-02+4.884 \mathrm{E}-01+5.018 \mathrm{E}-01+67.00+8.473 \mathrm{E}-31-4.038 \mathrm{E}+3 \mathrm{E}+7.175 \mathrm{E}-01+1.475 \mathrm{~F}+70+7.719 \mathrm{E}-03+9.390 \mathrm{E}-39+9.265 \mathrm{E}-02$ $1+6.848 \mathrm{E}-03+1.265 \mathrm{E}-01+5.480 \mathrm{E}-01+5.572 \mathrm{E}-01+64.00+8.078 \mathrm{E}-01-4.423 \mathrm{E}+31+9.994 \mathrm{E}-01+1.535 \mathrm{~F}+79+9.547 \mathrm{E}-03+5.000 \mathrm{E}-30+9.902 \mathrm{E}-02$ T1. $539 \mathrm{E}-02+1.567 \mathrm{~F}-01+6.060 \mathrm{E}-01+6.327 \mathrm{E}-01+61.00+7.659 \mathrm{E}-01-4.750 \mathrm{E}+31+3.575 \mathrm{E}-01+1.576 \mathrm{E}+37+1.144 \mathrm{E}-32+0.000 \mathrm{E}-30+1.069 \mathrm{E}-01$ $1+2.732 \mathrm{E}-02+1.899 \mathrm{E}-01+6.624 \mathrm{E}-01+6.981 \mathrm{E}-01+58.00+7.192 \mathrm{E}-01-5.045 \mathrm{E}+71+3.323 \mathrm{E}-01+1.599 \mathrm{E}+07+1+335 \mathrm{E}-22+0.000 \mathrm{~F}+39+1.06 \mathrm{E}-01$
$+4 * 259 \mathrm{E}-02+2.261 \mathrm{E}-01+7.170 \mathrm{E}-01+7.635 \mathrm{E}-51+55.00+6.710 \mathrm{E}-01-5.274 \mathrm{E}+31+7.343 \mathrm{~F}-01+1.606 \mathrm{E}+30+1.524 \mathrm{~F}-72+0.00 \mathrm{~F}+39+1.161 \mathrm{E}-01$ $1+6.118 \mathrm{E}-02+2$ $1+7.538 E-02+2$
$1+8.302 E-02$ $1+8.302 \mathrm{E}-02+3$ $1+8.302 \mathrm{E}-02+3$

$1+1.081 \mathrm{E}-01+3$ $-\frac{1}{1}+1.081 E-01+3$ $3+1.675 \mathrm{E}-01+4$ | $3+5.601 \mathrm{E}=01+1$ |
| :--- |
| $3+0.527 E$ | $3+9.527 E-01+$ $3+1.738 \mathrm{E}+00$ $3+2.130 \mathrm{E}+00$ $+2.916 \mathrm{E}+00+4.055 \mathrm{E}+00+3.986 \mathrm{E}+00+5.802 \mathrm{E}+00$ $+3.308 \mathrm{E}+00+5.258 \mathrm{E}+00+4.491 \mathrm{E}+00+6.587 E+00$ $3+3.701 E+00^{-}+5-860 E+00+5.500 E 700+8.153 E+00$ $4+4.093 \mathrm{E}+00+6.461 \mathrm{E}+00+6.005 \mathrm{E}+00+8.943 \mathrm{E}+00$ $474.102 E+0076.474 \mathrm{E}+00+6.014 \mathrm{E}+00 \mathrm{~F}+8.959 \mathrm{E}+00$ $4+4.112 \mathrm{E}+00+6.487 E+00+6.022 \mathrm{E}+00+8.974 \mathrm{E}+00$ 4^{\prime} " $4+123 \mathrm{E}+00+6.502 \mathrm{E}+00+6.029 \mathrm{E}+00+8.990 \mathrm{E}+00$ $4+4.135 \mathrm{E}+00+6.517 \mathrm{E}+00+6.034 \mathrm{E}+00+9.006 \mathrm{E}+00$ $+4.148 \mathrm{E}+000^{-+6.532 \mathrm{E}+00+6.038 \mathrm{E}+00+9.021 \mathrm{E}+00}$ $4+4.162 \mathrm{E}+00+6.547 \mathrm{E}+00+6.039 \mathrm{E}+00+9.037 \mathrm{E}+00$

$4+4.177 \mathrm{E}+00+6.563 \mathrm{E}+00+6.040 \mathrm{E}+00+9.053 \mathrm{E}+00$ $4+4.192 \mathrm{E}+00+6.579 \mathrm{E}+00+6.038 \mathrm{E}+00+9.069 \mathrm{E}+00$ $4+4.208 \mathrm{E}+00+6.594 \mathrm{E}+00+6.035 \mathrm{E}+00+9.084 \mathrm{E}+00$ $3+4.223 \mathrm{E}+00+6.609 \mathrm{E}+00+6.031 \mathrm{E}+00+9.100 \mathrm{E}+00$ $+4.244 \mathrm{E}+00+6.628 \mathrm{E}+00+6.022 \mathrm{E}+00+9.121 \mathrm{E}+30$ $8+4.265 E+00+6.646 E+00+6.011 E+00+9.162 E+00$ $8+4.284 \mathrm{E}+00+6.662 \mathrm{E}+00+5.998 \mathrm{E}+00+9.163 \mathrm{E}+30$ $\mathrm{g}+4.303 \mathrm{E}+00+6.676 \mathrm{E}+00+5.982 \mathrm{E}+00+9.164 \mathrm{E}+00$ $8+4.320 \mathrm{E}+90+6.688 \mathrm{E}+00+5.965 \mathrm{E}+90+9.205 \mathrm{E}+00$ $8+4.335 \mathrm{E}+00+6.697 \mathrm{E}+00+5.946 \mathrm{E}+00+9.225 \mathrm{E}+0 \mathrm{D}$
$8+4.348 \mathrm{E}+00+6.703 \mathrm{E}+00+5.926 \mathrm{E}+00+9.245 \mathrm{~F}+0 \mathrm{D}$ $8+4.348 \mathrm{E}+00+6.703 \mathrm{E}+00+5.925 \mathrm{E}+00+9.245 \mathrm{E}+0 \mathrm{D}$
$8+4.35 \mathrm{BE}+00+6.707 \mathrm{E}+00+5.905 \mathrm{E}+00+9.257 \mathrm{E}+00$ 3 $+4.366 E+30+6.708 E+00+5.885 E+00+9.288 E+00$
 $+49.00+5.668 \mathrm{E}-01-5.528 \mathrm{E}+31+7.14 \mathrm{FE}-71+1.591=+77+1.817 \mathrm{E}-32+3.390 \mathrm{E}-39+1.502 \mathrm{E}-01$ $+48.94+5.685 \mathrm{E}-01-5.558 \mathrm{E}+31+7.335 \mathrm{E}-91+1.57 \mathrm{C} 5+37+1 . \mathrm{A71F-02}+0.000 \mathrm{E}-79+1.555 \mathrm{E}-01$
 $+46.00+5.192 \mathrm{E}-91-5.610 \mathrm{E}+31+5.341 \mathrm{E}-01+1.530 \mathrm{E}+00+2.019 \mathrm{E}-32+0.000 \mathrm{E}-39+1.731 \mathrm{E}-01$ $+43.00+4.670 \mathrm{E}-31-5.599 \equiv+31+5.355 \mathrm{E}-91+1.476 \mathrm{~F}+97+2.142 \mathrm{~F}-72+0.000 \mathrm{E}-39+1.932 \mathrm{E}-01$
$+40.00+4.153 \mathrm{E}-01+3.030 \equiv-39+5.145 \mathrm{E}-01+1.478 \mathrm{~F}+70+2.337 \mathrm{E}-32+0.000 \mathrm{E}-39+2.163 \mathrm{E}-01$ $+40.00+4.153 \mathrm{E}-01+3.030 E-39+5.145 \mathrm{E}-01+1.47 \mathrm{FE}+30+2.337 \mathrm{E}-32+0.000 \mathrm{E}-39+2.163 \mathrm{E}-01$
 +40.00
+40.00 +40.00
+40.30 $+40.30+4.153 \mathrm{E}-01+3.030 E+37$
40.37 $+40.00+4.153 \mathrm{E}-01+2.090 \mathrm{E}-37+2.339 \mathrm{E}-01+1.008 \mathrm{E}+30+20+1.029 \mathrm{E}-01$
$+40.00+2.17 \mathrm{SE}-01+9.825 \mathrm{E}-31+1.351 \mathrm{E}-01$ $+40.00+4.153 \mathrm{E}-01+3.350 \equiv-39+2.353 \mathrm{E}-01+9.606 \mathrm{~F}-01+1.512 \mathrm{~F}-31$
 $+40.00+4.153 \mathrm{E}-01+3.030=-37+1.883=-01+7-242 \mathrm{~F}-71+1.834 \mathrm{E}-71$
$0.000 \mathrm{~F}-39+5.098 \mathrm{E}-01$. $000 \mathrm{E}=39$ 45.794E-01 +0. $900 \mathrm{E}-39+6.269 \mathrm{E}-01$ $+0.000 \mathrm{E}-3946.604 \mathrm{E-61}$ $10.300 \mathrm{E}-39+5: 546 \mathrm{E}=01$
$0.00 \mathrm{E}-39+7.027 \mathrm{E}=01$ $+0.000 \mathrm{E}-39+7.01 \mathrm{E}=01$ O. 0 OOE $39+7.147 E-01$ $00+3.152 \mathrm{E}-01-4.337 \mathrm{E}+92+2.543 \mathrm{E}-01+8.399 \mathrm{E}-31+1.704 \mathrm{E}-01+0.000 \mathrm{E}-39+7.297 \mathrm{E}-01$ $+28.00+2.457 E-01-2.797 E+32+2.1 \leq 2 E-31+7.374 E-91+1.554 E-01+0.000 E-39+7.35 I E E D I$ $+22.00+1.893 E-01-2.253 E+32+1.3) 4 E-01+5.433 E-01+1.396 E-01+0.000 \mathrm{E}-39+7.757 \mathrm{EV}$ +01 $+22.00+1.893 \mathrm{E}-01-2.253 \mathrm{E}+32+1.334 E-01+5.423 \mathrm{E}-01+1.386 \mathrm{E}-01+0.000 \mathrm{E}-39+7.767 \mathrm{E}-01$
 $10.00+1.081 E-91-1.433 E+32+1.203 E-n 1+4.639 \mathrm{~F}-91+1.345 \mathrm{~F}-01+0.000 \mathrm{E}-39+8.689 \mathrm{E}=01$
$+4.30+8.001 E-32-1.122 \mathrm{E}+32+7.7) \mathrm{JE}-32+3.448 \mathrm{~F}-91+8.838 \mathrm{E}-32+0.000 \mathrm{E}-39+9.415 \mathrm{E}-02$

 $-8.00+4.102 E-92-6.456 E+31+5.732 E-02+2.491 E-31+5.949 \mathrm{~F}-32+3.000 E-39+1.17 I E+00$
$14.00+2.967 E-32-4.735 E+21+4.525 E-72+1.05 G F-71+4.755 F-92+0.000 E-39+1.355 F+00$ $1+00+2.367 E-22-4.735 E+21+4.523 E-72+1.05 \mathrm{GF}-11+4.755 \mathrm{~F}-92+0.000 \mathrm{E}-39+1.355 \mathrm{~F}+00$
$-20.09+1.955 \mathrm{E}-02-3.456 \mathrm{~F}+31+3.437 \mathrm{E}-72+1.595 \mathrm{~F}-71+3.773 \mathrm{E}-02+7.070 \mathrm{E}-39+1.621 \mathrm{E}+00$

 $-44.00+3.598 \mathrm{~F}-03+2.030 \mathrm{E}-37+3.452 \mathrm{~F}-33+4.510 \mathrm{~F} \rightarrow 2 \mathrm{~N}+1.193 \mathrm{E}-32+0.00 \mathrm{EE}-39+8.098 \mathrm{E}+00$ $-52.00+7.593 \mathrm{E}-03+3.030 E-39+3.443 E-93+4.509 \mathrm{E}-12+1.195 \mathrm{E}-02+0.000 \mathrm{E}-79+0.000 \mathrm{~F}-39$ $-60.00+3.598 \mathrm{E}-33+3.050 \mathrm{E}-39+3.433 \mathrm{E}-33+4.5 j 6 \mathrm{E}-32+1.102 \mathrm{~F}-7 \mathrm{P}+3.30 \mathrm{CF}-39+0.000 \mathrm{E}-39$

X $\mathrm{s} T$
r ST
S ST
DTOS ST
THET ST
SEET ALPHA
$16+2.13046 E+80$
$+4.02500 E+00$
$+4.58348 \equiv+30$
$+9.0037 \mathrm{C}-30+5.09000 \mathrm{E}+31$
$3+37.90$

x0 W
XB W
YB W
SB N THETBH PE／PS W
0p／OS N
2！ 4
nT W
Pe W
QR H
XGI h
$3+2.130 F+00+0.000 E-39+0.000 E-39+0.000 E-39+90.00+1.000 E+00+4.8395-35+1.717 E-01+7.039 E-39+2.000 E-37+1.520 E+01+1.381 E+00$ $3+2.523 E+00-7.451 E-09+7.852 E-01+7.852 E-01+90.00+9.978 E-21-4.916 \equiv-21+1.713 E-01+2.428 F-31+1.352 E-03+1.237 F+31+1.359 E+00$ $3+2.916 E+00-2.235 E-08+1.570 E+00+1.570 E+00+90.00+9.845 E-01-2.134 E+35+1.57 J E-01+3.613 F-01+5.349 F-03+8.497 E+00+1.286 E+00$ $+3.701 E+00-1.490 E-08+2.356 E+00+2.35 E+00+90.30+9.400 E-01-5.2525+j 3+2.39+5-01+7.21 F-71+2.397 F-02+0.070 E-39+1.157 E+00$

 $4+4.123 E+00+7.341 E 03+3.972 E+00+3.973=+00+78.00+5.985 E-01-2.598 E+J 1+2.527 E-31+1.159 E+30+8.20 F-02+0.000 E-39+5.706 E-01$

$+2.504 \mathrm{E}-01+4.037 \mathrm{E}+00+4.272 \mathrm{E}+00$
$+2.649 \mathrm{E}-01+4.022 \mathrm{E}+00+4.293 \mathrm{E}+00$

$$
\begin{aligned}
& -25.00+1.296 E-02 \\
& -34.90+7.264 E-03 \\
& -42.00+3.889 \mathrm{E}-03
\end{aligned}
$$

\qquad
$+5.539 \mathrm{E}-\mathrm{0} 2$
$+5.539 E-n 2$

$$
\begin{aligned}
& -42.00+3.889 \mathrm{E}-03 \\
& -50.90+3.598 \mathrm{E}-03+
\end{aligned}
$$

$$
\begin{aligned}
& -50.00+3.598 \mathrm{E}-03+ \\
& -50.00+3.598 \mathrm{E}-03+
\end{aligned}
$$

$3.849 三+7$
$-2.431 E+3$
$-2.431 E+9$
$-1.474 E+9$

+2.030 －$-37+$
\qquad
\qquad

\qquad
$9+4 . \frac{13}{435 \mathrm{E}+00}$ $+4.499 \mathrm{E}+0 \mathrm{C}+7.383 \mathrm{E}-0 \mathrm{I}+3.458 \mathrm{E}+00+5.029 \mathrm{E}+00$
$+4.563 \mathrm{E}+00+9.749 \mathrm{E}-01+3.176 \mathrm{E}+00+5.397 \mathrm{E}+00$ $9+4.627 \mathrm{E}+00+1.212 \mathrm{E}+00+2.894 \mathrm{E}+00+5.755 \mathrm{E}+00$ $9+4.691 \mathrm{E}+00+1.448 \mathrm{E}+00+2.612 \mathrm{E}+00+6.133 \mathrm{E}+00$
$9+4.755 \mathrm{E}+00+1.685 \mathrm{E}+00+2.330 \mathrm{E}+00+6.502 \mathrm{E}+00$

．

$+1.685 \mathrm{E}+00$ $+1.922 \mathrm{E}+00$

$+1.922 E+00+2$ $+2.158 E+00+1$

$$
\begin{aligned}
& 1.922 \mathrm{E}+00+2.048 \mathrm{E}+00+6.87 \mathrm{OE}+00 \\
& 2.158 \mathrm{E}+00+1.768 \mathrm{E}+00+7.238 \mathrm{E}+90 \\
& 2.395 \mathrm{E}+00+1.484 \mathrm{E}+00+7.595 \mathrm{E}+00
\end{aligned}
$$

$+1.484 \mathrm{E}+00$
+1.202 E

$+2.819 \mathrm{E}+00+8.771 \mathrm{E}-01+8.349 \mathrm{E}+00$

$+3.007 E+00+5$ $+3.194 \mathrm{E}+00+2$

$+3.194 \mathrm{E}+00$ $+3.382 \mathrm{E}+00$

$+276 \mathrm{E}-01+8.724 \mathrm{E}+30$

$$
\begin{aligned}
& +3.053 E-03 \\
& +2.338 E-33
\end{aligned}
$$

$$
\begin{aligned}
& +2.338 \mathrm{E}-33 \\
& +2.555 \mathrm{E}-03
\end{aligned}
$$

$+4.943 E-72+$
$8.259 \mathrm{E}-32+0.090 \mathrm{E}-39+$
$8.707 \mathrm{~F}-02+0.000 \mathrm{E}-39+$
$8.354 \mathrm{E}-33+0.000 \mathrm{E}-39+$
$5.486 E-0$
$+5.331 \mathrm{E}-0$
$+0.000 \equiv-37+$
+4.93 OE ＋つつ
$8.400 \mathrm{~F}-37$
$+8.4 \times \mathrm{E}-02$
$\mathrm{~g} .465 \mathrm{~F}-37$
$+0.000 \mathrm{E}-39+5.233 \mathrm{E}$
$+0.000 E-39+5.233 E-01$
$+7.000 E-39+5.187 E-01$
$+7.000 E-39+5.187 E-01$
$+7.000 E-39+5.188 E-01$
$+7.000 E-39+5.188 E-01$
$+7.000 \mathrm{E}-39+5.191 \mathrm{E}-01$
$+17.0 \cap O F-39+5.191 \mathrm{E}-01$
$+0.020 \mathrm{E}-39+5.242 \mathrm{E}-01$ $+0.000 \mathrm{E}-39+5.242 \mathrm{E}-0$ $+0.000 \mathrm{E}-39+5.338 \mathrm{E}-01$ $+0.020 E-39+5.475 \mathrm{E}-01$
$+0.000 \mathrm{E}-39+5.77 \mathrm{E}-0 \mathrm{I}$ $+0.0 \cap D E-39+5.771 E-01$ $377 \mathrm{~F}-07+0.070 \mathrm{E}-39+6.026 \mathrm{E}-01$
$+3.598 E-03+0.030 E-37+1.305 E-73$
$-69.00+3.599 E-33+3.320 E-37+1.355=-03$
$-60.0137 E-34$
$+4.7775-37$
$+0.000 \mathrm{E}-39+6.712 \mathrm{E}-01$
$+0.000 \mathrm{E}-39+7.023 \mathrm{E}-01$
\qquad
\qquad
-01
S． $981 E-53+0.0$ NOE－39＋ $0.000 E-39$ $+5.97 \mathrm{JE}-73+0.070 \mathrm{E}-39+0.000 \mathrm{E}=39$

$+5.587 \mathrm{E}-93+3.000 \mathrm{E}-39+0.000 \mathrm{~F}-39$
$+6.757 \mathrm{~F}-33$
$+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+6.545 \mathrm{~F}-73+0.000 \mathrm{E}-39+1.000 \mathrm{E}-39$
$7.095 \mathrm{~F}-93+0.000 \mathrm{~F}-39+0.500 \mathrm{~F}-79$ $+7.075 \mathrm{~F}-93+0.000 \mathrm{~F}-39+0.009 \mathrm{~F}-39$
$+7.575 \mathrm{~F}-23+3.000 \mathrm{~F}-39+7.000 \mathrm{E}-39$
yb L
SO L THETBL PE/PS L
DP/OS
NL L
DT L.
RE L
OR L
xSi 1
\qquad
$3+2.130 E+00+0.000 F-39+0.000 E-39+0.000 E-39+93.00+1.000 \mathrm{~F}+00+4.809 E-35+1.717 E-01+0.399 F-39+0.092 E-39+1.520 E+01+1.381 E+00$ $3+1.738 \mathrm{E}+00-0.009 \mathrm{E}-39+7.852 \mathrm{E}-01+7.852 \mathrm{E}-01+90.30+9.985 \mathrm{E}-01-3.076 \mathrm{E}-31+1.71+\mathrm{E}-01+2.111 \mathrm{E}-31+1+149 \mathrm{E}-33+1.251=+71+1.31 \mathrm{E}+00$ $3 \mp 9.527 \mathrm{E}-01-0.000 \mathrm{E}-39+2.356 \mathrm{E}+00+2.35,5+00+90.30+9.673 \mathrm{E}-01$
$3+5.601 \mathrm{E}-01-0.000 \mathrm{E}-39+3.141 \mathrm{E}+00+3.1+1 \mathrm{E}+00+90.00+9.114 \mathrm{E}-01$$3+5.601 \mathrm{E}-01-0.000 \mathrm{E}-39+3.141 \mathrm{E}+00+3.1+1 \mathrm{E}+00+90.00+9.114 \mathrm{E}-01$
$+1.675 \mathrm{E}-01-0.000 \mathrm{E}-3 \overline{9}+3.926 \mathrm{E}+00+3.925 \mathrm{E}+00+90.00+8.003 \mathrm{E}-01$ $1+362 \mathrm{E}-01+1.713 \mathrm{E}-03+3.991 \mathrm{E}+00+3.991 \mathrm{E}+00+87.00+7.877 \mathrm{E}-01$
$1+1.081 \mathrm{E}-01+6.848 \mathrm{E}-03+4.057 \mathrm{E}+00+4.057 \mathrm{E}+00+84.00+7.745 \mathrm{E}-01$

\qquad $3+1.675 \mathrm{E}-01+6.250 \mathrm{E}-01$ $+9.527 \mathrm{E}-01+1.985 \mathrm{E}+00+5.794 \mathrm{E}+00+6.805 \mathrm{E}+00$ $+1.081 \mathrm{E}-01+6.848 \mathrm{E}-03+4.057 \mathrm{E}+00+4.057 \mathrm{E}+00$ $1+6.118 \mathrm{E}-02+2.732 \mathrm{E}-02+4.186 \mathrm{E}+00+4.188 \mathrm{E}+00$ $1+4.259 \mathrm{E}-02+4.259 \mathrm{E}-02+4.250 \mathrm{E}+00+4.253 \mathrm{~F}+00$ $+84.00+7.745 \mathrm{E}-01$
$+81.00+7.607 \mathrm{E}-01$ $+81.00+7.607 \mathrm{E}-01$ $+78.00+7.462 \mathrm{E}-01$ $+75.00+7.310 \mathrm{E}-91$
$+72.00+7.152 \mathrm{E}-01$ $+72.00+7.152 \mathrm{E}-01$
$+69.00+6.987 \mathrm{~F}-01$ $+69.00+6.987 \mathrm{~F}-01$
$+66.00+6.814 \mathrm{E}-01$ $+66.00+6.814 \mathrm{E}-01$
$+63.00+6.634 \mathrm{E}-01$ $+63.00+6.634 E-01$
$+60.00+6.447 \mathrm{E}-01$ $+60.00+6.447 \mathrm{E}-01$
$+57.00+6.251 \mathrm{E}-01$ $+57.00+6.251 \mathrm{E}-01$
$+54.00+6.048 \mathrm{E}-01$ $+54.00+6.048 \mathrm{E}-01$
$+51.00+5.835 \mathrm{E}-01$ $+51.00+5.835 \mathrm{E}-01$
$+48.94+5.685 \mathrm{E}-01$
$+48.00+5.539 \mathrm{E}-01$ $+45.00+5.018 E-51-5$ $+42.00+4.497 \mathrm{E}-01$ $+39.00+3.982 E-01$ $+35.00+3.515 E-01$ $+33.00+3.102 \mathrm{E}-01$
$-202 E+3)$
$-3.251=+3 j$

$\rightarrow .251 E+33$

$+1.751 E-01$ $-\quad-3+1.73 \mathrm{BE}+00+3.345 \mathrm{~F}+00+6.579 \mathrm{E}+00+8.375 \mathrm{E}+00$ - $-3-72.130 \mathrm{E}+00+4.025 \mathrm{~F}+00+6.972 \mathrm{E}+00+9.161 \mathrm{E}+00$ $\cdots 3+2.917 \mathrm{E}+00+5.385 \mathrm{E}+00+7.757 \mathrm{E}+00+1.073 \mathrm{E}+01$ $-3+3.308 \mathrm{E}+00+6.065 \mathrm{E}+00+8.149 \mathrm{E}+00+1.152 \mathrm{E}+01$ _. . $4+4.093 \mathrm{E}+00+7.425 \mathrm{E}+00+8.934 \mathrm{E}+00+1.309 \mathrm{E}+01$$4+4.112 \mathrm{E}+00+7.454 \mathrm{~F}+00+8.947 \mathrm{E}+00+1.312 \mathrm{t}+01$ $+4.123 E+00+7.469 E+00+8.951 E+00+1.313 E+01$$+4.135 \mathrm{E}+00+7.484 \mathrm{E}+00+8.954 \mathrm{E}+00+1.315 \mathrm{E}+01$ $+4.162 \mathrm{~F}+00+7.500 \mathrm{E}+00+8.955 \mathrm{E}+00+1.317 E+J$$4+4.177 \mathrm{E}+00+7.531 \mathrm{E}+00+8.951 \mathrm{E}+50+1.32 J \mathrm{E}+01$

$4+4.208 \mathrm{E}+00+7.561 E+00+8.942 \mathrm{E}+00+1.323 \mathrm{E}+01$

 $8+4.223 \mathrm{~F}+00+7.575 \mathrm{E}+00+8.934 \mathrm{E}+00+1.324 \mathrm{E}+01$ $\mp 4.244 \mathrm{E}+00+7.592 \mathrm{~F}+00+8.923 \mathrm{E}+00+1.325 \mathrm{E}+0 \mathrm{~L}$$8+4.265 \mathrm{E}+00+7.608 \mathrm{~F}+00+8.909 \mathrm{E}+00+1.329 \mathrm{E}+01$ $8+4.265 \mathrm{E}+00+7.608 \mathrm{E}+00+8.909 \mathrm{E}+00+1.329 \mathrm{E}+01$
$8+4.284 \mathrm{E}+00+7.621 \mathrm{~F}+00+8.893 \mathrm{E}+00+1.331 \mathrm{E}+01$ $8+4.303 \mathrm{~F}+00+7.632 \mathrm{E}+00+8.975 \mathrm{E}+00+1.333 \mathrm{E}+31$ $8+4.320 F+00+7.641 \mathrm{~F}+00+8.856 \mathrm{E}+50+1.335 \mathrm{E}+01$ $+4.335 \mathrm{~F}+00+7.547 \mathrm{~F}+00+8.836 \mathrm{~F}+00+1.337 \equiv+U \mathrm{~L}$ $8+4.348 E+00+7.650 E+00+8.815 E+00+1.333 E+01-$ $8+4.358 \mathrm{E}+00+7.650 \mathrm{~F}+00+8.794 \mathrm{E}+00+1.3+1 \mathrm{E}+01$

$$
\begin{aligned}
& +33.00+3.102 \mathrm{E}-01 \\
& +30.00+2.734 \mathrm{E}-01 \\
& +30.00+2.500 \mathrm{E}-01=
\end{aligned}
$$

$+3$
 $30.00+2.349 \mathrm{E}-01-1.094 E+30+1.154 E-01+7.618 \mathrm{E}-01+1.157 \mathrm{E}-01+0.090 \mathrm{E}-39+2.24 \mathrm{EE}+00$ $+30.00+2.248 \mathrm{E}-01-7.2+5 \mathrm{E}-31+1.351 \mathrm{E}-01+7.288 \mathrm{E}-01+1.256 \mathrm{E}-01+7.030 \mathrm{E}-39+2.603 \mathrm{E}+00$ $+30.00+2.183 \mathrm{E}-01-4.655 \mathrm{E}-31+7.731 \mathrm{E}-32+7.336 \mathrm{E}-01+1.379 \mathrm{E}-01+0.030 \mathrm{E}-39+2.889 \mathrm{E}+00$ $+30.00+2.119 \mathrm{E}-01-1.323 \mathrm{E}-31+7.332 \mathrm{E}-02+6.694 \mathrm{E}-01+1.495 \mathrm{~F}-01+2.000 \mathrm{E}-39+3.110 \mathrm{~F}+00$ $+30.00+2.111 \mathrm{E}-01-2.438 \mathrm{E}-32+3.550 \mathrm{E}-02+6.579 \mathrm{E}-51+1.741 \mathrm{E}-01+0.000 \mathrm{E}-39+3.260 \mathrm{E}-39+7.359 \mathrm{E}+00$ $+30.00+2.113 \mathrm{E}-31+5.772 \mathrm{E}-32+3.37 \mathrm{JE}-02+6.490 \mathrm{~F}-01+1.369 \mathrm{E}-01+0.000 \mathrm{E}-39+3.385 \mathrm{E}+00$ $+30.00+2.123 \mathrm{E}-01+1.194 E-31+3.136 \mathrm{E}-02+6.421 \mathrm{~F}-71+2.009 \mathrm{E} \sim 01+0.000 \mathrm{~F}-39+3.342 \mathrm{E}+00$
$+30.00+2.103 \mathrm{E}-01-1.293 \mathrm{E}-71+8.357 \mathrm{E}-02+6.311 \mathrm{E}-01+2.119 \mathrm{~F}-21+0.290 \mathrm{E}-30+3.228 \mathrm{E}+00$
 $+24.30+1.604 E-01-1.7775+32+1.373 E-01+5.434 E-31+1.865 F-01+3.030 E-39+3.172 E+00$ $+18.00+1.213 \mathrm{E}-01-1.573 \mathrm{E}+32+8.773 \mathrm{E}-02+4.615 \mathrm{E}-01+1.517 \mathrm{~F}-01+0.000 \mathrm{E}-39+3.138 \mathrm{E}+00$
$+12.30+8.957 \mathrm{E}-02-1.230 \mathrm{E}+32+7.352 \mathrm{E}-72+3.833 \mathrm{E}-01+1.379 \mathrm{E}-01+0.000 \mathrm{E}-39+3.125 \mathrm{~F}+00$
 $+0.00+4.6615-02-7.133 E+21+5.32 \mathrm{E}+02+3.14 \mathrm{E}-01+1.146 \mathrm{E}-01+0.09 \mathrm{E}-39+3.135 \mathrm{E}+00$ $-6.00+3.284 E-32-5.359=1+1+379 \mathrm{E}-02+1.991 \mathrm{~F}-91+7.529 \mathrm{~F}-02+0.020 \mathrm{E}-39+3.719 \mathrm{E}+00$ $-12.20+2.245 \mathrm{E}-02-3.388 \mathrm{E}+21+3.554=-02+1.537 \mathrm{E}-71+5.909 \mathrm{~F}-72+0.000 \mathrm{~F}-39+0.719 \mathrm{E}+00$ $12.00+2.249 E-02-3.838 E+51+2.554 E-02+1.537 E-J 1 ~+5.909 F-12 ~+0.03 n F-39+0.000 E-39 ~$
 $-30.00+6.403 E-03-1.321 E+31+1.33 \exists E-02+5.351 E-92+2.557 E-37+0.700 E-30+0.000 \mathrm{E}-39$
 $46.00+3.598 \mathrm{~F}-03+5.930 E-39+2.223 \mathrm{E}-03+4.187 \mathrm{E}-72+1.727 \mathrm{~F}-52+0.090 \mathrm{E}-30+0.000 \mathrm{E}-39$
$+0.090 \mathrm{~F}-39+0.000 \mathrm{E}-39$ $-54.20+3.598 \mathrm{E}-03+2.022 \mathrm{E}-37+2.217 \mathrm{E}-03+4.125 \mathrm{E}-3 \mathrm{O}+1.732 \mathrm{~F}-07+0 . \mathrm{nONE}-39+7.000 \mathrm{~F}-39$ $-62.00+3.598 \mathrm{E}-03+3.090 \mathrm{E}-37+2.215 \mathrm{E}-73+4.194 \mathrm{~F}-32+1.735 \mathrm{E}-37+7.00 \mathrm{OF}-30+0.000 \mathrm{~F}-39$ $-70.20+3.599 \mathrm{~F}-03+3.030 E-37+2.210 E-03+4.1 R 3 E-72+1.737 \mathrm{E}-37+7.030 \mathrm{E}-30+3.000 \mathrm{E}-39$ $-78.00+3.599 \mathrm{E}-03+1.030 E-37+2.235 E-03+4.182 \mathrm{E}-7 \mathrm{j}+1.74 \mathrm{E}-72+7.000 \mathrm{~F}-30+0.090 \mathrm{~F}-39$
 $-04.07+3.599 \mathrm{~F}-03+7.330 \equiv-37+2.1745-33+4.1795-32+1.746 E-92+0.700=-30+7.007 \mathrm{~F}-39$
＊

1	\＄T	\times sT	γ ST	S ST	ntos St	THET ¢T	SEFr	ALPHA	
	23	＋4．10845E＋00	＋7．44642E＋0n	＋8．53234E400	－6．55567E＋00	$+5.020005+91$	4	＋4n．90	
1W	SN	KOW SN	YOH SN	xbus 5	YBW SN	SBW SN	「だす	SV SECT	$A^{3} \cdot \frac{18}{}$
	9	＋4．192175＋00	＋7．49672E＋00	＋3．59315E－02	＋9．85329E－07	$+1.07532 \equiv-91$	＋4．893	$72 F+01$	$4 \quad+40.20$
IL	SN	XOL SN	YOL SN	XBL SV	YBL SN	SBL SV	「HETL	SV SECT	$\triangle \mathrm{LOHA}$
	24	＋0．00000E－39	＋0．00000E－39	＋1．55428E＋00	－8．36？ $776+00$	＋9．53533＋${ }^{\text {3 }}$	． 3	$2 \mathrm{E}+01$	447

\qquad
\qquad － －

AT $\overline{A L P H A}=+4.0000 \bar{E}+01$ WINDWARD，RW $=+1.8284 E-01$ DELS $=+8.9405 E-0335$ 1Jこく $=-3.7777 E-71$ SIN（THETAW）NEG．FOR XB $=+2.7315 E-02 R H=+1.8284 E-01$ DELS $=+3.9406 \pm-3335435<=-8.7277 \mathrm{C}=21$
SEC $\times 0 \mathrm{~W}$
XB H
YBH
SB
THETBW PE／PS W DP／JS N 2L H
OT W
RE W
QR W
XSI H
 $4+4.112 \mathrm{E}+00+9.135 \mathrm{E}-05+5.235 \mathrm{E}-03+5.336 \mathrm{E}-03+88.00+9.988 \mathrm{E}-01-3.253 \mathrm{E}+\mathrm{Ji}+\mathrm{F} .507 \mathrm{E}+00+5.716 \mathrm{~F}-71+9.203 \mathrm{E}-35+8.507 \mathrm{E}-32+8.953 \mathrm{E}-03$ $4+4.123 E+00+1.460 E-03+2.088 E-02+2.094 E-02+82.00+9.805 E-01-1.239 E+22+1.573 E+00+1.522 E+20+1.467 F-04+5.371 E-02+9.144 E-03$

$4+4.148 \mathrm{E}+00+9.046 \mathrm{E}-03+5.130 \mathrm{E}-02+5.236 \mathrm{E}-02+70.00+8.830 \mathrm{E}-01-3.007 \mathrm{E}+32+1.310 \mathrm{E}+00+2.135 \mathrm{E}+00+7.233 \mathrm{E}-94+0.000 \mathrm{E}-39+1.022 \mathrm{E}-02$
$4+4.162 \mathrm{~F} 50+1.518 \mathrm{E}=02+5.576 \mathrm{E}-02+6.837 \mathrm{E}-02+64.00+8.078 \mathrm{E}-31-3.696 \mathrm{E}+52+1.551 \mathrm{E}+00+2.345 \mathrm{E}+30+1.146 \mathrm{E}-03+0.000 \mathrm{E}=39+1.713 \mathrm{E}-02$
$4+4.177 \mathrm{E}+00+2.279 \mathrm{E}-02+5.576 \mathrm{E}-02+6.897 \mathrm{E}-02+64.00+8.078 \mathrm{E}-31-32.636 \mathrm{E}-52+8.378 \mathrm{E}-02+58.00+7.192 \mathrm{E}-01-4.234 \mathrm{E}+32+1.25 \mathrm{E}+00+2.345 \mathrm{E}+39+1.146 \mathrm{E}-03+0.000 \mathrm{E}=39+1.1 \mathrm{~T} 3 \mathrm{E}=02$ $4+4.177 \mathrm{E}+00+2.279 \mathrm{E}-02+7.949 \mathrm{E}-02+8.378 \mathrm{E}-02+58.00+7.192 \mathrm{E}-01-4.234 \mathrm{E}+32+1.154 \mathrm{E}+00+7.444 \mathrm{E}+00+1.603 \mathrm{E}-03+0.000 \mathrm{E}-39+1.229 \mathrm{E}-02$
$4+4.192 \mathrm{E}+00+3.180 \mathrm{E}-02+9.235 \mathrm{E}-02+9.943 \mathrm{E}-02+52.00+6.210 \mathrm{E}-21-4.539 \mathrm{E}+22+\mathrm{t}$ $4+4.192 \mathrm{E}+00+3.690 \mathrm{E}-02+9.235 \mathrm{E}-02+9.943 \mathrm{E}-02+52.00+6.210 \mathrm{E}-31-4.539 \mathrm{E}+32+1.354 \mathrm{E}+00+2.439 \mathrm{~F}+00+2.045 \mathrm{E}-03+02.000 \mathrm{E}-39+1.373 \mathrm{E}=02$ $4+4.192 \mathrm{E}+00+3.690 \mathrm{E}-02+9.853 \mathrm{E}-02+1.075 \mathrm{E}-01+48.94+5.685 \mathrm{E}-01-4.633 \mathrm{E}+32+9.739 \mathrm{E}-01+2.390 \mathrm{E}+00+2.249 \mathrm{E}-03+0.000 \mathrm{E}-39+1.457 \mathrm{E}-02$ $8+4.223 \mathrm{E}+00+5.358 \mathrm{E}-02+1.042 \mathrm{E}=01+1.152 \mathrm{E}-01+46.00+5.192 \mathrm{E}-01-4.675 \mathrm{E}+32+3.315 \mathrm{E}-01+2.739 \mathrm{~F}+0 \mathrm{n}+2.422 \mathrm{~F}-03+0.000 \mathrm{E}-39+1.545 \mathrm{E}-02$ $8+4.223 \mathrm{E}+00+5.358 \mathrm{E}-02+1.149 \mathrm{E}-01+1.309 \mathrm{E}-01+40.00+4.153 \mathrm{E}-01-4.656 \mathrm{E}+32+7.322 \mathrm{E}-01+2.151 \mathrm{C}+00+2.585 \mathrm{E}-03+3.000 \mathrm{E}-39+1.748 \mathrm{E}-02$ $8+4.265 \mathrm{~F}+00+8.899 \mathrm{E}-02+1.370 E-01+1.723 E-01+24.00+2.834 E-01-4.2342+32+5.971 E-01+1.797 E+70+2.781 E-03+0.000 E-39+2.065 E-02$

 $-8+8+4.335 F+00+1.709 \mathrm{E}-01+1.485 \mathrm{E}-01+2.536 \mathrm{E}-01-81+00+3.953 \mathrm{E}-02-6.254 \mathrm{E}+31+1.372 \mathrm{E}-01+4.055 \mathrm{~F}-71+1.343 \mathrm{~F}-03+0.0005-39+4.642 \mathrm{E}-02$ $8+4.358 E+00+2.110 \mathrm{E}-01+1.370 \mathrm{E}-01+2.985 \mathrm{E}-01-24.00+1.427 \mathrm{~F}-02-2.639 \mathrm{~F}+71+4.374 \mathrm{E}-02+7.393 \mathrm{~F}-71+9.775 \mathrm{~F}-\mathrm{n4}+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$

 $-9+4.435 E+00+5.285 E-01+1.218 E-01+7.085 E-01-40.00+4.378 E-03+0.020 E-39+7.754 E-53+8.574 F-72+1.757 E-53+0.000 \mathrm{~F}-30+0.000 E-39$ CANNOT FIND THETA FOR RW OR B，SKIP CASE

$4+4.108 E+00+0.000 E-39+0.000 E-39+3.000 F-39+90.30+1.000 F+00+4.0385-35+1.5105+00+2.029 E-39+3.337 F-77+7.0005-39+7.000 E-39$ $4+4.102 E+00+3.654 E-04+1.046 E-02+1.047 E-02+86.00+9.951 E-01-5.51 J E+31+1.501 E+3 n+9.541 F-02+1.955 E-05+0.000 E-39+0.000 E-39$ $4+4.093 F+90+2.279 E-03+2.605 E-02+2.618 E-02+80.00+9.698 E-01-1.600 E+32+1.333 E+20+1.639 F-31+1.109 E-35+0.000 F-39+0.000 E-39$ $3+3.7 Q 1 E+00+1.386 F-01+7.993 F-01+B .114 E-01+80.00+9.698 E-01+3.030 E-39+7.559 E-01+7.581 E-01+5.947 E-03+0.000 E-39+0.000 E-39$ ＋3．308E $+00+2.750 E-01+1.573 E+00+1.597=+00+80.00+9.698 F-01+3 . j J J ミ-37+5.227 E-01+5.622 E-31+1.271 E-02+0.000 E-39+0.000 E-39$ $3+2.916 E+00+4.113 E-01+2.346 E+30+2.382 E+00+80.00+9.698 E-01+5.050 E-39+5.254 E-01+5.112 E-01+1.746 E-32+0.000 E-39+0.000 E-39$ $3+2.523 E+00+5.477 E-01+3.119 E+00+3.167 E+00+80.00+9.69 B E-01+3.030 \equiv-39+4.5 j 7 E-01+5.774 E-71+2.322 F-02+0.000 E-39+0.000 E=39$ $3+2.130 \mathrm{E}+00+6.840 \mathrm{~F}-01+3.392 \mathrm{~F}+00+3.952 \mathrm{E}+00+80.00+9.698 \mathrm{E}-01+0.030 \mathrm{E}-37+4.145 \mathrm{E}-01+5.524 \mathrm{E}-91+2.898 \mathrm{E}-02+0.050 \mathrm{E}-39+0.000 \mathrm{E}-39$ $3^{2}+1.738 \mathrm{E}+00+8.204 \mathrm{E}-01+4.666 \mathrm{E}+00+4.737 \mathrm{E}+00+8$
$3+1.345 \mathrm{E}+00+9.567 \mathrm{E}-01+5.439 \mathrm{E}+00+5.523 \mathrm{E}+00+$ $3+9.527 \mathrm{E}-01+1.093 \mathrm{E}+00+5.212 \mathrm{E}+00+5.523=+00$ $3+5.627 \mathrm{E}-01+1.093 \mathrm{E}+00+6.212 \mathrm{E}+00+6.308 \mathrm{E}+00$ $3+1.675 \mathrm{E}-01+1.366 \mathrm{E}+00+7.759 \mathrm{E}+00+7.879 \mathrm{E}+00$ $1+1362 \mathrm{E}-01+1.366 E+00+7.759 E+00$ $1+1.362 \mathrm{E}-01+1 \cdot 379 \mathrm{E}+00+7.823 \mathrm{E}+00$ $1+8302 \mathrm{E}-02+1.315 \mathrm{E}+00+7.896 \mathrm{E}+00+8.009 \mathrm{E}+0$ $1+6.118 E-02+1.438 \mathrm{E}+00+8.010 \mathrm{E}+00+8.074 \mathrm{E}+00$ $1+4.259 \mathrm{E}-02+1.464 \mathrm{E}+00+8.070 \mathrm{E}+00+8.205 \mathrm{E}+0 \mathrm{D}$ 1－72－732E－02 $+1.493 \mathrm{E}+00+8.129 \mathrm{E}+00+8.271 \mathrm{E}+00$ $1+1.539 \mathrm{~F}-02+1.525 \mathrm{E}+00+8.185 \mathrm{E}+00+\mathrm{B} .336 \mathrm{~F}+00$ $+6.848 \mathrm{~F}-03+1.560 \mathrm{E}+00+8.241 \mathrm{E}+00+8.402 \mathrm{~F}+0 \mathrm{D}$ $1+1.713 \mathrm{E}-03+1.598 \mathrm{E}+00+\mathrm{B} .294 \mathrm{E}+00+8.457 \mathrm{E}+03$ $1+0.000 \mathrm{E}=39+1.639 \mathrm{E}+00+8.345 \mathrm{E}+00+8.533 \mathrm{E}+00$ $1+0.000 \mathrm{E}-39+1.654 \mathrm{E}+00+8.363 \mathrm{E}+00+8.555 \mathrm{E}+00$ $1+1.713 \mathrm{E}=03 \mp 1.683 \mathrm{E}+00+8.394 \mathrm{E}+00+8.598 \mathrm{E}+00$
\qquad $1+1.539 \mathrm{E}-02+1.7277 \mathrm{E}+00+8.48 \mathrm{E}+4 \mathrm{E}+00+8.364 \mathrm{E}+00$
$1+2.732 \mathrm{E}-02+129 \mathrm{E}+00$ $+1.827 E+00+8.527 E+00+8.794 E+00$ $+4.259 \mathrm{E}=02 \mp 1.880 \overline{\mathrm{E}}+00+8.566 \mathrm{E}+00+8.863 \mathrm{E}+00$ $-\quad 1+6=118 \mathrm{EE}-02+1.934 \mathrm{E}+00+8.602 \mathrm{E}+00+8.925 \equiv+00$ $+80.00+9.693 \mathrm{E}-31$ $+80.00+9.693$ E－01 $+80.00+9.698 \mathrm{E}-01$
$+80.00+9.699 \mathrm{E}-01$ $+80.00+9.699 E-01$
$+80.30+9.698 \mathrm{E}-01$ $+80.00+9.698 \mathrm{E}-01$ $+77.00+9.494 \mathrm{E}-01$
$+74.00+9.243 \mathrm{E}-71$ $+74.00+9.243 \mathrm{E}-31$ $+71.00+8.940 \mathrm{E}-01$ $+68.30+8.597 \mathrm{E}-01$ $+65.05+8.214 \mathrm{E}-01$ $+62.00+7.796 \mathrm{E}-01$
$+59.00+7.347 \mathrm{E}-01$ $+56.00+7.347 \mathrm{E}-01$
$+56.00+673 \mathrm{E}-01$ $+56.00+6.873 \mathrm{E}-01$ $+50.00+6.373 \mathrm{E}-01$ $+50.00+5.868 E-01$ $+48.94+5.685 \mathrm{E}-01$
$\$ 47.00 \quad+5.365 \mathrm{E}-21$ $+47.00+5.365 \mathrm{E}-01$
$+44.00+4.844 \mathrm{E}-01$ $+44.00+4.844 \mathrm{E}-01$
$+41.00+4.325 \mathrm{E}-01$ $+41.00+4.325 \mathrm{E}-01$
$+38.00+3.813 \mathrm{~F}-01$ $+38.00+3.813 \mathrm{~F}-01$
$+35.00+3.372 \mathrm{E}-01$
$\begin{array}{ll}1 & +8.302 \mathrm{E}-02+1.991 \mathrm{E}+00+8.635 \mathrm{E}+00+8.991 \mathrm{E}+00\end{array}$ $+35.00+3.372 \mathrm{E}-01$
$+32.30+2.981 \mathrm{E}-01$ $+29.00+2.627 \mathrm{~F}-01$
$+26.00+2.309 \mathrm{E}-01$
\qquad $1+1.362 E-01+2.108 \varepsilon+00+8.692 \varepsilon+00+9.122 E+00$ $+$ $3-1.675 \mathrm{E}-01+2.169 \mathrm{E}+00+8.716 E+00+9.187 E+00$ $3+5.601 E-01+2.907 \mathrm{E}+00+8.985 \mathrm{E}+00+9.972$ ²00 $3+9.527 E-01+3.645 \mathrm{E}+00+9.253 \mathrm{E}+00+1.076 \mathrm{E}+01$ $3+34 E+00+5.383 E+00+9.322 E+00+1.154 E+01$
$3+1.738 \mathrm{E}+00+5.121 \mathrm{E}+00+9.790 \mathrm{E}+00+1.233 \mathrm{E}+01$ $3+1.738 E+00+5.121 E+00+9.790 E+00+1.233 E+01$
$3+2.130 E+00+5.858 E+00+1.006 E+01+1.311 E+01$ $3+2.523 E+00+6.596 E+00+1.033 E+01+1.392 E+101$ $3+2.916 E+00+7.334 E+00+1.060 E+01+1.468 E+01$ $-\quad 3+3.308 E+00+8.072 E+00+1.086 E+02+1.547 E+01$ $-3+3.70^{\circ} 1 E+00+B .810 E+00+1.113 E+01+1.625 E+01$
$-\frac{4}{4}+4.093 E+00+9.548 E+00+1.140 \mathrm{~F}+01+1.734 \mathrm{E}+01$
$4+4.108 \mathrm{~F}+30+9.573 \mathrm{~F}+00+1.141 E+01+1.705 E+01$ $-\begin{array}{r}4+4.108 E+30+9.573 \mathrm{~F}+00+1.141 E+01+1.737 E+01 \\ 4+4.112 \mathrm{E}+00+9.578 \mathrm{E}+00+1.141 \mathrm{E}+11+1.707 E+31\end{array}$ $4+4.112 E+00+9.578 E+00+1.141 E+91+1.737 E+31$ $4+4.123 \mathrm{E}+00+9.594 \mathrm{~F}+00+1.141 \mathrm{E}+0 \mathrm{I}+1.739 \mathrm{E}+01$ $4+4148 \mathrm{~F}+00+9.625 \mathrm{~F}+00+1.141 \mathrm{~F}+01+1.712 \mathrm{~F}+31$ $4+4.162 \mathrm{E}+00+9.640 \mathrm{E}+00+1.141 \mathrm{E}+01+1.713 \mathrm{E}+01$ $4+4.162 \mathrm{E}+00+9.640 \mathrm{E}+00+2.141 \mathrm{E}+01+1.713 \mathrm{E}+0 \mathrm{O}$ $4+4+192 \mathrm{E}+00+9.660 \mathrm{~F}+00+1.139 \mathrm{E}+01+1.716 \mathrm{E}+01$ $4+4 * 192 \mathrm{E}+00+9.665+00+1.139 \mathrm{~F}+01+1.716 \mathrm{E}+01$
$\therefore-4+4.208 E+00+9.683 E+00+1.139 F+01+1.713 E+31$ $8+4.244 \mathrm{E}+90+9.710 \mathrm{E}+00+1.136 \mathrm{E}+01+1.722 \mathrm{E}+01$

N

$+4.284 E+00+9.734 E+00+1.133 E+01+1.725 E+01-64.00+3.599 E-03+3.300 E-37+5.733 E-03+3.973 E-72+2.747 F-02+0.739 E-39+0.039 E-39$ $8+4.303 E+00+9.742 E+00+1.131 E+01+1.729 E+01$
$-8+420 E+00+9.747 F+00+1.129 E+01+1.737+01$
 $8+4.348 \mathrm{E}+00+9.7485+00+1.125 \mathrm{E}+01+1.734 \mathrm{E}+01$

QR N
xst

OT H

 $8+4.265 E+00+4.580 E-02+1.079 E-01+1.204 E-01+44.00+4.685 E-01-4.633=+32+1.345 E+00+2.38 B F+301+2.247 F-03+0.000 F-39+3.512 E-02$
 $8+4.303 \mathrm{E}+00+7.958 \mathrm{E}-02+1.324 \mathrm{E}-01+1.6235-01+28.00+2.493 \mathrm{E}-01-2.832 \mathrm{E}+32+5.453 \mathrm{E}-01+1.443 \mathrm{~F}+20+2.878 \mathrm{E}-03+0.020 \mathrm{E}-39+5.524 \mathrm{E}-02$

