

CFSTI PRICES)

\qquad

Has sony (HC) , Z-75
Microfiche (MF) \qquad
ff 853 July 85

JET PROPULSION LABORATORY
 CALIFORNIA INSTITUTE OF TECHNOLOGY

The addendum contains minor changes to the Computer Program as implemented by JPL.

FINAI REPORT

ON

SURVEYOR LUNAR TOUCHDOWN STABIIITY STUDY

SUBMITTED TO
CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY PASADENA, CALIFORNIA

JULY 8, 1966
IN FULFILLMENT OF CONTRACT NO. 951304
(PHASES I AND II)

PREPARED BY
R. G. ALDERSON, PROJECT ENGINER AND D. A. WELLS
THE BENDIX CORPORATION
bendix Products aerospace division
analytical mechanics department
SOUTH BEND, INDIANA 46620

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1-1
II MATHEMATICAL MODEL 2-1
2.1 General Technique 2-1
2.2 Coordinate Systems and Transformations 2-5
2.3 Spacecraft Geometry 2-9
2.4 Determination of Forces and Torques 2-18
2.5 Equations of Motion 2-24
2.6 Ground Clearance 2-27
2.7 Stability Determination 2-27
2.8 Touchdown Geometry when Footpad Impact Times are Specified 2-30
III COMPUTER SIMULATION OF HARD SURFACE LANDING 3-1
3.1 Flow Through Computer Program 3-1
3.2 Integration Method 3-3
3.3 Error Checking Procedure 3-5
3.4 Program Detail 3-8
3.4.1 Functional Block Diagrams 3-8
3.4.2 Definition of Program Variables 3-34
3.4.3 Program Listing 3-62
3.4.4 Usage of Computer Program 3-108
3.4.4.1 Input Functions (Tables) 3-108
3.4.4.2 Input Constants 3-110
3.4.4.3 Output 3-116
3.4.5 Sample Program Output 3-121
IV COMPUTER STUDIES 4-1
4.1 Special Studies 4-1
4.1.1 Simulation Efficiency 4-1
4.1.2 Comparison of Integration Methods 4-4
4.1.3 Interval Adjustment Strategy 4-5
4.1.4 Error Specification 4.6
4.1.5 Sliding Friction 4-9
$4.2 \quad$ Parametric Studies 4-12
4.2.1 Baseline Configuration 4-12
4.2.2 Parametric Variations for Level Vehicle 4-15
4.2.3 Parametric Variations for Tipped Vehicle 4-35
4.2.4 Conclusions from Parametric Studies 4-41
V REFERENCES 5-1

LIST OF ILLUSTRATIONS

Figure Title Page
2-1 Ground and Surface Coordinate Systems 2-5
2-2 Vehicle Coordinate System 2-6
2-3 Development of Euler Angles 2-7
2-4 Vehicle Geometry 2-10
2-5 Strut and Footpad Coordinate Systems 2-11
2-6 Footpad Sectioning 2-14
2-7 Sliding Friction Coefficient versus Velocity 2-17
2-8 Footpad Crush Pressure Profile 2-17
2-9 Block Crush Pressure Profile 2-19
2-10 Shock Absorber Spring Damping and Profiles 2-22
2-11 Stability Geometry 2-28
2-12 Determination of Cross-Slope Angle and Ground Slope from Known Footpad Impact Points 2-32
2-13 Rotation of Preliminary Ground Coordinates 2-34
3-1 Block Diagram of Overall Computer Program 3-2
4-1 $\boldsymbol{\gamma}$ and $\dot{\boldsymbol{\gamma}}$ versus Time for Free Shock Absorber Return 4-3
4-2 Pitch Angle versus Time for Various Error Criteria 4-8
4-3 Sliding Friction Coefficient versus Sliding Velocity 4-10
4-4 Pitch Angle versus Time for Various Friction Representations 4-11
4-5 V_{H} versus \equiv Stability Profile 4-16
4-6 V_{H} versus $\boldsymbol{\lambda}$ Stability Profile 4-17
4-7 Vertical Velocity versus Horizontal Velocity 4-18
4-8 Vertical Velocity versus Horizontal Velocity 4-19
4-9 V_{H} versus \boldsymbol{I} Stability Profile 4-20
4-10 V_{H} versus K_{S} Stability Profile 4-22
4-11 \mathbf{V}_{H} versus \boldsymbol{E} Stability Profile 4-23
4-12 V_{H} versus E Stability Profile 4-24
4-13 V_{H} versus \boldsymbol{E} Stability Profile 4-25
4-14 $\mathrm{V}_{\mathrm{H}}^{\mathrm{H}}$ versus \boldsymbol{Z} Stability Profile 4-26
4-15 V_{H} versus \boldsymbol{m} Stability Profile 4-27
4-16 V_{H} versus \boldsymbol{I} Stability Profile 4-28
4-17 V_{H} versus \equiv Stability Profile 4-29
4-18 V_{H} versus \boldsymbol{E} Stability Profile 4-30
4-19 V_{H} versus \equiv Stability Profile 4-31
4-20 Perspective Sketch of Surveyor Stability Surface 4-32
4-21 Top View of Surveyor Stability Surface 4-33
4-22 Geometry for Tipped Vehicle 4-36
4-23 V_{H} versus r Stability Profile 4-38
4-24
4-24 V_{H} versus Γ Stability Profile 4-39 4-39
4-25 $\mathbf{V}_{\mathbf{H}}$ versus r Stability Profile 4-40

LST OF TABLES

Table Page
2-1 Nomenclature for Mathematical Model 2-2
4-1 Numerical Values of Parameters Describing SpacecraftConfiguration4-13
4-2 Numerical Values of Parameters Describing TouchdownCondition
4-14
4-3 Abbreviated Time History 4-34

FOREWORD

This report was prepared for the Jet Propulsion Laboratory, Pasadena, California, by the Bendix Products Aerospace Division of The Bendix Corporation, South Bend, Indiana. The task was accomplished under Contract NASA 7-100, Subcontract JPL 951304 during the period from July 1965 to July 1966.

SECTION I

INTRODUCTION

The Surveyor Lunar Touchdown Stability Study, for which this report constitutes final documentation, was a theoretical investigation of the dynamics of the Surveyor lunar landing. Contractually, the study was divided into two phases which delineate, broadly speaking, between program development and parametric study efforts.

In Phase I, the objective of the study was to simulate analytically the dynamics of the Surveyor landing, including loads as well as motions. This simulation required theoretical analysis of the landing, and implemented the analysis via a digital computer program. The analysis treated the spacecraft as a rigid body, and each leg set was treated as a plane linkage with a rigid lower link hinged to the spacecraft and a compressible, energy absorbing upper link. Spacecraft motions were predicted as functions of the externally applied forces (gravity forces, crush and friction forces from footpads and blocks). Changes in leg set geometry were also predicted from the footpad crush and friction forces, but shock absorber forces were utilized as well. The lunar surface was considered rigid.

The computer program developed in Phase I utilized an integration method of the variable interval Runge-Kutta type with error checking to control truncation error. This integration technique is well suited to the landing dynamics problem where spacecraft motions and configuration are used to predict the applied forces, the forces are used to define accelerations in the various degrees of freedom, and the accelerations are integrated to obtain new motions and configuration. A program improvement effort was also conducted in Phase I with the result that program efficiency was increased substantially.

The parametric study conducted in Phase II was designed to ascertain whether or not planar landings could be considered the most critical from the standpoint of toppling. A comparison of many planar cases (in which motions and configuration possess a plane of symmetry) with non-planar variations revealed that there are non-planar conditions which will produce toppling at horizontal velocities for which the corresponding planar cases are stable. The encroachment of the non-planar stability boundary into areas which are stable in the planar cases does not appear to be widespread, however.

Phase II also included further program development to provide the means with which to interpret certain aspects of Surveyor telemetered data. The result of this development was a program modification which permits calculation of ground slope and cross slope angle as functions of both the vehicle configuration at or prior to touchdown and the time at which each foot impacts the surface.

The following sections of this report discuss in depth the various aspects of the Surveyor Lunar Touchdown Stability Study. Section II presents the derivation of the mathematical model, Section III describes the content and usage of the computer program, and Section IV reports on the results of computer studies performed using the program.

SECTION II

MATHEMATICAL MODEL

2.1 GENERAL TECHNIQUE

In order to accomplish the objectives of this study, it is essential that the computer simulation of the Surveyor touchdown be based firmly upon a sound, detailed dynamical analysis. This analysis must provide a mathematical model which describes the spacecraft motion during the lunar landing. A prerequisite to accurate position and velocity predictions is an adequate determination of forces and torques acting on the spacecraft. Every effort has been made to provide an analysis which will permit accurate calculations by means of an efficient computer program.

The analytical approach taken by Bendix is to represent the spacecraft as a system possessing 12 degrees of freedom:

3 translations of the CG in mutually orthogonal directions
3 rotations of the spacecraft about mutually orthogonal axes
3 rotations of the lower links of the landing gear relative to the spacecraft
3 rotations of the footpads relative to the lower links
The choice of the rigid body translation and rotation as degrees of freedom arises naturally from consideration of the objectives of the analysis. The choice of the remaining degrees of freedom (i.e. rotation of the lower links and footpads) deserves further comment, however.

Prediction of the rigid body motions is dependent upon establishing the external forces and torques acting on the system. These forces and torques can be considered to arise exclusively from the ground reaction and friction forces and from gravity. In this view of the system, it is not necessary to consider the shock absorber forces directly in the determination of the rigid body motions.

It is necessary, however, to determine changes in the geometry of the leg sets and footpads so that the amount of footpad crushing can be found. This permits calculation of the ground reaction and friction forces, and the moment arms through which they act. Then a logical way to account for changes in leg set geometry is to treat the lower links as additional degrees of freedom which do require consideration of shock absorber forces. Similarly, the ground reaction forces depend upon footpad orientation, so that these also are awarded the status of degrees of freedom.

TABLE 2-1. NOMENCLATURE FOR MATHEMATICAL MODEL

Symbol	Definition
Ψ	pitch
Ф	yaw
三	roll
μ_{j}	coefficient of jth footpad sliding friction
${ }^{\mu} \mathrm{Bj}$	coefficient of jth block sliding friction
$\boldsymbol{\theta}_{\mathrm{j}}$	angular orientation of jth leg set, relative to No. 1 leg set
$\boldsymbol{\gamma}_{\text {j }}$	rotation of jth lower strut
$\xrightarrow{\alpha_{j}}$	rotation of jth footpad
$\overline{r_{h p u}^{j}}$	position of vehicle jth upper hardpoint relative to CG in vehicle coordinates
$\overrightarrow{\mathrm{r}_{\mathrm{hp}} \ell_{\mathrm{j}}}$	position of vehicle jth lower hardpoint relative to CG in vehicle coordinates
$\overline{r_{f p_{j}}}$	position of jth footpad pivot relative to CG in vehicle coordinates
$\triangle \mathrm{CG}$	height of CG above spacecraft base plane
ℓ_{p}	distance between roll axis and lower hardpoint
ℓ_{L}	length of lower strut
$l_{\text {A }}$	distance between upper and lower hardpoints
$\boldsymbol{\beta}$	inclination of ℓ_{A}
$\stackrel{\rightharpoonup}{\omega}$	vehicle angular velocity
$l_{D_{j}}$	length of upper strut
θ_{s}	ground slope
λ	cross slope angle

TABLE 2-1. NOMENCLATURE FOR MATHEMATICAL MODEL (CONT.)

Symbol	Definition
${ }^{\mathbf{r}} \mathrm{B}_{\mathrm{j}}$	position of surface of jth block relative to CG in vehicle coordinates
l_{c}	distance between roll axis and crushable block
hb_{j}	thickness of jth crushable block
$\overline{{ }_{c_{j k}}}$	position of surface centroid of kth segment of jth footpad relative to CG in vehicle coordinates
${ }_{1}$	diameter of footpad
${ }^{\mathbf{R}} \mathbf{C G}$	position of vehicle CG in ground coordinates
C_{1}	nominal footpad crush pressure
${ }^{\text {d }}$ B	diameter of crushable block
C_{B}	nominal block crush pressure
$\mathrm{m}_{\mathrm{p}_{\mathrm{j}}}$	mass of jth footpad
E	acceleration of gravity
M	mass of spacecraft body
F_{p}	shock absorber precharge
E_{B}	spring rate of shock absorber extension stop
$\mathbf{R}_{\mathbf{D}}$	nominal shock absorber damping coefficient ($\mathbf{R}_{\mathbf{D}}=\mathbf{R}_{\mathbf{c}}$ in compression and $\mathbf{R}_{\mathbf{R}}$ during rebound)
v	mechanical friction coefficient
$\mathbf{K}_{\boldsymbol{\alpha}}$	epring rate of footpad stop
$I_{x x} I_{\text {xy }}$ etc.	moments and products of inertia about CG
Ir	moment of inertia of lower strut about lower hardpoint
I_{a}	moment of inertia of footpad about pivot

TABLE 2-1. NOMENCLATURE FOR MATHEMATICAL MODEL (CONC.)
Symbol Definition

Note: The following conventions of notation are used:
a) differentiation with respect to time is denoted by a dot; $\bar{\equiv}$, for example
b) vectors written in upper case, unprimed, refer to ground coordinates
c) vectors written in upper case, primed, refer to surface coordinates
d) vectors written in lower case, unprimed, refer to vehicle coordinates
e) vectors written in luwer case, primed, refer to strut coordinates
f) vectors written in lower case, double primed, refer to footpad coordinates
g) subscript " O " refers to initial condition

2.2 COORDINATE SYSTEMS AND TRANSFORMATIONS

Several orthogonal, right-handed coordinate systems have been employed to provide complete description of the vehicle. The reference, or ground coordinate system is shown in Figure 2-1, in which a positive ground slope $\theta_{\mathbf{s}}$ is shown. The Z-axis is directed parallel to the gravity vector, positive down, the ${ }^{8} \mathrm{X}$-axis is directed perpendicular to the principal slope, and the Y-axis completes the orthogonal triad, positive into the (positive) slope. The origin of the ground coordinates lies on the surface, directly below the initial position of the vehicle CG.

Figure 2-1. Ground and Surface Coordinate Systems
The vehicle coordinate system (Figure 2-2) has its origin at the vehicle CG, and moves with the vehicle. The z-axis is positive down along the vehicle centerline, the y-axis is positive in the direction of the No. 1 leg set, and the x -axis completes the triad. To relate the vehicle coordinates to a system parallel to ground coordinates, define the three rigid body rotations Ψ (pitch), Φ (yaw) and Ξ (roll). Any angular orientation of the vehicle coordinate system can be obtained by imagining a coordinate system originally parallel to the ground axis. This imaginary system is brought into alignment with the vehicle axes by successively rotating Ψ about the x-axis, Φ about the new position of the y-axis and Ξ about the final position of the z-axis.

Figure 2-2. Vehicle Coordinate System

These rotations will be clarified in Figure 2-3, where two subsidiary coordinate systems are utilized in addition to the vehicle coordinates (x, y, z) and ground coordinates ($\mathbf{X}, \mathrm{Y}, \mathrm{Z}$) already defined. Figure 2-3a depicts the successive rotations in true views. First the vehicle axes are considered to be in alignment with X, Y and Z, then rotated through Ψ about X to form the new coordinate system x_{1}, y_{1} and z_{1}, where x_{1} coincides with X. The second rotation Φ about y_{1} produces another set of coordinates x_{2}, y_{2} and z_{2} where y_{2} and y_{1} are coincident. The final rotation Ξ about z_{2} brings the coordinates into the vehicle coordinate system x, y and z where z coincides with z_{2}.

Figure 2-3b shows the vehicle axes projected into the XY and YZ planes of the ground coordinate system. Figure 2-3c illustrates these various coordinate systems in perspective.

A vector \vec{a} expressed in vehicle coordinates can be transformed to coordinates parallel to ground coordinates by
where

$$
\begin{equation*}
\vec{A}=A_{x} \vec{I}+A_{y} \vec{J}+A_{Z} \overrightarrow{\mathbf{K}}=\left[b_{r s}\right] \vec{a} \tag{1}
\end{equation*}
$$

Figure 2-3. Development of Euler Angles
and
$\left[\mathrm{b}_{\mathrm{rs}}\right]=\left[\begin{array}{lll}\operatorname{cus} \phi \cos \Xi & -\cos \phi \sin \Xi & \sin \Phi \\ \sin \Psi \sin \phi \cos \Xi+\cos \Psi \sin \Xi & -\sin \Psi \sin \phi \sin \Xi+\cos \Psi \cos \Xi & -\sin \Psi \cos \Phi \\ -\cos \psi \sin \phi \cos \Xi+\sin \Psi \sin \Xi & \cos \Psi \sin \phi \sin \Xi+\sin \Psi \cos \Xi & \cos \psi \cos \Phi\end{array}\right]$

The notation of (1) will be used frequently and is to be interpreted as

$$
\begin{aligned}
& A_{x}=b_{11} a_{x}+b_{12} a_{y}+b_{13} a_{z} \\
& A_{y}=b_{21} a_{x}+b_{22} a_{y}+b_{23} a_{z} \\
& A_{z}=b_{31} a_{x}+b_{32} a_{y}+b_{33} a_{z}
\end{aligned}
$$

Since $\left[b_{r s}\right]$ is the matrix of an orthogonal transformation, the inverse $\left[b_{r s}\right]^{-1}$ is merely the transpose of $\left[\mathrm{b}_{\mathrm{rs}}\right]$.
Figures 2-4 and 2-5 showing the spacecraft geometry are also useful in visualizing two other moving coordinate systems which are defined for convenience. The strut coordinate systems are fixed in each of the lower links, with the origin at the footpad pivot. The y^{\prime} axis is parallel to the lower link, positive outboard, the z^{\prime} axis is perpendicular to the lower link, positive down, and the x^{\prime} axis completes the triad. A vector $\overline{a^{\prime}}$ in the jth strut coordinate system can be transformed to vehicle coordinates by
where

$$
\begin{align*}
& \vec{a}=a_{x^{\prime}} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}=\left[g_{r s}\right]_{j} \overrightarrow{a^{\prime}} \tag{2}\\
& \overrightarrow{a^{\prime}}=a_{x^{\prime}}^{\prime} \overrightarrow{i^{\prime}}+a_{y^{\prime}} \overrightarrow{i^{\prime}}+a_{z}^{\prime} \overrightarrow{k^{\prime}}
\end{align*}
$$

and

$$
\left[g_{r s}\right]_{j}=\left[\begin{array}{llc}
\cos \theta_{j} & \cos \gamma_{j} \sin \theta_{j} & -\sin \gamma_{j} \sin \theta_{j} \\
-\sin \theta_{j} & \cos \gamma_{j} \cos \theta_{j} & -\sin \gamma_{j} \cos \theta_{j} \\
0 & \sin \gamma_{j} & \cos \gamma_{j}
\end{array}\right]
$$

θ_{j} is positive in a left handed sense relative to the spacecraft z-axis.

The footpad coordinate systems are defined similarly to the strut coordinates, except for an additional rotation about the footpad hinge line. The $z^{\prime \prime}$ axis is coincident with the footpad centerline, positive down. Then a vector $\overrightarrow{\mathbf{a}^{\prime \prime}}$ in the jth footpad coordinate system can be transformed to vehicle coordinates by

$$
\begin{equation*}
\vec{a}=a_{x} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}=\left[d_{r s}\right]_{j} \overrightarrow{a^{\prime \prime}} \tag{3}
\end{equation*}
$$

where

$$
\overrightarrow{a^{\prime \prime}}=a_{x}^{\prime \prime} \overrightarrow{i^{\prime \prime}}+a_{y}^{\prime \prime} \overrightarrow{j^{\prime \prime}}+a_{z}^{\prime \prime} \overrightarrow{k^{\prime \prime}}
$$

and
$\left[d_{r s}\right]_{j}=\left[\begin{array}{lll}\cos \theta_{j} & \cos \left(\gamma_{j}-\alpha_{j}\right) \sin \theta_{j} & -\sin \left(\gamma_{j}-\alpha_{j}\right) \sin \theta_{j} \\ -\sin \theta_{j} & \cos \left(\gamma_{j}-\alpha_{j}\right) \cos \theta_{j} & -\sin \left(\gamma_{j}-\alpha_{j}\right) \cos \theta_{j} \\ 0 & \sin \left(\gamma_{j}-\alpha_{j}\right) & \cos \left(\gamma_{j}-\alpha_{j}\right)\end{array}\right]$
α_{j} is positive in a left handed sense relative to the x^{\prime} axis in strut coordinates.
One additional fixed coordinate system has been defined. The surface coordinate system differs from the ground coordinates only by a rotation θ_{S} about the X -axis. In surface coordinates the X^{\prime} and Y^{\prime} axis lie in the plane of the surface, and the Z ' axis is normal to the surface, positive down. A vector $\overline{A^{+}}$in surface coordinates can be transformed to ground coordinates by

$$
\begin{equation*}
\vec{A}=A_{x} \vec{I}+A_{y} \vec{J}+A_{z} \vec{K}=\left[C_{r s}\right] \overrightarrow{A^{\prime}} \tag{4}
\end{equation*}
$$

where

$$
\overrightarrow{A^{\prime}}=A_{x}^{\prime} \overrightarrow{I^{\prime}}+A_{y}^{\prime} \overrightarrow{J^{\prime}}+A_{Z}^{\prime} \stackrel{\rightharpoonup}{\mathbf{K}^{\prime}}
$$

and

$$
\left[C_{r s}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \theta_{s} & \sin \theta_{s} \\
0 & -\sin \theta_{s} & \cos \theta_{s}
\end{array}\right]
$$

$\boldsymbol{\theta}_{\mathbf{S}}$ is positive in a left handed sense relative to \mathbf{X}-axis in ground coordinates

2.3 SPACECRAFT GEOMETRY

The positional and kinematical configuration of the spacecraft is described by the equations to follow. Refer to Figures 2-1 through 2-5 for definition of the basic elements of the spacecraft geometry. Unless otherwise specified, the geometrical equations are written in vehicle coordinates.

The positions of the vehicle hardpoints relative to the CG are given by (upper) $\xrightarrow[r_{h p u}^{j}]{ }=\left(\ell_{p}+\ell_{A} \sin \beta\right) \sin \theta_{j} \vec{i}+\left(\ell_{p}+\ell_{A} \sin \beta\right) \cos \theta_{j}^{j}+\left(\Delta C G-\ell_{A} \cos \beta\right) \vec{k}$

Figure 2-4. Vehicle Geometry

Figure 2-5. Strut and Footpad Coordinate Syatem
(lower) $\frac{\overrightarrow{r_{h p}} l_{j}}{}=\ell_{p} \sin \theta_{j} \vec{i}+\ell_{p} \cos \theta_{j} \vec{j}+\Delta C G \vec{k}$
The footpad pivots are described by
$\overrightarrow{r_{f p_{j}}}=\left(\ell_{p}+\ell_{L} \cos \gamma_{j}\right) \sin \theta_{j} \stackrel{\rightharpoonup}{i}+\left(\ell_{p}+\ell_{L} \cos \gamma_{j}\right) \cos \theta_{j} \stackrel{\rightharpoonup}{j}+\left(\Delta C G+\ell_{L} \sin \gamma_{j}\right) \vec{k}$
and
$\frac{\bullet}{\mathbf{r}_{f p_{j}}}=-\ell_{L}\left(\sin \gamma_{j} \sin \theta_{j} \dot{\gamma}_{j} \vec{i}+\sin \gamma_{j} \cos \theta_{j} \dot{\gamma}_{j} \vec{j}-\cos \boldsymbol{\gamma}_{j} \dot{\gamma}_{j} \vec{k}\right)+\vec{\omega}_{x} \vec{r}_{f p_{j}}$

The velocity of the pivots in surface coordinates is

where

$$
\stackrel{\bullet}{\mathbf{R}_{\mathrm{CG}}}=\dot{\mathrm{X}} \stackrel{\rightharpoonup}{\mathrm{I}}+\dot{\mathrm{Y}} \overrightarrow{\mathrm{~J}}+\stackrel{\bullet}{\mathrm{Z}} \stackrel{\rightharpoonup}{\mathrm{~K}}
$$

The sliding velocity comprises the components of (9) parallel to the surface

$$
\begin{equation*}
\stackrel{\bullet}{s}_{f p_{j}}=\sqrt{\dot{X}_{f p_{j}}^{2}+\dot{Y}_{f p_{j}}^{\prime 2}} \tag{10}
\end{equation*}
$$

The length of the jth upper (shock absorber) link is described by

$$
\begin{equation*}
\ell_{D_{j}}=\left[\ell_{A}^{2}+\ell_{L}^{2}+2 \ell_{A} \ell_{L} \sin \left(\gamma_{j}-\beta\right)\right] \quad 1 / 2 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
{\stackrel{\ell}{D_{j}}}=\left[\ell_{A} \ell_{L} \cos \left(\gamma_{j}-\beta\right) \boldsymbol{\gamma}_{j}\right] / \ell_{D_{j}} \tag{12}
\end{equation*}
$$

The surface of the jth crushable block (in the uncrushed condition) is located by

$$
\begin{equation*}
\overrightarrow{r_{B_{j}}}=\ell_{c} \sin \theta_{j} \vec{I}+\ell_{c} \cos \theta_{j} \vec{j}+\left(\Delta C G+h_{B o}\right) \vec{k} \tag{13}
\end{equation*}
$$

The surface of each crushable footpad is separated into two subdivisions, one on either side of the hinge line. These subdivisions, shown in Figure 2-6, are described by the location of the centroids of the individual surface areas. In footpad coordinates, the location of the kth segment of the jth footpad (uncrushed) is

$$
\begin{equation*}
\vec{r}_{\mathbf{c o}^{\prime \prime}}{ }_{j k}=x_{c_{k}} \overrightarrow{\mathrm{p}^{\prime \prime}}+\mathrm{y}_{\mathbf{c}_{k}} \overrightarrow{\mathrm{j}^{\prime \prime}}+\mathrm{h}_{\mathrm{fo}} \overrightarrow{\mathbf{k}^{\prime \prime}} \tag{14}
\end{equation*}
$$

where

$$
\begin{array}{rlr}
x_{c_{k}} & =0 & k=1,2 \\
y_{c_{k}} & =2 d_{f} / 3 \pi & k=1 \\
& =-2 d_{f} / 3 \pi & k=2
\end{array}
$$

Then the position of the kth centroid of the jth footpad (uncrushed), measured relative to the CG in vehicle coordinates is obtained from (3), (7) and (14):

$$
\begin{equation*}
\overrightarrow{r_{c o_{j k}}}=\overrightarrow{r_{f p_{j}}}+\left[d_{r s}\right]_{j} \overrightarrow{r_{c o}^{\prime \prime}} \tag{15}
\end{equation*}
$$

The amount by which the various crushable elements are compressed is obtained by calculating the "interference" between an uncrushed element and the surface. Calculation of this interference requires determination of the vehicle position relative to the surface. Using (1) and (4), a unit vector normal (inward) to the surface can be expressed in vehicle coordinates by

$$
\begin{equation*}
\stackrel{\rightharpoonup}{n}=\left[b_{r s}\right]^{-1}\left[c_{r s}\right] \stackrel{\rightharpoonup}{\mathbf{K}^{\prime}} \tag{16}
\end{equation*}
$$

and since a unit vector parallel to the crushable block centerline is $\overrightarrow{\mathbf{k}}$ (vehicle coordinates), then the angle between the block centerline and the surface normal is obtained from

$$
\begin{equation*}
\cos \xi_{B}=\vec{n} \cdot \vec{k} \tag{17}
\end{equation*}
$$

In surface coordinates the position of the center of the uncrushed block surface is

$$
\begin{equation*}
\stackrel{\stackrel{\mathrm{R}_{\mathrm{Bo}}^{\mathrm{j}}}{\prime}}{\stackrel{\rightharpoonup}{2}}=\left[\mathrm{C}_{\mathrm{rs}}\right]^{-1}\left\{\stackrel{\rightharpoonup}{\mathrm{R}_{\mathrm{CG}}}+\left[\mathrm{b}_{\mathrm{rs}}\right] \stackrel{\mathrm{r}_{\mathrm{Bo}_{\mathrm{j}}}}{\stackrel{\rightharpoonup}{\longrightarrow}}\right\} \tag{18}
\end{equation*}
$$

Figure 2-6. Footpad Sectioning
where

$$
\stackrel{\rightharpoonup}{\mathbf{R}_{\mathrm{CG}}}=\mathbf{X} \overrightarrow{\mathrm{I}}+\mathrm{Y} \overrightarrow{\mathbf{J}}+\mathrm{Z} \overrightarrow{\mathbf{K}}
$$

and we have used (13) together with $\boldsymbol{R}_{C G}$, the position vector of the $C G$ in ground coordinates. The $\mathrm{Z}_{\mathrm{Bo}_{j}}^{\prime}$ component of $\stackrel{\mathrm{R}}{\mathrm{Bo}}_{\mathrm{K}}^{\mathrm{B}}$ in (18) is measured normal to the ground surface and locates the surface of an uncrushed block relative to the surface. If $\mathrm{Z}^{\prime} \mathrm{Bo}_{\mathrm{j}}$
positive, "interference" between the ground and the crushable block is predicted. No actual interference is possible, naturally, but crushing will occur. The thickness of the crushed block is

$$
\begin{equation*}
\mathbf{h}_{\mathbf{B}_{\mathrm{j}}}=\mathrm{h}_{\mathrm{Bo}}-\mathrm{Z}_{\mathrm{Bo}_{\mathrm{j}}} / \cos \boldsymbol{\xi}_{\mathbf{B}} \tag{19}
\end{equation*}
$$

Then the center of the surface of the jth crushable block (crushed condition) is given in vehicle coordinates by

$$
\begin{equation*}
\stackrel{r_{B_{j}}}{ }=\ell_{c} \sin \theta_{j} \vec{i}+\ell_{c} \cos \theta_{j} \vec{j}+\left(\Delta C G+h_{B_{j}}\right) \vec{k} \tag{20}
\end{equation*}
$$

which is similar to (13). Since the vehicle coordinates constitute a moving coordinate system,

$$
\begin{equation*}
\stackrel{\bullet}{r_{B_{j}}}=\vec{\omega} \times \stackrel{\rightharpoonup}{r_{B_{j}}}+{\stackrel{h}{B_{j}}}_{\vec{k}}^{\vec{~}} \tag{21}
\end{equation*}
$$

where

$$
\vec{\omega}=\omega_{x} \stackrel{\rightharpoonup}{i+\omega_{y}} \overrightarrow{j+\omega_{z}} \overrightarrow{\mathbf{k}}
$$

and the velocity of the block surface in surface coordinates is

$$
\begin{equation*}
\frac{\bullet}{R_{B_{j}}^{\prime}}=\left[C_{r s}\right]-1\left\{\frac{\bullet}{R_{C G}}+\left[b_{r s}\right] \stackrel{\bullet}{r_{B_{j}}}\right\} \tag{22}
\end{equation*}
$$

where $R_{C G}$ is the velocity of the CG in ground coordinates. But when the block is in contact with the surface, the component of $R_{C G}$ normal to the surface exactly cancels the corresponding component of $\mathrm{r}_{\mathrm{B}_{\mathrm{j}}}^{\circ}$ so that (22) reduces to

$$
\begin{equation*}
\stackrel{\bullet}{R_{B}^{\prime}}=\stackrel{\bullet}{X}_{B_{j}}^{\prime} \stackrel{\rightharpoonup}{I^{\prime}}+\stackrel{Y}{Y}_{B_{j}}^{\prime} \stackrel{J^{\prime}}{ } \text { in surface coordinates } \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
\dot{X}_{B_{j}} & =\dot{X}_{C G}+b_{11}\left(\omega_{y} z_{B_{j}}-\omega_{z} y_{B_{j}}\right)+b_{12}\left(\omega_{z} x_{B_{j}}-\omega_{x} z_{B_{j}}\right)+b_{13}\left(\omega_{x} y_{B_{j}}-\omega_{y} x_{B_{j}}+\dot{h}_{B_{j}}\right) \\
\dot{Y}_{B_{j}}^{\prime} & =\cos \theta_{s}\left[\dot{Y}_{C G}+b_{21}\left(\omega_{y} z_{B_{j}}-\omega_{z} y_{B_{j}}\right)+b_{22}\left(\omega_{z} x_{B_{j}}-\omega_{x} z_{B_{j}}\right)+b_{23}\left(\omega_{x} y_{B_{j}}-\omega_{y} x_{B_{j}}+\dot{h}_{B_{j}}\right)\right] \\
& -\sin \theta_{s}\left[\dot{Z}_{C G}+b_{31}\left(\omega_{y} z_{B_{j}}-\omega_{z} y_{B_{j}}\right)+b_{32}\left(\omega_{z} x_{B_{j}}-\omega_{x} z_{B_{j}}\right)+b_{33}\left(\omega_{x} y_{B_{j}}-\omega_{y} x_{B_{j}}+\dot{h}_{B_{j}}\right)\right]
\end{aligned}
$$

The sliding velocity of a block is
when the block is in contact with the surface. It is convenient to neglect the small contribution of $\mathrm{h}_{\mathrm{B}_{\mathrm{j}}}$ in the determination of sliding velocity (24). While $\mathrm{h}_{\mathrm{B}_{\mathrm{j}}}$ can be calculated, several computer operations would be necessary to evaluate the terms. Since (24) is used primarily to establish the sliding friction coefficient (Figure 2-7), and since this coefficient is relatively insensitive to $\stackrel{s}{s}_{\mathbf{B}_{j}}$ above $.05 \mathrm{ft} / \mathrm{sec}$. , the omission of $\mathbf{h}_{\mathbf{B}_{\mathbf{j}}}$ is justifiable.

Following an approach similar to that used for the blocks, a unit vector normal to the surface of the footpad is defined in vehicle coordinates

$$
\begin{equation*}
\xrightarrow[R_{f n_{j}}]{\longrightarrow}=\sin \left[\alpha_{j}-\gamma_{j}\right] \sin \theta_{j} \stackrel{\rightharpoonup}{i}+\sin \left[\alpha_{j}-\gamma_{j}\right] \cos \theta_{j} \vec{j}+\cos \left[\alpha_{j}-\gamma_{j}\right] \vec{k} \tag{25}
\end{equation*}
$$

so that the angle between the footpad centerline and the surface normal is obtained from (16) and

$$
\begin{equation*}
\cos \xi_{j}=\stackrel{\rightharpoonup}{R_{f_{j}}} \bullet \stackrel{\rightharpoonup}{n} \tag{26}
\end{equation*}
$$

The position of points on the surface of the jth footpad (uncrushed) in surface coordinates is obtained using (1), (4) and (15).

$$
\begin{equation*}
\stackrel{\rightharpoonup}{R_{c o}^{\prime}{ }_{j k}}=\left[C_{r s}\right]^{-1}\left\{\stackrel{\rightharpoonup}{R_{C G}}+\left[b_{r s}\right] \stackrel{\longrightarrow}{r_{c o_{j k}}}\right\} \tag{27}
\end{equation*}
$$

The $Z^{\prime}{ }_{\mathbf{c o}}^{j k}<$ component of (27) defines the "interference" measured normal to the surface, so that the thickness of the crushed kth section of the jth footpad is

Figure 2-7. Sliding Friction Coefficient versus Velocity

Figure 2-8. Footpad Crush Pressure Profile

$$
\begin{equation*}
h_{f_{j k}}=h_{f o}-Z_{c o o_{j k}}^{\prime} / \cos \xi_{j} \tag{28}
\end{equation*}
$$

2.4 DETERMINATION OF FORCES AND TORQUES

Forces generated in the footpads and crushable blocks are of two types: a crush force acting normal to the ground surface and a friction force due to footpad sliding. The friction force is in opposition to the sliding velocity (parallel to surface) and is proportional to the crush force. The factor of proportionality, or friction coefficient, is actually a function of the sliding velocity, as shown in Figure 2-7.
Figures 2-8 and 2-9 present the force-deflection characteristics of the footpads and blocks, respectively. These force-deflection characteristics are denoted $\mathbf{P}_{\mathbf{c}_{j k}}$ and $\mathbf{P}_{\mathbf{c B}}$, and define the crush pressure profile of the pads and blocks. The crushable elements follow an elastic relationship during unloading and reloading. Permanent set may exist in the crushable elements.
Taking into account the variation of footpad crush force and contact area with angle of loading (Reference (a))

$$
\begin{align*}
F_{c} \xi_{f_{j}} & =\frac{\pi d_{f}^{2}}{8} \frac{C_{f}}{\cos \xi_{j}}\left(0.75+0.25 \cos 2 \xi_{j}\right) \sum_{k=1}^{2} P_{c_{j k}} \tag{29}\\
& =C_{\xi_{j}} \sum_{k=1}^{2} P_{c_{j k}}
\end{align*}
$$

and using (16) the force vector acting on the footpad hinge due to crushing is

$$
\begin{equation*}
\stackrel{F_{c} \xi_{f_{j}}}{ }=-F_{c \xi f_{j}} \xrightarrow[n]{\rightharpoonup} \tag{30}
\end{equation*}
$$

A unit vector in the direction of the sliding velocity in surface coordinates is obtained from (9) and (10)

$$
\begin{equation*}
\rightarrow \vec{t}_{j}=\frac{\dot{X}_{f p_{j}}^{\prime}}{\dot{s}_{f p_{j}}} \overrightarrow{\mathbf{I}^{\prime}}+\frac{\stackrel{\bullet}{\mathbf{Y}}_{f p_{j}}^{\prime}}{{\stackrel{\dot{s}}{f p_{j}}}^{\mathbf{J}^{\prime}}} \tag{31}
\end{equation*}
$$

Figure 2-9. Block Crush Pressure Profile

Then the friction force, expressed in vehicle coordinates is

$$
\begin{equation*}
\stackrel{\nabla}{F_{\mu \xi f_{j}}}=-\mu_{j} F_{c \xi f_{j}}\left[b_{r s}\right]^{-1}\left[C_{r s}\right] \overrightarrow{t_{j}} \tag{32}
\end{equation*}
$$

using (30), (31) and Figure 2-6.
Derivation of the forces due to the blocks parallels (29) through (32), with the added simplification that the block is not subdivided into sections.

The effect of loading angle on contact area is ignored since $\boldsymbol{\xi}_{\mathrm{B}}$ must be a small angle (less than about 10° for a contacting block).

Then

$$
\begin{equation*}
F_{c \xi B_{j}}=\frac{\pi d_{B}^{2}}{4} C_{B}\left(0.75+0.25 \cos 2 \xi_{B_{j}}\right) P_{c B_{j}} \tag{33}
\end{equation*}
$$

and from (16)

$$
\begin{equation*}
\stackrel{\rightharpoonup}{F_{c \xi B_{j}}}=-F_{c \xi B_{j}} \stackrel{\rightharpoonup}{n} \tag{34}
\end{equation*}
$$

A unit vector in the direction of the block sliding velocity is

in surface coordinates, using (23) and (24). Then

$$
\begin{equation*}
\stackrel{\rightharpoonup}{F_{\mu \xi B_{j}}}=-\mu_{B_{j}} F_{c \xi B_{j}}\left[b_{r s}\right]^{-1}\left[C_{r s}\right] \stackrel{\rightharpoonup}{t_{B_{j}}} \tag{35}
\end{equation*}
$$

in vehicle coordinates.
The gravity forces acting on the system (vehicle coordinates) are

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{F}_{\mathrm{j}}}=\mathrm{m}_{\mathrm{p}_{\mathrm{j}}} \mathrm{~g}\left[\mathrm{~b}_{\mathrm{rs}}\right]^{-1} \stackrel{\rightharpoonup}{\mathrm{k}} \tag{36}
\end{equation*}
$$

for the footpads (a small effect) and

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{F}_{\mathrm{G}}}=\mathrm{Mg}\left[\mathrm{~b}_{\mathrm{rs}}\right]^{-1} \stackrel{\rightharpoonup}{\mathrm{k}} \tag{37}
\end{equation*}
$$

for the main mass.
The summation of external forces in vehicle coordinates is then

$$
\begin{equation*}
\vec{F}=\stackrel{\rightharpoonup}{F_{G}}+\sum_{j=1}^{3}\left[\stackrel{\rightharpoonup}{F_{g_{j}}}+\stackrel{F_{c \xi f_{j}}}{ }+\stackrel{\bar{F}_{\mu \xi f}}{ }+\stackrel{\bar{F}_{c \xi B_{j}}}{ }+\stackrel{F_{\mu \xi B_{j}}}{ }\right] \tag{38}
\end{equation*}
$$

from (30), (32), (34), (35), (36) and (37).
The torque about the spacecraft axes, due to the external forces is obtained with the help of (7) and (20)

$$
\begin{equation*}
\vec{T}=\sum_{j=1}^{3}\left\{{\overrightarrow{r_{f p_{j}}}} x\left(\overrightarrow{F_{c \xi f}}+\overrightarrow{F_{\mu \xi f_{j}}}\right)+{\overrightarrow{r_{B_{j}}}} x\left(\vec{F}_{c \xi B_{j}}+\overrightarrow{F_{\mu \xi B_{j}}}\right)\right\} \tag{39}
\end{equation*}
$$

The forcing functions expressed by (38) and (39) are sufficient to define the spacecraft rigid body rotations and motion of the CG. Other forces, however, must be accounted for in the determination of rotation of the lower link with respect to the spacecraft hardpoints, and in prediction of footpad rotations.