 $844.348 \mathrm{E}+00+1.395 \mathrm{E}-01+1.495 \mathrm{E}-01+2.251 \mathrm{E}-01+4.90+8.139 \mathrm{E}-32-1.1375+22+2.133 \mathrm{E}-01+7.085 \mathrm{E}-31+2.223 \mathrm{~F}-03+0.00 \mathrm{~F}-39+8.204 \mathrm{E}-02$ $-\quad 8+4.358 \mathrm{E}+00+1.605 \mathrm{E}-01+1.496 \mathrm{E}-01+2.451 \mathrm{E}-01-4.00+5.274 \mathrm{E}-02-7.959 \mathrm{E}+31+1 .+75 \mathrm{E}-01+5.756 \mathrm{E}-31+1.891 \mathrm{E}-03+0.700 \mathrm{~F}-39+8.900 \mathrm{E}-02$ $9+302+1.467 E-01+2.573 E-01-12.00+3.322 E-02-5.411 E+31+7.931 E-02+3.813 F-31+1.534 F-03+0.070 E-39+9.355 E-02$ $-9+4.371 E+00+2.013 E-01+1.410 E-01+2.883 E-01-20.00+2.009 E-02-3.535 E+31+5.493 E-02+2.5525-71+1.199 E-03+0.070 E-39+0.000 E-39$ $-9+4.499 E+00+8.933 \mathrm{E}-01+\mathrm{L} .109 \mathrm{E}-02+1.024 \mathrm{E}+01-20.00+2.009 \mathrm{E}-02+3.030 \mathrm{E}-37+4.825 \mathrm{E}-02+2.258 \mathrm{E}-71+2.722 \mathrm{~F}-03+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
\qquad

$x 01$
$\times B \mathrm{~L}$
YB L
SB L
THETBL
PE/PS 2
DP/DS L
21 L
or L
RE L
QR L
XSI L
$4+4.148 \mathrm{E}+00+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$4+\overline{4} .135 \mathrm{~F}+00+8.217 \mathrm{E}-04+1.568 \mathrm{E}-02+\mathrm{L} .571 \mathrm{E}-02$
$4+4.123 E+00+3.278 E-03+3.119 E-02+3.1+25-02$
$4^{-}+4.123 E+00+3.278 E-03+3.119 E-02+3.1125-02$
${ }^{+}+412 F+00+7.342 E-03+4.635 E-02+4.712 E-02$
$4+4.102 \mathrm{E}+00+7.342 \mathrm{E}-03+4.635 \mathrm{E}-02+4.712 \mathrm{E}-02$
$4.297 \mathrm{E}-02+6.101 \mathrm{E}-02+6.283 \mathrm{E}-02$
$4^{-}+4.093 E+00+2.010 \mathrm{E}-02+7.500 \mathrm{E}-02+7.85+\mathrm{E}-02$
$-\quad 3^{3}+3.701 E+00+4.127 E-01+7.550 E-01+8.637 E-01$
$3+3.308 E+00^{-}+8.053 \mathrm{E}-01+1.435 \mathrm{E}+00$

- $\quad 3+2.916 \mathrm{E}+00+1.198 \mathrm{E}+00+2.115 \mathrm{E}+00$
$3+2.523 E+00+1.590 E+00+2.795 E+00+3.219 E+00$
$3+2.130 E+00+1.983 E+00$
$-\quad 3+2.738 E+00+2.376 E+00$
$3+1.345 \mathrm{E}+00+2.768 \mathrm{E}+00$
$3-9.527 E-01+3.161 E+00+5.515 \mathrm{E}+00+5.375 \mathrm{E}+00$
$3+5.601 \mathrm{E}-01+3.553 \mathrm{E}+00+6.195 \mathrm{E}+00+7.1+5 \mathrm{E}+00$
$-3+1.675 \mathrm{E}=01-3.946 \mathrm{E}+00$
$1+1.362 \mathrm{E}-01+3.980 \mathrm{E}+00+6.931 \mathrm{E}+00+7.796 \mathrm{E}+05+00$
-

$-\quad-3$
.308E+00 +8.053E-01 +1.435E+00 +1.549E+00
\qquad $1+1.362 \mathrm{E}-01+3.980 \mathrm{E}+00$ $1+1.081 \mathrm{E}=01+4.017 \mathrm{~F}+00$ $1+8.302 \mathrm{E}-02+4.057 \mathrm{E}+00$
$1+8.302 \mathrm{E}-02+4=088 \mathrm{E}+00$
$1+6.118 \mathrm{E}-02+4=100 \mathrm{E}+00$
$1+2.732 \mathrm{E}-02+4.195 \mathrm{E}+00$
$+1-539 \mathrm{E}=02+4.192 \mathrm{E}+00$
$1+6.848 \mathrm{E}-03+4.294 \mathrm{E}+00$ $1+1.753 \mathrm{E}-03+4.348 \mathrm{E}+00$ $1+0.000 \mathrm{E}-39+4.404 \mathrm{E}+00$ $+1.713 \mathrm{E}=03-+4.42 \mathrm{E} \mathrm{E}+00+7.333 \mathrm{E}+00+8.535 \mathrm{E}+00$ $1+5.848 \mathrm{E}-03+4.520 \mathrm{E}+00+7.392 \mathrm{E}+00$ $1+2.732 \mathrm{E}-02+4.581 \mathrm{E}+00$ $1+2.259 \mathrm{E}=02+4.642 \mathrm{E}+00$ $1+6.118 \mathrm{E}-02+4.769 \mathrm{~F}+00$ $1+8.302 \mathrm{E}=02+44.833 \mathrm{E}+0$ $\begin{array}{r}1+8.302 \mathrm{E}-02+4.833 \mathrm{E}+00 \\ -1+1.081 \mathrm{E}-01+4.898 \mathrm{E}+00 \\ -1+1.362 \mathrm{E} 01\end{array}+4.963 \mathrm{E}+00$$3+1.675 E-01+5.029 E+00$ $3+5.601 \mathrm{E}-01+5.814 \mathrm{E}+00$ $3+9.527 \mathrm{E}-01+6.599 \mathrm{E}+00$ $3-7 \mathrm{I} .3455 \mathrm{E}+\mathrm{DO}+7.384 \mathrm{E}+00$ $3+1.738 \mathrm{E}+00+8.169 \mathrm{E}+00$ $3+2.130 \mathrm{E}+00+8.955 \mathrm{E}+00+7.500 \mathrm{E}+00+1.239 \mathrm{E}+01$ $3+2.523 \mathrm{~F}+00+9.740 \mathrm{E}+00+7.500 \mathrm{E}+00+1.317 \mathrm{E}+01$ $3^{-}+2.916 E+00+1.052 E+01+7.500 E+00+1.474 E+01$ $3+3.308 \mathrm{~F}+00+1.131 \mathrm{E}+01+7.500 \mathrm{E}+00+1.552 \mathrm{E}+01$ $3^{2}+3.701 E+00+1.210 \mathrm{E}+01+7.500 \mathrm{E}+00+1.531 \mathrm{E}+01$ $4+4.093 E+30+1.288 E+01+7.500 E+00+1.739 E+01$ $4+4.102 E+00+1.290 E+01+7.499 E+00+1.711 E+91$ $4+4.112 \mathrm{E}+00+1.291 \mathrm{~F}+01+7.497 \mathrm{E}+00+1.712 \mathrm{E}+01$ $4+4.123 E+50+1.293 E+01+7.493 E+00+1.714 E+51$ $4+4.135 E+00+1.294 E+01+7.487 E+00+1.715 E+01$
$4+4.148 E+00+1.29 E \mathrm{E}+01+7.480 \mathrm{E}+00+1.717 E+01$ $4+4.148 \mathrm{E}+00+1.296 \mathrm{~F}+01+7.480 \mathrm{E}+00+1.717 \mathrm{E}+01$
$4+4.162 \mathrm{E}+30+1.297 \mathrm{E}+01+7.471 \mathrm{E}+00+1.719 \mathrm{E}+01$ $4+4.162 E+30+1.297 E+01+7.471 E+00+1.719 E+01$
$4+4.177 E+00+1.298 \mathrm{~F}+01+7.461 \mathrm{E}+00+1.720 \mathrm{E}+01$ $4+4.177 E+00+1.298 F+01+7.461 E+00+1.729 E+01$
$4+4.192 F+00+1.299 E+01+7.450 E+00+1.722 E+21$
$+90.00+1.000 \mathrm{E}+30-5.153 E-34+1.573 \mathrm{E}+00+0.070-39+0.000 \mathrm{E}-39+2.01 \mathrm{BE}-01+1.834 \mathrm{E}-02$ $+84.00+9.891 E-01-9.725 E+31+1.55 j E+90+2.394 E-11+1.199 \mathrm{~F}-05+1.712 E-01+1.926 E=02$
$78.30+9.568 E-01-1.933 E+02+1.506 E+00+3.524 E-01+4.577 \mathrm{~F}-05+6.02 \mathrm{E}-02+2.206 \mathrm{E}-02$ $+78.50+9.568 E-01-1.973 E+02+1.506 E+00+3.524 E-01+4.577 E-05+6.028 E-02+2.208 E-02$ $+72.30+9.045 E-31-2.749 E+32^{\circ}+5.574 E+70+1.775 E+00+5.931 E-04+3.571 E=02+2.69 \mathrm{EE}=02$ $+66.00+8.346 E-01-3.476 E+02+4.731 E+00+1.992 E+00+9$ $+50.30+7.500 \mathrm{E}-01-4.051 \mathrm{E}+52$
$+60.00+7.500 \mathrm{~F}-01+3.020 \mathrm{E}$ $+60.00+7.500 \mathrm{~F}-01+0.030 \mathrm{E}-37$ $+50.00+7.500 \mathrm{E}-01$
+50.00 t $+7.500 \mathrm{E}-01$
$+7.500 \mathrm{E}-21$
$+2.050 E-37$
$+7.030=-39$
$+3.030 E-39$
$+5.330 E-37$
$+0.020 E-39$
$+0.000=-39$
$+5.350 \equiv-37$

$+9.981 E-04$
$+1.450 \mathrm{E}-03$ $+1.595 \mathrm{E}-02$ $7.245 \mathrm{E}-01+1.306 \mathrm{E}+30+1.595 \mathrm{E}-02$
$5.180 \mathrm{E}-01+1.12+7 \mathrm{E}+30+3.044 \mathrm{E}-02$
$4.2+5 \mathrm{E}-91+1.061 \mathrm{E}+30+4.494 \mathrm{E}-02$ +5
+0
+0 +5.385E-02 2 $+4.406 \mathrm{E}=0$ $+4.645 \mathrm{E}-01$ $+0.000 \mathrm{E}-39+8.334 \mathrm{E}-01$ $+5.00 \mathrm{EE}-39+1.153 \mathrm{E}+00$ $+0.000 \mathrm{~F}-1.153 \mathrm{E}+00$ $+3.533 \mathrm{E}-01+1.004 \mathrm{E}+30+5.943 \mathrm{E}-02$ $+0.000 \mathrm{~F}-39+1.426 \mathrm{EF} 00$
$+0.000 \mathrm{E}-39+1.551 \mathrm{E}+00$

$+50.00+7.500 \mathrm{E}-01+5.030 \mathrm{E}-37+2.771 \mathrm{E}-01+8.993 \mathrm{E}-91+1.029 \mathrm{E}-01+0.000 \mathrm{E}-39+1.957 \mathrm{E}+00$ $+60.00+7.502 \mathrm{E}-01+3.030$ E゙ $-33+2.511 \mathrm{E}-01+8.759 \mathrm{E}-01+1.174 \mathrm{~F}-01+0.000 \mathrm{E}-39+2.032 \mathrm{E}+00$ $+60.00+7.500 \mathrm{E}-01+3.030 \equiv-37+2.73 \mathrm{BE}-31+8.558 \mathrm{E}-91+1.317 \mathrm{E}-01+0.000 \mathrm{E}-39+2.050 \mathrm{E}+00$
 $+57.00+7.034 \mathrm{E}-01-5.12 \mathrm{BE}+31+3.454 \mathrm{E}-01+8.625 \mathrm{E}-1 \mathrm{I}+1.554 \mathrm{E}-01+0.000 \mathrm{E}-39+1.989 \mathrm{E}+00$
$+54.00+6.545 \mathrm{E}-01-5.338 \mathrm{E}+31-73.454 \mathrm{E}-01+8.757 \mathrm{E}-31+1.629 \mathrm{E}-01+0.000 \mathrm{E}=39+\mathrm{T}-979 \mathrm{E} 700$ $+54.00+6.545 \mathrm{E}-01-5.338 \mathrm{E}+31+\mathrm{F}=454 \mathrm{E}-01+8.757 \mathrm{E}-31+1.629 \mathrm{E}-01 \mathrm{I}=0.000 \mathrm{E}=39+1.989 \mathrm{E}+00$ $+51.30+6.043 \mathrm{E}-31-5.490 \mathrm{E}+\mathrm{JL}+3 .+1+\mathrm{E}-01+8.810 \mathrm{E}-31+1.683 \mathrm{E}-01+0.000 \mathrm{E}-39+1.975 \mathrm{E}+00$
 $+48.00+5.539 E-01-5.532 E+01+3.355 E-01+8.756 E-01$
$+39.00$
\qquad $+5.018 \mathrm{E}=01$
$+35.00+$
$4.497 \mathrm{E}-01$ $+3.515 \mathrm{E}-91$
$+3.102 \mathrm{E}-01$
 $27.00+2.410 \mathrm{E}-51-3.678 .+31+2.355 \mathrm{E}-0146.824 \mathrm{E}-91$ $+24.00+2.420 \mathrm{E}-31-2.953=+31+2.379 \mathrm{E}-01+6.405 \mathrm{~F}=31$ $27.00+2.410 \mathrm{E}-31-3.393 E+31+2.379 \mathrm{E}-01+6.405 \mathrm{~F}=11+1.486 \mathrm{E}-01+0.000 \mathrm{E}=39+2.1 \mathrm{I} 4 \mathrm{E}+00$
$24.00+2.120 \mathrm{E}-91-2.95 \mathrm{E}+31+1.703 \mathrm{E}-01+5.984 \mathrm{E}-01+1.416 \mathrm{E}-01+0.100 \mathrm{E}-39+2.152 \mathrm{E}+00$ $+18.20+1.617 E-31-2.331 E+01+1.552 E-01+5.141 E-01+1.265 E-31+0.000 E-39+2.194 E+00$ $15.00+1408 \mathrm{E}-01-2 \mathrm{O}^{2} \mathrm{O}$ $+12.00+1.224 \mathrm{E}-01-1.952 \bar{E}+01+1.372 \mathrm{E}-01+4.757 \mathrm{E}-01+1.112 \mathrm{E}-01+0.000 \mathrm{E}-39+2.340 \mathrm{E}+00$ $+12.00+1.224 \mathrm{E}-01-1.902 \mathrm{E}+31+1.272 \mathrm{E}-01+4.357 \mathrm{E}-01$
$+9.00+1.055 \mathrm{E}-01-1.538 \mathrm{E}+31+1.239 \mathrm{E}-01+3.980 \mathrm{E}-71$ $+9.00+1.055 \mathrm{E}-01-1.538 E+91+1.73 \ni \mathrm{E}-01+3.980 \mathrm{E}-71$
$+6.00+9.054 \mathrm{E}-02-1.439 \mathrm{t}+31+1.313 \mathrm{E}-01+3.514 \mathrm{E}-01$ $+6.00+9.054 \mathrm{E}-02-1.439 \mathrm{E}+31+1.313 \mathrm{E}-01+3.614 \mathrm{E}-01$
$+3.00+7.795 \mathrm{E}-02-1.318 \mathrm{E}+31+9.344 \mathrm{E}-02+3.785 \mathrm{E}-01$ $+3.00+7.795 \mathrm{E}-02-1.318 \mathrm{E}+31+9.344 \mathrm{E}-02+3.785 \mathrm{E}-01$
$+0.00+6.659 \mathrm{E}-02-1.153 \mathrm{E}+31+3.311 \mathrm{E}-02+2.757 \mathrm{E}-71$ $+0.00+6.659 \mathrm{E}-02-1.159 E+31+3.311 E-02+2.757 E-71$
$+0.30+6.657 \mathrm{~F}-02+3.030 E-37+5.4 \pm 5 \mathrm{E}-02+2.918 \mathrm{~F}-71$ $+0.30+6.657 F-02+3.030-37+5.4 \pm 3 E-02+2.718 E-71$
$+0.00+5.55 J E-32-9.334 E-32+5.553 E-02+2.845 E-71$ $+0.00+5.447 \mathrm{E}-02-9.032 \mathrm{E}-32+5.423 \overline{7}-02+2.777 \mathrm{E}-01$ $+0.00+6.348 \mathrm{E}-02-8.730 \equiv-32+5.297 E-07+2.713 \mathrm{E}-01$
 $+0.00+5.205 \mathrm{E}-02-1.232 \mathrm{E}-31+5.137 \mathrm{E}-02+2.641 \mathrm{~F}-31$ $+0.90+5.944 \mathrm{E}-32-1.110 \mathrm{E}-31+4.913 \mathrm{E}-02+2.511 \mathrm{~F}-91$ $+0.00+5.823 \mathrm{E}-02-1.056 \mathrm{E}-31+4.739 \mathrm{E}-02+2.452 \mathrm{E}-01$ $+0.00+5.745 \mathrm{E}-02-5.841 \mathrm{E}-32+4.552 \mathrm{E}-02+2.407 \mathrm{~F}-01$ $+0.00+5.735 \mathrm{~F}-02+3.3) 9 \mathrm{E}-39+4.437 \mathrm{E}-02+2.332 \mathrm{E}-01$ $\begin{array}{rl}-6.00+4.077 F-02-5.424 E+31 & 3.331 E-J 2+1.902 E-71 \\ -1 ? .00+2.849 E-02-4.754 E+31 & 5.5 \geq 5 E-02+1.494 E-11\end{array}$ $-1 ? .00+2.849 E-32-4.754 E+71+5.325 E-02+1.4945-31$
$-18.30+1.943 E-32-3.437 E+31+5.315 E-02+1.149 E-71$ $18.30+1.943 E-92-3.437 E+31+5.717 \mathrm{E}-02+1.149 \mathrm{E}-71$
$-24.30+1.295 \mathrm{E}-02-2.428 \mathrm{E}+31+3.7 \exists 3 \mathrm{E}-07+8.656 \mathrm{~F}-72$ $30.02+8.464 E-73-1.632 E+31+2.333 E-72+5.4775-37$ $-36.70+5.384 E-03-1.135 E+3 L+2.117 E-02+4.635 E-32$
$-42.70+3.509 E-73+3.030 E-37+3.531 E-73+3.451 E-72$ $42.70+3.509[-73+3.030 E-37+3.531 E-73+3.4515-72$ $+1.718 \mathrm{E}-01+0.000 \mathrm{E}-39+2.976 \mathrm{E}+00$
$+1.735 \mathrm{E}=01+0.000 \mathrm{E}-39+1.981 \mathrm{E}+00$
$+0.000 E=39+1.981 E+00$ $+1.739 E-01+0.000 \mathrm{E}-39+1.992 \mathrm{E}+00$ $+1.705 E-61+0.000 E-39+2.007 E+00$ 1.664E-31 +0.000E-39+2.027E+00 1.612E $0.000 \mathrm{E}-2.052 \mathrm{E} 00$ 1. $4965=01-0000$ $1.189 \mathrm{E}-01+0.090 \mathrm{E}-39^{-}+2.288 \mathrm{E}+00^{-1}$ $+1.034 \mathrm{E}-01+0.000 \mathrm{E}-39+2.395 \mathrm{E}+00$ $9.557 \mathrm{E}-32+0.000 \mathrm{E}-39+2.454 \mathrm{E}+00$
$9.338 \mathrm{E}-32^{2}+7.000 \mathrm{E}-39+2.514 \mathrm{E}+0 \mathrm{O}$ $+8.117 \mathrm{E}-02+0.000 \mathrm{E}-39+2.575 \mathrm{E}+00$ $+8.909 \mathrm{~F}-02+0.000 \mathrm{E}-39+2.735 \mathrm{E}+00$ +9.4 त1E-07 $+0.000 E-39+2.729 E+00$ $+9.995 \mathrm{E}-02+3.000 \mathrm{E}-39+0.003 \mathrm{E}=39$ $1.059 E-01+0.000 E-39+0.000 E-39$ $1.113 \mathrm{E}=3 \mathrm{~L}+0.000 \mathrm{E}^{-39}+0.000 \mathrm{E}-39$ $1.151 E-31+0.000 E-39+0.000 E-39$ $1.211 E=01$ + $7.0005=39+0.000 \mathrm{E}-39$ $+1.259 \mathrm{~F}-01+n .000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+1.313 \mathrm{E}-91+7.000 \mathrm{E}-39+0.000 \mathrm{E}=39$ $+1.374 \mathrm{~F}-01+5.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+1.117 \mathrm{~F}-01+0.000 \mathrm{E}-39+0.000 \mathrm{E}=39$ $+9.927 \mathrm{E}-02+7.370 \mathrm{E}-30+9.303 \mathrm{E}-39$ $+6.983 \mathrm{E}-07+0.000 \mathrm{E}-39+0.000 \mathrm{~F}-39$ $+5.359 \mathrm{E}-92+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+4.075 \mathrm{~F}-22+0.090 \mathrm{E}-30+0.007 \mathrm{E}-39$ $+4.075 \mathrm{~F}-32+0.090 \mathrm{E}-39+0.071 \mathrm{E}-39$ 2.959F-3? + $+0.000 \mathrm{E}-39+0.009 E-39$
$+2.239 F-3 ?+7.070 E-39+7.000 E-39$ $9.338 \mathrm{E}-32^{*}+5.000 E=39+2.514 \mathrm{EFOW}$. $117 \mathrm{E}-02+0.000 \mathrm{E}-39+2.575 \mathrm{E}+00$

[^1]\qquad
\qquad

SEC		XBL	YB L	SBL	THETBL	PE／PS	D0\％）	3.	QT L．	QF L	OR L	$\times 51 \mathrm{~L}$	
	＋4．223E＋00	－0．000E－39	＋0．000F－39	＋J．300E－39	＋90． 00	＋1． $20 . J E+50$	＋4．038 ${ }^{\text {a }}$－ 35	＋2． 219 ＋00	＋3．73nE－39	＋7．903E－37	＋2．018E－01	＋1．834E－02	
	＋4．208E＋00	$+8.218 \mathrm{E}-04$	＋1．568E－02	＋1．571E－02	$+84.00$	＋9．891E－31	$-9.725 E+31$	＋2．194E＋70	＋1．122F＋${ }^{\text {a }}$	＋8．305E－05	＋1．398E－01	$1.870 \mathrm{E}-02$	
	$+4.192 \mathrm{E}+00$	$+3.278 \mathrm{~F}-03$	＋3．119E－02	$+3.1+2 \mathrm{E}-02$	＋78．00	＋9．563E－91	$-1.933 \equiv+32$	－2．123こ＋50	$+1.659 \mathrm{E}+00$	＋3．243E－04	＋2．391E－02	9806－62	
	＋4．177E＋00	＋7．342E－03	＋4．635E－02	＋4．712E－02	$+72.30$	＋9．045E－01	$-2.749 E+32$	＋1．835シ＋00	$+1.775 \mathrm{E}+00$	＋5．931E－04	＋0．000E－39	＋2－167E－02	
4	＋4．162E＋00	＋1．297E－02	＋6．101E－02	＋6．283E－02	＋66．00	＋8．345E－01	$-3.4763+32$	＋1．776E＋00	＋1．932E＋70	＋9．981E－D7	＋0．000E－39	72．439E－02	
	$+4.148 \mathrm{E}+00$	$+2.010 \mathrm{E}-02$	＋7．500E－02	＋7．854E－02	$+60.00$	＋7．500E－01	－4．051E＋32	$+1.564=+00$	＋2．139F＋00	$+1.45 J E-03$	＋0．000E－39	＋2．803E－02	
	＋4．135E＋00	$+2.865 E-02$	＋8．827E－02	$+9 .+25 \mathrm{E}-02$	$+54.00$	＋6．545E－91	－4．449E＋5？	＋1．519E＋70	＋2．134E＋20	＋1．903E－03	＋0．000 -39^{-}	＋3．274E－02	
	＋4．135E＋00	$+3.690 \mathrm{E}-02$	＋9．853E－02	＋1．075E－01	＋48．94	＋5．685E－01	－4．633E +32	＋1．377E＋00	＋2．098E＋00	$+2.249 \mathrm{E}-03$	$\pm 0.000 \mathrm{E}-39$	$+3.765 \mathrm{E}=02$	
	$+4.123 E+00$	＋3．853F－02	＋1．004E－01	$+1.100 \mathrm{E}-01$	＋4R．00	$+5.539 \mathrm{E}-011$	$-4.652 \pm+32$	$+1.357 \Xi+00$	＋2．074F＋00	+2.305 E－93	＋O．000E－39	$+3.866 \mathrm{EFEC}$	
	＋4．112E＋00	＋4．963E－02	＋1．115E－01	＋1． $257 \mathrm{E}-01$	＋42．00	＋4．497E－01	－ $4.652 \mathrm{~F}+32$	$+1.150 E+20$	＋1．935E＋10			$4+602 \mathrm{E}-02$	
	＋4． $102 \mathrm{E}+00$	76．183E－02	＋1．214E－01	＋1．414E－01	＋36．90	$+3.478 \mathrm{E}-01$		19．595E－01	＋1．72 7E＋30	＋2．774E－03	F0．0002－39	$5.508 E-02$	
	$+4.093 \mathrm{E}+00$	$+7.500 \mathrm{E}-02$	＋1．299E－01	＋1．571E－01	$+30.00$	＋2．70sE－01	－3．037E +32	＋7．755E－01	＋1．512E＋29	＋2．8フ7E－03	0．000E－39	＋6．620E－02	
	＋3．701E＋00	＋7．550E－01	＋5．225E－01	＋9．423E－01	$+30.00$	＋2．529E－01	－8．030 ${ }^{\text {a }}$－52	＋2．319ミ－01	＋1．022E＋39	＋1．651E－02	000F－39	F2．587E－01	
	$+3.308 E+00$	＋1．435E＋00	＋9．151E－01	$+1.727 \mathrm{E}+30$	$+30.00$	＋2．527E－01	－7．255i－34	＋？．039E～01	＋9．0515－01	＋3．026E－0？	＋0．000E－39	＋3．554E－01	
－	＋2．916E +00	＋2． $115 \mathrm{E}+00$	＋1．308E＋00	$+2.513 \bar{e}+00$	$+30.00$	＋2．527E－31	＋3．942E－35	＋1．73SE－31	＋8．378F－21	＋4．402E－02	＋0．000E－39	45361 E －61	
	＋2．523E＋00	＋2．795E＋00	＋1．700E＋00	＋3． $298 \mathrm{E}+00$	$+30.00$	＋2．527E－01	$+2.158 \equiv-35$	＋1．513E－01	＋7．953E－31	＋5．777F－02	$+0.000 \mathrm{E}-39$	＋5．110E－01	
	＋2．130E＋00	F3．475E＋000	$+2.093 \mathrm{E}+00$	＋4．083 3 E＋0J	＋30．00	$+2.527 E-91$	+2.553 E－35	＋1．355E－01	＋7．6̄215－31	＋7．153E－02	F0．000E＝39	＋5．83TE＝ 0 T	
	$\pm 1.738 \mathrm{E}+00$	$+4.155 \mathrm{E}+00$	$+2.485 E+00$	＋4．863E＋00	$+30.00$	＋2．527E－01	－0．000さ－39	＋1．252E－01	＋7．357E－31	＋8．528E－02	＋0．000E－39	＋6．537E－01	
	＋1． $345 \mathrm{SE}+00$	$+4.835 \mathrm{E}+00$	$+2.878 \mathrm{E}+00$	＋5．653E＋00	$+30.35$	＋2．527E－01	－0．030E－39	＋1．152E－01	＋7．141E－01	＋9．904E－02	＋0．000E－39	＋7．234E－01	
	＋9．527E－01	＋5．515 $\mathrm{E}+00$	$+3.271 E+00$	＋6． $439 \mathrm{E}+00$	$+30.00$	＋2．527E－01	－ 0.030 － 37	＋1．33）	＋6．957E－31	＋1．123E－01	＋0．000E－39	＋7．925E－01－	
	＋5．601E－01	＋6．195E＋00	＋3．663E＋00	＋7．224E＋00	＋30．00	＋ $2.527 \mathrm{E}-\overline{0} 1$	－0．0．	＋T． $5295-01$	＋6．799E－71	＋1．265E－01	＋0．000E－39	IE-01.	
	$+1.675 E-01$	$+6.875 \mathrm{E}+00$	＋4．056E＋00	$+8.309 \mathrm{E}+00$	＋30．00	＋2．527E－01		＋3．773E－02	＋5．650E－31	$+1.483 \mathrm{E}-01$	＋0．000E－39	01	
	＋1．362E－01	＋6．933E＋00	＋4．087E＋00	＋8．074E＋00	＋27．00	＋2．221E－01	$3.035=451$	FI．179E－01	＋6．22 7E－01	$+1.340 \mathrm{E}=05$	－		
	＋1．081E－01	＋6．992E＋00	$+4.115 E+00$	－	＋24．00	＋1．945E－01	2．737E＋91	＋1．344E－01	＋5．793E－01	$+1.272 \mathrm{E}-01$	＋0．000E－39	＋9．616E $=0{ }^{\text {d }}$	
	＋8．302E－02	$+7.052 \mathrm{E}+00$	＋4． $140 \mathrm{O}+0 \overline{0}$	＋8．205E		． $701 \mathrm{E}-01$	$-2.432=+31$	F3．454E		＋1．203E－01			
	＋6．118E－02	＋7．114E＋00	$+4.162 E+00$	＋8．271E＋00	$+18.00$	＋1．484E－01	$-2.222 E+31$	＋3．54 ${ }^{\text {c }}$－02	＋4．953E－31	＋1．132E－01	＋0．000E－39	1． $1.020 \mathrm{E}+00$	
	＋4． 25 9 $\mathrm{E}-02$	＋7．176E E +00	7 7 4．181E＋00	＋8．335E＋00	$+15.00$	＋1．288E－01	－1．933E701	＋7．533E－02	＋4．550E－31	＋1．051E－01	＋ $0.0000 \mathrm{E}-39$	H． $1.605+00$	
	＋2．732E－02	＋7．240E＋00	＋4．196E＋00	＋8．402E＋00	$+12.00$	$+1.114 \mathrm{E}-01$	－1．752 $2+31$	＋5．979E－02	＋4．172E－01	＋9．890E－02	＋0．000E－39	＋1．108E＋60．	
	＋1．539E－02	＋7．304E＋00	＋4．208E＋06	＋8．467E＋00	＋9．00	＋9．581E＝02	$1.5595+51$	＋5．127E－02	＋3．796E－01	＋9．171E－02	＋0．000E－39	क1．165E＋00	
	＋6．848E－03	＋7．369E＋00	＋4．217E＋00	$\pm 8.533 E+00$	$+6.00$	＋8．257E－02	$-1.331 \equiv+31$		＋3．456E－01	＋8．495E－02	＋0．000E－39	$+1.2318+00$	
	＋1．713E－03	＋7．435E＋00	＋4．222E＋00	＋8．598E＋00	$+3.00$	＋7．082E－02	－1．218EF51	＋ 7 －345E－02	＋3．131E－S1	＋7．834E－02	$000 E^{-39}$	＋1．309E＋00	
	＋0．000E－39	＋7．500E＋00	＋4．223E＋00	＋8．664E＋00	＋D． 00	＋5．965 $\mathrm{E}-\mathrm{J} 2$	1．037E＋71	＋4．233E－02	＋2．799E～ 51	$+7.132 \mathrm{~F}-02$	＋0．000E－39	＋1．399E＋00	
	＋1．7T3E－03	＋7．565E＋00	F4．222E＋00	F8．72эE＋00	－3．00	$+5.033 \mathrm{E}-02$	138＝753	＋	＋2．	756－4871502	$0.000 \mathrm{E}-39$	＋1．504E700	
	＋6．848E－03	$+7.631 \mathrm{E}+00$	＋4．217E＋00	$+8.7948+00$	－6．00	$+4.244 \mathrm{E}-02$	－7．972三＋30	$+3.244 E-02$	＋2．332E－71	＋5．889E－02	．000E－39	$+1.625 \mathrm{E}+00$	
	＋1．539E－02	$+7.696 \mathrm{E}+00$	＋4．208E +00	＋8．860E＋00	－9．00	$+3.562 E=32$	－5．835E＋75	＋2．325E－02	＋1．982E－51	＋5．319E＝02	．000E－39	F．766EF0	
	＋2．732E－02	$+7.760 \mathrm{E}+00$	$+4.196 \mathrm{E}+00$	$+8.925 E+00$	-12.00	$+2.967 E-02$	$-5.904 \equiv+30$	＋2．+45 三－02	＋1．749E－31	＋4．775E－02	＋0．000E－39	＋1．931E400	
	＋4．259E－02	＋7\％824E＋00	$+4.181 E+00$	$+8.991 E+00$	-15.00	$+2.458 E-02$	$-5.055 E+39$	＋2．108	$+1.537 E-91$	＋4．255E＝02			
1	＋6．118E－02	＋7．886E＋00	$+4.162 E+00$	＋9．055E＋03	－1R．00	＋2．032E－0？	－4．235E＋33	＋i． $317 \mathrm{E}-02$	＋2．346E－31	＋3．799F－02	＋ $5.000 \mathrm{E}-39$	$+2.353 E+00$	
	＋8．302E＝02	＋7．948E＋00	$+4.140 E+00$	$+9.122 E+00$	-21.00	＋1．573E－02	－3．629E730	＋1．5535－02	＋1．174E－31	＋3．359F－02	＋0：000E－39	＋2：627E\％00	
	＋1．081E－01	$+8.008 \mathrm{E}+00$	＋4． $115 \mathrm{E}+00$	＋9．187E＋00	－24． 20	$+1.362 \mathrm{E}-22$	$-3.043=+90$	＋L．327E－02	＋1．016E－31	＋2．963E－02	＋0．000E－39	＋2．958E＋00	
	＋1．362E－01	＋8．067E＋00	＋4．087E700	$+9.253 \mathrm{E}+00$	－27．00	$+1.106 \mathrm{E}-02$	－2．543きF90	F1：I23E－02	＋8．752E－32	＋2．597E－32	$70.000 \mathrm{E}-39$	＋3．365E＋00	
	＋1．675E－01	＋8．125E＋00	＋4．056E +00	＋9．313ミ＋00	-30.00	＋8．957F－03	－2．120E＋73	＋9．ラタッミ－03	＋7．537E－32	＋2．269E－02	＋0．000E－39	$+3.975 E+00$	
	＋5．601E－01	$\mp 8.805 \mathrm{E}+00$	$+3.663 E+00$	＋1．019E＋01	－30．00	＋8．957E－33	$+5.030=-37$	$+5.515 E=03$	＋7．4168－72	＋2．461 F $=02$	$+0.000 \mathrm{E}=39$	＋5．552 E＋00	
	＋9．527E－01	$+9.485 \mathrm{E}+00$	$+3.271 E+00$	＋1．089E＋01	－30．00	＋8．957E－03	＋3．030	＋5．500E－03	＋7．305E－32	＋2．652E－02	＋0．000E－39	$+7.228 E+00$	
	＋1．345E＋00	＋T．016E＋0r	＋2．878E＋00	＋1．167E＋01	-30.30	$+8.957 \mathrm{E}-03$	$+3.930 \Xi^{*}-37$	＋5： 2 ＋ $55 E-03$	77：205E－02	＋2．843E－02	$+0.000 \mathrm{E}=39$	$78.904 \mathrm{E}+00$	
	$+1.738 E+00$	＋1．084E＋01	$+2.4858+00$	＋1． 2 26E＋01	-30.00	$+8.957 \mathrm{E}-03$	＋5．030E－39	＋5．47LE－03	＋7． $112 \mathrm{E}-02$	＋3．034E－02	＋0．000E－39	＋0．000E－39	
	－ $2.530 E+00$	＋1．152E＋01	＋2．093E＋00	＋1．324E＋01	-30.20	＋R．757E－03	＋+ ．000E－39		＋7．025E－02	＋3．225F＝52	＋0：000E－39	$+0.000 \mathrm{E}=39^{\circ}$	
－ 3	2．523E＋00	$+1.220 \mathrm{E}+01$	＋1．700E＋00	$+1.403=+01$	－30．00	＋8．957t－03	＋3．090ミ－37	＋5．4432－03	＋5．945E－32	＋3．417E－02	＋0．000E－39	＋0．000E－39	
3	2．916E＋00	＋1．288E＋01	$+1.308 \mathrm{E}+00$	＋1．431E401	－30．00	＋8．957E－03	$+7.030 こ-37$	$+5.428 \mathrm{E}-03$	＋6．870E－92	＋3．608E－02	＋0．000E－39	$+0.000 \mathrm{E}-39^{-}$	
3	＋3．308E＋00	＋1．356E＋01	＋9．151E－01	＋1．330 +02	－30． 35	＋8．957E－03	＋3．330E－37	＋5．＇15E－03	＋6．7ヲ9E－5？	＋3．799E－J？	＋0．000E－39	＋0．009E－39	
3	＋3．701E＋20	$+1.424 \mathrm{E}+01$	$+5.225 \mathrm{~F}-01$	$+1.638 \mathrm{E}+01$	-30.30	＋8．957E－ 23	+3.090 E－3．	＋5．751E－33	＋6．733F－12	＋3．991E－5？	＋0．000E－39	＋ $0: 000 \mathrm{E}-39$	
	＋4．093E＋00	＋1．492E＋01	＋1．299E－01	＋1．717E＋01	－30．70	＋8．957E－03	＋ $5.000 \mathrm{E}-37$	＋5．397ミ－03	＋6．670E－92	＋4．182E－02	＋0．000E－39	＋0．000E－39	
－4	＋4．102E＋50	$+1.494 \mathrm{E}+01$	$+1.214 \mathrm{E}-01$	＋1．719E＋01	－36．00	＋5．751E－03	$-1.293 E+21$	＋1．1735－02	＋4．859E－32	＋3．395E－02	＋0．000E－39	＋0．000E－39	
	＋4．112E＋00	$+1.495 \mathrm{E}+01$	$+1.115 E-01$	＋1．725E＋01	－42． 30	$+3.599 \mathrm{E}-03$	＋ 2.050 E－39	＋2． $2935-93$	$+3.4515-1$ ？	＋2．239F－02	＋0．000E－39	＋0．000E－39	
	＋4．123E＋00	$+1.496 \mathrm{E}+01$	＋1．004E－01	＋1．722ミ＋01	-48.70	$+3.599 \mathrm{E}-93$	$+5.300 \pm-37$	＋2．2935－73	＋3．451こ－32	＋2．241F－n）	＋0．000E－39	＋0．000E－39	
	＋4．135E＋00	$+1.497 E+01$	＋8．8L7E－02	＋1．723\＃＋01	－54．00	＋3．594E－ 33	＋0．000E－37		$+3.452 \mathrm{~F}$	42． 243 E －${ }^{\text {？}}$	＋0．090E－39	＋0．000 39	

"AT ALPHA $=+1.2000 E+02$ WINDWARD, RW $=+2.7533 E-G 1$ DELS $=+1.9342 E-02351 J 26=45.7912 F-71$
THETBH PE/PS W DP/OS A
2. d

OT W
RF H
QR H
xSI
$8+4.298 E+00-0.000 E-39+0.000 E-39+0.000 E-37$
$8+4.303 E+00+9.037 E-05+5.235 E-03+5.23 E E-0$. $+4.303 E+00+9.137 E-05+5.235 \mathrm{E} \sim 03+5.235 \mathrm{E}-03$ $+4^{\circ} .320 \mathrm{E}+00+2.279 \mathrm{E}-03+2.605 \mathrm{E}-02+2.618 \mathrm{E}-02$ $8+4.335 \mathrm{E}+00+7.341 \mathrm{E}-03$
\qquad $+35 \mathrm{E}+00+518 \mathrm{E}-02$ $8+4.358 E+00+2.564 \mathrm{E}-02$
$8+4.358 \mathrm{E}+00+3.690 \mathrm{E}-02$ $8+4.358 \mathrm{E}+00+3.690 \mathrm{E}-02$
$8+4.366 \mathrm{E}+00+3.853 \mathrm{E}-02$ $-8+4.366 E+00+3.853 E-02$ $\begin{aligned} & 9+4.371 E+00+5.358 \mathrm{E}-02 \\ & 9\end{aligned}+4.435 \mathrm{E}+00+3.356 \mathrm{E}-01$ $-\cdots 9+4.499 \mathrm{E}+00+5.177 \mathrm{E}-01$ $-\quad 9+4.563 \mathrm{E}+00+8.998 \mathrm{E}-01$ $9+4.627 \mathrm{E}+00 \div 1.182 \mathrm{E}+00+8.249 \mathrm{E}-01+1.235 \mathrm{E}+00$ $9+4.691 \mathrm{E}+00+1.464 \mathrm{E}+00+1.298 \mathrm{E}+00+1.972 \mathrm{E}+00$
$9+4.50$ $9+4.755 \mathrm{E}+00+1.74 \overline{6} \mathrm{E}+00 \mathrm{O}+1.535 \mathrm{E}+00+2.340 \mathrm{E}+00$ $9+4.819 \mathrm{E}+30+2.028 \mathrm{E}+00+1.772 \mathrm{E}+00+2.73 \mathrm{BE}+00$
 $9+4.947 \mathrm{E}+00+2.592 \mathrm{E}+00+2.245 \mathrm{E}+00+3 .+45 \mathrm{E}+00$
$10+5.010 \mathrm{E}+00$ $10+5.010 \mathrm{E}+00+3.199 \mathrm{E}+00+2.482 \mathrm{E}+00+3.813 \mathrm{E}+00$ $-10+5.010 \mathrm{E}+00+3.524 \mathrm{E}+00+2.669 \mathrm{E}+00+4.188=+00$ $10+5.010 \mathrm{E}+00+3.524 \mathrm{E}+00+2.857 \mathrm{E}+00+4.563 \mathrm{E}+00$ $10^{-}+5.010 E^{-1}+00^{-}+4.173 \mathrm{E}+000+3.232 \mathrm{E}+00+5.313 \mathrm{E}+000^{-1}$ $10+5.010 \mathrm{E}+00+4.498 \mathrm{E}+00+3.419 \mathrm{E}+00+5.588 \mathrm{E}+00$
$10+5.010 E 700-4.823 E+00+3.607 E+00+6.063 E+000$
$10+5.010 \mathrm{E}+00+5.147 \mathrm{E}+00+3.794 \mathrm{E}+00+6.43 \mathrm{BE}+00$
$10+5.010 E+00+5.472 \mathrm{E}+00+3.982 \mathrm{E}+00+5.813 \mathrm{E}+00$
$10+5.010 \mathrm{E}+00+5.797 \mathrm{E}+00+4.169 \mathrm{E}+00+7$
$\frac{10+5.010 E+00+5.797 E+00+4=169 E+00+7.188 E+00}{10+5.010 E+00+6.122 E+00+4.357 E+00+7.563 E+00}$ $10+5.010 \mathrm{E}+00+6.122 \mathrm{E}+00+4.35 \mathrm{EE}+00+7.563 \mathrm{E}+00$
$10+5.010 \mathrm{E}+00+6.44 \mathrm{E}+00+4.544 \mathrm{E}+00+7.938 \mathrm{E}+00$ $10+5.010 E+00+6.771 E+00+4.732 \mathrm{E}+00+8.313 \mathrm{E}+00$ $\frac{10+5.010 \mathrm{E}+00+7.096 \mathrm{E}+00+4.919 \mathrm{E}+00+\mathrm{B} .538 \mathrm{E}+00}{10+5.010 \mathrm{E}+00+7}$ $10+5.010 \mathrm{E}+00+7.421 \mathrm{E}+00+5.107 \mathrm{E}+00+9.063 \mathrm{E}+00$ $10+5.010 \mathrm{E}+00+7.746 \mathrm{E}+00+5.294 \mathrm{E}+00+9 .+39 \mathrm{E}+00$ $10+5.010 \mathrm{E}+00+8.395 \mathrm{E}+00+5.669 \mathrm{E}+00+1.019 \mathrm{E}+01$ $10+5.010 E+00+8.720 \mathrm{E}+00+5.857 E+00+1.056 E+01$
$10+5.010 \mathrm{E}+00+9.045 \mathrm{E}+00+6.044 \mathrm{E}+00+1.394 \mathrm{E}+01$
$10+5.010 E+00 \div 9.369 E+00 \div 6.232 E+00+1.131 E+01$
$9+4.947 E+00+9.715 E+00+6.358 E+00+1.163 E+01$
$9+4.883 E+00+1.006 E+01+6.484 E+00+1.205 E+01$
$9+4.819 \mathrm{E}+00+1.041 \mathrm{E}+01+6.609 \mathrm{E}+00+1.242 \mathrm{E}+71$ $9+4.755 \mathrm{E}+00+1.075 \mathrm{E}+01+6.735 \mathrm{E}+00+1.279 \equiv+01$
$9+4.691 \mathrm{t}+00+1.110 \mathrm{E}+01+6.861 \mathrm{E}+20+1.315 \mathrm{E}+01$ $9+4.6915+00+1.110 E+01+6.861 E+30+1.315 \mathrm{E}+01$
$9+4.627 \mathrm{E}+00+1.145 \mathrm{E}+01 \mathrm{t}+987 \mathrm{E}+00+1.352 \mathrm{E}+01$ $+4.623 \mathrm{E}+00+1.179 \mathrm{E}+01+7.113 \mathrm{E}+00+1.389 \mathrm{E}+01$ $9+4.499 \mathrm{E}+00+1.214 \mathrm{E}+01+7.239 \mathrm{E}+00+1.425 \mathrm{E}+21$
$9+4.435 \mathrm{E}+00+1.248 \mathrm{E}+01+7.365 \mathrm{E}+00+1.453 \mathrm{E}+01$ $9+4.37 \mathrm{IE}+00+1.283 \mathrm{E}+01+7.491 \mathrm{~F}+00+1.479 \mathrm{E}+01$
$-=-8+4.366 \mathrm{E}+00+1.285 \mathrm{E}+01+7.497 \mathrm{E}+00+1.502 \mathrm{E}+01$
$\begin{array}{r}8 \\ 8\end{array}+4.348 \mathrm{E}+00+1.289 \mathrm{E}+0 \mathrm{l}+7.500 \mathrm{E}+00+1.506 \mathrm{E}+01$
$--8+4.348 E+00+1.289 E+01+7.500 E+00+1.506 E+01$
$8+4.320 \mathrm{~F}+00+1.293 \mathrm{~F}+01+7.491 \mathrm{E}+00+1.510 \mathrm{E}+01$
$8+4.303 E+00+1.295 E+01+7.482 E+00+1.512 E+01$
$8+4.298 E+00+1.296 E+01+7.480 E+00+1.513 E+01$
$+88.00+1.009 \mathrm{E}+30$
$+9.00+983 \mathrm{E}-01$
$+88.00+9.983 \mathrm{E}-01$
$+80.00+9.573 \mathrm{~F}=01$ $+80.00+9.573 F=01$
$+72.00+8.695 E-01$
$+64.00+7.595 E=01$
$+56.00+5.380 \mathrm{E}-01$
$+48.94+5.685 \mathrm{E}-01$
$+48.00+5.539 \mathrm{E}-01$
$+40.00+4.153 \mathrm{~F}-01$

 $+40.00+4.153 \mathrm{E}-01+0.090 \equiv-39+4.114 \mathrm{E}-01+1.195 \mathrm{E}+00+2.534 \mathrm{E}-02+3.300 \mathrm{E}-39+1.341 \mathrm{E}-01$
 $+40.00+4.153 E-01+2.030 E-37+3.53+E-01+1.135 \mathrm{E}+30+3.289 \mathrm{E}-02+0.000 \mathrm{E}-39+1.269 \mathrm{E}-01$
$+40.00+4.153 \mathrm{E}-01+3.030 \mathrm{E}-39+3.24 \mathrm{EE}-01+1.089 \mathrm{E}+20+4.044 \mathrm{E}-02+0.000 \mathrm{E}-39+1.164 \mathrm{E}-01$ $+40.00+4.153 \mathrm{E}-01+2.000 \mathrm{E}-3 \mathrm{~F}+2.777 \mathrm{E}-01+1.052 \mathrm{E}+00+4.799 \mathrm{E}=02+0.000 \mathrm{E}-39 \mathrm{C}+1.039 \mathrm{E}-01$ $+40.00+4.153 \mathrm{E}-01+3.030 \mathrm{E}-39+2.75 \mathrm{SE}-01+1.022 \mathrm{E}+90+5.554 \mathrm{E}-02+0.000 \mathrm{E}-39+9.024 \mathrm{E}-02$
 $+40.00+4.153 \mathrm{E}-01+0.090 \mathrm{E}-39+2.453 \mathrm{E}-01+9.737 \mathrm{E}-31+7.065 \mathrm{E}-02+0.000 \mathrm{E}-39+5.063 \mathrm{E}-02$ $+30.00+4.153 \mathrm{E}-01+3.010 \mathrm{E}-39-72.32 \mathrm{BE}-01+9.541 \mathrm{E}-01 \mathrm{~N}+7.920 \mathrm{E}-02 \mathrm{C}+0.000 \mathrm{E}-39+4.544 \mathrm{E}=02$ $+30.00+4.153 \mathrm{E}-01+3.030 \equiv-37+2.221$ E-01 +9.354E-31+8.599E-02+0.000E-39+9.502E-02
 $30.00+4.153 \mathrm{E}-01+2.030 \mathrm{E}-39+2.345 \mathrm{E}-01+9.050 \mathrm{E}-01+\mathrm{I} .013 \mathrm{E}-01+0.000 \mathrm{E}-39+1.44 \mathrm{E}-01$ $30.00+4.153 E-01+5.030=-37+1.97 T E=01+8.929 \mathrm{E}-51+1.093 E-01+0.000 \mathrm{E}=39+1.934 \mathrm{E}-01$ $30.00+4.153 \mathrm{E}=01+7.050=-39+1.905 \mathrm{E}-01+8.808 \mathrm{~F}-91+1.167 \mathrm{E}=01+0.000 \mathrm{E}=39+2.912 \mathrm{E} \sim 01$
 $30.00+4.153 \mathrm{E}-01+0.000 \mathrm{E}-39+1.790 \mathrm{E}-01+8.592 \mathrm{E}-01+1.325 \mathrm{E}-01+0.000 \mathrm{E}=39+3.885 \mathrm{E}-01$
 $+30.00+4.153 \mathrm{E}-01+0.3305-37+1.574 E-31+8.405 \mathrm{E}-71+1.474 \mathrm{E}-01+0.090 \mathrm{E}-39+4.854 \mathrm{E}-01$ $30.00+4.153 \mathrm{E}-01+0.030 \mathrm{E}-39+1.55 \mathrm{IE}-01+8.320 \mathrm{EN}=01+1.551 \mathrm{E}-01+0.000 \mathrm{E}-39$ +5.338E-01 $30.00+4.153 \mathrm{E}-01+3.0305-39+1.511 \mathrm{E}-01+8.240 \mathrm{E}-01+1.529 \mathrm{E}-01+0.000 \mathrm{E}-39+5.822 \mathrm{E}-01$ $+30.00+4.153 \mathrm{E}-01+0.030=-39+1.57 \mathrm{E}-01+8.15+\mathrm{E}-01+1.705 \mathrm{E}-01+0.000 \mathrm{E}-39+6.305 \mathrm{E}-01$
 $+30.00+4.153 \mathrm{E}-01+0.030=-39+1.479 \mathrm{E}-01+7.959 \mathrm{E}-01+7.936 \mathrm{E}-01+0.000 \mathrm{E}-39+7 \mathrm{Cl}+752 \mathrm{E}-01$ $+30.00+4.153 E-01+0.030 E-39+1.479 E-01+7.959 E-01+1.936 E-01+0.000 E-39+7.752 E-01$ $+30.00+4.153 \mathrm{E}-01+0.030 \mathrm{E}-37+1 .+\geq 2 \mathrm{E}-01+7.839 \mathrm{E}-31+2.089 \mathrm{E}-01+0.000 \mathrm{E}-39+8.715 \mathrm{E}-01$ $30.00+4.153 E-01+0.030 \equiv-37+1=422 E-01+7.839 E-01+2.089 E-01+0.000 E-39+8.715 E-01$
 $30.00+453 \mathrm{E}-01+0.030=-37 \mathrm{~F} 1-343 \mathrm{E}-01+7.675 \mathrm{E}-01+2.320 \mathrm{E}-01+0.000 \mathrm{E}-39+9.677 \mathrm{E}-01$ $20.20+4.153 \mathrm{E}-01+0.030 \mathrm{E}-33+1.323 \mathrm{E}-01+7.627 \mathrm{E}-31+2.395 \mathrm{~F}-01+0.000 \mathrm{E}-39+1.170 \mathrm{E}-00$ $+20.00+4.153 \mathrm{E}=01+0.350 \mathrm{E}=39^{\circ}+1.337 \mathrm{E}-01+7.530 \mathrm{E}-01+2.471 \mathrm{E}=01+0.000 \mathrm{E}-39+1.285 \mathrm{EF}+00$ $+20.00+4.153 \mathrm{E}-01+0.050 \mathrm{E}-37+1.233 \mathrm{E}-01+7.534 \mathrm{E}-01+2.547 \mathrm{E}-01+0.000 \mathrm{E}-39+1.399 \mathrm{E}+00$
 $+20.00+4.153 E-01+3.030 \equiv-37+1,351 \equiv-01+7.448 \mathrm{E}-91+2.599 \mathrm{E}-01+0.000 \mathrm{E}-39+1.629 \mathrm{E}+00$

 $+20.00+4.153 \mathrm{E}-01$
$+20.00+4.153 \mathrm{E}-01$ $+4.153 \mathrm{E}-01$
 $+3.030 \equiv-37+1.195 \mathrm{E}-01+7.272 \mathrm{E}-31+3.000 \mathrm{E}-01+0.000 \mathrm{~F}-39+2.087 \mathrm{E}+00$ $+2.030 E-39+1.172 \mathrm{E}-01+7.255 E-01+3.075 \mathrm{E}-01+0.000 E-39+2.202 \mathrm{E}+00$ $1.933 \mathrm{E}+32+5.15 \mathrm{E}-01+7.255 \mathrm{E}-21+3.075 \mathrm{E}-01+0.000 \mathrm{E}-39+2.202 \mathrm{E}+00$
$-2.135 \mathrm{E}-\mathrm{DI}+1.056 \mathrm{E}-91+0.000 \mathrm{E}-39+2.334 \mathrm{E}+00$ $-4.827 E+71+4.313 E-02+1.557 \mathrm{~F}-71+7.937 \mathrm{~F}-02+0.000 \mathrm{E}-39+2.334 \mathrm{E}+00$ $-4.827 E+31+4.313 E-02+1.552 \mathrm{~F}-11+7.937 \mathrm{~F}-02+9.000 \mathrm{E}-39+2.537 \mathrm{E}+00$
$-3.102 \mathrm{E}+31+3.315 E-02+1.085 \mathrm{~F}-01+5.572 \mathrm{~F}-07+0.000 \mathrm{E}-39+2.839 \mathrm{E}+00$ $-1.913 E+31+2.35 B E-32+7.325 E-12+3.917 \mathrm{~F}-32+0.300 \mathrm{E}-39+3.293 \mathrm{E}+00^{-}$ $-28.39+3.598 E-03+3.030 E-37+2.175 E-03+3.552 \mathrm{~F}-92+1.969 \mathrm{~F}-07+0.000 \mathrm{E}-39+5.222 \mathrm{E}+00$ $8+4.298 E+00+1.296 E+01+7.480 E+C 0+1.513 E+01-30.00+3.598 E-03+0.330-37+2.175 E-03+3.551 E-32+1.959 E-32+0.090 E-39+5.665 E+00$

$$
A T A L P H A=+1.2000 E+02, L E F W A R D, R W=+2.7633 E-01 \text { DELS }=+1.3342 F-0233+3 E 5=-1.414 R F+07
$$ SKIP CASE, YH IMAGINARY FOR RH $=+2.7533 \mathrm{E}+01$ DELS $=+1.9342 \mathrm{E}-323540 \mathrm{KK}=,-\underline{1} .41+3 \mathrm{E}+0 \mathrm{O}$

SEC
$\times 0 \mathrm{~L}$
XB L
YB L
SBL THETBL PE/PS L.
DP/OSL
2 L
OT L
RE 1
OR L.
XSI L
 $8+4.265 \mathrm{E}+00+4.456 \mathrm{E}-03+3.629 \mathrm{E}-02+3.665 \mathrm{E}-02+76.00+9.183 \mathrm{E}-01-2.959 \mathrm{E}+02+2.981 \mathrm{E}+00+1.764 \mathrm{E}+00+4.284 \mathrm{E}-04+0.000 \mathrm{E}-39+2.030 \mathrm{E}-02$ $8+4.244 \mathrm{E}+30+1.092 \mathrm{E}-02+5.619 \mathrm{E}-02+5.760 \mathrm{E}-02$ $8+4.223 E+00+2.010 E-02+7.500 \mathrm{E}-02+7.854 \mathrm{E}-02$
$4+4.208 \mathrm{E}+00+2.865 \mathrm{E}-02+8.817 \mathrm{E}-02+9.42 \mathrm{E} \sim 02$ $4+4.208 \mathrm{E}+00+2.865 \mathrm{E}-02+8.817 E-02+9.423 E-02$

$4+4.208 \mathrm{E}+00+3.690 \mathrm{E}-02+9.853 \mathrm{E}-02+1.075 \mathrm{E}-01$ | $4+4.208 \mathrm{E}+00+3.690 \mathrm{E}-02+9.853 \mathrm{E}-02+1.075 \mathrm{E}-01$ |
| :--- |
| 4 |
| 4 |
| +4. |
| 192 | $4_{4}+4.192 \mathrm{E}+00+3.853 \mathrm{E}-02+1.004 \mathrm{E}-01+1.100 \mathrm{E}-01$ $4+4+177 \mathrm{E}+00+4.963 \mathrm{Em} 02+1.115 \mathrm{E}-01+1.257 \mathrm{E}-01$

$4+4+162 \mathrm{E}+00+6.183 \mathrm{E}-02+1.214 \mathrm{E}-01+1.414 \mathrm{E}-01$ $4+4.162 \mathrm{E}+00+6.183 \mathrm{E}-02+1.214 \mathrm{E}-01+1.414 \mathrm{E}-01$
$4+4.148 \mathrm{E}+00+7.500 \mathrm{E}-02+1.299 \mathrm{E}-01+1.571 \mathrm{E}-01$ $-\quad 4+4.148 \mathrm{E}+00+7.500 \mathrm{E}-02+1.370 \mathrm{E}-01+1.72 \mathrm{E}=01$ $-1.4+4.123 \mathrm{E}+00+1.036 \mathrm{E}-01+1.427 \mathrm{E}-01+1.885 \mathrm{E}-01$ $4+4.112 \mathrm{E}+00+1.188 \mathrm{E}-01+1.467 \mathrm{E}-01+2.042 \mathrm{E}-01$
$4+4.102 \mathrm{E}+00+1.343 \mathrm{E}-01+1.492 \mathrm{E}-01+2.19 \mathrm{E}-01$ $-\quad 4+4.102 \mathrm{E}+00+1.343 \mathrm{E}-01+1.492 \mathrm{E}-01+2.193 \mathrm{E}-01$ $3+3.701 \mathrm{E}+00+9.352 \mathrm{E}-01+1.500 \mathrm{E}-01+1.021 \mathrm{E}+00$ $-3+3.308 \mathrm{E}+00^{-}+1.720 \mathrm{E}+00+1.500 \mathrm{E}-01+1.806 \mathrm{E}+00$ $3+2.516 \mathrm{E}+00+2.506 \mathrm{E}+00+1.500 \mathrm{E}-01+2.591 \mathrm{E}+00$ $-3+2.523 E+00+3.291 E+00+1.500 \mathrm{E}-01+3.376 \mathrm{E}+00$ $3+2.130 E+00+4.076 E+00+1.500 E-01+4.152 E+90$ $3+1.738 E+00+4.861 E+00+11.500 \mathrm{E}-01+4.547 \mathrm{EFOO}$
 $3+5.601 \mathrm{E}-01+7.217 \mathrm{E}+00+1.500 \mathrm{E}-01+7.302 \mathrm{E}+00$ $3+1.675 \mathrm{E}-01+8.002 E+00^{-}+1.500 E-01+8.088 E+00$ $1+1.362 \mathrm{E}-01+8.067 \mathrm{E}+00+1.483 \mathrm{E}-01+8.153 \mathrm{E}+00$ -1+1.08TE-01 +8.133E+60 +1.432E-01 +8. $218 E+00$ $1+8.302 \mathrm{E}-02+8.198 \mathrm{E}+00+1.346 \mathrm{E}-01+8.284 \mathrm{E}+00$ $1+4.259 \mathrm{E}-02+8.325 \mathrm{E}+00+1.074 \mathrm{E}-01+8.415 \mathrm{E}+00$ $1+2.732 \mathrm{E}-02+8.388 \mathrm{E}+00+8.882 \mathrm{E}-02+8.480 \mathrm{E}+00$ $1+1.539 \mathrm{E}-02+8.450 \mathrm{E}+00+6.697 \mathrm{E}-02+8.545 \mathrm{E}+00$ $1+6.848 \mathrm{E}-03+8.510 \mathrm{E}+00+4.193 \mathrm{E}-02+8.611 \mathrm{E}+00$ $+1.713 \mathrm{E}=03+8.569 \mathrm{E}+00+1.376 \mathrm{E}-02+8.677 \mathrm{E}+00$
 $+60.00+6.933 \mathrm{E}-01-3.917 \mathrm{E}+52+2.351 \mathrm{E}+00+2.185 \mathrm{E}+00+1+541 \mathrm{E}-03+0.000 \mathrm{E}-39+2.732 \mathrm{E}=02$ $+54.00+6.138 \mathrm{E}-31-3.051 \mathrm{E}+52+2.055 \mathrm{E}+30+2.148 \mathrm{E}+00+1.944 \mathrm{E}-03+0.000 \mathrm{E}-39+3.121 \mathrm{E}=02$ $48.94+5.685 \mathrm{E}-01-1.627=32+1.835 \mathrm{E}+00+2.088 \mathrm{E}+00+2.249 \mathrm{E}-03+0.000 \mathrm{E}-39+3.500 \mathrm{E}-02$ $48.00+5.539 \mathrm{E}-31-4.652 \mathrm{E}+52 \mathrm{Z}+1.334 \mathrm{E}+00+2.074 \mathrm{E}+00+2.35 \mathrm{SE}-33+0.730 \mathrm{E}-39+3.575 \mathrm{E}=02$ $42.00+4.497 \mathrm{E}-01-4.652 \mathrm{E}+32+1.316 \mathrm{E}+00+1.935 \mathrm{E}+90+2.613 \mathrm{E}-03+0.030 \mathrm{E}-39+4.0 \mathrm{O} 6 \mathrm{E}-02$ $35.00+3.478 \mathrm{E}-01-4.449 \mathrm{E}+32+1.339 \mathrm{E}+00+1.727 \mathrm{E}+00+2.774 \mathrm{E}-03+0.000 \mathrm{E}-39+4.646 \mathrm{E}-02$
$+30.00+2.705 \mathrm{E}-01-3.037 \mathrm{E}+32+1.034 \mathrm{E}+00+1.512 \mathrm{E}+00+2.327 \mathrm{E}-03+0.000 \mathrm{E}-39+5.241 \mathrm{E}-02$ $+24.00+2.705 E-J 1-3.037 E+j 2+1.33 E+00+1.512 E+00+2.327 E=01+0.000 E-39+5.241 E-02$ $+24.00+2.097 \mathrm{E}-01-2.452 \mathrm{E}+32+3.73 \mathrm{JE}-01+1.303 \mathrm{E}+00+2.795 \mathrm{E}-03+0.000 \mathrm{E}-39+5.853 \mathrm{E}-02$
$+18.00+1.599 \mathrm{E}-71-1.957 \mathrm{t}+32+7.307 \mathrm{E}-01+1.103 \mathrm{E}+00+2.585 \mathrm{E}-03+0.000 \mathrm{E}-39+5.461 \mathrm{E}-02$ $+18.00+1.599 \mathrm{E}-71-1.957 E+J 2+7.307 \mathrm{E}-01+1.103 \mathrm{E}+00+2.583 \mathrm{E}-03+0.000 \mathrm{E}-39+5.461 \mathrm{E}-02$
$+12.00+1.210 \varepsilon-01-1.573 \mathrm{E}+32+5.547 \mathrm{E}-01+9.221 \mathrm{E}-01+2.513 \mathrm{E}-03+0.000 \mathrm{E}-39+7.040 \mathrm{E}=02$ $+12.00+1.210 \varepsilon-01-1.57 J E+22+5.547 E-01+9.221 E-01+2.513 E-03+0.000 E-3977.040 E=02$
$+6.00+8.933 E-02-1.227 E+32+4.279 E-01+7.547 E-01+2.290 E-03+0.000 E-39+7.564 E-02$ +6. $00+8.933 \mathrm{E}-02-1.227 \mathrm{E}+32+4 . ? 79 \mathrm{E}-01+7.547 \mathrm{E}-01+2.290 \mathrm{E}-03+0.000 \mathrm{E}-39+7.564 \mathrm{E}-02$ $+0.00+6.548 \mathrm{E}-02-9.516 \mathrm{E}+31+3.307 \mathrm{E}-01+6.113 \mathrm{E}-01+2.053 \mathrm{E}-03+0.000 \mathrm{E}=39+8.009 \mathrm{E}=02$
$+0.00+3.106 \mathrm{E}-02-1.230 \mathrm{E}+35+1.11+\mathrm{E}-01+2.784 \mathrm{E}-01+5.522 \mathrm{E}-03+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+0.00+3.106 E-02-1.230 E+37+1.11+E-01+2.784 E-01+5.522 E-03+0.000 E-39+0.000 E-39$
$+0.00+2.181 E=02-5.395 E-31+7.294 E-02+1.951 E-01+7.931 E-03+4000 \mathrm{E}=39+0.000 \mathrm{E}-39$ $+0.00+2.181 E-02-5.395 E-31+7.234 E-02+1.951 E-01+7.931 E-03+0.000 E-39+0.000 E-39$
$+0.00+2.183 E-02+3.030 E-37+5.345 \sum-02+1.817 E-01+1.139 E-02+0.000 E-39+0.000 \mathrm{E}-39$ $+0.00+1.896 \mathrm{E}-02-2.159 \mathrm{E}-31+5.422 \mathrm{E}=02+1.563 \mathrm{E}=61+1.354 \mathrm{E}=02+0.000 \mathrm{E}=59+0.000 \mathrm{E}=39$ $+0.00+1.896 \mathrm{E}-02-2.159 \mathrm{E}-31+5.42 \mathrm{E}-02+1.563 \mathrm{E}-01+1.354 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
$+0.00+1.687 \mathrm{E}-02-1.616 \mathrm{E}-31+4.522 \mathrm{E}-02+1.382 \mathrm{E}-01+1.546 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+0.00+1.527 E-02=1.250=-51+7.52 \mathrm{~F}=02+1.38 \mathrm{~F}=01+1+546 \mathrm{E}-02+0.000 \mathrm{E}=39+0.000 \mathrm{E}=39$ $+0.00+1.401 \mathrm{E}-02-1.014 \mathrm{E}-31+3.596 \mathrm{E}-02+1.139 \mathrm{E}-01+1.893 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
 $+0.00+1.212 \mathrm{E}-02-7.015 \mathrm{E}-32+2.753 \mathrm{E}-32+9.802 \mathrm{E}-02+2.179 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $+0.50+1.140 \mathrm{E}-02-5.935 \mathrm{E}-32+2.728 \mathrm{E}-02+9.196 \mathrm{E}-02+2.315 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}+39$ $-3.00+9.249 \mathrm{E}-03-2.13 \mathrm{~J}+13+2.744 \mathrm{E}-02+7.920 \mathrm{E}-02+2.023 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$ $-6.00 \mp 7.425 E-03-1.802 E+20+2.275 E-02+3.753 E-02+1.753 E-32+0.000 E-39$ - $70.000 E=39$ $-9.00+5.932 E-03-1.433 \mathrm{E}+3 \mathrm{~J}+1.39 \mathrm{E}-02+5.749 \mathrm{E}-02+1.524 \mathrm{E}=02+0.000 \mathrm{E}=39+0.000 \mathrm{E}-39$
 $-15.00+3.761 E-23-7.957 E-31+1.282 E-02+4.124 E-02+1.130 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
 $21.00+3.598 \mathrm{E}-03+3.000 \mathrm{E}-39+3.957 E-03+3.981 \mathrm{E}-02+1.112 \mathrm{E}-02+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
 $-27.00+3.598 \mathrm{E}-03+0.030$ E-39 + $\mathrm{E} .355 \mathrm{E}-33+3.959 \mathrm{E}-32+1.129 \mathrm{E}-32+0.000 \mathrm{E}-39+0.000 \mathrm{E}$ - 39 $-30.00+3.598 \mathrm{E}-0 \mathrm{~J}^{-}+3.030=-38+3.35 \mathrm{JE}-03+3.953 \mathrm{E}-92+1.138 \mathrm{E}-3 \mathrm{~J}^{2}+0.050 \mathrm{E}-39+0.000 \mathrm{E}=39$

DTOS ST THET ST SE:T ALPHA
$-\mathrm{St} \quad \mathrm{S} \mathrm{ST}$
$39-4.35326 \mathrm{E}+00$

$+7.42500 E+00+8.82062 E+00$

$-6.66367 E+00-6.05900 E+9 L \quad$ B $+[50.00$

-6.0NJOOE+JL $\quad 3-150.00$

YBW SN SBH SN THET $\mathrm{J}^{-} \mathrm{SN}^{--}$- SECT ALPHA
$+1.28291 \mathrm{E}+0 \mathrm{I}^{\text {** }}+1.49171 \mathrm{E}+3 \mathrm{~K}^{-7}+4.39372 \mathrm{~F}+\mathrm{OL}$
$9+150.00$
YBL SN SBL SN THET_ SV SECT ALPHA
$+9.85330 E-02+1.07532 E-31 \quad$ F+.37372E+01
$8+150.09$

AT ALPHA $=+1.5000 E+02$ WINOWARD，RW $=+3.1389 F+01$ DELS $=+1.8342 F-0235+32 く=-3.1534 E+77$

XB W
Yg W
SB
THFTB
PE／PS W OP／DS N
$2+$
ot w
PE H
OR
XSI W
$8+4.353 \mathrm{~F}+00-0.000 \mathrm{~F}-39+0.000 \mathrm{E}-39+0.200 \mathrm{E}-39+0$. $8+4.358 \mathrm{E}+00+3.654 \mathrm{E}-04+1.045 \mathrm{E}-02+1.00 \mathrm{E}-39+$ +4.36 KE $+00+3.278 \mathrm{E}-03+3.119 \mathrm{E}-02+3.142 \mathrm{E}-02$ $+4.371 E+00+9.046 E-03+5.130 E-02+5.235 E-37$ $+4.425 \mathrm{E}+00+1.350 \mathrm{E}-01+3.973 \mathrm{~F}-01+4.206 \mathrm{E}-01$
$9+4.499 \mathrm{E}+30+2.609 \mathrm{~F}-01+7.433 \mathrm{E}-01+7.889 \mathrm{E}-01$ $+4.563 \mathrm{E}+00+3.468 \mathrm{E}-01+1.089 \mathrm{~F}+00+1.157 \mathrm{E}+00$ $9+4.627 F+00+5.178 \mathrm{~F}-01+1.435 \mathrm{E}+00+1.525 \mathrm{E}+40$
$9+4.691 \mathrm{E}+00+6.387 \mathrm{E}-01+1.781 \mathrm{~F}+00+1.893 \mathrm{E}+00$ $0+4.755 \mathrm{~F}+70+7.646 \mathrm{~F}-01+2.127 \mathrm{E}+00+2.252 \mathrm{E}+00$ $9+4.819 \mathrm{E}+00+8.906 \mathrm{E}-01+2.473 \mathrm{~F}+00+2.530 \mathrm{E}+3 \mathrm{O}$
$9+4.883 \mathrm{E}+00+1.016 \mathrm{E}+00 \mathrm{O}+2.819 \mathrm{E}+00+2.999 \mathrm{tiv}$ $9+4.947 E+00+1.142 E+00+3.165 E+00+3.3,5 E+00$ $10+5.010 E+00+1.268 E+00+3.511 F+00+3.734 E+3 J$ $10+5.010 E+00+1.456 E+00$ $10+5.010 E+00+1.643 \mathrm{E}+00$ $10+5.010 E+00+1.831 E+00$ $10+5.010 \mathrm{E}+00+2.206 \mathrm{E}+00$
$10+5.010 \mathrm{E}+00+2.293 \mathrm{E}$ $10+5.010+00$ $10-75.010 \mathrm{E}+00$ $10.010 E+00+2.956 E+00$ $10+5.010 \mathrm{E}+00 \mp 3: 143 \mathrm{E}+00$ 10． $10 \mathrm{E}+00$ 1010 $+3.518 \mathrm{E}+00$ $10+5.010 \mathrm{E}+00+3.893 \mathrm{E}+00$

$$
\begin{array}{r}
10+5.010 \mathrm{E}+00+3.706 \mathrm{E}+00+7.733 \mathrm{E}+00+8.539 \mathrm{E}+00 \\
10+5.010 \mathrm{E}+00+3.893 \mathrm{E}+00+8.058 \mathrm{E}+00+8.984 \mathrm{E}+00 \\
10+5.010 \mathrm{E}+00+4.081 \mathrm{E}+00+8.383 \mathrm{E}+00+9.359 \mathrm{E}+00 \\
10+5.010 \mathrm{E}+00+4.268 \mathrm{E}+00+8.707 \mathrm{E}+00+9.734 \mathrm{t}+00
\end{array}
$$

$10+5.010 E+00+4.456 \mathrm{E}+00+9.032 \mathrm{E}+00+9+734=+00$
$10+5.010 \mathrm{E}+00+4.643 \mathrm{E}+00+9.357 \mathrm{~F}+00+1.011 \mathrm{E}+01$ $10+5.010 \mathrm{E}+00+4.831 \mathrm{E}+00+9.682 \mathrm{E}+00+1.08 \mathrm{E}+01$ $10+5.010 E+00+5.018 E+00+1.001 E+01+1.123 E+01$ $9+4.947 \mathrm{E}+90+5.255 \mathrm{E}+00+1.029 \mathrm{E}+01+1.16 \mathrm{~J}^{\mathrm{F}}+01$ $+4.883 E+00+5.492 \mathrm{E}+00+1.057 \mathrm{E}+01+1.197 \mathrm{E}+01$
$+4.819 \mathrm{E}+00+5.728 \mathrm{E}+00+1.085 \mathrm{E}+01+1.234 \mathrm{E}+01$ $9+4.819 E+00+5.728 E+00+1.085 E+01+1.234 E+01$
$9+4.755 E+00+5.965 E+00+1.113 E+91+1.271 E+01$ $9+4.755 E+00+5.965 \mathrm{E}+00+1.113 \mathrm{E}+91+1.271 \mathrm{E}+01$
$9+4.691 \mathrm{E}+00+6.202 \mathrm{E}+00+1.142 \mathrm{E}+21+1.309 \mathrm{E}+01$ $+4.627 \mathrm{~F}+90+5.43 \mathrm{E}+00+1.170 \mathrm{E}+0 \mathrm{D}+1.344 \mathrm{E}+01$ $+4.563 \mathrm{E}+00+6.675 \mathrm{E}+00+1.198 \mathrm{E}+01+1.331 \mathrm{E}+01$ $9+4.499 \mathrm{E}+00+6.912 \mathrm{E}+00+1.226 \mathrm{E}+01+1.413 \mathrm{E}+31$ $9+4.435 \mathrm{E}+00+7.148 \mathrm{E}+00+1.254 \mathrm{E}+01+1.455 \mathrm{E}+01$ $9+4.371 \mathrm{E}+00+7.385 \mathrm{E}+00+1.283 \mathrm{E}+01+1.492 \mathrm{E}+01$
$9+4.371 \mathrm{E}+00+7.387 \mathrm{E}+00+1.283 \mathrm{E}+01+1.492 \mathrm{E}+01$ $9+4.371 \mathrm{E}+00+7.387 \mathrm{E}+00+1.283 \mathrm{E}+01+1.492 \mathrm{E}+01$
$8+4.366 \mathrm{~F}+20+7.400 \mathrm{E}+00+1.284 \mathrm{E}+01+1.474 \mathrm{E}+01$ $+4.358 \mathrm{E}+30+7.416 \mathrm{E}+00+1.785 \mathrm{E}+01+1.496 \mathrm{E}+71$ $8+4.353 \mathrm{E}+00+7.425 \mathrm{~F}+0 \mathrm{D}+1.286 \mathrm{E}+01+1.497 \mathrm{E}+1 \mathrm{I}$
$8+4.348 \mathrm{E}+00+7.434 \mathrm{E}+00+1.287 \mathrm{E}+01+1.494 \mathrm{E}+21 \mathrm{l}$ $8+4.348 \mathrm{E}+00+7.434 \mathrm{E}+00+1.287 \mathrm{E}+01+1.494 \mathrm{E}+71$
$8+4.335 \mathrm{E}+0 \mathrm{C}+7.454 \mathrm{~F}+00+1.287 \mathrm{E}+01+1.390 E+01$ $8+4.3205+00+7.474 \mathrm{~F}+00+1.278 \mathrm{~F}+01+1+532 \mathrm{E}+11$
$8+4.303 \mathrm{~F}+00+7.495 \mathrm{E}+00+1.280 \mathrm{E}+01+1.274 \mathrm{E}+11$ $8+4.303 \mathrm{E}+0 \mathrm{C}+7.495 \mathrm{E}+00+1.288 \mathrm{E}+\mathrm{n} \mathrm{l}+1.3245+11$
$8+4.284 \mathrm{~F}+20+7.516 \mathrm{E}+\mathrm{n}_{3} \mathrm{O}+1.288 \mathrm{E}+0 \mathrm{l}+1.336^{\circ}+61$
 $8+4.244 E+00+7.555 F+01+1.287 \mathrm{~F}+\mathrm{n} 1+1.51 J=+11-$
+90.00
+85.30
$+1.000 \mathrm{E}+20+4.038 \mathrm{E}-35+3.302 \mathrm{E}+00+0.020 \mathrm{~F}-30$ $+9.951 \mathrm{E}-01-5.51 \mathrm{SE}+31+2.937 \mathrm{E}+00+7.613 \mathrm{~F}-91$ $+9.568 \mathrm{~F}-01-1.933 E+22+2.872 \mathrm{E}+00+1.429 E+00$ $+8.830 \mathrm{E}-01$ $+8.830 E-01$
$+8.830 \mathrm{~F}-01$ $+3.020=-39$
$+7.020=-39$
$+7.030 E-37$
$+3.026=-37$
$+3.090=-37$
$73.00+8.833 F-01+3.030 E-37$
$73.00+8.830 E-01+3.030 E-37$ $79.01+8.833 E-01+0.030 E-37$
$+70.70+8.833 \mathrm{~F}-01+3.03 n=-37$ $79.70+8.83) F-01+3.23 \wedge=-37$
$70.00+9.830 \mathrm{E}-11+7.309=-37$ $+70.00+9.839 E-91+3.030 \Sigma-37$ $+70.30$ +70.20
+7 ． 27
 +70.00
+60.00 +60.70
+50.00 +50.00
+60.00
+50.75
 $+50.79+7.500 \mathrm{~F}-71+3.739 E-37+2.730 \mathrm{~F}-71+9.24 \mathrm{~F}=-31$
$+60.00+751$ $+60.00+7.5$ COE $-01+0.3 フ 0 E-37+2.325 E-11+9.157 \mathrm{~F}-51$ $+60.00+7.500 E-31+9.030 E-39+2.232 E-71+8.9925-n 1$
$+60.00+7.500 E-21+3.300 E-39+2.15 j E-01+8.847 F-01$ $+6.00+7.500 \mathrm{E}-51+3.300 \mathrm{E}-39+2.15 \mathrm{JE}-01+8.857 \mathrm{~F}-01$
$+63.00+7.500 \mathrm{E}-51+7.090 \mathrm{E}-39+2.973 \mathrm{E}-91+8.759 \mathrm{E}-71$
 $+60.00+7.500 \mathrm{E}-01+5.030 E-37+1.747 \mathrm{E}-31+8.556 \mathrm{E}-71$
$+60.00+7.500 \mathrm{E}-01+5.050 \mathrm{E}-37+1.393 \mathrm{E}-01+8.479 \mathrm{E}-01$ $+60.00$ $+60.00$ +60.00
+40.20 +60.50
+60.50 +60.00
+60.30 +60.70
+60.00 +60.00
+60.70 $\begin{aligned} & \\ & 60.30+7.503 E-31+0.030 E-39+1.573 E-01+7.926 E-01 \\ &+690+1.543 E-01+7.870 E-01\end{aligned}$ $+57.20+5.503 \mathrm{E}-31+2.250 \mathrm{E}-39+1.515 \mathrm{E}-01+7.817 \mathrm{E}-01$ $+57.00+5.869 E-71+3.090 E-37+1.571 E-91+8.701 F-91$
$+50.00+5.869 E-91+3.030 E-37+1.5+3 E-01+8.150 \mathrm{E} \rightarrow 31$
 50．00 $+5.868 E-71+3.030 E-37+1.517 E-01+8.101 E-21$
$+50.0 n+5.86 B E-31+3.350 E-37+1.492 E-11+8.354 E-71$ 50． $0 \mathrm{n}+5.86 \mathrm{BE}-91+3.990 \mathrm{E}-37+1.492 \mathrm{E}-11+8.954 \mathrm{E}-11$
$+50.00+5.868 \mathrm{E}-91+2.000 \mathrm{E}-37+1.459 \mathrm{E}-01+8.60 \mathrm{~F}-21$ $+50.00+5.863 E-91+9.030 E-37+1.459 E-01+8.508 F-91$
$+53.30+5.86 B E-31+3.920 E-37+1 .+73 E-71+7.953 E-31$ $+50.00+5.86 \mathrm{BE}-31+3.300 E-37+1 .+42 E-71+7.953 E-31$
$+50.00+5.86 \mathrm{BE}-01+0.000 \mathrm{E}-39+1.424 E-31+7.920 \mathrm{E}-31$ $+50.20+5.868 \mathrm{E}-31+3.030 \mathrm{E}-37+1.434=-01+7.879 \mathrm{E}-01$
$+50.00+5.868 \mathrm{~F}-31+3.720 E-39+1.384 \mathrm{~F}-01+7.839 \mathrm{~F}-01$ $+50.00+5.863 F-31+3.320 E-37+1.384 \mathrm{~F}-01+7.839 \mathrm{~F}-31$
$+50.79+5.863 \mathrm{E}-01+3.030 \mathrm{E}-37+1.353 \mathrm{Z}-01+7.739 \mathrm{E}-71$ $+50.7+5.843 \mathrm{E}-21+3.030 \mathrm{E}-37+1.353 \mathrm{E}-01+7.739 \mathrm{E}-71$
$+42.24+5.685 \mathrm{E}-21-4.633 \mathrm{E}+32+3.745 \mathrm{E}-01+7.78 \mathrm{E}-01$ $+42.30+4.497 \mathrm{~F}-31-4.5525+72+3.333 \mathrm{E}-71+7.441 \mathrm{~F}-71$ $+24.00+2.569 \mathrm{E}-71-3.332 E+52+2.1755-01+5.0365-21$

0．003F－37 | D． $003 \mathrm{~F}-37$ |
| :--- |
| $3.777 \mathrm{E}-05$ |
| $2.501 \mathrm{~F}-04$ | $+2.591 \mathrm{~F}-04$ $+7.2 n 3 \mathrm{~F}-74$

$+5.785 \mathrm{E}-03$ $+5.785 \mathrm{E}-03$
$+1.795 \mathrm{E}-02$ $+1.395 \mathrm{E}-0$
$+1.592 \mathrm{E}-0$ $+2.798 F-37$ $+2.505 \mathrm{~F}-92$ $+7.111 F-02$
$+3.5115 E-02$ $+3.518 E-02$ $+4.124 \mathrm{~F}-02$ $+4.571 \mathrm{E}-72$ $+5.994 \mathrm{~F}-07$
－2．018E－01 $+1.534 \mathrm{E}-02$ ＋1． $\mathrm{H} 87 \mathrm{E}-01$ $+1.775 \mathrm{E}-02$ $+7.5 \mathrm{~A} 7 \mathrm{~F}-02$
$+8.273 \mathrm{E}-02$ $+8.279 \mathrm{E}-02$
$+8.971 \mathrm{E}-02$ $+9.644 E-52$ $+1.734 \mathrm{E}-\mathrm{DI}$ $+1.105 \mathrm{E}-01$ $1.174 \mathrm{E}-01+0.000 \mathrm{E}-39$ $.243 \mathrm{E}-01+0.000 \mathrm{E}-39$
$1.313 \mathrm{E}-01+0.000 \mathrm{E}-39$ $+1.313 \mathrm{E}-01+0.000 \mathrm{E}-39$
$+1.382 \mathrm{E}=6 \mathrm{I}^{-}+0.000 \mathrm{E}-39$ $+1.451 E-01+0.000 \mathrm{E}-39$
$+1.520 \mathrm{E}-0 \mathrm{I}^{+0.000 E-39^{-}}$ $+1.520 \mathrm{E}-01$
$+1.589 \mathrm{~F}-01$ $+1.659 \mathrm{E}-01$ $+1.729 \mathrm{~F}-01$ $1+0$
$1+0$
+0 $1.955 \mathrm{E}-01$ $1.935 \mathrm{E}-01$ 2． $2754 \mathrm{~F}-01$ $.415 \mathrm{E}-01$ ．493E－01 ．5ヶヲF－01 $2.723 \mathrm{~F}-71$ 2．793F－31 2．876E－01 $+7.953 \mathrm{~F}-71$ $+3.529 \mathrm{E}-9 \mathrm{~L}$ $+3.176 \mathrm{~F}-31$ $+3.126 \mathrm{E}-71$ $+2.945 \mathrm{E}-71$ $+7.697 \mathrm{~F}-76$
$+7.577 \mathrm{E}-n$ $+5.57 ว \mathrm{E}-71$ $+2.118 \mathrm{E}-\mathrm{Nl}$ $+1.739 \mathrm{~F}-\mathrm{nl}$ $+1.383 F-01$ $+1.257 F=0$
$+1.371 \mathrm{E}-01$ $+9.567 \mathrm{E}-02$ $+0.0005-39$ $+0.059=-39$ ．0n0F－39 $.000 E-39$
$0.090 E-39$ $+2.905 E^{-1}$ $+2.852 \mathrm{~F}-01$ ＋4．056F－01 $+5.210 \mathrm{E}-01$ $+6.314 \mathrm{~F}-01$ $+7.368 \mathrm{E}-01$ $+8.373 \mathrm{E}-01$ ． $050 \mathrm{E}-39+9.330 \mathrm{E}-01$ ． $000 \mathrm{E}-39+1.024 \mathrm{E}+00$ $.200 \mathrm{E}-39+1.173 \mathrm{E}+00$ ． $000 \mathrm{~F}-39+1.324 \mathrm{E}+00$ ． $200 E-39+1.469 E+00$ 050 E $9+1.509 E+00$ ＋1．742E＋00 $1.869 \mathrm{E}+00$ 71.991 ETO 2．105E＊00 $+2.216 E+007$ $+2.320 \mathrm{E}+00 \mathrm{Cl}$ 2.417 F 40% $+2.508 E+00$,
$+2.593 E+00$. $2.593 E+00^{\prime}$ $+2.3725+00$ 2.745 FF 00 $+2.810 \mathrm{E}+00$ $+2.870{ }^{2} 706$ $+2.922 E+00$ 2．967E＋00 $3.006 F+00$ $3.037 \mathrm{E}+00$ $+3.193 E+00$ $+0.000 E-39+3.037 E+00$
$+0.000 \mathrm{E}-39+3.193 \mathrm{E}+00$
$+3.000 \mathrm{E}-39+3.262 \mathrm{E}+00$ $+0.500 \mathrm{E}-39+3.322 \mathrm{E}+00$ 9．020F－39 $+3.373 \mathrm{~F}+00$ $0.0005-39+3.415 \mathrm{E}+00$ ． $0 \mathrm{COE}-39+3.448 \mathrm{E}+00$ $.050 \mathrm{~F}-39+3.470 \mathrm{E}+00$ $070 E-39+3.483 E+00$
$700 E-39+3.484 E+00$
 $0.010 \mathrm{E}-39+3.471 \mathrm{E}+00$
+0.02 $+7.210 \mathrm{~F}-39+3.475 \mathrm{E}+00$ $+.020 \mathrm{~F}-39+3.475 \mathrm{E}+00$
$+3.00 \mathrm{E}-39+3.523 \mathrm{~F}+00$ +3. ．JOE $-39+3.523 \mathrm{~F}+00$
$+7.250 \mathrm{E}-39+3.565 \mathrm{E}+00$ $+7.00 \mathrm{E}-39+3.565 \mathrm{E}+00$
$+7.000 \mathrm{E}-39+3.518 \mathrm{E}+00$ 2． 2 ． $2 \mathrm{nF}-39+3.78 \mathrm{~F}+3 \mathrm{E}+00$ $+2.097 \mathrm{~F}-39+3.780 \mathrm{~F}+00$ + ． 0 ．7nE－ $39+3.951 E+00$ $+3.375 \mathrm{~F}-30+4.191 \mathrm{FF} 00$ ．200E－ $20+4.478 F+00$


```
4+4.223E+00 +7.575E+00 +1.286E+01 +1.513E+01 - 30.00 +9.707E-03-1.894E+71 +2.147E-02 +7.243E-02 +3.889E-02 +0.000E-39 +5.543E+00
```



```
4+4.192E+00 +7.600E+00+1.284F+01+1.516E+01 -42.00 +3.905E-03-8.575E+jJ +1. 24.3E-02 +3.758E-37 +2.089F-02 +0.000F-39 +0.000E-39
4. +4.177E+00 +7.611E+00 +1.283E+01 +1.517E+01-48.00 +3.598E-03 +0.030E-39 +2. 237E-33 +3.549E-92 +1.975E-02. +0.050E-39 +0.000E-39
-4+4.148E+00+7.630E+00 +1.281E+01 +1.523E+01 -60.00 +3.598E-03 +3.3J3E-33 +2. 257E-33 +3.548E-J2 +1.979E-02+0.000E-39+0.000EE-39
```



```
4+4.112E+00-7.647E+00 +1:276E+01 +1.525E+01 -78.00 +3.598E-0.03
```



```
3+3.701E+00+7.650E+00+1.195E+01 +1.607E+01-90.00 +3.598E-03 +0.000E-39 +2.255E-23 +3.509E -02 +2.092E-02 +0.000E-39 +0.000E-39 
```



```
3+2.916E+00+7.650E+00+1.037E+01 +1.764E+01-90.00 +3.598E-03 +0. 3 00E-37 +2. 254E-03 +3.444E-32 +7.296E-02 +0.030E-39 +0.000E-39
3+2.523E+00+7.650E+00+9.590E+00 +1.842E+01-90.30 +3.598E-03 +5.050E-39 +2. 252E-03 +3.414E-02 +2.398E-32 +0.300E-39 +0.003E-39
_- 3+2.130E+00 +7.650E+00 +8. 805E+00 +1.921E+01 -90.00 +3.598E-03 +0.050E-37 +2. 2S1E-03 +3.386E-02 +2.500E-02 +0.000EE-39+0.000E-39
```



```
3+5.601E=01+7.650E+00 +5.664E+00 +2.235E+01-90.00 +3.598E-03 +2.030E-37+2.237E-03 +3.285E-02 +2.909E-02 +0.000E-39 +0.000E-39
    1 +1.362E-01 +7.648E+00+4.813E+00 +2.320E+01 -90.00 -93.00 +3.598E-03 +5.050E -39 +2.25SE-03 +3.250E-02 +3.020E-02 +0.000E-39 +0.000E - 39
```


\qquad

- AT ALPHA $=+1.5000 E+02$, LEEWARD, RW $=+2.7633 E-01$ 2ELS $=+1.8342 E-32334 J こ 6=-1.414 \mathrm{BF}+70$ THETAW LESS THAN LIMIT

YBL SAL THETBL PF/PSL DP/DS OL DL OT
$8+4.353 E+00-0.000 E-39+0.000 E-39+0.000 E-39+90.00+1.000 E+33+4.038 E-35+3.032 E+00+0.002 E-39+0.000 E-39+2.018 E-01+1.334 E-02$

 $8+4.303 \mathrm{E}+00+1.756 \mathrm{E}-02+7.042 \mathrm{E}-02+7.330 \mathrm{E}-02+62.00+7.796 \mathrm{E}-01-3.87 \mathrm{BE}+32+2.332 \mathrm{E}+00+2.081 \mathrm{E}+00+1.297 \mathrm{E}-03+5.000 \mathrm{E}-39+2.617 \mathrm{E}-02$
 $8+4.284 E+00+3.690 E-02+9.853 E-02+1.075 E-01+48.94+5.685 E-01-4.633 E+52+1.353 E+00+2.088 E+00+2.249 E-03+0.000 E-39+3.500 E-02$
 $8+4.244 \mathrm{E}+00+5.765 \mathrm{E}-02+1.182 \mathrm{E}-01+1.351 \mathrm{E}-01+38.00+3.813 \mathrm{E}-01-4.539 \mathrm{E}+5 \mathrm{I}+1.396 \mathrm{E}+00+1.803 \mathrm{E}+30+2.739 \mathrm{E}-03+0.000 \mathrm{E}-39+4.455 \mathrm{E}-02$
 $4+4.208 E+00+8.899 E-02+1.370 E-01+1.723 E-01+24.00+2.121 E-01-2.475 E+32+3.555 E-01+1.311 E+00+2.809 E-03+0.000 E-39+5.653 E-02$
 $4+4.177 \mathrm{E}+00+1.188 \mathrm{E}-01+2+467 \mathrm{E}-01+2.042 \mathrm{E}-01+12.00+1.223 \mathrm{E}-\mathrm{Jl}-1.534 \mathrm{E}+32+5.4 \mathrm{OlE} \mathrm{E}-01+9.284 \mathrm{E}-01+2.528 \mathrm{E}-33+0.000 \mathrm{E}-39+7+040 \mathrm{E}-02$
 $4+4.148 \mathrm{E}+00+1.500 \mathrm{E}-01+2.500 \mathrm{E}-01+2.355 \mathrm{E}-01-0.30+6.625 \mathrm{E}-02-9.509=+31+3.222 \mathrm{E}-01+5.160 \mathrm{E}-01+2.064 \mathrm{E}-03+0.000 \mathrm{E}-39+8.009 \mathrm{E}-02$
 $4+4.123 \mathrm{E}+00+1.812 \mathrm{E}-01+1.467 \mathrm{E}-01+2.57 J \mathrm{E}-01-12.00+3.312 \mathrm{E}-02-5.397 E+51+1.773 \mathrm{E}-01+3.602 \mathrm{E}-01+1.532 \mathrm{E}-33+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$
 $4+4.102 \mathrm{E}+0 \mathrm{D}+2.110 \mathrm{E}-01+1.370 \mathrm{E}-01+2.985 \mathrm{E}-01-24.00+1.527 \mathrm{E}-02-2.777 \mathrm{E}+31+7.274 \mathrm{E}-02+2.184 \mathrm{E}-01+1.033 \mathrm{E}-03+0.000 \mathrm{E}-39+0.000 \mathrm{E}-39$

\qquad

\$1bs푸́
$000000000000000000800011-01016 Q 0000080001 F 00000018 S Y S T-000010303027534233323331$ ILINES OUTPUT THIS 108.

III. COMPUTATIONS

A. BLOCK DIAGRAM

The block diagram for Program 1885 is shown in Figure 1, The overall program is divided into five basic calculations:

1. The body geometry routine, depicted in Figure lla, computes the body coordinates at zero angle-of attack, locates the stagnation point at angle of attack, defines the wind axes, and thereafter computes the body coordinates in the transformed axis system. The array of body coordinates so generated is thereafter utilized to compute the pressure and heating distributions.
2. The pressure distribution routine, depicted in Figurellb, computes the pressures utilizing several calculation models by testing the local slope, curvature, and previous pressure value. The local slope and curvature are given in the coordinate tables.
3. The laminar and turbulent heating routine, depicted in Figure 11c,utilizes the pressure distributions, surface distance information from the coordinate tables, and thermochemical data from the oblique and normal shock routine to evaluate the appropriate heat-transfer relationships.
4. The oblique and normal shock routine, depicted in Figure lld,evaluates all the necessary flow conditions behind oblique waves assuming equilibrium thermodynamics.
5. The radiation heating routine, depicted in Figurelle,requres that the shock layer thickness be defined everywhere and that the radiation intensities be determined at the body and at the shock.
B. SYMBOLS

a	exponent on Lewrs Number in stagnation point heating equation	Units
C_{p}	specific heat at constant pressure	
h_{D}	dissociation enthalpy	$\mathrm{ft}^{2} / \mathrm{sec}^{2}-{ }^{\circ} \mathrm{K}$
h_{w}	static enthalpy behind oblique wave	$\mathrm{ft}^{2} / \mathrm{sec}^{2}$
H		$\mathrm{ft}^{2} / \mathrm{sec}^{2}$
		$\mathrm{ft}^{2} / \mathrm{sec}^{2}$

85-0259

Figure lla BLOCK DIAGRAM FOR PROGRAM 1885 -- BODY GEOMETRY ROUTINE

Figure 116

Figureplle

85-0262
Figure Ild

Figure $11 e$

I_{b}	radiation intensity at edge of boundary layer	$\mathrm{Bta} / \mathrm{ft}^{3}-\mathrm{sec}$
I_{w}	radiation intensity behind oblıque shock	$\mathrm{Btu} / \mathrm{ft}^{3}-\mathrm{sec}$
J	index for body shape; $=1$ is axisymmetrıc;	--
	0 is two dimensional	
L	Lewis Number	--
LC	cylinder length	feet
M	mean molecular weight of atmosphere	--
m	polynomial exponent for radiation profile	--
Ma_{a}	flight Mach number	--
n	polynomial exponent for mass flow profile	--
P_{a}	ambient pressure	$1 b / \mathrm{ft}^{2}$
P_{e}	pressure at edge of boundary layer	$1 \mathrm{~b} / \mathrm{ft}{ }^{2}$
P_{0}	reference pressure; $P_{0}=2116.2$	$\mathrm{lb} / \mathrm{ft}^{2}$
P_{w}	pressure behnnd oblique shock	$\mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{P}_{\text {ws }}$	stagnation pressure behind oblique shock	$\mathrm{lb} / \mathrm{ft}^{2}$
P_{5}	stagnation pressure behind normal shock	$1 \mathrm{~b} / \mathrm{ft}^{2}$
P_{e}^{*}	sonic point pressure	$\mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{P}_{\text {T }}$	stagnation pressure at edge of boundary layer	$1 \mathrm{~b} / \mathrm{ft}^{2}$
${ }^{q}$ L	laminar heat rate	$\mathrm{Btu} / \mathrm{ft}{ }^{2}-\mathrm{sec}$
${ }_{\text {q }}^{\text {LS }}$	stagnation point heat rate	$B t u / f t^{2}-\sec$
$q_{\text {T }}$	turbulent heat rate	$B t u / f t^{2}-\sec$
${ }^{\text {q }}$ R	radiative heating rate	$\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$

R	universal gas constant; $\mathrm{R}=89500$	$f t^{2} / \sec ^{2}-{ }^{\circ} \mathrm{K}$
RA	radius of rear spherical cap	feet
RB	radius of flare	feet
RC	radius of cylinder; reference radius	feet
RN	radius of nose cap	feet
RSB	toroudal radus at flare base	feet
RSC	toroidal radius of fore cone base	feet
RSN	toroidal radius following nose cap	feet
RT	base radius of truncated after body	feet
S_{0}	surface distance in zero angle-of-attack coordinates measured from stagnation point	feet
S_{b}	surface distance in wind coordinates measured from stagnation point	feet
$\mathrm{Sos}^{\text {or }}$	surface distance from zero angle-of-attack stagnation point to stagnation point at angle of attack	feet
S_{b}^{*}	surface distance to somic point	feet
T_{a}	ambient atmospheric temperature	${ }^{\circ} \mathrm{K}$
T_{b}	body surface temperature	${ }^{\circ} \mathrm{K}$
T_{e}	temperature at edge of boundary layer	${ }^{\text {O }}$ K
T_{0}	reference temperature; $\mathrm{T}_{0}=273.16$	${ }^{\circ} \mathrm{K}$
T_{w}	temperature behind oblique shock.	${ }^{\circ} \mathrm{K}$
Tws	stagnation temperature behnnd oblique shock	${ }^{\circ} \mathrm{K}$
T_{s}	stagnation temperature behind normal shock	${ }^{\circ} \mathrm{K}$

T_{T}	stagnation temperature at edge of boundary layer	${ }^{\circ} \mathrm{K}$
U_{e}	velocity at edge of boundary layer	$\mathrm{ft} / \mathrm{sec}$
U_{w}	velocity behind normal shock	$\mathrm{ft} / \mathrm{sec}$
v	flight velocity	$\mathrm{ft} / \mathrm{sec}$
x_{0}, y_{0}	body coordinates at zero angle of attack	feet
${ }_{\text {x }}, y_{b}$	body coordinates in wind axes	feet
$\mathrm{x}_{\mathrm{b}}^{*}, y_{\mathrm{b}}^{*}$	sonic point coordinates in wind axes	feet
$\mathrm{x}_{\mathrm{os}} \mathrm{y}^{\prime} \mathrm{yos}$	angle-of-attack stagnation point coordinates measured in zero angle of attack coordinates	feet
z	compressibility factor; number moles per initial mole	--
α	angle of attack	degrees
β	pressure gradient parameter	--
$\gamma_{\text {a }}$	ratio of specific heats for ambrent atmosphere	--
$\gamma_{\text {w }}$	adıabatic exponent behind oblique shock	
$\gamma_{\text {s }}$	adiabatic exponent behind normal shock	
γ_{e}	adiabatic exponent at edge of boundary layer	
$p_{\text {a }}$	ambient density of atmosphere	slug/ft ${ }^{3}$
$P_{\text {w }}$	density behind oblique shock	slug/ft ${ }^{3}$
$P_{\text {e }}$	density at edge of boundary layer	slug/ft ${ }^{3}$
$P_{\text {ws }}$	stagnation density behind oblique shock	slug/ft ${ }^{3}$
ρ_{s}	stagnation density behind normal shock	slug/ft ${ }^{3}$
ρ_{b}	density at body surface	slug/ft ${ }^{3}$
$\rho_{\text {bs }}$	density at body surface at stagnation point	slug/ft ${ }^{3}$

Section 2.(Torus)
$\mathrm{x}_{1} \rightarrow \mathrm{x}_{2}$
x_{2}
$\mathrm{x}=\mathrm{x}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\sin \theta_{\mathrm{N}}-\sin \theta\right), \theta_{1}=\theta_{\mathrm{N}}$
$\mathrm{x}_{2}=\mathrm{r}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\sin \theta_{\mathrm{N}}-\sin \theta_{2}\right)$
$y_{1} \rightarrow y_{2}$
y_{2}

$$
\begin{align*}
& \theta_{2} \leq \theta \leq \theta_{\mathrm{N}} \tag{2}\\
& \mathrm{y}=\mathrm{y}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\cos \theta-\cos \theta_{\mathrm{N}}\right), \theta_{2}=\theta_{\mathrm{c}} \quad \text { cone } \\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\cos \theta_{2}-\cos \theta_{\mathrm{N}}\right), \theta_{2}=\beta \text { tension shell } \\
& \theta_{2}=\theta_{2 \mathrm{G}} \text { general shell }
\end{align*}
$$

Section 3. (Cone)

Cone: Input $\quad \theta_{c}=\theta_{2}$
$x_{2} \rightarrow x_{3}$
x_{3}
$y_{2} \rightarrow y_{3}$
y_{3}
$x=x_{2}+\left(y-y_{2}\right) \cot \theta_{2}$
$x_{3}=x_{2}+\left(y_{3}-y_{2}\right) \cot \theta_{2}$

$$
y=y \quad y_{2} \leq y \leq y_{3}
$$

$$
\mathrm{y}_{3}=\mathrm{R}_{\mathrm{c}}-\mathrm{R}_{\mathrm{sc}}\left(1-\cos \theta_{2}\right)
$$

Section 3.