Using (11), the deflection of the shock absorbers is defined:

$$
\begin{equation*}
\delta_{j}=\ell_{D_{0}}-\ell_{D_{j}} \tag{40}
\end{equation*}
$$

The shock absorber is preloaded so that initially, some compression exists in the metal, in the amount of

$$
\begin{equation*}
\delta_{E}=F_{p} / \mathbf{K}_{s} \tag{41}
\end{equation*}
$$

When $\delta_{j} \leq \delta_{E}$, the combined spring and preload force is

$$
\begin{equation*}
F_{\mathbf{B}_{\mathrm{j}}}=K_{\mathrm{g}} \delta_{\mathrm{j}} \tag{42}
\end{equation*}
$$

When $\delta_{j}>\delta_{E}$, the combined spring and preload force is

$$
\begin{equation*}
F_{s_{j}}=K_{D} S_{K_{j}}\left(\delta_{j}-\delta_{E}\right)+F_{p} \tag{43}
\end{equation*}
$$

where $\mathbf{S}_{\mathbf{K}_{j}}$, the nonlinear spring profile, is shown in Figure 2-10.
The shock absorber damping force is

$$
\begin{equation*}
F_{D_{j}}=-\dot{l}_{D_{j}}\left|\dot{l}_{D_{j}}\right| R_{D} \mathbb{B}_{D_{j}} \tag{44}
\end{equation*}
$$

where $S_{D_{j}}$, the nonlinear damping profile, is also shown in Figure 2-10. $\mathbf{R}_{\mathrm{D}}=\mathbf{R}_{\mathrm{c}}$ in compression and $R_{D}=R_{R}$ in rebound. $\dot{l}_{\mathrm{D}} \mathrm{D}_{\mathrm{j}}$ is obtained from (12).
The mechanical friction force is

$$
\begin{align*}
& \text { lon force is }{\dot{l_{D_{j}}}}=-v \frac{\dot{l}_{D_{j}} \mid}{\left|F_{B_{j}}\right|} \tag{45}
\end{align*}
$$

Then the total shock absorber force is

$$
\begin{equation*}
F_{1_{j}}=F_{s_{j}}+F_{i_{j}}+F_{D_{j}} \tag{46}
\end{equation*}
$$

Figure 2-10. Shock Absorber Spring and Damping Profiles

Then using (5), (7), (11) and (46), the vector representing the shock absorber force on the footpad hinge (vehicle coordinate) is

$$
\begin{equation*}
\stackrel{F_{1_{j}}}{\rightharpoonup}=\frac{F_{1_{j}}}{\ell_{D_{j}}} \xrightarrow\left[\left(r_{f p_{j}}\right]{ }-\stackrel{r_{h p u}}{ }\right) \tag{47}
\end{equation*}
$$

The sum of forces acting on the hinge in strut coordinates is obtained using (30), (32), (36) and (47).

$$
\begin{equation*}
\overrightarrow{R_{j}}=R_{x} \overrightarrow{i^{\prime}}+R_{y^{\prime}} \overrightarrow{j^{\prime}}+R_{z^{\prime}} \overrightarrow{k^{\prime}}=\left[g_{r s}\right] j{ }_{j}^{-1}\left[\overrightarrow{F_{c \xi f_{j}}}+\overrightarrow{F_{\mu \xi f_{j}}}+\overrightarrow{F_{g_{j}}}+\overrightarrow{F_{1_{j}}}\right] \tag{48}
\end{equation*}
$$

Only the R_{z} component of (48) produces a torque about the lower hardpoint tending to change $\gamma_{j}{ }^{\mathbf{Z}} \mathbf{R}_{\mathrm{x}}$ and R_{y} produce reactions. Then the torque tending to rotate the lower link is

$$
\begin{equation*}
T_{\gamma_{j}}=\ell_{L} R_{z_{j}} \tag{49}
\end{equation*}
$$

The crush force on the kth section of the jth footpad is given in footpad coordinates by

$$
\begin{equation*}
\overrightarrow{F_{c_{j k}}^{\prime \prime}}=F_{c x_{j k}^{\prime \prime}} \overrightarrow{i^{\prime \prime}}+F_{c y_{j k}^{\prime \prime}} \overrightarrow{j^{\prime \prime}}+F_{c z_{j k}}^{\prime \prime} \overrightarrow{k^{\prime \prime}}=-c_{\xi_{j}} P_{c_{j k}}\left[d_{r s}\right]_{j}^{-1} \vec{n} \tag{50}
\end{equation*}
$$

using (16) and (29).
The friction force, expressed in footpad coordinates and using (29), (31) and (32) is

$$
\begin{equation*}
\stackrel{F_{\mu_{j k}^{\prime \prime}}}{\lambda}=F_{\mu x_{j k}^{\prime \prime}} \overrightarrow{i^{\prime \prime}}+F_{\mu y_{j k}}^{\prime \prime} \overrightarrow{j^{\prime \prime}}+F_{\mu z_{j k}^{\prime \prime}}^{\prime} \overrightarrow{k^{\prime \prime}}=-\mu_{j} C_{\xi_{j}} P_{c_{j k}}\left[d_{r s}\right]_{j}^{-1}\left[b_{r s}\right]^{-1}\left[c_{r s}\right] \overrightarrow{t_{j}} \tag{51}
\end{equation*}
$$

Then the torque, due to crushing and friction, tending to rotate the footpad about its hinge is

$$
\begin{equation*}
T_{\alpha_{j k}}^{*}=-y_{c_{k}}\left[F_{c z_{j k}}^{\prime \prime}+F_{\mu z_{j k}}^{\prime \prime}\right]+h_{f_{j k}}\left[F_{c y_{j k}^{\prime \prime}}+F_{\mu y_{j k}}^{\prime \prime}\right] \tag{52}
\end{equation*}
$$

using (50) and (51). A positive torque denotes a tendency to increase α_{j}. If the footpads
are on the stops, additional torque will be generated by elastic forces

$$
\begin{array}{lll}
& -K_{\alpha}\left(\alpha_{j}-\alpha_{1}\right) & \alpha_{j}<\alpha_{1} \\
T_{j}= & 0 & \alpha_{1} \leq \alpha_{j} \leq \alpha_{2} \tag{53}\\
& -K_{\alpha}\left(\alpha_{j}-\alpha_{2}\right) & \alpha_{2}<\alpha_{j}
\end{array}
$$

Then the total torque tending to rotate the footpad is

$$
\begin{equation*}
T_{\alpha_{j}}=\sum_{k=1}^{2} T_{\alpha_{j k}}^{*}+T_{s_{j}} \tag{54}
\end{equation*}
$$

2.5 EQUATIONS OF MOTION

The forces and moments developed in the above equations constitute the forcing functions in the differential equations of motion. Using (38) the translational equations (uncoupled) of motion written in ground coordinates are

$$
\begin{equation*}
\left[\mathrm{b}_{\mathrm{rs}}\right] \overrightarrow{\mathrm{F}}=\mathrm{M} \stackrel{\bullet \cdot}{\mathrm{R}_{\mathrm{CG}}} \tag{55}
\end{equation*}
$$

which can be integrated twice to determine CG position and velocity. The Euler equations for rotational motion utilize the torques presented in (39) and the definition of $\vec{\omega}$ in (21):

$$
\begin{equation*}
\overrightarrow{\mathrm{T}}=\stackrel{\rightharpoonup}{\mathrm{L}}+\overrightarrow{\omega \mathrm{x}} \stackrel{\rightharpoonup}{\mathrm{~L}} \tag{56}
\end{equation*}
$$

where the angular momentum $\overrightarrow{\mathrm{L}}$ (vehicle coordinates) is

$$
\begin{equation*}
\overrightarrow{\mathrm{L}}=[\mathrm{J}] \stackrel{\rightharpoonup}{\omega} \tag{57}
\end{equation*}
$$

also

$$
\begin{equation*}
\stackrel{\stackrel{\rightharpoonup}{\mathrm{L}}}{ }=[\mathrm{J}] \stackrel{\stackrel{\rightharpoonup}{\omega}}{\boldsymbol{\omega}} \tag{58}
\end{equation*}
$$

and

$$
J=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \tag{59}\\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right]
$$

It is convenient to rewrite (56) as

$$
\begin{equation*}
\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}=[J]^{-1}\left\{\vec{T}-\vec{\omega}^{\vec{\omega}} \stackrel{\rightharpoonup}{L}\right\} \tag{60}
\end{equation*}
$$

which are three equations, uncoupled in $\dot{\dot{\omega}}_{\mathrm{x}}, \quad \dot{\omega}_{\mathrm{y}}, \quad \dot{\omega}_{\mathrm{z}}$.
The integration of (60) provides the angular velocity components $\omega_{x}, \omega_{y}, \omega_{z}$.
Before integrating a second time, the angular velocity components must be transformed to components of the time rate of change of the Euler angles.

To accomplish this, recall that the angular specification of the spacecraft requires surcessive rotation in Ψ, Φ, and Ξ (Figure 2-3). Keeping in mind the order of rotation,

$$
\begin{align*}
\stackrel{\dot{\Psi}}{ } & =\dot{\Psi} \vec{I}=\dot{\Psi} \overrightarrow{i_{1}}=\dot{\Psi}\left(\cos \Phi \vec{i}_{2}+\sin \phi \overrightarrow{k_{2}}\right) \tag{61}\\
& =\dot{\Psi}[\cos \Phi(\cos \equiv \vec{i}-\sin \equiv j)+\sin \phi \vec{k}]
\end{align*}
$$

$$
\begin{align*}
\stackrel{\varrho}{\phi} & =\dot{\Phi} \overrightarrow{j_{1}}=\dot{\Phi} \overrightarrow{j_{2}} \tag{61}\\
& =\dot{\phi}(\sin \Xi \vec{i}+\cos \Xi \vec{j}) \tag{Cont.}\\
\stackrel{\rightharpoonup}{\Xi} & =\dot{\Xi} \vec{k}
\end{align*}
$$

But since

$$
\begin{align*}
\vec{\omega} & =\omega_{x} \vec{i}+\omega_{y} \vec{j}+\omega_{z} \vec{k} \tag{62}\\
& =\dot{\vec{k}}+\dot{\dot{\varphi}}+\dot{\overrightarrow{2}} \tag{r}
\end{align*}
$$

then

$$
\left\{\begin{array}{c}
\omega_{x} \tag{63}\\
\omega_{y} \\
\omega_{z}
\end{array}\right\}=[A] \quad\left\{\begin{array}{c}
\dot{\psi} \\
\dot{\vdots} \\
\dot{\Xi}
\end{array}\right\}
$$

where

$$
[A]=\left[\begin{array}{ccc}
\cos \phi \cos \Xi & \sin \Xi & 0 \tag{64}\\
-\cos \phi \sin \Xi & \cos \Xi & .0 \\
\sin \phi & 0 & 1
\end{array}\right]
$$

The determinant of [A] is

$$
\operatorname{det}[A]=\cos \phi
$$

Therefore $[A]^{-1}$ exists if $\cos \phi \neq 0$. Note that in general, $\operatorname{det}[A] \neq 1, s 0$ that $[A]^{-1}$ is not merely the transpose of [A]. Rather,

$$
[A]^{-1}=\frac{1}{\cos \phi}\left[\begin{array}{lll}
\cos \Xi & -\sin \Xi & 0 \tag{65}\\
\cos \phi \sin \Xi & \cos \phi \cos \Xi & 0 \\
-\sin \phi \cos \Xi & \sin \phi \sin \Xi & \cos \phi
\end{array}\right]
$$

provided cos $\uparrow \nRightarrow 0$.

Then

$$
\left\{\begin{array}{c}
\dot{\Psi} \tag{66}\\
\dot{\Phi} \\
\dot{\Xi}
\end{array}\right\}=[A]^{-1}\left\{\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}
$$

and (66) provides three equations, uncoupled in the Eulerian angular rates, which can be integrated to obtain Ψ, Φ, and Ξ.
The restriction on the existence of $[A]^{-1}$, i.e. $\cos \Phi \neq 0$ does not constitute a serious limitation since the spacecraft will rarely experience this orientation without failing the stability test (see para. 2.7). But since it is occasionally expedient to omit the stability test, further discussion of this point is in order.
Suppose $\cos \phi=0$ so that $\Phi= \pm \frac{2 n-1}{2} \pi(n=1,2, \ldots \ldots$.$) . Reference to Figure 2-3$ will show that under these circumstances, the Ψ and Ξ rotations are performed about the same axis in space. Hence, the Ψ and $\stackrel{\stackrel{\circ}{\Xi}}{\Xi}$ angular rates cannot be distinguished. When $\cos \Phi=0, \sin \Phi= \pm 1,(63)$ and (64) give

$$
\begin{aligned}
& \omega_{x}=\dot{\Phi} \sin \Xi \\
& \omega_{y}=\dot{\Phi} \cos \Xi
\end{aligned}
$$

from which

$$
\dot{\Phi}=\sqrt{\omega_{x}^{2}+\omega_{y}^{2}}
$$

also

$$
\omega_{z}= \pm \dot{\oplus}+\stackrel{\bullet}{\bar{E}}
$$

Then \cong can be arbitrarily chosen (the previous value is convenient). From above

$$
\pm \dot{\bullet}=\omega_{z}-\stackrel{\bullet}{\Xi} \text { PREV }
$$

where the sign of $\sin \phi$ determines the proper choice of sign. The Euler angles can be obtained by integration as before.

With the help of (49) the equations of motion for the lower links are

$$
\begin{equation*}
T_{\gamma_{j}}=I_{\gamma} \ddot{\gamma}_{j} \tag{68}
\end{equation*}
$$

It has been assumed that $\boldsymbol{\gamma}_{j}$ can be considered as an instantaneous rotation about the lower hardpoint which is temporarily fixed in space. This assumption should be valid in light of the vast difference in the inertia properties of the vehicle body and the lower link.

Using (54) and the solutions of (68), the differential equations governing the footpad rotation are

$$
\begin{equation*}
T_{\alpha_{j}}=I_{\alpha}\left(\ddot{\alpha}_{j}-\ddot{\gamma}_{j}\right) \tag{69}
\end{equation*}
$$

The integration of (55), (56), (68) and (69) provides new values for the kinematics and position of the spacecraft. These new values provide the starting point for the next pass through the equations developed in this section. A detailed discussion of the integration method will be found in Section III.

2.6 GROUND CLEARANCE

Spacecraft ground clearance is measured normal to the surface and represents the minimum distance between the lower hardpoints and the surface. Using (6), the positions of the lower hardpoints in surface coordinates are

$$
\begin{align*}
R_{h p \ell}^{\prime} \ell_{j} & =X_{h p \ell}^{\prime} \overrightarrow{\mathrm{I}}^{\prime}+Y_{h p \ell}^{\prime}{ }_{j}^{\prime} \vec{J}^{\prime}+Z_{h p}^{\prime} \ell_{j} \overrightarrow{\mathbf{K}^{\prime}} \\
& =\left[C_{r s}\right]^{-1}\left\{\overrightarrow{R_{C G}}+\left[b_{r s}\right] \overrightarrow{r_{h p} \ell_{j}}\right\} \tag{70}
\end{align*}
$$

and the ground clearance is

$$
\begin{equation*}
\mathbf{G C}=-Z_{\mathrm{hp}}^{\prime} \ell \tag{71}
\end{equation*}
$$

where $-Z_{h p l}{ }_{\mathrm{hp}}$ is the minimum value of $-\mathrm{Z}^{\prime}{ }_{\mathrm{hp} \ell} \boldsymbol{l}_{\mathrm{j}}$

2.7 STABHITY DETERMNATION

Evaluation of vehicie stability is accomplished through a subsidiary set of equations which parallel the determination of the vehicle motions. A particular landing is considered "unstable" is the epacecraft attains a toppling configuration. A landing is considered "stable" If the vehicle motions subaide to such a degree that toppling is unlikely.

Figure 2-11 illuatrates some of the geometry, of the stability calculation. The "principal plane of motion" is defined by the vectors ${ }^{k} \mathbf{C G}$ and \bar{g}, a unit vector from the $\mathbf{C G}$ in the direction of the gravity force. All vectors in this discussion are expressed in ground coordinates except as otherwise indicated.

Figure 2-11. Stability Geometry

Toppling is considered imminent when $\overrightarrow{\mathbf{g}}$ passes outboard of the triangle joining the three footpad pivot points, a situation which can be encountered in two ways. The most frequent situation will be "pitch instability" where the spacecraft topples in the direction of $\mathrm{R} \dot{\mathrm{CG}}$, with the two "critical feet" remaining astride of the principal plane. (At any given time the "critical feet" are that pair, astride of the principal plane, which are furthest advanced in the direction of the motion.) The second type of unstable configuration is "yaw instability." This unusual situation would occur if the vehicle were to rotate to a position with all three feet on the same side of the principal plane.

As long as $\overrightarrow{\mathrm{g}}$ passes inboard of the feet, it is ppssible to define a meaningful, quantitative measure of stability. Define first the vector \boldsymbol{A} in the principal plane, extending from the CG to the point at which the line joining the critical feet intersects the principal plane. The stability angle σ is then formed by the vectors $\frac{g}{g}$ and \vec{A}, remaining positive for stable configurations. For pitch instability the stability angle becomes zero at neutral stability, but for yaw ingtability the angle ceases to be defined at the neutral stability point.

The stability angle is evaluated as follows: Using (7), a vector from the CG to the footpad pivot (ground coordinates) is

$$
\begin{equation*}
\stackrel{\rightharpoonup}{R_{f p_{j}}}=\left[b_{r s}\right] \xrightarrow[r_{f p_{j}}]{ } \tag{72}
\end{equation*}
$$

The location of the feet with respect to the principal plane is determined by successive tests of the quantity

$$
\stackrel{\bullet}{\left(R_{C G}\right.} \times \stackrel{\rightharpoonup}{g)} \cdot \stackrel{>}{R_{f p_{j}}}
$$

For a specific foot, this quantity will be positive if the foot is to the "left" of the principal plane (looking from the CG along $\overline{R_{G G}}$) and negative if the foot is to the "right," Then for any configuration in which the feet are astride of the principal plane, ($\left.\mathbf{R}_{\mathbf{C G}} \mathbf{x} \mathbf{g}\right) \cdot \mathbf{R}_{\mathrm{fp}_{\mathrm{j}}}$ will be either positive for exactly one specific foot, or negative for exactly one
specific foot. In either case, denote the subscript for the foot $\mathrm{j}=\mathrm{s}$. This is one of the critical feet, and is located by $\overline{\mathrm{R}}_{\mathrm{fp}}$.
Considering the case where $\left.\stackrel{\bullet}{\left(\mathrm{R}_{\mathbf{C G}}\right.} \stackrel{\rightharpoonup}{\boldsymbol{g}}\right) \cdot \stackrel{\bullet}{\mathrm{R}_{\mathrm{fp}_{s}}}$ is negative, the sth foot can be thought of as being to the right of the principal plane. Since the feet are numbered CCW (looking down), the other critical foot will be $j=s+1$, in this instance.
Denoting the vector from the sth to the ($s+1$)th foot by $\xrightarrow[R_{f p_{g+1}}]{ }-\nabla_{\mathrm{R}_{\mathrm{f}}}$ we have

$$
\begin{equation*}
\left.\vec{A}=\stackrel{\rightharpoonup}{R_{f p_{s}}}+\lambda \overline{\left(R_{f p_{s+1}}\right.}-\overrightarrow{R_{f p_{s}}}\right) \tag{73}
\end{equation*}
$$

where λ is a positive number between zero and one. To determine λ, form the scalar product of (73) with a unit vector $\overrightarrow{\mathrm{n}}$ normal to the principal plane:
also

$$
\begin{equation*}
\vec{A} \cdot \vec{n}=\left[\stackrel{\rightharpoonup}{R_{f p_{s}}}+\lambda\left(\stackrel{\rightharpoonup}{R_{f p_{s+1}}}-\stackrel{\rightharpoonup}{R_{f p_{s}}}\right)\right] \cdot \vec{n} \tag{75}
\end{equation*}
$$

Since \vec{A} and \vec{n} are orthogonal, (74) and (75) yield the scalar equation

$$
\begin{equation*}
\lambda=\frac{\dot{X}_{\mathrm{CG}} \mathrm{Y}_{\mathrm{fp}}-\dot{\mathrm{Y}}_{\mathrm{CG}} \mathrm{X}_{\mathrm{fp}}}{\dot{\mathrm{Y}}_{\mathrm{CG}}\left(\mathrm{X}_{\mathrm{fp}}-\mathrm{X}_{\mathrm{fp}}\right)-\dot{\mathrm{x}}_{\mathrm{CG}}\left(\mathrm{Y}_{\mathrm{fp}}-\mathrm{Y}_{\mathrm{fp}}\right)} \tag{76}
\end{equation*}
$$

so that from (73) and (76) A_{x}, A_{y}, A_{z} (components of A) can be evaluated:

$$
\begin{align*}
& A_{x}=X_{f p_{s}}+\lambda\left(X_{f p_{s+1}}-X_{f p_{s}}\right) \\
& A_{y}=Y_{f p_{s}}+\lambda\left(Y_{f p_{s+1}}-Y_{f p_{s}}\right) \tag{77}\\
& A_{z}=Z_{f p_{s}}+\lambda\left(Z_{f p_{s+1}}-Z_{f p_{s}}\right)
\end{align*}
$$

from which

$$
\begin{equation*}
|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \tag{78}
\end{equation*}
$$

and the stability angle is

$$
\begin{equation*}
\sigma=\cos ^{-1} \frac{A_{z}}{|\stackrel{\rightharpoonup}{A}|} \tag{79}
\end{equation*}
$$

For positive $\left(\stackrel{\stackrel{\rightharpoonup}{R_{\mathrm{CG}}}}{\overrightarrow{\mathrm{G}}} \overrightarrow{\mathrm{g}}\right) \cdot \stackrel{\rightharpoonup}{\mathrm{R}_{\mathrm{fp}}}$, the calculation of σ is similar, except that the sth and ($\mathrm{s}+1$)th feet are significant.

2.8 TOUCHDOWN GEOMETRY WHEN FOOTPAD IMPACT TIMES ARE SPECIFIED

The mathematical model developed in this section has been modified to permit calculation of spacecraft dynamics based on specified impact times for the footpads. The coordinates of the impact points of each foot are then used to calculate ground slope, cross slope angle and to transform the spacecraft angular orientation into the most convenient coordinate system.

Let the initial angular orientation be denoted Ψ_{0}, Φ_{0}, and Ξ_{0}. The coordinates of the impact points are known in preliminary ground coordinates and are represented by

$$
\begin{equation*}
\vec{R}_{j}=X_{j} \vec{I}_{o}+Y_{j} \vec{J}_{o}+Z_{j} \vec{K}_{o} \tag{80}
\end{equation*}
$$

An impact point is defined by the coordinates of the surface centroids of the uncrushed footpad sections No. 1 (Figure 2-6) at the respective impact times. These coordinates are in the preliminary ground coordinate system which is defined at zero time in the manner described on page 2-5.

The three impact points ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ corresponding to the respective footpads) form a plane. Define

$$
\begin{align*}
\vec{A} & =A_{x} \vec{I}_{0}+A_{y} \vec{J}_{0}+A_{z} \vec{K}_{0} \\
& =\left(X_{2}-X_{1}\right) \vec{I}_{0}+\left(Y_{2}-Y_{1}\right) \vec{J}_{0}+\left(Z_{2}-Z_{1}\right) \vec{K}_{0} \tag{81}\\
\vec{B} & =B_{x} \vec{I}_{0}+B_{y} \vec{J}_{0}+B_{z} \vec{K}_{0} \\
& =\left(X_{3}-X_{1}\right) \vec{I}_{0}+\left(Y_{3}-Y_{1}\right) \vec{J}_{0}+\left(Z_{3}-Z_{1}\right) \vec{K}_{0}
\end{align*}
$$

where \vec{A} and \vec{B} lie in the plane of the impact points (see Figure 2-12).
Obtain a unit inward normal vector to the surface from

$$
\begin{align*}
& \vec{n}=n_{x} \vec{I}_{0}+n_{y} \vec{J}_{0}+n_{z} \vec{K}_{0} \\
&=\vec{A} \times \vec{B} \tag{82}\\
&|\vec{A} \times \vec{B}|
\end{align*}
$$

Check the direction of \vec{n} by testing the component in the Z direction. If n_{z} is positive, the desired vector has been defined. If n_{z} is negative, reverse the signs of the components
from (82). from (82).
Since \vec{K}_{0} is a unit vector directed vertically down, the ground slope is given by

$$
\begin{equation*}
\cos \theta_{s}=\vec{n} \cdot \vec{k}_{o}=n_{z} \tag{83}
\end{equation*}
$$

Next define the horizontal unit vector into the slope

$$
\begin{align*}
\overrightarrow{2} & =a_{x} \vec{I}_{0}+a_{y} \vec{J}_{0} \\
& =-\left(n \times \vec{K}_{0}\right) \times \vec{K}_{0} / \quad\left|\left(n \times \vec{K}_{0}\right) \times \vec{K}_{0}\right| \tag{84}\\
& =\left(n_{x} \vec{I}_{0}+n_{y} \vec{J}_{0}\right) / \sqrt{n_{x}^{2}+n_{y}^{2}}
\end{align*}
$$

If the horizontal velocity of the CG is defined as

$$
\begin{equation*}
\vec{V}_{H}=\dot{\mathbf{x}} \vec{I}_{0}+\dot{Y} \vec{J}_{0} \tag{85}
\end{equation*}
$$

then the cross slope angle is given by

$$
\begin{equation*}
\left.\cos \lambda=\overrightarrow{(\stackrel{\rightharpoonup}{V}}_{H} \cdot \vec{a}\right) /\left|\vec{V}_{H}\right| \tag{86}
\end{equation*}
$$

Figure 2-12. Determination of Cross Slope Angle and Ground Slope From Known Footpad Impact Points

It is convenient to specify the spacecraft angular orientation in a new ground coordinate system which is defined in the manner of Figure 2-1. The new ground coordinate system is obtained by rotating the preliminary system through an angle ξ about the Z_{o}-axis (see Figure 2-13). The angle of rotation is given by

$$
\begin{equation*}
\cos \xi=\vec{a} \cdot \vec{J}_{0}=a_{y} \tag{87}
\end{equation*}
$$

The angle lies between $\pm 180^{\circ}$ and is positive if the rotation of coordinates is positive in a right hand sense relative to the preliminary system. The sense of the rotation can be determined from the sign of a from (84). A negative value of a_{x} implies a positive rotation ξ. The Euler angles of the spacecraft rotation relative to the new ground coordinates can then be obtained from the rotation of coordinates about Z :

$$
\begin{align*}
& \sin \Phi=\sin \Phi_{0} \cos \xi-\sin \Psi_{0} \cos \Phi_{0} \sin \xi \\
& \sin \Psi=\left[\sin \Phi_{0} \sin \xi+\sin \Psi_{0} \cos \Phi_{0} \cos \xi\right] / \cos \Phi \tag{88}\\
& \sin \xi=\left[\cos \Phi_{0} \sin \xi_{0} \cos \xi-\left(\cos \Psi_{0} \cos \xi_{0}\right.\right. \\
&\left.\left.-\sin \Psi_{0} \sin \Phi_{0} \sin \xi_{0}\right) \sin \xi\right] / \cos \Phi
\end{align*}
$$

Figure 2-13. Rotation of Preliminary Ground Coordinates

SECTION III

COMPUTER SIMULATION OF HARD SURFACE LANDING

3.1 FLOW THROUGH COMPUTER PROGRAM

This particular computer program differs somewhat from similar digital computer simulations in that the integration subroutine controls the program after a relatively simple initialization phase (see Figure 3-1 for a basic block diagram of the program). That is, the integration subroutine (RKP) receives the initial conditions, performs the required integration, prepares values for printing, error checks the integration and, in general, controls the operation of the program. Two subprograms are required by the integration subroutine. One is a subprogram to calculate an array of derivatives from an array of integrated variables. This is handled by subroutine FEP and various subroutines which it calls. The second is a subprogram which will receive the integrated variables in an array and translate them into the required output format. This is done in subroutine PRT.

At the beginning of the program, a series of four tables are read in as input data by the subroutine TABLIN. These tables define characteristics of the footpads, crushable blocks and the shock absorbers. After the table-read, the data describing the initial configuration and conditions are read by subroutine INPUT. This information is then printed on the summary sheet. The final subroutine which is called in this initialization phase is subroutine INIT. This subroutine adjusts the input variables for units (degrees to radians, for instance), calculates and/or sets various constants which are used later in the program and calculates additional initial information based on the input configuration and conditions, The three subroutines, TABLIN, INPUT, and INIT, are called from the main program. After these subroutines have been called, the YI array of variables is set in the main program. This array in part consists of the initial values of the twenty-four variables to be integrated during the course of the program. These initial values, established in subroutines INPUT and INIT, comprise the positions and velocities of the CG, rigid body rotation about the CG, rotations of the three lower struts and rotations of the three footpads. The remaining elements of the YI array are zeroed in preparation for calculations to determine the work done on the footpads, blocks, and shock absorbers. Either five or fifteen elements of the YI array are used for work calculations, depending upon which output option is activated (see Subsection 3.4.4.3). Next, an error (ERR) array is established. This array contains total allowable truncation errors permissible per second of simulation time. Upon completion of this task, the main program transfers control unconditionally to the integration subroutine, RKP.

Subroutine RKP performs a multitude of tasks including a fair amount of housekeeping as well as integration, its primary function. It must set or respond to various flags which signal events, such as the termination of program flag. It must generate the independent

Figure 3-1. Block Diagram of Overall Computer Program
variable (time). It must calculate the truncation error, compare the error to the allowable error and adjust the integration interval in accordance with the size of this error. It must ascertain whether output printing is required during an integrated interval and if so, interpolate from the integrated values a set of values consistent with the instant in which output information was required. It must determine if the input information received from the MAIN program is meaningful within rather broad boundaries and last, but not least, subroutine RKP must be able to integrate efficiently and accurately.

The integration subroutine RKP calls only two other subroutines: FEP and PRT. FEP (Function Evaluation Program) is required to have the capability of computing an array (D) of derivatives of the Y array at the time, T, when supplied with the values of the Y array at time, T. A further requirement on FEP is that the derivative array must be independent of past history and calculations and only dependent on the Y array and initial constants. The subroutine PRT is required to accept output information for printing at a rate specified by the PRT subroutine.

Subroutine FEP receives an array (Y) of integrated values from subroutine RKP. In FEP, these values are set equal to others whose symbolism is somewhat more meaningful (e.g. ALPH $(1)=Y(4)$). This information is then transferred to a subroutine which calculates the configuration of the vehicle in detail (subroutine CONFIG). Based on the configuration, a second subroutine makes a determination of the stability of the vehicle (STAB). Next, calculations of the footpad, block and shock absorber forces as functions of the configuration are performed. These forces are used to calculate the torques on the lower struts, the torques about the CG and the forces affecting the CG. These rather lengthy calculations are performed in subroutine FORCE.

The forces and torques in conjunction with the input mass and inertia terms are combined in the differential equations of motion to generate the derivatives. These calculations are done in subroutine INTEQM. Finally these derivatives are appropriately transferred to the derivative (D) array at the end of subroutine FEP.

In summary, the MAIN program calls the subroutines TABLIN, INPUT and INIT for initialization. The MAIN program transfers control to subroutine RKP. RKP calls subroutine FEP which in sequence calls CONFIG, STAB, FORCE and INTEQM. Subroutine FEP basically acts as an interface between the integration routine, RKP, and the CONFIG, STAB, FORCE and INTEQM subroutines. This procedure is repeated and the integration proceeds. As output information is generated, it is transferred to subroutine PRT.

3.2 INT EGRATION METHOD

The integration method used in this program may be described as a variable interval, error checking Runge-Kutta integration method. The basic integration method is a fourth order Runge-Kutta integration procedure.

With the constant interval Runge-Kutta process, four evaluations of the derivatives are required in order to integrate over a given interval. However, the procedure in this program requires eleven evaluations of the derivatives to integrate over a given interval. This would appear to entail a large running time penalty over other methods. However, this has not been our experience.

In a given interval, a fourth order Runge-Kutta will require evaluations of derivatives at the beginning of the interval, two in the middle of the interval and one at the end of the interval. The method which is used in this program does this and additionally cuts the given interval in half and repeats this four-step process twice more to again integrate over the original full interval. This effectively results in two answers to the same problem. Both of these answers, by their very nature, are in error from the exact answer. The difference between the two answers is proportional to the major portion of the truncation error in the smaller interval integration. The difference is used to improve the answer derived from integrating over the two half-intervals. This improved answer is theoretically as accurate as a fifth-order Runge-Kutta procedure. The remaining truncation error is then calculated and compared to the allowable error. If the error is less than the allowable error, the next integration interval will be expanded proportionately. If the error is greater than the allowable error, the interval size is cut in half. This permits the use of the derivatives calculated in the first half interval and seven, instead of eleven, more sets of derivatives are required. The error checking procedure is repeated and the evaluation process is repeated.

Since the Runge-Kutta procedure is performed completely three times during a given interval, twelve evaluations of the derivatives would appear to be required. However, the derivative array calculated at the beginning of the full interval will also be identical to the derivatives required for the beginning of the first half-interval; therefore, recalculation is unnecessary. This also is the explanation of why seven instead of eight evaluations of the derivatives are required in the event that an interval must be cut in half.

This method is particularly well adapted to the Surveyor program. A typical landing on a hard surface will normally involve one or more abrupt contacts with the surface resulting in generally discontinuous derivatives and invariably a free flight phase where the derivatives are essentially constant and in some cases zero. During an abrupt contact, the integration interval will be reduced, and during a free flight phase, the interval will be broadened. Regardless of the situation, the accuracy of the calculation remains within the specified limits.

Other integration methods have been investigated, but for this particular problem, none have surpassed the variable interval Runge-Kutta integration method. Another variable interval method, Milne integration with Runge-Kutta starting, works quite well in problems where the derivatives experience only occasional abrupt changes. In the case of the Surveyor landing, however, abrupt changes are not unusual so that the Milne integration routine is not often able to choose a larger integration interval. The reluctance of the Milne routine to take a larger time interval stems from the conservative interval adjustment policy which must be followed in order to avoid a premature increase in interval size, and the resulting running time penalty for restarting.

Constant interval methods ordinarily will be suffering inaccuracies during periods of abrupt change due to an insufficiently fine time interval. During smooth periods, such as free flight, these methods will be "loafing" in their failure to take full advantage of the situation. Even so, good results have been obtained with a constant interval Runge-Kutta ($\Delta t=.002 \mathrm{sec}$.), but no advantage in running time has resulted. Trapezoidal integration improves running time only in the event that time increments are dangerously large from the standpoint of accuracy.

3.3 ERROR CHECKING PROCEDURE

The basis of the error evaluation procedure is the foundation of the Runge-Kutta method, the Taylor Series. In general, the order of a Runge-Kutta integration procedure is a function of the last term of the Taylor Series which is included in its derivation. A Taylor Series may be written:

$$
y_{1}=y_{0}+h y_{0}^{I}+\frac{1}{2!} h^{2} y_{0}^{\text {II }}+\frac{1}{3!} h^{3} y_{0}^{\text {III }}+\frac{1}{4!} h^{4} y_{0} \text { IV }+\frac{1}{5!} h^{5} y_{0} \text { V }+\frac{1}{6!} h^{6} y_{0} \text { VI }+\cdots
$$

where: $h \quad$ is the interval of the independent variable,
y_{0} is the value of the dependent variable at the beginning of the
interval, h ,
y_{1} is the value of the dependent variable at the end of the interval, h, and $\quad y_{o}^{n} \quad$ is the n-th derivative of the dependent variable at the beginning of the interval.

A fourth order Runge-Kutta procedure is used so the truncation error is:

$$
e_{1}=\frac{1}{5!} h^{5} y_{o} V+\frac{1}{6!} h^{6} y_{o} V I+\cdots
$$

The error for an interval half as large would be:

$$
\begin{aligned}
& e_{\frac{1}{2}}=\frac{1}{5!}\left(\frac{\mathrm{h}}{2}\right)^{5} \mathrm{y}_{\mathrm{o}} \mathrm{~V}+\frac{1}{6!}\left(\frac{\mathrm{h}}{2}\right)^{6} \mathrm{y}_{\mathrm{o}} \mathrm{VI}_{+\ldots} \\
& =\frac{1}{5!}\left(\frac{1}{32}\right) h^{5} y_{o} V^{V}+\frac{1}{6!}\left(\frac{1}{64}\right) h^{6} y_{o} V^{\prime}+\ldots--
\end{aligned}
$$

The total error for two half-intervals would be equal to $2 \cdot \mathrm{e}_{\frac{1}{2}}$ or:

$$
e_{2}=\frac{1}{5!}\left(\frac{1}{16}\right) h^{5} y_{0} V+\frac{1}{6!}\left(\frac{1}{32}\right) h^{6} y_{o} V I_{+\cdots}
$$

Since $y_{o}{ }^{V}$, and $y_{n}{ }^{V I}$, etc., are not known, the exact value of these errors cannot be evaluated. Let the exact value of the integrated variable at the end of the interval h be y_{1}. Then the value calculated by Runge-Kutta using one step over the interval will be $y_{1}+e_{1}$ and using two half-intervals will be $y_{1}+e_{2}$. If the difference between these values is
calculated, the result is:

$$
\begin{aligned}
& \left(y_{1}+e_{1}\right)-\left(y_{1}+e_{2}\right) \\
= & e_{1}-e_{2} \\
= & \frac{1}{5!} h^{5} y_{0} V+\frac{1}{6!} h^{6} y_{0} V I+\cdots \\
& -\left[\frac{1}{5!}\left(\frac{1}{16}\right) h^{5} y_{0} V+\frac{1}{6!}\left(\frac{1}{32}\right) h^{6} y_{0} V I_{+\ldots}\right] \\
= & \frac{1}{5!}\left(\frac{15}{16}\right) h^{5} y_{0} V+\frac{1}{6!}\left(\frac{31}{32}\right) h^{6} y_{0} V I_{+\ldots}
\end{aligned}
$$

It now may be noted that the first term is exactly fifteen times the fifth order error in e2. If one-fifteenth of the difference, $e_{1}-e_{2}$, is now subtracted from e_{2}, the remaining error, e_{3}, is now of the order of:

$$
\begin{aligned}
& e_{3}=e_{2}-\frac{1}{15}\left(e_{1}-e_{2}\right) \\
= & \frac{1}{6!}\left[\left(\frac{1}{32}\right)-\left(\frac{31}{15 \cdot 32}\right)\right] h^{6} y^{V I}+\ldots \\
= & \frac{1}{6!}\left(\frac{-1}{30}\right) h^{6} y^{1}+\ldots
\end{aligned}
$$

Since e_{3} is the remaining error in our calculation, we require that the absolute value of this number be less than or equal to the allowable error; that is:

$$
\left|e_{3}\right| \leq \quad \text { (allowable error) }
$$

The procedure which is now used starts with the calculation of the difference between the improved integrated value, $y_{1}+e_{3}$, and the integrated value resulting from integrating over the entire interval, $y_{1}+e_{1}$. That is:

$$
\begin{aligned}
& \left(y_{1}+e_{1}\right)-\left(y_{1}+e_{3}\right) \\
= & e_{1}-e_{3} \\
= & {\left[\frac{1}{5!} h^{5} y_{0}+\frac{1}{6!} h^{6} y_{0} V_{+}+\cdots--\right]-\left[\frac{1}{6!}\left(-\frac{1}{30}\right) h^{6} y_{0} V I_{+\cdots}\right] } \\
= & \left.\frac{1}{5!} h^{5} y_{0} V+\frac{1}{6!}\left(\frac{31}{30}\right) h^{6} y_{0} V I_{+\cdots}\right] \\
= & \frac{1}{5!} h^{5} y_{0} V
\end{aligned}
$$

In a reasonably well-behaved Taylor Series, the quantity $h^{6} y_{o} \quad V I_{\text {would be very much less }}$ than $h^{5} y_{0} V$. For the following, the assumption is made that $h^{6} y_{o} V_{i s}$, at worst, equal to $h^{5} y_{0} v^{0}$. This is believed to be a conservative assumption. With the aid of this assumption, an evaluation of e_{3} will be made in terms of $\left(y+e_{1}\right)-\left(y+e_{3}\right)$.

$$
\begin{aligned}
e_{3} & \simeq \frac{1}{6!}\left(-\frac{1}{30}\right) h^{6} y V \\
& \simeq \frac{1}{6!}\left(-\frac{1}{30}\right) h^{5} y \\
& \simeq \frac{-1}{180}\left(\frac{1}{5!} \quad h^{5} y V\right) \\
& \simeq-\frac{1}{180}\left(\left(y_{1}+e_{1}\right)-\left(y_{1}+e_{3}\right)\right)
\end{aligned}
$$

Now, returning to our error criterion:

$$
\left|e_{3}\right| \leq \quad \text { (allowable error) }
$$

Substituting for $\mathbf{e}_{\mathbf{3}}$:

$$
1 / 180 \cdot\left|\left(y_{1}+e_{1}\right)-\left(y_{1}+e_{3}\right)\right| \leq \text { (allowable error) }
$$

This method has been used and found to be satisfactory.