Tension Shell:

$$
\begin{align*}
y=\left\{y_{3}^{2}+\left(y_{2}^{2}-y_{3}^{2}\right)\right. & \left.\frac{\ln \left(\frac{1+\cos \theta}{\sin \theta}\right)}{\ln \left(\frac{1+\cos \beta}{\sin \beta}\right)}\right\}^{1 / 2} \beta \leq \theta \leq 90 \tag{4}\\
& x-x_{2}=\int_{y_{2}}^{y} \cot \theta d y \quad y_{2} \leq y \leq y_{3}
\end{align*}
$$

$$
\frac{\mathrm{dS}}{\mathrm{~d} \theta}=\frac{-\left(y_{2}^{2}-y_{3}^{2}\right)}{2 y\left(\sin ^{2} \theta\right) \ln \left(\frac{1+\cos \beta}{\sin \beta}\right)} \quad y_{3}=R_{c}-R_{s c}
$$

Section 3., General Shape: Input Coordinates
$\left.\begin{array}{l}\text { Table of } x \\ \text { Table of } y\end{array}\right\} \quad 25$ points
Frrst pair of coordinates arex ${ }_{2}$, y_{2}
Last parr of coordinates are x_{3}, y_{3}
Also, $\theta_{2 G}, \theta_{3 G}$.

$$
\begin{aligned}
& y_{3}=\mathrm{R}_{\mathrm{c}}-\mathrm{R}_{\mathrm{sc}}\left(1-\cos \theta_{3 G}\right) \\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\cos \theta_{2 \mathrm{G}}-\cos \theta_{\mathrm{N}}\right)
\end{aligned}
$$

Section 4. (Torus)
Coordinates

$x_{3} \rightarrow x_{4}$	$x=x_{3}+R_{s c}\left(\sin \theta_{3}-\sin \theta\right)$	
x_{4}	$x_{4}=x_{3}+R_{s c} \sin \theta_{3}$	$0 \leq \theta \leq \theta_{3}$
$y_{3} \rightarrow y_{4}$	$y=y_{3}+R_{s c}\left(\cos \theta-\cos \theta_{3}\right)$	$\theta_{3}=\theta_{c}$, cone
y_{4}	$y_{4}=R_{c}$	$\theta_{3}=90$, tension shell
		$\theta_{3}=\theta_{3 G}$, Gen, Shell

Section 5. (Cylinder)
End. Var. (X)

Section 7. (Torus)

$x_{6} \rightarrow x_{7}$	$x=x_{6}+R_{S B}\left(\sin \theta_{B}-\sin \theta\right)$
x_{7}	$x_{7}=x_{6}+R_{S B} \sin \theta_{B}$
$y_{6} \rightarrow y_{7}$	$y=y_{6}+R_{S B}\left(\cos \theta-\cos \theta_{B}\right)$
y_{7}	$y_{7}=R_{B}$

Section 8. (Torus)

$x_{7} \rightarrow x_{8}$	$x=x_{7}-R_{S B} \sin \theta$
x_{8}	$x_{8}=x_{7}-R_{S B} \sin \theta_{A}$
$y_{7} \rightarrow y_{8}$	$y=y_{7}-R_{S B}(1-\cos \theta)$
y_{8}	$y_{8}=y_{7}-R_{S B}\left(I-\cos \theta_{A}\right)$

Section 9. (Aft Cone)

2. Surface Distance Equations

Section 1.

Formula

$$
s_{0}=0
$$

$S_{0} \rightarrow S_{1}$
$\mathrm{S}=\mathrm{R}_{\mathrm{N}} \frac{\left(90-\theta_{\mathrm{N}}\right)}{57.3} \quad \theta_{\mathrm{N}} \leq \theta \leq 90$
$S=R_{N}-\frac{}{57.3}$
$S_{1}=R_{N} \frac{\left(90-\theta_{N}\right)}{573}$

Section 2.
$S_{1} \rightarrow S_{2}$
$\mathrm{S}=\mathrm{S}_{1}+\mathrm{R}_{\mathrm{SN}} \frac{\left(\theta_{\mathrm{N}}-\theta\right)}{57.3} \quad \theta_{2} \leq \theta \leq \theta_{1}$
s_{2}
$\mathrm{S}_{2}=\mathrm{S}_{1}+\mathrm{R}_{\mathrm{SN}}\left(\theta_{\mathrm{N}}-\theta_{2}\right) / 57.3$
Section 3.
$S_{2} \rightarrow S_{3}$

$$
S=S_{2}+\frac{\left(x-x_{2}\right)}{\cos \theta_{2}} \quad x_{2} \leq x \leq x_{3}
$$

s_{3}

$$
s_{3}=s_{2}+\frac{\left(x_{3}-x_{2}\right)}{\cos \theta_{2}} \quad \theta_{2}=\theta_{c}
$$

$$
\begin{equation*}
s=s_{2}+\int_{y_{2}}^{y_{3}} \frac{d y}{\sin \theta} \tag{16}
\end{equation*}
$$

Section 4.
$s_{3} \rightarrow s_{4}$
$\mathrm{S}=\mathrm{S}_{3}+\mathrm{R}_{\mathrm{SC}}\left(\theta_{3}-\theta\right) / 57.3 \quad 0 \leq \theta \leq \theta_{3}$
Section 5.

$$
s_{4} \rightarrow s_{5} \quad s=S_{4}+\left(x-x_{4}\right) \quad x_{4} \leq x \leq x_{5}
$$

Section 6.

$$
\begin{equation*}
s_{5} \rightarrow s_{6} \quad s=s_{5}+\left(x-x_{5}\right) / \cos \theta_{B} \quad x_{5} \leq x \leq x_{6} \tag{19}
\end{equation*}
$$

Section 7.
$s_{6} \rightarrow s_{7} \quad s=s_{6}+R_{S B} \frac{\left(\theta_{\mathrm{B}}-\theta\right)}{573} \quad 0<\theta<\theta_{6}$

Section 8.
$S_{7} \rightarrow S_{8}$
$\mathrm{S}=\mathrm{S}_{7}-\mathrm{R}_{\mathrm{SB}}(\theta / 57.3)$
$\theta_{\mathrm{A}} \leq \theta \leq 0$

Section 9.
$\mathrm{S}_{8} \rightarrow \mathrm{~S}_{9}$
$\mathrm{S}=\mathrm{S}_{8}+\left(\mathrm{y}-\mathrm{y}_{8}\right) / \sin \theta_{\mathrm{A}}$
$\mathrm{y}_{9} \leq \mathrm{y} \leq \mathrm{y}_{8}$

Section 10.

$$
\begin{array}{rlr}
\mathrm{S}_{9} \rightarrow \mathrm{~S}_{10} & \mathrm{~S}=\mathrm{S}_{9}+\mathrm{R}_{\mathrm{SA}}\left(\theta_{\mathrm{A}}-\theta\right) / 57.3-90 \leq \theta \leq \theta_{9} \\
\text { or } & \mathrm{S} & =\mathrm{S}_{9}+\left(\mathrm{R}_{\mathrm{T}}-\mathrm{y}\right) \tag{23}
\end{array} 0 \leq \mathrm{y} \leq \mathrm{R}_{\mathrm{T}}
$$

3. Axes Transformation

$y_{b}=\left|\left(y_{o}-y_{o s}\right) \cos a+\left(x_{o}-x_{o s}\right) \sin a\right|$
$x_{b}=\left(x_{0}-x_{o s}\right) \cos a-\left(y_{o}-y_{o s}\right) \sin a$
Body slope and surface distance at angle of attack.
4. Windward Meridnan

Proceeding from $x_{0}=x_{o s}$ in direction of increasing (x_{0}),
$\theta_{b}=\theta_{o}+a$
$+y_{o}$ used
$S_{b}=S_{o}-S_{o s}$
When $\left(x_{0}\right)_{\max }$ is reached, reverse durection to decreasing $\left(x_{0}\right)$, and use,
$\theta_{b}=a-\theta_{0}-180$
$-y_{o}$ used
$S_{b}=2\left(S_{o}\right)_{\max }-S_{o s}-S_{o}$

5. Leeward Meridian

Proceeding from $x_{0}=x_{o s}$ in direction of decreasing (x_{0})
$\theta_{\mathrm{b}}=180-\theta_{\mathrm{o}}-\alpha$
$+y_{0}$ used
$\mathrm{s}_{\mathrm{b}}=\mathrm{s}_{\mathrm{os}}-\mathrm{s}_{\mathrm{o}}$

When ($x_{0}=0$) is reached, reverse direction increasing (x_{0}), and use,
$\theta_{b}=\theta_{0}-a$

- yoused
$S_{b}=S_{o s}+S_{o}$

6. Sonic Pount Location
$\theta_{\mathrm{b}}^{*}=\sin ^{-1}\left[\frac{2}{\gamma_{\mathrm{S}}+1}\right]^{\frac{\gamma_{S}}{2\left(\gamma_{\mathrm{S}}-1\right)}}$
7. Equation and Logrc for Stagnation Point Location

Test each section for all possible cases of $a+\theta_{0}=90$. Select stagnation point at maximum \bar{x}_{α},
$\bar{x}_{\alpha}=y_{\text {os }} \sin \alpha-x_{o s} \cos \alpha$,
8. Oblique Shock Equations
$M=28 X_{N}+32 X_{O}+44 X_{C}+40 X_{A}$
$C_{p}=(R / M)\left(3.5 X_{N}+3.5 x_{0}+2.5 X_{A}\right)$
$H=\left(V^{2} / 2\right)+C_{p} T_{a}$
$M_{a}=\frac{v}{\left[\frac{C_{p} T_{a}}{\frac{C_{p} M}{R}-1}\right]^{1 / 2}}$

$$
\begin{align*}
& \gamma_{\mathrm{a}}=\frac{\left(\mathrm{C}_{\mathrm{p}} \mathrm{M} / \mathrm{R}\right)}{\left[\left(\mathrm{C}_{\mathrm{p}} \mathrm{M} / \mathrm{R}\right)-\mathrm{I}\right]} \tag{37}\\
& \frac{\mathrm{h}_{\mathrm{w}} \mathrm{M}}{\mathrm{R} \mathrm{~T}_{\mathrm{o}}}=\frac{\mathrm{HM}}{\mathrm{RT} \mathrm{~T}_{\mathrm{o}}}\left\{1-\frac{\mathrm{V}^{2}}{2 \mathrm{H}}\left[\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{w}}}\right)^{2} \sin ^{2} \theta_{\mathrm{w}}+\cos ^{2} \theta_{\mathrm{w}}\right]\right\} \tag{38}\\
& \frac{\mathrm{P}_{\mathrm{w}}}{\mathrm{P}_{\mathrm{o}}}=\frac{\rho_{\mathrm{a}} \mathrm{~V}^{2}}{\mathrm{P}_{\mathrm{o}}} \sin ^{2} \theta_{\mathrm{w}}\left(1-\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{w}}}\right)+\frac{\mathrm{P}_{\mathrm{a}}}{\mathrm{P}_{\mathrm{o}}} \tag{39}
\end{align*}
$$

9. Oblique Shock Solution

$$
\begin{align*}
& \rho_{\mathrm{w}}=\frac{\mathrm{P}_{\mathrm{w}} \mathrm{M}}{\mathrm{ZR} \mathrm{~T}_{\mathrm{w}}} \tag{40}\\
& \left(\frac{\mathrm{U}_{\mathrm{w}}}{\mathrm{~V}}\right)^{2}=\cos ^{2} \theta_{\mathrm{w}}+\left(\frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{w}}}\right)^{2} \sin ^{2} \theta_{\mathrm{w}} \tag{41}\\
& \cot \theta_{\mathrm{w} 1}=\frac{\cos ^{2} \theta_{\mathrm{w}}+\left(\rho_{\mathrm{a}} / \rho_{\mathrm{w}}\right) \sin ^{2} \theta_{\mathrm{w}}}{\sin \theta_{\mathrm{w}} \cos \theta_{\mathrm{w}}\left(1-\rho_{\mathrm{a}} / \rho_{\mathrm{w}}\right)} \tag{42}\\
& \gamma_{\mathrm{w}}=\frac{\rho_{\mathrm{w}} / \rho_{\mathrm{a}}+1}{\rho_{\mathrm{w}} / \rho_{\mathrm{a}}-1} \tag{43}
\end{align*}
$$

$$
\begin{align*}
& \frac{\rho_{\mathrm{ws}}}{\rho_{\mathrm{a}}}=\frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{a}}}\left(\frac{\mathrm{P}_{\mathrm{ws}}}{\mathrm{P}_{\mathrm{w}}}\right)^{\frac{1}{\gamma_{\mathrm{w}}}} \tag{44}\\
& \frac{\mathrm{P}_{\mathrm{ws}}}{\mathrm{P}_{\mathrm{o}}}=\frac{\mathrm{P}_{\mathrm{w}}}{\mathrm{P}_{\mathrm{o}}}\left[\frac{1}{\left.1-\frac{\mathrm{v}^{2}}{2 \mathrm{H}}\left(\frac{\mathrm{U}_{\mathrm{w}}}{\mathrm{~V}}\right)^{2}\right]^{\frac{\gamma_{\mathrm{w}}}{\gamma_{\mathrm{w}}}} 1}\right. \tag{45}
\end{align*}
$$

Start oblique shock calculation at $\theta_{w}=90$ degrees When $I_{w} \leq \operatorname{INST} \phi P$ cease calculation of I_{w} at smaller θ_{w} 's At this time the value of $\bar{\gamma}_{w}$ is taken as

$$
\theta_{\mathrm{w}}<\theta_{\mathrm{w}}^{\prime}
$$

$$
\begin{equation*}
\gamma_{\mathrm{w}}=\gamma_{\mathrm{w}}^{\prime}+\frac{\left(\gamma_{\mathrm{w}}^{\prime}-\gamma_{\mathrm{a}}\right)}{\left(\theta_{\mathrm{w}}^{\prime}-\mu_{\mathrm{a}}\right)}\left(\theta_{\mathrm{w}}-\theta_{\mathrm{w}}^{\prime}\right) \tag{46}
\end{equation*}
$$

where $\theta_{\mathrm{w}}^{\prime}$ is first angle where $\mathrm{I}_{\mathrm{w}} \leq \operatorname{INST} \phi \mathrm{P}$ and $\gamma_{\mathrm{w}}^{\prime}$ is corresponding γ_{w} 。

$$
\begin{align*}
& \mu_{a}=\sin ^{-1} \frac{1}{M_{a}} \tag{47}\\
& \frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{a}}}=\frac{\left(y_{\mathrm{w}}+1\right) \mathrm{M}_{\mathrm{a}}^{2} \sin ^{2} \theta_{\mathrm{w}}}{\left[\left(y_{\mathrm{w}}-1\right) \mathrm{M}_{\mathrm{a}}^{2} \sin ^{2} \theta_{\mathrm{w}}+2\right]} \tag{48}
\end{align*}
$$

I_{w} is taken as zero for $\theta_{w}<\theta_{w}^{\prime}$
Remainder of shock variables via Equations (38), (39), (40), (41), (42), and (44)

$$
\begin{align*}
& \text { 10. Equations for Pressure Distribution } \\
& \frac{\gamma_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}}=\left(\frac{2}{\gamma_{\mathrm{s}}+1}\right)^{\overline{\gamma_{s}-1}} \tag{49}
\end{align*}
$$

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{s}}}=1-\frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{a}}}\left(\frac{\rho_{\mathrm{a}} \mathrm{~V}^{2}}{2 \mathrm{P}_{\mathrm{s}}}\right)\left(\frac{\mathrm{S}_{\mathrm{b}}^{*}}{\mathrm{~V}} \cdot \frac{\mathrm{du}}{\mathrm{ds}}\right)^{2}\left(\frac{\mathrm{~S}_{\mathrm{b}}}{\mathrm{~s}_{\mathrm{b}}^{*}}\right)^{2}+\left[\frac{\mathrm{P}_{\mathrm{e}}^{*}}{\mathrm{P}_{\mathrm{s}}}-1+\frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{a}}}\left(\frac{\rho_{\mathrm{a}} \mathrm{v}^{2}}{2 \mathrm{P}_{\mathrm{s}}}\right)(50\right. \tag{50}
\end{equation*}
$$

$$
\left.\left(\frac{\mathrm{s}_{\mathrm{b}}^{*}}{\mathrm{v}} \frac{\mathrm{du}}{\mathrm{ds}}\right)^{2}\right]\left(\frac{\mathrm{s}_{\mathrm{b}}}{\mathrm{~s}_{\mathrm{b}}^{*}}\right)^{4}
$$

$$
\begin{equation*}
\frac{P_{e}}{P_{s}}=\sin ^{2} \theta_{b} \tag{51}
\end{equation*}
$$

11. Pressure Distribution $S_{b}>S_{b}^{*}$

Equations for
Newtonian
$\frac{P_{e}}{P_{s}}=\sin ^{2} \theta_{b}+\frac{P_{a}}{P_{s}} \cos ^{2} \theta_{b}$
PC: Pressure is constant = last value
Prandtl - Meyer: Use table look up
$\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{s}}$ initual val. \rightarrow tnetral ν_{i}
$\nu_{j}=\nu_{i}+\left(\theta_{1}-\theta_{j}\right)$
$\nu_{j} \rightarrow P_{e} / P_{s}$
Pressure Limit
$\frac{P_{e}}{P_{s}}>\frac{P_{a}}{P_{s}}$
Entropy Layer
$\frac{P_{1}}{P_{s}}=\frac{P_{1}}{P_{s}} \div\left(\frac{d p}{d x}\right)_{i}\left(x_{j}-x_{1}\right) \frac{1}{P_{s}}$
Entropy Layer Equations,

$$
\begin{aligned}
& \frac{1=0}{\frac{d\left(P_{e} / P_{s}\right)}{d x_{b}}}=\frac{\gamma_{s}}{B_{2}} \cdot\left(\frac{P_{e}}{P_{s}}\right)^{\frac{\gamma_{s}+1}{\gamma_{s}}} \cdot\left[\operatorname{Tan} \theta_{b}-\sqrt{\frac{\frac{P_{e}}{P_{s}}-\frac{P_{a}}{P_{s}}}{1-\frac{P_{e}}{P_{s}}-\frac{P_{a}}{P_{s}}}}\right] \\
& B_{2}=\left(\gamma_{s}-1\right)\left(\frac{P_{e b}}{P_{s}}\right)^{\frac{1-\gamma_{s}}{\gamma_{s}}} \cdot \int_{0}^{y_{b b} \frac{P_{e}}{P_{s}}} d y_{b} \\
& 5188<
\end{aligned}
$$

$$
\left.\begin{array}{rl}
j=1 & \\
& \frac{d\left(P_{e} / P_{s}\right)}{d x_{b}}=\frac{\gamma_{s}}{B_{1}}\left(\frac{P_{e}}{P_{s}}\right)^{\frac{\gamma_{s}+1}{\gamma_{s}}} \cdot\left\{\left\{y_{b b} \tan \theta_{b}+\tan ^{2} \theta_{b}\left(x-x_{b b}\right)\right.\right. \tag{57}
\end{array}\right\}
$$

(b) subscripts refer to start of straight section $\left(\frac{d \theta}{d s}=0\right)$ and to
conditions there.

12. Stagnation Point Velocity Gradient

An average stagnation point velocity gradient is needed to evaluate heating. A velocity gradient is obtained for both the windward and leeward meridians. For

$$
\begin{gather*}
0 \leq a<90-\theta_{\mathrm{N}} \quad \text { and } \quad\left(180+\theta_{\mathrm{A}}\right)<a \leq 180 \\
\left(\frac{\mathrm{du}}{\mathrm{ds}}\right)_{\mathrm{s}}=\left(\frac{\mathrm{du}}{\mathrm{ds}}\right)_{\mathrm{s}}=\frac{1}{2}\left(\frac{\mathrm{du}}{\mathrm{ds}}\right)_{\text {wind }}+\frac{1}{2}\left(\frac{\mathrm{du}}{\mathrm{ds}}\right)_{\mathrm{lec}} \tag{58}
\end{gather*}
$$

For $\left(90-\theta_{\mathrm{N}}\right) \leq a \leq\left(180+\theta_{\mathrm{A}}\right)$

$$
\begin{equation*}
\left(\frac{\mathrm{du}}{\mathrm{ds}}\right)_{\mathrm{s}}=\frac{1}{2} \frac{\widehat{d u}}{\mathrm{ds}}+\frac{1}{2} \frac{\mathrm{sun} \alpha}{\left(y_{\mathrm{os}}\right)} \sqrt{\frac{3 \rho_{\mathrm{a}}}{\rho_{\mathrm{s}}}} . \tag{59}
\end{equation*}
$$

where ($y_{o s}$) is the value of y_{0} in zero angle of attack coordinates cortesponcing to the new stagnation point.
13. Laminar Heating

$$
\begin{align*}
& q_{L S}=\frac{0.76}{\sigma^{0.6}}\left(\frac{\rho_{b s} \mu_{b}}{\rho_{s} \mu_{s}}\right)^{0.1} \sqrt{\rho_{s} \mu_{s}} \frac{H}{778} \sqrt{\left(\frac{d u}{d s}\right)_{s}} \tag{60}\\
& {\left[1+\left(I^{a}-1\right) \frac{h_{D}}{H}\right]} \\
& \frac{q_{L}}{q_{L S}}=\frac{y_{b}^{\prime} \rho_{b} \mu_{b} U_{e}}{(1.068) \sqrt{2 \xi}} \sqrt{2 \rho_{b s} \mu_{b}\left(\frac{d u}{d s}\right)} \tag{61}
\end{align*}
$$

$$
\begin{equation*}
{\frac{q_{L}}{\left(q_{L S}\right)_{\alpha=0}}=\left(\frac{q_{L}}{q_{L S}}\right) \times{\frac{q_{L S}}{\left(q_{L S}\right)_{a=0}}}^{a}{ }_{\alpha}}^{\left(q_{\alpha}\right)} \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{b s}=\frac{P_{s} M}{R T_{b}} \tag{63}
\end{equation*}
$$

$$
\begin{equation*}
\mu=\mu(\mathrm{T}) \quad \text { Table took up } \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{b}=\frac{P_{e} M}{R T_{b}} \tag{65}
\end{equation*}
$$

14. Equations Modified by THETAT Input

$$
\begin{equation*}
U_{e}=\sqrt{2 H} \sqrt{1-\frac{T_{e}}{T_{T}}} \tag{66}
\end{equation*}
$$

$$
\begin{equation*}
T_{T}=T_{W S}(T H E T A T T) \tag{67}
\end{equation*}
$$

$$
\frac{T_{e}}{T_{T}}=\left(\begin{array}{ll}
\frac{P_{e}}{P_{s}} & \frac{P_{s}}{P_{T}} \tag{68}
\end{array}\right)^{\frac{\gamma_{e}-1}{\gamma_{e}}}
$$

$$
\begin{align*}
& \gamma_{e}=\gamma_{\mathrm{w}}(\text { THETATT }) \tag{69}\\
& \mathrm{P}_{\mathrm{T}^{\prime}}=\mathrm{P}_{\mathrm{ws}} \text { (THETATT) } \tag{70}
\end{align*}
$$

$\frac{\rho_{e}}{\rho_{T}}=\left(\begin{array}{ll}\frac{P_{e}}{P_{s}} & \left.\frac{P_{s}}{P_{T}}\right)^{\frac{1}{\gamma_{e}}}\end{array}\right.$
$\rho_{T}=\rho_{\text {ws }}$ (THETATT)
15. Reynold's Number

$$
\begin{equation*}
\mathrm{Re}=\frac{\rho_{\mathrm{e}} \mathrm{U}_{\mathrm{e}} \mathrm{~S}_{\mathrm{b}}}{\mu_{\mathrm{e}}} \tag{73}
\end{equation*}
$$

16. Laminar Heating Parameters
$\xi=\int_{s_{1}}^{s} \rho_{b} \mu_{b} U_{e} y_{b}^{2} d_{b}+\xi_{1}$

For,
$\mathrm{S}_{\mathrm{b}} \leq \dot{\mathrm{S}}_{1}$

$$
\left\{\begin{array}{c}
\xi=\rho_{\mathrm{bs}} \mu_{\mathrm{b}}\left(\frac{\mathrm{dU}}{\mathrm{dS}}\right) \frac{\mathrm{S}_{\mathrm{b}}^{2 \mathrm{~J}}+2}{(2 \mathrm{j}+2)} \\
1
\end{array}\right.
$$

$\beta=\frac{-2 \xi}{\left(\rho_{\mathrm{c}} \mathrm{U}_{\mathrm{c}}{ }^{3} \rho_{\mathrm{b}} \mu_{\mathrm{b}} \mathrm{y}_{\mathrm{b}}{ }^{2 \mathrm{~J}}\right)} \quad \frac{\mathrm{d} \mathrm{P}_{\mathrm{e}}}{\mathrm{dS}_{\mathrm{b}}} \quad, \quad \beta \geq u$
17. Turbulent Heating

$$
\begin{equation*}
\mathrm{q}_{\mathrm{T}}=\frac{\mathrm{C}_{\mathrm{f}}}{2(778)} \quad \rho_{\mathrm{e}} U_{\mathrm{e}} \mathrm{H} \tag{77}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{C}_{\mathrm{f}}=\mathrm{C}_{\mathrm{f}_{1}} \cdot \frac{\mathrm{C}_{\mathrm{f}}}{\mathrm{C}_{\mathrm{f}_{1}}} \tag{78}\\
& \mathrm{C}_{\mathrm{f}_{1}}=\frac{0.0296(2)^{0.2 \mathrm{f}}}{o^{2 / 3} \mathrm{Re}^{0.2}} \tag{79}\\
& \frac{\mathrm{C}_{f}}{\mathrm{C}_{\mathrm{f}_{\mathrm{i}}}}=\left(\frac{\rho^{*}}{\rho_{\mathrm{e}}}\right)^{0.8}\left(\frac{\mu^{*}}{\mu_{\mathrm{e}}}\right)^{0.2} \tag{80}\\
& \mu^{*}=\mu\left(\mathrm{T}^{*}\right) \tag{81}\\
& \frac{\rho^{*}}{\rho_{\mathrm{e}}}=\frac{\mathrm{T}_{e}}{\mathrm{~T}^{*}} \tag{82}\\
& \mathrm{~T}^{*}=\mathrm{T}_{\mathrm{e}}\left\{1+1 / 2\left(\frac{\mathrm{~T}_{\mathrm{b}}}{\mathrm{~T}_{\mathrm{e}}}-1\right)+0.22(\sigma)^{1 / 3}\left(\frac{\mathrm{~T}_{\mathrm{T}}}{\mathrm{~T}_{\mathrm{e}}}-1\right)\right\} \tag{83}
\end{align*}
$$

18. Radiation Heating

$$
\mathrm{q}_{\mathrm{R}}=\frac{\xi_{\mathrm{w}}}{2}\left[\begin{array}{lll}
\frac{m}{m+1} & I_{b}+\frac{1}{m+1} & I_{\mathrm{w}} \tag{84}
\end{array}\right]
$$

19. Shock Shape

$$
\begin{equation*}
\xi_{\mathrm{w}}=\frac{\left(\mathrm{x}_{\mathrm{b}}+\Delta_{\mathrm{s}}\right) \cos \theta_{\mathrm{w}}-\mathrm{y}_{\mathrm{b}}\left(1-\sin \theta_{\mathrm{w}}\right)}{\cos \theta_{\mathrm{b}}-\sin \left(\theta_{\mathrm{w}}-\theta_{\mathrm{b}}\right)} \tag{85}
\end{equation*}
$$

where,
x_{b}, y_{b}, are taken as

$$
\begin{gathered}
x_{b}=x_{b}^{*} \text { and } y_{b}=y_{b}^{*}\left\{\begin{array}{l}
\frac{d \theta}{d S}<0 \quad 0 \leq s<s_{b}{ }^{*}, \text { or } \\
\frac{d \theta}{d S}=0 \text { and } x_{b}{ }^{*} \leq\left(\Delta_{s o}\right)
\end{array}\right. \\
x_{b}=x_{b b} \text { and } y_{b}=y_{b b}\left\{\begin{array}{l}
\frac{d \theta}{d S}=0 \text { and } x_{b}{ }^{*}>\left(\Delta_{s o}\right)
\end{array}\right. \\
-94-
\end{gathered}
$$

$$
\begin{align*}
& \text {; } \\
& \mathbf{R}_{\mathrm{w}}=\frac{\xi_{\mathrm{w}} \cos \theta_{\mathrm{b}}+\mathrm{y}_{\mathrm{b}}}{\cos \theta_{\mathrm{w}}} \tag{86}\\
& \mathbf{j}=1 \\
& c_{1} \xi_{\mathrm{w}}{ }^{2}+\mathrm{c}_{2} \xi_{\mathrm{w}}+\mathrm{c}_{3}=0 \\
& \text { (Positive Root) } \tag{87}\\
& \mathrm{C}_{\mathrm{l}}=2 \cos \theta_{\mathrm{b}}\left\{\frac{1}{2} \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{~V}}+\frac{1}{\mathrm{n}+2}\left[\frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{w}}}{\mathrm{~V}} \cos \left(\theta_{\mathrm{wL}}-\theta_{\mathrm{b}}\right)-\frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{~V}}\right]\right\}-\cos ^{2} \theta_{\mathrm{b}} \\
& \mathrm{C}_{2}=2 \mathrm{y}_{\mathrm{b}}\left\{\frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{~V}}+\frac{1}{\mathrm{n}+1}\left[\frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{w}}}{\mathrm{~V}} \cos \left(\theta_{\mathrm{wL}}-\theta_{\mathrm{b}}\right)-\frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{~V}}\right]\right\}-2 y_{\mathrm{b}} \cos \theta_{\mathrm{b}} \\
& c_{3}=-y_{b}{ }^{2} \\
& j=0 \\
& \xi_{\mathrm{w}}=\frac{\mathrm{y}_{\mathrm{b}}}{\frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{~V}}+\frac{1}{\mathrm{n}+1}\left[\frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{w}}}{\mathrm{~V}} \cos \left(\theta_{\mathrm{wL}}-\theta_{\mathrm{b}}\right)-\frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{a}}} \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{~V}}\right]-\cos \theta_{\mathrm{b}}} \tag{88}
\end{align*}
$$

Determination of ξ_{w} :

$$
\begin{align*}
& \mathrm{Y}_{\mathrm{w}}^{2}\left(1-\mathrm{B} \tan ^{2} \theta_{\mathrm{b}}\right)+\mathrm{Y}_{\mathrm{w}}\left[2 \mathrm{R}_{\mathrm{w}} \tan \theta_{\mathrm{b}}+2 \mathrm{~B}\left(\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}\right) \tan \theta_{\mathrm{b}}+2 \mathrm{BX} \mathrm{X}_{\mathrm{b}} \tan ^{2} \theta_{\mathrm{b}}\right] \\
& -2 \mathrm{R}_{\mathrm{w}}\left[\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}+\mathrm{Y}_{\mathrm{b}} \tan \theta_{\mathrm{b}}\right]-\mathrm{B}\left(\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}\right)^{2}-\mathrm{BX} \mathrm{X}_{\mathrm{b}}{ }^{2} \tan ^{2} \theta_{\mathrm{b}}-2 \mathrm{~B}\left(\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}\right) \mathrm{Y}_{\mathrm{b}} \tan \theta_{\mathrm{b}}=0 \tag{89}\\
& \operatorname{Tan} \theta_{\mathrm{w}}^{7}=\frac{2 \mathrm{R}_{\mathrm{w}}+2 \mathrm{~B}\left[\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}-\left(\mathrm{Y}_{\mathrm{w}}-\mathrm{Y}_{\mathrm{b}}\right) \tan \theta_{\mathrm{b}}\right]}{2 \mathrm{Y}_{\mathrm{w}}}
\end{align*}
$$

Evaluate B at first point where $\theta_{b} \leq 0$.

$$
\begin{equation*}
B=\frac{\left(\mathrm{Y}_{\mathrm{b}}+\xi\right) \tan \theta_{\mathrm{w}}-\mathrm{R}_{\mathrm{w}}}{\left(\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}\right)} \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Tan} \theta_{\mathrm{w}}=\frac{\left(\mathrm{Y}_{\mathrm{b}}+\xi\right)}{\mathrm{X}_{\mathrm{b}}+\Delta_{\mathrm{s}}}-\frac{\mathrm{R}_{\mathrm{w}}}{\left(\mathrm{Y}_{\mathrm{b}}+\xi\right)} \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
\xi\left(\theta_{w}, 0\right) \text { from equations } 87,88 \tag{93}
\end{equation*}
$$

Solve for $\xi_{w}, \theta_{w},\left(S_{b}\right)$

$$
\begin{equation*}
\xi_{\mathrm{w}}=\frac{Y_{\mathrm{w}}-Y_{\mathrm{b}}}{\cos \theta_{\mathrm{b}}} \tag{94}
\end{equation*}
$$

5 延

A. PROGRAM FLOW

The program flow for the A and B parts of Program 1885 is illustrated in Figure 12 below.

1885A PROGRAM FLOW

1885B PROGRAM FLOW

Figure 12 PROGRAM FLOW
-97-
55

B. COMMON STORAGE

Common data in 1885B is transferred between subroutines and the main program for two primary purposes, the first for computing zero angle-of-attac: coordinates, (SUB110) and for computing the derivatives $\frac{d\left(P_{e} / P_{s}\right)}{d x}$ (PREP) or $\frac{d s}{d S}$
(DXSIDT), where the ADM4RB and DEREQB predictor-corrector system is used to solve numerically one or the other of these differential equations. Note that the C $\varnothing \mathrm{MM} \Phi \mathrm{N}$ DATA variables $X M E M \varnothing$ and THETAC appear in equivalence statements, and are thus the first items in common storage core locations.

ALIPHA	\boldsymbol{a}	Program Input	SUB110 Input	Array of angles of attack.
BETA	β	Program Input	SUBllo Input	Tension shell angle.
CTHSTT		DXSIDT	DEREQB Input	Value of cos (THSTRT) at start of integration interval.
DATE		Program Input	In to SUB110	Identification number.
DNI		Not curre	used.	
DN2		Program Input	PREP Input	Lower bound for accuracy in integrating $d\left(P_{e} / P_{s}\right) / d x$.
DTDSO	$\frac{\mathrm{d} \theta_{o_{1}}}{d S_{01}}$	SUB110	SUBIIO Output	Array of $\frac{\mathrm{d} \theta_{\mathrm{o}_{1}}}{\text { nates. }}$ $\mathrm{dS}_{\mathrm{ol}}$ for $a=0$ coord1-
DTDSST		DXSIDT	DEREQB Input	Value of $\frac{\mathrm{d} \theta_{\mathrm{b}}}{\mathrm{dS}_{\mathrm{b}}}$ at start of integration interval.
DTDSTB	$\frac{\mathrm{d} \theta_{1}}{\mathrm{ds}}$	Program Input	SUB110 Input	Array of $\frac{d \theta_{1}}{d S_{1}}$ for general shape.
GAMS	γ_{s}	Program Input or $1885 \mathrm{~A}$	DEREQB Input	Value of γ_{s} for calculation Input.
$G M I D G$		Main	DEREQB Input	$\left(\gamma_{s}-1\right) / \gamma_{s}$

GPIDG		Main	DEREQB Input	$\left(\gamma_{s}+1\right) / \gamma_{s}$
GSФB	γ_{s} / B	PREP	DEREQB Input	γ_{S} / B_{1} or γ_{s} / B_{2} used to integrate $\mathrm{d}\left(\mathrm{P}_{\left.e / \mathrm{P}_{\mathrm{s}}\right) / \mathrm{ds}}\right.$
HAMB	H	Program Input or 1885 A	DEREQB Input	Enthalpy used to compute $\mathrm{U}_{\mathrm{e}} / \mathrm{V}$, etc., for shock and radiation.
ICASE	CASE	Program Input	In to SUB110	Identafication number.
ILINE		Main	SUB 110 In \& Out	The page number on printing $a=0$ coordinates.
IOl		SUB110	SUB110 Output	Sentinel 1, 2, 3, if section 3 is cone, tension shell, or general shape.
IO2		SUBII0	SUB1 10 Output	Sentinel 1, 2, if section 10 is sphere of flat base.
IOTBL		Program Input	SUB110 Input	If $=1, \alpha=0$ coordination are printed.
IPAGE		Main	SUB110 In \& Out	Page number on printing $\alpha=0$ coordinates.
JFLDVI	X_{J}	Program Input	DEREQB Input	Sentinel for 1-D or 2-D flow.
JOMAX		SUB110	SUB110 Output	Number of points in $a=0$ coordinate tables.
KINDEQ		DXSIDT or PREP	DEREQB Input	If 0 , integrate $\frac{d\left(P_{e} / P_{s}\right)}{d x}$, if >0, integrate $d \xi / d S_{b}$.
M	$M_{O_{2}}$	SUB110	SUB 110 Output	Array of section numbers for $a=0$ coordinates.
NALPHA		Program Input	SUB110 Input	Number of angles of attack on the array AIPPHA.
NUMBER		Program Input	$\begin{aligned} & \text { In to } \\ & \text { SUB } 110 \end{aligned}$	Identificatıon number,
			-99-	-

¢ \varnothing GS		Maın	DEREQB Input	$1 / \gamma_{s}$.
PAPDS		PREP	DEREQB Input	Value of P_{A} / P_{S} as a lower pressure limit for $d\left(P_{e} / P_{s}\right) / d X \quad$ integration.
PIR		Main	SUB110 Input	deg/rad.
PSTART		DXSIDT	DEREQB Input	Value of P_{e} / P_{s} at start of integration interval.
PSTøP		DXSIDT	DEREQB Input	Value of P_{e} / P_{s} at end of integration interval.
RA	$\mathrm{R}_{\text {A }}$	Program Input	In to SUB110	Aft cap radius.
RAD		Main	DEREQB Input	$\mathrm{rad} / \mathrm{deg}$.
RB	R_{B}	Program Input	In to SUB110	Flare and aft cone base radius.
RC	${ }^{R_{C}}$	Program Input	In to SUB110	Cylinder and cone base radıus.
REYT		Not curre	used.	
RHめA	$\rho_{\text {A }}$	Program Input or 1885A	DEREQB Input	Ambient density.
RN	R_{N}	Program Input	In to SUB110	Nose radus.
RSB	$\mathrm{R}_{\text {SB }}$	Program Input	In to SUB110	Toroidal radius.
RSC	$\mathrm{R}_{\text {SC }}$	Program Input	In to SUB110	Torondal radius at base of cone.
RSN	${ }^{\mathrm{R}_{\text {SN }}}$	Program Input	In to SUB110	Toroudal radius aft of nose.

RS¢RA	$\rho_{S} / \rho_{\text {A }}$	Program Input or 1885A	DEREQB Input	Value of ρ_{s} / ρ_{A} for calculation.
RT	R_{T}	Program Input	In to SUBIl0	Base truncation radus.
RTBL	Y_{1}	Program Input	SUB110 Input	Array of y_{1} for general shape.
SECTN		Main	SUB110 Input	Section number for labeling.
SO	$\mathrm{S}_{\mathrm{o}_{1}}$	SUB110	SUB110 Output	Array of S_{0} for $a=0$ coordinates,
SQ2HV2		Mam	DEREQB Input	$\left(2 \mathrm{H} / \mathrm{V}^{2}\right)^{1 / 2}$
SSTART		PREP or DXSIDT	DEREQB Input	Value of S_{b} at start of integration interval.
SST $\varnothing \mathrm{P}$		DXSIDT	DEREQB Input	Value of S_{b} at end of integration interval.
TA	${ }^{T} A$	Program Input or 1885A	DEREQB	Ambient temperature.
TABLE		Program Input or 1885A	DEREQB Input	Two-dimensional array of oblique and normal shock properties.
TANTB		PREP	DEREQB Input	Value of $\tan \left(\theta_{b}\right)$ at start of straight section for $d\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{s}}\right) / \mathrm{dx}$ integration.
TANTB2		PREP	DEREQB Input	TANTB ${ }^{2}$
TB	T_{B}	Program Input	DEREQB Input	Body temperature.
THET		GETTWG	DEREQB Output	Value of θ_{b} corresponding to S_{b} in integrating $\mathrm{d} \xi / \mathrm{d} \mathrm{S}_{\mathrm{b}}$.

THETAA	$\theta_{\text {A }}$	Program Input	In to SUBl10	Aft cone angle.
THETAC	${ }^{\text {C }}$	Program Input	In to SUB110	Fore core angle.
THETAN	θ_{N}	Program Input	In to SUB110	Nose cap angle.
THETAO	$\theta_{o_{1}}$	SUB110	SUB110 Output	Arxay of θ_{0} for $\alpha=0$ coordinates.
THETB	θ_{B}	Program Input	In to SUB110	Flare angle.
THET2G	$\theta_{2_{\mathrm{G}}}$	Program Input	SUB110 Input	Angle at first point on general shape.
THET3G	$\theta_{3_{G}}$	Program Input	SUBllo Input	Angle at last point on general shape.
THSTRT		DXSIDT	DEREQB Input	Value of θ_{b} at start of integration interval.
THWGS		GETTWG	DEREQB Output	Value of θ_{W} corresponding to ξ from $d \xi / d S_{b}$.
THW LIM		Main	GETTWG Input	$1.1 \operatorname{Sin}^{-1}\left(\frac{1}{\mathrm{MACH}}\right),$
				lower limit to θ_{w} for $\mathrm{d} \xi / \mathrm{dS}$
TWゆВВ		PREP	DEREQB Input	2 B , or $2 \mathrm{~B}_{2}$ used to integrate $d\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{s}}\right) / \mathrm{dx}$
UP1		Not currently used.		
UP2		Program Input	PREP Input	Upper bound for accuracy in integrating $d\left(P_{e} / P_{s}\right) / d x$
V	V	Program Input or 1885A	DEREQB Input	Vehicle velocity,
XA	$\mathrm{x}_{\text {A }}$	Program Input or 1885A	DEREQB Input	Mole fraction of Argon in undissociated muxture.

XC	X_{C}	Program Input ox 1885A	DEREQB Input	Mole fraction of $C \varnothing_{2}$ in undissociated mixture.
XGB		Not curre	used.	
XLC	${\stackrel{1}{L_{C}}}^{\prime}$	Program Input	In to SUB110	Cylinder length.
XMEM \varnothing	MEM \varnothing	Program Input	In to SUB110	Identification number.
XMMX	MM	Program Input	FINDRW or DXSIDT Input	Used by FINDRW or DXSIDT to compute $Q R$.
XN	N	Program Input	In to SUB110	Array of divisions per body segment.
XNN	X_{N}	Program Input or 1885A	DEREQB Input	Mole fraction of N_{2} in undissociated mixture.
XNNX	NN	Program Input	DEREQB Input	Used to compute shock shape.
XO	X_{O}	SUBl10	SUBllo Output	Array of x_{0} for $a \equiv 0$ coordinates.
$X \varnothing$	X_{ϕ}	Program Input or 1885A	DEREQB Input	Mole fraction of ϕ_{2} in undissoclated mixture.
XSTART		PREP	DEREQB Input	Value of x_{b} at start of straight section for $d\left(P_{e} / P_{s}\right) / d x$ integration.
XTBL	X_{1}	Program Input	SUB110 Input	Array of x_{1} for general shape.
YGB		Not curre	used.	**
YO	y_{1}	SUB110	SUB110 Output	Array of y_{0} for $a=0$ coordinates.
YSTART		PREP or DXSIDT	DEREQB Input	Value of Y_{b} at start of integration interval.
			-103-	

CALLING SEQUENCES

¢BLIK	Variable Input or Output Source	RHDA, Sa, ambient density Input Program Input	XA, argon mole fraction in atmos- phere Input Program Input	$\mathrm{xC}, \mathrm{CO}_{2}$ mole fraction in atmosphere Input Program Input	$\mathrm{XN}_{3} \mathrm{~N}_{2}$ mole fractron in atmosphere Input Program Input
$\mathrm{X} \phi, \mathrm{O}_{2}$ mole fraction in atmosphere Input Program Input	XPL, print sentinel for converged iteration Input Program Input	XPE, print sentinel for each steration Input Program Input	DELAL, move- ment in wave angle table Input Program Input	TA, Ta, ambient temperature Input Program Input	V, velocxty Input Program Input
TABI, E, table of oblique shock data Output OBLIK	IGCDF, sent1. nel >1 if solu: tion mpossible Output ФBLIK	PATAB, prınt sentinel Input Program Input	PA, ambient pressure Output © BLLIK	HA, ambient enthalpy Output GBLIK	AM, Mach number Output DBLK
XM, mean molecular weight of atmosphere Output OBLIK	HDHS 90 , dissociation exergy for normal shock Output ФBLIK	QINSTP, lowest radiation intensity Input Program Input			
PHIL	Vazrable Input or Output Source	TABLE, table of shock data Input/Output OBLIK/PHIL	ITH, index of last TABLE computed intensity Input ФBLIK	DELAL, nacre. ment in ϕ_{w} Input Program Input	IGOOF, sentinal >1 if solution impossible Output PHIL

Calling sequences for all other subroutines are as an Section 1883

1. \varnothing BLIK

Purpose: To perform the oblique shock calculation and prepare a table of shock data, TABLE.

Method TABLE is a two-dimensional array 46×13. The 13 columns contain the variables θ_{W} (THW), ρ_{W} / ρ_{a} (DENINV), $\rho_{W} U_{W} / \rho_{a} V$ (DENINV-UW ϕV), $\theta_{W L}(T H W L), \gamma_{W}(G A M W), T_{W}(T), P_{F} / \mathrm{P}_{\mathrm{o}}$ (PRS), $H_{W} / \mathrm{H}(E N T \cdot R \cdot T O /(X M \cdot H H))$, $\rho_{W S} / \rho_{A}(R W S \phi R A), \mathrm{P}_{\text {WS }} / P_{o}$ (PWS $\phi \mathrm{P} \phi$), TWS (T-HM $\mathrm{H}_{\mathrm{R}} \mathrm{Z} / \mathrm{ENT}$), IW (2•QSUM/DEL), and IB (2.QSUM/DEL), where IB is evaluated at the enthalpy ENTB.

After initializing TABLE, defining output names (ZNAMI and ZNAM2), (BLIK computes ambient conditions and selects the proper set of tables of temperature and enthalpy for the atmosphere. This is done before HVST is called after statement 1001. A loop from 1002 to the statement before 1024 then decrements the value of θ_{W} in decrements of DELAL until the lower limit in θ_{W} is reached and solved (If test before l006), or untal the wave intensity [TABLE(ITH, 12)]is less than the input INST \varnothing P (test after 2005).

The first θ_{W} is for the normal shock (90 degrees), and the calculation $1 s$ done in the same way as described in Program 1883. Provision for this special case is made by the IF test before statement 1017. For all other values of an iteration on the density ratio is performed, convergence being determined by two successive values of the density ratios differ by less than 1 percent (IF test before Statement 1022). The iteration for such value $90>\theta_{W} \geq$ THWI, is as follows. Given a first guess for the density ratio (DENR) from the preceding computation, the pressure and enthalpy are expressed as PRS and ENT (after Statement 1021) in terms of DENR, θ_{W}, and the ambient condition. HEAT2 is called which, as in 1883, converges on the pressure and enthalpy and in the process computes a new density ratio which, for convergence, approaches the estimated value. Corresponding to the last iteration is the radxation QSUM, which is simply related to IW [TABLE(ITH, 12)]. After convergence, $I B[T A B L E(I T H, 13)]$ is computed at the converged pressure PRS and a new enthalpy ENTB by HEAT2 before Statement 2004. If the problem fails to converge for the normal shock (test of 2000) IG $\varnothing \varnothing \mathrm{F}$ is set to I and control passed to the math program for the next case. If no convergence is obtained for other values of θ_{W}, a transfer is made to Statement. 1004 which sets the tabular value of THW [TABLE(ITH, I)] $=0$, and the increments of the computation IINT. At the conclusion of the calculation subroutine PHIL is called if IINT >0. This subroutine searches for values of THW which are zero and if there are any provides linear interpolation for the 12 shock property columns with θ_{F} as the independent variable. The output for each iteration ($X P E>1$) for every converged iteration ($X P L>1$) is provided by the tests between 1022 and 1024 and the Statements between 1009 and 1016 .

If the body radiation intensity drops below the input INST $\varnothing \mathrm{P}$, a transfer is made out of the loop to Statement 1024. D ϕ loop 1028 provides an interpolation between the ambient γ (GAMA) and the last γ_{W} (GAMW) computed by the iterative procedure, using THW as the independent variable. All shock properties, except IW (which $1 s$ set to 0) and IB (which is still computed until it also falls below INST $\varnothing \mathrm{P}$, then set to zero for smaller θ_{W}) are then expressed in terms of the interpolated value of γ (GAMI), the θ_{W}, and the ambient condations.

2. PHIL

Purpose: To interpolate values of the shock properties using $\theta_{\text {w }}$ as the independent variable.

Method: Where TABLE(ITH, l) are zero the solution was not found by iteration, the TABLE(ITH, 2-13) are linearly interpolated between successive successful iteration. If successive successful values are not found in TABLE(ITH, 1), IG $\varnothing \varnothing \mathrm{F}$ is set to 1 and control is returned to DBLIK, then the math program for the next case.

3. HEAT 2

Purpose: Described in Section 1883.
Method: Same as 1883, but the detachment distance is now computed and 1 s always set $=0.1$ by DBLIK.

All other subroutines are the same as 1883.

D. 1885 B SUBROUTINES

CALIING SEQUENCE

LEE	Varable Input or Dutput Sources	KKL, Section 1dentufication array ϕ utput LEE	XiL, X_{o} array corres to X_{b} ©utput I EE	YII, Yo array corces to Y_{b} Dutput LEE	XBL, X_{b} array Dutput LEE
YBL, Y_{b} arras \$utput LEE	SBL, S_{b} array Dutput LEE	THETBL, array \$utput LJEE	ISTAG, No of stag pt m XI array Tnput STAGPT	IGOOF, If $=0$, calculation $0 k$ Dutput LEE	$\left\{\begin{array}{l} \text { XI } \\ \text { stag pt } \\ \text { Input } \\ \text { LEE } \end{array}\right.$
Y1 stag pt Input STAGPT	S1 stag pt Input STAGPT	DIDSI, stag pt Input STAGPT	THETA stag pt^{t} Input STAGPT	M1 stag pt Input STAGPT	INQ, number of entries an XIL. Dutput LEE
ALPH current Input Program Lnput	ISONL, number at sonic pt in XIL Dutput LEE	THEBST, somic point Input MAIN	DTDSL array Dutput LEE		

PREP	Variable input or Output Source	$\mathrm{X}, \mathrm{X}_{\mathrm{b}}$ array Input WIND or LEE	Y, Yb array Input WIND or ILEE	S, S_{b} array Input WIND or LEE	DTDS, $\mathrm{d} \theta_{\mathrm{b}} / \mathrm{ds}$, Inpizt WIND or LEE
THETS, θ_{b} array Input WIND or LEE	ISDNQ, number of some pt, in table inpust WIND or LIEE,	PRE, array of $\mathrm{Pe} / \mathrm{Ps}$ Output PREP	$\begin{aligned} & \text { THEBSQ, some } \\ & \theta_{\mathrm{b}}^{*} \\ & \text { Input } \\ & \text { MAIN } \end{aligned}$	RSNRAQ, p_{S} / p_{A} Input Prog Input or 1885A	$\begin{aligned} & \text { PWSQ, Ps } \\ & \text { Input } \\ & \text { Prog Input or } \\ & 1885 A \end{aligned}$
V, velocaty Input Prog Input or 1885A	$\begin{aligned} & \text { RHOA, } p_{A} \\ & \text { Input } \\ & \text { Prog Input or } \\ & \text { 1885A } \end{aligned}$	IPTSQ, number of points m X array Input WIND or LEE	$\begin{aligned} & \text { GAMS } \gamma_{s} \\ & \text { Input } \\ & \text { Prog Input or } \\ & \text { 1885A } \end{aligned}$	$\begin{aligned} & \text { RC, R } R_{C} \\ & \text { input } \\ & \text { Prog Input } \end{aligned}$	JFLOW, J flow sentinal Input Prog Input
KKW, body adenti- fication array Ynput WIND or LEE	DSY, A_{s} array $y_{e}=0$ Input MAIN	$\begin{aligned} & \text { RWY, }\left(\mathrm{R}_{6} / \gamma^{*}\right)<=0 \\ & \text { array } \end{aligned}$ Input MAIN	RSA p_{s} / p_{a} axray wath DSX, RWY Input MAIN	RARST: ρ_{n} / ρ_{3} array wath XSYST 2. DUTB Input MAIN	XSYST, X*/Y* array for DUTB Input MAIN
DUEE, $\frac{V_{T}}{V} \frac{d u}{d s}$ 2-D array Input MAIN	GMTB, y array with PMPSTB Input MAIN	PMPSTE, PMPSTB array whth GMTB Input MAIN	XNT, v array for Prandt1-Meyer Input MAIN	XNTI, Pe/Ps array, XNGM(1), Prandti- Meyer Input MAIN	$\begin{aligned} & \text { XNT2 Pe/Ps } \\ & \text { array } \\ & \text { XNGM(2), Prandtl- } \\ & \text { Meyer } \\ & \text { Input } \\ & \text { MANN } \end{aligned}$
XNT3, Pe/Ps array, XNGM(3), Prandtl- Meyer Input MALN	XNT4, Pe/Ps array XNGM(r), PrandtlMeyer Input MAIN	XNGM, 1 array för use in Pranâtl- Meyer Input MAIN	$\begin{aligned} & \text { DPQDS } \frac{\left(\mathrm{d} \mathrm{Pe}_{e} / \mathrm{P}_{\mathrm{E}}\right) \mathrm{d}_{5}}{\mathrm{array}} \end{aligned}$ \$rutpert PREP	$\begin{aligned} & \text { PA, } P_{A} \\ & \text { Input } \\ & \text { Prog Input or } \\ & \text { I885A } \end{aligned}$	DUDSSS, $\mathrm{du} / \mathrm{ds}$ at atag pt Фutput PREP
XIW, ron-trans X_{1} geometry array Jnput Subl10	TPP2, upper (12mat to d(Pe/Ps)/dx integration Input Prog Input or MAIN	3rN2, lower Limit to $\mathrm{d}(\mathrm{Pe} / \mathrm{Ps}) / \mathrm{dx}$ integration Input Prog Input or MAIN	IGФゆF, if ≤ 0 computation satis- factory Output PREP		
-107-					
$x^{2}=6$					

QCONV	Varable Input or Output Source	PREW, pe/ps array Input PREP	XMULPS, factor $=$ Ps/PT Input MAIN	RHOBS, $\rho_{B S}$ Input MAIN	$T B, T_{B}$ Input Program
XMAMB, mean molecular weight Input Program Input or 1885A	RHOT, P_{T} Input MAIN	$\text { GAME, } y_{e}$ Input MAIN	XMUBB ${ }^{\mu_{r_{B}}}$ Input MAIN	YBW, Y_{B} array Input WIND or LEE	VISC, Viscocity table (with TMPVS) Input MAIN
TMPVS, temp table (with visc) Input MAIN	HAMB, enthalpy H Input Program Input or 1885A.	$\mathrm{TT}, \mathrm{~T}_{\mathrm{T}}$ input Program Input or 1885 A	DPDSW, $\mathrm{d}(\mathrm{Pe} / \mathrm{Ps}) /$ de array Input PREP	QLW, QI array Output QCONY	QTW, QT array Output QCQNV
nidow, number of entries th XBW Input WIND of LEE	REW, REY array Output QCONV	JFLOW, flow Input Program Input	$\begin{aligned} & \text { QLSAO }_{\text {(QLS) }} \text { / }=0 \\ & \text { normalization } \\ & \text { Input } \end{aligned}$ MAIN	QLSW, QL'normalizing factor Imput MAIN	PWS, PS Input Program Input or 1885A
SBW, S_{b} array Input WHND or LEE	ISONW, number of some pt th XBW Input WHD or Lee	DUDSW, $\mathrm{du} / \mathrm{ds}$ windward or leeward Input PREP	SIGMA, mput PN, Prandtl Number Input Program Input	QTSTAO, (QTS) $a=0$ normaln- zation Input MAIIN	RYNORM, REY normalization Input MAIN
DTDSW, $\mathrm{d} \theta_{b} / d S_{b}$ Array Input WIND or LEE					

Varzable	INQW, number of entries m QRAD	QRAD, or array	ORADNM, normal- 2zation factor
Input or Фutput	Input	Input- Output	Input
Source	WIND or LEE	GETQRS \& DXSIDT QRNMAD	MAIN

QRCLER

Varrable	INOW, number of X_{b} 's in array Input or Output Source	Input	QRAD, QR array
WIND or LEE	STAND, array		

GETTOT	Variable Inpat or Output Source	IT, Indep. Variable Input Calling Program	TTB, Indep Variable array Input Calling Program	PD, 1st dep. variable Output GETTøT	PTB, list dep variable array Input Calling Program
ROD, 2nd dep variable Output GETTDT	ROTB, 2nd dep. variable array Input Calling program	TTD, 3rd dep. vatiable Output GBTTøT	TTAB, 3 rd dep variable array Input Calling program	GAD, 4th dep. variable Output GETTดT	GATB, 4th dep. variable array Input Calling program
	Variable	ICASE	IPAGE	ILINE	NUMBER
HDPRN ${ }^{-}$	Input or Output ,Source	Input Frogram mput	Input Mann	Input Program input	Input Man
MEM \varnothing Input Program input	DATE Input Program mput	KPRINT Output HDPRNI			
DERQ5	Variable Input or output Source	NZ Input ADAMS4	XEQ Input ADAMS 4	XIND Input ADAMS 4	DXEQ Output DERQ5
L Input ADAMS4	PAR Input Dummy variable	NPAR Input Dummy varıable			

TABLES	Variable Input or Output Source	RASDGY Output TABLES	EPDGY Output TABLES	DøY Output TABLES	TMPVS Output TABLES
VISC Output TABLES	DSY Output TABLES	RWY Output TABLES	RSA. Output TABLES	DUTB Output TABLES	RARST Output TABLES
Xsyst Output TABLES	GMTB Output TABLES	PMPSTB Output TABLES	XNGM Output TABLES	XNT Output TABLES	XNTI Output TABLES
XNT2 Output TABLES	XNT3 Output TABLES	XNT4 Output TABLES			

WIND	Varmable	KKW, Section 1dentification axray	X1w, X_{o} array, corres to X_{b}	XIW, array corres. to	$\mathrm{XBW}, \mathrm{X}_{\mathrm{b}}$ array
	Input or Output	Output	Output	Output	Output
	Source	WIND	WIND	WIND	WIND
YBW, Y_{b} array	SBW, S_{b} array	THETBW,	ISTAG, No of stag pt in X_{I}, etc	$\begin{aligned} & \text { IGดCOF, If }=0 \\ & \text { calculation } 0 \text { K. } \end{aligned}$	$\begin{aligned} & \mathrm{Xl} \\ & \text { stag pt } \end{aligned}$
Output	Output	Output	Input	Output	Input
WIND	WIND	WIND	STAGPT	WIND	STAGPT
$\begin{array}{ll} \text { Y1 } & \\ \text { stag } & \text { pt } \end{array}$	Sl stag pt	$\begin{aligned} & \text { DTDSI } \\ & \text { stag pt } \end{aligned}$	THETAI plus stag pt	$\begin{aligned} & \mathrm{Ml}=0 \text { sections, } \\ & \text { plus stag. } \mathrm{pt} \end{aligned}$	IN \varnothing, number of entries m XIW
Input	Input	$1_{\text {Input }}$	Input	Input	Output
STAGP'	STAGPT	STAGPT	STAGPT	STAGPT	WIND
ALPH 1 current	ISONW, number at sonic pt th XIw	THEBST, somic point	DTDSW,		
Input	Output	Input	Output		
Program Input	WIND	MAIN	WIND		

The subroutine SUBllo receaves all mput and provides all output through $C \not \subset \mathrm{MM} \emptyset \mathrm{N} D A T A$. In addition to their calling sequences, the following subroutmes use $C \not \subset M M \emptyset N$ for some mput and output; GETTWG, PREP, WIND, LEE, STAGPT, DXSIDT, and DEREQB.

Subroutme UNO8 has no calling sequence.
The calling sequences for the general purpose routmes ADAMS4 and ARTLU are explained in the section on special routmes.

FTNDRW	Variable Input or Фutput Source	XIW，X_{0} corres to X_{b} array Input WIND or LEE	XIW，Y_{0} corres to X_{b} array Input WIND or LEE	XBW，X_{b} array Input WIND or LEE	YBW，Y_{b} array Input WIND or LEEE
SBW， S_{b} array Input WIND or LEEE	THETBW，array Input WIND or LEE	$\begin{aligned} & \text { DTDSW, } \\ & \text { array } \\ & \text { Input } \\ & \text { WIND or LEE } \end{aligned}$	KKW，Section I．D axray Input WIND or LEE	ISONW，Inder of sonic pt MX_{b} Input VLND ox LEE	INOW，number of entries MX_{b} Input WIND or LEE
RSめRA， Input Prog Input or 1885A	DOY，2D array of Input MAIN	RASDOY， array for DDY Input MAIN	IGOOF，if ≤ 0 ， calculation o \mathbf{k} Detput FINDRW	IFLOW，flow sentmel Input Prog Input	INDDIFM，index of Y_{T} in $\mathrm{Y} \mathrm{VVB}_{\mathrm{B}}$ Input GETDS
DEES， Input GETDS	THW 2 lst col of table Input Prog Input or 1885A	RUゆRV，column 3 of table Input Prog Input or 1885A	THWL，column 4 of table Input Prog Input or 1885A	XNNX，NN used to compute Input Prog Input	PREW， axray Input PREP
HAMB，enthalpy Input Prog Input or 1885A．	GAMS， Inpust Prog Input or 1885A	V ，velocity Input Prog Input or 1885A	THETAW，at Ψ_{T} Фutput FTNDRW	RW， R_{h} ，radius of bow wave Dutput FTNDRW	XSİ，at $\mathbf{Y}_{\mathbf{T}}$ ゆutput FINDRW
TDUMI，compun 5 of TABLE Input Prog Input or 1885A	TDUM2，column 6 of TABLE Input Prog Input or 1885A	BSHOCK， $\mathbf{B}_{S} S H O C K$ Parameter Output FINDRW	THWLIM Smellest Input MAIN		

GETE	Variable Input or ゆutput Source	PRE, array Input PREP	$\begin{aligned} & Y, Y_{b} \text { array } \\ & \text { Input } \\ & \text { WIND or LEE } \end{aligned}$	GAMS, Input Prog Input or 1885A	RC, B_{C} Input Program Input
MS, number of sectron on which I falls Input PREP	MB 2EL, number of section of end of B_{1} B2 nintegration Фutput GTB	I_{2} index of $p t i n$ Y considered Input PREP	JJJJ, flow andex (JFIOW) Input Program Input	$B B_{,} B_{1}$ or B_{2} for $\mathrm{d}\left(\mathrm{Pe}_{\mathrm{e}} / \mathrm{P}_{\mathrm{g}}\right) / \mathrm{dx}$ calc. Øutput PREP	M, arrey of sectron I. D Input WHD or LEE
THET, array Input WIND or LEE	USTOP, index of last pt in integration of \$utput PREP				

GENDS	Variable Input or Dutput Sources	XIW, X_{0} corres to XBW Input WIND or LEE	YIW, Y_{o} array corres to YBW Input WIND or LEE	XBW, X_{b} array Input WIND or LEE	YBW, Y_{b} array Input WIND or LEE
SBW, So array Input WIND or LEE	THETBW, array Input WIND or LEE	KKW, Section I D asxay Input WIND or LEE	ISDNW, number of sonic pt. in XBW Input WIND or LEE	INOW. number of entries in XBW Input WIND or LEE	ALPHAT, Input Program Input
RSORA, Input Prog Input or 1885A	$\mathrm{RN}, \mathrm{R} \mathrm{N}$ Input Program Input	JFLDW, flow sential Input Program Input	DDY, 2D array of Imput MAIN	RASDOY, array for DOY Input MAIN	EPDOY, array for DQY Input: MAIN
IGDDF, if ≤ 0, calculation 0 k фratput GETDS	$\begin{aligned} & \text { DTDSW } \\ & \text { array } \\ & \text { Input } \\ & \text { WIND or LEE } \end{aligned}$	DELS, , stag pt detachment कutput GETDS ${ }^{2}$	INDDUM, index of Dutput GETDS		

-113-
$531<$

GETPRE	Varrable Input or Dutput Source	XNT, independant variable table Input PREP	rNTI, dependent varmable table Input PREP	XNU, indepondent variable Input PREP	PRES, dependent variable Input GETPRE	
GETORS	Varrable Input or Output Source	XBW, X_{b} array Input WIND or LEE	$\begin{aligned} & \text { YBW, } \mathrm{Y}_{\mathrm{b}} \text { array } \\ & \text { Input } \\ & \text { WIND or LEE } \end{aligned}$	$\begin{aligned} & \text { THETBW, } \\ & \text { Input } \\ & \text { WIND or LEE } \end{aligned}$	$\begin{aligned} & \mathrm{RW}, \mathrm{R}_{\mathrm{W}} \text { at } \mathrm{Y}_{\mathrm{T}} \\ & \text { Input } \\ & \text { FINDRW } \end{aligned}$	
DELS, from stag pt Input GETDS	BSHOCK, B_{5} shock shape parameter Input Program Input or FINDRW	QRAD, QRarray Dutput GETQRS	$\begin{aligned} & \text { STAND, array } \\ & \text { Output } \\ & \text { GETORS } \end{aligned}$	THW ρ_{w} array Input Program Input or 1885A	$\begin{aligned} & \text { TIW I I array } \\ & \text { Input } \\ & \text { Program Input } \\ & \text { or } 1885 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { PREW } P_{e} / P_{s} \\ & \text { array } \\ & \text { Input } \\ & \text { PREP } \end{aligned}$
$\operatorname{TPR} P_{W} / P_{0}$ array Input Program Input or 1885A	TIB I_{B} array Input Program Input or 1885A	XMMX, MM to compute QR Input Program Input	TRW arrayInputProgram Input or 1885A	PWS, PS Input Program Input Program Input or 1885A	TNOW, No of pounts in XBWarray Input WIND or LEE	$\mathrm{RC}, \mathrm{R}_{\mathrm{C}}$ radius Input Program Input
THWLM, $\theta_{\text {wLicit }}$ smallest value of θ_{v} Input MAIN						

-114-
$532<$

1. PREP

Purpose To compute the pressure distribution and velocity gradient for the body.

Method- The pressure distribution is divided into two parts, one the area between stagnation point and sonic point, and two the area aft of the sonic point.

If there 1 s no straight section before the sonic point, (see tests near Statement 1000), and if the ratio X / Y sonic point $\geq\left(1-\sin \left(\theta_{b}^{*}\right)\right) / \cos \left(\theta_{b}^{*}\right)$, then the forward pressure distribution 1s assumed Newtonian ($D \varnothing L \phi \varnothing P$ 1003). The velocity gradient is computed with JG $\varnothing=1$ by the correlation using the input tables DUTB, XSYST, and RARST. (Statements 1008 to 1021).

If there is no straignt section, but X / Y sonic point $<\frac{1-\sin \left(\theta_{\mathrm{b}}{ }^{*}\right)}{\cos \theta_{\mathrm{b}}{ }^{*}}$, then the above velocity gradient is computed (1008 to 1021), but with $J G \varnothing=2$, which then uses du/ds to compute a polynomial distribution (Statements 1024 to 1026).

If a straight section exists before the somc point, then a polynomial pressure distribution is computed,
if $\frac{d \theta}{d S}=0$ at stagnation point; then $d u / d s$ is computed by the correlation at Statement 1007. Otherwise du/ds is computed as above.

After the distribution to the sonic point is computed (by Statement 1027) the $D \phi 1067$ loop beginming after Statement 2008 computes all the following pressures. First, however, a table lookup is done to compute the pressure ration PM \varnothing PS, a function of γ_{S}. Statements 2000 to 2008 establish indexes used with the Prandt1-Meyer calculation. After the Dゆ1067 the Statements 3002 to 2013 are used to assure that the first pressure computed on Section 5 or a flatbased section 10 is done by PrandtlMeyer. If the $\mathrm{d} \theta / \mathrm{ds}>0$, for the current point, the pressure 1 s computed by the Newtonian approximation (1028). If $\mathrm{d} \theta / \mathrm{ds}=0, \theta<0$, the pressure is constant (1031). If $\mathrm{d} \theta / \mathrm{ds}=0, \theta \geq 0$, then a test 1 s made (1032). If the previous pressure was \leq PM \varnothing PS, the Entropy-Layer formulation is used (Statements 1033 to $300 \overline{8}$). This involves the use of the ADAMS4 integration system to integrate the differential equation $d\left(P_{e} / P_{s}\right) / d x$. This derivative involves a constant $B B$, which itself is an untegral from the stagnation point to the beginning of the straight section. Subroutine GETB computes this constant, and the quantity MB2EL assures that it is computed only once per straight section.
If $\mathrm{d} \theta / \mathrm{ds}=0$, and the previous pressure was $>\mathrm{PM} \phi \mathrm{PS}$ at Statement 1032, then constant pressure is assumed (Statement 1031).

If $\mathrm{d} \theta / \mathrm{ds}<0$, a test is made at Statement 1040. If the previous pressure $>$ PM \varnothing PS, Newtonian is assumed (1028). Otherwise, Prandtl-Meyer is assumed (Statements 1041 to 1064).

As each pressure $P R E_{i}$ is computed, so is its derivative $D P \emptyset D S_{i}$. If the pressure ever becomes less then P_{A} / P_{S} (PA $\varnothing P S$), then the pressure $1 s$ held constant at PAØPS (loop 1005) for the rest of the body.

2. QRCIER

Purpose: To set each entry of the arrays QRAD and STAND to zero before the calculation $Q R_{1}$ and $X S I_{1}$ are initiated.

Method: D \varnothing L \varnothing (1000.

3. QCQNV

Purpose: To compute the heating quantities $Q L_{i}, \mathrm{QT}_{1}$, and $R E Y_{1}$ for each point on the body.

Method: The distributions $Q L_{1}, Q T_{1}$, and REY_{i} are computed by the $D \varnothing \subset \varnothing \emptyset \bar{\emptyset}$ 1011. Between entry and the $D \varnothing$ 1011, all constants independent of the body are computed. The QL_{i} computed uses the term BETA (1004, 1003), involving the trapezoidal integration of the function $\rho_{b} u_{e} \gamma_{t}{ }^{2}$, and ξ (not related to the shock ξ). When the surface distance $\mathrm{s}_{\mathrm{b}_{1}} \leq 0.2 \mathrm{~s}_{\mathrm{b} \text {, soncc }}$, a limiting form of ξ and BETA is provided (Statements 1000 to 1001). If $\mathrm{s}_{\mathrm{b}_{\mathrm{i}}}>0.2$ $S_{b, \text { sonic }}$, then the ξ and BETA are computed between 1001 and 1004 , where the trapezoidal integration also is done. The $\mathrm{QL}_{\mathrm{i}}, \mathrm{QT}_{1}$, and $R E Y_{i}$ are computed between Statements 1002 and 1011.

4. GETTดT

Purpose: To perform table look-up using columns of the table of normal and oblique shock properties TABLE

Method: It was necessary to write GETT \varnothing T because two columns of independent variables on TABLE, θ_{W} (column 1) and PW/PO (column 7) are monotonically decreasing and thus not suitable for ARTLU. The maximum number of dependent variables is 4 , when the subroutine 1 s called by the MAIN program to compute "total" conditions. When it is called with fewer dependent variables of interest (e.g. by FINDRW, GEIQRS), dummy variables are included.
5. WIND

Puxpose: To compute the transformed body coordinates for the wind ward sade at angle of attack, and include in these tables the coordinates of the sonic point.

Method: The $D \varnothing L \varnothing \varnothing P 1012$ first transforms the zero angle-of-attack coordinates by using the input values of a (ALPHI), and the XBRAL and YBRAL included in the zero angle-of-attack tables by STAGPT as the alpha $=0 \mathrm{co}-$ ordinates of the stagnation point of the body at the current α. The difference in definition of x_{b}, y_{b}, θ_{b} done at the Statement 1002 reflects the fact that the windward side must go around the $a=0$ rearward point and back up the other $(a=0)$ side. The table is considered complete whenever $\left|\theta_{b}\right|>90$ (Statement 1010), or y_{b} passes through zero (1006). The statements between 1014 and 1029 compute the co-ordinate of the sonic point ($\theta_{b}=\theta_{b} *$). If the sonic point falls on a straight section, it is defined to be the start of that section (1023). Otherwise an interpolation is done using $d \theta / d s$ of the section containing the sonic point ($D \varnothing L \phi \emptyset P 1020$), and the sonic point coordinates are computed at Statement 1026. The $D \phi L \phi \emptyset P 1027$ rearranges the x_{b}, y_{b}, etc., tables so that the sonic point co-ordinates fall in their proper sequence, with index $=I S \emptyset N W$. Proper sequence is determmed by the fact that the SBW table must be monotonically increasing.

6. IEE

Purpose: Same as WIND above, but for leeward side.

Method: Same as WIND above, except for co-ordinate defmntions at Statements 1002 to 1005.

7. GETDS

Purpose: To compute the detachment distance of the bow wave normal to the body at the stagnation point.

Method: GETDS computes the detachment Δ_{s} by choosing among several correlations involving the densxty ratio ρ_{A} / ρ_{S} and body geometry.

If there are no straight sections between the stagnation point and the somic pount, and JFLOW $=0$, then the Δ_{S} is computed from a simple algebraic evaluation involving cosh ${ }^{-1}$ (between Statements 1001 to 1008). For the purposes of $\cosh ^{-1}$ only, if the inverse of the argument is ≥ 1, it is set to a limit 3/3. 1 .

If there were no straight sections and JFL $\varnothing W>0$, then the Δ_{s} is computed from a correlation involving the tables RASD $\varnothing Y$, EPD $\varnothing Y$, and $D \varnothing Y$. The table $D \varnothing Y 15 \Delta_{s} / Y_{T}=f\left(\epsilon, \rho_{A} / \rho_{s}\right), Y_{T} \quad$ here is defined as $y_{b}{ }^{*}$ at the sonic point, $\rho_{A} / \rho_{S}=$ RA $\emptyset R S$, and $\epsilon=$ EPSLT $=x_{b}{ }^{*} / y_{b}{ }^{*}$ at the sonic point.

If there is a straight section before the sonic point, and $J F I \not \varnothing W \leq 0$, the ΔS is computed from the function using cosh-1, but with the (DTDSMP) redefined between Statements 1020 and 1026. If JFL $\phi W>0$ and $x_{b}{ }^{*} \geq \Delta_{\text {so }}$, then the correlation from tables D $\varnothing Y$, EPD \quad, and RASD $\varnothing Y$ is performed with Y_{T} and $\epsilon=$ EPSLT redefmed between Statements 1028 and 1032. If , $\mathrm{JFL} \varnothing \mathrm{W}>0$ and $\mathrm{x}_{\mathrm{b}}{ }^{*}<\Delta_{\text {so }}, \mathrm{DELS}=\Delta_{\text {so }}-\mathrm{x}_{\mathrm{b}}{ }^{*}$ at Statement 1037.

The index INDDUM is exther the index of the sonic point or the beginning of a straight section, depending on whach point was used to determine Y_{T}.

8. GETQRS

Purpose: To compute the radiation QRAD and normal detachment distance STAND along the meridion.

Method: The detachment distance $S T A N D_{1}$ and $Q R A D_{i}$ are computed in $D \varnothing \varnothing$ $\pm \varnothing \varnothing \mathrm{P} 1010$ by solving a quadratic which is a function of RW, the body coordinates and the shock parameter BSHOCK, between the $D \not \subset 1010$ and Statement 1033. Given the distance and the pressure distribution, subroutine GETT GT is used to look up the intensities, first from the wave angle THWW and then from the local pressure PARG. Three dummes are used in each table, look up (see GETTดT). The $Q_{\text {RAD }}^{2}$ is computed prior to 1010.

9. STAGPT

Purpose: To locate in the zero angle-of-attack co-ordinates the co-ordinates of the new stagnation point at $\alpha \neq 0$, and place this point in the tables.

Method: In the IF L $\varnothing \varnothing \bar{P}$ between 1030 and 1029, the program finds all points for which the local body angle $\theta_{b}+a=90$. It does this by seeking a change of sign in the residual. If the point is not identical to a point in the $a=0$ tables, $d \theta / d s$ is computed and the co-ordinates are interpolated (1022 to 1025). If the point is identical to a point in the $a=0$ table, this fact is noted (1026). If the point falls on a straight section, the new stag. nation point is arbitrarily defined to be at the middle cf the straight section (1003 to 1007).

For each candidate for the stagnation point, the quantity XBRAL is computed (1027). The point which maximizes this quantity is defined to be the stagnation point (1028 to 1029). The statements between 1033 and 1040 are used to define the arrays Xl, Yl, etc., which contain the $a=0$ co-ordinates (X0, YO, etc.) plus the stagnation point, whose index in Xl, etc. is ISTAG. It is placed in the co-ordinate tables in such fashon that Sl is monotonically increasing.

10. GETB

Purpose: To compute the constants B1 or B2 used in computing the pressures by integrating the differential equation $d\left(P_{e} / P_{s}\right) / d x$

Method: GETB computes BB which anvolves an integral of the pressures and geometry between the stagnation point and the beginning of the straight section on which the $i^{\text {th }}$ (current) point lies. Since the integral is only to the start of the section, ISTめP, the index of the starting point in the x_{b} table, and MB2EL, the identification number of the straight section are computed in the DO 1003 loop. These quantities are used to guarantee that the calculation $1 s$ done once for each straight section on which the entropy layer equations are used, and not once for each output point on the section. The integration is done trapezozdally in $D \varnothing \varnothing L \emptyset \emptyset P 1008$. The integrand depends on JJJJ, which is the flow index JFLOW. The argument BB in the calling sequence is the value of either B1 or B2, whichever is appropriate.

11. QRNMAD

Purpose: To normalize the array QRAD by QRADNM.
Method: If $Q R A D N M$ is >0, each entry in $Q R A D$ is divided by it in $D \varnothing$ LøФР 1002.

12. GETPRE

Purpose: Given a value of ν (XNU) and a ν table (XNT), to compute a corresponding Pressure (PRES) from the table XNTl.

Method: Linear interpolation in $D \not \subset L \not \varnothing \varnothing P 1002$ and Statement 1003.

13. FINDRW

Purpose: To compute the bow wave radius RW, and the parameter BSHOCK by computing the detachment distance and wave angle (XSI2 and THETAW) at the body point whose index is INDDUM, and at the first point where $\theta_{w} \leq 0$.

Method: FINDRW computes the shock-shape parameters RW and BSHOCK by computing the shock angle and detachment distance at two points on the body, the farst ($I C \emptyset M P=0$) defined as the point on the geometry tables with index INDDUM, and the second (ICధMP = 1) being the most forward point with $\theta_{b} \leq 0$. The point indexed by INDDUM is either the somic point or the start of a straight section if it occurs ahead of the sonic point and if $x_{b}^{*} \geq$ DELTST as defmed by Statement 1003.

The method of iteration is to compute for a point on the body and a value of θ_{w} (inntially set to θ_{b}) two values of detachment distance XSIl and XSI2. When IC $\varnothing \mathrm{MP}=0$, XSII is obtamed from Statement 1071 , and when IC $\varnothing M P$ >0 from the (largest) positive root of a quadratic (Statements 1044 to 1047). XSI2 is always obtamed from the (largest) positive root of the quadratic computed between 1052 and 1057. If the relative difference between XSII and XSI2 is $\leq 10^{-4}$, the computation has converged (after 1022). If it has not converged, then the value of THET $=\theta_{w}$ is modified until a change of sign in the residual indicates a near root (Statement l026). At this time the $\Delta \theta_{w}$ is decreased and the successive approxmations continued. If a successive redidual is larger in absolute value than the former value (divergence) the sign of $\Delta \theta_{w}$ is changed (1029). If this happens twice, then the residual has passed through a minmum without finding a root, and transfer is made to Statement 1041 which sets $I G \varnothing \varnothing F=1$ and prints the message CANN \varnothing T FIND THETA F $\emptyset R$ RW $\varnothing R$ B, SKIP CASE. Control then 1s passed to the man program. If no solution is found in 600 iterations, $I G \emptyset \emptyset F$ is set to I and the return is executed (1034 et. seq.). After the first pass (ICøMP $=0$) RW is computed and the reference geometry is changed to the most forward pount at which $\theta_{b} \leq 0$ (Statements 1038 to 1070). After the second pass ($I C \emptyset \mathrm{MP}=1$), the shock shape parameter BSHCCK is computed (1070) and a normal RETURN is executed.

14. GETNU

Purpose: Given a value of pressure PดPT and a pressure table XNTI, to compute a corresponding ν from the table XNT.

Method: Imear interpolation in $D \not \subset L \not \emptyset \emptyset P 1002$ and statement 1003.
15. $\mathrm{AC} \emptyset \mathrm{SH}$

Purpose: To compute $\cosh ^{-1}$ (ARG).
Method: Expansion in Dø IøøP 1000 for $A R G>1$.
16. DERQ5

Purpose: To compute the derivatives $\mathrm{d}\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{s}}\right) / \mathrm{dx}$ or $\mathrm{d} \xi / \mathrm{dS} \mathrm{b}_{\mathrm{b}}$.
Method: $d\left(P_{e} / P_{s}\right) / d x$ is computed between 1002 and 1008 by using the current values of P_{e} / P_{s} (PRS), X (XIND), and data in C \varnothing MM \varnothing N storage computed by PREP. DERQ5 is called by the predictor-corrector routine ADAMS4.
17. SUB110

Purpose: To compute $\alpha=0$ coordinates
Method: SUBllo computes $a=0$ body data in the large $D \phi I \phi \emptyset P$ 20. For each of 10 segments, the mput array $N(X N)$ contains a number. For each of the segments but 3 and 10 this should be of the form X where X is an integer giving the number of increments in the section. For the third section X .1 is a cone, X .2 is a tension shell, and X .3 is a general shape (statement 50), X still being the number of increments. For Section 10 X. 1 is an aft sphere, and X. 2 is a flat base (statement 120). The index JI counts the points, and the total number of points in each XO, YO, etc. array is JOMAX. The appropriate equations for each section are determmed by the computed $G \varnothing T \phi$ at statement $I 0$, and if $X N_{1}=0$, the $i^{\text {th }}$ section is omitted. If the input sentinel IOTBL $\neq 1$, the co-ordinates are printed out (statement 131).

18. ADAMS4

Purpose: To numerically mntegrate dufferential equations by a preductorcorrector method.

Method: See the writeup of ADAMS4 in the section specral subroutines.

19. TABLES

Purpose: To define tables used in the computations.
Method: Each element of each table is set to the appropriate numerical value in an arrthmetic statement.
20. HDPRNI

Purpose: To print identafication material at the beginning of each case.
Method: The appropriate "WRITE" and "FORMAT" statements are used.
21. UNO8

Purpose: To defme logical tape 8 as the binary mput-output tape SYSUT5.
Method: UNO8 is a MAP subroutine containing the necessaxy FILE information.

E. 1885 A MAIN PROGRAM

Purpose: To acquire mput for the oblique shock calculation and prepare a bmary tape of shock data for Program 1885B.

Method: Having acquired the values of the input, control $1 s$ passed to subroutine OBLIK which performs the shock calculation. If a binary tape is to be prepared for 1885 B , the tape is rewound for a first case (XFIRST $=0$, Statement 1001) and not rewound for successive cases untıl ILAST is input >0 (Statement 1005).
F. 1885 B MAIN PROGRAM

Purpose: The purpose of the main program is to acquire tables and mput used by the calculation, provide output, and control the order of the calculations of the heating and pressure distribution at each angle of attack for both leeward and windward sides.

Method: Common data, dumension statements, and defmition of the Namelist array INPUT occur in the MAIN program before mput is acquired. CALI TABLES provides the constant tables to be used by the program. Preset variables are then set, and the data read in through the Namelist array INPUT. The CALL SUBII0 statement provides for the computation and subsequent output of the zero angle of attack coordinates.

The statements between CALL SUB110 and 1035 provide for oblique and normal shock data to be read from TAPE 38, if the mput quantity TAPE (XTP) >0, implying that these data are to come from an 1885A calculation. After Statement 1035 pertinent gas properties are defined from these data taken at wave angle $\left(\theta_{\mathrm{w}}\right)=90$ degrees.

In the statements preceding 1017, "total conditions", $P_{T}, \rho_{T}, T_{T}, \gamma_{e}$ are defined at $\theta_{\mathrm{w}}=90$ or by table look-up (CALI GETT \varnothing T) at $\theta_{\mathrm{w}}=$ THETAT (THT \varnothing T), depending on the input TT \varnothing. Before the $D \not \subset 10$ statement further gas properties are defined, as is the Reynolds number normalization RYNøRM.

The $D \varnothing L \emptyset \emptyset P 10$ extends to the end of the MAIN program, and controls as a monitor the sequence of calculations performed for each angle of attack. The first entry of the array ALPHA must be 0 . The flow dragram (Section

$$
\begin{aligned}
& -122- \\
& 540<
\end{aligned}
$$

A above) should be helpful, as the entire function of the MAIN program in this loop to control the Iogic. Since the leeward and windward sides of the vehncle at angle of attack are nearly independant of each other, there are virtually no signıficant equations in the loop.

When $\alpha=0$ or 180 , the body is symmetric and only one side need be computed. At $a=0$ it 1 s the windward side, Statements 1018 to 1000 , in which four normalizing factors are computed, QLSAO and DUDSAO for QL, QTNФRM for QT, and QRADNM for QRAD, if the radiation is to be computed $(C \not \subset \mathrm{MQRD}>0$ in the input).

When $a=180$, the same sequence 1 s performed for the leeward side, Statements 1023 to 1001 , using the previously computed normalization.

When $0<\alpha<180$, calculations are performed in the proper sequence first for the windward side and then for the leeward side, and all but the coordinates are computed between Statements 1026 and 1025 . When both sides are computed two averages must be found, one a mean value of du/ds (DUDSD) between Statements 1026 and 1022, which assures continuity of heating at the stagnation point (common to windward and leeward sides), and the other is the detachment distance (DELS) from the stagnation point, which is computed between Statements 4002 and 1029.

There are several co-ordinate tables used, XO, YO, SO, DTDSO, THETAO, and Min CøMMøN are the zero angle-of-attack coordinates. The tables Xl, YI, Sl, DTDSl, THETAl, and M1 are these tables plus one additional point, the stagnation point at the current value of α. The tables XBW, YBW, SBW, THETBW, and KKW are the body coordinates of the windward side after the translation and rotation implied by the angle of attack, and the tables XIW and Y1W are the $\alpha=0$ coordinates from which the body coordinates were transformed. On the leeward side the tables are analagous to the above seven, except the letter "W" is replaced by "L".

For each side of the body, the sequence is as follows

1) Obtain the stagnation point coordinates in the $a=0$ reference by calling STAGPT (Statement 1009) if $a \neq 0$, acquiring the tables Xl, Y1, etc., and the index of the stagantion point ISTAG.
2) Obtam the windward (leeward) body coordinates by transforming XI, Yl, etc., to XBW (XBL), YBW (YBL), etc., by calling subroutine WIND (LEE). The first point in XBW (XBL) will be the stagnation point at the current a, and in addition the coordinate tables include the coordinates of the sonic point, whose index is IS $\varnothing N W$ (ISดNL). There are INØW (INØL) entries in each of these tables.
3) Compute the pressure distribution and du/ds for the windward (leeward) side by calling PREP to obtain the array PREW (PREL), and the quantities DUDSW (DUDSL).
4) From this point the windward and leeward sides data are completely indepedent. CALI QC $\varnothing \mathrm{NV}$ provides for the computation of the heating data QLW, QTW, and REX. This is provided as output for the windward side, and when the leeward calculation $1 s$ made the distributions are stored in the same arrays.
5) If $C \not \subset M Q R D$ in input is ≤ 0, go to Step 10 .
6) If RWø, BSHøCT, DELT are input, SKIP to Step 9.
7) Obtain the detachment distance DELS from the stagnation point, which is provided by GETDS.
8) Obtain the shock detachment distance XSI2 and the shock angle THETAW from the point whose index is INDDUI from the windward side and INDDU2 from the Leeward side. This point is etther the sonic point or the start of a straight section $1 f$ there is such a section between the stagnation point and the sonic point. Also obtain the bow wave radius $R W$, and shock parameter $B S H \varnothing C K$, these quantities coming from the subroutine FINDRW.
9) Obtain the radiation heating ($Q \mathrm{RAD}$) and detachment distance (STAND), (Windward or leeward). This is done by subroutine GETQRS.
10) Provide the pressure and heating quantities as output for the windward and leeward side.

Most of the subroutines have as an argument the sentinal IG $\varnothing \varnothing \mathrm{F}$, which if >0 indicates that the computation is unsatisfactory and the next angle of attack $1 s$ considered.
G. 1885A SIGNIFICANT EQUATIONS

1. Mann

None.
2. PHIL

None.

3. \varnothing BLIK

$\rho_{\mathrm{W}} / \rho_{\mathrm{a}}=$ DENINV from teration of IW $\geq \operatorname{INST} \varnothing \mathrm{P}$
$=(\mathrm{GAMI}+1)+\mathrm{AM}^{2} \cdot \sin ^{2} \theta_{\mathrm{W}} /\left\{(\mathrm{GAMI}-1) \cdot \mathrm{AM}^{2} \cdot \sin ^{2} \theta_{\mathrm{w}}+2\right\}$

GAMI interpolated when IW < INSTøP
$\rho_{\mathrm{w}} \mathrm{U}_{\mathrm{w}} / \rho_{\mathrm{a}} \mathrm{V}=$ DENRNV $+\mathrm{UW} \not \mathrm{V}_{\mathrm{V}}$,
UW $\varnothing \mathrm{V}=\left[\cos ^{2} \theta_{\mathrm{W}}+\operatorname{DENR}^{2} \sin ^{2} \theta_{\mathrm{w}}\right]^{1 / 2}$, DENR $=1 /$ DENINV
$\theta_{\mathrm{WL}}=\tan ^{-1}\left\{\frac{\left[\sin \theta_{\mathrm{w}} \cos \theta_{\mathrm{w}}(1-\text { DENR })\right]}{\left[\cos ^{2} \theta_{\mathrm{w}}+\mathrm{DENR} \cdot \sin ^{2} \theta_{\mathrm{w}}\right]}\right\}$
$\gamma_{\mathrm{w}}=($ DENINV $+\overline{-}) /($ DENINV -1$)$ if $\mathrm{IW} \geq \mathbb{N S T} \overline{\mathrm{C}}^{-} \mathrm{P}$
$=$ GAMI, interpolated if IW < INST \varnothing P
$T_{w}=T$ from HEAT2 iteration if IV \geq INST $\dot{\phi} \mathrm{P}$
$=H W M R T Z \cdot R \cdot T O / X M$ if $I W<\operatorname{INST} \varnothing \mathrm{P}$, where $H W M R T Z=$
HMøRTZ \{i- $\left.\mathrm{V}^{2} \times 0.5\left[\operatorname{DENR}{ }^{2} \times \sin ^{2} \theta_{\mathrm{w}}+\cos ^{2} \theta_{\mathrm{W}}\right] / \mathrm{HH}\right\}$
HMøRTZ and HH from ambient condition (after 1001).
$P_{w} / P_{o}=P R S=R H \not \subset R \cdot V^{2} \times \sin ^{2} \theta_{w}(1-D E N R) / P_{o}+P A / P_{o}$

$\rho_{\mathrm{ws}} / \rho_{\mathrm{a}}=\operatorname{DENINV} \cdot(\text { PWS } \varnothing \mathrm{P} \phi / \text { PRS })^{(1 / \mathrm{GAMW})}$

-125-
5436
$\mathrm{P}_{\mathrm{ws}} / \mathrm{P}_{\mathrm{o}}=\mathrm{PWS} \varnothing \mathrm{P} \emptyset$, see above
TWS $=T \cdot H M \not \subset R T Z / E N T$ If IW \geq INSTøP

IW from HEAT2 $=\frac{2 \cdot \text { QSUM }}{\text { DEL }}$ evaluated at $P=$ PRS and $H=E N T$ if IW \geq INSTOP
$=0$ if $\mathrm{TV}<\mathbb{N} S T \varnothing$ P

IB from HEAT2 $=\frac{2 \cdot \text { QSUM }}{\text { DEL }}$ evaluated at $P=$ PRS and
$H=E N T B=H M \varnothing R T Z(\text { PRS } / \text { PWS } \varnothing \text { P } \emptyset)^{[(G A M M A-1) / G A M M A)]}$
$\overline{\mathrm{PWSS}} \boldsymbol{\varnothing} \boldsymbol{\square} \varnothing$ and GAMMA here evaluared only at $\theta_{\mathrm{w}}=90$
H. 1885B SIGNIFICANT EQUATIONS
I. MAIN
NUMBERS

$$
\rho_{\mathrm{BS}}=\mathrm{RH} \mathrm{BBS}_{\mathrm{B}}=\frac{\mathrm{P} W \mathrm{~V} \cdot \mathrm{XMAMB}}{89516 \cdot \mathrm{~TB}}, \mu_{\mathrm{B}}=\mathrm{XMUBBB}=\left.\mu\right|_{\mathrm{TB}},
$$

$$
\mu_{\mathrm{s}}=\text { XMUSSS }=\left.\mu\right|_{\mathrm{TWS}},\left.\frac{\mathrm{du}}{\mathrm{ds}}\right|_{\alpha=0}=\operatorname{DUDSAO}, \operatorname{HDHS} 90=\left.\frac{\mathrm{H}_{\mathrm{D}}}{\mathrm{H}_{\mathrm{s}}}\right|_{\theta_{\mathrm{w}}=90}
$$

$$
-126-
$$

5 里过

$$
\begin{align*}
& \left.Q T_{s}\right|_{\alpha=0}=\left.Q T(I S \emptyset N W)\right|_{\alpha=0} \\
& 2012 \\
& \left.\operatorname{QRS}\right|_{a=0}=\operatorname{QRADNM}=\left.\operatorname{QRAD}(1)\right|_{\alpha=0} \\
& 2014 \\
& \frac{\mathrm{du},}{\mathrm{ds}} \Rightarrow \text { DUDSD }=\frac{1}{2} \text { DUDSW }+\frac{1}{2} \text { DUDSL, } \\
& \left.\frac{\mathrm{du}}{\mathrm{ds}}\right|_{\mathrm{s}}=\mathrm{DUDSD}=\frac{\overline{\mathrm{du}}}{\mathrm{ds}} \text { if } \begin{array}{c}
a-90-\theta_{\mathrm{N}}<0 \text { and } \\
180+\theta_{\mathrm{A}}-\alpha<0
\end{array} \\
& \left.\frac{\mathrm{du}}{\mathrm{ds}}\right|_{s}=\frac{1}{2} \frac{\overline{\mathrm{du}}}{\mathrm{ds}}+\frac{0.5 \sin a}{\mathrm{YIW}(1)}\left(\frac{3}{\operatorname{RS} \varnothing \mathrm{RA}}\right)^{1 / 2}, a \text { otherwise than above } \\
& 1020 \\
& 1020 \\
& \text { YIV(1) is } \alpha=0 \text { value of } y_{0} \text { for the stag. pt. at the current } \alpha \\
& P_{e} / P_{s}=\operatorname{PRE}(\mathrm{I})=\sin ^{2}\left(\theta_{\mathrm{b}}\right) \\
& \frac{\mathrm{dP} e / \mathrm{P}_{\mathrm{s}}}{\mathrm{dS}}=\operatorname{DP} \emptyset \mathrm{DS}(\mathrm{I})=\operatorname{PWS} \cdot \sin \left(2 \theta_{\mathrm{b}}\right) \frac{\mathrm{d} \theta_{\mathrm{b}}}{\mathrm{dS}} \text { Newtoman, } \mathrm{S}_{\mathrm{b}} \leq \mathrm{S}_{\mathrm{b}}^{*} \tag{1003}\\
& C_{1}=C \varnothing E D 1=\frac{R H \emptyset A v^{2}}{2 P W S} \quad R S \varnothing R A \cdot S_{b}^{*}\left(\frac{D U D S}{V}\right)^{2} \\
& C_{2}=\operatorname{C\emptyset ED} 2=\sin ^{2}\left(\theta_{b}^{*}\right)-1+\text { CØED } 1 \\
& \frac{P_{e}}{P_{s}}=\operatorname{PRE}(I)=1-C \not \subset E D 1 \cdot\left(\frac{s_{b}}{s_{b}^{*}}\right)^{2}+C \not E E D 2 \cdot\left(\frac{s_{b}}{s_{b}^{*}}\right)^{4} \text { Polynomial, } s_{b} \leq s_{b}^{*} \\
& \frac{\mathrm{~d}\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{s}}\right)}{\mathrm{dS}}=\operatorname{DP\emptyset DS}(\mathrm{I})=-2 \cdot \mathrm{C} \text { (} \mathrm{ED} 1 \cdot \mathrm{PWS} \frac{\mathrm{~S}_{\mathrm{b}}}{\mathrm{~S}_{\mathrm{b}}^{*}} \\
& +4 \cdot C \not \subset \mathrm{ED} 2 \cdot \mathrm{PWS} \cdot \frac{\mathrm{~S}_{\mathrm{b}}^{3}}{\mathrm{~S}_{\mathrm{b}}^{* 4}}
\end{align*}
$$

$$
\begin{aligned}
& P_{e} / P_{s}=\operatorname{PRE}(1)=\sin ^{2}\left(\theta_{b}\right)+P A \not \subset P S \cdot \cos ^{2}\left(\theta_{b}\right) \\
& \frac{d\left(P_{e} / P_{s}\right)}{d S}=\operatorname{DP} \emptyset D S(I)=P W S \cdot \sin \left(2 \theta_{b}\right) \frac{d \theta_{b}}{d S_{b}}
\end{aligned}
$$

The entropy-layer pressure formulation is done by integrating a differential equation, Statement 3003. See DEREQB and GETB significant equations.

The Prandtl-Meyer pressures are obtained by two dimensional table look ups (GETNU and GETPRE subroutines) and the logic between Statements 1042 and 1066.
3. QCดQNV

$$
\mathrm{QL}_{1}=\mathrm{QLW}(\mathrm{I})=\mathrm{YBW} \mathrm{JFL} \varnothing W \cdot \mathrm{R} \varnothing \mathrm{~B} \cdot \mathrm{UED} \cdot[(1 .+0.096 \sqrt{\mathrm{BETA}}) / \sqrt{2 \cdot \mathrm{XSI}}] \frac{\mathrm{QLSW}}{\mathrm{QLSAO}}
$$

$$
\begin{aligned}
& \text { XMUBBB } \\
& (\mathrm{RH} \not \subset \mathrm{BS} \cdot \mathrm{XMUBBB} \cdot \operatorname{DUDSW} \cdot(\mathrm{JFL} \emptyset W+1))^{1 / 2} \cdot 1.068 \\
& \rho_{B}=R \not \subset B=\operatorname{PREW}(\mathrm{I}) \cdot \frac{\mathrm{XMAMB} \cdot \mathrm{PWE}}{89516 \cdot \mathrm{~TB}} \\
& U_{e}=\mathrm{UED}=\operatorname{DUDSW} \cdot \operatorname{SBW}(\mathrm{I}), \quad \mathrm{S}_{\mathrm{b}}<\mathrm{S}_{1} \\
& =\left(1 .-\operatorname{PREW}(\mathrm{I}) \frac{\mathrm{GAME}-1}{\mathrm{GAME}}\right) \sqrt{2 \cdot \mathrm{HAMB}}, \mathrm{~S}_{\mathrm{b}}>\mathrm{s}_{1} . \\
& \beta=\mathrm{BETA}=0.5, \quad \mathrm{~S}_{\mathrm{b}}<\mathrm{S}_{1} \\
& \beta=-\frac{2}{X M U B B B} \cdot \frac{\operatorname{DPDSW}(\mathrm{I}) \cdot \mathrm{XSI}}{R \emptyset E \cdot \mathrm{UED}^{3} \cdot \mathrm{R} \varnothing B \cdot Y_{b}^{2 J F L} \varnothing W}, \quad S_{b}>S_{i} \quad \frac{d\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{s}}\right)}{\mathrm{dS}}<01004 \\
& =0 \\
& S_{b}>S_{L}, \frac{d\left(P_{e} / P_{s}\right)}{d S} \geq 0 \quad 1003
\end{aligned}
$$

$$
\begin{aligned}
\xi=\mathrm{XSI} & =\mathrm{RH} \emptyset \mathrm{BS} \cdot \mathrm{XMUBBB} \cdot \operatorname{DUDSW} \cdot \frac{1}{2 \mathrm{JFL} \emptyset W+2}, \mathrm{~S}_{\mathrm{b}} \leq \mathrm{S}_{1} \\
& =\mathrm{XSISUB}+\mathrm{XMUBBB} \cdot \int_{S_{1}}^{S_{b}} \quad \mathrm{R} \varnothing \mathrm{~B} \cdot \mathrm{UED} \cdot \mathrm{Y}_{\mathrm{b}}^{2 \mathrm{JFL} \emptyset W} \mathrm{dS} \\
& 1000
\end{aligned}
$$

where

$$
S_{1}=S_{b} \text { evaluated at second output porat }
$$ XSISUB $=\xi$ evaluated at largest $\operatorname{SBW}(\mathrm{I})<\mathrm{S}_{2}$

$$
\begin{aligned}
& \rho_{\mathrm{e}}=\mathrm{R} \phi \mathrm{E}=\mathrm{RH} \phi \mathrm{~T} \quad \operatorname{PREW}(\mathrm{I})^{1 / G A M E} \\
& R E Y_{1}=\operatorname{REW}(\mathrm{I})=\mathrm{R} \emptyset E \quad \mathrm{UED} \quad \mathrm{SBW}(\mathrm{I}) /(\mathrm{XMUE} \cdot \mathrm{RYN}(\mathrm{RM})
\end{aligned}
$$

$$
\mathrm{XMUE}=\mu_{\mathrm{TE}}, \mathrm{TE}=\mathrm{TT} \cdot(\operatorname{PREW}(\mathrm{I}) \mathrm{GAME})
$$

$$
\mathrm{QT}_{\mathrm{i}}=\operatorname{QTW}(\mathrm{I})=0.0296\left(\frac{2^{02}(\mathrm{JFL} \emptyset W)}{\mathrm{SIGMA}^{2 / 3}}\right) \cdot \operatorname{RSRE}^{0.8} \cdot\left(\frac{\mathrm{XMUST}}{\mathrm{XMUE}}\right)^{0.2} \mathrm{REY}^{0.2}
$$

$$
\cdot R \emptyset E * \text { UED } \cdot \frac{H A M B}{(1556+\text { QTSTAD })}
$$

RSRE $=T E / T S T R$

$$
\mathrm{TSTR}=\mathrm{TE}\left[1+\frac{1}{2}\left(\frac{\mathrm{~TB}}{\mathrm{TE}}-1\right)+0.22 \cdot \mathrm{SIGMA}^{1 / 3}\left(\frac{\mathrm{TT}}{\mathrm{TE}}-1\right)\right]
$$

4. WIND

XBRAL, YBRAL, SBRAL = values of x_{0}, y_{0}, and S_{0} for stagnation pomt of current α, in zero angle of attack system.
-129-
54%

$$
\begin{aligned}
& y_{b}=\operatorname{YBW}(\mathrm{D})=\left(\mathrm{y}_{\mathrm{o}_{\mathrm{L}}}-\mathrm{YBRAL}\right) \cdot \cos (\alpha)+\left(\mathrm{x}_{\mathrm{o}_{1}}-\mathrm{XBRA} 2\right) \cdot \sin (\alpha), \mathrm{x}_{\mathrm{o}_{1}}<\mathrm{x}_{\mathrm{o}_{\text {largest }}} \\
& =\left(-\mathrm{y}_{\mathrm{O}_{1}}-\mathrm{YBRAL}\right) \cdot \cos (\alpha)+\left(\mathrm{x}_{\mathrm{o}_{1}}-\mathrm{XBRAL}\right) \cdot \sin (\alpha) \text {, aftex } \mathrm{x}_{\mathrm{O}_{1}}=\mathrm{x}_{\mathrm{o}_{\text {largest }}} \\
& x_{b}=X B W(I)=\left(x_{0_{1}}-X B R A L\right) \cdot \cos (a)-\left(y_{O_{1}}-Y B R A L\right) \cdot \sin (a), x_{o_{1}}<x_{\mathrm{o}_{\text {Iargest }}} \\
& =\left(x_{O_{1}}-X B R A L\right) \cdot \cos (\alpha)-\left(-\mathrm{Y}_{\mathrm{O}_{1}}-\mathrm{YBRAL}\right) \cdot \sin (\alpha), \text { after } \mathrm{X}_{\mathrm{O}_{1}}=\mathrm{X}_{\mathrm{o}_{\text {largest }}}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{\mathrm{b}} & =\operatorname{THETBW}(\mathrm{I})=\theta_{\mathrm{o}_{1}}+\alpha & & x_{\mathrm{o}_{1}}<x_{\mathrm{o}_{\text {largest }}} \\
& =a-\theta_{\mathrm{o}_{1}}-180, & \text { after } & \mathrm{x}_{\mathrm{o}_{\mathrm{i}}}=\mathrm{x}_{\mathrm{o}_{\text {largest }}} \\
\mathrm{S}_{\mathrm{b}} & =\operatorname{SBW}(\mathrm{I})=\mathrm{S}_{\mathrm{o}_{1}}-\mathrm{SBRAL} & & \mathrm{x}_{\mathrm{o}}<\mathrm{x}_{\mathrm{o}_{\text {largest }}} \\
& =2 \mathrm{~S}_{\mathrm{o}_{\text {largest }}}-\mathrm{SBRAL}-\mathrm{S}_{\mathrm{o}_{1}} & \text { after } & \mathrm{x}_{\mathrm{o}_{1}}=\mathrm{x}_{\mathrm{o}_{\text {largest }}}
\end{aligned}
$$

5. LEE

6. GETDS

$$
\mathrm{DELS}=\mathrm{RA} \emptyset \mathrm{RS} \cdot \mathrm{EF}
$$

$$
\mathrm{EF}=\mathrm{AC} \varnothing \mathrm{SH} \frac{1}{\sqrt{3 \mathrm{RA} \emptyset \mathrm{RS}}} \cdot-\operatorname{DTDSMP} \cdot \frac{1}{\sqrt{1-3 \mathrm{RA} \emptyset \mathrm{RS}}} \quad 1007
$$

$$
\text { ff } \frac{\mathrm{d} e_{\mathrm{b}}}{\mathrm{~d} S_{\mathrm{b}}}<0, \quad 0 \leq \mathrm{S}_{\mathrm{b}} \leq \mathrm{S}_{\mathrm{b}}^{*} \text {, and JFLOW } \leq 0
$$

-130-

$$
\begin{aligned}
& y_{b}=Y B L(I)=\left(y_{O_{1}}-Y B R A L\right) \cos (\alpha)+\left(x_{O_{1}}-X B R A L\right) \cdot \sin (\alpha), \\
& =\left(-\mathrm{y}_{\mathrm{o}_{1}}-\mathrm{YBRAL}\right) \cdot \cos (\alpha)+\left(\mathrm{x}_{\mathrm{o}_{1}}-\mathrm{XBRAL}\right) \sin (\alpha) \\
& x_{b}=X B L(I)=\left(x_{\mathrm{O}_{i}}-X B R A L\right) \cdot \cos (a)-\left(y_{\mathrm{O}_{1}}-Y B R A L\right) \cdot \sin (\alpha) \\
& =\left(x_{O_{1}}-X B R A L\right) \cdot \cos (a)-\left(-Y_{O_{1}}-Y B R A L\right) \cdot \sin (a) \\
& \theta_{b}=\operatorname{THETBL}(\mathrm{I})=180 \cdot-\theta_{o_{1}}-\alpha \\
& x_{0_{1}}>0 \\
& =\theta_{o_{1}}-a \\
& \text { after } \quad x_{o_{i}}=0 \\
& S_{b}=\operatorname{SBL}(I)=\operatorname{SBRAL}-S_{O_{1}} \\
& x_{o_{1}}>0 \\
& =\mathrm{SBRAL}+\mathrm{S}_{\mathrm{o}_{1}} \\
& \text { after } \quad x_{o_{1}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { DTDSMP }=1 /\left.\frac{\mathrm{d} \theta_{\mathrm{b}}}{\mathrm{ds}}\right|_{\text {current stag point }} \\
& \text { IF } \frac{\mathrm{d} \theta_{\mathrm{b}}}{\mathrm{ds}}=0,0 \leq \mathrm{S}_{\mathrm{b}} \leq \mathrm{s}_{\mathrm{b}}^{*} \text {, and JFL } \varphi \mathrm{W}<0 \text {, che equation ts the same but }
\end{aligned}
$$

$$
=-\operatorname{RN} \text { if } a=0,
$$

$$
\text { DTDSMP }=-\frac{\operatorname{YiW}(1)}{\sin (a)} \text { if } a \neq 0,
$$

where Yiw (1) is the y coordinate of the stagnation point for the current a in the zero angle of attack system
$\operatorname{DTDSMP}=\dot{1} /\left.\frac{\mathrm{d} \theta_{\mathrm{b}}}{\mathrm{d} S_{\mathrm{b}}}\right|_{\text {current stag ponnt }}$ if $\left.\frac{\mathrm{d} \theta_{\mathrm{b}}}{\mathrm{d} S_{\mathrm{b}}}\right|_{\text {current stag point }} \neq 0$ 1036

If $J F L \emptyset W>0$, DELS is computed from a two dimensional table look up (1009 to 1018) for $\frac{\Delta s}{Y_{T}}\left(\epsilon, \rho_{A} / \rho_{s}\right)$, where Y_{T} and ϵ are eather referenced to the somic point (1008) or the beginning of a straight section if there $1 s$ such a section in $0 \leq \mathrm{s}_{\mathrm{b}} \leq \mathrm{s}_{\mathrm{b}}^{*}$ (1028 to 1031, if $\mathrm{X}_{\mathrm{b}}^{*} \geq \Delta_{\mathrm{so}}$. If $\mathrm{X}_{\mathrm{b}}^{*}<\Delta_{\text {so }}$ DELS $=$ $\Delta_{\text {so }}-x_{b}{ }^{*}$ at 1037 .
7. GETQRS

$$
\begin{aligned}
& \text { If } \theta_{\mathrm{w}}=90, \xi=\operatorname{STAND}(\mathrm{I})= \\
& \mathrm{XBW}(\mathrm{I})-\left\{\frac{-\mathrm{RW}+\mathrm{SQRTF}\left(\mathrm{RW}{ }^{2}+\mathrm{BSH} \varnothing \mathrm{CK} \mathrm{YBW}(\mathrm{I})^{2}\right.}{\mathrm{BSH} \varnothing \mathrm{CK}}-\mathrm{DELS}\right\} \\
& 1036 \\
& \text { If } \theta_{\mathrm{w}} \neq 90 \text {, compute } \mathrm{Y}_{\mathrm{w}}=\mathrm{YW}=\text { pos root of the quadratic given by } \\
& A=\overline{1}-\mathrm{BSH} \varnothing \mathrm{CK} \text { TANN }{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}=2 \mathrm{RW}\{\mathrm{DM}+\mathrm{YBW}(\mathrm{I}) \cdot \operatorname{TANN}\}-\mathrm{BSH} \phi \mathrm{CK} \cdot \mathrm{DM}^{2}-\mathrm{BSH} \phi \mathrm{CK} \quad \mathrm{YBW}(\mathrm{I})^{2} \mathrm{TANN}^{2} \\
& \text { - 2•BSH } \varnothing \text { CK } \cdot \text { DM YBW (I) } \cdot \text { TANN } \\
& \text {-131- }
\end{aligned}
$$

where,

$$
\begin{array}{lc}
\text { TANN }=\tan \left(\theta_{w_{1}}\right), D M=X B W(I)-D E L S & 1040-1003 \\
\text { SSS }=\operatorname{STAND}(I)=\frac{[Y W-Y B W(I)]}{\cos (T H W T)} \text { if BSHDCK } \leq 0 & 1025 \\
S S S=\operatorname{STAND}(I)=\frac{A I N T+A R G U I}{\cos (T H W T)+A R G U I} \cdot \sin (T H W T) & \text { If BSHDCK }>0
\end{array}
$$

where,

$$
\begin{aligned}
\text { AINT }= & \text { YBW }(I-1)+\operatorname{STAND}(\mathrm{I}-1) \cdot \cos (\operatorname{THETBW}(\mathrm{I}-1)-\text { ARGUI [XBW }(\mathrm{I}-1)- \\
& \operatorname{STAND}(\mathrm{I}-1) \cdot \sin (\operatorname{THET} B W(\mathrm{I}-1)+\text { DELS }] \\
\text { ARGUI }= & \text { SQRTF }(\mathrm{BSH} \phi C K)
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\mathrm{w}}=\mathrm{THWW}=\tan ^{-1} \frac{2 \cdot \mathrm{RW}+2 \cdot \mathrm{BSH} \varnothing \mathrm{CK} \cdot[\mathrm{DM}-(\mathrm{YW}-\mathrm{YBW}(\mathrm{I}) \cdot \mathrm{TANN}}{2 \cdot \mathrm{YW}} \\
& \mathrm{P}=\operatorname{PARG}=\operatorname{PREW}(\mathrm{I}) \cdot \frac{\mathrm{PWS}}{2116} \cdot
\end{aligned}
$$

$$
\operatorname{QRAD}_{1}=\operatorname{QRAD}(I)=\frac{1}{2} \operatorname{STAND}(I) \quad \frac{\mathrm{XMMX}}{\mathrm{XMMX}+1} \cdot X \operatorname{XINB}+\frac{1}{\mathrm{XMMX}} \cdot \mathrm{XINW}
$$

$$
\text { XINB }=\text { table }(1,12) \mid \theta_{\mathrm{w}}=\text { THT, XINW }=\text { table }(1,13) \mid \mathrm{p}=\text { PARG }
$$

independent variable tables being TABLE $(1,1)$ and $(1,7)$, respectively.