As the program presently stands, elimination of the fifth-order truncation error is performed on all integrated variables. Error checking is performed on twenty-one. No checks are performed on the three footpad angular rates and on the work done on the system. The accuracy of the work integration in no way affects the accuracy of the program. It is used as a check to see if the work done plus the final kinetic and potential energy equals the initial kinetic and potential energy. The required accuracy of this calculation is minimal. The footpad calculations have been modified to such an extent that a check on the footpad angular rate error is meaningless. Error checks are performed on footpad angular position, however.

The integration interval is adjusted on the basis of the error checks. If the error check fails, the interval is cut in half. The calculations pertaining to the first half-interval are now used as the values for the full interval and two new half-interval calculations (based on the smaller interval) are then computed. If the error check fails a second time, the interval is again cut in half and this process is repeated until one of two things occur: the error is passed or the interval is reduced to a preset minimum. If this situation
occurs, further interval reduction is futile since the number of significant figures available on the Univac 1107 are insufficient for a meaningful comparison of the errors. Under these circumstances, the error check is by-passed after a diagnostic note on the summary sheet is printed.

If the error check is passed, a new interval is started. The size of this new interval is a function of the maximum absolute value of the ratio of the truncation error to the allowable error in the present interval. For a situation in which the error check has been passed, this absolute ratio must be between 0 and 1. The trial size of the next interval will be:

$$
h_{1,2}=\left(2-U_{2 \max }\right) \cdot h_{0,1}
$$

where $U_{2 \text { max. }}$ is the aforementioned ratio, $h_{0,1}$ is the present interval size and $h_{1,2}$ is the new trial interval size. For an error equal to the truncation error, the interval size remains the same. If no error occurs, the interval will be doubled. The remainder of the possibilities lie between these two extremes.

3.4 PROGRAM DETAIL

This sub-section describes the usage and composition of the computer program in sufficient detail to enable the user to understand thoroughly the content of the program, and to apply the program to studies of Surveyor hard surface landings. To supplement the very general description of the program flow appearing in 3.1, additional descriptions at two increased levels of detail are presented on the following pages.

The functional block diagram describes in moderate detail the type of calculations which are being made at various locations in the program, while the program listing presents the complete detail of the calculations as they are actually performed. A complete definition of variables, cross references to Section II and program usage instructions are also provided.

3.4.1 FUNCTIONAL BLOCK DIAGRAMS

Block diagrams describing the functions of the computer program are contained in the following pages. The subroutines are presented in the following order:

1.	MAIN	7.	STAB
2.	TABLIN	8.	FORCE
3.	NPUTT	9.	ENTRP
4.	NIT	10.	INTEQM
5.	FEP	11.	RKP
6.	CONFIG	12.	PRT

This order will also be maintained in subsequent sections.

Reads and
Modifies
Input Data
Consists of Reading:

XM	XDOTOC
XIX	YDOTOC
YIY	ZDOTOC
ZIZ	XKD (1), XKD (2), XKD (3)
XIY	XKS
XIZ	FP (1), FP (2), FP (3)
YIZ	XNU
XMP	XLDMIN
XLDO	CB (1), CB (2), CB (3)
DELCG	CF (1), CF (2), CF (3)
XLP	THETD (1)
XLL	THETD (2)
XLA	THETD (3)
G	THETSD
ALPHAD (1)	PSIOD
ALPHAD (2)	PHIOD
ALPHK (1)	XIOD
ALPHK (2)	XLAMDD
BETAD	OMEGA (1)
XLC	OMEGA (2)
HBO	OMEGA (3)
XIALPH	RR (1), RR (2), RR (3)
XIGAM	RUNNO
HFO	SERNO
DB	NPHASE
DF	VH
RC (1), RC (2),	VV
RC (3)	IWILEY
SRL (1), SRL (2)	ICODE
SRL (3)	XDTP
XMUF	TFO
XMUB	HM
TAU (1), TAU (2)	
TAU (3)	ERR (4) through
	ERR (24)

The following program variables or arrays are assigned a value in subroutine INIT:

SINTHS, COSTHS ISET
A - XA, YA, ZA
A - DELEL
A - IBEEN
DELMAX
A - SLOPE1, SLOPE2
XC, YX, ZC
PSI, PHI, XI
A-B
XDOTC, YDOTC, ZDOTC
PFLAG
TZERO
A - XCDP, YCDP
A - GAMMA
A - ALPHA
A - SINTH, COSTH
A - PSB, PSBQ
A - XB, YB, ZBO
A - XHPU, YHPU, ZHPU
A - GAMDOT
A - ALPDOT
A - XFP, YFP, ZFP
A - HPL
A - DRS
A - ZCPMAX
A - PSP, PSPQ
ZPREF
VZERO
"A" denotes array.

1. SET LFLAG
2. WRITE TIME
3. CALCULATE FINAL ENERGY + WORK DONE ON THE SYSTEM
4. WRITE INIT KE \& FIN KE + WORK
5. RETURN

FIND XX FOR EACH FOOT. THE SIGN OF XX SPECIFIES WHETHER THE FOOT IS TO THE LEFT OR RIGHT OF THE PRINCIPAL PLANE WHEN LOOKING IN THE DIRECTION OF THE HORIZONTAL VELOCITY VECTOR

68
SET FLAG FOR EACH FOOT ACCORDING TO POLARITY OF XX

90

160
THIS IS ONE OF CRITICAL FEET. SET JJ ACCORDINGLY

200
IDENTIFY OTHER CRITICAL FOOT ACCORDING TO DIRECTION OF MOTION

256
DETERMINE COMPONENTS OF $\overrightarrow{\mathrm{A}}$, THE VECTOR FROM THE C G TO INTERCEPT OF PRINCIPAL PLANE BY LINE JOINING CRITICAL FOOTPADS

CALCULATION OF FRICTION COEFFICIENT

70
CALCULATION OF BLOCK FORCES IN SURFACE COORDINATES

1. Calculation of block crushing
2. Table interpolation for block profile coefficient
3. Calculation of block force

80

CALCULATION OF FOOTPAD FORCES IN SURFACE COORDINATES

1. Calculation of footpad crushing
2. Table interpolation for footpad profile coefficient
3. Calculation of footpad force

TRANSFER OF CRUSH AND FRICTION FORCES TO VEHICLE COORDINATES FROM SURFACE COORDINATES

CALCULATION OF SHOCK ABSORBER FORCES

1. Calculate Stroke
2. Table interpolation for damping profile and spring rate profile coefficients
3. Calculate spring force and preload
4. Test for stroke or restroke and calculate friction and damping forces
5. Sum all shock absorber forces
6. Resolve shock absorber force into vehicle coordinates

CALCULATION OF TORQUES ABOUT LOWER HARDPOINT

1. Sum footpad and shock absorber forces (vehicle coordinates)
2. Transfer this sum to strut coordinates
3. Calculation of forces and moments on lower hardpoint in vehicle coordinates
4. Calculation of torque about lower hardpoint in a direction which will cause rotation of the lower leg.

205
CALCULATION OF TORQUE ON FOOTPAD

FOOTPAD STOP CALCULATIONS

Moves Previous Calculated Values (V) to Y Array. Same as above to C Array.

$\mathrm{DO} 220 \underset{\mathrm{I}}{\mathrm{Y}(\mathrm{I})}=\mathrm{V}(\mathrm{I})$ 220 $\mathrm{C}(\mathrm{I})=\mathrm{N}$ $\mathrm{V}(\mathrm{I})$
CALL FEP $\mathrm{DO} 230 \quad \mathrm{I}=1, \mathrm{~N}$ $230 \mathrm{DY}(\mathrm{I})=\mathrm{D}(\mathrm{I})$ GO TO 150

Sets U Values to Values at Interval.

Sets V and C to Values at Start of Integration Interval

Sets D Array to Values at Start of Integration Interval

Flag for Start of First Onehalf Interval

PRINT 490

490 FORMAT //28 H RUNGE-KUTTA SUBROUTINE ERROR // STOP END

TERMINATION ERRORS

1. Number of Equations ≤ 0
2. Number of Equations >50
3. Final Time $=$ Initial Time
4. (Suggested Interval) < (Minimum Interval)
5. Minimum Interval $=0$

FOR EQUATIONS OF THE FORM:

$$
\left.\frac{d y}{d x}\right|_{i}=f\left(x_{i}, y_{i}\right)
$$

$$
\begin{aligned}
\underset{\text { EQUEATIONS }}{ } \quad k_{1} & =h \cdot f\left(x_{o}, y_{0}\right) \\
k_{2} & =h \cdot f\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} k_{1}\right) \\
k_{3} & =h \cdot f\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} k_{2}\right) \\
k_{4} & =h \cdot f\left(x_{0}+h, y_{0}+k_{3}\right) \\
y_{1} & =y_{0}+\frac{1}{6} k_{1}+\frac{1}{3} k_{2}+\frac{1}{3} k_{3}+\frac{1}{6} k_{4} \\
x_{1} & =x_{0}+h
\end{aligned}
$$

3.4.2 DEFINITION OF PROGRAM VARIABLES

On the following pages, the program variables and arrays are defined. The definitions, although somewhat terse, will assist in bridging the gap between the equations in Section II, the block diagrams and the program listing. Only variables actually used and/or defined in the program have been listed. The variables are segregated by the subroutine in which they are used and/or defined and are listed alphabetically. Since some variables appear in more than one subroutine, definitions may be duplicated in order to avoid the need for cross-reference.

The format of this section is as follows: first, the parameter or array name; second, enclosed in parenthesis, the common list (if any) in which the variable or array exists; third, the definitions; finally, enclosed in parenthesis, the dimensions (if any) appropriate to the subject variable or array.

MAIN

DEGRAD (N7) Conversion factor (rad/deg).
ERR (N1) Allowable integration truncation error per second (ft/sec, $\mathrm{ft} / \mathrm{sec} / \mathrm{sec}$, degrees/sec, degrees $/ \mathrm{sec} / \mathrm{sec}$).

GAMDOT (N7) Lower strut angular rate (rad/sec).
GAMMA (N7) Lower strut angular position (rad).
HM (N1) Minimum integration interval size (sec).
1 DO variable.
IOPT (N24) Program switch controlling various output options.
$\mathrm{J} \quad \mathrm{DO}$ index.
N (N1) Denotes the number of differential equations to be integrated.
OMEG (N7) Angular rates about vehicles axes (rad/sec).
PHIO (N7) Initial yaw angle of the vehicle (rad).
PSIO (NT) Initial pitch angle of the vehicle (rad).
SH (N1) Suggested size of first integration interval (sec).
TAMIN Minimum of the three footpad contact times (sec).
TAU (N12) Time at which a given footpad contacts the surface (sec).
TF (N1)
The time to which the integration will proceed unless other stops are encountered (sec).

TO (N1)	Starting integration time (sec).
XC (N7)	Vehicle position - X-direction - Ground coordinates (feet).
XDOTC (N7)	Vehicle velocity - X-direction - Ground coordinates (feet/sec).
XIO (N7)	Initial roll angle of the vehicle (rad).
YC (N7)	Vehicle position - Y-direction - Ground coordinates (feet).
YDOTC (N7)	Vehicle velocity - Y-direction - Ground coordinates (feet/sec).
Y (N1)	List of initial values for the integration routine (various dimensions).
ZC (N7)	Vehicle position - Z-direction - Ground coordinates (feet).
ZDOTC (N7)	Vehicle velocity - Z-direction - Ground coordinates (feet/sec).

TABLIN

BLOCK1 (N10) Table $\boldsymbol{o f}$ Characteristics for Block No. 1.
BLOCK2 (N10) Table of Characteristics for Block No. 2.
BLOCK3 (N10) Table of Characteristics for Block No. 3.
CLOD Temporary storage for table values.
FOOT1 (N10) Table of Characteristics for Footpad No. 1.
FOOT2 (N10) Table of Characteristics for Footpad No. 2.
FOOT3 (N10) Table of Characteristics for Footpad No. 3.
I Counter - value denotes number of separate tables which have been read.
IFORK An array of the code numbers associated with each table.
J

J11
J12
J13
DO index.
Number of independent variables in the Footpad No. 1 table.
Number of independent variables in the Footpad No. 2 table.
Number of independent variables in the Footpad No. 3 table.
Number of independent variables in the Block No. 1 table.
Number of independent variables in the Block No. 2 table.

K
KSUM
$\mathrm{L} \quad$ Second digit of the table code numbers.
LF Second table value in integer form.
LSUM
L3
M
SHOCK1 (N10) Table of Characteristics for Shock Absorber No. 1.
SHOCK2 (N10) Table of Characteristics for Shock Absorber No. 2.
SHOCK3 (N10) Table of Characteristics for Shock Absorber No. 3.
STUPE Temporary storage for the values on a given card.

INPUT
BETA (N7) The angle between the vehicle centerline and a line joining the upper and lower hardpoints on a leg set (rad).

BETAD Same as BETA except for units (degrees).
CODE A numeric which controls program output.
DA (N9) Utility array used for temporary storage.
DEGRAD (N7) Conversion factor ($\mathrm{rad} / \mathrm{deg}$).
DELCG (N11) Distance between CG and lower hardpoint measured along the vehicle centerline (feet).

DTP (N24) Time interval for output printing and punching (sec).

ERO	Allowable integration truncation error per second as read in from cards.
ERR (N1)	Allowable integration truncation error per second (ft/sec, $\mathrm{ft} / \mathrm{sec} / \mathrm{sec}$, degrees $/ \mathrm{sec}$, degrees $/ \mathrm{sec} / \mathrm{sec}$).
FP (N11)	Shock Absorber preload (lb).
G (N11)	Gravitational acceleration (ft/sec/sec).
HBO (N11)	Initial height of the crushable element in the blocks (feet).
HFO (N11)	Initial height of the crushable element in the footpads (feet).
HM (N 1)	Minimum integration interval size (sec).
ICODE	Equivalent to CODE2 on Input Data in integer form, controls punch output.
IOFF	Program switch which turns printing and punching completely off if certain output options are requested.
IOPT (N24)	Program switches which turn on or of various output print options and enable corresponding punch options.
IWILEY (N25)	Program switches which turn on or of selected punch options which have also been enabled by IOPT
J	DO Index.
JN (N24)	Program switch which turns on all punch options which have corresponding print options turned on.
JNO	Similar to JN. This value is set from input data and is then held for setting JN at the start of each run.
K	DO Index.
MISS (N23)	Program switch which controls matrix inversion of the inertia matrix in subroutine INTEQM. Inversion takes place only if new inertia data is read.
MM	Value corresponding to input card number.
NPHASE (N11)	Program switch which controls the type of linear velocity which will be accepted as input data. Printed on input data sheet as PHASE NO.
OMEG (N7)	Vehicle angular velocity in vehicle coordinates (rad/sec).
OMEGA	Initial vehicle angular velocity in vehicle coordinates ($\mathrm{deg} / \mathrm{sec}$).

PHIO (N7) Initial yaw angle (rad).
PHIOD Initial yaw angle (deg).
PI Numerical constant, pi.
PSIO (N7) Initial vehicle pitch angle (rad).
PSIOD Initial vehicle pitch angle (deg).
RADDEG (N7) Conversion factor (deg/rad).
RC (N11) Damping coefficient for shock absorber during stroking (lb-sec ${ }^{2} / \mathrm{ft}^{2}$).
RR (N11) Damping coefficient for shock absorber during restroking (lb-sec ${ }^{2} / \mathrm{ft}^{2}$).
SERNO (N11) Run identification number.
SRL (N11) Coefficient used to determine damping profile for shock absorber restroking (ft^{-1}).

TAU (N12) Footpad contact times for option 4 (sec).
TF (N1) Final integration time (sec).
TFO Final integration time as read from input data (sec).
THETA (N7) Angular orientation of leg sets relative to y-axis (rad).
THETAS (N7) Ground slope (rad).
THETD Angular orientation of leg sets relative to y-axis (deg).
THETSD Ground slope (deg).
VH (N11) Vehicle horizontal velocity in ground coordinates (ft/sec).
VV (N11) Vehicle vertical velocity in ground coordinates (ft/sec).
WILEY Program switch equivalent to CODE2 in input data printout, which controls output punching.

XDOTOC (N12) Initial vehicle velocity in the X -direction ($\mathrm{ft} / \mathrm{sec}$).
XDTP Time interval for output printing and punching as read from data cards (sec).
XIGAM (N11) Moment of Inertia of lower leg (ft-lb-sec ${ }^{2}$).

XIO (N7)
XIOD
XIX, XIY, XIZ Moment of inertia of vehicle (ft-lb-sec ${ }^{2}$). (N11)

XJ (N7) Inertia matrix of the vehicle (ft-lb-sec ${ }^{2}$).
XKD (N11) Nominal shock absorber spring rate (lb/ft).
XKS (N11) Shock absorber spring rate for small deflections (lb/ft).
XLA (N11) Distance between upper and lower hardpoints (ft),
XIAMDA (N11) Angular orientation of the horizontal velocity vector with respect to the Y -axis (rad).

XIAMDD Angular orientation of the horizontal velocity vector with respect to the Y-axis (deg).

XLC (N11) Vehicle centerline to block centerline distance (ft).
XIDMIN (N11) Minimum shock absorber length (ft).
XLDO (N11) Initial length of shock absorber (ft).
XLL (N11) Length of lower link of a leg set (ft).
XLP (N11) Vehicle centerline to lower hardpoint distance (ft).
XM (N11) Vehicle mass (lb-sec $\left.{ }^{2} / \mathrm{ft}\right)$.
XMUB (N11) Block friction coefficient.
XMUF (N11) Footpad friction coefficient.
XNU (N11) Shock absorber friction damping coefficient.
YDOTOC (N12) Initial vehicle velocity in Y-direction - Ground Coordinates (ft/sec).
YIY, YIZ (N11) Moment of inertia of vehicle (lb-ft-sec ${ }^{2}$).
ZDOTOC (N12) Initial vehicle velocity - Z-direction - Ground Coordinates (ft/eec).
2IZ Moment of inertia of vehicle (ft-lb-sec ${ }^{2}$).

INIT
A (N13) Utility array.
AA (N13) Utility array.
ALPH (N7) Footpad angle (rad).
A1 (N9) Utility array.
A7 (N9) Utility array.
B (N15) Transformation matrix - vehicle to ground coordinates - corresponds to b_{rs} matrix.

BETA (N7) The angle between the vehicle centerline and a line joining the upper and lower hardpoints on a leg set (rad).
$\operatorname{COSTH}(\mathrm{N} 14) \quad$ Cosine of THETA, the angle between a leg set and the y -axis.
COSTHS (N14) Cosine of ground slope angle, THETAS.
DA Utility array.
DELCG (N11) Distance between CG and lower hardpoint measured along the vehicle centerline (feet).

DELEL (N14) Shock absorber preload divided by spring rate (feet).
DELMAX (N11) Maximum shock absorber stroke (feet).
Dnn (N9) Utility variables.
DRS (N15) Transformation matrix-footpad to vehicle coordinates - corresponds to drs matrix.

FP (N11) Shock absorber preload (lb.).
G (N11) Gravitational acceleration ($\mathrm{ft} / \mathrm{sec}^{2}$).
GAMDOT (N7) Lower leg angular rates (rad/sec).
GAMMA (N7) Lower leg angular position (rad).
GAMMAO Lower leg initial angular position (deg).
HBO (N11) Uncrushed height of blocks (feet).
HFO (N11) Uncrushed height of footpads (feet).
HPL (N9) Position of the lower hardpoints in vehicle coordinates (ft).

I
IBEEN (N19) Program switch used in conjunction with footpad and block contact time printout.

ISET (N12) Program switch used in conjunction with option 4. DO Index.

K DO Index.
L DO Index.
L1 DO Index.
L2 DO Index
NPHASE (N11) Program switch which controls the type of linear velocity which will be accepted as input data; printed on input data sheet as PHASE NO.

OMEG (N7) Vehicle angular velocity in vehicle coordinates (rad/sec).
PFLAG (N7) Program switch which is set in the event one or more shock absorbers are bottomed.

PHI (N7) Vehicle angular position in ground coordinates (rad).
PHIO (NT) Initial vehicle angular position in ground coordinates (rad).
PSB (N14) Amount of block crushing (ft).
PSBQ (N18) Amount of block crushing at the start of an integration interval (ft).
PSI (N7) Vehicle pitch angle (rad).
PSIO (N7) Initial pitch angle (rad).
PSP (N14) Amount of footpad crushing (ft).
PSPQ (N19) Amount of footpad crushing at the start of an integration interval (ft).
SINTH (N14) Sine of the angular orientation of leg sets relative to y-axis.
SINTES (N14) Sine of the ground slope angle.
THETA (N7) Angular orientation of leg sets relative to y-axis (rad).
THETAS (NT) Ground slope (rad).
TZERO (N14) Initial ldnetic energy (ft-lb).

VH (N11) CG horizontal velocity ($\mathrm{ft} / \mathrm{sec}$).
VV (N11) CG vertical velocity (ft/sec).
VZERO (N14) Initial potential energy (ft-lb).
XA (N12) Footpad position at contact - X-direction - Ground Coordinates (ft).
XB (N15) Block position - Vehicle Coordinates - x-direction (ft).
$X C$ (N7) CG position - X-direction - Ground Coordinates (ft).
XDOTC (N7) CG velocity - X-direction - Ground Coordinates (ft/sec).
XDOTOC (N12) Initial CG velocity - X-direction - Ground Coordinates (ft/sec).
XFP (N15) Distance from CG to footpad pivot - x-direction - Vehicle Coordinates (ft).
XHPU (N14) Distance from CG to upper hardpoint - x-direction - Vehicle Coordinates (ft).

XI (NT) Roll angle of the vehicle (rad).
XIO (N7) Initial roll angle of the vehicle (rad).
XJ (N7) Vehicle inertia matrix (ft.-lb-sec ${ }^{2}$).
XKS (N11) Shock absorber spring rate (lb/ft).
XLA (N11) Distance between upper and lower hardpoints (ft).
XLAMDA (N11) Angular orientation of the horizontal velocity vector with respect to the Y -axis (rad).

XLC (N11) Vehicle centerline to block centerline distance (ft).
XLDMIN (N11) Minimum shock absorber length (ft).
XIDO (N11) Initial length of shock absorber (ft).
XLL (N11) Length of lower link of a leg set (ft).
XLP (N11) Vehicle centerline to lower hardpoint distance (ft).
XM (N11) Vehicle mass ($\mathrm{lb}-\sec ^{2} / \mathrm{ft}$).
YA (N12) Footpad position at contact - Y-direction - Ground Coordinates (ft).
YB (N15) Block position -Vehicle Coordinates - y-direction (ft).

YC (N7) CG position - Y-direction - Ground Coordinates (ft).
YDOTC (N7) CG velocity - Y-direction - Ground Coordinates (ft/sec).
YDOTOC (N12) Initial CG velocity - Y-direction - Ground Coordinates (ft/sec).
YFP (N15) Distance from CG to footpad pivot - y-direction - Vehicle Coordinates (ft).
YHPU (N14) Distance from CG to upper hardpoint - y-direction - Vehicle Coordinates (ft).

ZA (N12) Footpad position at contact - Z-direction - Ground Coordinates (ft).
ZBO (N14) Distance from CG to the uncrushed, contacting surface of the blocks in the z-direction, vehicle coordinates (ft).

ZC (N7) CG position - Z-direction - Ground Coordinates (ft).
ZCPMAX Maximum distance between CG and footpad surface - \mathbf{Z}^{\prime}-direction Surface Coordinates (ft).

ZDOTC (N7) CG velocity - Z-direction - Ground Coordinates (ft/sec).
ZDOTOC (N12) Initial CG velocity - Z-direction - Ground Coordinates (ft/sec).
ZFP (N15) Distance from CG to footpad pivot - z-direction - Vehicle Coordinates (ft).
ZHPU (N14) Distance from CG to upper hardpoint - z-direction - Vehicle Coordinates (ft).

ZPREF (N14) Distance from CG to footpad uncrushed surface plus. 50 ft - z-direction Vehicle Coordinates (ft).

FEP

A (N13) Utility array used in the calculation of the final kinetic energy.
COSTHS (N14) Cosine of the ground slope angle.
D (N2)
DA (N9) Utility array.
DWORK (N20) An array of energy and work rates (ft-lb/sec).
D59, D69 Intermediate variable used in the calculation of the final kinetic energy.
EF Final kinetic energy (ft-lb).

EPD
GAMDD (N6) Lower leg angular acceleration (rad/sec ${ }^{2}$).
GAMDOT (N7) Lower leg angular velocity (rad/sec).
GAMMA (NT) Lower leg angular position (rad).
GCMIN Minimum ground clearance (ft).

I
DO Index.
IBEEN (N19) Program switch used in conjunction with footpad and block contact time printout.

IOPT (N24) Program switch used to control output options.
ISTABL Program switch which is set as a function of termination situation.
J DO Index.
K
DO Index.
KFLAG (N7) Program switch set in subroutine STAB to indicate a stable or unstable vehicle.

LFLAG (N8) Program switch which indicates to the integration routine that the run is to be terminated.

NFLAG (N18) Program switch which indicates various stages of the integration process.
NNFLAG (N19) Program switch which indicates whether the blocks are in contact with the surface.

OMEG (N7) Vehicle angular velocity in vehicle coordinates (rad/sec).
OMEGDT (N6) Vehicle angular acceleration in vehicle coordinates (rad/sec ${ }^{2}$).
PFLAG (N7) Program switch which is set in the event one or more shock absorbers are bottomed.

PHI (N7) Vehicle yaw angle (rad).
PHID (N6) Vehicle yaw rate in ground coordinates (rad/sec).
PSI (N7) Vehicle pitch angle (rad).
PSID (N6) Vehicle pitch rate in ground coordinates (rad/sec).
Q (N6) Vehicle acceleration in ground coordinates (ft/sec ${ }^{2}$).

RADDEG (N7) Conversion factor (deg/rad).
SHKMAX Maximum shock absorber force (lb).
SIGMIN Minimum stability angle (rad).
SINTHS (N14) Sine of the ground slope angle.
T, TA Instantaneous value of time (sec).
TZERO (N14) Initial kinetic energy (ft-lb).
UZERO (N14) Initial potential energy (ft-lb).
W (N9) Utility array used for the storage of values for printing.
WORK Dissipated energy (ft-lb).
XC (N7) CG position - X-direction - Ground Coordinates (ft).
XDOTC (N7) CG velocity - X-direction - Ground Coordinates (ft/sec).
XI (N7) Roll angle of the vehicle (rad).
XID (N6) Roll rate of the vehicle in ground coordinates (rad/sec).
XIGAM (N11) Moment of inertia of lower leg (ft-lb- sec^{2})
XJ (N7) Inertia matrix of the vehicle ($\mathrm{ft}-\mathrm{lb}-\mathrm{sec}^{2}$).
XM (N11) Vehicle mass ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{ft}$).
Y (N2) The array of integrated variables.
YC (N7) CG position - Y-direction - Ground Coordinates (ft).
YDOTC (N7) CG velocity - Y-direction - Ground Coordinates (ft/sec).
ZC (N7) CG position - Z-direction - Ground Coordinates (ft)
ZDOTC (N7) CG velocity - Z-direction - Ground Coordinates (ft/sec).
ZPREF (N14) Distance from CG to footpad uncrushed surface plus . 50 ft . - z-direction - Vehicle Coordinates (ft).

CONFIG
A (N13)
Utility array.
AA (N13) Utility array.

AMAG Magnitude of horizontal component of surface unit normal (ft).

AX

AXBMAG
AXBX
AXBY
AXBZ
AY

AZ

A1 (N9)
A6 (N9)
A7 (N9)
A8 (N9)
B (N15)

BBB
BX
BY
BZ
COSLAM
COSPHI

COSPSI
$\operatorname{COSTH}(\mathrm{N} 14) \quad$ Cosine of THETA, the angle between a leg set and the y -axis.
COSTHS (N14) Cosine of ground slope angle, THETAS.

COSXI	Cosine of XIO when used as Euler angle relative to new ground coordinates.
COSXI (N16)	Cosine of angle between surface normal and footpad centerline.
COSXIB	Cosine of angle between surface normal and block centerline.
COSZET	Cosine of ZETA.
CRANK1	Utility variable used in definition of initial Euler angles relative to new ground coordinates.
CRANK2	Utility variable used in definition of initial Euler angles relative to new ground coordinates.
CRANK3	Utility variable used in definition of initial Euler angles relative to new ground coordinates.
DELCG (N11)	Distance between CG and lower hardpoint measured along the vehicle centerline (ft).
$\begin{aligned} & \text { D1, D2, ---, } \\ & \text { D20 } \end{aligned}$	Utility variables.
DRS (N15)	Transformation matrix-footpad to vehicle coordinates - corresponds to d_{rs} matrix.
FOOT (N22)	Position of footpad pivot in surface coordinates (ft).
GAMDOT (N7)	Lower leg angular rates ($\mathrm{rad} / \mathrm{sec}$).
GAMMA (N7)	Lower leg angular position (rad).
GRS (N16)	Transformation matrix - strut to vehicle coordinates - corresponds to g_{rs} matrix.
HBO (N11)	Uncrushed height of blocks (ft).
HFO (N11)	Uncrushed height of footpads (ft).
HPL (N9)	Position of the lower hardpoints in vehicle coordinates (ft).
I	DO Index.
IOPT (N24)	Program switches which turn on or off various output print options and enable corresponding punch options.
ISET (N12)	Program switch used in conjunction with option 4.
ISUM	Program switch which senses when all the footpads have contacted the surface during option 4.

DO Index.
$L \quad$ DO Index.
LFLAG (N8) Program switch which indicates to the integration routine that the run is to be terminated.

L2 DO Index.
NFLAG (N18) Program switch which indicates various stages of the integration process.
NNFLAG (N19) Program switch which indicates whether the blocks are in contact with the surface.

NPHASE (N11) Program switch which controls the type of linear velocity which will be accepted as input data. Printed on input data sheet as PHASE NO.

OMEG (N7) Vehicle angular velocity in vehicle coordinates (rad/sec).
PHI (N7) Vehicle yaw angle (rad).
PHIO (N7) Initial vehicle yaw angle relative to original or new ground coordinates (rad).

PI (N7) Numerical constant, π.
PSB (N14) Amount of block crushing (ft).
PSBQ (N19) Amount of block crushing at the start of an integration interval (ft).
PSI (N7) Vehicle pitch angle (rad).
PSIO (N7) Initial pitch angle relative to original or new ground coordinates (rad).
PSP (N14) Amount of footpad crushing (ft).
PSPQ (N19) Amount of footpad crushing at the start of an integration interval (ft).
RADDEG (N7) Conversion factor ($\mathrm{deg} / \mathrm{rad}$).
RN (N16) A unit vector, normal to the surface in vehicle coordinates.
S (N16) Sliding speed of footpad sections (ft/sec).
SINPHI Sine of PHIO when used as Euler angle relative to new ground coordinates.
SINPSI Sine of PSIO when used as Euler angle relative to new ground coordinates.
SINTH (N14) Sine of the angular orientation of leg sets relative to y-axis.
SINTHS (N14) Sine of the ground slope angle.
SINXI Sine of XIO when used as Euler angle relative to new ground coordinates.

SINZET Cosine of ZETA.
STUFF Utility variable used in definition of initial Euler angles relative to new ground coordinates.

SUMY The penetration of a footpad in the Y-direction, ground coordinates during option 4 (ft).

SUMZ

TA (N16) Instantaneous value of time (sec).
TAU (N12) Footpad contact times for option 4 (sec).
THEDEG Ground slope (deg).
THETAS (N7) Ground slope (rad).
UAX $\quad X$ component in original ground coordinates of horizontal unit vector in direction of maximum uphill slope (ft).

UAY $\quad Y$ component in original ground coordinates of horizontal unit vector in direction of maximum uphill slope (ft).

UNX $\quad X$ component in original ground coordinates of unit surface normal (ft).
UNY
UNZ
VH (N11) Y component in original ground coordinates of unit surface normal (ft).

VHORIZ CG horizontal velocity for option $4(\mathrm{ft} / \mathrm{sec})$.
VV (N11) CG vertical velocity (ft/sec).
VVERT CG vertical velocity for option 4 (ft/sec).
W (N9) Utility array used for the storage of values for printing.
XA (N12) Footpad position at contact - x-direction - Ground Coordinates (ft).
XB (N15) Block position - Vehicle coordinates - x-direction (ft).
XC (N7) CG position - x-direction - Ground Coordinates (ft).
XDOTC (N7) CG velocity - x-direction - Ground Coordinates (ft/sec).
XDOTOC (N12) Initial CG velocity - x-direction - Ground Coordinates (ft/sec).

XDOTOQ Initial CG velocity, X-direction, ground coordinates used in option 4 (ft/sec).

XDOTP (N16) Footpad velocity - X'direction - Surface Coordinates (ft/sec).
XFP (N15) Distance from CG to footpad pivot - x-direction - Vehicle Coordinates (ft).
XFPC (N17) Distance from CG to footpad pivot - X-direction - Ground Coordinates (ft).
XI (N7) Roll angle of the vehicle (rad).
XII (N16) Angle between surface normal and block or footpad centerline.
XIO (N7) Initial roll angle of vehicle relative to original or new ground coordinates (rad).

XLA (N11) Distance between upper and lower hardpoints (ft).
XLAMDA (N11) Angular orientation of the horizontal velocity vector with respect to the Y -axis (rad).

XLD (N16) Length of the shock absorber (ft).
XLDDOT (N16) Shock absorber stroking velocity (ft/sec).
XLL (N11) Length of lower link of a leg set (ft).
XLP (N11) Vehicle centerline to lower hardpoint distance (ft).
XSLDEG Calculated cross slope angle (deg).
XSLOPE Calculated cross slope angle (rad).
YA (N12) Footpad position at contact - Y-direction - Ground Coordinates (ft).
YB (N15) Block position - Vehicle Coordinates - y-direction (ft).
YC (N7) CG position - Y-direction - Ground Coordinates (ft).
YDOTC (N7) CG velocity - Y-direction - Ground Coordinates (ft/sec).
YDOTOC (N12) Initial CG velocity - Y-direction - Ground Coordinates ($\mathrm{ft} / \mathrm{sec}$).
YDOTOQ Initial CG velocity - Y-direction - Ground Coordinates - used in option 4 ($\mathrm{ft} / \mathrm{sec}$).

YDOTP (N16) Footpad velocity - Y'direction - Surface Coordinates (ft/sec).
YFP (N15) Distance from CG to footpad pivot - y-direction - Vehicle Coordinates (ft).
YFPC (N17) Distance from CG to footpad pivot - Y-direction - Ground Coordinates (ft).

ZA (N12) Footpad position at contact - Z-direction - Ground Coordinates (ft).
ZB (N15) Block position - Vehicle Coordinates - z-direction (ft).
ZBO (N14) Distance from CG to the uncrushed, contacting surface of the blocks in the z -direction-Vehicle Coordinates (ft).

ZC (N7) CG position - Z-direction - Ground Coordinates (ft).
ZDOTC (N7) CG velocity - Z-direction - Ground Coordinates (ft/sec).
ZDOTP (N16) Footpad velocity - Z'direction - Surface Coordinates (ft/sec).
ZETA Angle of rotation between original and new ground coordinates (rad).
ZETDEG Angle of rotation between original and new ground coordinates (deg).
ZFP (N15) Distance from CG to footpad pivot - z-direction - vehicle coordinates (ft).
ZFPC (N17) Distance from CG to footpad pivot - Z-direction - Ground Coordinates (ft).

STAB
AW Magnitude of $\overrightarrow{\mathbf{A}}$, a vector from CG to intercept of principal plane by line joining critical footpads (ft).

AX
X-component of \vec{A} in ground coordinates (ft).
Y-component of \vec{A} in ground coordinates (ft).
AZ
Z-component of \vec{A} in ground coordinates (ft).
DA (N9) Utility array.
D1 (N9) Utility variable used here in definition of $\overrightarrow{\mathbf{A}}$.
IFLAG Program switch.
II Program switch.

J

JJ

KFLAG (N7) Program switch set to indicate a stable or unstable vehicle.
N Program switch.
THETAS (N7) Ground slope (rad).

W (N9) Utility array used for the storage of values for printing; used here for stability angle.

XDOTC (N7) CG velocity - X-direction - Ground Coordinates (ft/sec).
XFPC (N17) Distance from CG to footpad pivot - X-direction - Ground Coordinates (ft).
XX (N9) Utility variable used to determine critical footpads.
XXX
Utility variable used to define $\overrightarrow{\mathrm{A}}$.
YDOTC (N7) CG velocity - Y-direction - Ground Coordinates ($\mathrm{ft} / \mathrm{sec}$).
YFPC (N17) Distance from CG to footpad pivot - Y-direction - Ground Coordinates (ft).
ZFPC (N17) Distance from CG to footpad pivot - Z-direction - Ground Coordinates (ft).

FORCE
A (N13) Utility array.
A1 (N9) Utility array.
A2 (N9) Utility array.
A3 (N9) Utility array.
A4 (N9) Utility array.
A5 (N9) Utility array.
A6 (N9) Utility array.
B (N15) Transformation matrix - vehicle to ground coordinates - corresponds to $b_{r s}$ matrix.

BLOCKn(N10) Table of block crush characteristics.
COSTHS (N14) Cosine of ground slope angle, THETAS.
COSXI (N16) Cosine of angle between surface normal and footpad centerline.
DA (N9) Utility array.
DEL Instantaneous shock absorber stroke (ft).
DELEL (N14) Shock absorber preload divided by spring rate (ft).
DELMAX (N11) Maximum shock absorber stroke (ft).

DELWB	The rate energy is being absorbed due to block crushing ($\mathrm{ft}-\mathrm{lb} / \mathrm{sec}$).
DELWD	The rate energy is being absorbed or stored by the shock absorber $(\mathrm{ft}-\mathrm{lb} / \mathrm{sec})$.

DELWF	The rate energy is being absorbed due to footpad crushing ($\mathrm{ft}-\mathrm{lb} / \mathrm{sec}$)
DELWU	The rate energy is being dissipated due to footpad and block friction
$(\mathrm{ft}-\mathrm{lb} / \mathrm{sec})$.	