8. STAGPT

XBRAL $=\mathrm{YBR} \cdot \sin (a)-\mathrm{XBR} \cdot \cos (\alpha)$,
$X B R, Y B R$ are x and y co-ordinates in the zero angle of attack system of a point where $\theta_{b}+a=90$. The stagnation point $1 s$ that which maximuzes XBRAL, and the candidates are found by the IF L $\varnothing \varnothing$ P from 1030 to 1008.
9. GETB

$$
\begin{aligned}
& \mathrm{BB}=(\text { GAMS }-1) \cdot(\text { PRCDN }) \frac{(\mathrm{I}-\text { GAMS })}{\text { GAMS }} \cdot \text { XINT } \\
& \text { PRCDN }=\frac{P_{e}}{P_{s}} \quad \text { at start of strarght section } \\
& \mathrm{XINT}=\int_{0}^{y_{s s}} \operatorname{PRE} d y_{\mathrm{b}}, \mathrm{y}_{\mathrm{ss}}=\mathrm{y}_{\mathrm{b}} \text { at start of straight section, JFLDW} \leq 0 \\
& \mathrm{XINT}=\int_{0}^{y_{S S}} \text { PRE } \cdot y_{b} d y_{b}, \text { JFLOW }>0 .
\end{aligned}
$$

10. FINDRW

$$
\xi_{2}=\text { XSI2 }=\text { largest root of } C_{1} \xi^{2}+C_{2} \xi+\phi=0, \text { If J FLDW }>0 \quad 1014
$$

where

$$
\begin{aligned}
& C_{1}=2 \cdot \operatorname{TBR}\left[\cdot 5 \cdot \operatorname{RE} \emptyset R A \cdot U E \emptyset V+\frac{1}{X N N X+2} \cdot \operatorname{TERM}\right]-2 \cdot Y B \cdot T B R \\
& T B R=\cos (T B), T B=\theta_{b}=\text { body angle } \\
& \rho_{\mathrm{e}} / \rho_{\mathrm{a}}=\mathrm{RE} \emptyset_{\mathrm{RA}}=\mathrm{RS} \varnothing_{\mathrm{RA}} \cdot \operatorname{PREW}(\mathrm{I})\left(\frac{1}{\text { GAMS }}\right) \\
& \mathrm{U}_{\mathrm{e}} / \mathrm{V}=\left\{\frac{2 \cdot \mathrm{HAMB}}{\mathrm{~V}^{2}}\left[1-\operatorname{PREW}(\mathrm{I}) \frac{(\mathrm{GAMS}-1)}{\text { GAMS }}\right]\right\}^{1 / 2} \\
& \text { TERM }=\text { RURV } \cdot \text { CØSF (TWL }-T B \text {) }- \text { REØRA } \cdot \text { UE } \emptyset V
\end{aligned}
$$

TWL and RURV $=\theta_{\mathrm{wI}}$ and $\rho_{\mathrm{U}} / \rho_{\mathrm{a}}$ evaluated from oblique data at $\theta_{\mathrm{w}}=$ THET

$$
\begin{aligned}
& Y B=\text { body } y \\
& \xi_{2}=\mathrm{XSI} 2=(\text { If } J \mathrm{FL} \phi W \leq 0) \mathrm{YB} /\left[\operatorname{RE} \phi \mathrm{RA} \cdot \mathrm{UE} \phi \mathrm{~V}+\frac{1}{\mathrm{XNNX}+1} \quad \text { TERM }- \text { TBR }\right]
\end{aligned}
$$

For the forward point, (IC $\emptyset \mathrm{MP}=0$)

$$
\frac{\xi_{1}=\mathrm{XSII}=[(\mathrm{XB}+\mathrm{DELS}) \cos (\mathrm{THETR})-\mathrm{YB} \cdot(1-\sin (\mathrm{THETR}))]}{\mathrm{TBR}-\sin (\mathrm{THET}-\mathrm{TB})} 1071
$$

where
$T H E T R=\theta_{W}$ of iteration, $X B=$ body $X-$ coordanate, $D E L S=$ detach ment distance

$$
\mathrm{RW}=[\mathrm{XS} 12 \cdot \mathrm{TBR}+\mathrm{YB}] / \cos (\mathrm{THETAW}), \mathrm{THETAW}=\text { converged } \theta_{\mathrm{w}} \quad 1066
$$

For the most forward point with $\theta_{b} \leq 0(I C \not \subset M P=1)$

```
\(\xi_{1}=\) XSII \(=\) largest root of \(A \xi^{2}+\mathrm{B} \xi+\mathrm{C}\)
\(A=1 /(X B+D E L S)\)
\(B=2 \cdot Y B \cdot A-\tan (T H E T R)\)
\(C=Y B^{2} \cdot A-R W-Y B \cdot \tan (T H E T R)\)
\(B S H \phi C K=[(Y B+X S I 2) \cdot\) TANTR \(-R W] /(X B+D E L S)\), TANTR \(=\tan (T H E T R)\),
THETR \(=\) converged \(\theta_{\mathrm{w}}\).
```

11. $A C \not C S H$
$A \operatorname{COSH}(A R G)=\ln (2 \cdot A R G)-\frac{1}{2} \cdot \frac{1}{2 A R G^{2}}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{4 A R G^{4}}-\cdot$.
12. DERQ5

$$
\frac{d\left(P_{e} / P_{S}\right)}{d x}=\tan \theta_{b}-\sqrt{\frac{P_{e} / P_{S}-P_{A} / P_{S}}{1-P_{e} / P_{S}-P_{A} / P_{S}}}
$$

$$
\begin{aligned}
& P_{A} / P_{S}=P A \emptyset P S P_{e} / P_{S}=X E Q(I) \\
& J F L \emptyset W>0 . \\
& \frac{d\left(P_{e} / P_{S}\right)}{d x}=\frac{G A M S}{B B} \cdot\left(\frac{P_{e}}{P_{S}}\right)^{\frac{G A M S}{}+1} \\
& \text { XAMS } \\
& \text { XTERM }=y_{s S} \cdot \tan \theta_{b}+\tan ^{2} \theta_{b}\left(x-x_{s s}\right)-\sqrt{A R G} \\
& \text { ARG }=\left[\frac{P_{e} / P_{S}-P_{A} / P_{S}}{I-P_{e} / P_{S}-P_{A} / P_{S}}\right]\left[2 \cdot B B \cdot\left(\frac{P_{e}}{P_{S}}\right)^{-\frac{1}{G A M S}}+\right.
\end{aligned}
$$

$x_{s s}, y_{s s}, \theta_{b}: x_{b}, y_{b}, \theta_{b}$ at start of straight section, $x=$ independent varuable.
13. SUBIIO

The zero angle of attack co-ordinate equations are obvious by inspection, and have been documented in Program 1882.

V. REFERENCES

1. Properties of Argon - Free Air, Report No. GM-TM-76, The RamoWooldridge Corp. (October 1956).
2. Vinokur, M. Hypersonic Flow Around Bodies of Revolution Whose Shock Waves are Generated by Conic Sections, LMSD, TR-LMSD-288139 General Research in Flight Scrences, I, Part 1, Flund Mechanics (January 1959 to 1960).
3. Kaattar1, G. F., Shock Envelopes of Blunt Bodies at Large Angles of Attack, NASA TND-1980 (December 1963).
4. Hayes, W. D., and R. F. Probstein, Hypersonic Flow Theory, Academic Press, N. Y. p. 160 (1959).
5. RAD, Mars-Venus Capsule Parameter Study Voi. I. Introduction and Analysis, Avco/RAD TR 64-1, JPL Contract No. JPL-950626 (21 March 1964).
6. Salathe, E. P., Entropy-Layer Theory For Pressure Distributions in Hypersonic Flow, Avco/RAD TM-62-79 (1962).
7. Wang, C. J., J. B. Peterson, and R. Anderson, Gas Flow Tables, Space Technology Laboratories, GM-TR-154 (14 March 1957).
8. Lees, I. and T. Kubota, Inviscid Hypersonic Flow Over Blunt Nosed Slender Bodies JAS Vol. 24, No. 3, p.-195 (March 1957).
9. Ferri, A., The Influence of the Shock Curvature on the Behaviour of Hypersomic Boundary Layer, PIBAI Report No. 542, AD No. 236242 (February 1960).
10. Kemp, N. H., P. H. Rose, and R. W. Detra, Laminar Heat Transfer Around Blunt Bodies in Dissociated Air, JAS 26, No. 7 pp. 421-430 (July 1959).
11. Reshotko, E., Heat Transfer to a General Three Dimensional Stagnation Point, Jet Propulsion Labs., pp. 58 to 59 (January 1958).
12. Rose, P., R. F. Probstein, and M. C. Adams, Turbulent Heat Transfer Through A Highly Cooled Partially Dissociated Boundary Layer, JAS Vol. 25, No. 12 (December 1958):
13. Larson, H. K., Heat Transfer in Separated Flows, JAS pp. 731 to 738 , 26, No. 11 (November 1959).
14. Chapman, D. R., A Theoretical Analysis of Heat Transfer in Regions of Separated Flow, NACA TN 372 (October 1956).
15. Berman, R. J., Bow Shock Shape About a Spherical Nose, AIAA 3, No. 4, pp. 778 to 780 (Apral 1965).
16. Seiff, A., and E. E. Whiting, Calculation of Flow Fields From Bow-Wave Profiles for the Downstream Region of Blunt-Nosed Circular Cylinders in Axial Hypersonic Flight, NASA TND-1147, (November 1961).
17. Terry, J. E. and C. S. James, Parametric Study of Hypersonic Flow Fields About Blunt-Nosed Cylinders at Zero Angle of Attack, NASA TND-2342 (July 1964).
18. Lomáx, F. and M. Inouye, Numerical Analysis of Flow Properties About Blunt Bodies Moving at Supersome Speeds in an Equilibrium Gas, NASA TN TR R-204, Washington, D.C. (July 1964).
19. Inouye, M., J. V. Rakich, and F. Lomax, A Description of Numerical Methods and Computer Programs for Two-Dimensional and Axisymmetric Supersonic Flow Over Blunt-Nosed and Flared Bodies, NASA TN-D-2970, Washington, D. C. (August 1965).

PROGRAM 1886
$556<$

PRELIMINARY STRUCTURES WEIGHT PROGRAM (1886) CONTENTS

I. Introduction 1
A. General Description 1
B. Calculation Model 1
C. Limitations 11
II. Usage 12
A. Input Definitions 12
B. Input Procedures 17
C. Output Defintions 21
D. Sample Problem 22
III. Computations 55
A. Block Diagram 55
B. Symbols 56
C. Equations 58
IV. IBM Routines 70
A. Program Flow 70
B. Man Program 71
C. Subroutines 73
D. Signuficant Equations 77
V. References 106
55%

ILLUSTRATIOÑS

Eigure 1 Experimental Buckling of Spherical Shells 3
2 Spherical Cap Geometry 4
3 Conical Sandwich Shell Geometry 5
4 Ring Stiffened Cone Geometry 7
5 Vehicle Shape Parameters 9
6 Tension Shell and General Shape Geometries. 10
7 Block Diagram for Program 1886 55
8 Flow Diagram for Program 1886 70
TABLES
Table I Evaluation of the Constants T_{1}, T_{3}, T_{4} as a Function of the Geometric Parameter β 61

I. INTRODUCTION

A. GENERAL DESCRIPTION

The purpose of this program $1 s$ to determine the unit area structural werght requirements for shells to resist the critical aerodynamic loads incurred during entry. The general inputs include:

1. The aerodynamic load in terms of the peak pressure which may occur on each section of the vehicle.
2. The mechanical properties of the material, including modulus of elas tıcity, yield stress, Poisson's ratio, and density.
3. Geometric parameters describing the size and shape of the elemental sections, including spherical caps, conical frustra, cylinders, and the tension shell.
4. The following types of construction can be handled by the program-
a. Cyinders and conical frustra-honeycomb or ring stiffened.
b. Spherical caps--honeycomb or monocoque
c. Tension shell-monocoque
5. The program treats the case of a hot structure, using the thin skin assumption, for which the convective and radiatuve heating tables and a stagnation enthalpy table are required as input. Additional material properties must be specified for this case, including the specific heat, and emis sivity. The variation of material properties with temperature is handled by input values. The program will obtain the unit area weight necessary to resist the combined aerodynamic and thermal loads.
6. The design criteria utilized include buckling and/or yield stress criteria, and allowable temperature rise.
B. CALCULATION MODEL
7. Honeycomb Sandwich

The calculation model for the honeycomb analysis is described in detail in Reference 1 , and hence only a brief summary is given here. The analyses considered five modes of failure: (1) general instability; (2) yielding of face sheets, (3) core crushing; (4) dimpling of face sheets; and (5) wrinkling.

$$
\begin{gathered}
559< \\
-1
\end{gathered}
$$

Since little test data and theoretical analysis are available on the buckling of sandwich spherical caps, derivation of the general instability criteria was limited to transformation of isotropic buckling data 2-4 to sandwich shells; the data was correlated as shown in Figure 1. Transformation of these data employed the use of equivalent bending and extensional rigidity moduli for sandwich shells. The equivalent extensional (B) and bending (D) rigidaties have the form-

$$
\begin{aligned}
& \mathrm{B}=\frac{2 \mathrm{E}_{\mathrm{f}_{\mathrm{f}}}}{\left(I-\nu_{\mathrm{f}}^{2}\right)} \\
& \mathrm{D}=\frac{\mathrm{E}_{\mathrm{f}_{\mathrm{t}} \mathrm{f}_{\mathrm{t}}{ }^{2}}^{2\left(1-\nu_{\mathrm{f}}^{2}\right)}}{}
\end{aligned}
$$

where E_{f}, ν_{f}, and t_{f} are the modulus of elasticity, Poisson ratio and thickness of the face sheets and $t_{c} 1 s$ the core helght. The expermmental data for the buckling of homogeneous spherical shells was taken from References 2, 3, and 4. The spheracal cap geometry is depicted in Figure 2.

The conical and cylindrical sandwich analyses were based on the approach of Reference 5 utilizing the equivalent rigidities discussed above. The conical shell geometry used is depicted in Figure 3.

The honeycomb calculated provides an optimum face sheet, and core height to resist buckling with minmum weight. The optimum values to prevent buckling are compared with those required for the yield or minmum gauge criteria, then the honeycomb sandwich is re-analyzed with the heavier face sheets and the results given for the core height and total unit weight.

The calculation model allows for the combined interaction of lateral pressure and axial loads. The effects of body forces due to the deceleration experienced during entry, for example, are also included in the calculation model. The body forces due to the heat shield are included. The inclusion of the body forces results in an iterative solution as the effect depends on the structural weight which is, of course, unknown initially. Besides the buckling criteria of Reference 5 , the meridional ($\sigma \xi$) and circumferential (σ_{θ}) stresses are incorporated into an elastic yoeld criteria, wherein the allowable stress is given by

$$
\sigma_{\mathrm{y}}=\sqrt{\sigma_{\theta}^{2}+\sigma_{\xi}^{2}-\sigma_{\theta} \sigma_{\xi}}
$$

In the case of forward facing cones, it is possible that the maximum stress will not be at the base of the cone due to the body forces; hence, the resultant stress (σ_{y}) is tested over the whole length of the cone to ascertain its maximum value.

64-234

Figure 1 EXPERIMENTAL BUCKLING OF SPHERICAL SHELLS

Figure 2 SPHERICAL CAP GEOMETRY
-4-
$568<$

$$
\because \because
$$

Figure 3 CONICAL SANDWICH SHELL GEOMETRY

2. Ring-Stiffened

The calculation model for the ring-stiffened analysis is that suggested in Reference 5. The method of solution is based on an application of the principle of minimum potential energy of an equivalent orthotropic shell, utilizing a set of displacement relationships to describe the deflected shape. The range of application of shell geometries is approximately given by, ${ }^{5}$

$$
10^{2}<2\left(\frac{\mathrm{~L}}{\mathrm{R}_{2}}\right)^{2} \frac{\cos \theta}{\left(1+\frac{R_{1}}{\mathrm{R}_{2}}\right)} \frac{\mathrm{R}_{2}}{\mathrm{t}}<10^{4}
$$

where (L) is the slant length, (R_{1}) and (R_{2}) are the minimum and maximum radil, (t) is the shell thickness, and ${ }^{(\theta)}$ is the cone angle of the shell section.

A particular stiffener geometry, that of a (Z) section as shown in Figure 4, is fixed in the program. The effective width of the stiffener is controlled by mput, as well as the proportions of the stiffener.

The solution is programmed so as to satisfy local and overall stability and to solve for the number of rings which minnmize the total shell weight. Tests are provided to ensure minimum gauge and yeild criteria are satisfied.

The program provides for the option of either specifying the stiffener height and satisfying both local (inter-bay) and general stability, which in general will require different shell thicknesses or the program can solve for the stiffener height which yields equal shell thickness requirements for local and general stability. The calculation model assumes that the stuffeners have the same thackness as the shell. The spacing between stiffeners is limited to a value not smaller than the effective width.

The calculation model provides for lateral pressure and axial loads as well as for body forces. The body forces include those due to the structure as well as those arısing due to a heat shield attached to the structure. The melusion of the body forces results in an iterative solution as the body force depends on the structural weight which is unknown initially.

The method of solution starts by considering a shell without rings and satisfying the buckling, yield stress and mimumum gage limitations. If the minimum gage and/or yeld stress limits are not excluded then rings are added in a sequence controlled by input, 1 . e., rings may be added one at a time or in a progressive manner given by the expression

$$
\mathrm{N}_{\mathrm{K}}=\mathrm{N}_{\mathrm{J}}(\mathrm{NFAC})+\mathrm{NTERM}
$$

Figure 4 RING STIFFENED CONE GEOMETRY
where NFAC and NTERM are program input integers. Each ring configuration solution 15 tested aganst the limits on minmum gage and/or yield stress and if either of these two conditions are excluded, the calculation stops, with the last weight being evaluated on the largest of the thickness requirements.

The yield stress criteria 1 s based on the combined criteria wheren the maximum stress is given by

$$
\sigma_{\mathrm{y}}=\sqrt{\sigma_{\xi}^{2}+\sigma_{\theta}^{2}-\sigma_{\theta} \sigma_{\xi}}
$$

In the case of forward facing cones, it is possible that the maximum stress will not be at the base of the cone due to the body forces, hence, the resultant stress (σ_{y}) is tested over the whole length of the cone to ascertain its maximum value.

3. Tension Shell

The calculation model for the tension shell utilizes the membrane equations to determine the stress distribution in the shell, as done in Reference 6. The calculation model assumes that the vehicle mass all exists forward of the tension shell. Two options are provided, one being the case of a Newtoman pressure distribution and zero hoop stress and the second being the more general case wherem the coordinates are mput, and the hoop tension is laken as a fraction of the meridional tension, 1.e., $N_{\theta}=a N_{\phi}$.

Along with the tension shell analysis, the compression ring weight is evaluated using the criteria of lateral stability as derived in Reference 7, and that of buckling of a long cylinder in compression as suggested in Reference 8. A circular cross section is used to estimate the compression ring weight.

4. Monocoque

An option is provided to compute the weight of spherical caps of monocoque construction. The approach is empirical, utilizing the buckling data correlated in Figure 1 and the shell model in Figure 2. General instability and yrelding modes of failure are considered, and the resulting shell thickness is compared with practical minimum gage limtations.

5. Geometry

The over all vehicle geometry for which the program is intended is shown in Figures 5 and 6. The torondal sections defined by RSN, RSC, and RSB cannot be handled with the program; however, these parameters are required as input to define the fore and aft radii of each conical section. The tension shell geometry considered is shown in Figure 6 wherein the tension shell replaces Section 23, as shown in Figure 5.

Figure 5 VEHICLE SHAPE PARAMETERS

65-1162日

Figure 6 TENSION SHELL AND GENERAL SHAPE PARAMETERS

$$
5-\frac{-10-}{568-}
$$

6. Body Forces

The calculation model provides for the inclusion of body forces resulting from the structure and the heat shield during entry.

The formulation of the sandwuch buckling analysis for cones can handle a limited range of body forces when the body forces cause a tensile stress. The limitations are due to the fact that K_{1} and K_{2} must be greater than zero as the equations are formulated. The limits take the form

$$
\begin{aligned}
& \frac{(W H S+W) G}{144 \mathrm{P}_{\mathrm{CR}} \sin \theta}<1+\frac{\bar{\gamma}(1-\beta)^{2}}{\beta(1-\beta+\beta / 3+\beta / 2 \pi)^{2}} . \\
& \frac{(\mathbb{W H S}+W) \mathrm{G} \sin \theta}{144 P_{\mathrm{CR}}}<1
\end{aligned}
$$

In general, these limits are automatically fulfilled for entry vehicles where the fore body pressures are sufficiently large to decelerate the payload internal structure and afterbody as well as the heat shield and structure of the forebody.

7. Hot Structures

The option to compute the temperatuse rise for a specified heat pulse is contaned within the program. Both the convective and radıation heat pulses may be input. Provision is made to account for the hot wall reduction on the convective heating and for reradiation. The structure is assumed to be at a unform temperature equal to the surface temperature. In the event the structure temperature rise exceeds the allowable input value, the structural weight is increased. The material properties are treated as a function of temperature.
C. LIMITATIONS

The following basic limitations exist in the program:

1. The effects of bending and edge conditions are not treated.
2. The sandwich core is assumed rigid so that transverse shear deformation has a negligible influence on the buckling load; consequently the results would not be valld for a weak core.
3. The sandwich construction must have equal face sheet thicknesses.
4. Axisymmetric loading is assumed.

II. USAGE

A. INPUT DEFINITIONS

Name	Preset Values	Symbol	Parameter	Units
A.	0.	a	Ratio of Circumferential to meridional stress for tension shell.	--
BETA	0.	β	Leading edge angle for tension shell.	degrees
CASE	0.		Identification number of the form XX. XX.	
CBAR	1.		An empirical factor which modifies the value of used in the calculation model for combined loadings.	
CPTAB	0.	c_{p}	Specific heat table.	Btu/lb- ${ }^{\circ} \mathrm{F}$
DATE	4.01		Identification number of the form XX. XX.	--
DELKI	0.		Additive term in calculation of K_{1}.	in. 3
DELK2	0.		Additıve term in calculation of K_{2}.	inches
DELTAU	0.1		Time increment used for integration of temperature rise equation.	seconds
DTHDY	0.	d $\theta / \mathrm{d} Y$	Derivative of body angle with radial coordinates for general shape.	$\mathrm{rad} / \mathrm{ft}$
EF	0.	E_{f}	Modulus of elasticity for honeycomb face sheets and monocoque skin.	lb/m. ${ }^{2}$
EFTAB	0.	E_{E}	Face sheet modulus table.	1b/in. 2

$5 ; 3<$

Name	Preset Values	Symbol	Parameter	Units
EM	0.	m	Effectıve width factor.	--
EN	0.	n	Staffener proportionality factor.	--
EMISTR	0 。	ϵ	Emissivity of structure.	--
EPS	0.01		Thickness iteration factor.	
ER	0.	E_{R}	Modulus of elasticity for compression ring.	1b/in. ${ }^{2}$
GAME	0.	$\nu_{\text {f }}$	Polsson ratio for honeycomb face sheets and monocoque skin.	--
G	0.		Deceleration.	Earth g
GAMR	0.	$\nu_{\text {R }}$	Poisson's ratio for core rabbon.	--
GAMBAR	0.	$\bar{\gamma}$	Axial load factor.	--
GFTAB	0.	${ }^{\prime} \mathrm{f}$	Face sheet Poisson's ratio table.	--
GRTAB	0.	ν_{r}	Ribbon Poisson's ratio table.	--
HS	0.	H	Herght of stıffener.	inches
FTBL	0.	HM/RTo	Stagnation enthalpy table.	--
HTST	0.		Hot-structure option sentinel.	--
HT¢P	1.		Stiffener optimization sentinel.	--
KADHES	0.	K	Honeycomb adhesive weight.	$\mathrm{lb} / \mathrm{ft}{ }^{2}$
LC	0.	LC	Cylınder length.	feet

Name	Preset Values	Symbol	Parameter	Units
MEM \varnothing	0.		Identification number of of the form XX. XX.	--
$\mathrm{M} \phi \mathrm{N}$	0.		Monocoque option sentinel.	--
NFAC	2.		Constants which specıfy ring frequency.	--
NTERM	0.		($\mathrm{N}_{\mathrm{K}}=\mathrm{N}_{\mathrm{j}}$ NFAC + NTERM)	--
PCR	0.	${ }^{\text {P }}$ CR	Aerodynamic pressure.	$\mathrm{ib} / \mathrm{in} .^{2}$
QCMULT	0.		Convective heat pulse multiplier.	--
QRMULT	0.		Radıative heat pulse multiplier.	--
QTBL	0.	q_{c}	Convective heating table.	$\mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}$
RA	0.	$\mathrm{R}_{\text {A }}$	Ast Cap radius.	feet
RB	0.	R_{B}	Base radius.	feet
RC	0.	${ }^{R_{C}}$	Cylınder radius.	feet
RN	0.	R_{N}	Nose Cap radius.	feet
R \varnothing CMAX	0.	$\rho_{\text {max }}$	Maximum core density.	$\mathrm{lb} / \mathrm{ft}^{3}$
RめCMIN	0.	$\rho_{\text {min }}$	Minimum core density	$1 \mathrm{~b} / \mathrm{ft}^{3}$
$\mathrm{R} \phi \mathrm{F}$	0.	$\rho_{\text {f }}$	Density of honeycomb face sheet and monocoque skan.	$\mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{R} \emptyset \mathrm{R}$	0.	ρ_{R}	Density of core ribbon.	$\mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{R} \varnothing \mathrm{RG}$	0.	ρ_{g}	Density of compression ring skin.	$\mathrm{lb} / \mathrm{ft}^{3}$
RSB	0.		Shoulder radius.	--

Name	Preset Values	Symbol	Parameter	Units
RSC	0.	${ }^{R_{S C}}$	Shoulder radius.	feet
RSD	0.		Ring-stiffened option sentinel.	--
R.SN	0.	${ }^{\text {R }}$ SN	Shoulder radius	feet
RT	0.	R_{T}	Truncation radius at base.	feet
RTBL '	0.		Radiative heating table.	Btu/ft ${ }^{2} \mathrm{sec}$
SECTN	0.		Ordered array of section numbers.	
SGFtab	0.	$\sigma_{\text {f }}$	Face-sheet yield stress table.	lbs/in. ${ }^{2}$
SGRTAB	0.	$\sigma_{\text {r }}$	Rikbon yield stress table.	1b/m. ${ }^{2}$
SİCYF	0.	${ }_{\text {f }}$	Yield stress of honeycomb face sheet.	1b/m. ${ }^{2}$
SIGCYR	0.	$\sigma_{\text {r }}$	Yield stress of core ribbons.	$\mathrm{Ib} / \mathrm{in} .2$
SIGRG	0.	${ }^{\text {g }}$	Yield stress of compression ring skin.	1b/in. ${ }^{2}$
ICMAX	0.	${ }^{\mathrm{t}} \mathrm{c}_{\text {max. }}$.	Maximum core thickness.	inches
TCMIN	0.	${ }^{t_{c}^{\text {man }}}$	Manimum core thackness.	inches
TEMPA	0.		Maximum allowable structural temperature.	${ }^{\circ} \mathrm{F}$
TEMPI	0.		Initial structural temperature.	${ }^{\circ} \mathrm{F}$

Name	Preset Values	Symbol	Parameter	Units
TFMIN	0.01	${ }^{\mathrm{t}_{\text {min }}}$	Minimum honeycomb face sheet and monocoque skin thickness.	inches
THA	0.	$\theta_{\text {A }}$	Afterbody cone angle.	degrees
тнв	0.	$\theta_{\text {B }}$	Flare angle.	degrees
THC	0.	${ }^{\theta} \mathrm{C}$	Forebody cone angle.	degrees
THN	0.	θ_{N}	Nosecap angle.	degrees
TH2G	0.	$\theta_{2 \mathrm{G}}$	Initial angle for general tension shell.	degrees
TH3G	0.	$\theta_{3 G}$	Final angle for general tension shell.	degrees
TIME	0.		Time.	seconds
TINIT	0.		Initial temperature at which. structural properties are selected.	${ }^{\circ} \mathrm{F}$
TST P	0.		Maximum thermal design time during which $\mathrm{T}_{\mathrm{w}} \leq$ $\mathrm{T}_{\mathrm{w} \text { max }}$	${ }^{\circ} \mathrm{F}$
TTAB	0.	t	Temperature table.	${ }^{\circ} \mathrm{F}$
WHS	0.		Unit heat shield weight.	$\mathrm{lb} / \mathrm{ft}^{2}$
XA, XN, $\mathrm{XC}, \mathrm{X} \phi$	0.		Mole fractions of argon, nitrogen, carbon dioxide, and oxygen in the atmosphere.	--
X, R	0.	x, R	Coordinates for general shell.	feet

$534<$

B. INPUT PROCEDURES

1. General

a. Decımal points may be used on all numerical input data, although they are not necessary on integer values.
b. RC must always be specified.
c. If RB is not specified, then $R B=R C$.
d. Contour angles (θ) are measured relative to free stream and a positive value indicates an increasing body radıus whereas a negative value indıcates a decreasing body raduus.
e. If several cases are run on a single memo, only changed inputs need be specified following the first case.
f. Input QTBL, HTBL, and RTBL as a function of TIME. For each value of TIME input there must be corresponding values of $Q T B L$, HTBL, and RTBL (maximum of 150 values in each table). In stacking cases, it is necessary to add at least one 0 . value at the end of the TIME table if the number of entries is decreased. This 0 . value is used internally as an indication of the end of the table.

2. Shell Geometry

The section numbers and section parameters are identical to those of Programs 1881, 1882, and so forth. Although tori cannot be handled by the program, the tori parameters are nevertheless required in many cases to compute the fore and aft section radil.

SECTI \varnothing NS

The vehicle sections are specified by an ordered list of numbers which identify them and place them in the desmred sequence. The number list is given below, and the corresponding sections are further described by Figures 5 and 6.

Number	Section	Input Required
1.	NOSE SPHERE	RN, THN
2.	TORUS	RSN
3.	CONE	THC
4.	TENSION SHELI	BETA
5.	GENERAL SHAPE	TH2G, TH3G, X, R
6.	TORUS	RSC, RC
7.	CYLINDER	LC
8.	FLARE	THB
9.	TORUS	RSB, RB
10.	TORUS	RSB
11.	AFTC $\varnothing N E$	THA
12.	AFTSPHERE	RA
13.	BASE	RT

3. Construction Options
a. Monocoque analysas for the spherical cap for flat base is used when the option sentinel $M \not \mathrm{~N}_{\mathrm{N}}=1$ is specified.
b. Rung-stiffened analysis for the conical and cylindrical sections is used when the option sentinel RSD $=1$ is specified.
c. The hot structure analysis is utilized when the option sentinel HTST = 1 1s specified.
d. The program will use honeycomb if and only 1 f, no option sentinels are specified.
e. Ring depth optimized if $H T \phi P=2.0$.

4. Design Factors
a. Conical Shell Buckling

The calculation model for an unstiffened cylinder under external pressure reduces to the expression

$$
P C R=\frac{092 E_{f} \mathrm{t}_{f}^{5 / 2}}{R_{c}^{3 / 2} \mathrm{I}_{\mathrm{c}}}=\left(\mathrm{P}_{\mathrm{e}}\right)
$$

Reference 9
which agrees precisely with equation (3) of Reference 9. The data summary given in Reference 9 indicates that the theoretical critical pressure is too large, and should be reduced, and a design factor of (0.8) is reasonable. Calculations using Program 1886 for cones under hydrostatic pressure are summarized:
$\beta=1-\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \quad$.
$\mathrm{P}_{\mathrm{cr}} / \mathrm{P}_{\mathrm{e}}$
$\theta_{\mathrm{c}}=30$ degrees
$\mathrm{P}_{\mathrm{cr}} / \mathrm{P}_{\mathrm{e}}$
0.1
0.99
0.97
0.3
1.00
0.98
0.5
1.05
1.02
0.7
1.12
1.08
0.8
1.20

1. 14
0.9
2. 18
1.15
1.0
3. 18
4. 16

Using the recommended design criteria of Reference 9 would require factors on the aerodynamic pressure ranging from (1.2) at small -values of (β) to (1.5) at large values of (β).

b. Interaction Effects

The calculation model for buckling under combined lateral pressure and axial loading yields a theoretical interaction curve similar to those presented in Reference 9. Typical results obtained from Program 1886 are given in the following table for cylinder witht $/ R_{R}=0.01$

γ	$\mathrm{P}_{\mathrm{CR}} / \mathrm{P}_{\text {cro }}$	$\mathrm{F} / 2 \pi \mathrm{E}_{\mathrm{f}} \mathrm{c}_{\mathrm{f}}{ }^{2}$
0	1.00	0.00
4	0.88	0.08
10	0.81	0.18
20	0.61	0.27
40	0.43	0.38
100	0.22	0.48
200	0.11	0.48
400	0.05	0.48

where F is the axial load and $P_{\text {cro }}$ is the critical lateral buckling pressure with zero axial load.

The agreement with experiment for small values of $(\bar{\gamma})$ is reasonably good; however, a correction factor is needed at large values. An empirical correction factor is formulated for cylinders in Reference 10 which is a function of the (t / R) ratio. In order to facilitate an empirical correction to the program model, an additional optional input, designated CBAR is provided, which modifies the value of $\bar{\gamma}$ used in the equations, such that

$$
(\bar{\gamma})_{\text {used }}=\operatorname{CBAR}(\bar{\gamma})_{\text {input }} .
$$

The value of CBAR is preset to 1.6.

c. Spherical Cap Buckling

The empirical correlation of available buckling data used in Program 1886 is shown in Figure 1. The value of λ for sandwich shells is generally smaller than for monocoque shells, being given by

$$
\lambda=2\left(I-\nu_{\mathrm{f}}\right)^{1 / 4}\left(\frac{\mathrm{~h}}{\mathrm{r}_{\mathrm{c}}}\right)^{1 / 2}
$$

Hence, it appears that the formulation utilized results in smaller knockdown factors due to imperfections, for sandwich shells than for monocoque shells.
5. Input Forms

An input form is provided for the user. All the information shown is keypunched provided the variable is specifred All numerical values have decimal pounts.
C. OUTPUT DEFINITIONS

Name	Parameter	Units
AG	Area of general shell.	ft^{2}
AT	Area of tension shell.	ft^{2}
H	Height of stiffener.	inches
N	Number of stiffeners.	--
$R \varnothing C$	Core density,	$\mathrm{lb} / \mathrm{ft}^{3}$
RR	Radius of compression ring.	inches
SIGH	Carcumferential stress.	$1 \mathrm{~b} / \mathrm{m} .2$
SIGM	Meridional stress.	lb/in. ${ }^{2}$
SIGMH	Resultant yıeld stress criterıa.	$\mathrm{lb} / \mathrm{mn} .^{2}$
T3	Thickness of tension and for general shell adjacent to compression ring.	anches
TC	Core height required.	unches
TCY	Face sheet thickness required to satisfy yzeld criteria.	inches
TF	Face sheet thockness used.	mehes
$T F \varnothing P T$	Face sheet thickness designed for optimum. under buckle criteria.	inches
TIME	Time at whych TWMAX occurs.	seconds
TNG	Thrckness of face sheet based on local and general stability.	inches
TNI	Thickness of face sheet based on local stability.	inches

D. SAMPIE PROBLEM

1. Statement of Problem

Determine the external structural weight for a blunt cone configuration using the heating and loads obtaned from the sample trajectory problem of Program 1880. A heat shield is to be used on the forebody, but the afterbody is to be a heat sink.

2. Computer Input Forms

The necessary input computer forms, shown in the following pages, contain all the necessary mput. The nosecap and forecone are considered to be of - aluminum honeycomb construction. The aft cone is of stiffened beryllium and the flat base section is of beryllium honeycomb.

3. Output

The program output is given on the succeeding pages. The nosecap is designed on minimum gage for the face sheets and core height. The face sheets of the forecone are minimum gage, but the core height is 0.479 inch. The afterbody design andicates a minimum weight for 64 stiffeners of 0.17 inch height. The maximum temperature achieved by the afterbody is $1168^{\circ} \mathrm{F}$, which satisfies the allowable temperature limit. The weight required for the heating (temperature limit) is seen to be larger (WTQ $>\mathrm{WT}$) than that required for the structural loads; hence weight reductions can be achieved by increasing the allowable temperature. The base cover is designed on minimum gage considerations.

The total skin weight is then

Section	Weight (pounds)
Nose	0.7
Forecone	104.6
Aft Cone	52.1
Base	18.3
Total	175.7 pounds

The werght calculated does not include the torus section; Program 1888 provides for inclusion of the complete shell.

-24-

-25-
$583<$

$58^{2 \pi}$

-27-
585

-28-
$586 \times$

- MEHORY MAP *

III. COMPUTATIONS

A BLOCK DIAGRAM

The block diagram for Program 1886 is shown in Figure 7. It can be seen from the block diagram that the inputs provide for dealing with conical, spheracal, and the tension and general shells with options for considering various construction approaches and for testing the structure to ascertain whether it is suitable as a hot structure

Figure 7 BLOCK DIAGRAM FOR PROGRAM 1886

Symbol	Parameter	Units
a	ratio of circumferential to meridianal stress	--
AT	area of tension shell	$f t^{2}$
AG	area of general shell	ft^{2}
${ }^{A} \mathrm{~T}$	stiffener area	in. ${ }^{2}$
D	bending rigidıty of shell	lb-in.
$\mathrm{D}_{\boldsymbol{\theta}}$	equivalent orthotropic shell bending rigiduty of ringstiffened shell	lb-1n.
E_{f}	modulus of elastricity of face sheets	1b/in. ${ }^{2}$
E_{R}	modulus of elasticity for compression ring	1b/in. ${ }^{2}$
h	height of spherical shell	inches
H	height of stiffener	inches
KAD	unt weight allowable for adhesives	$1 \mathrm{~b} / \mathrm{ft}^{2}$
I_{x}	stiffener moment of inertia about neutral axis	in. 4
I_{θ}	effective stiffener moment of mertia	in. ${ }^{4}$
L_{0}	slant length of cone	Inches
L_{c}	cylinder length	inches
m	effective width factor or stiffener	--
n	proportionality factor for stiffener	--
N	number of rings	--
P	stability parameter ${ }^{5}$	--
P_{CR}	critical pressure load	lb/in. ${ }^{2}$
S	stability parameter ${ }^{5}$	--

T	temperature	${ }^{\circ} \mathrm{R}$
${ }^{t} \mathrm{c}$	core height	inches
${ }^{\text {t }}$	face sheet thickness	inches
$t_{\text {copt }}$	optimized core height for buckling criteria	inches
${ }^{t} \mathrm{cy}$	face sheet thickness required for yield criterıa	inches
${ }^{\text {t }}$ R	wall thickness of compression ring	nches
t_{1}, t_{3}, t_{4}	stabrlity parameters	--
$\mathrm{R}_{1}, \mathrm{R}_{2}$	minumum and maximum radii of conical shell	inches
$\mathrm{R}_{2}, \mathrm{R}_{3}$	minımum and maximum radius for tension and general shell	inches
y	radial coordinate	mehes
$\mathrm{R}_{\text {SC }}$	toroidal radius following tension or general shell	inches
RR	radius of compression ring	inches
RC	maxımum radius of tension or general shell combined with torus	maches
${ }^{\mathrm{R}} \mathrm{CAP}$	spherical cap radius	inches
${ }^{\text {q }}$	convectuve heat rate	Btu/ $/ t^{2}-\mathrm{sec}$
q_{R}	radiative heat rate	$\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$
H_{w}	enthalpy of gas at wall	Btu/ 1 b
H_{s}	stagnation enthalpy	Btu/lb
C_{p}	specific heat	$\mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$
W e	effective width	mehes
V	unt area weight	$1 \mathrm{~b} / \mathrm{ft}^{2}$
WR	total compression ring weight	pounds
WTG	total general shell weight	pounds

WTT	total tension shell weight	pounds
$\nu_{\text {f }}$	Poisson's Ratio	--
${ }^{\text {c }}$ ¢	yield stress of face sheets	$\mathrm{lb} / \mathrm{in} .{ }^{2}$
P_{f}	face sheet density	$\mathrm{lb} / \mathrm{ft}^{3}$
ρ_{c}	core density	$\mathrm{lb} / \mathrm{ft}^{3}$
${ }^{\sigma} \mathrm{CR}$	yoeld stress of core ribbon	$\mathrm{lb} / \mathrm{in} .^{2}$
β	cone parameter, also tension shell angle (degrees)	--
ρ_{R}	density of core ribbon	$\mathrm{Ib} / \mathrm{ft}^{3}$
θ	local body slope angle	degrees
$\theta_{3 \mathrm{G}}$	last angle on general shell	degrees
7	time	seconds
ϵ	emissivaty	
C. EQUATIONS		
1. Sandwich Construction - - Spherical Cap		
a. Face Sheets		
	$\mathrm{t}_{\mathrm{f} \text { opt }}=\left(\frac{3 \mathrm{~K}_{2}}{4 \mathrm{~K}_{1}}\right)^{4 / 7}$	(1)
	$t_{f}=0.36\left(1-\nu_{f}^{2}\right)^{2 / 3}\left(\frac{P_{C R}}{E_{f}}\right) \frac{\mathrm{h}^{1 / 3}}{t_{c}^{4 / 3}} R_{C A P}^{2}$	(2)
	$t_{\mathrm{cy}}=\frac{\mathrm{P}_{\mathrm{CR}} \mathrm{R}_{\mathrm{CAP}}}{4 \sigma_{\mathrm{cy}}}$	(3)

b. Core

$$
\begin{align*}
& \mathrm{t}_{\mathrm{c} \text { opt }}=\frac{12 \mathrm{~K}_{2}}{\rho_{\mathrm{c}}}\left[\frac{4 \mathrm{~K}_{1}}{3 \mathrm{~K}_{2}}\right]^{3 / 7} \\
& t_{c}=0465\left(1-\nu_{f}^{2}\right)^{1 / 2}\left(\frac{\mathrm{P}_{\mathrm{CR}}}{\mathrm{E}_{f}}\right)^{3 / 4} \frac{\mathrm{~h}^{1 / 4}}{\mathrm{t}_{\mathrm{f}}^{3 / 4}} \quad \mathrm{R}_{\mathrm{CAP}}^{3 / 2} \\
& \rho_{\mathrm{c}}=0.22 \rho_{\mathrm{R}}\left(\frac{\mathrm{P}_{\mathrm{CR}}}{\sigma_{\mathrm{CR}}}\right)^{0.588} \\
& \text { c. Weight } \\
& W_{\text {opt }}=7 / 3 K_{1}\left[\frac{3 \mathrm{~K}_{2}}{4 \mathrm{~K}_{1}}\right]^{4 / 7}+\mathrm{KAD} \tag{7}\\
& W=K_{1} t_{f}+\frac{1}{12} \rho_{c} t_{c}+K A D \tag{8}\\
& \mathrm{~K}_{1}=\rho_{\mathrm{f}} / \sigma \tag{9}\\
& \mathrm{K}_{2}=\frac{\rho_{\mathrm{c}}}{12}\left[0.465\left(1-\nu_{\mathrm{f}}^{2}\right)^{1 / 2}\left(\frac{\mathrm{P}_{\mathrm{CR}}}{\mathrm{E}_{\mathrm{f}}}\right)^{3 / 4} \quad \mathrm{~h}^{1 / 4} \mathrm{R}_{\mathrm{CAP}}^{3 / 2}\right] \tag{10}\\
& h=R_{C A P}\left(1-\sin \theta_{C A P}\right) \tag{11}\\
& \overline{P C R}=P_{A E R O} \pm \frac{(V+W H S)}{144} G
\end{align*}
$$

2. Sandwich Construction--Conical Section
a. Face Sheet

$$
\begin{align*}
& \mathrm{t}_{\mathrm{fopt}}=\frac{489}{\rho_{\mathrm{f}}}\left[\begin{array}{ll}
\mathrm{C}_{\mathrm{l}}^{0.414} & \left.\mathrm{C}_{2}^{0.586}\right]
\end{array}\right. \tag{12}\\
& \mathrm{t}_{\mathrm{f}}=\frac{\mathrm{P} \mathrm{k}}{18.6\left(\mathrm{At} \mathrm{t}_{\mathrm{c}}^{1 / 2}\right)^{2.84}} \tag{13}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{t}_{\mathrm{cy}}=\frac{\mathrm{P}_{\mathrm{CR}} \mathrm{R}_{2}}{4 \sigma_{\mathrm{cy}} \cos \theta_{\mathrm{c}}}\left\{3+(1-\bar{\gamma})^{2}\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{4}\right\}^{1 / 2} \tag{14}
\end{equation*}
$$

b. Core

$$
\begin{align*}
& t_{c \text { opt }}=1156\left(\frac{C_{1}}{C_{2}}\right)^{0.414} \tag{15}\\
& t_{c}=0.127\left(\frac{\mathrm{Pk}}{t_{\mathrm{f}} \mathrm{~A}^{2.84}}\right)^{0.704} \tag{16}
\end{align*}
$$

c. Weight

$$
\begin{equation*}
W_{\text {opt }}=1971 C_{1}^{0.414} C_{2}^{0.586}+\mathrm{KAD} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
W=\frac{1}{6} \rho_{\mathrm{f}} \mathrm{t}_{\mathrm{f}}+\frac{1}{12} \rho_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}+\mathrm{KAD} \tag{18}
\end{equation*}
$$

t_{1}, t_{3}, τ_{4} evaluated from table 1.

$$
\begin{align*}
& A=\left(\frac{\lambda K_{1}}{k^{3 / 2} K_{2}}\right)\left(\frac{2 t_{1} t_{3} t_{4}}{2 t_{3}-\nu_{f}^{2}}\right)^{1 / 4} \tag{19}\\
& k=\frac{R_{2}(1-\beta / 2)}{\cos \theta_{c}} \tag{20}\\
& \beta=\left[1-\left(\frac{R_{1}}{R_{2}}\right)\right] \tag{21}\\
& K_{2}=K\left[i \pm \frac{(W H S+W) G}{144 P_{C R}} \sin \theta_{c}\right] \tag{22}
\end{align*}
$$

$$
\begin{align*}
\mathrm{K}_{\mathrm{I}}^{-} & =\frac{\mathrm{K}^{3}}{2\left(1-\frac{\beta}{2}\right)^{2}}\left\{i-\beta+\frac{\beta^{2}}{3}+\frac{\beta^{2}}{2 \pi^{2}}-(1-\bar{\gamma})(1-\beta)^{2}\right. \\
& \left. \pm \frac{\beta}{\sin \theta_{\mathrm{c}}} \frac{(\mathrm{WHS}+W) \mathrm{G}}{(144) \mathrm{P}_{\mathrm{CR}}}\left(1-\beta+\frac{\beta}{3}+\frac{\beta}{2 \pi^{2}}\right)\right\} \tag{23}\\
\lambda & =\frac{\pi \sin \theta_{\mathrm{c}}}{\mathrm{R}_{2} \beta} \tag{24}\\
C_{1} & =\frac{\mathrm{Pk} \rho_{\mathrm{f}}}{111.9 \mathrm{~A}^{284}} \tag{25}\\
C_{2} & =\rho_{\mathrm{c}} / 12 \tag{26}\\
\rho_{\mathrm{c}} & =0.22 \rho_{\mathrm{R}}\left(\frac{\mathrm{P}_{\mathrm{CR}}}{\sigma_{\mathrm{cyR}}}\right) \tag{27}\\
\mathrm{P} & =\left(\frac{32 \mathrm{t}_{1} \mathrm{t}_{3} \lambda^{2} \mathrm{~K}_{1}{ }^{3}}{\mathrm{k}^{7}}\right) \frac{\left(1-\nu_{\mathrm{f}}^{2}\right)}{\left(2 \mathrm{t}_{3}-\nu_{\mathrm{f}}^{2}\right)} \frac{\mathrm{P}_{\mathrm{CR}}}{\mathrm{E}_{\mathrm{f}}} \tag{28}
\end{align*}
$$

TABLE I
EVALUATION OF THE CONSTANTS T_{1}, T_{3}, T_{4} as a FUNCTION OF THE GEOMETRIC PARAMETER β

β	t_{1}	t_{3}	t_{4}
0.00	0.50000	0.50000	0.50000
0.10	0.50074	0.50018	0.50027
0.20	0.50334	050081	0.50470
0.25	0.50554	0.50134	0.50803
0.35	0.51242	050300	0.51621
040	0.51748	0.50417	0.52532
0.50	0.53223	0.50749	0.54946
055	0.54273	0.50985	0.56400
0.60	0.55625	0.51276	0.58430
0.65	0.57382	0.51638	0.61134
0.70	0.59704	0.52093	0.64769
0.75	0.62853	0.52670	0.69795
1.00	0.62853	0.52670	0.69795

6.61-

3. Sandwich Construction--Cylindrical Section

a. Face Sheet

$$
\begin{align*}
& \mathrm{t}_{\mathrm{f} \text { opt }}=\frac{4.7 \mathrm{X}_{1}{ }^{2 / 5} \mathrm{x}_{2}{ }^{3 / 5}}{P_{\mathrm{f}}} \tag{29}\\
& \mathrm{t}_{\mathrm{f}}=\frac{175}{P_{\mathrm{B}} 3.87 \mathrm{E}_{\mathrm{f}} \cdot \mathrm{t}_{\mathrm{C}}{ }^{1.5}} \quad\left\{\mathrm{P}_{\mathrm{CR}} \cdot \mathrm{R}_{\mathrm{C}}^{3 / 2} \mathrm{~L}_{\mathrm{C}} \cdot\left(1-\nu_{\mathrm{f}}^{2}\right)^{3 / 4}\right\} \tag{30}\\
& \mathrm{t}_{\mathrm{cy}}=\frac{P_{\mathrm{CR}} R_{\mathrm{C}}}{2 \sigma_{\mathrm{f}}} \tag{31}
\end{align*}
$$

b. Core Thickness

$$
\begin{align*}
& \tau_{\mathrm{c} \text { opt }}=1.176\left(\frac{\mathrm{X}_{1}}{\mathrm{X}_{2}}\right)^{2 / 5} \tag{32}\\
& \tau_{\mathrm{c}}=0.404\left(\frac{\mathrm{P}_{\mathrm{CR}} \mathrm{R}_{\mathrm{C}}{ }^{3 / 2} \mathrm{~L}_{\mathrm{c}}}{\mathrm{E}_{\mathrm{f}} \mathrm{t}_{\mathrm{f}}}\right)^{2 / 3}\left(1-\nu_{\mathrm{f}}^{2}\right)^{1 / 2}\left(\frac{175}{\mathrm{P}_{\mathrm{B}}}\right)^{2 / 3} \tag{33}
\end{align*}
$$

c. Weight

$$
\left.\left.\begin{array}{l}
W_{\text {opt }}=1.959 \mathrm{X}_{1}^{2 / 5} \mathrm{X}_{2} 3 / 5+\mathrm{KAD} \\
\mathrm{~W}=\frac{\rho_{\mathrm{f}} \mathrm{t}_{\mathrm{f}}}{6}+\frac{\rho_{\mathrm{c}} \mathrm{t}_{\mathrm{c}}}{12}+\mathrm{KAD}
\end{array}\right\} \begin{array}{l}
\mathrm{X}_{1}=\frac{\rho_{\mathrm{f}} \mathrm{P}_{\mathrm{CR}} \mathrm{R}_{\mathrm{C}}^{3 / 2}\left(\mathrm{I}_{\mathrm{C}}\right)}{23.2 \mathrm{E}_{\mathrm{f}}}\left(1-\nu_{\mathrm{f}}^{2}\right)^{3 / 4}\left(\frac{1.75}{\mathrm{P}_{\mathrm{B}}}\right) \\
\text { and } \tag{35}\\
\mathrm{x}_{2}=\rho_{\mathrm{C}} / 12
\end{array}\right\}
$$

$$
\begin{align*}
& P_{B}=\frac{\left[\frac{3+S}{1+S}+1\right]}{\left[\frac{3+S}{1+S}\right]^{1 / 2}\left[\left(\frac{3+S}{1+S}\right)^{1 / 4}+\frac{S}{2}\right]} \tag{36}\\
& S=\frac{2.22 . t_{c}{ }^{1 / 2} \cdot{R_{c}}^{1 / 2}}{I_{c}\left(1-\nu_{f}^{2}\right)^{1 / 4}}\left[\bar{\gamma}+\frac{L_{c}}{R_{c}} \frac{(W H S+W) G}{(144) P_{C R}}\right] \tag{37}\\
& \rho_{C}=022 \rho_{R}\left(\frac{P_{\mathrm{CR}}}{\sigma_{\mathrm{CR}}}\right)^{0588} \tag{38}
\end{align*}
$$

4. Monocoque Spherical Cap

$$
\begin{align*}
& \mathrm{t}_{\mathrm{f}}=1.20\left(\frac{\mathrm{P}_{\mathrm{CR}}}{\mathrm{E}_{\mathrm{f}}}\right)^{3 / 7}\left(1-\nu^{2}\right)^{2 / 7}\left(\frac{\mathrm{~h}}{\mathrm{R}_{\mathrm{CAP}}}\right)^{1 / 7} \mathrm{R}_{\mathrm{CAP}} \tag{39}\\
& \mathrm{t}_{\mathrm{cy}}=\frac{\mathrm{P}_{\mathrm{CR}} \mathrm{R}}{2 \sigma_{\mathrm{cy}}} \tag{40}\\
& \mathrm{~h}=\mathrm{R}_{\mathrm{CAP}}\left(1-\cos \theta_{\mathrm{CAP}}\right) \tag{41}\\
& W=\frac{\rho_{\mathrm{f}} \mathrm{t}_{\mathrm{f}}}{12} \tag{42}\\
& \mathrm{P}_{\mathrm{CR}}=\mathrm{P}_{\mathrm{AERO}} \pm \frac{(\mathbb{W}+\mathrm{WHS}) \mathrm{G}}{144}
\end{align*}
$$

5. Ring Stiffened Conical and Cylindrical Sections

$$
\begin{align*}
& P_{C R}(S)=\frac{P(S) \pi\left(D_{\theta} / D\right)^{3 / 4} t_{4} t^{5 / 2}\left[12\left(2 t_{3}-\nu_{f}^{2}\right]^{1 / 4} E_{f}\right.}{6\left(\dot{1}-\nu_{f}^{2}\right) L K_{2} K^{1 / 2}\left(8 t_{1} t_{3} t_{4}\right)^{1 / 4}} \tag{43}\\
& K=R_{2} \frac{(1-\beta / 2)}{\cos \theta_{c}} \tag{44}\\
& \beta=\left[1-\left(\frac{R_{1}}{R_{2}}\right)\right] \tag{45}\\
& D=\frac{E_{f} t_{f}^{3}}{(\dot{12})\left(\dot{1-\nu^{2}}\right)} \tag{46}\\
& D_{\theta}=(N+1) \frac{I_{\theta} E_{f}}{L_{0}} \tag{47}\\
& L_{0}=\frac{R_{2}-R_{1}}{\sin \theta} \quad \theta>0 \tag{48}
\end{align*}
$$

$\mathrm{L}_{\mathrm{o}}=\mathrm{L}_{\mathrm{C}} \quad \theta=0$

$$
\begin{align*}
& P=\frac{\left[\frac{3+S}{1+S}+1\right]}{\left(\frac{3+S}{1+S}\right)^{1 / 2}\left[\left(\frac{3+S}{1+S}\right)^{1 / 4}+\frac{S}{2}\right]} \tag{51}\\
& S=B\left(\frac{D_{\theta}}{D}\right)^{1 / 4} t_{f}^{1 / 2} \tag{52}
\end{align*}
$$

$$
\begin{equation*}
B=\frac{2 \pi K_{1} K^{1 / 2}}{K_{2} \mathrm{I} K^{2}} \frac{\left[8 t_{1} t_{3} t_{4}\right]^{1 / 4}}{\left[12\left(2 t_{3}-\nu^{2}\right)\right]^{1 / 4}} \tag{53}
\end{equation*}
$$

61.96
-64-

$$
\begin{align*}
& \mathrm{K}_{\mathrm{I}}=\frac{\mathrm{K}^{3}}{2\left(\bar{I}-\frac{\beta}{2}\right)^{2}}\left\{1-\beta+\frac{\beta^{2}}{3}+\frac{\beta^{2}}{2 \pi^{2}}-(1-\bar{y})(1-\beta)^{2}\right. \\
& \left. \pm \frac{\mathrm{L}}{\mathrm{R}_{2}} \frac{(\text { WHS }+ \text { W) } \mathrm{G}}{(144) \mathrm{P}_{\mathrm{CR}}}\left(1-\beta+\frac{\beta}{3}+\frac{\beta}{2 \pi^{2}}\right)\right\} \tag{54}\\
& K_{2}=K\left[1 \pm \frac{(W H S+W) G}{(144) P_{C R}} \sin \theta_{c}\right] \tag{55}\\
& \mathrm{I}_{\theta}=\mathrm{I}_{\mathrm{x}}-\mathrm{A}_{\mathrm{T}} \overline{\mathrm{y}}^{2} \tag{56}\\
& W_{e}=m t_{f} \text {, and } b=n H \tag{57}\\
& I_{x}=\frac{m t_{f}^{4}}{3}+t_{f} H^{\prime}(2 n+1)\left(\frac{H}{2}+t_{f}\right)^{2}+\left(\frac{n H+t_{f}}{12}\right) H^{3}-\frac{n H\left(H-2 t_{f}\right)^{3}}{12} \tag{58}\\
& A T=t_{f} H(2 n+1)+m c_{f}^{2} \tag{59}\\
& \bar{y}=\frac{\frac{\mathrm{mt}_{f}^{3}}{2}+\mathrm{t}_{\mathrm{f}} \mathrm{H}(2 \mathrm{n}+1)\left(\mathrm{H} / 2+\mathrm{t}_{\mathrm{f}}\right)}{A T} \tag{60}\\
& W=\frac{\pi \rho_{f} \mathrm{t}_{\mathrm{f}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{I}_{\mathrm{o}}+2 \pi \mathrm{Ht}_{\mathrm{f}}(2 \mathrm{n}+1) \rho \quad\left[\mathrm{NR}_{2}-\frac{\mathrm{NL}_{0} \sin \theta}{2}\right]}{12 \pi\left(\mathrm{R}_{1} \cdot+\mathrm{R}_{2}\right) \mathrm{L}_{\mathrm{o}}} \tag{61}
\end{align*}
$$

6. Monocoque Tension Shell

$$
\begin{align*}
& \mathrm{t}_{\mathrm{f} 3}=\frac{\mathrm{P}_{\mathrm{CR}} \mathrm{R}_{3}}{\mathrm{C}_{1} \sigma_{\mathrm{f}}} \tag{62}\\
& \mathrm{C}_{1}=\frac{2}{\left[1-\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)^{2}\right]} \ln \left(\frac{1+\cos \beta}{\sin \beta}\right) \tag{63}\\
& W=\frac{\mathrm{W}_{\mathrm{TT}}}{\mathrm{AT}} \tag{64}
\end{align*}
$$

$$
\begin{align*}
& W_{T T}=2 \pi \frac{\rho_{\mathrm{f}}}{1728} \int_{\theta=\beta}^{\theta=\pi / 2} \frac{\mathrm{t}_{\mathrm{f}}}{\sin \theta} \mathrm{y}\left(\frac{\mathrm{dy}}{\mathrm{~d} \theta}\right) \mathrm{d} \theta \tag{65}\\
& \cdot A T=\frac{2 \pi}{144} \int_{\theta=\beta}^{\theta=\pi / 2} \frac{1}{\sin \theta} \mathrm{y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} \theta}\right) \mathrm{d} \theta \tag{66}\\
& \mathrm{y} \frac{\mathrm{dy}}{\mathrm{~d} \theta}=\frac{-\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{3}^{2}\right)}{2 \sin \theta \ln \left(\frac{1+\cos \beta}{\sin \beta}\right)} \tag{67}\\
& \mathrm{t}_{\mathrm{f}}=\frac{\mathrm{R}_{3} \mathrm{t}_{3}}{\mathrm{y}} \quad \\
& \mathrm{y}=\left\{\mathrm{R}_{3}^{2}+\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{3}^{2}\right) \frac{\ln \left(\frac{1+\cos \theta}{\sin \theta}\right)}{\ln \left(\frac{1+\cos \beta}{\sin \beta}\right)}\right)^{1 / 2}
\end{align*}
$$

7. Monocoque General Tension Shell

$$
\begin{equation*}
W=\frac{W T G}{A G} \tag{70}
\end{equation*}
$$

$W T G=\frac{2 \pi \rho_{f}}{1728} \int_{R_{2}}^{\mathrm{R}_{3}} \frac{\mathrm{r}_{\mathrm{f}} \mathrm{y} \mathrm{dy}}{\sin \theta}$

$$
\begin{equation*}
A G=\frac{2 \pi}{144} \int_{R_{2}}^{R_{3}} \frac{y d y}{\sin \theta} \tag{72}
\end{equation*}
$$

$\cot \theta=\frac{x_{1}-x_{1}}{y_{1}-y_{1}}$

$$
\begin{align*}
& \mathrm{t}_{f}=\mathrm{t}_{\mathrm{f} 3} \frac{\mathrm{R}_{3}{ }^{1-a}}{\mathrm{y}^{1-a}} \tag{74}\\
& \mathrm{r}_{\mathrm{f} 3}=\frac{-\mathrm{P}_{\mathrm{CR}}}{\left[-\sin \theta_{3 G}\left(\frac{\mathrm{~d} \theta}{d y}\right)_{3}+\frac{2 \cos \theta_{3 G}}{R_{3}}\right] \sigma_{\mathrm{cy}}}
\end{align*}
$$

8. Compression Ring

$$
\begin{align*}
& \text { WSCST }=\frac{W R(144)}{2 \pi R_{S C}\left[\frac{\mathrm{R}_{3} \theta_{3}}{57.3}+\mathrm{R}_{\mathrm{SC}}\left(\sin \theta_{3}-\frac{\theta_{3} \cos \theta_{3}}{57.3}\right)\right]} \\
& \mathrm{WR}=\frac{4 \pi^{2} \mathrm{RR}}{1728} \operatorname{t}_{\mathrm{R}} \rho_{\mathrm{R}}{ }^{\left(\mathrm{R}_{\mathrm{C}}-\mathrm{RR}\right)} \tag{77}\\
& \mathrm{RR}=\left(\frac{\mathrm{R}_{\mathrm{C}}{ }^{3}}{1.7 \pi} \sqrt{\frac{2 \pi(0.3) \mathrm{t}_{3} \sigma_{\mathrm{f}}}{\mathrm{E}_{\mathrm{R}} \mathrm{R}_{\mathrm{C}}}}\right)^{1 / 3} \tag{78}
\end{align*}
$$

9. Hot Structures

$$
\begin{equation*}
w C_{p} \frac{d T}{d \tau}=q_{c}\left(1-\frac{H_{w}}{H_{s}}\right)+q_{R}-\epsilon\left(\frac{T_{w}}{1200}\right)^{4} \tag{79}
\end{equation*}
$$

10. Base Section

$$
\begin{equation*}
\mathrm{PCR}=\left(\mathrm{P}_{\mathrm{CR}}\right)_{\text {aero }}+\frac{(\mathrm{WHS}+W) \mathrm{G}}{144} \tag{80}
\end{equation*}
$$

Monocoque

$$
\begin{align*}
& W=\rho_{f} \cdot \frac{\mathrm{r}_{\mathrm{f}}}{12} \tag{81}\\
& \mathrm{r}_{\mathrm{F}}=\sqrt{\frac{3}{8} \frac{\mathrm{R}_{\mathrm{T}}{ }^{2} \mathrm{P}_{\mathrm{CR}} \cdot(3+\nu)}{\sigma_{\mathrm{f}}}} \tag{82}
\end{align*}
$$

$$
628<
$$

Honeycomb

$$
\begin{align*}
& W=\frac{1}{12} \rho_{\mathrm{c}} \cdot t_{\mathrm{c}}+\mathrm{ZK}+\frac{1}{6} \rho_{\mathrm{f}} \cdot t_{\mathrm{f}} \tag{83}\\
& \rho_{\mathrm{c}}=022 \cdot \rho_{\mathrm{I}} \cdot\left(\frac{\mathrm{P}_{\mathrm{CR}}}{\sigma_{\mathrm{R}}}\right)^{058} \tag{84}\\
& \mathrm{Z} 1=\frac{\rho_{\mathrm{f}}}{16} \tag{85}\\
& \mathrm{Z} 3=\frac{1}{16} \frac{\left[\mathrm{P}_{\mathrm{CR}} \cdot\left(\mathrm{R}_{\mathrm{T}}\right)^{2}\right](3+\nu)}{\left(\sigma_{\mathrm{f}}\right)} \tag{86}\\
& \left(\mathrm{t}_{\mathrm{f}}\right)_{\mathrm{opt}}=\sqrt{\frac{\mathrm{Z} 3}{\mathrm{ZI}}} \tag{87}\\
& \left(\mathrm{t}_{\mathrm{c}}\right)_{\mathrm{opt}}=\frac{\mathrm{Z} 3}{\mathrm{t}_{\mathrm{f}}} \tag{88}\\
& \mathrm{t}_{\mathrm{f}}=\frac{\left(\mathrm{P}_{\mathrm{CR}} \cdot \mathrm{R}_{\mathrm{T}}^{2}\right)(3+\nu)}{16\left(\sigma_{\mathrm{f}}\right) \mathrm{t}_{\mathrm{c}}} \tag{89}
\end{align*}
$$

11. Yield Criteria
a. Cones, Cylinders
$\mathrm{N}_{\theta}=1-\frac{\left[\mathrm{P}_{\mathrm{CR}}-\frac{(W H S+W)}{144} G \sin \theta\right] \mathrm{R}}{\cos \theta}$
b. Cones
$\mathrm{N}_{\phi}=\frac{-\mathrm{P}_{\mathrm{CR}}}{2 \mathrm{R} \cos \theta}\left[\mathrm{R}^{2}+\mathrm{R}_{1}^{2}(\bar{\gamma}-1)\right]+\frac{\mathrm{G}\left(\mathrm{R}^{2}-\mathrm{R}_{1}^{2}\right)(\mathrm{WHS}+\mathrm{W})}{2 \mathrm{R} \sin \theta \cos \theta(144)}$
c. Cylinders
$N_{\phi}=\frac{-P_{C R} R_{C} \bar{\gamma}}{2}-\frac{G\left(L_{C}\right)(W H S+W)}{(144)}$
-68-
6236
d. M-H Criteria.
$N_{y}{ }^{2}=N_{\theta}{ }^{2}+N_{\phi}{ }^{2}-N_{\theta} N_{\phi}$
e. Elastic Yield Requirements (sandwich construction)
$\mathrm{t}_{\mathrm{f}} \geq \frac{\left(\mathrm{N}_{\mathrm{y}}\right)_{\max }}{2 \sigma_{\mathrm{f}}}$
f. Combined stress

SIGMH $=\frac{\left(N_{y}\right)_{\max }}{2 t_{f}}$
g. Meridional stress

SIGM $=\frac{N_{\phi}}{2 t_{f}}$
h. Circumferential stress

SIGH $=\frac{\mathrm{N}_{\theta}}{2 \mathrm{t}_{\mathrm{f}}}$
IV. IBM ROUTINES

A. PROGRAM FLOW

Given vehicle geometry, structural material properties, and pressure loads, Program 1886 computes the weight of the external structure on each segment of the vehicle which will survive reentry. The segments of the vehicle may include a sphepical nose cap, cones, cylınders, rear spherical cap, tension shell, and general shell. The program flow diagram is shown in Figure 8.

Figure 8 Flow Diagram For Program 1886
62^{-70}

B. MAIN PR \varnothing GRAM

1. Purpose

The purpose of the main program is to acquire the program input, and make any necessary units conversions before transfering control to the appropriate subroutine for the calculation of the structural weight.

2 Method

Initially the types and dimensions of main program variables are specrfied and common storage is set up for the transmission of data to subroutines BUCKLE, M \varnothing N $\varnothing \mathrm{C}$, and STIFS.

In the first executable statements of the program tables of BT (the geometric Parameter β) and of the dependent variables T1T, T3T, and T4T are defined element by element in arithmetic statements.

In the $D \varnothing 10$ Ioop C $\varnothing \mathrm{MM} \varnothing \mathrm{N}$ data (from SECTN through DELK2) is preset to 0 . Since most of the program input variables appear in C $\varnothing \mathrm{MM} \varnothing \mathrm{N}$, this loop zeros out a large portion of the namelist data. The remainder of the input is preset on the data and arithmetic statements immediately following Statement 10 .

The data is read in through the namelist array INPUT and immediately written on the output tape. The vehicle radil are then converted to inches, and the angles to radians for internal use If RB and TINIT have not been specified, they are taken to be RC and TEMPI, respectively.

In the D $\varnothing 30$ loop NTAU, the number of elements in the array TIME, is calculated (by searching for the first 0 beyond the first element of the array).

Then for each vehncle section specified in the array SECTN, the $D \varnothing 100$ loop transfers control to one of the subroutines BUCKLE, M $\varnothing N \varnothing C$, or STIFS according to the following criteria: if $M \varnothing N \geq 1$, subroutine $M \varnothing N \varnothing C$ is called; if $\mathrm{MON}<1$ and $\mathrm{RSD} \geq 1$, subroutine $S T I F S$ is called; if $M \varnothing N<1$ and $\operatorname{RSD}<1$, subroutine BUCKLE is called The first value of SECTN ≤ 0 encountered terminates the current case. Control is then transferred back to the READ statement for processing the next case.

3. $C \not \subset M M \varnothing N S T \varnothing$ RAGE

The varzables in C $\varnothing \mathrm{MM} \phi \mathrm{N} S T \not \subset \mathrm{RAGE}$ are those input variables (with units modified if necessary) which must be transmitted to one of the subroutines BUCKLE, M $\varnothing \mathrm{N} \varnothing \mathrm{C}$, or STIFS. Unless a modification is specified, the $C \emptyset M M \emptyset \mathrm{~N}$ variable 1 s precisely the input value.

```
Variable Definition (if not directly input)
SECTN
HTST
HT\emptysetP
GAMFI GAMF
GFTAB
EFI EF
EFTAB
R\varnothingF
SGFI SIGCYF
SGFTAB
GAMRI GAMR
GRTAB
ER
R\emptysetR
SGRI SIGCYR
SGRTAB
KADHES
PCR
TFMIN
TCMIN
TCMAXX
R\emptysetCMIN
R\emptysetCMAX
GAMBAR
CBAR
WHS
G
HS
EM
EN
NFAC
NTERM
EPS
RNI 12.•RN
RSNI
12.. RSN
THNR THNT ( }\pi/180
RAI 12.,RA
THAR THA • ( }\pi/180
THCR THC • (\pi/180)
RBI
RSBI
THBR
RCI
RSCI
XLCI
12. 'RB for RB> 0; 12. *RC for RB}\leq0\mathrm{ .
12. - RSB
THB ( ( / / 180)
12. * RC
12. - RSC
12. I IC
```

```
RTI
12. *RT
BETA
A
TH2G
TH3G
R\emptysetRG
SIGRG
DTHDY
DELTAU
EMISTR
QCMULT
QRMULT
XN
X\varnothing
XA
XC
TEMPI
TEMPA
X
R
TTAB
CPTAB
TIME
HTBL
QTBL
RTBL
TINITL TINIT if TINIT>0; TEMPI if TINIT }\leq
TST }\varnothing\mathrm{ P
NTAU Number of values in TIME array
DELK1
DELK2
JJJ Index of current vehicle section
IG\emptyset SECTN (JJJ), ie identıfacation of current section
DPC GAMBAR.CBAR
BT Table of geometric parameter }
T1T Table of tl
T3T Table of t3
T4T Table of t4
```

C. SUBR \varnothing UTINE CALIING SEQUENCES

I. N \varnothing SE	Variable	Input or Output	Variable	Input or Output
	R	INPUT	W \varnothing PT	OUTPUT
	THETA	INPUT	W	OUTPUT
	PCR	INPUT	WT	OUTPUT
	GAMF	INPUT	TFUSED	OUTPUT
	EF	INPUT	TCUSED	OUTPUT

3. CYLIND	Variable	Input or Output	Variable	Input or Output
(Concl'd)	SGF	INPUT	WT	øUTPUT
	GAMR	INPUT	TFUSED	¢UTPUT
	SGR	INPUT	TCUSED	¢UTPUT
	$\mathrm{R} \varnothing_{\mathrm{R}}$	INPUT	SIGMH	QUTPUT
	PGR	INPUT	SIGH	¢UTPUT
	DEL	INPUT	SIGM	øUTPUT
	R M M $^{\text {N }}$	INPUT	ICHK	¢UTPUT
	R ¢ M $_{\text {M }}$	INPUT		
	TCMN	INPUT		
	TCMX	INPUT		
	TFMN	INPUT		
	ZK	INPUT		
	DPC	INPUT		
	WHS	INPUT		
	G	INPUT		
	DELK1	INPUT		
	DELK2	INPUT		
4. BASE				
	RT	INPUT	R \varnothing C	¢UTPUT
	GAMF	INPUT	ICHK	¢UTPUT
	R ¢F	INPUT		
	$\mathrm{R} \phi \mathrm{R}$	INPUT		
	SGF	INPUT		
	SGR	INPUT		
	PCR	INPUT		
	$\mathrm{R} \varnothing_{\mathrm{MX}}$	INPUT		
	$\mathrm{R} \varphi \mathrm{MN}$	INPUT		
	TCMX	INPUT		
	TCMN	INPUT		
	TFMN	INPUT		
	ZK	INPUT		
	WHS	INPUT		
	G	INPUT		
	W ¢PT	¢UTPUT		
	W	ФUTPUT.		
	WT	ØUTPUT		
	TFUSED	¢UTPUT		
	TCUSED	$\emptyset \mathrm{UTPUT}$		
5. TENSI \varnothing N				
	BETA	INPUT		
	RC	INPUT		
	RSC	INPUT		
	RSN	INPUT		
	RN	INPUT		

-75-
$630<$

5. TENSI \varnothing N	Variable	Input or Output	
(Goncl'd)	PCR THN SIGCYF R $\varnothing \mathrm{F}$ WTENST WTT AT T3 WR RR TR WSCST ER $R \emptyset R G$ SIGRG TFMN	INPUT INPUT INPUT INPUT ФUTPUT ФUTPUT \emptyset UTPUT ФUTPUT OUTPUT ФUTPUT \varnothing UTPUT øUTPUT INPUT INPUT INPUT INPUT	
6. GNRLSH	Variable	Input or Outprit	Variable Input or Output
.	X Y A SIGGYF $\mathrm{R} \varnothing \mathrm{F}$ TH2D TH3D PCR R ϕ RG ER SIGRG RSC RC WR TR RR WSCST T3 WGENST WTG AG	INPUT INPUT INPUT InPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT ØUTPUT ØUTPUT фUTPUT фUTPUT وUTPUT ØUTPUT фUTPUT ФUTPUT	TFMN INPUT DTHDY3 INPUT
7. RING			
	$\begin{aligned} & \text { THD } \\ & \text { R3 } \\ & \text { T3 } \\ & \text { RSC } \end{aligned}$	INPUT INPUT INPUT INPUT	

7. RING	Varıable	Input or Output		
(Concl'd)	ER SIGRG RC SIGCYF R \varnothing RG WR RR TR WSCST	INPUT INPUT INPUT INPUT INPUT ϕ UTPUT øUTPUT \emptyset UTPUT \varnothing UTPUT		
8. HסTSTR	Variable XN $\mathrm{X} \varnothing$ XC XA TTAB TEMPI NTAU TAU TAUMAX QC QR $H G \varnothing_{R T}$ FR FC CPTAB DELTAU EMISS TEMPA EPS TAUT TW	Input or Output INPUT $\emptyset U T P U T ~$ $\emptyset U T P U T ~$	$\begin{aligned} & \text { Variable } \\ & \text { W } \\ & \text { WSTAR } \end{aligned}$	Input or Output INPUT \varnothing UTPUT

D. SUBROUTINES, DESGRIPTI \varnothing NS

1. Subroutine BUCKLE
a. Purpose

The purpose of subroutine BUCKLE is to control the computation of the structure weights for sections having a honeycomb construction, and to provide the program output for those sections.

b. Method

Subroutine BUCKLE receives all of its input data from the main program through C $\varnothing M M M \varnothing N$. It does not redefine any of this data, or transmit any information back to the main program.

At the first executable statement of BUCKLE the variable ICHK is set to 12345 . Any subsequent change in ICHIK will be an indication of computational difficulty, and appropriate action will be taken to inform the user of the situation (error messages and the deletion of further computation on the particular section). PI 15 defined, and the identification number of the current section is written on the output tape, logical tape 6.

There are two possible paths for the computation to take, depending on whether or not the section 15 to be run under the hot structures option (for which HTST is input as 1.)

If HTST $\neq 1$, control is transferred immediately to statement 250 where a computed $G \varnothing T \varnothing$ on the section number picks the correct method of computing the weight. For all sections but tori the approprıate data is supplied to one of the subroutines NOSE, CONE, TENSON, GNRLSH, CYLIND, or BASE which will carry out the actual computation. For the tori, which cannot in reality be handled by the program, the unt section weight is taken as the weight of the immediately preceding section; however, this weight is then multiplied by the torus area in finding the total weight. The weights, face sheet and core thicknesses, and core densities are placed in arrays from which they are finally printed on the output tape. For tori the weights are printed between statements 21 and 25 , and return is made to the main program. For the other sections the block of statements between 255 and 2684 provides for writing all the output. This block is entered either at statement 255 or 260 after the return from the particular section subroutine. The computed $G \varnothing T \varnothing$ at 261 controls setting up the correct headings to print only the information applicable for a particular section. The IF test at statement 2645 checks for nonconvergence of the weight iteration. If nonconvergence is detected, an error message $2 s$ written. Return $1 s$ then made to the main program.

In the case of a hot structure not only does the final weight depend upon the temperature rise computed by the program, but the material properties used in the honeycomb analysis are themselves a function of temperature. This second dependence makes an iterative scheme necessary to handle the weight computation. The numerical method
used is standard false position applied to the temperature, the initial guesses being TINIT and TEMPA. To ensure convergence it is necessary that the actual temperature lie between TINIT and TEMPA. (If TINIT is not specified, it is taken to be TEMPI.) At Statement 230 the temperature TEMP is set to TINIT to start the process. Then NN (the number of iterations), WQ, and FTMPl are initialized. At 245 the material properties corresponding to TEMP are looked up in tables EFTAB, SGFTAB, GFTAB, GRTAB, and SGRTAB, and control is transferred to the appropriate subroutine for a weight computation. After a transfer back to 260 the hot structures option swatches control to 269 where subroutine $H \varnothing T S T R$ calculates the maximum temperature TWMAX and, if necessary, the increased weight WQ. After the return form $H \varnothing T S T R$ an IF test checks the difference between the original temperature TEMP and TWMAX. If the relative difference is less than 1 percent the iteration is terminated immediately, and control 15 passed to the output block at Statement 261. If the difference is greater than 1 percent, control is passed back to Statement 240 where NN is updated. The statements following 240 provide, in general for saving the last two temperature estimates TMP1 and TMP2 which bracket the root, along with the differences FTMP1 and FTMP2 between these estimates and their corresponding values of TWMAX. On this first pass TMPI and FTMPl are presumably set to TINIT and TINIT-TWMAX. A second pass is then made through the entire computation sequence with TEMP set to the value TEMPA. At 242 TMP2 will be set to TEMPA and FTMP2 to TEMPA-TWMAX. Then the false position algorithm computes a new projected temperature from TMP1, TMP2, FTMP1, and FTMP2 at statement 2425 , and tests to make sure that TEMPA is not exceeded. (A value of TEMP>TEMPA results in an error message and return to the main program.) The iteration now continues until the relative difference between TEMP and TWMAX is less than 1 percent. The results are then printed and a return is made to the main program. (If convergence has not occurred within 10 iterations, the process is terminated and the last values printed out.)
2. Subroutine M \quad N $\varnothing C$
a. Purpose

The purpose of subroutine $M \varnothing N \varnothing C$ is to calculate the structure weights of those sections having a monocoque construction and to provide the program output for these sections.
b. Method

Subroutine $M \not \subset N \varnothing C$ recelves all of its input data from the main program through C $\varnothing \mathrm{MM}$ M N . It does not redefne any of this data, or transmit any information back to the main program.

Like BUCKLE subroutine M $\varnothing \mathrm{N} \varnothing \mathrm{C}$ can be called either with or without the hot structures option. However, unluke BUCKLE, M $\quad \mathrm{N} \phi \mathrm{C}$ can handle a vehicle section only if it $1 s$ a spherical cap or flat base (i.e. one of Sections 1, 12, or 13).

If HTST 1 , there is a single level search performed for the weight, taking account of the inertia of the heat shield and structure. After the section number has been written out, control switches down to Statement 250 where an initial value of the unit weight WSTAR is computed using minmum gage thickness, and NIT, the number of iterations, is initialized. The computed $G \varnothing T \varnothing$ on the section number results in an error message and return for any section other than 1,12 , or 13.

For the nose sphere or aft sphere the radius R, the shell height H, and a sign factor PFAC are set at statements 1 and 12 , respectively. For elther of these sections transfer is then made to Statement 300 where SMATM, an expression appearing in the pressure computations, is calculated, and the face sheet thickness SMAT is set initrally to minimum gage. The search method between Statements 400 and 600 , looks for a change of sign (from positive to negative) of the expression PCR-PTEST. Until such a change is detected, the statements are repeated with SMAT being increased by the factor EPSPl $(1+f)$. A value of WSTAR is computed to correspond to each SMAT. (A maximum of 500 such increases in SMAT is allowed before an error message and return terminates calculations for the section.) Once the sign change has been detected, a final value of pressure P and yreld thickness TY are calculated begınning at Statement 750. The final thickness is taken as the maximum of SMAT and TY, and WSTAR is again computed using this maximum. The total weight W and yreld stress criteria SIGMH are then computed. Transfer is made to Statement 850 for the printout of results and return to the main program.

In the case of a flat base a first order iteration scheme is used to compute the unit weight rather than a search. The radius R is set to $R T$, and the initial estimate for WSTAR (using minımum gage thick. ness) is stored in W1. W1 will be used to keep track of the last previous iterate, and thus updated on each pass. The pressure and face sheet thickness are computed. An IF test ensures that the thickness is at least minimum gage, and a new weight WSTAR is calculated at Statement 132. If the relative difference between Wl and WSTAR is less than 1 percent, the last value of WSTAR is taken as the unit weight and a transfer is made to Statement 137 for the computation of the total weight, printout of resuliss, and return to the main program. If the difference is greater than 1 percent transfer is made back to Statement 130 for the next iteration. Failure attain convergence within 25 iterations results in an error message at Statement 136 and return to the man program.

If HTST $=1$, the same false position iteration scheme used in subroutine BUCKLE finds the weight as a function of temperature. This iteration is performed outside the iteration or search described above, thus making the entire iterative scheme a two-level process. The call to subroutine $H \varnothing$ TSTR is now at Statement 810.

3. Subroutine STIFS

a. Purpose

The purpose of subroutine STIFS is to calculate the structure weights of those sections having a ring-stiffened construction, and to provide the program output for these sections.
b. Method

Subroutine STIFS recelves all of its data from the main program through $C \not \subset M M \varnothing N$. It does not redefine any of this data, or transmit any information back to the main program.

STIFS can be called with or without the hot structures option. It handles a vehicle section that is a cone, cylinder, flare forecone, or aftcone (Sections 3, 7, 8, 11). At Statement 200 a computed G \varnothing T \varnothing tests that the current section is indeed one of these four. If not, a transfer to Statement 2000 results in an error message and immediate return to the main program. If the section can be handled, values of R1, R2, RTHETA, and XKFAC are calculated from the appropriate geometry parameters, beginning at one of the Statements 5551, 5552, 5553, or 5554. Transfer is then made to Statement 5555 where several variables depending on the vehzcle geometry are calculated, and the section number and a heading are written out. The program flow beyond Statement 65 depends upon whether or not the section $1 s$ a hot structure, and whether $H T \not \subset \mathrm{P}$ has been specified as 1 . ox 2 .

Consider first the case HTST $=0$, $\mathrm{HT} \varnothing \mathrm{P}=1$. The object will be to find a thickness (t) satisfying both local and general stability conditions and a number (N) of rings which will minmize the structure weight. Since the inertia of the heat shzeld and structure are to be taken into consideration, an iterative method is again necessary in the weight calculations. In STIFS this iteration $1 s$ carried out for each number (N) of rings considered.

Since HTSTw $=0$, the test following Statement 65 transfers control down to 68 where N, the current number of rings, is set to 1 (although the $\mathrm{N}=0$ case will actually be handled first), and the control parameters ITEST and IG \varnothing T \varnothing are initualızed to 1 . Since HT $\varnothing \mathrm{P}=1, \mathrm{H}$ is set to
the input value HS. Between Statements 683 and 9 an additional block of variables is initialized including TL the thickness required for local stability, TG the thickness required for general stability, and SMAT, which is always the current thickness benng used in the calculations. The block of statements between 9 and 15 performs the major computations of the routine.

Initially the case $N=O$ is considered. (The routine recognizes this case by the fact that ITEST is still 1.) The computed G $\emptyset T \emptyset$ before Statement 155 transfers control to 155 where PAS, the pressure just computed at Statement 15 is tested against the input value $P A(P C R)$. If PA>PAS, TG is increased by the factor EPSP (1. + EPS), SMAT is set equal to TG and a transfer back to statement 12 begins a repetition of the computations. The loop thus formed is retraced until finally $P A S \geq P A$, the variable M keeping track of the number of aterations. At Statement 17 the total weight WN and the unit weight WSTAR are calculated as a function of the current TG.

The computed $G \varnothing T \varnothing$ at Statement 20 transfers control to 28 since IG $\varnothing \mathrm{T} \varnothing$ 1s still 1. Here the first order iteration procedure necessitated by structural inertia considerations tests for convergence of the unit weight WSTAR. WSTAR is compared with Wl, the last previous iterate. (WI was initialuzed to 0. Just after Statement 5555 to take care of the first pass.) Ten iterations are allowed for obtaning convergence of the weight. On each iteration the looping process to obtain TG is repeated. The transfer back to statement 85 ensures that all the necessary reinitialization is included. Convergence is defined as a relative difference of less than 1 percent between Wland WSTAR. If convergence is not reached within 10 iterations, an error message is written at Statement 295, and return is made to the main program. If convergence is attained, $\operatorname{IG} \varnothing \mathrm{T} \varnothing$ is reset to 2 at Statement 301 .

The block of statements between 302 and 312 calculates the yreld stress criteria. If the section $1 s$ one of the cones, its entire length must be searched for the point of maximum allowable stress XNYMAX. XNYMAX is initially set to 0 , and R to $R 2$, the largest value of the cone radius. In the DO 305 loop a value of XNY 1 s calculated at each of 10 , equally-spaced points along the length of the cone as R decreases to $R 1$, the smallest cone radius. XNYMAX is defined as the maximum of the 10 XNY values obtaned in the loop. Values of XNTH and XNPHI to be used in evaluating the stress components are also calculated corresponding to XNYMAX. If the section is a cylinder, XNTH, XNPHI, and XNYMAX are evaluated drectly. In either case TCY, the minimum thickness satisfying yield requirements, is calculated at Statement 308, and tested against TG. If TCY>TG, TG is reset to TCY, and the werghts must be recalculated at Statement 17 to
correspond to the new thickness. In this case the computed GDTD brings control back to Statement 312 since $I G \varnothing T \varnothing$ is now 2. Here the stress component calculations are completed, the minimum weight WGTMIN is set to the current weight value, TL is set equal to $T G$, and the $N=O$ results are printed. (ISW was set to 1 following Statement 5555 , since HTST $=0$).

At 321 the $N=1$ case is begun'. (Statement 32 which ordinarily will compute the next N is skipped since N was set to 1 at the beginning of the routine.) The IF test on DN checks to see that the maximum number of rings is not exceeded. Initialızations are completed, ITEST is set to 2 and $I G \varnothing T \varnothing$ to 3 , and control is transferred back to the computation block at Statement 10. The computed GめT \varnothing with ITEST $=2$ chooses the test at Statement 16. This test and the statements starting at Statement 36 decrease $T L$ (which was set to the TG obtained for the last N) by the factor EPSM $* * M\left((1 .-E P S)^{M}\right.$), until $P A \geq P A S$ or $T L<T M$. The weights are then computed at Statement 17, and the transfer to Statement 37 (IG $\varnothing T \varnothing=3$) sets up conditions for the general stability calculations. By the time the transfer back to Statement 9 takes place ITEST has been reset to 1 and IG \varnothing T \varnothing to 4. The same general stability loop 1 s repeated as in the O-ring case, TG being increased by EPSP until PAS \geq PA.

The transfer from Statement 20 is now to Statement 39 where the first order iteration is begun for the $\mathrm{N}=1$ case. Both the TL, and TG loops must be repeated for each iteration, as is indicated by the transfer to Statement 322 each time the relative difference between W1 and WSTAR is greater than 1 percent. When convergence has been attained, the stress calculations are repeated starting at Statement 302, but with IG \varnothing T \varnothing now 5 . Thus, when the stress calculations have been completed, the test on IG \varnothing T \varnothing before Statement 318 brings control down to Statement 397 where the current weight is tested against WGTMIN the running minımum. WGTMIN is reset if the current WN is smaller. The results for $N=1$ are printed, and the computations for the next N are begun at statement 32 where N is calculated as a function of its current value and the input parameters NFAC and NTERM.

The computations are repeated in this same manner for each new N until N exceeds the maximum allowable value XL $\phi / E M / T G$. Then at Statement 43 the current minımum weight is taken as the final result. The unit and total weights are printed at statement 44, and return 15 made to the main program.

If $H T \emptyset P=2$, the stiffener herght (H) is intralızed to 1 , at Statement 682 before the computations begin. The $N=O$ calculations, and the

1terations for $T L$ when $N>O$ proceed exactly as in the HT $\boldsymbol{T} P=1$ case. However, when $N>1$ and the general stability calculations are set up starting at Statement 37, ITEST is set to 3 instead of 1 . The computed G \varnothing T \varnothing in the calculation block picks the test at 163. The object now $1 s$ to find the value of H for which $P A=P A S$. If initially $P A>P A S$, ITEST 1 s set to 5 and $H 1 s$ increased by the factor EPSP until a change of sign in PA-PAS occurs. (On the second and succeeding passes the test at 168 is used.) If inntially PA<PAS, ITEST is set to 4 , and H is decreased by the factor EPSM until a sign change in PA-PAS is detected. (On the second and succeeding passes the test at 169 is used.) Then the weight is calculated at Statement 17 as in the HTดP $=1$ case. The remainder of the program logic is not affected by HTøP.

In cases where HTST = 1 false position iteration on the temperature is used in the weight calculations as in subroutines BUCKLE and $M \not \subset \mathbb{N} \varnothing C$. This iteration is performed outside all the other computations carried out by the routine. The iteration loop itself extends from statement 67 to the IF test at 577 . The variable ISW which has the value 2 initıally, suppresses the printing of results until convergence has been achieved. Then the final iteration is repeated wath ISW reset to 1 to obtain the printout.

4．Subroutine NøSE
a．Purpose
The purpose of subroutine $N \not \subset S E$ is to calculate the honeycomb structure weights for the nosesphere and aftsphere sections（Sections 1 and 12） of the vehicle when specific geometry conditions and material properties are given．

b．Method

First order iteration is used to compute the weight，taking into account the mertia of the heat shield and structure．This iteration starts at Statement 800 after several terms that are to be constant during the looping process have been calculated，and the weights W and $W \not \subset P T$ and the number of iterations NIT have been initialized to 0 ．At 800 Wl which will be the value of the last previous iterate is set equal to W ． Then the pressure P ，depending on W ，is calculated and 1 ts sign tested．

If $P \leq 0$ ，the face sheet thickness and core height are taken as minimum gage．The weight（W），total werght（WT），and yield stress criteria （SIGMH）are computed，and an immediate return to the calling routine is executed．

If $P>0$ ，the iteration continues．The core density（ $R \phi C$ ） 1 s calculated， and tested to make sure that it lies between the minimum and maximum values specified in the program input．If $R \phi C<R \phi M N(R \phi C M I N)$ ，it is set to $R \phi M N$ ；if $R \phi C>R \phi M X(R \phi C M A X)$ ，it is set to $R \phi M X$ ．Then TCY the face sheet thickness required to satisfy yield criteria is com－ puted．TESTl is defined as the larger of TCY and TFMN（TFMIN）． Next TFDPI，the optimum face sheet thickness satisfyang buckling criteria is computed and compared with TESTl．

Case（1）．TFDPT＞TESTI
Control is transferred to Statement 6 for the computation of TCめPT， the optimum core height．TCめPT is then checked to ensure that it lies between TCMN（TCMIN）and TCMX（TCMAX）．
a．$T C M N \leq T C \not \subset P T \leq T C M X$
TFUSED and TCUSED are set to TFめPT and TC $\varnothing P T$ ：re－ spectively，and the weight is computed as WøPT．（This is the only case in which WøPT is computed，and only if the final iteration computes a value of $W \varnothing P T$ will a nonzero $W \varnothing P T$ be returned to the calling routine．）W is set equal to W $\varnothing \subset P T$ and transfer is made to Statement 103.

b. $\mathrm{TC} \varnothing \mathrm{PT}<\mathrm{TCMN}$

A value $T F$ of the face sheet thickness is computed as a function of TCMN at Statement 7. TFUSED 15 defined as the larger of TF and TESTl, and TCUSED is set to TCMN. The weight (W) is then computed as a function of TFUSED and TCUSED at Statement 100.

c. $T C \not \subset \mathrm{PI}>\mathrm{TCMX}$

TFUSED is set to TFØDPT and TCUSED is set to TCMX at Statement 14. Then W is computed as a function of TFUSED and TCUSED at Statement 100 .

Gase (2). TFDPT $\leq T E S T 1$
TFUSED is set to TEST1 at Statement 16 . TCUSED is computed as a function of TFUSED, then redefined as TCMN or TCMX if it lies, respectively, below or above the allowable range. (W) is then calculated at Statement 100.

In all cases the relative difference between W and $W 1$ is checked at Statement 103. If this difference is less than I percent, the iteration $1 s$ terminated, the total weight (WT) and the yield stress criteria (SIGMF) are computed, and a return to the calling routine is executed. If the difference is greater than 1 percent, the number of iterations NIT 1s updated at Statement 105, and tested against 10 . If NIT <10, a new 1teration 15 begun at Statement 800. If NIT ≥ 10, ICFK 15 set to 1 as an error indication, and the last results obtaned are returned to the calling routine.

Subroutine C C NE

a. Purpose

The purpose of subroutine C \varnothing NE is to calculate the honeycomb structure weights for the cone, flare fore cone, and aftcone sections (Sections 3,8 , and 1I) of the vehicle, when specific geometry condations and material properties are given.

b. Method

Subroutine C C NE uses the same first order iteration scheme used in NøSE, and the same logical procedure for obtanning the fanal values of TFUSED and TCUSED. (See the description of subroutine N \varnothing SE for details.) As far as program flow $1 s$ concerned, the major difference
between the two routines lies in the calculation of the maximumallowable stress XNYMAX. Immediately after Statement 800 (the beginning of the iteration loop), XNYMAX is initialized to 0 ., and R set to R2, the maximum value of the cone radus. In the $D \varnothing 805$ loop a value of XNY is calculated at each of 10 equally-spaced points along the length of the cone as R decreases to $R 1$, the minimum cone radus. XNYMAX is defined as the maximum of the 10 XNY values obtained in the loop. For the cones the circumferential stress (SIGH) and the meridional stress (SIGM) are calculated in addition to the resultant yield stress criteria (SIGMH) (XNYMAX/(2. TFUSED)).
6. Subroutine CYLIND
a. Purpose

The purpose of subroutine CYLIND is to calculate the honeycomb structure weight for the cylindrical section (Section 7) of the vehicle, when specific geometry conditions and material properties are given.
b. Method

The logical flow of subroutine CYLIND $1 s$ essentrally identical to that of subroutine N $\varnothing S E$. The first order iteration loop extends from Statement 3 to the $G \varnothing T \varnothing 3$ statement following 250. No loop is required for the calculation of the yield stress criteria as in CYLIND. However, the circumferential stress SIGF and the meridional stress SIGM are computed along with SIGMH before the return to the calling routme.
7. Subroutine BASE
a. Purpose

The purpose of subroutine BASE is to calculate the honeycomb structure weight for the BASE section (Section 13) of the vehicle, when specific geometry conditions and material properties are given.
b. Method

The first order iteration scheme is the same as in subroutine $N \not \subset S E$. The Iteration loop starts at Statement 800 and ends at 240 . However, the procedure for obtaming TFUSED and TCUSED is somewhat simpler since no-face sheet thickness is computed to satisfy yield criteria. TFUSED is defined on each iteration as the laxger of TF \varnothing PT and TFMN (TFMIN). TCUSED, after being calculated as a function of TFUSED, is tested against TCMN (TCMIN) and TCMX (TCMAX). If TCUSED < TCMN it is redefined to be TCMN; if TCUSED $>$ TCMX, it is redefined
as TCMX. In either of these two cases TFUSED is then redefined to correspond at Statement 9 .