DWORK (N20) An array of energy rate terms (ft-lb/sec).
Dnn (N9) Utility variables.
DRS (N15) Transformation matrix-footpad to vehicle coordinates - corresponds to d_{rs} matrix.
$\mathrm{F}(\mathrm{N} 9) \quad$ Force on the vehicle CG in ground coordinates (lb).
FACTOR Utility variable.
FOOTn (N10) Table of footpad crush characteristics.
FP (N11) Shock absorber preload (lb).
GADOT Absolute value of GAMDOT (rad/sec).
GAMDOT (N7) Lower leg angular rates (rad/sec).
GRS (N16) Transformation matrix - strut to vehicle coordinates - corresponds to g_{rs} matrix.

HPL (N9) Position of the lower hardpoints in vehicle coordinates (ft).

I
DO Index.
IOPT (N24) Program switches which turn on or of various output print options and enable corresponding punch options.
$J \quad$ DO Index.
JFLAG Program switch which is set as a function of the sign of shock absorber stroking velocity.

K DO Index.
KDUM Program switch used in subroutine ENTRP.
L Program switch which is set as a function of shock absorber stroke.
MAGIC Program switch which is set if the shock absorber is restroking, the foot pad is on the surface and the shock absorber is on or beyond the extension stop.

MFLAG Program switch which is set if a footpad is off the surface.
MUMP Program switch which is set if the shock absorber is restroking, the footpad is off the surface and the shock absorber is on or beyond the extension stop.

DO Index.
NFLAG (N18) Program switch which indicates various stages of the integration process.
NNFLAG (N19) Program switch which indicates whether the blocks are in contact with the surface.

PFLAG (N7) Program switch which is set in the event one or more shock absorbers are bottomed.

PSB (N14) Amount of block crushing (ft).
PSBQ (N19) Amount of block crushing at the start of an integration interval (ft).
PSP (N14) Amount of footpad crushing (ft).
PSPQ (N19) Amount of footpad crushing at the start of an integration interval (ft).
R Forces at the footpad pivot in strut coordinates (lb).
RC (N11) Damping coefficient for shock absorber during stroking (lb-sec ${ }^{2} / \mathrm{ft}^{2}$).
RD Damping coefficient for shock absquber; equal to RC or RR depending on shock absorber motion (lb-sec ${ }^{2} / \mathrm{ft}^{2}$).

RN (N16) A unit vector normal to the surface in vehicle coordinates.
$R R$ (N11) Damping coefficient for shock absorber during restroking ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$).
S (N16) Sliding speed of footpad section ($\mathrm{ft} / \mathrm{sec}$).
SD Shock absorber damping profile value.
SHOCKn (N10) Table of shock absorber rate and damping characteristics.
SINTHS (N14) Sine of the ground slope angle.
SK Shock absorber spring rate profile value.
SRL (N11) Coefficient used to determine damping profile for shock absorber restroking (ft^{-1}).

TGAMMA (N5) Torque about the lower hardpoint (ft-lb).
TQ (N5) Torque about the CG (ft-lb).

W (N9) Utility array used for the storage of values for printing.
XB (N15) Block position - Vehicle Coordinates - x-direction (ft).
XDOTP (N16) Footpad velocity - X-direction - Surface coordinates (ft/sec).
XFP (N15) Distance from CG to footpad pivot - x-direction - Vehicle Coordinates (ft).
XHPU (N14) Distance from CG to upper hardpoint - x-direction - Vehicle Coordinates (ft).
XIGAM (N11) Moment of inertia of lower leg (ft-lb-sec ${ }^{2}$).
XKD (N11) Nominal shock absorber spring rate (lb/ft).
XKS (N11) Shock absorber spring rate for small deflections (lb/ft).
XII (N16) Angle between surface normal and block or footpad centerline.
XLD (N16) Length of the shock absorber (ft).
XLDDOT (N16) Shock absorber stroking velocity (ft/sec).
XLDO (N11) Initial length of shock absorber (ft).
XLL (N11) Length of lower link of a leg set (ft).
XMUB (N11) Block friction coefficient.
XMUF (N11) Footpad friction coefficient.
XNU (N11) Shock absorber friction damping coefficient.
YB (N15) Block position - Vehicle Coordinates - y-direction (ft).
YDOTP (N16) Footpad velocity - Y'́direction - Surface Coordinates (ft/sec).
YFP (N15) Distance from CG to footpad pivot - y-direction - Vehicle Coordinates (ft).
YHPU (N14) Distance from CG to upper hardpoint - y-direction - Vehicle Coordinates (ft).

ZB (N15) Block position - Vehicle Coordinates - z-direction (ft).
ZDOTP (N16) Footpad velocity - Z-direction - Surface Coordinates (ft/sec).
ZFP (N15) Distance from CG to footpad pivot - z-direction - Vehicle Coordinates (ft).
ZHPU (N14) Distance from CG to upper hardpoint - z-direction - Vehicle Coordinates (ft).

ENTRP

FX Array of interpolated values.
FX1 First interpolated value.

FX2
I
J

K
L
M

M1
N

T

X

DNTECM

A

A
B (N16)

BAZ
CPHII
CXI
Dan Utility variables.
F (NO)
Force on the vehicle CG in ground coordinates (lb).
GAMDD (N8) Lower leg angular acceleration (rad/sec ${ }^{2}$).

DO Index.
DO Index.
Utility variable.
Utility variable.
LL Utility variable.
M
DO Index.
MISS (N23) Program switch which controls matrix inversion of the inertia matrix.
N
DO Index.
OMEG (N7) Vehicle angular velocity in vehicle coordinates (rad/sec).
OMEGDT (N6) Vehicle angular acceleration in vehicle coordinates ($\mathrm{rad} / \mathrm{sec}^{2}$).
PAR Utility variable.
PHI (N7) Vehicle yaw (rad).
PHID (NO) Vehicle yaw rate in ground coordinates (rad/sec).
PIID (N6) Vehicle pitch rate in ground coordinates (rad/sec).
Q (N0)
Linear accelerations of the vehicle CG in ground coordinates ($\mathrm{ft} / \mathrm{sec}^{2}$).
SPHI
Sine of PHI.
SUM Utility variable.
8XI Sine of XI.
TEMP Utility variable.
TCAMMA (N5) Torque about the lower hardpoint (ft-lb).
TPEII
Tangent of PRI.
TQ (N5) Torque about the CG (ft-lb).
XID (N6) Vehicle roll rate in ground coordinates (rad/sec).
JICLM (N11) Moment of inertia of lower leg (ft-lb-sec ${ }^{2}$).
XIX, XIY, Moment of inertia of vehicle (ft-lb- sec^{2}).

XJ (N7) Inertia matrix of the vehicle ($\mathrm{ft}-\mathrm{lb}-\mathrm{sec}^{2}$).
XJINV Inverse of the inertia matrix of the vehicle ($\mathrm{ft}^{-1}-\mathrm{lb}^{-1}-\mathrm{sec}^{-2}$).
XM (N11) Vehicle mass ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{ft}$).
YIZ (N11) Moment of inertia of vehicle (ft-lb-sec ${ }^{2}$).
ZIZ (N11) Moment of inertia of vehicle ($\mathrm{ft}-\mathrm{lb}-\mathrm{sec}^{2}$).

RKP
A

AA Utility variable.
ABSER
ABSUM
ARITH
AVG
BB
C

C1
D (N2)
DD
Utility variable.
DD2
Utility variable.
DY1 An array of the derivatives evaluated at the beginning of an integration interval.

DY2

EE
An array of the derivatives evaluated at the center of an integration interval.

Utility variable.
ERR (N1) Allowable integration truncation error per second (ft/sec, $\mathbf{f t} / \mathrm{sec} / \mathrm{sec}$, $\mathrm{rad} / \mathrm{sec}, \mathrm{rad} / \mathrm{sec} / \mathrm{sec}$).

ERROR	Integration truncation error.
H (N3)	Integration interval size (sec).
HM (N1)	Minimum allowable integration interval (sec).
HP	Time between the start of the integration interval and the time for which interpolation of the integrated variables is to be done (sec).
HSQ	H squared (sec^{2}).
HTD	H cubed (sec^{3}).
HTH	H to the fourth power (sec^{4}).
H2	One-half of the integration interval (sec).
1	DO Index.
ICNT	Integration interval counter.
IEDSW (N3)	Program switch which is used for early termination of the program.
IPTSW	Program switch which controls calls to subroutine PRT.
IRKC	Program switch which controls the Runge-Kutta process internally.
IRSSW	Program reset switch.
K	DO Index.
K1	Cut distribution index.
K4	Interval distribution index.
K9	Critical variable index.
LFLAG (N8)	Program termination switch.
$\mathrm{N}(\mathrm{N} 1)$	DO Index - corresponds to the number of variables to be integrated.
NFLAG (N18)	Program switch which indicates various stages of the integration process.
NK1	Cut distribution counter.
NK4	Interval distribution counter.
NK9	Critical variable distribution counter.
SGN	Program switch.

SH (N1) Suggested integration interval (sec).
T (N2) Time (sec).
TF (N1) Final Time (sec).
TO (N1) Initial time (sec).
TP (N3) Value of time sent to subroutine PRT (sec).
TPH Value of TP prior to calling subroutine PRT (sec).
U (N3) Array of integrated variables sent to subroutine PRT for output.
U2
U2MAX
Maximum ratio of truncation error to allowable error.
V Utility array.

XK1, XK2, XK3

XLOG10
XLOG2 Logarithm of 2 to the base e.
Y (N2) Array of the integrated values sent to function evaluation for calculation of derivatives.

YI (N1) Array of initial values of the variables to be integrated.
YO (N1) Array of final values of the variables which were integrated.
ZAP
ZIP Utility variable.

PRT
A1 (N9) Utility array.
CPHI Cosine of PHI.
CXI
DA (N9) Utility array used for temporary storage.
DEGRAD (N7) Conversion factor (rad/deg).

DTP (N24)	Time interval for output printing and punching (sec.)
D59	Utility variable.
D69	Utility variable.
EK	Instantaneous kinetic energy (ft-lb).
EP	Instantaneous difference in potential energy (ft-lb).
FOOT (N22)	Position of footpad pivot in surface coordinates (ft).
H (N 1$)$	Integration interval size (sec).
I	DO Index.
IOPT (N24)	Program switches which turn on or off various output print options and enable corresponding punch options.
IWILEY (N25)	Program switches which turn on or off selected punch options which have also been enabled by IOPT.
J	DO Index.
JN (N24)	Program switch which turns on all punch options which have corresponding print options enabled.
K	DO Index.
L	Computed subscript.
LSET	Program switch.
M	Counter.
ODEAR	Utility array.
PHID	Vehicle yaw rate in ground coordinates ($\mathrm{deg} / \mathrm{sec}$).
PHI	Vehicle roll (rad).
PSID	Vehicle pitch rate in ground coordinates (rad/sec).
PSP (N14)	Amount of footpad crushing (ft).
RADDEG (N7)	Conversion factor ($\mathrm{deg} / \mathrm{rad}$) .
SPHI	Sine of PHI.
SXI	Sine of XI.

TP (N3) Value of time corresponding to the U array received (sec).
TPHI Tangent of PHI.
U (N3) An array of integrated, interpolated values for printing from subroutine RKP.

VZERO (N14) Initial potential energy (ft-lb).
W (N9) Utility array used for the storage of values for printing.
W342 The value of $W(3,4,2)$, stability angle, in degrees (deg).
XID Roll rate of the vehicle in ground coordinates ($\mathrm{deg} / \mathrm{sec}$).
XIGAM (N11) Moment of inertia of lower leg (ft-lb-sec ${ }^{2}$).
XJ (N7) Inertia matrix of the vehicle (ft-lb-sec ${ }^{2}$).
XM (N11) Vehicle mass ($\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{ft}$).
ZERO Initial value of the Z-component of the CG position in ground coordinates (ft).

3.4.3 Program Listing

A listing of the finalized hard surface version of the Surveyor landing dynamics computer program is reproduced on the following pages.


```
        COFMLN/N7/ ALPOOT(3), ALFF(3), GAMNCTIS), GAMMA(3), XDCTC. YDOTC.
    1 Z[CTC, XC, YC, ZC, CMFG(3), PSI, PHI, XI. FFLAG, PFLAG, PSIO.
    , PFIL. XIO, THETAI3), THFTAS, ALFHA(2), RETA. XJ(3.3), PI.
    - deghal. RADCEG
        CCRPLNNNG/A1(3), A<(2), A3(2),A4(3.2,3), 45(3.2.3), A6(3), A7,
```



```
    2 013.[14.015.016.017.016.(.19.020. XX. CA(10), (3.4.6), HPI.(3.3)
    COFMCN/N12/X[CTUC,YUCTCC,ZRCTCC.TAll(3),ISFT(3),XA(3),YA(3),ZA(3)
    CCAMCN/N15/ L(3,3), \lambdaE(3), YE(3), 7B(3), XFF(3), YFF(3), 2FP(3),
    1 DFS(3,3,3)
    COPFION/N24/IOPT(10): JN. CTF
    CALL CLOCK
    CALL TABLIN
    IPI IRT = C
    TF}=0.
    HM}=0.
    1 TC =0.0
    WRITL (6.20)
2O FOFMAT (1HI)
    CALL INFUT
    IF (1OPT(3)) 21.21.22
21N - 29
    CO TC 23
22N = 39
23 CALL INIT
    IF (IOPT(4)) 26026.24
24 TAPIN = AMINI(TAU(1). TAL(z), TAU(3))
    IF (TAMIN) 26.26.25
25 SH = TAMIN + HM
    GO TC 27
26 SH -.0nOS
27 LO 10 1=103
    YI(I) ALPCOT(I)
    YI(I+3)= ALPH(I)
    YI(I+6)= GAMLOT(I)
    YI(I+Q)= GAMMA(I)
10YI(I+16)= OHEG(I)
    YIC&\I = XONTC
    YI(d4) = YOOTC
    YI(1b)=200TC
    YI(lu) = XC
    YI(17) = YC
    Y1(10)- ZC
    Yi(2\alpha) = PSIO
    YI(23) = PHIC
    YI(24)=X10
    00 18 J= 25.50
1* YI(J) 0.0.0
    UO 165 J= 4.12
185 ERF(u) E ERR(J)*DEGRAD
    CO 106 J= 19194
186 ERK(J) E ERH(J) % OEGRAD
    CALL RKP
    CALL CLOCK
    GO TL 1
    ENL
```

```
        SUERUUTINE TABLIN
        UIRENSIOR: STUPE(E), CLCL(IOC). IFORK(IE)
        CORMCN/N1O/FCOT1(100). FNOT2(100). FOOT3(100).
        101
    102 ShOCK1(100). SHOCK2(100). SHOCK3(10C)
                            ALOCK1(1OC), FLOCK2(100), BIOCK3(100).
900 FOFMAT (8FIn.3)
    1 = 0
    HEAL (5,900) (STLFK(J). J=1,8)
    10 1 = I+1
    k = IFIX(STUPE(1)/9.5)
    # IFIX(STUPE(1)-FIUAT(9.99#K))
    1F(RN(I)=K
    IFCRK(I+9)=L
    IF ((K-2)/2) 30,20.30
    20 IF ((L-2)/2) 30010N:30
    30 MKITL(6.40) K.L
    4O FOFMAT 110X52H** TAGLE EFKOK NO. 1. FIPST NO. OUT CF RANGE. NO. =
    401 110.110 /11
    STCF
100 LO 110 JE 1.6
110 CLCD(J) = STUPE(J)
    LF = IFIX(CLOD(2))
    L3 = LF*2+2
14C IF (LF) 150,1500170
150 #FITE (6.160) K.L
160 FOFMAT IIOX27H** TAGLE ERKOK NO. 30 LIST IIII1.1XIIHLENGTH m O. //
1601 ,
    ST(P
170 1F (K-3) 18C.171.171
171 LS = LF*3+2
180 IF (L3-A) 190.190.182
182 IF (L3-100) 1A9.189,184
184 HRITL (6,186) K.L.LS
186 FOFMAT (1OX4BH%# TABLE ERKOK NO. 2' LIST EXCEECS ARRAY LENGTH./
1861CXI2HLIST IS NO. IIIIIOIH./ IOXISHLIST LENGTH IS 1IO.1H. //I
    STCP
189 READ (5.900) (CLOO(J): J= 9.L3)
19060 TU 1200.300.400). K
200 GO TC (210.240.270). L
210 40 2&0 Je 1.L3
220 FOCT1(J) C CLOD(J)
    J11 = LF
    GO TU 500
240 U0 250 J= 1.L3
250 FOCT&(J)=CLOD(J)
    \12 E LF
    GO TU 500
270 LO 260 J= 1.LS
280 FOCT3(J) = CLOD(J)
    Jis a LF
    GO TO 500
300 GO TU (310.340,3701:L
310 CO 3&O J= 1.L3
320 bLCCK1(J) ■ CLOC(J)
    J21 - LF
    GO TO 500
```

```
340 LO 330 J= 1.L3
350 bLCCK2(J) = CLOU(J)
    N2a}= L
    60 TC 500
370 LO 3&0 J= 1.L3
380 bLCCn3(J) = CLOU(J)
    J23 = LF
    60 TC 500
400 CO TC (410,430.470).L
410 LO 4<0 J= 1.L3
420 SHCCnl(J)=CLOL(J)
    J31 = LF
    40 Tu 500
430 LO 440 J= 1.L3
440 SHCCR2(J)= CLOC(J)
    J3i = LF
    GC TC 500
470 LO 4tO J= 1.L3
480 SHCCR3(J) = CLOU(J)
    J33 = LF
50C KEAD (5,900) (STUPE(J), J= 1.8)
    IF (STUPE(1)) 10.510.10
51C KSLM =0
    LSLM =0
    LO S20 J= 1.I
    KSLM - KSUR. + IFOKK(J)
520 LSIM = LSUM + IFORK (J+9)
    IF (kSUM-18) 530.650.53C
530 IF (KSUM-6) 550.54n.E50
540 IF (LSUM-3) 550.570.E.50
550 WRITL (6.560) KSUM, LSLK.
560 FOFMAT 110X47H%F TAELE EFROK NO. 4. INSUFFICIEAT TABLE DATA I IIO.
5601 3H),( [1O, 2H). //)
    STCP
570k =2+2*J11
    J12 = \1l
    J12 = J1!
    L0 580 Jm lik
    FOCT&(J) = F(OT1(J)
500 FOCT3(J)= FOCT1(J)
    K - 2*2*J2l
    J2& m\2l
    N23 - J21
    LO 590 J= lik
    ELCCh2(J) = BLOCK1(J)
500 ELCCN3(J)= ELOCK1(J)
    K - 2 + 3&J31
    N32 -J31
    J33 EJ31
    DO 600 J. 10K
    SHCCR2(J)=SHOCK1(J)
600 SHCCR3(J) = SHOCKI(J)
650 % =1
    K= = =1!+2
    WRITE (6.660) MI (FOOTI(J) J=3.K)
*@O FOFMAT (1OXI2HFOOT FAD NO. 11/(17F10.3))
    L = 3+J1d
    K =2+2#Jl&
```

```
    WRITL (0.67C)(FUOTI(J). Jm LOK)
670 FOFMAT (7F10.3)
    H}=
    K= = =12+2
    MRITL (6.660) M. (FUOTZ(J), J=3OK)
    L = 3+J1L
    n=2+2*J12
    WKITL (6.670) (FOOT2(J):J=LOK)
    N. = 3
    K = J13+2
    MRITE (6.660) M, (FLOT3(J): J=3.K)
    L=3+J13
    k - 2+2*J13
    MRITL(6,E70) (FCOT3(J)PJ=L.K)
    H E 1
    K = J21+2
    wKlTE (0.700) MP (ELOCK1(J), J=3.K)
700 FOFMAT (10X9HBLOCK NC. 1I/ (7F10.3))
    L = 3+J21
    N = 2+2*J21
    MRITL (6.670) (ELOCKI(J). j= L.K)
    l. =2
    N = J22+2
    WRITL (6.70U) M, (bLOCK2(J): J= 3.K)
    L = 3+J22
    K=2+2#J2%
    MRITL (6,670) (BLOCK2(J), J=L,K)
    M - 3
    K = J23+2
    WKITL (6.7nU) M. (BLOCK3(J), J= 3.K)
    L = 3+J23
    K = 2+2*J23
    #RITL (0.670) (&LOCK3(J): J= L.K)
    M =1
    k = J31+2
    wkITL (0.750) M. (SHOCK&(J): Ja30K)
750 FOFMAT (10X16HSHOCK ABSORFFE NC. 11 / (7F10.3))
    L = 3+J31
    K = 2+2*J32
    WRITL (6.670)(SHOCK&(J). J= L.K)
    L=K+1
    k=k+J31
    WRITL (6.67U) (SHOCK1(J). J= LOK)
    H}=
    N = J32+2
    MRITL (6.750) Mo (SHOCK2(J): Jm 30K)
    L = 3+132
    K - 2+2*J32
    WKlTL (6,67()(SHOCK&(J). Jo L,K)
    L = K+1
    K = K+J32
    MRITK (6.670)(SHOCKZ(J), J= LOK)
    M}=
    k - j33+2
    MRITL (6.75u) M. (SHOCK3(J). J0 3.K)
    L = 3+J33
    k = 2+9*J33
    MKITL (6,670)(SHOCK3(J). J= L.K)
```

```
    L =K+1
    K=K+.133
    MRIIL (6.670)(SHOCK3(J), J= L.K)
    J11 = J11+2
    LO 810 J=31J11
&lO FUCT&(J)=FCOT1(J)/12.0
    J1: = J12+2
    LO 8<< J= 3.J12
820FO(T<(J)=FOOT2(J)/12.O
    JIこ = J13+2
    LO 830 J=3:J13
630 FOCTS(J)= FOOT3(J)/12.C
    J21 = J21+2
    LO 840 J= 3.J21
640 bLCCK1(J)= GLOCM1(J)/12.0
    J2: - J22+2
    LO 850 J= 3.J22
650 ELCCK2(J)= BLCCK2(J)/12.0
    J23 = J23+2
    [0 860 J= 3:J23
860 blCCh3(J)= ELOCK3(v)/12.0
    J31 = J31+2
    [0 870 J= 3iJ31
670 SHCCK1(J)=SHOCK1(J)/1z.C
    J3: =J32+2
    DO 880 J= 31J32
880 SHCCR2(J)=SHOCK2(J) / 12.0
    J33 =J33+2
    CC 890 J= 30J33
690 SHCCK3(J):SHOCK3(J) /12.0
999 RETULN
    ENt
```

```
    SUf PlutINE IR.fUT
    LIIEI,SIOR. XMFP(3), ALPHK(z)
    LIIERSIOR. OMLGA(3). IHETD(3). ALPHA[(3) ,FEC(50)
    (OHMUN/N1/ N.OTO.TF.SH.HR,Y1(50),YO(SO),ERF(50)
    COPMLN/N7, ALPNUT(3), ALFF.(3), GAMOOT(3), rAMIME(3), XDOTC, YDCTC.
    1 ZLOTC. \lambdaC, YC, ZC. CMFG(3), PSI, PHI, XI, FFLAG, MFLAGO PSIO.
    ? FHIL, XIO. THETA(3), THFTAS, ALFHA(2), FIETA, XJ(3.3), PI,
    3 If GHAL- FAUDEC.
    LO!MLN/1G/ A1(3), Aरि(2), A3(2), A4(3.2.3), A5(3.2,3), A6(3), A7:
```



```
    2 U13.L14,C15,010.l.17.018.L19.020. XX, [A(10), N(3.4.6), HPL(3.3)
    LCHPLN/NII/CL(3),XF,AIX,YIY,ZIZ,XIY,AIZ,YIZ,XRIFP,XIF,NELCGOXLF:
    1 XLL,XLA,LIALFHK,XIC,HRO,NPHASE,HFO,HFMIN,OF,RC(3),RR(3),
    2 XLCOP,XLLC,XKL(3),XKS. XNIIXLRMINOCCICF(3),XLAMCA,XMLFP
```



```
    LCPPUN/HIL2/XLOTCR,YL,CTCC,7RCTOC,TAll(3),ISET(3),XA(3),YA(3),ZA(3)
    COIP:UN/P23/MISS
    COTMUR./N24/ICPT(1O): JN: LTF
    CORPMCNN2E/IFILEY(1C)
    IOFF=0
        UTF=0.0
100 LO LU1 K=1,5
101 LA(k) = 0.0
    KELL (5.900) MM,( DA(J): UEI.5)
    IF (N:MILU9.200.109
109 LOTC 11.2.3.4.5.6.7.8.9.1(.11.12.13.14.15.16.17.18.19.20.21 1.MM
    1 AR. = CA(1)
        \lambdaI)=[A(2)
        YIY = [A(3)
        2Ii = CA(4)
        \lambdaIY = [A(5)
        H.1SS =0
        W.RITL (6.921) MA,
        CC TL 100
    < 人II = LA(1)
        YI; = DA(2)
        XMF = UA(3)
        XLLU = DA(4)
        LELCL= DA(5)
        M1SS = C
        WHITL (0.921) MP4
        GC. TL }10
    3 XLI = OA(1)
        XLL = OA(2)
        XL& = OA(3)
        G = DA(4)
        AL|HAC(1)= DA(5)
        WFITL (6.921) Mr,
        CC TC }10
    4 ALIHAL(2)= DA(1)
        AL!HK(1)= DA(2)
        ALIHK(2) = DA(3)
        EEIAL = DA(4)
    ALC OA(5)
    WhITL (0.921) MHI
    GO TL 100
```

```
    S Hitce = LA(1)
        AlfLFF:= LA(2)
        AICAR = CA(3)
        HFC=DA(4)
        LE = [AA(5)
        WKITL (6.921) MM
        GE TL 100
    6 1F = LA(1)
        XCCTLC= DA(2)
        YDCTLC= CA(3)
        ZDCTUC= UA(4)
        WKITL (6.921) MH
        %O TC }10
    7 XM = [A(1)
        XLLMIN= (AA(2)
        XK: = CA(3)
        WR1TL (60921) MM
        CO TU 100
    6 THETL(1)= NA(1)
        THETL(2) = DA(2)
        THETL(3) = DA(3)
        WFITL (6.921) NITI
        CO TL 100
    9 THITSC=OA(1)
        FSIOL = GA(\alpha)
        HHICL = CA(3)
        XICD=CA(4)
        XLAMLC =OA(S)
        MIITL (6.921) NMM
        GC TL }10
    10 (H:tGM(1)= DA(1)
        UMEGA(2)= OA(2)
        CMIGG(3)= DA(3)
        WILEY = DA(4)
        ICCDL = IFIX (ABS (NILEY))
        LO 1LO1 J= 1.10
1001 ImILEY(J)=0
    GC TC (1011,1012,1013.1020,1015.1016.1017,1018.1020.1020),1CODE
1U11 IWILLY(1)=1
    GO TC 1020
1012 IWILEY(2)=1
    cO TL 1020
1013 1WILEY(3)=1
    GO TC }102
1015 1WILLY(1)=1
    IWILLY(2)=1
    GO TC }102
101e IWILEY(1)=1
    IWILLY(3)=1
    60 TL }102
1017 IWILEY(2)=1
    INILLY(3)=1
    GO TL }102
1018 LO lud4 J= 1.3
1014 &WILEY(J) = d
1020 CORTIAUE
    WhlTL (6.921) MH
    GO TC 100
```

```
    11LCLE =OA(1)
    JO = IFIX(SIGN(1.O.CCLE))
    IC(UL = IFIX(AES ICCDEI)
    LC 11C J= 1.10
    11CIUPT(J)=0
    GOTC 1111.112.113.114.115.116.117.118.119.11811. ICODE
    111 IO1T(1)=1
    GO TC 120
    112 101T(こ)=1
    GO TC 120
    113 1OFT(3)=1
    GしTし 120
    114 1OFT(4)=1
    GOTL 119
    115 1OFT(1)=1
    1OFT(2)=1
    GC TU 120
    116 10FT(1)=1
    1OtT(3)=1
    GC TL 120
    117 1OFT(2)=1
    LCFT(3)=1
    GC TV 120
    118 10FT(1)=1
    LOPT(2)=1
    IOFT(3)=1
    60 TL 120
1181 101 T(5)=1
    GO TC 120
    119 1CFF=1
    120 SEFNL OA(2)
        PNFFASE=CA(3)
        VH= CA(4)
        VV = OA(5)
        WHITL (0.921) MA
        COTL TOO
    12 XDTP = OA(1)
        TFC = UA(z)
        HM = OA(3)
        ER((4)=DA(4)
        ER((5)=OA(b)
        WRITE (0.921) MM
        GO TO 100
    13 00 131 J = 1.5
    131 ER((v+5)= DA(J)
        MRITL (6.921) PIN
        GC TC 100
    14 LO 141 J=1.5
    141ER(1u+10)=CA(J)
        WFITE (0.921) f,M
        COTC }10
    15 LO 151 J= 1.5
    151 EK((u+15) = LA(5)
        WFITE (6.921) MM
        GO TC 100
    16 00 101 J=1.4
    161 ER( (v+20) E DA(J)
        KC(1)= UA(5)
```

```
    NEITLIE,G21) MM
    GO TU 100
    17 LO 1%1 J=1.2
171 KC(J+1)=DA(J)
    LO 172 J = 1:3
172 \lambdaK( (v) = DA(J+2)
    MFITE16.921) MA
    GOTL 10C
    18UC1と& J=1.3
181FP(J)=OA(J)
    CO 1七2 J=1:2
182 KK(J)= CA(J+3)
    WKITL (6.921) MM
    GO TC 100
    19 KF(3) E OA(1)
    UC 141 J=1:3
1Y1 SKL(u)=CA(J+1)
    CB(1) = OA(5)
    WRITE (6.921) MM
    GO TC 100
    20 LO 250 J= 1:c
<50 CB(J+1)=OA(J)
    LO 200 J = 1.3
260 CF(J)= UA(J+2)
    WRITL 16.9211 MM
    GOTU 100
    21 XMLF OA(1)
    XMLE - DA(2)
    LO 240 J=1:3
290 TAL(u)= DA(J+2)
    WRITE (6.921) MF
    GO TC 100
200 IF (IOFF) 310.31C.30C
300 LTF O.O
    GO TL 320
310 UTF = XDTP
320 WRITL (6,922) SEKNC. NPHASE
    MME &
    WhITL (6:001) MM: XR, XIX, YIY, ZIZ. XIY
    MME2
    WRITE (6.902) MM. XIZ. YIZ. XMP: XLOO. OELCG
    MMES
    MRITL 16.903) MM, XLF, XLL, XLA,G , ALPHAC(1)
    MME4
    MMES
    HRITL (6.905) MM, HEOO XIALPHO XIGAMO HFO: DB
    HiMeb
    WRITL 10.9061 MH. UF. XOOTOC. YOOTOC. ZDOTOC
    MME7
    WRITL (6.907) Mrig XNU, XLDMIN,XKS
    MMES
    WFITE (6,908) MF, THETDII). THETO(21. THETDISI
    MMEP
    WRITE 16.9001 MFI, THETSC. FSIOD. PHIOR. XIOD. XLAMDO
```



```
        MME & 1
```

```
    HKITL (e.,91J) HF, GCDF, SHFH.C, NHHASL, VH, VV
    M.介 = 12
    NKITL (E.912) NIN.LTP, TFC,HM, (ERO(J), J= 4.E)
    N:M =13
    WhITL (6.913) MH,(J.EFC(N) , J=6.10)
    MM = 14
    #KITL (6.914) MM, (u,EhO(J)P J=11.1E)
    M.M = 15
    WKITL (E.91S) HMP(JOEKO(J): J= 16. 20)
    AM. = 16
    WHITE (0.910) MN.(J.EFO(J), J= 21.24), RC(1)
    N.PM = 17
    MKITL (6,917) MM. (J,FC(J), J=2.3), (J.XKC(J), J= 1.3)
    MM=10
    WKITL (6.916) MF.,(J.FF(J), J= 1.3), (J.RR(J), J= 1.2)
    MM = 19
    WHITL (0.914) MIF,FR(3), (J.SRL(J). J=1.3) , CE(1)
    A.M = 20
    MKITL (6.920) MA:(JOCE(J), J=2.3), (J.CF(J), J= 1.3)
    NM =21
    MKIIL (6.1921) M,N, XMUF,XMUB, (J.TAU(J), J= 1.3)
    F1 = 3.14159265
    LECFAL= FI / 180.0
    RAlDEG= 180.0 / FI
C ChanGE INPut angles from lelreES to hatians
    THETムII) = DEGRAC * THFTC(1)
    THETH(2) = DEGRAE * THFTR(2)
    THITA(3) = [LEGRAC * THETR(B)
    THETAS = DEGRAC * THETSL
    FSIO = DEGRAD FSIOR
    FHIO = DEGRAD * FHIOR
    XIC = DEGRAC * XICL
    ALFHA(1) = DEGRAE * ALPHAL(1)
    ALfHA(2) = DEGRAL * ALFHIt(a)
    EETA = DEGRAC * EETAF
    XLAMLA = DEGRAL * XLAMRC
    CMEG(1)= OMEGA(1)*DEGFAC
    CMEG(2) = OMEGA(2)#LEGFAR
    OMEG(3)= OMEGA(3)*DEGFAC
    XMFP(1) = XMP
    XMFP(2) = XMF
    XMPP(3)=XMF
    SET INERTIA AMTKIX XJ(3.3)
    xJ(1,1) = x\x
    XJ(1,2)=-XIY
    Xu(1,3)=-x\z
    xJ(2,1) = -xIY
    XJ(2,2) = Y1Y
    xJ(2,3)=-Y12
    XJ(3,1) = -x12
    xJ(3,2) = - v12
    xJ(3,3)= 212
    UC 850 J=4.24
650 ERF(u) E ERO(J)
    c0 85! J=1.10
85! [OFT(J) = IABS (IOPT(J)!
```

```
        TH = TFO
        Jt E JNC
        IF (IWILEY(1) + IWILFY(2) +IWILEY(3)) 1102.11C2.1101
1101 JPJ = 0
1102 COPTJNUE
    900 FOFMAT(17.5X,5E&2.5)
    901 FO!MAT(5F. CAFD,13.1CH XF, =OE12.5.1OH IXX =OEI2.5.10H I
        IYY =.E12.5.10H IZZ =.FI2.5.10H IXY =.E12.E/1
    902 FOFMATISH CARD.13.1OH IXZ E.EI2.5.10H IYZ =IE12.5.10H X
    IH.P =.E12.5.10H XLLO =.F12.5.1OH DFLCG E.F12.E/1
    903 FOIMATISH CARD.I3.1OH XLF =OE12.5.1OH XLL EOF12.5.1OH X
    ILA =.E12.5.1OH G E.F12.5.1OH ALPHAl1I=.F12.E/1
    904 FOFMAT(5H CAFD,13.1OH ALFHA(2)E,E17.5.1OH ALPHK11)=1E12.5.1OH ALPH
    IKIEI=|E12.5.10H BETA E.F12.5.1OH XLC =.E12.5/1
    905 FOFMATI5H CAFD,I3.1OH HFU EOEI2.5.1OH XIALPH =.EI2.5.1OH XI
    1GAT =.E12.5.1OH HFO =.F12.5.1OH DB =.E12.5/1
    906 FOFMAT IIX4HCARLI3.EX4HDF = E12.5.3X8HXDOTOC = E12.5. 2XBMYDOTOC=
    9061 Ll<.5' 2X8HZCUTOC = F17.5 /1
    907 FOIMMT (1XHHCARL 13.5X5HXNU = E12.5.2XPHXLDMIN E E12.5.5XSHXKS =
    C071 E12.5 /l
    908 FOFMAT(5H CARD,I3. IOH THET
    LL(1)=,E12.5.1OH THETL(2)=,E.12.501OH THETO(3)=,E12.5/1)
    GOQ FOFMATI5H CAKD.13.IOH TH.ETAS =.EI?.5.1OH PSIO E.EI2.5.1OM P
    IHIC EIEI2.5.1OH XIO=.F12.5.1OH XIAMDO =.E12.5/1
    910 FORMAT (1X4HCARL I3. 3(1XGHOMEGA(!1.2H)=E12.5).3X7HCODE2 = E12.5/1
    911 FOFMAT 15H CARDIIS.1OH CCDE E,F12.5.1OH SEFNC E,F12.5.1OH PHA
    9111SE NOE.112 .1OH VH =.E12.5.1nH VV =.E12.5/1
    912 FOFMAT 11X4HCARUI3.5N5HCTF = E12.5.6X4HTF= E12.5.&X4HHM = E12.5.
    9121 2X8HERR(4) = E12.5. 2X8HFRR(5) = E12.5 / )
    913 FOFMAT (IX4HCAROIS, 4(3X4HFRR(II,3H)= E12.5), {X4HERR(I2.3H)= El
    9131 2.5/1
    914 FOFMAT (IX4HCARUI3, S(1X4HEKR(12.3H)= E12.5)/1
    915 FOFMAT (1X4HCARUI3, E(IXHHFRR(12.3H)=E12.5)/1
    916 FOFMAT (IX4HCARLI3.4(1X4HERR(12,3H)=E12.5), 3X7HRC(1) = E12.5/)
    917 FOFMAT (IXUHCARDI3. 2(3X3F.RC(II.3H)= F12.5). 3(2X4HXKN(II.3H)EE
    9171 120bl/1
    918 FOFMAT (1X4HCARUI3, 3(3X3HFF(11,3H)=F12.5).2(3X3HRRIII.3H)=E12
    9181 051/1
    919 FOFMAT (1X4HCARDI3,3X7HRF(3)= E12.5.3(2X4HSRL(II.3H)= E12.5): 3X
    9101 7rCE(1) = E12.5 (1
    920 FOFMAT (IX4HCARUI3. 2(3X3HCt(11,3H)= F12.5).3(3X3HCF(11.3H)= E12
    9201 -EI/1
1921 FOFMAT IIX4HCARLI3.4XGHXNLF E E12.5.4XGHXMUB E E12.5. 3(2X4HTAUII&
19211 - 3H,1 = E12.51/1
    921 FOFMATI39H NEW DATA CAFL FOR THIS CASE IS NO. E.I5I
    022 FOFMAT 1//27M THIS CASE IS SERIES NO. E FI2.3.
    G221 2OH ARO FHASE NO. : 14// 2&H INPUT DATA FOLLOWS. //I
        RETURA
        ENL
```

```
    SUFRLUTINE INIT
    LIHEI.SION. XMPP(3), ALPHK(2)
    LIPET.SIOP, A(3), AA(3)
    COFMCN/N7, ALPDOT(3), ALFF.(3), GAMDCT(3), GAMMA(3), XDCTC, YDOTC,
    1 2IOTC, XC, YC, ZC, CMFG(3), PSI, PHI, XI. PFLAG, KFLAG, PSIO.
    ? PHIL, XIO, THEIA(3), THFTAS, ALPHA(2), BETA, XJ(3,3), PI.
    3 CfGRAD. RADLEG
        CCNMCN/NG, A1(3), A2(2), A3(2), A4(3.2.3), A5(3,2.3), A6(3), A7,
    1 AE(3,3), D1, D2, D3, D4, r5, D6, ח7, [8, CG, C10, D11, [120
    2 D13,014.D15,D16.017.018.LIG.020. xx. ra(10), W(3.4.6), HPL(3.3)
    CORPIUN/N1C/FCOT1(100). FOOTE(100), FCOT3(100):
    LC1 ALOCK1(10C). FLOCK2(100). BlOCK3(10C).
    102 SHOCK1(1CC), SHOCK211001. SHOCK3(10C)
    COFMLN/NII/CE(SI)XF,XIXOYIY,ZIZ,XIY,XIZ,YIT,XMFP,XIP,DELCGOXLP,
    1 XLL,XLA,GIALPHK,XIC,HIEO,NPHASE,HIFO,HFMIN,OF,,RC(3),RR(3),
    2 XLDOP,XLLC,XKL(3),XKS, XNIIOXLYMIF:OCC,CF(3),XLAMDA,XMUF.
                        XIINB,RUNNC, SEKNO,VV,VH,DG,XIALPH:XICIAM,CELMAX,SRLIB),FP(3)
            COFMUN/NI2/XCOTLC,YIOOTNC,ZNCTOC,TAII(3),ISET(3),XA(3),YA(3),ZA(3)
            COHMLH/N14/SLOPE1(3),SLOFE2(3),XCNP(12),YCRP(12),FS日(3), XHFU(3),
                YHPU(3), 2HFU(Z),SINTHS,COSTHS,PSP(3,12),DELEL(3),FIMAX(3),
                ZFREF,SINTH(3),COSTH(3),TZERO,VZERO,2BC(3)
            CONMCN/N15, E(3.3), XB(3), YB(3), 2A(3), XFF(3), YFP(3), 2FP(3),
    1 Of S(3.3.3)
    COFMLN/N19/NAFLAG(3),PSGC(3),PSPO(3.12),IBEEN(E)
100 SINTHS = SIN I THFTASI
    COSTH,S = COS ( THFTASI
    LO luS J=1.3
    ISET(J)=0
    XA(J) = 0.0
    V(J) = 0.0
    ZA(J)=0.0
    LELEL(J): FP(J)/XKS
    FHAX(J)=0.0
    Ib{E|v(J)=0
    IBLEP(J+3)=0
105 CONTINUL
    LELMAX = XLUO - XLUFIIN:
    K = IF{X(FCOT\(2))+3
    SLCPLI(1)=(FOOT)(K+1)-FOOTI(K))/(FCOT1(4)-FOOT1(3))
    K E IFIX(FOOT2(&))+3
    SLCPE&(2):(FOOT2(K+1)-FCOT2(K))/(FOOT2(4)-FOCT2(3))
    K - IFIXIFOOT3(2))+\
    SL(PLI/3) = (FOOT3(k+1)-FCOTS(K))/(FOOT3(4)-FOOTS(3))
    K = IFIX(BLCCK1(2))+3
    SL(PL2(1)= (BLUCK)(K+1)-FLCCK1(K))/(BLOCK1(4)-BLOCK1(3))
    K - IFIX(BLOCK2(2))+3
    SL(PL2(2)=(BLUCK2(K+1)-FLCCK2(K))/(BLOCK2(4)-BLOCK2(3))
    K = IFIX(BLOCK3(2))+3
    SLCPL2(3)= (BLOCK3(K+1)-5LCCK3(K))/(BLOCK3(4)-BLOCK3(3))
110
    U.O
    YC= U.O
    ZCE U.O
    PSI = PSIO
    PHI = PHIO
    XI = x10
    Cl = cos(PSI)
```

```
        LZ = COS (PHII)
        L3=\operatorname{cos (xI )}
        L4 =SIN (PSI)
        C5 = SIN ( PHI)
        L6 = SIN (XI)
        E(111)=C2*03
        E(102)=-D2 *D6
        E(1,3)=05
        E(z11)= C4 *D5*C3 + C1 *CG
    E(&'&)=-04 *DS*CC +C1 * C3
    t(a,3) =-04 *D2
    E(\Xi, ) = -01 #05*03 + 04 * D6
    b(こ口c)= D1 #D5 *n6 +04 *L3
    E(30) = 01 *C2
    GO TO (1102.1101.11(C3), NPHASE
    1101 XOCTL E-VH SIN (XLAMDA)
    YDCTC = VH * COS (XLAMOA)
    ZOCTL = VV
    gC TU 111
    1202 XDCTC= XLOTOC
    YECTLE YDOTOC
    ZOCTC= ZDOTOC
    60 TL 111
1103 A(1) - XDOTOC
    A(E) = YOOTOC
    A(3) = ZOOTOC
    LO 1104 1=1.3
    AA(I) =0.0
    LC 11C4L=1.3
    1104 AA(I) = AA(I) + E(IOL)* A(L)
    XC(TL =AA(1)
    YOCTC =AA(2)
    ZDCTC = AA(3)
    1d1 PFLAG = +1.O
    ABCVE P FLAG IS LSEL IN ECX 1815 OF FORCE SUBRCUTIAE.
C
nOY cAlCULATE T su& zerr
C
    LC 112 I =1,3
    AA(I)=0.0
    NO 1/22 L =1.3
    AA(I)=AA(I) + XJ(I/L) & CMEG(L)
    112 COP TINUE
        U1 - 0.0
        LO 114 L m1.3
        UI = DI + OMEG(L)*AA(L)
    114 COH.T&NUE
        TZERCE -S* ( XM * I XUOTC * XDOTC + YLOTC * YDOTC * ZOOTC & ZOOTC)
    1 + D 1 1
the following changes i tc comments capd markec enc of changes 1 afl lhanges made in ueck no. 2 ONly.
\(X C L P(1)=0.0\)
\(\lambda C[P(2)=0.0\)
\(Y C(P(1)=1200 / 3 . C) * D F / P I\)
YCCP(2) = YCUP(1)
```

```
C LNL LF DECK NO. 2 CHIANGES
    LIS = XLA * XLA + XLL * XLL
    L2C = 2.0 * XLA *XLL
    GAFMLC= EETA + ASIPV ((XIUO*XLDO - U19) / C20)
    LCFMAX = 0.O
    LI7 = SIN ( bETA )
    L1t = COS (LETA )
    LO 240 J =1.3
    140 GAFMA(J) = GAMMAO
    ALFH(J)=GAMMAC
    SIPTH(J)=SIN I THETA(J) )
    COSTh(J)=CLS (THETA(J))
    \muSI(v)=0.0
    FSEQ(J)=0.0
    XE(J) = XLC * SIHITH(u)
    YH(J) = XLC * COSTH(J)
    zE(|J) = DELCG + HPC
    XHFU(J) = SINTH(J) * XLF + XLA * 017 )
    YHPU(J)= COSTH(J)*(XLF + XLA* 017)
    <HFU(J)= DELCG - XLA* LIE
    GATLCT(J)=0.0
    ALFCLT(J)= =.O
    XFI(u)=SINTH(J)*1 XLP + XLL * COS (GAMP:A(J) ))
    YFF(J)=COSTH(J)* XIP + XLL * COS ( GAMMA(J) i)
    ZFF(u) = DEL.CG + XLL * SIN ( GAMMA(J) I
    H.PL (J,1)=XLP * SINTH (N)
    H.FL (J.2)=XLP * COSTH (J)
    HIFL (J.3)=LELCC
    150 Lk@(u.1.1)=CCSTH(J)
    LK@(uI1.2)=SINTH(J)
    lKs(u.1.3)=0.0
    CRS(u+2,1)= - SIMTHIJ)
    LRS(v.2,2)=COSTH(J)
    LRS(J.2.3)=0.C
    LRE(U.3.1)=0.0
    UR\subseteq(v.3.2)=0.0
    LRS(v.3.3)=1.0
    AG(1)=\lambdaFP(J)
    46(2)= YFP(J)
    AG(3)=2FP(J)
c
C K lO lcurs mere and at 2OC ake chancer in deck mo. 2.
    LC 150 K=1.2
    160 AA(1) = XCDP(K)
    AA(2)=YCDP(K)
    AA(3)= HFO
    CO 102 L1 =1.3
    A(L1)=A6(LI)
    LO Le2 L2 =1:3
    A(l1)=A(LI) + CRS(JOLIOL2) * AA(L2)
162 CON TINUE
    LO le4 Ll mi.3
    A1(LJ)=0.0
    CO 104 L2 =1,3
    A1(Ll)=A1(L1) + B(L1,L2) * A(L2)
164 CONTINUE
```

```
    A7 = SINTHS * A1(2) + CCSTHS * A1(3)
170 IF( A7 - ZCPMAX)190.190.160
180 2CIMAX = A7
190 CON TINUE
200 LO 2.0 K=1.2
210 FS& (J.K)=0.0
    FSFQ(J.K)=0.0
220 COFTINUE
240 COt TINUE
250 ZCE - ZCPMAX / CCSTHS
ZFFEF = - 2FF(3)-1.FO-C.50
VZIRC = - XM * G * ZC
LA(7) = XM = G
LA(8)=PI # DF/B.C * CF
LA(9) = 65.U * LEGKAD
LA(IC) = FI * DG * OL / 4.0
FETUKN
ENL
```

```
        sutflutITy fer
    LIPEI.SIOH, XHFF(3). MLPFIK(Z̈)OSHKMAX(3)
    EIPEI.SION A(3), AA(3)
    COP+LN/N2/T,Y(5U) OC(SOI
    COHPICH/ME/ TALPH,A(3), TGIRPA(3), F(3), TG(3)
    CGPICR/JG/O'IE GCl(3), ALFHFR(3), GANDL(3), G(3), FSIL, PHID, XID,
    l LILmAR.
    COPMLTMAI7/ ALFCLT(3), ALFH(3), GAMOCT(3), GAMPIA(3), xDCTC, YDOTC,
    1 ZLOIC, XC, YC, ZR, CMRGI3), FSI, FHI, XI, FFLAG, KFLAG, PSIO.
    2 HHIL, XIC, THETA(E), THFTASO ALPHA(2), FHFTA, XJ(3.3), PI.
    3 LIGFALIG ranleg
        LOHMCT.JiNE/ LFLAG
        CC1M(1./NG/A1(3), A2(2), A3(2), A4(3.2,3), A5(3.2.3), A6(3), A7,
```



```
    1 XLL,XLA,WIALFHIKOXICOIHO,NPHIASE,HFO,HFMIP,OFOKC(3),RRIBI,
                        XLLOOP,XLLC,XKL(T),XKS, XPIU,XLTMIN,CC,CF(3),AIAMDA,XMUF,
```



```
        CCPMLNMN13/A, AA
        CORMCN/:114/SLOPLI(3),SLUFE2(3),XC(IP(12),YCRF(12),FSE(3),XHPU(3),
    1
    2 ZFREF,SIP.TH(3),COSTH(3),TZFRO,V7ERN,ZRO(3)
        COHMLN./N15/E(3,3), XR(3), YE(3), TA(3), XFF(3), YFF(3), ZCP(3),
    1 DfS(3.3.3)
        COPMLN/P:1G/RN(3), XII(3,2), XLO(3), XIDOOT(3), XRCTP(3,2),
```



```
    2 GIS(3.3.3), TA
        LOPMCN/N17/ XFPC(3), YFFC(I), ZFPC(3)
    CGPMLP/N18/ NFLAC:
    COPMCN/H1S/NAFLAC(3).PSEC(#),FSPC(3.12).IGEEN(C)
    CORMLP./N2C/OWORK(15)
    COIPCN/1,24/ICPT(1N).JP. (TF
    IF (LFLAG) 1G.19.1C
10 IF (LFLAG-1) 70.70.1&
13 ISTALL =0
    60 TC 70
19 IF (f:FLAC) 20.2C.24
2C LU 23 I= 4.24
    IF (ABS(Y(I)) - 10.E4)23.E1.21
21 LG 22 J= 1.<4
22L(u)=C.O
    (1:2)=10.E6
    CO TL 150
23 COt.TINUE
24 LC 30 I= 1.3
    ALIDLT(I)= Y(I)
    ALIH(I)=Y(I+3)
    GATULT(I)=Y(1+6)
    GAPHM(I) = Y(I+G)
3C ut:EG(I)=Y(I+18)
    \lambdaC(TC = Y(13)
    YLCTL = Y(14)
    zUCTL = Y(15)
    XC}=Y(16
    YC=Y(17)
```

```
    Cl = Y(1t)
    |Sl=Y(22)
    HHI = Y(23)
    \lambdaI=Y(24)
    IA = T
    CALL CCAFIG
    IF (I.FLAC ) 13C.13C.3E
    3C (ALL STAB
    CO 3L J=1.3
    lF (ICEEN(J)) 37.37.3E
    37 1F (FSP(J.1) + FSP(J.z) ) 384.38.3r4
    38 COITINUE
381 L.O 363 J=1.3
    IF (IPEFR(J+3)) 38203&2.303
382 IF (FSE(J)) 3PC,983.RAR
383 COTTJMUE
    60 TV 368
384 WKITL (6.385) J.T
3&5 FOIMAT ILOXI2HFCOTPAL NC. IZ.4OH HAS IPITIALLY CCRTACTED SURFACE A
3851T T = F10.4, 9H SFCCP.DS./1
    IEEENIJ)=1
    LOTL 3E
3#6 WhITL (6,387) J.T
387 FO&MMT (1OXIEHROCY LLOCK NO. 12, 4OH HAS IA.ITIALLY CONTACTEO SURFA
3671CE AT T = F10.4.9H SECONCS./ )
    IELEK.(J+3)=1
    COTL 363
368 IF (KFLAC) 40.5C.60
    4C WKITL (6,45)
    45 FOIMIAT 145H***** VEHICLE IS UNSTAPLE IN PITCH ***** (
        15TALL =-1
        CO TC 70
    50 b.kITL (6055)
    55 FOIMムT (45H##### VEHICLE IS UR.STABLE IN YAV *###* ,
    ISTALL =-1
    70 LFLAL = 1
        SICHIN = SIGM.IN*F.ADCEG
        MK!TL (E.71) T, SIGPIN
    71FOHNIMT (1OX7HITME F F10.4. 10X OHSIGMIN = F10.4.8H DEGREES/I
    LS& = U.O
    U6S # 0.0
    WCRK = 0.0
    k - 5 + IAES (ICPT(3)) = 10
    LO 72 Jm 10K
    7< MUFK - MORK + Y(J+\Sigmǎ4)
        LO }76\textrm{Kazi3
        A(r) = 0.n
        LC 74 J=1.3
    74 A(t) = A(K)& UMEG (J)#XJ(K.J)
    LSG - A(K)%OMEG (K)+[5C
    76 L64 - GAMLOT(K)#GAMLOT (K)+D69
    EF D DS9 /2.+DE9*XIGAM/2. +Xf/2&*(XDCTC#XDOTE
    1 +YDOTC * YDCTC + 7DCTC * ZDOTCI
    LFL VZFKO+LA(7)*2C
    MRITL (6:78) TZEFNOEFD,MOKK,EF,(SHKMAX(J),JE1.3).GCMIN
    78 FOH MAT (
    7&1IO)4UHINITIAL KINETIC ENEKEY (EKOI F2O.5.7H FT LES/
    78210X4LHDIFFERENCE IN FOTEATYAL ENFKGY (EPDI = F20.5.7H FTLES/
```

```
    7631C>4ul|ISSIFATFL FP:&RGY (ECIS)
                                    = F2C.5.7H FT LES/
    7E410:4LTIFIA.AL KIFLTIC LNIH(Y (EKF)
                                    = FaC.5.7F. FT LES//
```



```
    7BG(<)1%HLEC NC.1 +4(1)= = 20.1C/
    787&C)17FLE.G NO.2 +A(2)= F?(.10/
```



```
    7b1 FT- /1
        NETUR.N
    OC IF (ICPT(4)) (O5.OCS.13C
OOS IF (T) G1.ADIO?
    61 SICHIsf = 10.LE
        LCPII. = 10.LE
        LC 011.l=1.3
41J St+tMax(J) = u.0
    62 SI(P.df. =LFIPND (SIGAIN. *(3,4,2))
        LCPII. = AMIN.1(GCNIN:W(1,4,2))
        L.O OC! I=1.3
```



```
    63 If (SIGMIN-1.07.54 ) fL.0EPER
    65 It (6.3.4.2) - SlGMIf - 0.874) 66.e8.e6
    Ge hilTL (E.R7)
```



```
        ISTALL =1
        GC TL 70
    66 IF (ZFREF-(YC*SINTHS+Z(*CUSTHS)) 75.7E.113C
    75 IF (2DOTC#7UCTC-4.0) F.f.80.130
    BC IF (YOOTC#YLCIC- 4.C) S(.90.130
    9C IF (XNOTC#XLCTC-4.C) ICG.100.150
    LOC IF (CFFRI(1)*ONFG(1) - .(.1) 110.110.130
    110 IF (CMFG(2)* GMEC(F) - .01)120.120.130
    120 IF (CAET,(3)*OMFG(3)-.C1) 125.125.130
    125 WF.ITL (6.126)
    120 fUHIAT (45H***** VEHICIE IS STABL.E ****** )
        ISIALL=1
        GO TL 70
    13C CALL FLRCE
        1F (FFLAG) 131.132.132
    131 1STALL = - 1
        GO TU 70
    13* CALL INTEOA.
        LC 14n 1=1.3
        1F (NFLAG) 130.130.1:4
    134 L(I) = ALPFIOD(I)
    13CL(I+j) = ALFLOT(I)
        L(1+j)= AMAXI (-10L.O.1 AMIN1 (ALPOOT(1). 100.0)))
        L(I+e) = GAM DD(I)
        L(I+\zeta)= GAMLOT(I)
        L(I+1z)=O(I)
        L(1+15)=Y(1+12)
    140 U(1+16)= CMEGDT(I)
        L(E2) = FSIL
        L(:3) = PHIL
        L(:4) = x1n
        LC 145 J=1.15
    145 O(v+¿4) E DWCRK(J)
    150 RETUF,A
        ENL
```

```
    SUE KLUTIT.E CCNFIC
    LIPEIVSIUP. XAFPP(3), ALPHK(E)
    (IIEI.SION A(3) , AA(3)
    C(1/ILP./N7/ ALPOCT(3), ALFF(3), GAFOCT(E), CAMMA(3), XDOTC. YDOTC.
    1 ZLOIC, XC, YC, ZC, CMFGIB),FSI, FHI, XI, FFLAG, VFLAC, PSIO.
    ?FIIC. XIO, THETA(3), TH.FIAS, ALPHA(2), FETA, XJ(3.3), PI.
    * LIGIAlir facleg
        LGP PILA.NB/LFLAG
        CQPMCL/NS/A1(3), AL(2), Aミ(2), A4(3.2,3), A5(3.2.3), A6(3), A7.
```



```
    LOPMICN/NII/CG(3),XM,XIX,YIY,ZIZ,XIY,XIZ,YIZ,XMFF,XIP,NELCG,XLP,
    1 XLL,XLA,GIALFHK,XICOHFC,NFHASE,HFO,HFMIN,CF,RC(3),RR(3):
    2 XLCOF,XLLO.XKL(3),XKS, XPJIOXLIMINOCC,CF(T),XLAMC,AOXMUF.
                XP:IR,FUNIVC, SEKNNOIV,VH,CE,XIALPL,OICAM,CELFAX,SFL(3),FP(3)
            COPMLN/N12/XCOTCC,YCICTRC,ZRCTOC,TAlI(3),ISET(3),XA(E),YA(3),2A(3)
            COPMLRIN13/A, AA
            COPMLA//N14/SLOPE1(3),SLOFE2(3),XCLP(12),YCEF(12),FFEB(3),XMPU(3).
    1 YH,FU(3),ZUPU(3),SINTHS.COSTHSOFSP(3.12)ORELFL(B)OFIMAX(3).
    2 2F'REF,SINTH(3),COSTH(3),TZFRO,V7ERO.2BO(3)
    CCPFICN/N15/E(3,3), XB(3), YG(3), 7A(3), XFF(3), YFP(3), 2FP(3).
    1 CHS(3.3.3)
    LOPH:LN/N16/ KN(3), XII(3,2), XLD(3), XIDOOT(3), XCCTF(3.2).
    1 Y(OTF(3.2), S(3,2), C(SXI (3), HF(3.1:%), ZCOTF(3.2), HB(3).
    2 GFS(3,3,3). TA
        COPMUN/N17/ XFPC(3), YFFC(3), 2FPC(3)
    COI MCN/P18/NFLAG
    COPMCN/N19/NT,FLAC(3),PSEC(3),PSPO(3.12),IEEEN(E)
    COHMLN/H22/FOCT(3.3)
    COPMCP:/N2U/ICPT(IO): JA. CTF
    IF IPSI#FSI+PHI*FHI+XI*XI-100001 110.1C9.1CO
    109 SI = PI/Z.O
    FHI= =0.n
    xl =0.0
    11C L.11= COS (PSI)
    L1E= COS (PHI)
    LII= cos (xI)
    U14= SIPV (PSI)
    L15# SIN (PHII)
    [1e= SIt (XI)
    *(101) = D12*D13
    t(10天)=-012*D16
    b(2,3) = 015
    E(cil)= [14*D15*013+D11*L16
```



```
    E1&)34 =-n14*D12
    6(301)=-011%D15*013+014*1.16
    t(3|&)=011*015*[:10+D14*[i13
```



```
nのnの
    L17OLIGOLI9.L2O ARE SET IN INIT TO SINIBETA),COS(BETA).
    XLf#XLA P XLL#XLL. 2.O#XLA&XLL RESFECTIVFLY
12C A(1) = 0.0
    A(i) SINTHS
    A(3) - COSTHS
```

```
    LO 1.4 L = 1.3
    1P.(L)= O.0
    LO 1.4 Lé =1.3
    hM(L)=HN(L) + E|COL)*A(L2)
124 (C.1 T|l.!
    CLSXIL = 0(2.3) * S11.THS + (13.3) * CUSTHS
    \lambdall(10<) = 4COS (cosxlf)
    入l1(a.2)= x11(1, )
    \lambda11(2,2)=x11(112)
13C IFIL(SXIP * CNSXIF - .COLOO1 1140.150.15C
14C (oskal. = .nUl
150 LO 240 J = 1.3
10C L7 = SIld ( raMP'A(N))
    Lu = CCS ( (;AMP!A(,))
    \lambdaFI(U) = SIN.TH(J) * XLF + XLL * D&)
    YFY(~)=COSTH(J)*1 XLF + XLL * ח8)
    <!(い)= CFLCG + XLL* 「7
```



```
    AL!ELT(J)= XLA * XIL* LAMOCT(J)* (LH*LIE + [7 *D17)/XLD(U)
1604 AA(1) = \lambdaFP(u)
    LA(2)=YFP(J)
    LA(3)= 2FP(J)
    LC ll2 I=1.3
    L6(1) = 0.0
    LC lec L = 1.3
    AC(I) = Af(I) + E(IOL) * AP(L)
162 COFTIME
            \lambdaFFC(J)=AE(1)
            YFH(J)=AB(2)
            &FFC(J)=AG(3)
17C 41(1) = -XILL * LANCCT(J)* (7 * SIPTHI(J)
    H(2) = -XLL * GAPCCT(.J) * L7 * COSTHI.J)
    41(3) = XLL * GAADCT(J)* Le
    LA(1)=A1(1) + CPEL(2)* 2FF(J) - OMEG(3)* YFP(J)
    AA(2)=A1(2) + CNFC(3)* AFP(J) - OMEG(1)* 2FP(J)
    AA(3)=A1(3) + (A:EG(1)* YFF(J) - OMEG(2)* XFP(J)
    LC 1% I =1.3
    4l)= O.C
    LC 172 L =1.3
    4(1) =A(I) + E(I.LI * Af(L)
17< COT TIACE
    ALCTH(JIl) = XDOTC + A(1)
    YL(TH(J.1) = COSTHS * Y YOCTC + A(2)) -SINTHS *( 2C(TC + A(3))
    ZL(TH(J.1) =SIA.THS*(YOCTR+A(2))+COSTHS*(2DCTC+A1S))
    心(`.1) = SQRT (XNCTF(J.l) * X[OTP(J.1) + YCOTF(J.l) *YOOTP(J.1))
1&C LI = SIN 1 ALFH(J) - GAM:A(U))
    l,2 =C(S 1 ALPH(J) - GAMAA(J) )
    46(1) = 01 * SIISTH(J)
    LE(2)=[1 * COSTH(J)
    LA(3)=02
    Cl\leqXI(J)=RN(1) * AC(1) + hN(2) *A6(2) + FN(3) * A6(3)
    \lambdall(u!1)=ACOS ( cosxi(J))
    l.K!(u-1!1) = COSTH(J)
    LK(Ivil,2)=SINTH(J)*L?
    Lh!(v.1:3) = SINTH(J) *l!
    LK!(u)2,1) =-SINTH(J)
    LK!(u.2.2)=CC.STH,(J)*C2
    Lh!(v.2,3) = COSTH(J) #LI
```

```
    LKS(い.3.1) = 0.0
    LK巳(J.3,2)=-01
    LK!(u)3.3) = D2
    IFI \lambdaII(J.1) - UA(9) 1200.2CO.220
200 A(?) = HFO
    LO 216 K=1.2
201 4(1) = XCDP(N)
    A(:) = YCOP(K)
    LC 2U2 L =1.3
    HA(L)=0.0
    LC 2LE 1 =1.3
    A(L)=AA(L) + [RS(U,LII) # A(I)
202 cot TINUE
    A1(1) = XFP(J) + AA(1)
    A1(2)=YFP(J) + AA(&)
    A1(3)=2FP(J) + AA(3)
    L1 =0.n
    L2 =0.0
    L3 = C.O
    LC 2C4 L=1.3
    Ll = D1 + B(1.L) * A1(L)
    L2 = D2 + P(2,L) * A)(L)
    L3 = 03 + R(3.L) & Al(L)
204 COP.TIMUE
    IF (IOPT(4)) 2O4L.2O4E.<041
2041 IF (TA-TAU(v)) 2C6.2042.2042
2042 IF (ISET(J)) 2043.2043.2045
2043 1F (NFLAG) 20A.2C6.2r44
2044 lSLM = 0
    LC 3001 L= 1,3
3001 ISIM = ISUR + ISET(L)
    IF (ISUM) 3002.3U02,3COS
3002 FSIO E PSI
    FHIO = PHI
    AIC = XI
    IF (P.PHASE - 3) 3004.3CC3.3004
3003 VHCRIZ = SORT 1 XNCTC*XDOTR + YLUCTC*YONTCI
    XLCTLG = XDOTC
    YDCTLG = YDOTC
3UO4 VVERT = ZOOTC
3uOS ISIT(J)=1
    SUPY =0.0
    SulZ =0.0
    XA(J)=01 + XC
    YA(J)=D2 + YC
    ZA(J) = O3 + ZC
    GCTL 206
2045 SUPY = D2 + YC - YA(J)
    SUPZ = D3 + ZC -ZA(J)
    A7 = SINTHS * SUA.Y + COSTHS * SURZ
        GOTL 2049
2048 FO(T(J.1) = XFPC(J) + XC
    FOCT(J.2)=(YFPC(J) + YC)#(OSTHS-(ZFPC(J) + ZC)*SIMTHS
    FO(T(J.3) = (YFFC(J) + YC) # SINTHS + (ZFPC(J) + ZC) * COSTHS
    A7 - (D2+YC)*SIP.THS+([,3+ZC)*COSTmS
2049 H.F(J.K) = HFO - AT / CCSXI(J)
    205 IF( +SP(J.K) + HF(J.K) - HFO)218.218.206
    206 HF(J.K) = HFC - FSP(u.k)
```

```
    cl6 (011/.lL
    11 (1(PT(4)) 2こし.22C.21S
    <14 I|vlL.G(J) = U
    (6. Tu 230
    22C LA(1) = \lambdat.(J)
    LE(2) = YF(J)
    LG(3)=2tO(J)
    L3 = 0.0
    L4=9.0
    luご任 L=1.3
    L3=L3+ n(2,L) * AGIL)
    L.4=L4 + P(3.L) * 4O(L)
    <<d (OT.T&T.UE
    47 ESIPTHS*(Lう + Y() + COSTHS * D D + ZC)
    |F(J)= HEO-A7/COSXIL
\iota
    l.paf Lal(J) = +1
    If (NFLAC, <220.2%<.222
2c2c+st(-) = FSTGC(J)
    22& IF( Hf(J) + Hfi(J) - Hf():24.224.223
    223 ANILGGG(J)=0
    C.CTL a3u
    224 2F(J) = LELCG + +&(J)
    AA(1)= UNEG(2)* 7F(v)- CMFC(3)* YA(J)
    AA(2) = CREG(3)* XF(J)- rAFL(1)* 7R(N)
            4A(3) = CPFE(1))* YF:(J)- CAFC(2)* XP(J)
            1.C 2&g L=1,3
            L(l)=U.C
            LC 2.9 I =1.3
            H(L)=A(I) + H(L.I)*A&(I)
    <25 (OT1/1HL
            XL(II (JVE) = XDUTC. + All)
            YICTH(J.2)=CCSTHS * Y YCTC +A(2)) - EINTHS *( ZCCTC + A(3))
            &(,(TH (N0E) = SINTHS*(YUCTC+A(2))+COSTHS*(2ONTC+A(3))
```



```
            121)
    230 6K\(N.1'1) = (nsTH(J)
            Lん!(u.1,2) = SIMTH(J) * re
            LhS(u.l.3) =-SIHTH.(J) * r7
            (:K\leq1v0%!1) =-SIl*TH(J)
            LFS(u.2,:) = CNSTH(|J) * [t
            (at!(u.2.3) =-COSTH(J) * ry
            (F!(v.3.1) = O.C
            GK!(u)3.2) =07
            ak!(viza3) = DP
            LC 2Sa L= 2.3
            All) = U.C
            LO 2-̇ I= 1.3
            4ll)=A(L) + F(L.I)*HFL(J.l)
    <32 LCPTIAUE
            AG(J,1)= SINTHS*(YC+A(2))+COSTHS*(2C+A(3))
            24C cor Tap.uE
            If (ICPT(4)) 25C.25C.24(1
    2401 IF (ISET(1)*ISET(2)*ISFT(3)) 250.250.2499
C FOCTHAR IAPACT TIPIFS AFE SHECIFIEN ARIO OPTION L IS ENABLEN
```

```
2499 AX = XA(C) - XA(1)
    AY E YA(a) - YA(l)
    AZ - ZA(z) - ZA(II
    EX = XA(3) - XA(1)
    LY = YA(3) - YA(1)
    t.Z = ZA(3) - 7A(1)
    AXEX = AY*LZ - AZ*EY
    AXIY = AZ#LX - AX*EZ
    AXIZ - AX#EY - AY#EX
    AXIMAG = SORT (AXAX*AXEX + AXEY*AXBY + AXEZ*AXFZ)
    WKITL (6.2498) TA
2496 FOFMMT 1/8X5HITA = F7.4.6t SLCCNLS I
    IF (AXRMAG) 2402.24C2.2410
2402 kKITL (0.2403)
2403 FOHMILT(/32H*####|AFACT FCINTS COLINEAR#*****//)
    W.FITE. (6.24U4) XA(1),YA(1),2A(1)
2404 FGFP.MT (EXRHXA(1)=F7.2.5MOHYA(1)=F7.2.5X8HZA(1) = F7.2 /)
    liklTE (0.2405) XA(2), YA(?), 2A(?)
2405 FOF RAT (5XAHXA(<) = F7.2.5XGHYA(2)=F7.2.5X8H2A(2)=F7.2 /1
    HRITL (E.2406) XA(3),YA(3),ZA(3)
2406 FOF MimT (5XRHXA(3)=F7.E.5XGHYA(3)=F7.2.5XBHZA(3)=F7.2 /1
    LFIAC=1
    LOTC 250
241C LIVY - AXHA/AXEP:AC
    LNY - AXHY/AXEPAG
    LNZ = AXRZ/AXEPIAG
    IF (UNZ) 2411.2412.2415
2411 UNX = -URX
    LNY = -UPY
    LNEZ = -UNZ
    CC TU 2415
2412 KFITL (E.2413)
2413 FOPMMT//24H*****LANLED CR,VALL###** //1
2414 WhITL (6.2404) XA(1),YA(1): 2A(1)
    WF!TL (0.2405) XA(2):YA(2), ZA(2)
    WRITL (E.2406) XA(3),YA(3),ZA(3)
    LFIAL =1
    GOTL 250
2415 TH!TAS = ACOS(UNZ)
    COTL (2416.2417.3C11)OPFHASE
2416 VHCRIZ = SORT (XERTCC#YDCTOC+YDOTOC#YDCTOC)
    XLCTCG = XOOTOC
    YCOTLG a YDOTOC
    GOTC 3011
2417 XUCTCG = -VH*SIN(XLAP.DA)
    YUCTLO = VH*COS(XIARILA)
    VHCRIZ m VH
3U1& IF (VHORIZ) 241E.241P.2420
2418 HFITL (6.2419) VVERT
2419FOFMAT (/37H***## VH=O LAFDA=OIARBITKARYI VVEF20.5//1
    CCTU 2450
2420 IF (THETAS) 2421.2423.2430
2421 WKITL (6.24i2)
2422 FORHIGT//22H*****ERRCK ThETAS***** //1
    GO TC 2414
2423 IF (XDOTCQ) 2424.2425.2425
2424 ERE = +1.0
    GO TL 2426
```

```
2425 thi = - 1.C
2420 CUSLAT = YDOTCO/VHCKIZ
    \lambdaSIOFE = FRH:*ACUS(CCSLARI)
    ac TL 244E
243C AR:/G = SQRT (URX*UNX + UP Y*UNY)
    LAS. = L'NX/AMAS.
    GAY = UNY/APAC.
    IF (LAX*YDOTCO-UAY*XCCTCQ) 2431.2432.2432
2431 हlil =-1.0
    CC TU 2433
2432 EfF= = 1.0
2433 CUSLmF = (UAX*XU(TOG+UAY*YOCTOG)/VHOKlZ
    \lambdaSIOFE = FIRR#ACOS(CCSLAM)
2448 XSLOLG = XSLCPE * RALDEG
    V.FITR (0.2447) LHCKIZ.VVEFT
2447 FUFMAT (/EXSHIVH = Fb.2, 1GHFT/SEC VV =FE.2.7H FT/SEC I
    VFITL (6,2449) XSLOEG
2449 FCHPMT(/SXRHLAMUA = F5.E.GH CEGREES /)
24SC 1HILLC = THFTAS * RALDFG
    *.FITL (6.2451) THEDEG
2451 FC&H,4T (4X9HTHTTAS = FS.2.PH, UEGFEES //)
    HF1TL (6.2404) XA(1).YA(1).CA(1)
    HKITL (6.2405) XA(2),YA(2),ZA(2)
    WHITL (E.24UG) XA(3),YA(3):ZA(3)
    IF (THETAS) 245%.3452.2458
2452 FSIC=PSIO*RADLLG
    FHIO= PHIO*RADDEG
    \lambdaIC = \lambdaIO*RACDEC
    WHITL (6.2454) PSIC
2454 FGFMMT 17X6HFSI = F7.2.6F [EGREES/1
    WFITL (E,2455) FHIC
245S FOFMMT (7XGHFHI=F7.2.6F [EGFEES/)
    WHITL (6.2456) \10
245e FOFMAT (EXSHXI = F7.2.RH LEGREES/I
    LFLAL =1
    LCTC 250
2458 IF (VHORI2) 3456.345E.3459
3458 ANAAG = SORT (UA:X#UNX + URY#UNY 1
    (A) = UNX/AMAG
    LAY = UNY/AMAG
3459 If (UAX) 2459.24t0.2461
2459 tet = +1.0
    CO TL 2462
2460 EBE =0.0
    GO TL 2462
2401 t.bt =-1.0
2462 COSZLT = UAY
    ZETA = RBR*ACCS(COS2ET)
    \angleEIOLG = ZETA*RACDEG
    WRITL (6.2463)ZETNFG
2463 FOHMAT(6X7HZETA = F5.2.8H CLGFEES /1
    SIPZLT = SIN(ZETA)
    SIIPHI = SIN(PHIC)
        CUSP',I = COS(PHIC)
        SIIPSI = SIN(PSIO)
        COSPSI= COS(PSIC)
        SIfXI=SIN(XIO)
        cesx)=\operatorname{cos(x10)}
```

```
            CNAP.1.1 = SIPFHI#COSLLT-SINFSI#CCSPHI#SINZLT
            STLFF = SORT (1.O- (SIPHHI#COSZET-SITPSI*COSFHI#SINZETI**2)
            CFAARZ = ISIIFHHI*SINZET + SINPSI*COSFHI*COSZETI/STIFF
            LN&Mr.3=(COSFHI*SIRAI*CRSTET-(COSPSI*COSXI-SINPSI*SINPHI*SINXI)*
            1 1H:ZFT)/ST(IFF
            HH.1O = ASIP. (CFANK1)
            FSIU = ASIT. (CF.ANKC)
            Al( = ASIN. (CFANK3)
            kHITL (E.2470)
247C FOFMMT 132H***** Cr'LCK GlACKANT OF XI ***** //1
    CC TC 245?
c
C LML LF SF'ECIAL GFOUR.L SLCFE AND CROSS SLOPE ANGLE CALCULATION
    250 If (&b(1.1)-AE(2.1))a5f,25F.252
    252 IF (AE(1,1)-AB(3,1))ES&,D5R.254
    254 U=1
    GC Tし 26z
    256 J=?
    CO TL 262
    256 IF IME(2,1)-AB(3.1))Z5A,25E.260
    260 Jm:
    262 4(1)4.2)=-A8(J.1)
    H(;14.2) = FLOAT(J)
    LETUR.P.
    EML
```

```
    Suthultire staA
    (1) li.SIOf. xpiff(2), mLPFiK(z)
    LIPET.SIOR. IFLAC.(3)
```



```
    I ZICIC, AC. YC. ZC, UMFC(3), PSI, PHI, XI, FFLIGO FFLAC. P'IIC,
    ?HIL. XIC, THETA(3), THFTAS, ALFHA(E), FEGA, \J(3.3), PI.
    * LtG.ali, falleg
        LCP!LP/N4, A1(3), A&(2),43(2), A4(3,2,3), A5(3,2,こ), A6(3), A7,
```



```
    1 XLL,XLA,GOALFHK,XICOHEC,NFHASE|FGOHFMIT,OF,RC13),RO(3),
```



```
    CUTHLP,NLS/L(3,3), XF(3), YE(3), 7F(3), XFF(3), YFF(3), フEP(3),
    1 1/ 5(3.3.3)
        LOPP(H/M17/ XFFL(3), YFFC(2), 2FFC(3)
    IF lats (XDOTC) -.OU1) 2n.2C.10
10 11 = 1
    LC Tu &U
20 if (ALS ( YLCTL ) -.OC1) 3L.10.10
3C IF (AES ( THETAS ) - .ON1) 50.4C.40
4011 = 2
    LC TL Cu
50 11 = 3
60 LO 9C j= 1.3
    luTL 1 62.64.601, 11
O2 \lambdaX = YLOTC * XFHC(J) - XCLTC # YFPC(J)
    LC TL PO
64 \lambdax = - THETAS/AlS (THETAS ) # XFP(1J)
    COTしくb
06 \lambdax = XFPC(J)
OE lf (xx) to.7C.7C
70 [F(ALIJ)= 1
    60 TL &9
80 1H{Au(J)=0
89 LA(S) = 1.0
9C LCPTIPLE
    IFI IFLAG(1) - IFLAL(2) 117C.13C.100
100 lF( lFLAC(3) )12(1.120.110
110 JJ=a'
    LUTL zUO
12C JJ=1
    GC TL 200
13C IF( IFLAC(1) - JFLAL(3) 1ISUP160.140
14C JJ=3
    Cu TL 200
150 JJ=3
    CO TL 200
160 KFLAL = 0
    HETURP.
17C IF( IFLAC(3) )190.14C.180
180 J. =1
    GC TL 200
190 JJ = z
    G0 rl 200
```

```
20C N= J N +1
    IF(1.03 )220.220.210
z10 P. = 1
22C IF(IFLAG(JJ) )<4E.<45.23C
<3C N= J -1
    IF( 1.)240.240.245
240 N= ,
<45 cOTL 1250.2510251 1.1I
<50 LIE \lambdaLOTC * ( YFFC(1.) - YFF((JJ) ) - Y[OTC *( XFFC(N) - XFPC(JJ))
    1F (AES(C1)-.0001) c51.751.255
251 XXX = XFFC(JJ) / 1 XFPC(JJ) - XFPC(N))
        CO TC 256
<55 גX\lambda= ( YCOTC # XFFC(JJ) - XDCTC * YFPC(JJ)I / Dl
25t AX = XXX * (XFFC(IV) - YFFC(JJ) ) + XFPC(JJ)
    AY = XXX & ( YFFC(M.) - YFFC(JJ) ) + YFPC(JJ)
    AZ = XXX * (ZFFC(N) - PFFC(JJ) ) + 2FPC(JJ)
    HW = SOHT I AX # AX +AY&AY + AZ #AZ I
    GOTu ( 257.258.2E&I.1I
<27 h(30412)=SIGA (ACCS (AZ/AL):(AX*XOCTR*AY*YDOTC))
    CC TC 250
254 N(304,2) ACOS (AC/AH)
259 IF (N(3.4.2)) 200.260.270
26C KFLAL=-1
    KETUI,A
&7C KFLAG = +1
    HETUNA.
    ENL
```

```
    SuFFilul!e fChCl
    L|t&.SlOf: XMfF(3). ALPFK(2)
    LI|EIGION A(3), f.4(3), h(3.3)
    LIHEISIOR. LEIMF(3), FCE(3), rELNR(3), [ELWF(3), PC(12).
    l
    CELKL(3.2)
    COPACL/NE/ TALFIIA(3), TGARNL(3), F(3), TG1:)
    COHCH./PG/OMLGCT(3), ALFYIR(3), GAMDL(3), C.(3), FSIL, FHID. XIC.
    l Lllo.t.K
    CCHMLP./PV7/ ALPOOT(3), ALFF(3), GAMROT(3), CAMMA(3), XDCTC, YDCTC,
    I Z(OIC, XC, YC, ¿C, CMEG(3). FSI, FHIP XI, FFLAG, KFLAGOPSIO,
    2 FIICO XIC, THFTA.(3), THFTAS, ALFHA(2), AFTA, xJI3.3), P1.
    * lighar. fanceg
```



```
    LCHNUP/NIO/FOGT1(1CC), FC(TZ1&OO). FCOT3(1OO),
1C1
```



```
    1 XLL,XLA,LIALITKK,XICOH.BO,F.PHASE OHFO,HFMIF,PF,FC(B),RR(3),
```



```
    LOTMLA/RIB/ A, AA
    COPMCN/PN&4/SLOPE1(3):SLCFEF(3),XCLF(12),YCLF(12),FSE(3),XHPU(3):
    I YH:FU(3),<HF(!I3),SIATHS,COSTHS,FEP(3.121,DELFLIB),FIMAX(3).
    ? 2PFEF,SIPTH(3),CCSTH(3),TZFDC,V7ERO,2BO(3)
    CCPILN/N15/F(3,3), \lambdaB(3), YF(3), 7B(3), XFF(3), YFP(3), 2FP(3),
    1 DOS(3.3.3)
    COtMCP/P116/ RN(3), \lambda11(3.2), XLC(3), XIDCOT(3), X(CTF(3.&).
    1 Y(C1F(3.2), S(3.2), CCS\1 (3), HF(3.1%), 7CCTF(5.8), HB(3),
    2. GS(3,3:3). TA
        CCIPLN/NIG/ NFLAE
    COHMCH./P19/NNFLAC(3),PSEC(I),PSFG13112),IIEEN(E)
    COPMCN/NZO/OHORK(IE)
    CCIPHCP/N24/ICFT(1O).JN.CTH
    MOTH=0
    A.ACIL =0
    LC 2sO J =1.3
    LC 17(N N=1.2
    IF (N-1) 9.9.2
    2 It (IvNFLAC(J))4.4.1C
    4 LC 6 L=1.3
    44(J.z.L)=0.C
    A5(J.2,L)=0.C
    O cofTIPILE
    m(c.4.3)=0.C
    43(2)=0.0
        IF (INFLAG) 8C1,170.8
    E FSIO(J)= PSE(J)
        COTC170
801 FSI(v)= PSBG(J)
    LOTC 170
    9 LO 9L\ L=1.2
        IF (HFIJOL) + FSF(J.L)-HFO +.000001 1 10.901.901
901 HC(L) =0.n
    MFIAL=1
```

```
    UC צL2 L= 1.3
    A4(J.1.L)= = 0.0
    yOz L5(J.1.L)= L.O
    A3(1)=C.O
    W(J.4,4)=0.0
    IF (NOFLAG) Y05.170.9C3
903 LC SU4 L= 1.2
904 FSiG(J.L) = |SP(J.L)
    CO TC 170
405 LU 9LO L= 1.2
906 FSI(vOL) = PSPG(J.L)
    COTC 170
    1C MIFLAU =0
    IF (N-1) 12,12,13
    12 XAML = XPIUF
    COTL 14
    13 XM,L = XMUL
    1 4 \text { 1F (S(J.A.)-.05) 20.20.3C}
    20 A2( N) = 24.0 # S(JON) # XMU
    GU TC EO
    30 IF(S(J.N) - 1.OE 1 50.50.40
    4C A21 N) = XMU
    GO TC 60
    Sch21N)= XMU *(1.21-.20* S(J.N))
    60 LFI N-1180.80.70
    7C LEIB = HBO - HB(J)
    IF (NFLAG) 70N1,7002,70C2
7001 FSt(v)= PSBG(J)
7002 IF (DELE - PSB(J) - .0C0001) 7004.7004.7C1C
7004 FCE(v) = 0.0
    60 Tu 7092
7010 1F& <LCTF(J.2) 1709C.7020.7020
7020 ROIM = 1
    GOTC (7021.7022.7(&3)|J
7021 CALL ENTRPIDELE,PCO(J). CUM, BLOCK1, KDUP!)
    COTし 7080
7022 CALL ENTRP (DELE. FCE(J), DUMP BL.OCK2. K[UM)
    GO TL 708O
7023 CALL ENTRP (DELB, FCF(J), DUM, RLOCKS. KCUM)
7080 A7 E DELE - FCR(J) / SLCPE2(J)
7084 IF (A7 - PSG(J)) 7(90.70&E.7085
7085 1.5L(v) = A7
    GC TC 7092
709C FC[(U) = SLOFE2(J)*(LELG-FSL(J))
7092 IF (NFLAG, 7093.75.7C94
7093 PSE(u) - PSBG(J)
    GO TC }7
7094 &SEG(J)= PSE(J)
```



```
        l #CB(J)
            M(vi4,3)=A3(N)#COSXI(J)
            CC TC }12
    80 IFI XII(J.N) - UA(9) 1100.100.90
    90 43( N) a 107.0
        60 TU $15
    100 SUPPC =0.0
100S LO LL&SK=1.2
1010 CELP - HFO - MF(JOK)
```

```
            IF (NFLAC) 1011.1012.1012
    1U11 +SI(v.K) = PSPQ(J.K)
    101e 1F (LELP - FSF(JOK) - .(00001) 1013.1013.1014
    1013 FC(K) = 0.0
        G0 Tl 1030
    1U14 IF(&CTF(J.1) ) 1C20.1040.1040
    1U2C F((K)= SLOPEI(J)*(LELF-FSF(JOK))
    1U30 IF (NFLAG) 109?.1002.1034
    1O34 FSFG(J,K)=FSF(J.K)
        CC Tし 1092
    1040 nLLM = 1
    ,0% TL (1041.1042,1(43): J
    1041 (ALL ENTRP (OELP,FC(K). LUM, FOOT1, KDUP)
    GC TL 1082
    1J42 CAIL ENTRF (OLLF. FC(K), [UN, FOOT2. KDUM)
    GC TU 1082
    1U43 CALL ENTRP (DLLF, +C(K) , DUM, FOOT3. KDLMM)
    10B2 \lambdax = DELP - FC(K) / SLOPEI(J)
    1086 IF (\lambdaX-PSP(J.K)) 10<C,10f7.10E7
    1047 &SF(U.K) = XX
        60 TL 1030
    1092 SUPFC = SUMPC + FC(N)
    1095 CCI.TIPuJE
    110LA(5)=CA(B)/COSXI(J)* (.75 +. 25* COS (2.0* XII(J.N) ))
        1 *CF(J)
        43( N) = UA(5) # SUMFC
    115 (1v.4.4)=A3(N)*CCSXI(J)
    120LU 1.4S L =1.3
        A4(J.NOL) = - AT( N) * KN(L)
    125 COP TINUE
    130 IF (S(JNN)I14C.140.150
    140 LC 145 L=1.3
C
C
C WHET, AS IS 2EHCED HERE, THEN AA(L) SHOLLD ALSO
    EGLAL O.O IN RCY 2IO APIT SETTING NAIL) EOLIAL TO ZEKO WILL DO
    JUST THIS. THIIS IS LONE CMIY FOR N=1.
        A5(J.P.OL) = 0.0
        If ( P.-1 ) 142.142.145
    14% LA(L) = 0.0
    145 COITINUE
        wo TC 170
    15C A(1) = XLOTP(J.N) / S(J.N)
        A(z) = YCOTP(J.N) S(J.P:) * COSTHS
        A(3)= YDOTP(J.Iv)/S(J.N) * - SIATHS)
        LO 1こ6 L*:1.3
        41(L)=0.0
        LC 125 I =1.3
        A1(L)=A1(L) + E(IOL)*A(I)
    ISS COR.TINUE
        It ( fu-1 ) 153.153.156
    153 LA(L) = A1(L)
    156 COP TJNUE
        LS = -A2(N) # A3(N)
        IF (N-1) 157.157.1f0
    157 M(JOdOC)=A3(N)
            M(u'&OG)= DE
```

```
        M(voj|E)=AZ(N)
    16C LU LES L =1.3
    AS(JOA.LL) = LS * AI(L)
    16S COFTIP.UE
    170 COPTIPUE
    18C LEL - XLCO - XLC(J)
        L E 1
        IF (AES(DEL) -.000001 ) 1802.1803.1P03
    1802 LEL = 0.0
    1803 1F (UEL-CELEL(J)) 1805,1805.1810
1805 L1 = XKS * DEL
        L = 2
        GC TL 1820
    1&10 IF (NFLAG) 1E20.1820.1811
    1*11 IF( LEL - DELMAX ) 1t20.162C.1815
    1615 FFIAC = -1.0
        WRITL (0.940) J
    94C FOFMATI//24H SHOCK AESCRGER NO. .I4.6X.45H HAS BOTTOMED OUT.
        ITHIS IS END CF THIS CASE.//I
        KETUKN
    1820 KULR: = 2
        GOTC (1821,1822.18z3). 」
    162& CALL ENTRP (DEL, SN, Sr. SHUCK1, KLUP`)
        GO TL 1665
    1622 CALL ENTRP (DEL, SN. ST. SHOCK2, KLUM)
    GC TL 1865
1623 CALL ENTRP (OLL. SK. SP. SHOCK3. KLUF)
1065 GO TC (186611870).L
1866 L1 E XKD(J) * SK * ([EL-UELEL(J)) & FP(J)
1670 IF( xLODOT(J) )1E80.1880.1975
1675 JFLAG = - 1
    KU = RR(J)
    SD E 1.0 + SFL(J) * [EL
    GO TL 1890
1880 JFLAL = 1
    RL - RC(v)
    1490 IF (GAMDOT(J)) 1696.1869.1889
    1889 IF (FFLAG) 1940.1940.1RS1
    1891 IF (LEL) 1892.1892.1F9R
    1892 MUPP = 1
    1893 U2 = 0.0
        L3 =0.0
        L4 = 0.0
        LO &t94 L=1.3
1694 W(LIvil)=0.0
        COTC 191
    1696 L2 = XNU#FLOAT(JFLAG)*AES(D1)
    1897 L3 - FLOAT(JFIAG)*YLCDOT(J)*XLDOOT(J)#RU゙*SC
C LITTLE OL SMCOTHY
    GALOT E ABS(GAMCOT(J))
    IF (GADOT-.EN) 1898.1898.1899
1698 FACTCH GADCT/.20
    L23 - (I(FACTCR-3.0)*FACTOR) + 3.0)*FACTOR
    C2 = C2*C23
    LS = 03*L23
1899 L4 CO C1 + O2 + C3
    GOTL 1903
194C IF (DEL) 1904.1904.189(
```

```
1904 MACIC = 
    L2 =0.0
    L3 = 0.0
    44=0.0
1403 M(1/v.1)=04 / XID(J) * (\lambdaHPU(J) - XFP(J))
    W(:PJ!1) = D4 / XID(J) & ( YHPU(J) - YFP(J))
    H(z!u!d) = n4 / XID(J) * I 2HFU(J) - 2FP(J))
    191 [10 14% L=1.3
        k(l:UO5)=A4(JO1OL) + AS(J.1OL)
        *(livi3)=A4(J.z.L) + A5(J.2,L)
        All) = A4(J.loL) + Ab(J.IOL) - MILOJOI)
    192 COI TINUE
        LC 1y4 L=1.3
        K(uIL)=0.0
        LC 144 1=1.3
        R(JOL)=R(J.L) + GKS(J.I.L) # A(I)
    194 COFTINUE
        IF (MAGIC) 1944.1944.1941
1941 IF (F(J.3)) 1944.1944.1942
1942 LO 1443 L=1.3
    w(L.J.l)=A4(J.1.L) +AS(J.l.L)
1943 f(col) = 0.0
1944 MAClC = C
    AG(1) =R(J,1)
    AG(2)=F(J,2)
    LC 156L=1.3
    *(Livi2)=0.0
    LO 146 I=1.2
```



```
196 CORT\NUE
    M(10v04)=W(3.J.<)*(YFP(J)-HFL(J.2))-H(2.J.2)*(ZFF(J)-HFL(J.3))
```



```
    H(3,U,4)=W(2,J,2)*(XFP(J)-HFL(J.1))-W(1,J,2)*(YFF(J)-HFL(J,2))
200W(J.4.1)=SGRT (W(1.J.1)*W(10J.1) +W(20J.1)*F(2.J.1)+W(3!J.1)*
    lW(3)J!l))
    If ( MUMF ) 2040<040ROS
203 TGAMA.A(J) = -75.*XIGAM *AMAXI((GAMOOT(J) = .001). C.O1
    GARDCT(J)=0.0
    H.UPP=0
    GO TC 205
204 TGAMHA(J) =XLL * R(J.3)
205 {AlPhA(J) = 0.0
    IF (MFLAG) 210.210.2%4
210 LC 215L=1.3
    All) = 0.0
    AA(L) = 0.0
    LO 215 1 =1.3
    A(L) EA(L.) & URS(J.IOL) * RN(I)
    AA(L) = AA(L) + [RS(J.IOI) # DAII)
215 cORTINLE
220 U5=A(3) + A2(1) * AA(3)
    L6 = A(2) + A2(1) * AA(2)
        IF(XII(J.1) - OA(9) 1221.221.223
    221 CO 2&2K=1.2
    222 TALPHIA(J) = TALPHA(J) - [A(5) * PC(K) * 1 - YCCP(K) * DS
        1 + HF(J,K) * UE 1
        GO TC 224
    223 1ALPHA(J)=-187.0 (-LF / 2.0 0 D5 + HF(J.K) / 2.0 * D6 )
```

```
224 IF (MLFH(J) - ALFHA(1)) 22502260226
225 A=1
    L5 = +1.0
    GO Tし 229
220 IF (ALPH(J) - ALFHA(2)) 235.235.228
228 N=:
    LS= -1.0
229 L6 - ALPCOT(J)*(1.C-100C.0*(05*(ALFHA(P)-ALPH(J)|)
    lF (ALPDCT(J)*05)=3n.235.235
230 lF (C5*D6) <33.231.231
231 ALFELT(J)=C.O
    CO TC 235
<33 ALFDCTIJ) = L6
235 cor TINUE
250 LELWと(J)=A3(2) = 2DNTF(J,2)
    LEIWL(J) = - D4*XI LDCT(J)
    LO2ちS N=102
    LELWL(JON)EAZ(N)*AS(R)* S(JON)
    255 COF TIAUE
260 IF(\lambdaII(J.1) - na(9) 1270.270.280
27C LELWF(J)=0.0
    L6 = LA(S) # ZOUTF(J.1)
    LC 275 K=1.< 
    LELWr(J) = DELWF(J) + CO * FC(K)
275 cOR TIPNE
    GO TC 290
28C LELWF(J)=0.0
290 COP TINUE
300 CO 3C4 L = 1.3
    A(l)=0.0
    LC 3u2 J = 103
    IF( A.NFLAG(J) 1301.3C1.3C3
301A(L)=A(L) +A4(J.1.L) +AE(J.1.L)
    GC TC 302
303A(L)=A(L) +A4(J.1OL) + AS(J.1.L) +
    1AL(J.2,L) + A5(J.2,L)
302 COI TINUE
    F(L)EDA(7) E.(3OL) +A(L)
304 COI TAMUE
310 T0111 = 0.n
    TC(2)=0.0
    T0131=0.0
    LO 31C1 Je 1.5
3108 LH(RK(J)=0.0
    LO 315 J=1.3
    IFI INNFLAG(J) 131103110314
311 TG1&)= T011) + YFP(J) & A4(J1103) + A5(J.103) )
    1- -ZFP(J) & A4(Jiloz) +AS(J.1.2)
        TO(2) = TO(2) + ZFF(J) * A4(JILO1) + AS(J.101)
        1 -XFF(J) & A4(Jil.3) + AS(J.1.3)
        TO(3) = TO(3) + XFF(J) & A4(J.102) +AS(J0102)
        1 -YFP(J) & A4(JII|1) + AS(JO101)
            co Tu 315
314 TO(1) = TO(1) + YB(J) #1 A4(J.2,3) + AE(J.Z.3) ) - 2B(J) & AM(N.Z
        1 1: ) +AS(J.2:2) ) + YFP(J) #1 A4(J.d.3) + A5(J.1.3)
        2-2FP(J) (A4(JO102) & AS(J0102) (
        10(2)-TO(2) + 2A(J) & (Au(J.2ili) +AB(J.201) - XE(J) &f AM(J.2
        1.3) +A5(J.&i3) 1 + 2FP(J) #(A4(J.1.1) + A5(J.1.1) )
```

```
    2-XFl(J)*(A4(J.1:3) + AS(J:103) )
```



```
    1.1) + AS(J.&゙1) ) + XFP(J) *(A4(J.1.2) + AS(J.1.2)
    2-YtF(J)*(A4(.1.1:1) & ASIJ.1.1) )
315 CCPT LMUE
    IF (ICPT(3)) 340.320.34C
320 LO 32E J=1.S
325 [侯(Rn(J)=0.0
    LO 330 J=1.3
    CW(FK(1) = OMORK(1) + CELMN(J)
    LW(KK(2) = OMORK(2) + CEIWF(J)
    LW(FN(3) = OMOFK(3) + OELNF(J)
    LWCRK(4) = OHORK(L) + \Gamma,ELM(IJ.1)
330 LM(RK(E) = OKORK(5) + rELW|(J.2)
    GO TC 360
340 LC 345 J=1.15
345 LW(KR(J)=0.0
    LO 35C J=1.3
    K = (J-1) #S
    CMCRK(K+1)=DELWD(J)
    CWCKN(K+2)= DELWF(J)
    CW(KK(K+3) = DELWR(J)
    LW(RK(K+4) = DFLWU(J.1)
350
    LW(FK(K+5)= DELWL,(J.2)
360 KETURP.
    ENT
```

```
    SULRLUTINE ENTRF (X, FXI, FXZ, T, K)
    LI!EISION FX(2), T(a)
    L = = 1
    l. =k
    v = IF\^(T(\hat{)})
    M1=J+2.
    LC 10 I= 4,M1
    IF (X-T(I)) 4.2.10
2 ( = J%L
    Fx(L)=T(I+M)
    GO TC (99.3). 1.
3L =2
    N=1
    GCTL 2
4 H=J*L+I
    FX(L) = (T(R:)-T(A-1))/(T(I)-T(I-1))*(X-T(I-1))+T(f-1)
    60 TL (99.51. i.
5L =2
    N=1
    COTL4
10 COPTINUE
20 A - J&L+M1
    FX(L)= =T(M)-T(M-1)/(T(H1)-T(M:1-1))*(X-T(M1-1))+T(M-1)
    CO TC (99.25). N.
25
    -2
    N = 1
    60 TL 20
99 FX! = FX(1)
    FX: = FX(2)
    RETUI,N
    LNL
```

```
    SULRUUTINE INTEGA'
    UIIEIVSION XMPP(3), ALPF'K(2)
    LIPEP.SION A(B.3), AA(3.3), XJINV(3.3), BAZ(3)
    COFMCH,/N5/ TALPHA(3), TGAFMA(3), F(3), TQ(3)
    CCH FILR.NE/OMEGOT(3), ALPHIR(3), GAMDC(3), C(3). FSIL, FHID. XIC.
1 Ul LbKk
    LCFHCH./P7/ ALPDOT(3), ALFH(3), GAMOOT(3), RAMMA(S), XOCTC, YDOTC,
    1 ZLOTC, XC, YC, ZC, OMEG(SI, PSI, PHI, XI, PFLAG, KFLAGO PSIO.
? FHIL, XIC, THETA(3), THFTAS, ALFHA(2), RFTA, XJ(3,3), PI,
- LEGhaD, ravDEG
    LOF MLN/N9/A1(3), A2(2), A3(2), A4(3.2.3), A5(3.2.3), A6(3), A7.
```



```
    COPMCN,NN1I/CE(S)OXM,XIX,YIYIZIZIXIY,XIZ,YIZ,XMPPIXIPINFLCGOXLFO
1 XLL,XLA,GIALFHK,XIC,HBO,NFHASE,HFO,HFMINOCF,RC(3),RR(3),
2 XLDOP,XLLO,XKL(S),XKS, XPNI,XLNMIN,CC,CF(3):XLAMOA,XMUF:
3 XPIUB,FUNNC,SEKNOIVV,VH,DB,XIALPHOXIGAM,CELMAX,SRL(II,FP(3)
    COPMUN/NI4/SLOPLI(3),SLCFE 2(3),XCDP(12),YCCP(12),FSB(3),XHPU(3):
    1 YHIPU(3),ZF:PU(3),SINTHS,COSTHS,PSP(3,12),DFLFL(3)OFIMAX(3).
    2 2PREF,SINTH(3),COSTH(3),TZERO,VTERO,2BO(3)
    COFMCN/N15/ b(3,3), XH(3), YB(3), 7B(3), XFP(3), YFP(3), 2FP(3).
    1 LSS(3.3.3)
    COH P!LN/N23/MISS
    IF (MISS) 5.5.35
5UC 6 {=1,3
    LO 6 J=1:3
6 4(I!v) = xj(lid)
    uc 9 J=103
9 KA(J.J)= 1
    LO 20 1=1.3
    TEFP = A(1,I)
    LO lO J=1.3
    A(I|u)=A(I|J)/TEML
LC AA(I:J)=AA(I.J)/TEA.P
    K}=1+
    L = I+3-1
    CO 20 M=kol
    IF (H-3) 21021,22
21 LL mM
    60 TC 23
22 LL E M-3
23 TEIP = AILLII)
    HO 20 J=1.3
    A(LL.J) = AlLL.JI-A(1,J)*IEP,P
20 AA(LL,J) = AA(LL,J)-AA(I!J)#TEMP
    H.15S = 1
    LO 31 1=1.3
    LO 31 Jm&03
31 XJINV(I!J)=AA(I!J)
    LC 33 K=103
    LO 33 M= 1,3
    SUP = 0.n
    LO 32 N=1.3
32 SUR - XJ(K,N)\oplusXJIAV(N,M) + SUM
33 AA(K,M) SUP
    WKITE (6,34) (((XJ(M,ON) ONEIOS),(XJINV(MON),N=1OS),(AA(M,N)ON=1,B))
```

```
        1 (fi=1!こ)
    34 fCFPIMT (/3(2XFIU.S).tX3(2XFIC.5).6X3(2XF10.5)/
        1 3(2XFIC.5),eX$(2XF10.E),6\times3(2)F10.5)/
        2 3(2XFIC.5),EXY(9XF10.5).6\times3(2XF10.5)/1
    35 bA;(1)= TG(1) +(OMEG(2)*ON\cdotEG(2)-OMEG(3)#OPEG(3))*Y{2+OMEG(1)*
    1 CMFC(2)*XIZ-OPER(1)*OMEG(3)*XIY-(ZIZ-YIY)*OMEG(2)*OMEG(3)
    BACla)=TO(2) +(OMEG(3)*ONEG(3)-OMEG(1)*OPEG(1))*XIZ+OMEG(2)*
    1 CMEG(3)*XIY-OPER(7)*ONEG(1)*YIZ-(XIX-2IZ)*CMEG(3)*OMEG(1)
    EAC(j)=TG(3) +(CMEG(1)#OMEG(1)-OMEG(2)*OPEG(2))*XIY+CMEG(3)*
    1 OMEC(1)*YI2-OFEC(T)*OPEGIP)*XIZ-(YIY-XIX)*ORIFG(1)*OMEC(2)
        LC SO J= 1.3
    HAR = O.
    OMEGUT(J)= U.O
    LO 40 K=1.3
    CMLGLT(J)mXJIAV(J,K)*BAZ(K) + OPIEGDT(J)
    40 FAF = F(JOK)*F(K)+PAF.
    G(J) FAR/XM
    42 GAFOL(J)= TGAPHIA(J)/XIGAM
    ALFHLD(J)= TALPHA(J)/XIAIPH + GARIDD(J)
    50 CORTINUE
C
C
C
    LIE, L15, DIG, Ul3 AKE SET ' = TC COS(FHI), SIF(PHI),
        SIN (XI). AND C(S(XI) FESHECTIVELY If COAFIG ANC HELD FOR HERE.
    CPII OL2
    IF ICPHI , 70.0C.7C
60 \lambdaIL = XID
    FSID = SIGPN (IOMEG(3)-XICI,PHI)
    FHID = SQRT (ORFG(z)*OREC(2) + OMEG(1)#OMEG(1))
    GO TC }9
70 SPII =0.15
    THH1=SPHI/CFHI
    3X1 - O16
    CXI =013
    A(1,1)=CXI/CPHI
    A(1/&) = - SXI/CFHI
    A(IO)}=0.
    A(a!&)=SXI
    A(i'a) = CXI
    A(2,3) = C.O
    A(3.1)=-CXI*TPHI
    A(3'a) EXI*TFHI
    A(30j) = 1.0
    FSIC =0.
    FHID = 0.
    Xll = 0.
    LO BO J=1.3
    FSIU - A(1,J)*OMEG(J)+FSIL
    FHID=A(2,J)*OREG(J)+FHIC
80 xI[ - A(3,J)#OMEG(J)+XIC
90 KETUKN
    ENL
```

```
    SUERCUTINIE RKP
    LIFENSION A(50),C(50),V(E0),DY1(50),CY2(50)
    LIFE/GSION XK1(3),XK2(3),XK3(3)
    CIFENSION ERROR(EO), ARSFK(bO), ABSUR(EO), ARITH(EO)
    LIHENSION NKI(t), Nん4(6). NK9(50)
    COFMUN/N1/ N.TO.TF,SH,HF,YI(S0),YO(SO),ERR(50)
    COFMLN/N2/T,Y(50).O(SO)
    CORMCN/NS/TP,U(SO),H,IELSW
    COPMCN/NT/ ALPDOT(3): ALFH(3), GAPIDOT(3), GAMMA(3). XDOTC, YDOTC.
    1 ZCCTC, XC, YC, ZC, CMEG(3), PSI, PHI, XI, PFLAG, KFLAGO PSIO,
    2 FHIU. XIO, THETA(3), THFTAS, ALPHA(2), BETA, XJ(3.3), PI.
    3 DEGHAD, RADCEG
        LOF MUN/NB/ LFLAG
        COPMUN/N9/A1(3), A2(2), A3(2), A4(3,2,3), A5(3,2,3), A6(3), A7,
```



```
    2 D13,C14,D15,D16,017,018,01G,020. xx, CA(10), Y(3,4,E), HPL(3,3)
    CONMCN/N14/SLOPE1(3),SLCFE 3(3), XCDP(12),YCEP(12),FSB(3),XHPU(3),
    1 YHPU(3),ZHPU(3),SINTHS.COSTHS.PSP(3,12),DELFL(3)OFIMAX(3).
    ZPREF,SINTH(3),COSTH(3),TZFRO,V7ERO,ZBO(3)
    COFMCN/N15/E(3,3), XB(3), YB(3), 7A(3), XFF(3), YFP(3), 2FP(3),
    1 OF S(3.3.3)
    COFMUA/N18/ NFLAG
    LFLAC=-1
    TF=0.0
    T = T0
    xK1(1)=1.0
    xkI(a) = 2.0
    xK1(s)=2.0
    \lambdaKE(1)=1.n
    XKálal = 1.0
    xKE(3)=2.0
    xKz(1)=0.5
    xk3(a)=0.0
    xK3(z)=0.5
    XL(G1O = ALOG(10.0)
    XL(G& = ALOG(2.0)
    4 IF (SH) 5.6.t
    5 SGP - -1.0
    GO TC }
    6 SGP. = 1.0
    7 COP TIMUE
    IF (N) 480,480.10
    IF (N-50) 20.20.480
20 1F (TF-TO) 30.48C.30
30 1F (SGN*(HM-SH)) 40.40.480
40 IF (HM) 50.480.50
50 h = SH
    IF (SGN*(TF-T-H)) 60.70.70
60 H=TF-T
70 IFTSM = 1
    IELSn = 1
    KKl =0
    ICPT = O
    LO 71 1= 1,8
    NK4(1)=0
71NK11I)=0
```

```
        uc }72I=1.5
    4KITH.(I) = 0.0
    AGSUR.(1) = O.O
    72 AKS(1) = O
        LO 80 I= 1 1:
        L(I) = YI(I)
    80A(I) = YI(I)
    CALL PKT
    LO 1lO I= 1.A.
    V(1) =A(1)
1&CC(1)=A(I)
120 IKSS% = 1
    IKRC=0
    MFLAC=1
    LO 125 I=1,N
125 Y(I) = A(I)
    CALL FEF
    IF (LFLAG) 12G.126,40G
126 NFLAG =0
    LO 130 = =1,1
130LY1(1)=D(I)
140 ri2 =.5*+1
150 LO 170 K=1.3
    21t = H*XK1(K)/6.C
    ZAF = H2*xk2(k)
    UO 160I=1,N
    V(I) = V(I) + L(I) * ZIF
160Y(I)=C(I) + [(I) = 2&F
    T =T+XK3(K)*H
    CALL FEP
    NFLAL EC
170 COP TINUE
    2.1F=H/6.O
    LO 180 1. 10N
180 V(I) = V(I) + [(I) * ZIF
    IRHC = IRKC + 1
    GO TL (190.210.240),IRKC
190 LO 200 1=1.f.
    u(I) = OYI(I)
    u(I) = v(I)
2OOV(I) =A(I)
    I = T-H
    h=H2
    NFLAG =-1
    60 TL 140
210 LO 22C 1=1,N
    Y(I) = V(I)
220C(I) EV(I)
    CALL FEP
    UO 230 1=1.N
23C [Ya(1) = O(1)
    60 TC 150
240 L2tAA = C.
    LO 270 Im10N
    V(I) = V(I)-(U(I)-V(I))/15.0
    ER&OH(I) = (U(I) - V(I)) / 180.0
    ABSEK(I) = AbS (EFROF(I))
    IF (|{-14)/11)=270.245.270
```

```
245 L2 ( ABSER(l)/(\alpha<O*H*ERK(1))
    IF (U2-1.0) 250.< 50.430
250 IF (U2-U&MAX) 27C.27r.260
260 L2PAX = U2
    k9 = I
270 COR.T INUE
    GO TC (280.350), IFTSN
280 IF (SGN*(T-2.OFH-TF)) 290.330.330
290 IF (SGN*(TP-T)) 310.300.340
300 TPF = TP
    LO 305 I= 10ts
305 U(I) = V(I)
    CALL PRT
    IF (SGN*(TPH-TP)) 340.330.330
310 TPF ETP
    HP=TP-T+H+H
    HSG = H*H
    HTl = HSO#H
    HTY = HSOFHSG
    LO 320 I=1.N
    EE - A(I)
    LD = DY1(1)
    C1 = C(1)
    CDE - OY2(I)
    4A = ((VII)-5.*EE)*.25+CI-H(0D*O.E+OD2))/HTH
    #B = (2.U*(EE.CI-AA*FTH)+H*(DO+DD21)/HTC
    C1 - ICI-EE-AA*HTH-H*CN-BB*HTOI/HSN
320 L(I) = EE+hP*(DN+HF*(C)+HP*(BE+HP*AA)))
    CALL PRT
    IF (SGN*TPH-TF) 290.33C.330
330 IPTSH E 2
340 GO TC (350.410). IEDSW
350 IF (SGN*(TF-T)) 40\,403.300
360 IF (2.0*F(-1.0) 363.3A3.361
361 WFITE (6,362) H
362 FOFMAT (//6n\3HH= F10.5/)
    K4 = I
    CO TL 364
363 K4 NINO(BI(INT(ALOG(C.5/H)/XLOGIC) + 1))
364 NK4(N4) = NK4(K4) + 1
    K1 - MINO( biIINT(ALOG(SH/H*.5)/XLOG2)+1)I
    MK1(N1) = NK1(Kl) + 1
    ICPT = ICNT + 1
    NKS(h9)=NK9(K9) + 1
    H= (2.U-U2A:AX)*2.0*h
    SH - H
    00 369 1 = 10N
    ARITHI(I) = ARITH(I) + ERROR(I)
369 ABSURII) E AGSURI(I) + AESEP(I)
    IF (SGN#(TF-T-H)) 370.390.390
370 IF (SGN*(TF-T-HM))403.360.380
300 H OTF-T
390 40 400 I= 1,N
    A(I) = V(1)
400C(1) = V(1)
    GO TC 120
403 LFLAG =2
    CALL FEP
```

```
409 TF = T
    LFLAG=
    LO 40E I= 1.N
405L(1)=V(1)
421 WRITL (E.42&) ( ARITH(1), l= 1.29)
422 FOIPGT 1/10X34HAFITHIRETIC SUM OF ERKCRE FOLLOME-,
4221 8(1XF.14.7)/P(1XE14.7)/8(1XE14.7)/5(1XE14.7)/1)
    HFITL (6.403) ( AESLM(I), I=1.29)
423 +GFHALT 1/10X35HSLN OF THF ALSOLUTE EKRRRS FOLLCWS-
4231 B(1XF14.7)/E(1XF14.7)/E(1XF14.7)/5(1XE14.7)/1)
    GVC = (T-TO)/ANAXI(FLRAT(ICNT).1.())
```



```
    1 (NKG(Kg),KG=1ON)
427 FOHFMT (/10x19HNO. OF INTEFVALS = IE/
4271 LOXIGHAVG. IT.TEFVAL E FII.E/
4272 LOX2IHINTEFVAL FISTFIEUTION / JOX 8I8//
4273 IOX 1GHCLT DISTFIFLTIOR. / 10X8IB//
4274 IOX3NH.CRITICAL VAFIAELE CISTEIBITIOR./ E(ICXIOIA/I)
    CALL PRT
4LCTF=T
    LO 420 I=1iN
42C YO(1) = V(1)
    HETURR.
43C IF (r. - tMM) 431.431.433
431 IkSSN = 2
    MRITL (60432) T,IOHOV(I), (12
432 FOFMAT (11H*****TIFEEFF10.4.5X3HI= I2.5\1OHINTERVAL= F10.6.5X7HVAL
    ILE* +10.4. 5x7HLPFCK= Fin.E)
433 GO TC (450.440).IRSSW
440 L2 - 1.0
    GO IL 250
45C T = T-2.0%H
460 1kFC=1
    H}=H
    LC 47C I=1.f*
    U(!) -C(I)
    V(I) = A(I)
    C(I) -A(I)
470 (1I) OYI(I)
    NFLAL =-1
    GO TC 140
480 H = 10.E6
    WkITE (6.49U)
49C FOFMAT 1//10\28HRUNLE-KUTTA SUBROUTINE ERROR ///
    STPP
    ENI
```