8. Subroutine TENS $\varnothing N$

a. Purpose

The purpose of subroutine TENS $\varnothing \mathrm{N}$ is to compute the structural weight and area of the tension shell (Section 4).

b. Method

Simpson's rule is used to calculate the total weight WTT and the area AT. In the D0 60 loop the integrands W and A are calculated at 25 equally-spaced points between the initial angle BETA and $\pi / 2$. Subroutine ARSIMP is then called twice to apply the Simpson's Rule formula. The unit weight WTENST is calculated as the total weight divided by the area, and subroutine RING is called to obtann the structural weight thickness and radius of the compression ring. Return is then made to the calling routine.
9. Subroutine GNRISH
a. Purpose

The purpose of subroutine GNRLSH is to compute the structural weight and area of the general shell (Section 5).
b. Method

The Trapezoidal rule is used to calculate the total weight WTG and the
 of values of the coordinates X and Y which have been input are counted. The counting procedure assumes that a 0 . follows the last value of the Y array. (Therefore, special care must be taken in stacking cases). Between Statements 123 and 60 an array AFUNCT of integrands for the area and an array WFUNCT of integrands for the total weight are generated. (Each element in these arrays corresponds to a point in the original X and Y arrays.) The trapezondal rule is applied to AFUNCT and WFUNCT in the 5 statements starting at 61 . The results of the integration WTG and AG are multiplied by appropriate factors, and the umit weight WGENST is calculated. A call to subroutine RING obtains the structural weight, thickness, and area of the compression ring. Return is then made to the calling routine.
10. Subroutine RING
a. Purpose

The purpose of subroutine RING is to compute the structural weight, thickness, and radius of the compression ring.
-
b. Method

Straightforward evaluation of the formulas in arithmetic statements.
11. Subroutine HøTSTR
a. Purpose

The purpose of subroutine HסTSTR is to compute the maximum structural temperature TWMAX, and increase the structure weight if necessary to ensure that TWMAX is no greater than the input value TEMPA.
b. Method

Starting with W supplied by the calling routine, the initial temperature TEMPI, and the initial time value TAU(1) (input as TIME (I)), the routine calculates the temperature rise DELTAT in successive intervals of time (each of length DELTAU). The heating factors QCI, QRI, and $H G \phi R I$ which are used in the expression for DELTAT are looked up in tables $Q C, Q R$, and $H G \not \subset R T$ (input as $Q T B L, R T B L$, and HTBL, respectively) for each new point in time. Should TAUMAX (TST \varnothing P) be specified as larger than the final value of the TAU table, these heating factors are set to 0 . in the region beyond the ends of the tables.

After DELTAT has been computed, its sign is tested to check for a change from posituve to negative, signifymg a maximum temperature point. If DELTAT is initially negative, two sign changes must be encountered before it is assumed that the maximum temperature has been found. The computed $G \varnothing I \varnothing$ controlled by IDEL at Statement 40 handles such a case.

If a particular value of DELTAT $1 s$ positive, of if DELTAT is negatıve, but there has been no previous positive value, the current time TAUT in increased by DELTAU, and checked to make sure that it is less than TAUMAX.

If TAUT < TAUMAX, TW the current temperature is computed at Statement 60, and checked aganst TEMPA. If TW $<T E M P A$, the transfer to Statement 25 contmues the process at the new time value. If TW \geq TEMPA, WSTAR, the current weight, is increased by the factor EPSPI (1. + EPS), and the process is restarted at the initral point in time and temperature.

If TAUT \geq TAUMAX, (1.e., no maximum is found within the specified time interval), the temperature and weight at the final time point are taken as the result. A return to the calling routine 15 executed.

When a change in the sign of DELTAT from positive to negative is detected, an immediate return is made to the calling routine with the current values of weight, time, and temperature.

E. SIGNIFICANT EQUATIØNS

1. MAIN Program
$\mathrm{DPC}=\mathrm{GAMBAR} \cdot \mathrm{CBAR}$
2. BUCKLE

TEMP $=$ TMP1 - FTMP1 $\left(\frac{\text { TMP1 - TMP2 }}{\text { FTMP1 - FTMP2 }}\right)$
(False position algorithm for hot structures temperature iteration.)
3. $M \not \subset N \not \subset C$

TEMP $=$ TMP1 - FTMP1 $\left(\frac{\text { TMP1 }- \text { TMP2 }}{\text { FTMP1 }- \text { FTMP2 }}\right)$
a. Spherical Caps
nose sphere $\quad R=R N \quad H=R(1-\sin (T H N))$
aftsphere $\quad R=R A \quad H=R(1+\sin (T H A))$

PTEST $=\mp \frac{(\text { WHS }+ \text { WSTAR }) G}{144}+E\left(\frac{\text { SMAT }}{\text { SMATM }}\right)^{7 / 3}$
where SMAT is the current t_{f}.

$$
\begin{aligned}
& \text { SMATM }=12\left(1-X N U^{2}\right)^{2 / 7}\left(\frac{H}{R}\right)^{1 / 7} R \\
& \text { WSTAR }=\frac{\text { RHด' } \cdot \text { SMAT }}{12} \\
& \mathrm{P}=\mathrm{PCR} \pm \frac{(\text { WHS }+ \text { WSTAR) } \mathrm{G}}{144} \\
& T Y=\frac{P \cdot R}{2 \cdot S G F} \\
& \text { SIGMH }=\left[-\mathrm{PCR} \mp \frac{(\text { WHS }+ \text { WSTAR }) G}{144}\right] \frac{R}{2 \cdot S M A T} \\
& W=\frac{\text { WSAR }(2 \pi) H \cdot R}{144} \\
& \text { b. base } \\
& P=P C R+\frac{(\text { WHS }+ \text { WSTAR }) G}{144} \\
& \text { SMAT }=\left[\frac{0.375(\mathrm{R})^{2} \mathrm{P}(3+\mathrm{XNU})}{\mathrm{SGF}}\right]^{1 / 2} \\
& \text { WSTAR }=\underline{\text { RHØ } \cdot \text { SMAT }} \\
& 12 \\
& W=\frac{\text { WSTAR } \pi R^{2}}{144}
\end{aligned}
$$

4. STIFS

$$
\begin{aligned}
& \text { TEMP }=\operatorname{TMP1-FTMP1}\left(\frac{T M P 1-T M P 2}{\text { FTMP1 }- \text { FTMP2 }}\right) \\
& \text { BETAG }=1-\frac{R 1}{R 2} \\
& B E T A=\frac{B E T A G}{D N+1}
\end{aligned}
$$

$$
\mathrm{XL} \emptyset= \begin{cases}\frac{\mathrm{R} 2-\mathrm{R} 1}{\mathrm{SINT}} & \text { Cones } \\ \mathrm{XLC} & \text { Cylinder }\end{cases}
$$

$$
\operatorname{TTT}=(8 \cdot T 1 \quad T 3 \cdot T 4)^{1 / 4}
$$

$$
\mathrm{XK}=\mathrm{R} 2\left(1-\frac{\mathrm{BETA}}{2}\right) / \mathrm{C} \varnothing S T
$$

$$
\mathrm{XK} 1=\frac{\mathrm{XK}^{3}}{2\left(1-\frac{\mathrm{BETA})}{2}\right)^{2}}[\text { GAMBAR }+ \text { BETA }(1-2 \cdot \mathrm{GAMBAR})
$$

$$
\left.+\mathrm{BETA}^{2}(\mathrm{GAMBAR}-061600607)+\frac{\mathrm{XL}}{\mathrm{R} 2} \mathrm{XKTM}(1-0.61600607 \mathrm{BETA})\right]
$$

+ DELK1

$$
\mathrm{XK} 2=\mathrm{XK}(1+\mathrm{XKTM} \cdot \operatorname{SINT})+\mathrm{DELK} 2
$$

where,

$$
\begin{aligned}
& \mathrm{XKTM}= \pm \frac{(\mathrm{WHS}+\mathrm{W}) \mathrm{G}}{144 \cdot \mathrm{PA}} \\
& \mathrm{~B}=\frac{2 \pi \cdot \mathrm{XK} 1 \quad \mathrm{TTT}}{\mathrm{XL}\left[12\left(2 \mathrm{~T} 3-\mathrm{XNU}^{2}\right)\right]^{1 / 4} \mathrm{XK}^{3 / 2} \cdot \mathrm{XK} 2}
\end{aligned}
$$

$$
\begin{aligned}
& S=B(D T H D D)^{1 / 4}(\text { SMAT })^{1 / 2} \\
& P S=\frac{W S 1+1}{(W S I)^{1 / 2}\left(W S 1^{1 / 4}+\frac{S}{2}\right)}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \text { WS1 }=\frac{3+S}{1+S} \\
& \text { RHøT }=\frac{R \emptyset \mathrm{~F} \text { SMAT }}{1728} \\
& \text { WS2 }=1-\mathrm{XNU}^{2} \\
& \text { PAS }=\frac{\pi(\mathrm{PS})(\mathrm{DTH} \varnothing \mathrm{D})^{3 / 4} \cdot \mathrm{~T} 4(\mathrm{SMAT})^{5 / 2}\left[12\left(2 \mathrm{~T} 3-\mathrm{XNU}^{2}\right)\right]^{1 / 4} \cdot \mathrm{E}}{6(\mathrm{WS} 2) \mathrm{XL} \quad \mathrm{XK} 2 \cdot \mathrm{XK}^{1 / 2} \cdot \mathrm{TTT}} \\
& \text { WN }=\pi \cdot \mathrm{RH} \varnothing \mathrm{~T}\left[(\mathrm{RI}+\mathrm{R} 2) \mathrm{XL} \varnothing+2 \cdot \mathrm{H}(2 \cdot \mathrm{EN}+1) \cdot \mathrm{DN} \cdot\left(\mathrm{R} 2-\mathrm{XL} \varnothing \cdot \frac{\mathrm{SINT}}{2}\right)\right] \\
& \text { WSTAR }=\frac{\mathrm{WN} \cdot 144}{\mathrm{PI}(\mathrm{R} 1+\mathrm{R} 2) \mathrm{XL} \varnothing}
\end{aligned}
$$

cones:
$\mathrm{XNTH}=\left[-\mathrm{PA} \mp \frac{(\text { WHS }+ \text { WSTAR }) \cdot \mathrm{G} \cdot \mathrm{SINT}}{144}\right] \frac{\mathrm{R}}{\mathrm{C}(\mathrm{ST}}$
$\mathrm{XNPHI}=\left[-\mathrm{PA}\left(\mathrm{R}^{2}+\mathrm{R1}^{2}(\mathrm{GAMBAR}-1)\right) \mp \frac{\mathrm{G}\left(\mathrm{R}^{2}-\mathrm{R} 1^{2}\right)(\mathrm{WHS}+\mathrm{WSTAR})}{144 \mathrm{SINT}}\right] \frac{1}{2 \cdot R \cdot C \varnothing S T}$
$\mathrm{XNY}=\left[(\mathrm{XNTH})^{2}+(\mathrm{XNPHI})^{2}-\mathrm{XNTH} \cdot \mathrm{XNPHI}\right]^{\overline{\mathrm{I}} / 2}$
XNYMAX is the largest value of XNY. XNTHM, XNPHIM correspond
cylinders:
$\mathrm{XNTHM}=-\mathrm{PA} \mathrm{RC}$
$\mathrm{XNPHIM}=-\frac{\text { PA RC GAMBAR }}{2}-\frac{\mathrm{G} \cdot \mathrm{XLC} \text { (DHS + WSTAR) }}{144}$
$\mathrm{XNYMAX}=\left[(\mathrm{XNTHM})^{2} \div\left(\mathrm{XNPHIM}^{2}-\mathrm{XNTHM} \cdot \mathrm{XNPHM}\right]^{1 / 2}\right.$
$T C Y=\frac{X N Y M A X}{S G F}$

SIGMH $=\frac{\text { XNYMAX }}{T G}$

SIGH $=\frac{\text { XNTHM }}{\text { TG }}$

SIGM $=\frac{\text { XNPHM }}{\text { TG }}$
$D=\frac{E \cdot T L C}{12 \cdot W S 2}$

THT $=$ TL $\cdot \mathrm{H}(2 \cdot \mathrm{EN}+1)$
$A T=T H T+E M \cdot T E S$
$\mathrm{YBAR}=\left[\frac{\mathrm{EM} \cdot \mathrm{TLC}}{2}+\mathrm{THT}\left(\frac{\mathrm{H}}{2}+\mathrm{TL}\right)\right] \frac{1}{\mathrm{AT}}$
$\mathrm{XIX}=\frac{\mathrm{EM} T L C \cdot T L}{3}+\mathrm{THT}\left(\frac{\mathrm{H}}{2}+\mathrm{TL}\right)^{2}+(\mathrm{EN} \mathrm{H}+\mathrm{TL}) \frac{\mathrm{H}^{3}}{12}$
$-\frac{\mathrm{EN} \cdot \mathrm{H}(\mathrm{H}-2 \cdot \mathrm{TL})^{3}}{12}$
-94-
$649<$

```
XITH = XIX - AT , YBAR2
DTH =}\frac{(\textrm{DN}+1)\cdot\textrm{XITH}\cdot\textrm{E}}{\textrm{XL}\emptyset
DTH\emptysetD = DTH
```

5. NดSE
$H=R(1-\sin (T H E A T A))$
$P=P C R \pm \frac{(W H S+W) G}{144}$
$\rho_{c}=R \emptyset C=022 \cdot R \not \subset R\left(\frac{P}{S G R}\right)^{0588}$
$t_{c y}=T C Y=\frac{P \cdot R}{4(S G F)}$
$Z 1=\frac{R \not \subset F}{6}$
$\mathrm{Z2}=\mathrm{Z2T} \cdot \mathrm{R} \varnothing \mathrm{C} \cdot \mathrm{p}^{3 / 4}$
where,
$\mathrm{Z} 2 \mathrm{~T}=\frac{0.465 \sqrt{1-\mathrm{GAMF}^{2}} \cdot \mathrm{H}^{1 / 4} \cdot \mathrm{R}^{3 / 2}}{12 \cdot \mathrm{EF}^{3 / 4}}$
$t_{\text {fopt }}=T F \emptyset \mathrm{PT}=\left(0.75 \frac{\mathrm{Z} 2}{\mathrm{Z1}}\right)^{4 / 7}$
$t_{\text {copt }}=T C \emptyset \mathrm{PT}=\frac{12 \cdot Z 2}{\mathrm{R} \varnothing \mathrm{C}}\left(\begin{array}{ll}\frac{4}{3} & \frac{Z 1}{Z 2}\end{array}\right)^{3 / 7}$
-95-
$t_{f}=\operatorname{TSUBF}(T C)=\frac{T F T M \cdot P}{T C^{4 / 3}}$
where,
$\mathrm{TFTM}=\frac{0.36\left(1-\mathrm{GAMF}^{2}\right)^{2 / 3} \mathrm{H}^{1 / 3} \cdot \mathrm{R}^{2}}{\mathrm{EF}}$
${ }^{t_{c}}=\operatorname{TSUBC}(T F)=\operatorname{TCTM}\left(\frac{P}{T F}\right)^{3 / 4}$
where,
$\mathrm{TCTM}=\frac{0.465 \sqrt{1-\mathrm{GAMF}^{2}} \mathrm{H}^{1 / 4} \mathrm{R}^{3 / 2}}{\mathrm{EF}^{3 / 4}}$
$W=$ WEIGT $(T F, T C)=Z 1 \cdot T F+\frac{\mathrm{R} \varnothing \mathrm{C} \cdot \mathrm{TC}}{12}+\mathrm{ZK}$
$W T=W \cdot \frac{\pi R^{2}}{72}(I-\sin (T H E T A))$
$\mathrm{SIGMH}=\left[-\mathrm{PCR} \mp \frac{(\mathrm{WHS}+W) \mathrm{G}}{144}\right] \frac{\mathrm{R}}{4 \text { TFUSED }}$
where TFUSED is the value of t_{f} chosen by the routine.
6. CDNE
$B=1-\frac{\mathrm{R} 1}{\mathrm{R} 2}$

ZLAMD $=\frac{\pi \cdot \operatorname{SINTH}}{\mathrm{R} 2 \cdot \mathrm{~B}}$

ZLILK $=\frac{\mathrm{R} 1 \div \mathrm{R} 2}{2 \mathrm{C} \varnothing S T H}$
$R \emptyset C=0.22 \cdot R \emptyset R\left(\frac{P C R}{S G R}\right)^{0.588}$
$\mathrm{XNTH}=\left[-\mathrm{PCR} \mp \frac{(\text { WHS }+ \text { W) } \mathrm{G}}{144} \operatorname{SNTH}\right] \frac{\mathrm{R}}{\mathrm{C} \varnothing \mathrm{STH}}$
$\mathrm{XNPHI}=\frac{\dot{1}}{2 R \cdot \operatorname{C\emptyset STH}}\left[-\operatorname{PCR}\left(R^{2}+R 1^{2} \cdot(\mathrm{DPC}-i)\right) \mp \frac{G\left(R^{2}-R 1^{2}\right)(W H S+W)}{144 \operatorname{SINTH}}\right]$
$\mathrm{XNY}=\sqrt{(\mathrm{XNTH})^{2}+(\mathrm{XNPHI})^{2}-\mathrm{XNTH} \mathrm{XNPHI}}$
$\mathrm{TCY}=\frac{\mathrm{XNYMAX}}{2 \cdot \mathrm{SGF}}$
where XNYMAX is the largest value of XNY.

$$
Z 2=Z \operatorname{LILK}(1+Z T E R M \cdot \operatorname{SINTH})+\text { DELZ2 }
$$

where,

$$
\begin{aligned}
& \text { ZTERM }=\frac{(W H S+W) G}{144 \mathrm{PCR}} . \\
& Z^{-}=\text {ZLILK }^{3}\left[\mathrm{DPC}+\mathrm{B}(\overline{1}-2 \cdot \stackrel{-}{\mathrm{DPC}})+\mathrm{B}^{2}(\mathrm{DPC}-0.61600607)\right. \\
& \left.\mp \frac{B \cdot Z T E R M \cdot(1-0.61600607 \cdot B)}{\operatorname{SINTH}}\right] \frac{1}{2\left(\dot{1}-\frac{B}{2}\right)^{2}}+\mathrm{DELZ} 1
\end{aligned}
$$

$$
A=A T M\left(\frac{Z_{1}}{Z_{2}}\right)
$$

where,

$$
\begin{aligned}
& \text { ATM } \frac{Z L A M D}{Z L I L K}\left(\frac{2 \cdot T I \cdot T 3 \cdot T 4}{2 T 3-\mathrm{GAMF}^{2}}\right)^{\overline{1 / 4}} \\
& \mathrm{P}=\operatorname{PTM}\left(\frac{Z I}{Z 2}\right)^{2} \cdot Z_{1}^{-}
\end{aligned}
$$

```
where,
    \(\mathrm{PTM}=\frac{32 \cdot \mathrm{TI}{ }^{-} \mathrm{T} \cdot \mathrm{ZLAMD}^{2}}{(\mathrm{ZLILK})^{5}}\left(\frac{1-\mathrm{GAMF}^{2}}{2 \cdot \mathrm{~T} 3-\mathrm{GAMF}^{2}}\right)\left(\frac{\overline{\mathrm{PCR}}}{\mathrm{EF}}\right)\)
    \(C_{i}=\frac{P \cdot \operatorname{ZLILK} \quad \text { R } \varnothing F}{1 I I-9 A^{284}}\)
    \(C_{2}=\frac{R \not \subset C}{12}\)
    \(t_{\text {fopt }}=T F \varnothing \overline{P P T}=\frac{489}{R O F}(C 1)^{0.414} \cdot(C 2)^{0.586}\)
    \(t_{c o p t}=\operatorname{TCOPT}=1.156\left(\frac{C I}{C 2}\right)^{0.414}\)
    \(\tau_{f}=\operatorname{TSUBF}(T C)=\frac{P \text { ZLILK }}{18.6(A \sqrt{T C})^{2.84}}\)
    \({ }^{t_{c}}=\operatorname{TSUBC}(T F)=0.127\left(\frac{\mathrm{P} \text { ZLILK }}{T F A^{2.84}}\right)^{0.704}\)
    WEIGT \((T F, T C)=\frac{R \not D F \cdot T F}{6}+\frac{R \phi C T C}{12}+2 K\)
```

$$
\begin{aligned}
& W T=\frac{W(R 1+R 2)(R 2-R 1) \pi}{\operatorname{SINTH} 144} \\
& \text { SIGMH }=\frac{\text { XNYMAX }}{2 \cdot \text { TFUSED }} \\
& \text { SIGH }=\frac{\text { XNTHM }}{2 \text { TFUSED }} \\
& \text { SIGM }=\frac{\text { XNPHIM }}{2 \cdot \text { TFUSED }}
\end{aligned}
$$

where TFUSED is the value of ${ }^{t_{f}}$ chosen by the routine.

7. CYLIND

$$
\begin{aligned}
& \rho_{\mathrm{C}}=\mathrm{R} \phi \mathrm{C}=0.22(\mathrm{R} \phi \mathrm{R})\left(\frac{\overline{\mathrm{PCR}}}{\mathrm{SGR}}\right)^{0.588} \\
& \mathrm{X} 2=\frac{\mathrm{R} \phi \mathrm{C}}{12} \\
& \mathrm{X}_{1}-\frac{\mathrm{X} 1 \mathrm{~T}}{\mathrm{~PB}}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \overline{\mathrm{PB}}=\frac{(\mathrm{ST}+1)}{\sqrt{\mathrm{ST}}\left(\mathrm{ST}^{1 / 4}+\frac{\mathrm{S}}{2}\right)}\left(i+\frac{\mathrm{DELK} 2}{\mathrm{RC}}\right) \\
& \mathrm{ST}=\frac{3+\mathrm{S}}{1+\mathrm{S}} \\
& \mathrm{XNTH}=-\overline{\mathrm{PCR} \cdot \mathrm{RC}} \\
& \overline{\mathrm{XNPHI}}=-\frac{\mathrm{PCR} \cdot \mathrm{RC} \mathrm{DPC}}{2}-\frac{\mathrm{G}(\mathrm{DEL})(\mathrm{WHS}+\mathbb{W})}{144}
\end{aligned}
$$

where,

$$
\operatorname{STM}=\frac{222(\mathrm{RC})^{\dot{1} / 2}}{\operatorname{DEL}\left(\dot{I}-G A M F^{2}\right)^{1 / 4}\left(\dot{I}+\frac{\mathrm{DELK2}}{\mathrm{RC}}\right)}
$$

$$
t_{f}=\operatorname{TSUBF}(T C)=\frac{T F T M}{(T C)^{3 / 2}(\mathrm{~PB})}
$$

where,

$$
\begin{aligned}
& \mathrm{TFTM}=\frac{\mathrm{PCR}(\mathrm{RC})^{3 / 2}(\mathrm{DEL})\left(1-\mathrm{GAMF}^{2}\right)^{3 / 4}(0.45219638)}{E F} \\
& \mathrm{t}_{\mathrm{c}}=\operatorname{TSUBC}(\mathrm{TF})=\frac{\mathrm{TCTM}}{(\mathrm{TF} \mathrm{~PB})^{2 / 3}}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \mathrm{ere}, \\
& \mathrm{TCTM}=0.404\left[\frac{-\mathrm{PCR}(\mathrm{RC})^{3 / 2}(\mathrm{DEL})(\mathrm{I} .75)}{\mathrm{EF}}\right]^{2 / 3}\left(1-\mathrm{GAMF}^{2}\right)^{\mathrm{I} / 2} \\
& \mathrm{WT}=\frac{\mathrm{W} \cdot \mathrm{RC} \cdot \mathrm{DEI} \pi}{72} \\
& \text { SIGMH }=\frac{\mathrm{XNY}}{2(\mathrm{TFUSED})}
\end{aligned}
$$

$$
-100
$$

$655<$

$$
\begin{aligned}
& \mathrm{XNY}=\left[(\mathrm{XNTH})^{2}+(\mathrm{XNPHI})^{2}-(\mathrm{XNTH})(\mathrm{XNPHI})\right]^{1 / 2} \\
& t_{c y}=T C Y=\frac{X N Y}{2(S G F)} \\
& { }^{c_{\text {fopt }}}=\operatorname{TF} \emptyset \mathrm{PT}=\frac{4.7(\mathrm{X} 1)^{0.4}(\mathrm{X} 2)^{0.6}}{\mathrm{R} \emptyset \mathrm{~F}} \\
& \operatorname{TCø̈PT}=1.176\left(\frac{\mathrm{X} 1}{\mathrm{X} 2}\right)^{0.4} \\
& \mathrm{~S}=\mathrm{STM}(\mathrm{TCUSED})^{\bar{I} / 2}\left[\overline{\mathrm{DPC}}+\frac{\mathrm{DELKI}}{\mathrm{RC}^{3}}+\frac{\mathrm{DEL}(\text { (WHS }+\mathrm{W}) \mathrm{G}}{(\mathrm{RC})(144)(\mathrm{PCR})}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { SIGH }=\frac{\mathrm{XNTH}}{2(\mathrm{TFUSED})} \\
& \text { SIGM }=\frac{\mathrm{XNPHI}}{2(\mathrm{TFUSED})}
\end{aligned}
$$

8. BASE

$$
\begin{aligned}
& P=P C R+\frac{(W H S+W) G}{144} \\
& R \not \subset C=022 \cdot R \emptyset R\left(\frac{P}{S G R}\right)^{0.588}
\end{aligned}
$$

$$
Z_{1}^{-}=\frac{R \emptyset F}{6}
$$

$$
Z 3=Z 3 T \quad P
$$

where

$$
\begin{aligned}
& \mathrm{Z} 3 \mathrm{~T}=\frac{\mathrm{RT}^{2}(3 .+\mathrm{GAMF})}{16 \mathrm{SGF}} \\
& \mathrm{TEOPT}=\sqrt{\frac{\mathrm{Z3}}{\mathrm{Z} 1}} \\
& \text { TCUSED }=\frac{\mathrm{Z} 3}{\mathrm{TFUSED}} \\
& \mathrm{TFUSED}=\frac{\mathrm{Z} 3}{\mathrm{TCUSED}} \\
& \mathrm{~W}=\frac{\mathrm{R} \varnothing \mathrm{C} \cdot \mathrm{TCUSED}}{12}+\mathrm{ZK}+\mathrm{Z1} \cdot \mathrm{TFUSED} \\
& \mathrm{WT}=\frac{\mathrm{W} \cdot \pi \mathrm{RT}}{144}
\end{aligned}
$$

9. TENSФN

$$
\begin{aligned}
& \mathrm{R} 3=\mathrm{RC}-\mathrm{RSC} \\
& \mathrm{R} 2=\mathrm{RN} \cdot \sin (\mathrm{THN}) \div \operatorname{RSN}(\cos (\mathrm{BETA})-\cos (\mathrm{THN})) \\
& \mathrm{XL} \varnothing \mathrm{~GB}=\log _{\mathrm{e}}\left[\frac{1+\cos (\mathrm{BETA})}{\sin (\mathrm{BETA})}\right] \\
& C 1=\frac{2 \cdot \mathrm{XL} \sigma \mathrm{~GB}}{1-\left(\frac{\mathrm{R} 2}{\mathrm{R} 3}\right)^{2}} \\
& \mathrm{~T} 3=\frac{\overline{\mathrm{PCR}} \cdot \mathrm{R} 3}{\mathrm{Cl} \cdot \mathrm{SIGCYF}} \\
& Y C A L C=\sqrt{R 3^{2}+\frac{\left(R 2^{2}-R 3^{2}\right) \cdot \log _{\mathrm{e}}\left(\frac{1+\mathrm{C} \varnothing S T H}{\operatorname{SINTH}}\right)}{X L \emptyset G B}} \\
& T=\frac{\mathrm{R} 3 \mathrm{~T} 3}{\mathrm{YCALC}} \\
& \mathrm{YDYDT}=-\frac{\left(\mathrm{R} 2^{2}-\mathrm{R} 3^{2}\right)}{\operatorname{SINTH} \cdot 2 \cdot \mathrm{XL} \emptyset \mathrm{~GB}} \\
& A(I)=\frac{\text { YDYDT }}{\text { SINTH }} \quad I=\overline{1}, 2, \ldots 25 \\
& W(1)=T \quad A(1) \quad I=\overline{1}, 2, \ldots 25 \\
& \text { WTT }=\frac{2 \pi \cdot \mathrm{R} \phi \mathrm{~F}}{1728} \int_{\text {BETA. }}^{\pi / 2} W
\end{aligned}
$$

$$
\mathrm{AT}=\frac{2 \pi}{144} \int_{\mathrm{BETA}}^{\pi / 2} \mathrm{~A}
$$

10. GNRLSH

$X N U M=Y(J)-Y(J-1)$
DENØM $=\mathrm{X}(\mathrm{J})-\mathrm{X}(\mathrm{J}-\mathrm{I})$

THETA $=\tan ^{-1}\left(\frac{\mathrm{XNUM}}{\text { DEN } \varnothing \mathrm{M}}\right)$

SINTH $=\sin ($ THETA $)$
$T=\frac{T 3(Y 3)^{1-A}}{Y(J)^{1-A}}$
where $Y 3$ 1s the last element of the Y-axray.
$\operatorname{AFUNCT}(J)=\frac{Y(J)}{\operatorname{SINTH}}$
WFUNCT (J) $=\mathrm{T} \operatorname{AFUNCT}(\mathrm{J})$

WTG $=2 \pi \cdot R \not \subset F \int_{Y(1)}^{Y 3}$ WFUNCT
$A G=2 \pi \int_{Y(1)}^{Y 3}$ AFUNCT

WGENST $=$ WTG/AG
-103-

$$
\mathrm{R} 3=\mathrm{i} 2 \cdot \mathrm{Y} 3
$$

11. RING

$$
R R=\left(\frac{R C^{3} \cdot W S 1}{1.7 \cdot \pi}\right)^{1 / 3}
$$

where,

$$
\begin{aligned}
& W S 1=\sqrt{\frac{(2 \pi)(03) \cdot \mathrm{T} 3 \cdot \mathrm{SIGCYF}}{\mathrm{ER} \cdot \mathrm{RC}}} \\
& \mathrm{TR}=\sqrt{\frac{\mathrm{R} 3 \cdot \mathrm{~T} 3 \cdot \mathrm{SIGCYF}}{0.6 \pi(\mathrm{ER})}} \\
& W R=\frac{\pi^{2} \cdot \mathrm{RR} \cdot \mathrm{TR} \cdot \mathrm{R} \emptyset \mathrm{RG}(\mathrm{RC}-\mathrm{RR})}{432}
\end{aligned}
$$

$$
\text { WSCST }=\frac{W / R \cdot 144}{2 \pi \cdot R S C \cdot W S 2}
$$

where,
WS2 $=\mathrm{R} 3 \cdot \mathrm{TH} 3+\mathrm{RSC}(\sin (\mathrm{TH} 3)-\mathrm{TH} 3 \cdot \cos (\mathrm{TH} 3))$
12. HめTSTR

$$
\begin{aligned}
& \mathrm{ENC1}=\mathrm{XN}(23.3)+\mathrm{X} \varnothing(24.3)+\mathrm{XC}(35.7)+\mathrm{XA}(15.26) \\
& \mathrm{ENC} 2=\mathrm{XN}(4983)+\mathrm{X} \varnothing(52.5)+\mathrm{XC}(100.1)+\mathrm{XA}(30.5)- \\
& \mathrm{AW}=0.001\left[\frac{2}{3} \text { ENC1 }-\frac{1}{6} \mathrm{ENC} 2\right] \\
& \mathrm{BW}=-\frac{10^{-6}}{9}[\text { ENC1 }-0.5 \text { ENC2] }
\end{aligned}
$$

```
DELTAT ={FC QCI [1- (AW\cdotTW1,+BW TW12)
    - EMISS (\frac{TW1}{1200}\mp@subsup{)}{}{4}}\frac{1}{(WSTAR)(CP)}
TW1 = TW \div460
WSTAR is current weight
TW = TW + DELTAT · DELTAU
```

 -105-

V. REFERENCES

1. RAD, Mars-Venus Capsule Parameter Study, I, Avco/RAD TR 64-1 JPL Contract 950626 (21 March 1964).
2. Homewood, R. H., A. C. Brine, and A. E., Johnson, Bucking Instability of Monocoque Shells, The Society of Experimental Stress Analysıs, Paper No. 457, presented at Washington, D. C. (20 to 22 May 1959).
3. Von Kloppel, K. and O. Jungbluth, Beitrag zum Durchschlag Problem dumnwandiger Kugelschalen, Der Stahlbau 22, pp. I21 through 130 (errata p. 288) Berlin, Springer (1935).
4. Kaplan, A., and Y. C. Fung, A Nonlnear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells, NACS-TN-3212 (August 1954).
5. Serpico, J C., Elastic Stability of Orthotropic Conical and Cylindrical Shells Subjected to Axisymmetric Loading Condations, ATAA Journal 1, No. 1 (1963).
6. Anderson, M. S., J. C. Robinson, H. G. Bush, and R. W. Fralıch, A Tension Shell Structure for Applıcation to Entry Vehicles, NASA TN D-2675 (March 1965).
7. Timoshenko, S P., and J. M. Gere, Theory of Elastic Stability, McGraw Hıll Book Co., Second Edition (1961), pp. 313 through 318.
8. Gerard, G., and H. Becker, Handbook of Structural Stabılity, Part IIIBuckling of Curved Plates and Shells, NACA TN 3783 (August 1957).
9. Weigarten, V.I., and P. Serde, Elastic Stability of Thin-Walled Cylindrical and Conical Shells Under Combined External Pressure and Axial Compression, AIAA Journal, 3, No. 5, pp. 913 through 920 (May 1965).
10. Weigarten, V. I., E. F. Morgan, and P. Seide, Final Report on Development of Design Criteria for Elastic Stability of Thin Shell Structures, STL/TR-60-0000-19425 (December 1960).

SPECIAL SUBROUTINES

I. General Purpose Subroutines 1
A. ARTLU 1
B. AR2TLU. 2
C. ARSIMP. 3
D. ADAMS4 3
E. ADM4RK 4
F. PゆLRDT 8
G. C $\varnothing \mathrm{MDIV}$ 9
H. ATANQR 9
I. ASINR 10
J. $A C \emptyset S R$ 10
K. AICRT3 11

I GENERAL PURPOSE SUBROUTINES

1 Purpose
The purpose of subroutine $A R T L U$ is to perform a linear interpolation wathin $\mathbb{N} \leq 10$ dependent variable tables Y1TBL, Y2TBL, , corresponding to a monotonically increasing independent variable table XTBL.

2. Calling Sequence

$\mathrm{N} \quad$ number of dependent variable tables ($\mathrm{N} \leq 10$).
$\mathrm{X} \quad$ independent argument (X must not be larger than the last element of XTBL).
XTBL table of independent variable (maximum of 1000 elements).
Yl dependent argument.
YlTBL table of dependent variable, with elements corresponding to those in XTBI.
Y2 dependent argument.
Y2TBL table of dependent variable, with elements corresponding to those in XTBL.

3 Method

Within the DO 11 loop the index I is moreased until XTBL(I), the last value of XTBL smaller than the argument X has been found P is then defined as (X-XTBL(I))/(XTBL(I+1)-XTBL(I)). The computed GDT$T \varnothing$ ensures that N values of the dependent variable will be computed between State. ments N and 1 For each i, $l \leq i \leq N$,

```
Yi = YiTBL(I) + P* (YiTBL(I+1) - YiTBL(I)).
```

If X is smaller than the first element of XTBL, automatic linear extrapolation is performed from the first two elements of the tables. If X is larger than the last element of XTBL an unpredictable error will result, although a value of $I>1000$ would produce an error message written according to $F \phi$ RMAT Statement 30 .

1. Purpose

The purpose of Subroutine AR2TLU is to perform an interpolation wathin a two-dimensional table ZTBI the elements of which correspond to the entries in two one-dimensional monotonically increasing tables XTBL and YTBL.

2 Calling Sequence

NX	number of values in XTBL.
NY	number of values in YTBL.
X	independent argument.
XTBL	table of independent variable.
Y	independent argument
$Y T B L$	table of independent variable
Z	dependent argument
ZTBL	table of dependent variable (with dimension (NX, NY))

3 Method
The $D \varnothing 5$ loop searches XTBL for XTBL(I), the first element greater than or equal to X If the re is no such XTBL(I), an error message is written, ICHK is set to 1 , and a return to the calling routine is executed

Similarly, the $D \varnothing 15$ loop searches YTBL for YTBL(J), the first element greater than or equal to Y If there is no such YTBL(J), an error message is written, ICHK is set to l , and a return to the calling routine is executed

If the re is no error return, Z is computed starting at Statement 20 according to the following formula:

$$
\begin{aligned}
Z= & (1-P 1-P 2+P 3) * \operatorname{ZTBL}(I-1, J-1)+(P 1-P 3) * Z T B L(I, J-1) \\
& +(P 2-P 3) * \operatorname{ZTBL}(I-1, J)+P 3 * Z T B L(I, J)
\end{aligned}
$$

where,

$$
\begin{aligned}
& \mathrm{Pl}=(\mathrm{X}-\mathrm{XTBL}(\mathrm{I}-1)) /(\mathrm{XTBL}(\mathrm{I})-\mathrm{XTBL}(\mathrm{I}-1)) \\
& \mathrm{P} 2=(\mathrm{Y}-\mathrm{YTBL}(\mathrm{~J}-1)) /(\mathrm{YTBL}(\mathrm{~J})-\mathrm{YTBL}(\mathrm{~J}-1)) \\
& \mathrm{P} 3=\mathrm{P} 1 * \mathrm{P} 2 .
\end{aligned}
$$

Return is then made to the calling routine
C. ARSIMP

1 Purpose

The purpose of Subroutine ARSIMP is to integrate by Simpson's Rule an array YARRAY of N points tabulated at an equally-spaced interval of the independent variable.

2 Method
The calling sequence is
CALI ARSIMP (N, DELTAX, YARRAY, ANSWER)
where,
$\mathbb{N} \quad$ number of points to be integrated (N must be odd)
DELTAX interval of independent variable at which array points were tabulated
YARRAY array of points to be integrated
ANSWER result of integration
The Simpson's Rule algorithm is applied in a $D \varnothing$ loop
D. ADAMS4

1 Purpose
The purpose of Subroutine ADAMS4 is to integrate a set of N first order differential equations by a predictor-corrector method

2 Method
ADAMS4 is a slightly modified version of Subroutme ADM4RK The differences between the two routines are as follows:
a. The calling sequence for ADAMS4 is

CALL ADAMS4 (NZ, ZDEI, VALUE, DERN, UPBND, DNBND, FACT ϕ, FREQ, HLIMIT, LZ, ZXINDE, DELMIT, DEREQ, PAR, NPAR)

All but the last three arguments are defined identically as those in ADM4RK The arguments DEREQ, PAR, and NPAR were

$$
666<
$$

added to the list They have the following meanings
DEREQ name of subroutine defining derivatives (The name can now be arbitrary but must appear in an external statement in the calling program)

PAR array of parameters appearing in the derivative calculations (In ADM4RK, information is generally transmitted to $D E R E Q$ through $C \varnothing M M \not \subset N$)

NPAR number of elements in the array PAR
b. Within ADAMS4 the calling sequence for $D E R E Q$ is

CALI DEREQ (NZ, VALUE, XINDEP, DERN, LZ, PAR, NPAR)

The three elements added to the list $N Z, P A R$, and NPAR, have the same meaning here as in the ADAMS4 calling sequence.
c After the 3 CAIL DEREQ statements within ADAMS4, the controlling parameter L is tested in an IF statement. If $L \geq 6$, immediate return is made to the calling program This allows L to be reset within DEREQ to indicate an error condition which the main program may act upon

The original writeup of ADM4RK has been included in this section of the manual.
E. ADM4RK ${ }^{1}$

1. Purpose

To allow integration of N differental equations by a predictor-corrector method which will alter the delta of integration so that the required accuracy is maintained.

[^2]2. Usage

CALL ADM4RK (N, DEL, VALUE, DERN, UPBND, DNBND, FACT \varnothing, FREQ, HLIMIT, L, XINDEP, DELMIT)
where,

N	The number of equations to be integrated.
DEL	The delta of integration.
VALUE	The array of N integrated values.
DERN	The array of N derivative values.
FREQ	The value which indicates the interval at which the user would like to return to the calling program
HLIMIT	The value which specifies the upper limit of integration When this value is reached, return is made to the calling program.
L:	The control parameter:
$=1$	Indicates initial pass. Must be set by user who desires $F R E Q$ and HLIMIT testing.
$=2$	Indicates that a FREQ interval has been reached.
$=3$	Indicates that HLIMIT has been reached.
$=4$	Inducates that HLIMIT and $F R E Q$ interval has been reached, simultaneously.
$=-5$	Indicates that return to the calling program is to be made after each successful integration step. This will be set to +5 during the initial pass. No tests are made for $F R E Q$ or HLIMIT.
$=6$	Indicates that the integration interval is less than DELMIT.

XINDEP The value of the independent variable.
UPBND The upper bound on the absolute difference that is allowed between the extrapolated and interpolated values. If this bound is exceeded by this difference, the delta of integration 15 reduced and integration is retried.

DNBND The lower bound on the absolute difference between the extrapolated and interpolated values. If this bound exceeds this difference, the delta of integration is increased and integration 15 carried on.

FACT $\varnothing \mathrm{R}$. The percentage by which the delta of integration is increased or decreased in the above. This must be less than 1 .

DELMIT The value below which we do not wish to reduce the delta of integration. If this is not specified (i.e., $=0$), it will be set to the initially specified delta of integration divided by 1000.0 .

In addition, the user must supply a subroutine having the following specificatıons:

a. Calling sequence $C A I L \operatorname{DEREQ}(A, B, C, I)$

where,

A The array of N integrated values
B The value of the independent variable
C The array of N derivative values

I Corresponds to I in the explanation above.
b. Use

This routine should evaluate the N differential equations given the N integrated values at the value of the independent variable B

c. Restriction

The values of the integrated variables, if used in this routine should be plcked up from the argument A and B above only and not from XINDEP and VALUE which were previously defined. Also nothing should be stored into A and B.

3. Sample of Use

Given: $\quad \frac{d^{2} y}{d x^{2}}=x$ where $y_{0}=0, \frac{d y_{o}}{d x}=0$
evaluate y from 0 to $\mathrm{x}=100$ and print the values of y at $\mathrm{x}=0,2,4,6, \ldots$ 100. Starting with an initial Δx of 0.005 and increase or decrease the Δx by 30 percent if the difference between the extrapolated and interpolated values do not fall between certain given bounds.

DEREQ (D, X, LT, L)

DIMENSION D(7), DT (8).
$D T(1)=D(2)$
$D T(2)=x$
RETURN
END
DIMENSION D (2), DT (2), UPBND (2), DNBND (2)
$\mathrm{L}=\mathrm{I}$ or $\mathrm{L}=-5$
DELTAX $=0.005$
$\mathrm{X}=0.0$
$D(1)=0.0$
$D(2)=0.0$
UPBND (1) $=1.0 \mathrm{E}-5$
DNBND (1) $=1.0 \mathrm{E}-6$
$\operatorname{UPBND}(2)=0.5 E-5$
DNBND (2) $=0.5 E-6$

$$
\begin{gathered}
660< \\
-7-
\end{gathered}
$$

1 CONTINUE
CALL ADM4RK（2，DELTAX $=\mathrm{D}=\mathrm{DT}=\mathrm{UPBND}=0.3,2.0,100.0$ ， $\mathrm{L}, \mathrm{X}, 1.0 \mathrm{E}-7$ ）

WRITE DUTPUT TAPE 5，2，X，D（I）
2 F \varnothing RMAT（1P2E20．5）
GФ TD（1，1，3，3，4，5），L
3 ST $\varnothing \mathrm{P} 77777$
4 IF（X－100．0）1，3， 3
5 CALL MESSAG（24H DEI X IS T \varnothing SMALI，3）
STゆP 77776
END
F．$P \emptyset L R \varnothing T$
1．Purpose
The purpose of Subroutine $P \emptyset L R \emptyset T$ is to calculate the roots of a polynomial

2．Method
The calling sequence is
CALL P $\emptyset L R D T(N, A, R, C)$
N degree of polynomial．Maximum of 20
A coefficients of polynomial（Note that A（1）is the coefficient of X^{n} ）
$R \quad$ roots of polynomial R is dimensioned（ $2, N$ ）where $R(1, J)$ is the real，$R(2, J)$ is the imaginary part of the $J{ }^{\text {th }}$ root
C convergence factor，（ $C=10^{-5}$ is satisfactory in most cases ）
Newton－Raphson iteration is used Therefore，if $f(x)$ is the polynomial and if $f^{\prime}(r) \rightarrow 0$ ，the method will not converge． Moreover，the constant term of the polynomial cannot be 0 ．
（PゆLRめT calls PゆLRT1）

G. CDMDIV

1. Purpose

The purpose of Subroutine C \varnothing MDIV is to evaluate $\mathbb{E}+1 F=(A+i B) /$
$(C+1 D)$ when A, B, C, D are given
2. Method

The calling sequence is
CALI C \emptyset MDIV ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$)
The routine calculates

```
G =C*C+D*D
E = (A*C+B*D)/G
F}=(B*C-A*D)/
```


H. ATANQR

1 Purpose

The purpose of function $\operatorname{ATANQR}(W, H)$ is to calculate the arctangent of W / H where W and H are floating point numbers, and to return the result either in radians or degrees The convention to be observed is that

$$
0 \leq \operatorname{ATANQR}(W, H)<\left\{\begin{array}{l}
2 \pi \\
360 \text { degrees }
\end{array}\right.
$$

2. Method

ATANQR is a multiple entry function with entry points ATANQ and ATANQD

If ATANQR (W, H) or ATANQ (W, H) is referenced, D 2 s set to 1 , and X is defined as ATAN2(W, H), where ATAN2 is the FDRTRAN IV library function IF $\mathrm{X}<0$, it is reset to $\mathrm{X}+2 \pi$ Then ATANQR. is defined as X / D.

If $A T A N Q D(W, H)$ is referenced, D is set to 0017453293 , and the remaining computations are carried out as before.

1 Purpose

The purpose of function $\operatorname{ASINR}(W)$ is to calculate the arc-sine of a floating point number W and to return the result either in radians or degrees. The convention to be observed is

$$
0 \leq \text { ASINR }(W) \leq\left\{\begin{array}{l}
\pi / 2 \\
90 \text { degrees }
\end{array}\right.
$$

or,

$$
\left.\begin{array}{l}
3 \pi / 2 \\
270 \text { degrees }
\end{array}\right\} \leq \operatorname{ASINR}(W) \leq\left\{\begin{array}{l}
2 \pi \\
360 \text { degrees }
\end{array}\right.
$$

2. Method

ASINR 15 a multiple entry function with entry points ASIN and ASIND.

If $A S I N R(W)$ or $A S I N(W)$ is referenced, D is set to $1 ., W S$ is defined as $1-W * W$, and ASINR is computed as

$$
\operatorname{ASINR}=\operatorname{ATANQR}(W, \operatorname{SQRT}(W S)) / D
$$

If ASIND(W) is referenced, D is set to 0017453293 , and the remaining computations are carried out as before
J. $A C \varnothing S R$

1. Purpose

The purpose of function $A C \emptyset S R(W)$ is to calculate the arc-cosine of a floatmg point number W and to return the result either in radians or degrees The convention to be observed is

$$
0 \leq A C \phi S R(W) \leq\left\{\begin{array}{l}
\pi \\
180 \text { degrees }
\end{array}\right.
$$

2 Method

AC $\varnothing S R$ is a multiple entry function with entry points $A C D S$ and $A C \varnothing S D$
If $A C D S R(W)$ or $A C D S(W)$ is referenced, D is set to 1 , WS $1 s$ defined as $1-W * W$, and $A C D S R$ is computed as

$$
A C \emptyset S R=A T A N Q R(S Q R T(W S), W) / D
$$

If $A C \emptyset S D(W)$ is referenced, D is set to 0017453293 , and the remaining computations are carried out as before

K. AICRT3 ${ }^{1}$

1. Purpose

AICRT3 is a general-purpose subroutine for the displaying of output data m graphical form

2. Method

From the user's viewpoint, the version of AICRT3 to be used with FøRTRAN IV programs operates in the same manner as the

FORTRAN II version Therefore, although no new writeup was issued for FORTRAN IV, the following origınal writeup still described the subroutine usage, if the reader makes allowances for the standard differences between the two systems 9(e.g., FORTRAN IV arrays being stored forward in core):

```
a. Logx Log
b. Log x Linear
c. Linear x Log
d. Linear x Linear.
```

Along with these types of graphs, AICRT3 has the ability of plotting multifunction graphs. If this feature of the code is used, one must obtain separately the upper and lower limits of the functions. One must then supply the upper and lower limits to the subroutine by use of the override feature, or first plot the curve which has both the maximum value of all functions being plotted and also the minimum value of all functions. If the override feature is used, the arguments supplied are unaltered. If the override feature is not used, the upper and lower limits are determined by the code and returned to the user via the arguments. Therefore, the programmer must not place a variable or constant for said arguments that are to be used again at their original values, since they will be changed by this subroutine. The override feature also will give the user the ability for a standard size grid for multiple case plotting.

[^3]\[

$$
\begin{aligned}
& -11 \rightarrow \\
& 6+74=5
\end{aligned}
$$
\]

3. Use

The method one uses to obtain the above named plot is as follows:
a. On the EDPM Job Request, deck set up instructions; request subject deck first before data
b. In your program deck for each plot, use the following calling sequence:

CALL AICRT 3 (KX, KY, X, Y, NP, ND, NV, NS, NC, $T, A, \phi, N F$, NG, DCX, DCY, NX $\varnothing, \mathrm{XL}, \mathrm{XU}, \mathrm{NY} \varnothing$, YL, YU) *
c. This routine should not be used to plot a point at a time.

4 Input Data Description
The inputs for this program are the arguments of the calling sequence in Section 5. They are as follows.

KX	0 for 1mear display in X 1 for \log display in X
KY	0 for limear display in Y 1 for \log display in Y
X	First location of storage for values of X
Y	First location of storage for values of Y
NP	Number of points in X and Y array to be plotted
ND	Interval at which points will be displayed, e.g. , every point $=1$, every loth point $=10$
NV	2 if one wishes to join points plotted with a straight line 1 if not

[^4]| NS | 2 If the data is to be sorted as a function of X 1 if the data is not to be sorted (This is to enable the connecting of points by vectors.) |
| :---: | :---: |
| NC | Character representation of point to be plotted |
| T** | A nine word title to be displayed at the top of the graph |
| A** | A nine word abscissa tatle |
| $\varnothing * *$ | A nine word ordinate title |
| $N \mathrm{~F}$ | 1 If new frame is required 2 if overlay is required |
| NG | 1 non-log labeling determined by code If any X meets the following condition, $\|x\| \geq 10^{6}$
 or if all X are in the range $-10^{5}<X<10^{5}$ the labeling would automatically be E-label notation. -2 non-log labeling always E-label notation |
| DCX, DCY | Governs the coarseness of the X and Y linear meshes. (See Section V - Special Features.) |
| $N X \varnothing$ | ```2 overmide search for X-upper and X-lower. 1 let routine determme-X-upper and X-lower (See section E - Special Features.)``` |
| XL | X-lower, if needed ($\mathrm{NXX} \varnothing=2$) |
| XU | X-upper, if needed ($\mathrm{NX} \varnothing=2$) |
| $N Y \varnothing$ | 2 override search for Y-upper and Y-lower
 1 let routine determine Y-upper and Y-lower |
| YL | Y-lower, if needed ($\mathrm{NY} \varnothing=2$) |
| YU | Y-upper, if needed (NY¢ = 2). |

.
**Must be stored in FORTRAN order (backwards in core) or read into core using the A conversion

5. Special Features

It should be noted that 16.0 is the recommended value for $D C X$ and DCY. If it is necessary to have more grid lines, all one has to do is decrease the value of DCX and DCY. If one wants fewer lines, increase the value of DCX and DCY. Another note of special interest is that the entire array of X and Y that are being plotted must be in core at the time of execution of this routine.

The feature of sorting the functions before plotting has one drawback; viz., after the functions have been sorted, the orignal order is totally destroyed. This feature should not be used unless the plotting of the data is the last function of the code or order of the data is of no importance.

If (XU/ XL -1) <0.0001, or if $X U=X L=0$, no graph will be drawn as the function is or is almost constant (similarily for YU and YL).

The titles used should be centered in the 48 -character array to ensure centering of the titles on the graph. The abscissa and ordinate title can be as large as 54 characters.

If one uses the upper and lower limit search provided by AICRT3, care should be exercised in the definition of the variable or constant used for $\mathrm{XL}, \mathrm{XU}, \mathrm{YI}$, or YU as they will be changed by the subroutine.

NG is used to permit a floating point notation labeling of linear plots. This is provided because the maximum fixed point number that can be used is 999999, and the smallest greater than zero 0.000001 , similarly for negative values. To provide meaningful labeling of data outside this range, the floating point notation has been made avalable.

A very important factor is assigning X and Y arguments is to make sure you only have a singly subscripted array for each.

The limit of the number of cycles in log plotting is 10. Do not try to plot more than a $10 \times 10 \log \times \log$ plot.

[^0]: trajectory with vehicle dynamics from three moment equations

[^1]: +239 F ? + . กn E-39 +7.000E-39
 $+2.741 \Gamma-72+7.300 E-39+0.000 E-39$

[^2]: ${ }^{1}$ Sova, C., Avco Programmer's Handbook, No. F2-70, IBM 7094 (11 March 1965)

[^3]: 1 Hoffman, M, General Code for Display of Digital Data, Applied Mathematics, Atomic International, Naa, Inc., Canoga Park, California\{8January 1963\}, published and distributed under bylaws of UAIDE

[^4]: * The arguments for this calling sequence will be explained in the next section