sulhclidr．f Pht
LIHEISSIUR．XHFF（3），ALPHK（シ）
GIAEIVEIOR ONLAR（5E）
CG：MUR／NB／TROU（bCI．HIIILSM

1 ZIOIC，XC，YC，ZC，CMFG（3），FSI，PHI，XI，FFLAG，KFLAGOPSIO．

3 LIGALI HADLEG
L（NHしたNY，A1（3），Aく（2），A3（2），A4（3．2．3），A5（3．2．玉），A6（3），A7•

2 XLCOPOXLLC，XKL（Y），XKS XNI：XLNMIN，CCOCF（3）：XIAMQA，XMUF： XI UR，FIURIVC，SLANC NV，VH，OU，XIALPFOXIGAM•CELMAX，SRL（B）OFP（3）

1 YFFU（3），ZFFU（3），SINTHS．COSTHS•PSP（3．12），DFLEL（3）OFIMAX（3）．
2 ZFREF．SIP．TH（3），CCSTH（3），TZFRC，V7ERO，ZBC（3）
CCIMUN／N16／FN（3），XII（3．2），XLD（3），XIDOOT（3），XCCTF（3．2）．

？GSS（3．3．31．TA
CUPFLI．NN2E／FCOT（3．3）
COAMCA：／NZム／ICPT（IC）OUNILTF
COPMLA／N25／IWILEY（IC）
IF（IOPT（1）＋ICFT（2）＋IOPT（3））1．3．1
1 KFITL（E．2）
2 मOIHAT（／）
3 LSET $=2$
II（JN）4．9．50
4 Jl＝ 2
G1 1010
9 uh $=1$
10 WRITL $(0,20)$
2C FOIMMT $1 / / / 10 \times 3<2$ sisss PLACLi OFTION ENABLEL \＄ssss／／1）
FHIESGKT（EO．C）
Sc［0 60 J＝1．3
IF（IOPTIJ））AO．60．6C
6C WhitL（6．70）
TC FOHMAT（10X4GHTHE FCLLOWIP．G ARRAYS AFE ORGANIZED AS FOLLCWS－／$)$
LO $751=1.3$
Lu $\quad 75 k=1.3$
$7 b+O C T(I, K)=C . O$
H（ごム，2）$=0.0$
M（1．4．2）$=0.0$
ZEIO＝U（16）
GOTC 100
BC COT TIAUL
10C 1F（IOPT（1））110．206．104
104 ICTM（1）＝－1
WKITL（6．105）
105 FUIPAT（19xiHIT．


```
        1055 17X:HXF3.17\times3HYF3.17\times3H17f3/1)
            LSIT = 1
            CO TL 20O
11CCFIL= COS(U(<3))
    IF (CFHI) 13C.1<C.13r
120 \II = XIII
    HSIU = SIGN((U(21)-XIL), L(23))
    HH10 = SOKT(U(20)*L(20) +U(19)*U(19))
    GC Tu 145
13C SHII = SIN(U(<3))
    IHII = SPHI/CHII
    SXI = SI#(U(<4))
    CxI = cos(u(a4))
    48(1.1) = CxI/CPF.J
    4G(1.己) =-SXI/CFHI
    48(1.3)=0.0
    AB(2,1)=SxI
    AB(2,2) = CXI
    AG(2.3)=0.0
    AB(3,1)=-CXI*TFH1
    AB(3,a) = SxI*TF'I
    48(3.3)=1.c
    FSID=0.n
    HHIL}=0.
    \lambdall = C.n
    LO 14C J=1.S
    FSID = AB(1.j)*U(J+1R) + FSID
    FHID = AB(2,J) * U(J+It) + FHIC
140 xIL = AB(3.J)*U(J+1F) + XIC
145 LO 1こO J= 1.3
    L(J+16)=U(J+1も) = haCCRG
    U(v+al)=U(J+2l) # FACLFG
    U(u+C) =U(.1+6) # FACDFG
150U(u+\zeta)=U(J+9) # RALDEG
    FSIO FSIC FADLEG
    FHIC FHIC F FADLEG
    XIL = XID * NACOEG
    W342 =W(3.4.2) F.ADLFG
    U(18) = U(18) - 2ERC
    WRITL (6,160) TF, (U(J+16), J=1.3), W342,M(1.4.2):(U(J+15),J
    1 =1,2),(U(J+12),J=1,3), (l,(J+21),J=1,3), FSID,FHID, XIO. (|(J+9).
    2 J=1,3);(U(J+6):J=1:3). ((FCOT(J.K),K=1,3),J=1,3)
160 FOrMAT 1/5(6F20.E/1). 3F2n.5)
    IF IIWILEY(1)) 180.1FO.190
100 GO TC (1955.190).JN
190 FUFCh 195, TF: (U(J+18), J=113):W342,M(1,4.2):(U(J+15):J
    1 =1,3),(U(J+12),J=1,3), (l,(J+21),J=1,3), PSID,FHIO, xID. (U(J+Q).
    2 J=1.3),(L(N+6):J=1,3). ((FCOT(J.K),K=1.3). J=1,3)
195 FOFMAT (5(6E12.b.7\times1H1/), SE12.5.43\times1H1)
1955 LO 196 J=1.3
    U(v+18) - U(J+16) CEGRAC
196 U(J+C) = U(J+6) DECRAD
    L(18) - U(16) + ZERC
<00 IF (IOPT(2))208.300.205
205 1OFT(2)=-1
    WRITE (6.2no)
206 FOFMATI&4XIHT, 17X3HFA1,17X3HFA2.17X3HFA3,16X4HFAX1,16X4HFAY1/
2061:16)4HFAZ1,1RX4HFAX2,16X4HFAY2,16X4HFAZ2,16X4HFAXS.16X4HFAYM/
```



```
20e915)5t, ¢.P32//1
    LC 2C7 J= 10EN
207 LCtA!.(J) = 0.0
    LSET = 1
    lo Tu zun
208 lt (TF) 209.<(IG.alC
209 k.h1TL (6.220) (CNEAF(J). J=1.55)
    It (IVIICY(Z̈) + JN - 1) 300.300.2005
zu95 fufCH 24C. (ONLAK(J), J= 1.E5)
    GC TL 30C
```



```
2101 ((w(J.L.2):u=1,=),L=1.3). ((w(J.L.4),J=1.3).L=1.3).
```



```
2103 ((PSF(J,K), K=1.ว), J=1.3)
22C FG|MAT (/9(6F2O.E/): F2C.5)
        IF IINILEY(2)) <70.27r.0.80
    270 LC TL (3c0.280) J人
```



```
    2101 ((H(J.L,2),u=1,3),L=1,3), ((k(J.1.4),J=1,3),L=1,3),
    2102((M(J.L.3), J=1,3), L=1.3):((K(J.1.5),J=1.3),L=1.3).
    2103 ((P)F(JOK), K=1.2), J=1.3)
    290 FLFMAT (S(GF12.5.7\times1F,2/). F12.5iE7\times1F:2)
    30C IF (10PT(3)) 31C.400.304
    304 LUFT(3)=-1
        HKITL (6.3n5)
    305 FOFMAT (19X1HT, 1&X2HEK. 18\2HEF,17X3HES1.17X3HES2.17X3HES3/
```



```
    3052 1EX4HFFF1.1CX4HIFFF?.16XUHIFFFS.1EXUHEBFIO1AX4HFRF2.1AXUHERF3///I
        LSET =1
        GC TL 40C
    31C L5C=0.0
        l6s = 0.0
    316 LC 330 K=1.3
        A1(K)=0.0
        LO 320 J=1.3
    320 A1(k)=A1(K) + L(J+18)*XJ(k,J)
        L55 = C59 + A1(k)*U(k+18)
    330 L64 = D69 + U(k+C) (l(k+f)
        LK = C59/20+LR9*\lambda1GAR/2. *XM/2.*(U(13)*U(13)+U(14)*U
        1(14) +U(15) * U(15))
            EF =-IVZERC + CA(7) U(18))
            A. - O
            LC 338 K=20.34
            LO 33AJ=1.3
            L -5#J + n
        P. - M + 1
    330 CUEAK(M.) = U(LL)
        KKITL (6,340) TF.EMO EF: (ODEAR(J)O J=1.15)
    34C FOFFAT (/3(GF20.5/1)
        IF (IWILEY(3)) 370.376,390
    370 60 TG (400.390)/JP:
```

```
390 FUPCl, 345. TF. LK. EF. (OLEAF(.)). J= =1.151
395 FC(MAT (3(6E12.5.7X1F:3/))
400 IF (IOPT(5)) 410.5CC.404
404 IOIT(5) = -1
    WhITL (0.405)
40S FOFPAT 1/10X53HTHE FCLLOVING AKRAYS ARE ORGAPIZED AS FOLLOWS
    751-// 16X4HTIFIF, 12XE&IHTFGVAL/3X12HALPF:A OCT(1). 3X12HALFHA OOT(2)
    752, 3X12HALPHA NUT(3), TX&HALFHA(1), 7XFHALFHA(2), 7XBHALPHA(3).
    75, 3) LaHGAMMA LOT(1): 3XI2HGARMA COT(2), 3X12HGAMPA DOT(3) . 7XEHGA
    754HMA(1), 7XBHCAMKIA12), 7XAHTAAPMA(3), 10X5HX UOT, 1OX5HY DOT, IOX5HZ.
    755 LCT, 14XItiX/ 14X1HY, 14XItZZ, 8X7HCHEGA X, 8X7HOPFGA Y, AX7HGPEGA
    756 2, L<X3H,FSI, 12X.3HPH,I, 13X2HXI /
```



```
410 LO 420 J= 1.12
420 U(u) = (!|J) * FaOLEG
    LC 43C.J= 1Y,つ4
430 U(u) = U(.1) * FADLEG
    *342 = (13.4.2) FADCEG
    mkITL (6,440) TH. H. V342, (U(J), J= 1.29)
440 FG/MMT (3(10XFIU.5)/E(EXFIN.5)/8(5)XF10.5)/8(5XF10.5)/5(5XF10.5)//)
500 GC TC 13.51C), LSFT
510 TH = TP + ETF
    RETUKIO
    ENL
```


3.4.4 Usage of Computer Program

In this section, details of various options, the method of table and data input and program output are delineated. Following this presentation, a sample of the program output is presented.

3.4.4.1 Input Functions (Tables)

The input tables, consisting of the profiles for the footpads, blocks, and shock absorbers are read in with an F format using 8 fields, 10 columns wide (8F10.X). All the tables use the same input sequence:

1. An identification number which specifies whether the table refers to the footpad, block or shock absorber and secondly, specifies the particular leg set to which the data applies.
2. The number of corresponding points in the table.
3. The independent variable list (units of inches).
4. The dependent variable list or lists (dimensionless).

The order of the input cards is critical within a table and no blank fields are allowed within a table. However, the order in which the tables are introduced does not affect the operation.

When all of the tables have been read, a blank card must follow to indicate that all of the tables have been read.

The identification number mentioned above will always start in the first field. Blank fields after the last table value are permitted (and ignored). The identification number consists of a two digit number. The first digit refers to table type and the second digit to leg set. In regard to the first digit, Number 1 refers to footpad, Number 2 refers to blocks and Number 3 refers to shock absorbers. The second digit is numerically equal to the leg set number 1, 2, or 3. As an example, the block table for leg set Number 3 would have an identification number of 23.0.

In some cases, the table data will be the same for all leg sets. In this situtation two methods may be used to read in the data. The first method is to read in the data for each leg set as described above. The second method is to read in the data for the number one (1) leg set only. The program will then construct tables for the second and third leg set automatically.

The actual table data which is read in is the crush profile for the footpads, the crush profile for the blocks and the spring rate profile and the damping profile during compression for the shock absorber.

Example:
Consider the following situation:

1. Footpad No. 1-2 values (2 independent and 2 dependent variables)
2. Footpad No. 2-6 values.
3. Footpad No. 3-9 values
4. Block No. 1, 2 \& 3-3 values
5. Shock Absorber No. 1, 2, 3-4 values
(Since there are two sets of dependent variables, this table will have 4 independent variables and 8 dependent variables.)

Using X_{N} to denote the Nth independent variable, $F_{N} \& G_{N}$ to denote the Nth dependent variables and B to denote Blank, the cards would be punched in the following manner:

Card Number

(1)	11.0	2.0	X_{1}	x_{2}	F_{1}	F_{2}	B	B
(2)	12.0	6.0	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
(3)	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	B	B
(4)	13.0	9.0	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
(5)	X_{7}	X_{8}	X_{9}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
(6)	F_{6}	F_{7}	F_{8}	F_{9}	B	B	B	B
(7)	21.0	3.0	X_{1}	X_{2}	X_{3}	F_{1}	F_{2}	F_{3}
(8)	23.0	3.0	X_{1}	x_{2}	X_{3}	F_{1}	F_{2}	F_{3}
(8)	22.0	3.0	X_{1}	X_{2}	X_{3}	F_{1}	F_{2}	F_{3}
(10)	31.0	4.0	X_{1}	X_{2}	X_{3}	X_{4}	F_{1}	F_{2}
(11)	F_{3}	F_{4}	G_{1}	G_{2}	G_{3}	G4	B	B
(12)	32.0	4.0	X_{1}	x_{2}	X_{3}	X_{4}	F_{1}	F_{2}
(13)	F_{3}	F_{4}	G_{1}	G_{2}	G_{3}	G_{4}	B	B
(14)	33.0	4.0	x_{1}	X_{2}	X_{3}	X_{4}	F_{1}	F_{2}
(15)	F_{3}	F_{4}	G_{1}	G_{2}	G_{3}	G_{4}	B	B
(16)	B	B	B	B	B	B	B	B

Note that blocks No. 2 and No. 3 (cards 9 \& 8) have been purposely put out of sequence. This is permissible.

The table data is summarized in the output printing according to a format which is identical regardless of the input option being utilized. The tables are printed using 7 fields, each field 10 columns wide (7F10.3). Each table is identified separately by a note such as "BLOCK NO. 2". The list of independent variables follows this note. The list or lists of dependent variables then follows.

In addition to such machine diagnostics as improper card format which should stop the program, there are several additional programmed diagnostics which will stop the program. Prior to stopping the program, a message will be printed which indicates why the program was terminated. In the following discussion a sample diagnostic will be followed by an explanation of how it might be generated.

1. ** TABLE ERROR NO. 1, FIRST NO. OUT OF RANGE. No. $=\mathbf{X} X$ This diagnostic will appear if either of the digits in the identification number is not 1,2 or 3 .
2. ** TABLE ERROR NO. 2, LIST EXCEEDS ARRAY LENGTH. LIST IS NO. XX . LIST LENGTH IS X This diagnostic will appear if the total list length exceeds 100. Identification of the table and the calculated list length is provided.
3. ** TABLE ERROR NO. 3, LIST XX LENGTH $=0$. This diagnostic will appear if a number equal to or less than zero is specified for the list length.
4. ** TABLE ERROR NO. 4, INSUFFICIENT TABLE DATA (\mathbf{X}), (\mathbf{X}).

The diagnostic will appear in the event that more or fewer tables than are required have been read in. This diagnostic is only a function of the identification numbers. Two numbers are printed out in the diagnostic statement. The first is the sum of the first digits of the identification number which should be 18 or 6 depending on the input option which is used and the second is the sum of the second digits which should be 18 or 3 depending on the option which is used. Hopefully, printing out these sums will give some insight into the error in the table data. Table error No. 4 will appear if the wrong number of tables is read in. For example, if individual tables are read in for each of the three footpads, while reading in only one table for the blocks and one table for the shock absorbers, then the diagnostic message will appear.

3.4.4.2 Input Constants

The input constants used in the program describe the spacecraft geometry and touchdown configuration, nominal values of parameters for elements which generate forces, allowable truncation errors and various codes for selection of computation mode and output options. These constants are read in on a set of 21 data cards. Six fields are used on the data cards. The first field is in columns 1-7 and contains the card number in integer (I) format. The next five columns are not used ($8-12$). The remaining 5 fields are 12 columns wide and use floating point (E) format. The final columns on the card (73-80) are not used. A blank card follows the input data.

When runs are to be stacked, it is necessary only to read in data cards containing new data. This card or cards must also be followed by a blank card in order to execute the program. The input summary printout will specify the cards which have been replaced, and will also list the data from all 21 cards.

The input constants found on the 21 cards are defined below. The units are combinations of feet, pounds, seconds, and degrees.

Card No.	Parameter	Description
1	XM	Mass of spacecraft.
	IXX	
	IYY	moments and products of inertia about spacecraft axes
	IZZ	The inertia matrix is
	IXY	$J=\left[\begin{array}{rrr}\text { IXX } & -\mathrm{IXY} & -\mathrm{IXZ} \\ -\mathrm{IXY} & \mathrm{IYY} & -\mathrm{IYZ}\end{array}\right]$
2	IXZ	$\left[\begin{array}{lll}-I X Y & I Y Y & \\ -I X Z & -I Y Z & I Z Z\end{array}\right]$
	IYZ	
	XMP	mass of footpad (no longer used in calculations)
	XLDO	original length of shock absorber link
	DELCG	distance from spacecraft CG to lower hardpoint plane
3	XLP	distance from spacecraft CL to lower hardpoints
	XLL	length of lower link
	XLA	length of link joining upper and lower hardpoints
	G	gravitational acceleration
	ALPHA (1)	lower limit on footpad angle relative to lower link
4	ALPHA (2)	upper limit on footpad angle relative to lower link
	ALPHK (1)	spring rate of footpad lower limit stop
	ALPHK (2)	spring rate of footpad upper limit stop
	BETA	angle between XLA and spacecraft CL
	XLC	distance from spacecraft CL to block CL

Card No.	Parameter	Description
5	HBO	thickness of uncrushed block
	XIALPH	moment of inertia of footpad about pivot
	XIGAM	moment of inertia of lower link about lower hardpoint
	HFO	thickness of uncrushed footpad
	DB	diameter of block
6	DF	diameter of footpad
	XDOTOC	velocity of spacecraft CG in ground coordinates
	YDOTOC	(PHASE NO. - 1) or in vehicle coordinates (PHASE
	ZDOTOC	NO, = 3). See Card 11 below.
7	XNU	mechanical friction coefficient for shock absorber
	XLDMEN	minimum length permitted for ahock absorber link
	XXS8	apring rate of ahock absorber atop
8	THETD (1)	angular orientation of leg sets No. 1, 2, 3 with re-
	THETD (2)	spect yz plane (vehicle coordinates). Angles increase
	THETD (3)	in left-handed sence.
0	THETAS	cround slope
	PIIO	pitch angle)
	PHIO	yaw angle relative to ground coordinatea
	$\mathbf{8 0}$	roll angle

Card No.	Parameter	Description
$\begin{gathered} 9 \\ \text { (cont'd) } \end{gathered}$	XLAMDD	cross slope angle, measured between CG velocity vector and YZ plane (ground coordinates). Applicable only for PHASE NO. $=2$ (see Card 11, below)
10	$\left.\begin{array}{l}\text { OMEGA (1) } \\ \text { OMEGA (2) } \\ \text { OMEGA (3) }\end{array}\right\}$	angular rates about spacecraft $\mathrm{x}, \mathrm{y}, \mathrm{z}$-axes
	CODE2	for selection of punch options (see next section)
11	CODE	for selection of print options (see next section)
	SER NO	serial number (arbitrary)
	PHASE NO	for selection of method of specifying spacecraft CG
		velocities. PHASE NO=1 or 3 denotes that XDOTOC, YDOTOC, ZDOTOC (Card 6) are applicable; PHASE
		NO=2 denotes that XLAMDD (Card 9), VH and VV (this card) are to be used.
	VH VV	$\left.\begin{array}{l} \text { horizontal velocity of spacecraft CG } \\ \text { vertical velocity of spacecraft CG } \end{array}\right\} \begin{aligned} & \text { Applicable only } \\ & \text { if Phase No. }=2 \end{aligned}$
12	DTP	print/punch interval
	TF	final time
	HM	minimum integration interval
	ERR (4)	allowable truncation error (per second)-\#1 footpad angle
	ERR (5)	allowable truncation error (per second)-\#2 footpad angle
13	ERR (6)	allowable truncation error (per second)-\#3 foot pad angle
	ERR (7)	allowable truncation error (per second)-\#1 lower link angular rate

Card No.	Parameter	Description
$\begin{gathered} 13 \\ \text { (cont'd) } \end{gathered}$	ERR (8)	allowable truncation error (per second)-\#2 lower link angular rate
	ERR (9)	allowable truncation error (per second)-\#3 lower link angular rate
	ERR (10)	allowable truncation error (per second)-\#1 lower link angle
14	ERR (11)	allowable truncation error (per second)-\#2 lower link angle
	ERR (12)	allowable truncation error (per second)-\#3 lower link angle
	ERR (13)	allowable truncation error (per second)-CG velocity (X-direction)
	ERR (14)	allowable truncation error (per second)-CG velocity (Y-direction)
	ERR (15)	allowable truncation error (per second)-CG velocity (Z-direction)
15	ERR (16)	allowable truncation error (per second)-CG position (X-direction)
	ERR (17)	allowable truncation error (per second)-CG position (Y-direction)
	ERR (18)	allowable truncation error (per second)-CG position (Z-direction)
	ERR (19)	allowable truncation error (per second)-spacecraft angular rate (x-axis)

Card No.	Parameter	Description
$\begin{gathered} 15 \\ \text { (cont'd) } \end{gathered}$	ERR (20)	allowable truncation error (per second) -spacecraft angular rate (y-axis)
16	ERR (21)	allowable truncation error (per second)-spacecraft angular rate (z-axis)
	ERR (22)	allowable truncation error (per second)-pitch angle
	ERR (23)	allowable truncation error (per second)-yaw angle
	ERR (24)	allowable truncation error (per second)-roll angle
	RC (1)	nominal damping coefficient
17	RC (2)	for shock absorbers \#1, 2 \& 3
	RC (3)	during stroking
	XKD (1)	nominal spring rate
	XKD (2)	for shock absorbers
	XKD (3)	\#1, 2 \& 3
18	FP (1)	
	FP (2)	preload for shock absorbers \#1, 2 \& 3
	FP (3)	
	RR (1)	nominal damping coefficient
	RR (2)	for shock absorbers \#1, 2 \& 3
19	RR (3)	during rebound
	SRL (1)	slope of profile for rebound
	SRL (2)	damping in shock absorbers
	SRL (3)	\#1, 2 \& 3
	CB (1)	nominal crush
20	CB (2)	pressure for
	CB (3)	blocks \#1, 2 \& 3

Card No.	Parameter	Description
$\begin{gathered} 20 \\ \left(\text { cont'd }^{\prime} \mathrm{d}\right. \end{gathered}$	CF (1)	nominal crush
	CF (2)	pressure for
	CF (3)	footpads \#1, 2 \& 3
21	XMUF	nominal sliding friction coefficient for footpads
	XMUB	nominal sliding friction coefficient for blocks
	TAU (1)	impact times for footpads \#1, 2 \& 3. These
	TAU (2)	are specified if $\mathrm{CODE}=4$ is specified
	TAU (3)	(see following section)

3.4.4.3 Output

At the completion of a run, the program has the capability of providing several output options. In the time history mode (i.e.,CODE₹4), the program will predict the spacecraft dynamics which result from a specific set of touchdown conditions. Computation will continue until one of the following decisions is made:

1. Vehicle stable (motion has subsided, or vehicle is "rocking back" from a critical attitude).
2. Vehicle unstable (toppling).
3. Time expired (problem time exceeded TF).

The standard output for the time history mode contains a statement of this decision, together with the time at which the decision was made and the minimum value of stability angle which was encountered in the run. After this printout, a statement regarding the energy of the system is printed. The initial kinetic energy of the system, the difference between the initial and final potential energy, the dissipated energy of the system (including any stored energy in the shock absorber) and the final kinetic energy are printed. From an energy balance point of view, the original kinetic energy plus the difference in potential energy minus the "dissipated" energy should equal the final kinetic energy.

Following the energy printout, the maximum shock absorber force for three leg sets are printed. The minimum ground clearance is printed after this shock absorber force printing.

The printing above pertains to the dynamics of the vehicle. The output which will be described now pertains to details concerning the overall integration process. The arithmetic sum of the truncation errors accepted during the integration process is first printed. This array is 29 long and reads from left to right; 1-8 in the first row, 9-16 in the second row, $17-24$ in the third row and $25-29$ in the fourth row. The numbers refer to the
number assigned to each of the integrated variables. Footpad angular velocity for the three footpads are 1-3, footpad angular position are 4-6, lower leg angular velocities are 7-9, lower leg angular positions are 10-12, CG velocities are 13-15, CG positions are $16-18$, CG angular velocities are 19-21, CG angular positions are 22-24 and 2529 are energies. The units are radians, feet and seconds. The arithmetic sum would be of most interest to one who is attempting to determine the total truncation error of the integrated variables. Since the sign of the truncation error may be positive or negative, some cancellation of errors is possible. The next array is similar to the arithmetic sum array but this array contains the sum of the absolute values of the truncation error. These values give an indication of how closely the allowable and actual error agree. If one variable controlled the size of the integration interval, then the absolute sum should approach but always be less than the allowable value. In general, various integrated values control the integration interval and these numbers will be significantly less than the allowable values.

The next group of printout relates to a summary of the integration process. The first number is simply the total number of integration intervals. The next number is the average interval size in seconds. The next array describes how the intervals were distributed. The first number indicates the number of intervals between .1 and 1 second, the second indicates the number of intervals between .01 and .1 , and so on. The next array describes the distribution of the number of times the integration routine had to halve an interval in order to pass on error check. The first number is for zero cuts, the second is 1 cut, the third is for 2 cuts, and so on. This is one of the best indicators of the "smoothness" of the program in general and secondly, the efficiency of the integration method. Ideally, the number for zero cuts would be equal to the number of integration intervals. Practically, this zero cut number has been greater than half of the total integration intervals. The final array shows which of the integrated variables was instrumental in determining the next interval. The array is numbered in the same sequence as above and $1-10$ are in the first row, 11-20 in the second, and so on.

Finally, output printing at the final time reached in the integration is performed and the program is finished.

In addition to the standard output for the program in the time history mode, three other basic options for printing/punching are available. These options provide detailed time histories of the vehicle motion (option 1), loads (option 2) and energy (option 3).

Output option 1, time history of vehicle motion, is in the following format:

T	OMEGAX	OMEGAY	OMEGAZ	SIGMA	MC
\mathbf{X}	\mathbf{Y}	\mathbf{Z}	XDOT	YDOT	ZDOT
PSI	PHI	XI	PSIDOT	PHIDOT	XIDOT
GAMMA1	GAMMA2	GAMMA3	GAMDOT1	GAMDOT2	GAMDOT3
XP1	YP1	ZP1	XP2	YP2	ZP2
XP3	YP3	ZP3			

The symbolism is:

T

OMEGA
SIGMA
MC
$\mathrm{X}, \mathrm{Y}, \mathrm{Z} \quad$ location of vehicle CG in ground coordinates; origin at vehicle CG at $\mathrm{T}=0 \mathrm{sec}$. (ft)

XDOT, YDOT, velocity of CG in ground coordinates (ft/sec) ZDOT

PSI, PHI, XI vehicle orientation in ground coordinates (deg)
PSIDOT, vehicle angular rates in ground coordinates (deg/sec)
PHIDOT, XIDOT

GAMMA lower strut angular orientation in vehicle coordinates (deg)
GAMDOT lower strut angular rates in vehicle coordinates (deg/sec)
$\mathrm{XPi}, \mathrm{YPi} \quad$ location of the ith footpad pivot in surface coordinates (ft) ZPi

Output option 2, time history of bads, torques and deformations, is in the following format:

T	FA1	FA2	FA3	FAX1	FAY1
FAZ1	FAX2	FAY2	FAZ2	FAX3	FAY3
FAZ3	FBX1	FBY1	FBZ1	FBX2	FBY2
FBZ2	FBX3	FBY3	FBZ3	MBX1	MBY1
MBZ1	MBX2	MBY2	MBZ2	MBX3	MBY3
MBZ3	FCX1	FCY1	FCZ1	FCX2	FCY2
FCZ2	FCX3	FCY3	FCZ3	FFX1	FFY1
FFZ1	FFX2	FFY2	FFZ2	FFX3	FFY3
FFZ3	PSP11	PSP12	PSP21	PSP22	PSP31
PSP32					

The symbolism is:
$T \quad$ time (sec)

FAi force in ith shock absorber (lb)
FAXi, FAYi, force components of ith upper hardpoint in the vehicle coordinate system (lb) FAZi

FBXi, FBYi, force components of ith lower hardpoint in the vehicle coordinate FBZi system (lb)

MBXi, MBYi, moment components of ith lower hardpoint in the vehicle coordinate MBZi system (ft-lb)

FCXi, FCYi, force components of ith body block in vehicle coordinates (lb) FCZi

FFXi, FFYi, force components of ith footpad pivot in the vehicle coordinate FFZi system (lb)

PSPij deformation of the jth segment of the ith footpad along the centerline of the foot pad (ft)

Output option 3, time history of energies and energy states of various elements, is in the following format:

T	EK	EP	ES1	ES2	ES3
EF1	EF2	EF3	EB1	EB2	EB3
EFF1	EFF2	EFF3	EBF1	EBF2	EBF3

The symbolism is:
T time (sec)
EK total kinetic energy (ft-lb)
EP potential energy (ft-lb)
ESi total energy stored and dissipated in ith shock absorber (ft-lb)
EFi total energy, excluding friction, stored and dissipated in the ith footpad (ft-lb)

EBi total energy, excluding friction, stored and dissipated in the ith body block (ft-lb)

EFF1 total energy dissipated by friction by the ith footpad (ft-lb)
EBFi total energy dissipated by friction by the ith body block (ft-lb)
The output option is selected by assigning the appropriate numbers to CODE and CODE 2 on input cards 11 and 10. The code numbers are:

Code No.	Output Options Specified	Code No.	Output Options Specified
1	1 - (motion time history)	5	$1 \& 2$
2	2 - (load time history)	6	$1 \& 3$
3	3 - (energy time history)	7	$2 \& 3$
4	4 - (surface determination,	8	$1,2 \& 3$
	to be discussed later)	9	No output

To select a printing option, set the appropriate code number in CODE. If it is desired to punch all the options which are printed, insert a minus sign in the value of CODE. Punch options may be specified independently of CODE by inserting one of the above code numbers in CODE2 (always positive).

To illustrate the use of the print/punch options, consider the following example. Suppose option 2 and 3 have been selected to be printed and option 2 is to be punched. Code number 7 would appear in CODE and code number 2 would appear in CODE2. It should be noted that data cannot be punched which is not printed. That is, option 2 and 3 could not be punched if only option 1 were to be printed. No error will result from placing any combination of numbers between 1 and 10 in these coded locations.

A code number of 10 in CODE enables diagnostic type printing. This option bears a resemblance to option 1 , and has been retained in the program primarily for historical interest. In CODE2 a code number of 10 is ignored.

An error ('out of range computed go to') will be generated if a number or numbers beyond the range of 1 to 10 are put in CODE and/or CODE2, with the exception of negative numbers being permitted in CODE.

If CODE = 4 a very special output printing results. Under these circumstances internal modifications are made to the program which permit the specification of footpad impact times and calculate the ground slope and cross slope angle from the resulting motions. The input data required for the CODE $=4$ version is essentially the same as for the time history version, with the addition of TAU (1), TAU (2), TAU (3), the times at which the respective footpads strike the surface. Any times greater than or equal to zero may be specified, but it is necessary to specify the spacecraft attitude and motion at zero time. The spacecraft attitude can be specified in any convenient coordinate system, provided the z-axis is positive vertically downward.

The output of the CODE $=4$ version consists of statements of the value of the cross slope angle LAMDA, ground slope THETAS, and coordinates of the impact points in the convenient coordinate system. The values of 4 angles are then printed. ZETA is the required rotation between the convenient coordinate system and the customary ground coordinate system, while PSI, PHI, XI are the touchdown pitch, yaw, roll angle specifications relative to the customary ground coordinate system. Due to an ambiguity in the method of determination, it is possible that the roll angle XI will be in error. This can be checked by means of the approximation

$$
\text { XI } \simeq \text { XIO }- \text { ZETA }
$$

which is exact only for a level vehicle, but should be only a few degrees off for a moderately tipped vehicle. If the printed data satisfies the above approximation, the correct value of XI has been printed. Otherwise the supplement of the printed value of XI must be chosen.

The ambiguity which exists in the determination of the roll angle XI results from the nature of the inverse sine function evaluation. The output of this evaluation is always an angle in the first or fourth quadrant. Consider the angle in the second quadrant, $\equiv=90^{\circ}+\Delta$. If the sine of this angle is computed, a number N between 0 and 1.0 will result. Now if we take the inverse sine of N, the angle we have in mind is $\equiv=90^{\circ}+\Delta$. But the computer will calculate that the inverse sine of N is $\Xi_{C A L C}=90^{\circ}-\Delta$. Note that the sines of Ξ and $\Xi{ }_{\text {CALC }}$ are numerically equal.
If $|\equiv| \leq 90^{\circ}$, there is no problem and the above approximation will be satisfied. Otherwise the approximation will reveal a discrepancy, and an adjustment must be applied. Suppose
that $\quad \Xi_{\text {TRUE }}=90^{\circ}+\Delta$
then
$\Xi_{\text {CALC }}=90^{\circ}-\Delta$
so

$$
\Xi_{\text {TRUE }}+\Xi_{\text {CALC }}=180^{\circ}
$$

and result is obtained for $\Xi_{\text {TRUE }}$ is seen to be the supplement of $\Xi_{\text {CALC }}$. A similar

$$
\mathrm{I}_{\text {TRUE }}=-\left(90^{\circ}+\Delta\right) \text { which is in the third quadrant. }
$$

in which case

$$
\boldsymbol{m}_{\text {TRUE }^{+}} \boldsymbol{m}_{\text {CALC }}=-180^{\circ}
$$

where $\quad \Xi_{\text {TRUE }}$ and $\mathbf{E}_{\text {CALC }}$ will be negative.

To summarize:

If

$$
\begin{aligned}
& \text { If } \quad\left|\Xi_{\text {TRUE }}\right| \leq 90^{\circ}, \Xi_{\text {TRUE }}=\Xi_{\text {CALC }} \\
& \text { If } \quad\left|\left.\right|_{\text {TRUE }}\right|>90^{\circ}, \Xi_{\text {TRUE }}=\text { supplement of } \Xi_{\text {CALC }}
\end{aligned}
$$

3.4.5 Sample Program Output

A sample of the program output follows. This sample presents options 1,2 \& 3 with no punching. The program was terminated by the decision that the vehicle was stable.

$\stackrel{\sim}{2}$	つOtM
－${ }^{\circ}$	Ora

kEAL TIFE CLCCK INTEKHULATEL AT 11：25130

気
$.0 c c$
$10 \leq c c$
$-c c c$
$-\varepsilon 41$
．cco
つ

 －．cce －ccc －cco

気

CARD	1	$x M=$	－2 $2000+C 2$	IXX	＊	－1422＜ 20	IYY E	． $14222+03$	122	$=$	－14222＋03	IXY \quad－	．OCOOC
CARD	2	Ix2 $=$	． 00060	172	＝	． 00000	XMP＝	．324CO－C1	XLLO	$=$	－31275＋01	deleg	． $15417+01$
CARD	3	XLP $=$	－31675＋01	XLL	－	－33750＋C1	XLA $=$	$.95833-C 0$	G	＝	－53100＋01	ALFHA（1）＝	．7500C－00
CARD	4	ALPHAIElo	－45ucoloz	ALPHK（1）	＝	－1430C＋C5	ALPHK（2）＝	－143CO＋C5	BETA	＊	． $42000+02$	XLC	－24167＋01
CARD	5	HEO＝	． 6061 7－60	XIALFH	－	－373cc－02	XIGAR．	． $13470+01$	H．FO	$=$	． $54167-00$	Lt－	－5E333－00
CARC	6	DF	－1 $120 C 0+01$	XDOTOC	－	－000cc	YDOTOL $=$	－． 92769401	200TOC	＝	． $14240+02$		
CARD	7	XML	－560co－01	XLDM．IN	＝	． $27525+01$	XKS $=$	$.10000+08$					
CAKC	8	THETL（1）＝	－OCOCO	THETL（2）	＝	－12000＋C3	THETO（3）＝	－24000403					
CARC	9	THETAS	－ $15 \sim \mathrm{LCO}+02$	PSIO	＝	－500Cu＋C1	PHIC $=$	－COOCO	X10	＝	． 00000	XLAMLL $=$	．OCOOC
CARD	1 C	CMEGA（1）$=$	－Ovulo	OMEGA（2）	$=$	． 000 nc	OMEGA（ ）＝	－UOUCO	COLE？	＊	$.40000+01$		
CARC	11	CCLE $=$	－Colcl	SER NO	＝	1－cleco	Phase r．Oe	1	$V \mathrm{H}$	－	－．cococ	$v *=$	－．CLOOC
CAPD	12	LTF＝	． $25000+01$	TF	＊	－arceutud	Hr．	－10UCO－05	ERR（4）	＊	－ 6 ccccolol	ERK（5）＝	． 00000401
CAKL	13	EKFI（ 6 ）＝	－ 6 UCLO＋01	ERK（7）	＝	－2 2 UOC＋C1	ERK（ 6 ）	－ $20000+61$	ERK（9）	－	－ $20000+01$	EKF．110）＝	－ 4 COCO 01
CARE	14	ERK111）$=$	－4しUCU＋C1	EF．f．（12）	－	－ $40000+61$	ERK（13）＝	．160C7－CC	ERP（14）	＝	－1tete 7－OC	ERK（15）＝	．1t667－00
CGRL	15	ERK（16）	． $100 \mathrm{C}^{7-c}$	EFFA1 ${ }^{\text {（ }}$ ）	＊	$.16067-60$	ERK（18）＝	$.10067-C C$	EFF（19）	＝	－1cet－OL	ERF $1201=$	． $10667-00$

THIS CASE IS SERIES NG．$\quad 1.000$
ARL FHASE NO．$=1$

the felloning afkars hre crganiztl as follous－

山出花
－ 10000
 －CunOU 8
0
0
3

 ك．

－unoco

－crioco

	－cros	－しOUL	－Cuncc．	－ 2000 C	－cooce		． 00000
	－crolu	－－しuい	－Clnu	－CCCCC	－LOOOC		－ 10000
	－crueo	－Coolv	－Co．Oc）	－CCCOL	－lloce		－ COOOO
	－crulu						
	－croco	＜669．99Eし	－Cしつい	－CCCOL	－LOOCC		． 00000
	－iroso	－し	－Cuinco．	－ COCO	－CGOCC		－ 6000
	－crors	－LCOCS	－Clocu	－COCOC	－cuoce		． 00000
	－．UOCOL	－－Uccul	－Cu7c3 \quad－${ }^{\text {coucc }}$	－－CCCC	1－1．OOCC	－Ccocc	－CCCOC
	142.2200	－－CCOUC	$-C \in C C C$ －CCTM？	－cuvco	－CcOOL －CCOOC	1．ccorc －Crorc	$\begin{array}{r} . \operatorname{cococ} \\ 1 . \operatorname{cococ} \end{array}$
	－．OOLOL	142．2ãou		－ 20703			
Fuctran		A）IPITIaLLY CC	：SUFFACE AT \＃	－CCCE SECOR．LS．			
FCCTFAC P．C．		is JHITImLLY LC	¢ SLRFACE AT T＝	－ $2 C 9 t$ SECOt．DS．			
FLCTFLC POO．		Mこ IHITIALLY CC	C SURFACE AT T	－2C9E SECOR．DE．			
ECEY ELOCK ivo．		く F．LS IT．ITIALLy	CTEL SURFGCE AT T＝	－ 2801 SECONDS．			
SLEY ELOCK NO．		3 HAS IHITIALLy	CTEL SURFACE AT T ＝	－E801 Secorals．			
\＆－5のOL		2．5127k	－－1172	－－C5C77	$16 \cdot 11791$		$1 \cdot 45151$
－．CnOl		－5．75831	2．E4006	－．CC135	－0．1067E		－＜0005
－35．eL6Ls		－．COUC	－．ClJ54	－ $5127 E$	－＊117E		－ 0.050
1E・しへのE4		16．5927E	16.99394	－C5736	$6 \cdot L<39 t$		$6 . C 3 C O 5$
－CNC15		1.95474	－3．7419i	S． 5 5 3E	－7．し5337		－．45E95
－2．5astu		-7.05363	－． $4=595$				
zesocu		－LCOLC	42 CO 5 CO	2́ác．2542と	－LCOCC		－ 20000
$\begin{array}{r} \cdot C \text { COCO } \\ -122 \cdot 10 U C E \end{array}$		－150．1693c	91．9CPLU	－120．47522	160.77855 217.02328		92.62557 -37.657
－ $122 \cdot 10098$		－ 12.1204 C			277.02326 $-0.00 C L$		-37.65763 .00000
63.42710		－64．5672	37.5 ごへ4e	245．37101	－07．7932		－35．14043
－25E－43843		－CCCLC	－cuncu	－CCCOL	－COOC		.00000
－CnOCo		－LCOLC	－CCOU	－LCCUL	－CUOCC		－COCOO
－crolo		57．21434	$54 . c ¢ 735$	－53．321C1	－47．t3ult		63.45230
－4t． 13634		－し12し4	－C2164	－1069．	－604E		.10692
ごこのでく		－Co5sd	－Iul．ejcot	二2：－4CE34	ctucsar71		664．V0738
t．1315u		54．じようご	SL．e：ancs	－ccecl	：090．5402i		168.54624
		417.749 ？	417.77864	－cccul	69．7371：		69.75728

\vec{O} OTO	
min	

The equations developed in Section II are programmed in subroutines INIT, CONFIG, STAB, FORCE, and INTEQM. In order to further associate physical concepts with the program listing, the following cross reference between the listing and Section II is presented. Since there is not a one-for-one correspondence between Section II equations and statements in the listing, and since not every statement in the listing is numbered, then the statement numbers tabulated below should be regarded as approximate locations for the FORTRAN version of the Section II equations.

INIT

Statement No. from Listing

110
114
150
160
CONFIG
Statement No.
from Listing from Listing

110
120
124
160
1604
162
170)
172
180
201
202
202
3005
$2045\}$
2049)

Section II Equation No.

1
$14,13,5,7,6$ 3
15

STAB

Statement No. from Listing
62
$250\}$ 255 \}
256 257
Section II Equation No.
72
76
77, 78
79

FORCE

Statement No. from Listing

75
110
120
150
$156\}$
160 \}
180
1805
1866
1896
1897

INTEQM

Statement No.
from Listing

Section II Equation No.

33
29
30
31, 32
32
40
42
43
45
44

Statement No. from Listing 1899 1903 $\left.\begin{array}{l}191 \\ 192\end{array}\right\}$ 192 \}
204
222
$301)$ 303 302) $311\}$ $314\}$

Section II Equation No.

46
47
48
49
52
38, 55
39
$31)$
35)
40
42
60
703
80)

Section II Equation No.

60
55
68, 69
67
65, 66

SECTION IV

COMPUTER STUDIES

4.1 SPECIAL STUDIES

In the course of developing the computer program, investigations were planned to answer such questions as:

1. Could the computer simulation of the Surveyor landing be made more efficient?
2. Were there any integration methods immediately available which would surpass variable interval Runge-Kutta in overall performance?
3. Could the strategy of interval adjustment be made more efficient?
4. Was it feasible to relax the error specifications in order to improve running time?
5. What would be the effect of modifications to the representation of the sliding friction coefficient?

Based on the results of studies pertaining to these questions, the parametric studies were begun with confidence that the efficiency was optimum. A discussion of these studies appears in the following paragraphs.

4.1.1 Simulation Efficiency

It was apparent from examination of the Phase I test cases (see Reference (b)) that program running time could be improved substantially by "smoothing" some calculations and by eliminating others when they were unnecessary to the determination of spacecraft motion. The "smoothing" refers to the elimination of unrealistic abrupt changes in force levels, and to the removal of numerical "noise" which can occur when a balance between two opposing forces is sought. These phenomena can have a ruinous effect on the error checking integration method without contributing to the vehicle dynamics.

This smoothing process was employed to advantage in easing the transition from the shock absorber stroking to the restroking condition. As this change takes place, the shock absorber damping and friction forces change sign. In order to prevent step changes in these forces which are neither physically realistic nor conducive to rapid computation, a function was introduced in the simulation which allows these forces to pass through zero
with no discontinuity. This higher order smoothing function has the characteristics of zeroing the dissipative forces at zero stroking velocity, but smoothly blending them into their normal computation mode when the stroke velocity has achieved a significant value.

During the restroking with the footpads of the surface, an approximate equilibrium between the shock absorber spring and damping forces exists. Due to the difficulty of accurately determining the difference between two substantial numbers, it is virtually impossible to get an accurate determination of the shock absorber force during this situation. As a result, the motion of the lower leg is erratic and small integration intervals result. Furthermore, these motions are inconsequential to the spacecraft dynamics since the footpad in question is not then in contact with the surface.

Because of the ineffectiveness of the footpad at this time, it should be satisfactory to employ an approximate technique to describe restroking with the footpad off the surface. If the inertia force is regarded as a small constant, the following differential equation is approximately true for this condition:

$$
\mathrm{K}+\mathrm{c} \dot{\boldsymbol{\gamma}}^{2}+\mathrm{k} \boldsymbol{\gamma}=0
$$

where γ is the angular depression of the lower leg. This equation implies the assumption that γ changes approximately in proportion with the shock absorber stroke. Rearranging,

$$
\dot{\gamma}=\sqrt{a \gamma+b}
$$

which expresses $\dot{\boldsymbol{\gamma}}$ as a function of $\boldsymbol{\gamma}$ and two constants which were empirically determined from calculations performed using the more rigorous expression of the differential equation. Figure 4-1 shows the adequate representation of the $\boldsymbol{\gamma}$ and $\dot{\boldsymbol{\gamma}}$ time histories which is provided by the approximation. Integration of the semi-empirical $\dot{\gamma}$ was used to return the leg to the stop if all the following conditions were met:

1. Footpads off the surface.
2. Shock absorber restroking velocity from standard calculation equal or in excess of the programmed approximate equation.
3. Lower leg not on extension stop.

The above change improved the running time somewhat and in general, had a smoothing effect on the calculations during off-the-ground restroking. This approximation was used to advantage throughout the parametric study, but had to be removed from the final version of the program. Since the approximation is applicable only to a specific set of shock absorber parameters, its presence in the program would unnecessarily decrease the generality of the program.

Originally, the lower leg extension stop was represented by a very stiff spring. After the leg encountered the stop, an oscillation of the lower leg resulted. The damping force was quite low, and oscillations persisted for some time. A different stop was programmed which set the lower leg rates to zero when the stop was encountered. This froze the motion of the lower leg at the stop and was effective in eliminating the oscillations.

Figure 4-1. $\boldsymbol{\gamma}$ and $\dot{\boldsymbol{\gamma}}$ versus Time for Free Shock Absorber Return

Another aspect of the mechanical stop problem concerned the lower leg angular rate ($\dot{\gamma}$) that results from integration of the lower leg angular acceleration ($\ddot{\gamma}$). Under normal situations, $\dot{\gamma}$ is used to calculate the lower leg angular position ($\boldsymbol{\gamma})$. However, when the shock absorber is on the extension stop, this is no longer true. In this instance, the forces are arbitrarily set to zero resulting in a $\ddot{\gamma}$ of zero and a $\boldsymbol{\gamma}$ equal to the last value calculated. No problem exists until a force tending to stroke the leg appears. At this time, $\dot{\boldsymbol{\gamma}}$ has the wrong value, and some time must pass before $\dot{\boldsymbol{\gamma}}$ is integrated to the correct number so that the leg moves off the stop. Even though this time is small, the vehicle acts as if it has stiff legs for this time period. To alleviate this condition, a fictitious value of $\ddot{\gamma}$ is generated to run $\dot{\gamma}$ to a small value. This procedure is only used when the lower leg is on the stop and $\dot{\gamma}$ has a value greater than the above small value. Since $\dot{\boldsymbol{\gamma}}$ is sensed to determine whether the shock absorber is stroking or restroking, $\dot{\boldsymbol{\gamma}}$ must be held to a small positive value to keep from unnecessarily and incorrectly leaving the stop.

In the original version of the program, the calculation of the crushable block forces was suspended if the blocks were not in contact with the surface. Since one or more footpads are often off the surface and generating no forces, a procedure similar to that for the blocks was instituted for the footpads in the event they were not in contact with the surface. This increased the program efficiency by eliminating some unnecessary calculations.

These program modifications were all incorporated for the purpose of streamlining the simulation without affecting accuracy. For the original version of the program, the ratio of computer time to problem time was $215: 1$; this figure was reduced to $175: 1$ by means of the modifications.

Another method of reducing running time is simply an earlier termination of the run. This is feasible in some cases, since a stable landing can often be identified before the vehicle motions subside. This identification makes use of the results of the stability angle calculations described in Section II. When the spacecraft rocks up on one or two feet but does not topple, the calculated stability angle attains a minimum value at the end of the rocking motion and then experiences a substantial jump which is due to changing the reference used to calculate the stability angle at that instant. The program was modified to utilize this jump with the result that running time was saved in a large number of runs performed during the parametric studies.

4.1.2 Comparison of Integration Methods

In order to evaluate our choice of integration method, a limited study of various integration methods was conducted. The methods investigated were:

1. Variable interval, error checking Runge-Kutta.
2. Variable interval, error checking Milne with Runge-Kutta start and restart.
3. Constant interval (. 002 second) Runge-Kutta.
4. Trapezoidal (. 002 and .0005 second).

Method 1 was used as a basis for comparison purposes. Methods 3 and 4 are inherently simpler, but suffer from the disadvantage that no error control or estimation is possible.

The first comparison of integration methods was performed for a problem which was simple compared to the Surveyor landing dynamics problem. The problem was to determine the motion-time history of a bouncing ball which was idealized as an undamped, single degree of freedom system. The motion was predictable in closed form, and since the system was undamped, the motion was periodic. Further, the motion was similar to Surveyor in that abrupt contacts with the surface were made from time to time. Both error checking integration methods kept the problem under control. Milne integration (2) was slower to expand the integration interval and failed to expand the interval to as large a value as method 1 . The lack of speed was due to a requirement for several past values to be in existence prior to interval expansion.

Reluctance of Method 2 to increase the interval was due to the method of interval expansion used in the available Milne integration routine. Interval expansion is restricted to interval doubling; that is, if the error is sufficiently small, the interval will be doubled. For a case in which a given interval results in small errors but twice that interval produces excessive errors, interval expansion will not occur. Therefore, this method will in general be running at an integration interval which is less than optimum and consequently smaller than the interval selected by method 1.

Method 4 with an integration interval of .0005 second had accuracy problems when the ball was in contact with the surface and was "loafing" when the ball was off the surface. The method seemed to have an "energy generator'; that is, the ball bounced to higher positions with each cycle. Method 3 performed with satisfactory accuracy, but like the other methods, was unable to improve upon the running time for Method 1.

Comparisons using Case 2 from Phase I (see Reference (b)) also support the selection of the variable interval Runge-Kutta integration. Method 2 failed to recover from the initial impact as the integration interval was reduced to a minimum and remained there. No meaningful data could be obtained. Method 3 resulted in satisfactory results, but no time improvement was noted. Method 4 with an interval of .002 second experienced permature termination of the run due to the absurd result that shock absorber bottoming occurred. Reducing the interval to .0005 second resulted in satisfactory answers but lost any running time advantage over either Methods 1 or 3. In general, no usable running time advantage was found in any of Methods 2, 3 or 4 over Method 1. Further, accuracy was as good or better in Method 1 than in the other methods.

4.1.3 Interval Adjustment Strategy

The strategy used in adjusting the integration interval size was examined in a further effort to improve program efficiency. It is tempting to reason that since there will be physically meaningful discontinuities in the applied forces (such as at recontact after free flight), and since it is a virtual certainty that the time interval will have to be closed down to a very small value in order to get through this discontinuity, then it would seem that computation could be saved when the discontinuity is encountered by immediately reducing the time interval to a small value. The time-consuming process of error checking, halving the interval and again error checking, etc., might be eliminated under these circumstances.

This is specious reasoning, however, as it fails to recognize that during the free flight, intervals as large as .3 seconds have been observed. When the discontinuity is encountered with this interval, there is a probability of .5 that by cutting the interval in half, the error check will be passed because the vehicle will not yet have contacted the surface.

Carrying this one step further, the probability that the error check will be passed after n cuts is:

$$
P=\sum_{j=1}^{n} \quad(1 / 2)^{j}
$$

This means, for example, that if the time interval were .3 second when the recontact discontinuity was encountered, then the probability would be . 875 that the error check would be passed with a time interval of .0375 or greater. This is clearly superior to arbitrarily dropping the time interval to the minimum allowable (say .00001) as soon as the discontinuity occurs.

It is possible that further gains in speed could have been achieved by increasing the time interval more quickly when a smooth portion of the landing occurs, such as the free flight phase. Although time interval selection might not have been quite optimum, the strategy used to select intervals appeared to be rather good. This contention was supported by a special calculation which was incorporated in the computer program. Printed out were the number of integration intervals in a run, the average size, the distribution of sizes, and a distribution of the number of times that successive cuts in interval size had to be made to pass an error check. This information showed that in all runs made using the existing strategy, no interval cutting was required in over half of the integration steps. This is indicative of a rather efficient process.

One attempt was made to use a slightly modified interval adjusting technique. This method was more conservative for errors close to the maximum and more liberal for errors close to zero error than the present method. The modified technique was found to be significantly less efficient than the original method.

4.1.4 Error Specification

Having obtained confidence that the program is functioning efficiently, the possibility of relaxing the truncation error specification was investigated. Since these specifications are used in the error check, they control the interval size and therefore the problem running time. Additional special printouts were instituted as an aid in assessing the effect of changing the error specifications. Two of these printouts provided summations of truncation errors actually incurred in the integration of the problem variables. Summations are performed both on an absolute and an algebraic basis. A third special printout provided a distribution of the critical variables in the form of a tabulation of how many times each of the dependent variables restricted the interval size.

The allowable error specifications on a per second basis used in the Phase I test cases (see Reference (b)) are tabulated on the next page.

6 degrees for footpad angles
2 degrees/second for lower strut angular rates - $\mathrm{E}(\dot{\boldsymbol{\gamma}})$
4 degrees for lower strut angles
$1 / 6$ foot/second for CG velocities
1/6 foot for CG position
$1 / 6$ degree/second for rotational rates about the CG-E(ω)
$2 / 3$ degree for rotation about the CG
With these specifications the special printout affirmed that $\dot{\boldsymbol{\gamma}}$ (lower leg angular rate) was the most critical variable. The body angular rates (ω) provided a significant amount of limiting, but much less so than $\dot{\gamma}$.

Several combinations of specified $\dot{\boldsymbol{\gamma}}$ and ω errors were applied to Case 2 , and the effects on running are tabulated below:

$\mathrm{E}(\dot{\boldsymbol{\gamma}})$ $\mathrm{Deg} / \mathrm{Sec} / \mathrm{Sec}$	$\mathrm{E}(\omega)$ $\mathrm{Deg} / \mathrm{Sec} / \mathrm{Sec}$	$\frac{\text { Computer Running Time }}{\text { Problem Time }}$
2	$1 / 6$	175
4	$1 / 6$	155
8	$1 / 6$	120
16	$1 / 6$	120
8	$1 / 2$	130
16	$1 / 2$	120
8	$1 / 4$	125

It is evident from this tabulation that relaxation of the error criteria does decrease running time. Note, however, that running time does not decrease uniformly as the allowable errors are increased. Evidently $\mathrm{E}(\dot{\gamma})$ and $\mathrm{E}(\omega)$ are both restricting the interval size in the latter 5 cases, so that when one set of errors is relaxed, the other set provides additional limiting.

Figure 4-2 illustrates the effect of increased error criteria on the pitch angle versus time plot. This time history, chosen because of the importance of pitch angle in stability determination, shows that two of the specified error criteria result in departures of 6° and 8° from the original choice of $E(\dot{\gamma})=2$ and $E(\omega)=1 / 6$. The remaining 4 combinations were not distinguishable from the original choice.

The choice of $E(\dot{\gamma})=8$ and $E(\omega)=1 / 6$ is attractive because of its relatively low running time ratio ($120: 1$) as well as its good agreement with respect to the pitch angle time history. The variation in the pitch angle time history with specified error unfortunately

Figure 4-2. Pitch Angle versus Time for Various Error Criteria
is not clearly understood, so that a conservative choice of criteria was selected for the parametric studies. The values selected were the original values which included $E(\dot{\gamma})=$ 2 and $E(\omega)=1 / 6$.

4.1.5 Sliding Friction

A study was undertaken to establish whether or not the phenomenon of footpad chatter would be predicted by the computer program. Accordingly, the nominal coefficient of friction was raisedfrom .8 to 1.4 , and the variation of sliding friction coefficient as a function of velocity was changed. Figure 4-3 shows the various forms of the profile which were considered. Profile C is shown in two different scales; all profiles coincide for sliding velocities of .05 foot/second and above.

Computer runs which were conducted using $\mu=1.4$ and the various friction coefficient profiles revealed two distinct difficulties, both of which had a disastrous effect on running time. First, the expected difficulty associated with a sharp change in sliding friction force at low velocities was experienced. This problem was most severe for the "step" representation of the friction profile (profile A), while profile C was sufficiently smooth that little difficulty was encountered. For profile A, and to a lesser extent profile B, the abrupt change in friction coefficient at low velocities did not permit the error checks to be passed, so that the integration interval was reduced to the minimum value.

This problem was accentuated by a second difficulty, which was an accuracy problem. It appears that the use of a minimum time interval of .000001 second can result in error checking meaningless numbers due to the number of significant figures carried in the single precision mode on the UNIVAC 1107. In effect, round-off errors generated in the computations were being checked instead of truncation errors. This problem develops when the integration interval approaches the minimum allowable time interval.

Once the time interval has been reduced to a minimum, it becomes nearly impossible to pass an error check, open up the time interval and thereby return the calculated values to the realm of significance. This difficulty is not restricted to the occurrence of rapidly changing friction forces, however. In fact it was first identified in a situation where the sliding velocity was in excess of 1 foot/second, but the torques tending to rotate the spacecraft were approximately in balance. As was previously noted, equilibrium conditions of this type are difficult to describe accurately. Therefore, the time interval closed down and having done so, could not recover. It has been found that increasing the minimum time interval to .00001 seconds has alleviated the problem of accuracy, but the problem of sharp changes in friction force remain with profiles A and B.

Figure 4-4 compares the pitch angle time histories throughout the first $1 / 2$ second of the landing for the cases in which $\mu=1.4$ (profiles A, B and C) with the time history for $\mu=8$ (profile C). First, note that there is very little difference among the three plots for $\mu=1.4$ data. Although the amount of data is admittedly sparse, there is no indication that profile C is inadequate. Since this profile results in smoother calculations at no loss in accuracy, it was used for the parametric studies.

Figure 4-3. Sliding Friction Coefficient versus Sliding Velocity

Figure 4-4. Pitch Angle versus Time for Various Friction Representations

4.2 PARAMETRIC STUDIES

The program development effort which has been discussed throughout this report was motivated primarily by the requirement to perform extensive parametric studies. These studies, which constituted the majority of the effort expended in Phase II, were formulated to establish Surveyor landing stability boundaries for a wide range of touchdown conditions.

The dynamics of the spacecraft landing are functions of two major types of variables: those which describe the vehicle configuration (geometry, shock absorber characteristics, etc.) and those which specify the touchdown conditions (CG velocities, angular rates, angular orientation, nominal sliding friction coefficient, etc.). The vehicle configuration was held constant throughout the parametric studies although provision has been included in the simulation to facilitate changes in these parameters.

The spacecraft configuration is described by the parameters in Table 4-1. Table 4-2 lists the variables describing the touchdown conditions. The variables which were varied in the parametric study were chosen from Table 4-2.

In order to keep the extent of the parametric study within reasonable bounds, the range of touchdown conditions to be considered was necessarily subject to some limitations. As indicated in Table 4-2, the ground slope and friction coefficient were assigned constant values, while no angular rates were considered during the parametric studies. The approach followed in varying the angular orientation and initial CG velocity vector was first to establish a baseline configuration and then to study the effect of variations about this set of parameters.

4.2.1 Baseline Configuration

In selecting a set of baseline conditions, it is logical to require that the configuration will result in a "planar' landing. That is, the landing can be thought of as a 2 dimensional problem in which there is no motion of the CG across the slope, nor is there any spacecraft rotation except pitch. This choice appeals to the intuition since it would seem reasonable to expect that the most critical touchdown conditions from the standpoint of overturning would involve the CG velocity in the direction of maximum slope, tending to topple the vehicle over two downhill feet. It turns out that intuition is a reliable, but not infalliable, guide; only a few conditions have been found which are more critical than the planar cases.

A second baseline condition can be arbitrarily assigned. This is the condition that the spacecraft is level at touchdown (vertical centerline). This choice has only simplicity to recommend it; the pitch and yaw angles will be zero.

It was planned that the stability profiles would be generated by varying horizontal velocity until the transition value was established. Vertical velocity was to be held at a fixed value for various angular orientations and cross-slope angles. A vertical velocity of 20 feet/ second was chosen with the thought that variations in stability boundaries would be accentuated by the high vertical velocity. Figures 4-5 and 4-6 indicate that this was not the case. Rather, another phenomenon was being introduced which rendered 20 feet/second vertical velocity useless for stability considerations.

TABLE 4-1. NUMERICAL VALUES OF PARAMETERS DESCRIBING SPACECRAFT CONFIGURATION

Parameter	Description	Value
M	mass	20 slugs
I_{xx}	moment of inertia relative to x-axis	138.12 slug-ft. ${ }^{2}$
I_{yy}	moment of inertia relative to y -axis	134.29 slug-ft. ${ }^{2}$
I_{zz}	moment of inertia relative to z -axis	145.78 slug-ft. ${ }^{2}$
I_{xy}	moment of inertia relative to x and y-axes	6.81 slug-ft. ${ }^{2}$
I_{xz}	moment of inertia relative to x and z -axes	-5.87 slug-ft. ${ }^{2}$
I_{yz}	moment of inertia relative to y and z-axes	2.57 slug-ft. ${ }^{2}$
$l_{\text {DO }}$	extended length of shock absorber link	3.1275 ft .
$\ell_{\mathrm{D} \text { min }}$	minimum length of shock absorber link	2.7525 ft .
$\triangle \mathrm{CG}$	height of CG above base plane	1.445 ft .
ℓ_{p}	distance from vehicle centerline to lower hardpoint	3.1875 ft .
ℓ_{L}	length of lower link	3.375 ft .
$\ell_{\text {A }}$	length of A-frame link	. 95833 ft .
g	Gravitational acceleration	$5.31 \mathrm{ft} . / \mathrm{sec} .^{2}$
α_{1}	footpad rotational stop (lower)	. 75 deg.
α_{2}	footpad rotational stop (upper)	45 deg .
β	Inclination of A-frame link	41 deg .
ℓ_{c}	distance from vehicle centerline to block centerline	2.4167 ft .
${ }^{\mathrm{h}} \mathrm{BO}$	uncrushed block thickness	. 66667 ft .
${ }_{1}{ }_{\alpha}$	moment of inertia of footpad about pivot	. 00373 slug-ft. ${ }^{2}$
${ }^{1} \boldsymbol{\gamma}$	moment of inertia of lower link about hinge	1.347 slug-ft. ${ }^{2}$
h_{fO}	uncrushed footpad thickness	.54167 ft .
${ }^{\text {d }}$ B	block diameter	.58333 ft .
d_{f}	footpad diameter	1 ft .
$\mathrm{R}_{\mathbf{c}}$	nominal shock absorber compressive damping coefficient	$54 \mathrm{lbs} .-\mathrm{sec} .^{2} / \mathrm{ft} .^{2}$

TABLE 4-1. NUMERICAL VALUES OF PARAMETERS DESCRIBING SPACECRAFT CONFIGURATION (CONC.)

Parameter	Description	Value
R_{R}	nominal shock absorber rebound damping coefficient	$864 \mathrm{lbs} .-\mathrm{sec}^{2} / \mathrm{ft}^{2}$
$\mathrm{~K}_{\mathrm{D}}$	shock absorber hydraulic spring rate	$3600 \mathrm{lb} / \mathrm{ft}$.
K_{S}	shock absorber extension stop spring rate	$100,000 \mathrm{lb} / \mathrm{ft}$.
F_{P}	shock absorber preload shock absorber mechanical friction coefficient	nominal block crush pressure nominal footpad crush pressure
C_{B}	angle between spacecraft y-axis and No. 1 C_{f}	leg set θ_{1}
θ_{2}	angle between spacecraft y-axis and No. 2 leg set angle between spacecraft y-axis and No. 3	120 deg.
θ_{3}	leg set	240 deg.

TABLE 4-2. NUMERICAL VALUES OF PARAMETERS DESCRIBING TOUCHDOWN CONDITIONS

Parameter	Description	Value
$\boldsymbol{\theta}_{\mathbf{s}}$	ground slope	15 deg.
μ	sliding friction coefficient	1.0 (dimensionless)
ω_{x}	initial angular rate about vehicle x -axis	$0 \mathrm{deg} / \mathrm{sec}$.
ω_{y}	initial angular rate about vehicle y-axis	$0 \mathrm{deg} / \mathrm{sec}$.
ω_{z}	initial angular rate about vehicle z-axis	$0 \mathrm{deg} / \mathrm{sec}$.
$\boldsymbol{\Psi}_{\mathrm{o}}$	initial pitch angle	variable (deg.)
Φ_{o}	initial yaw angle	variable (deg.)
Ξ_{o}	initial roll angle	variable (deg.)
$\mathbf{V}_{\mathbf{v}}$	touchdown vertical velocity	variable (ft/sec.)
\mathbf{V}_{H}	touchdown horizontal velocity	variable (ft/sec.)
λ	cross-slope angle	variable (deg.)

Figure 4-5 presents the horizontal velocity versus roll angle stability profile for a level vehicle. The vertical velocity was $20 \mathrm{feet} / \mathrm{second}$ and the cross-slope angle was 0° (uphill, planar landing). The cross-slope angle is measured between the horizontal velocity vector and the Y-axis (ground coordinates). See Figure 4-22. The roll angle was varied between 0° (No. 1 foot uphill) and 60° (No. 3 foot downhill). No instances of toppling were observed, but the range of tolerable horizontal velocity was limited by shock absorber bottoming. The same result is shown in Figure 4-6 in which the horizontal velocity versus cross-slope angle stability profile was sought. The roll angle was 0°.

The data shown in these two figures strongly suggest that a systematic search for the baseline configuration be conducted. A cross-slope angle of 180° (downhill landing) was chosen, together with a roll angle of 0°, as these conditions would seem less likely to produce excessive stroking than the uphill landings. Figure 4-7 presents a vertical velocity versus horizontal velocity stability profile for these conditions. It was possible to define the stability boundary since toppling, not excessive stroke was the limiting phenomenon. Notice the lack of transition at low vertical velocities. Figure 4-8 presents data for a similar investigation, but with a 60° roll angle. Again no toppling was observed, and excessive stroke was the limiting factor at rather high velocities.

The data presented in Figures 4-5 through 4-8 are quite informative regarding the general stability characteristics of Surveyor. Figure 4-7 especially suggests that the spacecraft is an inherently stable configuration. Further, downhill landings seem to be much more critical than uphill landings, especially those downhill landings with roll angles around 0°. Figure 4-7 also suggests that a vertical velocity of 14 feet/second would be attractive for a baseline condition as it results in one of the lowest transition horizontal velocities, but it is high enough to avold the area of high stability at vertical velocities of 10 feet/ second and below. Then the baseline conditions can be summarized as follows: 14 feet/ second vertical velocity, level vehicle and planar motion.

4.2.2 Parametric Variations for Level Vehicle

The parametric studies have made use of certain symmetries which exist in the spacecraft configuration. The three-legged configuration possesses a symmetry which repeats at roll angle intervals of 120°. The definition of cross-slope angle (see Figure 4-22) permits negative cross-slope angles to be neglected since there is no fundamental difference between positive and negative cross-slope angles. Strictly speaking, these symmetries do not exist in a dynamical sense, since the spacecraft products of inertia are non-zero. The products are inconsequential compared with the moments of inertia, however, so that the symmetries can be utilized.

The interaction of horizontal velocity, roll angle and cross-slope angle was investigated for a level vehicle with a 14 foot/second vertical velocity. Figure 4-9 is a horizontal velocity versus roll angle stability proflle for 180° cross-slope angle (downhill landing). The transition which occurs at 0° roll angle (1 foot uphill) is considered to represent the baseline condition. The baseline transition horizontal velocity is between 11 and 11$1 / 2$ feet/second. Figure 4-9 (180° cross-slope) shows that as the roll angle becomes larger, the transition horizontal velocity increases.

Figure 4-5. $\mathrm{V}_{\mathbf{H}}$ versus Ξ Stability Profile

Figure 4-6. V_{H} versus λ Stability Profile

Figure 4-7. Vertical Velocity versus Horizontal Velocity

Figure 4-8. Vertical Velocity versus Horizontal Velocity

Figure 4-9. $\mathbf{V}_{\mathbf{H}}$ versus Ξ Stability Profile

Figures 4-10 through 4-19 present horizontal velocity versus roll angle stability profiles for cross-slope angles from 170° through 80° in increments of 10°. With the exception of Figure $4-19\left(80^{\circ}\right.$ roll angle) where no transitions were found, the figures present stability profiles which can all be characterized as concave upward. That is, for each choice of cross-slope angle there is a range of roll angles for which the transition horizontal velocity is minimum. As cross-slope angle proceeds from 180° toward 80°, two trends can be observed: first, the minimum transition horizontal velocity increases; also, the range of roll angles which produce the minimum transition horizontal velocities shifts toward the negatively increasing roll angles.

These trends are perhaps more clearly illustrated by depicting the stability boundary as a surface rather than a family of curves. Figure 4-20 shows the stability surface in perspective. The surface may be interpreted as the transition horizontal velocity as a function of roll and cross-slope angles. Combinations of roll and cross-slope angles which lie above the surface will produce toppling. Figure 4-20 actually shows only half of the surface; the plot could be extended to show the symmetry about the vertical axis defined by a 0° roll angle and a 180° cross-slope angle. That is, if the plot were extended beyond the cross-slope angle of 180° (e.g.to cross-slope angles of $-160^{\circ},-140^{\circ}$, etc.) then the additional half of the surface would look like Figure 4-20 with the signs of the scales reversed.

Figure 2-21 is the top view of the stability surface, and can be regarded as a contour map showing transition horizontal velocity as a function of cross-slope angle and roll angle. The tendency for transition horizontal velocities to increase as the horizontal velocity vector swings from the 180° cross-slope angle (downhill) around to 90° (across the slope) can be readily observed. The shift in critical transition horizontal velocities toward the negatively increasing roll angles can also be seen.

It is interesting to examine the reasons underlying these trends. The increase in stability which accompanies the departure of the horizontal velocity vector from the downhill direction is not surprising. It is to be expected that toppling is more likely to occur for a downhill landing than for a landing across the slope. The tendency for the "valley" in the contour map of Figure 4-21 to run up and to the right deserves further comment, however.

Superimposed on the contour map of Figure 4-21 is the straight line AB, which extends from the point representing a 0° roll angle and a 180° cross-slope angle (downhill baseline case) to the point representing a 30° roll angle and a 90° cross-slope angle. This line is the locus of roll angle cross-slope angle combinations for which the horizontal velocity vector at touchdown bisects a line joining the two leading feet. Intuition suggests that the critical combination of roll angle and cross-slope angle should lie on or near the line, since the vehicle touchdown configuration would seem to offer the minimum resistance to toppling under these circumstances. That is, for a roll angle of -30°, for example, a cross-slope angle of 150° would be expected to be critical. This rationale is probably adequate to explain the general character of the stability surface, but Figure 4-21 indicates the locus of critical horizontal velocities is actually rotated slightly counter-clockwise from AB.

Figure 4-10. $\mathbf{V}_{\mathbf{H}}$ versus Ξ Stability Profile

Figure 4-11. $\mathbf{V}_{\mathbf{H}}$ versus \equiv Stability Profile

Figure 4-12. $\mathbf{V}_{\mathbf{H}}$ versus Ξ Stability Profile

Figure 4-13. V_{H} versus Ξ Stability Profile

Figure 4-14. $\mathbf{V}_{\mathbf{H}}$ versus \equiv Stability Profile

Figure 4-15. V_{H} versus \equiv Stability Profile

Figure 4-16. $\mathbf{V}_{\mathbf{H}}$ versus \equiv Stability Profile

Figure 4-17. \mathbf{V}_{H} versus \equiv Stability Profile

Figure 4-18. $\mathbf{V}_{\mathbf{H}}$ versus Ξ Stability Profile

Figure 4-19. V_{H} versus Ξ Stability Profile

> Level Vehicle
> $\mathbf{V}_{\mathbf{V}} \equiv 14 \mathrm{ft} . / \mathrm{sec}$.

Roll Angle

Figure 4-20. Perspective Sketch of Surveyor Stability Surface

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY pasadena, California

Copyright © 1966

Jet Propulsion Laboratory
California Institute of Technology
Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

$\begin{array}{llllllllllllllll}60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & 60 & 50 & 40 & 30 \\ \text { Roll Angle (degrees) }\end{array}$
Cross-Slope
Angle
(degrees)

Examination of detailed time history data for touchdown conditions in the vicinity of line AB offers some explanation of the phenomenon. It appears that for these landings the crushable blocks influence the motion markedly. As one or more blocks contact the surface during a cross-slope landing, the velocity in the X-direction (across the slope) is virtually arrested, and the cross-slope angle increases toward 180°. When the blocks lose contact, this velocity again becomes significant, but less so than at touchdown. The cross-slope angle does not return to its initial value, but to a value somewhat closer to 180° than existed initially. This results in landings which appear as if the horizontal velocity vector were pointed more "downhill" than the actual touchdown conditions would indicate.

Table 4-3, which lists a portion of the time history for one set of landing conditions, illustrates this phenomenon. The touchdown conditions considered were a level vehicle, 14 feet/second vertical velocity, 12 feet/second horizontal velocity, 170° cross-slope angle and -10° roll angle. This was an unstable run which was used to determine the transition point marked by a square in Figure 4-21. Much larger variations in crossslope angle have been observed in other cases. This case is presented for illustrative purposes only.

TABLE 4-3. ABBREVIATED TIME HISTORY

	CG Velocities		Cross-Slope Angle
Time $($ Sec $)$	(Ft/Sec)	$(\mathrm{Ft} / \mathrm{Sec})$	(Degrees)
0	-2.08	-11.82	170.0
.14	-1.85	-10.90	170.3
.22	-1.15	-9.24	172.9
.24	-.913	-8.31	173.7
.26	-.656	-7.21	174.8
.28	-.127	-4.35	178.3
.30	-.083	-2.91	178.3
.32	-.135	-2.41	176.8
.34	-.175	-2.37	175.8
.36	-.230	-2.36	174.4
.38	-.290	-2.34	172.9
.42	-.335	-2.37	172.0
.50	-.381	-2.40	171.0

Recalling that $\tan \lambda=-\frac{\dot{\mathbf{X}}}{\dot{\mathbf{Y}}}$, the variation in cross-slope angle is largely dependent upon the variation in $\dot{\mathbf{X}}$. The cross-slope angle first increases and then decreases as $\dot{\mathbf{X}}$ first decreases and then increases. The apparent cause of the increase in \dot{X} is worth mentioning, since none of the crush forces have components across the slope. Evidently both leading feet are sliding due to shock absorber restroking at this time, and there is an unbalance of friction force due to an unbalance in crush force.

Another significant feature of the contour map which was investigated in detail was the discontinuity in transition horizontal velocity in the area bounded by cross-slope angles of 160° and 170° and roll angles of $+20^{\circ}$ to $+40^{\circ}$. The transition horizontal velocity changes abruptly in this area from about 13 feet/second to over 20 feet/second for a roll angle change of only 10°. The change in contour, as might be expected, is apparently due to a gross change in the vehicle motion. For the extremely stable cases to the left, little or no change of cross-slope angle occurs during the landing. For the cases to the right of the discontinuity, the cross-slope angle changes in such a way as to put the horizontal velocity vector between the downhill legs, the least stable orientation. The change in cross-slope angle occurs shortly after one or more of the blocks contact the surface.

The main distinguishing features of the contour map seem to be due to the effect of the blocks on vehicle dynamics. It would seem reasonable that these features would be less pronounced for lower vertical velocity landings and more pronounced for landings at higher vertical velocities.

Although the footpads and shock absorbers are also absorbing energy during the landings, they do not seem to affect the direction of the horizontal velocity vector as do the crushable blocks. Footpad impacts can be associated with small changes in the roll angle (less than 5°), but these changes are small compared with some of the observed changes in velocity vector orientation (up to 30°).

To recapitulate the results of the parametric study for the level vehicle, no cases were observed to have lower transition horizontal velocities than the baseline case (11-1/4 feet/second). The transition horizontal velocity increases as the touchdown horizontal velocity vector is directed further away from the downhill orientation. As the touchdown horizontal velocity vector turns away from downhill, the range of critical roll angles (for a given cross-slope angle) shifts toward the negatively increasing direction.

4.2.3 Parametric Variations for Tipped Vehicle

The final aspect of the Surveyor lunar landing for which a parametric study was conducted was the effect of tipping the vehicle. Two combinations of roll angle and cross-slope angle were chosen from Figure 4-21. These combinations were chosen for their relatively low transition horizontal velocities. The combinations were a 180° cross-slope angle with 0° roll angle, and a 150° cross-slope angle with a -10° roll angle.

Before describing these investigations, it is necessary to define the method used to specify the tipped vehicle. Referring to Figure 4-22, the cross-slope angle (λ) is measured between the Y -axis in ground coordinates and the horizontal velocity vector. The cross-slope angle is measured positive in a right hand sense about the Z -axis in

Figure 4-22. Geometry for Tipped Vehicle
ground coordinates. To specify a tipped orientation, consider a vehicle with the vehicle axes originally aligned parallel to the ground coordinate system (see Section II). The vehicle centerline is to be tipped in a certain direction by a positive angle ν, measured from the vertical. The plane formed by the original and new positions of the vehicle centerline is located relative to the Y -axis in ground coordinates by the angle Γ. The angle Γ is also measured positive in a right hand sense relative to the Z -axis in ground coordinates. Any required roll orientation is accomplished by rotation through an angle K about the vehicle centerline. The angle K is defined similarly to the Euler roll angle Ξ, but the two differ in magnitude.

For a given tipped vehicle specification the Euler angles can be obtained from:

$$
\begin{aligned}
\sin \Psi & =\frac{\cos \Gamma \sin \nu}{\sqrt{1-\sin ^{2} \Gamma \sin ^{2} \nu}} \\
\sin \Phi & =\sin \Gamma \sin \nu \\
\sin (\Sigma-K) & =\sqrt{1-\sin ^{2} \Gamma \sin ^{2} \nu}
\end{aligned}
$$

Note that for small ν, the difference between Ξ and K is small.
Figure 4-23 is a stability profile of touchdown horizontal velocity versus the angle Γ. The vehicle centerline was tipped 9°, and the cross-slope angle was 180° (downhill landing). The nominal roll angle (K) was specified as 0°. This profile was the first instance in which transition horizontal velocities smaller than the baseline case were observed. Figure 4-23 shows transition velocities of about 10-1/2 feet/second for r between $112-1 / 2^{\circ}$ and $157-1 / 2^{\circ}$. The same transition velocity exists for r between $-112-1 / 2^{\circ}$ and $-157-1 / 2^{\circ}$ since there is symmetry of the profile with respect to Γ.

In an effort to further understand this critical area, the detailed time history data was once again consulted, but with less impressive results than previously. A comparison was made for the cases of $r=90^{\circ}$ and $r=112-1 / 2^{\circ}$ with a horizontal velocity of $11 \mathrm{feet} / \mathrm{second}$ in both cases. It was observed that for $r^{\circ}=112-1 / 2^{\circ}$ (unstable), the pitch angle at the end of the free flight phase ($\Psi=-36.8^{\circ}$) was slightly more pronounced than for the stable case of $\Gamma=90^{\circ}\left(\Psi=-34.2^{\circ}\right)$. This small difference in pitch angle, which results mainly from differences in pitch rate during the free flight, is evidently enough to result in toppling. The cause of the pitch rate difference is not apparent, however.

Figure 4-24 presents a similar stability profile, but with the vehicle tipped only 5°. Comparison of Figures 4-23 and 4-24 reveals that the profiles differ only for $r= \pm 90^{\circ}$. At these values of r , a vehicle initially tipped 5° topples for a horizontal velocity of 11 feet/ second, while a vehicle initially tipped 9° is stable.

Figure 4-23. V_{H} versus r Stability Profile

Figure 4-24. V_{H} versus Γ Stability Profile

Figure 4-25. V_{H} versus r Stability Profile

It may be noted that the $\Gamma=0^{\circ}$ and 180° transition points from Figures 4-23 and 4-24 correspond to pure pitch angles. These points, together with the baseline case, could be used to define a very limited stability profile of transition horizontal velocity versus pitch angle, over a range of pitch angles between $\pm 9^{\circ}$. These transition velocities all lie between 11 and 12 feet/second, so that no particular trend can be identified.

The final situation which was studied concerned a vehicle tipped 9° with a cross-slope angle of 150° and a nominal roll angle of -10°. The horizontal velocity versus Γ stability profile (Figure 4-25) shows transition horizontal velocities of 11-1/2 feet/second and above. These transitions are higher than the most critical velocities shown in Figures 4-23 and 4-24.

The results of the parametric studies for the tipped vehicle are naturally less extensive than for the level vehicle, since a much greater proportion of the effort was devoted to the level vehicle. For a cross-slope angle of 180° and a nominal roll angle of 0°, there are values of r for which the transition horizontal velocities are less than for the baseline case. Limited data concerning the effect of pitch angle on stability show no particular trend.

4.2.4 Conclusions from Parametric Studies

The most important conclusion to be drawn from the parametric studies is that the stability picture for non-planar landings is more critical than for the baseline conditions in a few cases only. For the combinations of touchdown conditions studied, the few cases which were more critical than the baseline case exhibited transitional horizontal velocities which were about 1 foot/second less than the baseline transition.

The stability of landings which are primarily downhill is quite high for low vertical velocities. Even at higher vertical velocities, substantial horizontal velocities are required to produce toppling. For landings which are primarily uphill, the limiting consideration appears to be excessive shock absorber stroking, since the vehicle is highly stable in the uphill direction.

In general, stability increases as the touchdown configuration becomes remote from situations where the horizontal velocity vector is directed between the two downhill feet. No particular stability trend was evident for small changes in pitch angle.

SECTION V

REFERENCES

a. Appendix A to JPL Contract 951304 entitled, "Surveyor Lunar Touchdown Stability Study".
b. Bendix Report MM-65-16, 'Interim Report on Surveyor Lunar Touchdown Stability Study", by R. G. Alderson and D. A. Wells, dated 30 November 1965.

FOREWORD

The current Surveyor Lunar Touchdown Stability Computer Program version used at the Jet Propulsion Laboratory contains a provision to circumvent the stability subroutine STAB. This provision is not documented in the main body of the report. It was included to facilitate the use of this program in the flight data interpretation for a stable landing. The real time clock interrogation has been eliminated from the JPL version.

This addendum contains only those pages of the main report wherein changes are reflected.

Reads and Modifies
Input Data
Consists of Reading:

XM	XDOTOC
XIX	YDOTOC
YIY	ZDOTOC

ZIZ
XIY
XIZ
YIZ
XMP
XLDO
DELCG
XLP
XLL
XLA
G
ALPHAD (1)
ALPHAD (2)
ALPHK (1)
ALPHK (2)
BETAD
XLC
HBO
XIALPH
XIGAM
HFO
DB
DF
RC (1), RC (2),
RC (3)
SRL (1), SRL (2) ICODE
SRL (3) XDTP
XMUF TFO
XMUB HM
TAU (1), TAU (2),
TAU (3) ERR (4) through
ERR (24)
CRUX

Number of independent variables in the Block No. 3 table.
J31 Number of independent variables in the Shock Absorber No. 1 table. Number of independent variables in the Shock Absorber No. 2 table.

Number of independent variables in the Shock Absorber No. 3 table.
$\mathrm{K} \quad$ First digit of the table code number.
KSUM Sum of the first digits of the code numbers.
$L \quad$ Second digit of the table code numbers.
LF Second table value in integer form.
LSUM Sum of the second digits of the code numbers.
L3 Total number of values in a given table.
M Leg number corresponding to a given table.
SHOCK1 (N10) Table of Characteristics for Shock Absorber No. l.
SHOCK2 (N10) Table of Characteristics for Shock Absorber No. 2.
SHOCK3 (N10) Table of Characteristics for Shock Absorber No. 3.
STUPE Temporary storage for the values on a given card.

INPUT

BETA (N7) The angle between the vehicle centerline and a line joining the upper and lower hardpoints on a leg set (rad).

BETAD Same as BETA except for units (degrees).
CODE A numeric which controls program output.
CRUX Stability key.
DA (N9) Utility array used for temporary storage.
DEGRAD (N7) Conversion factor ($\mathrm{rad} / \mathrm{deg}$) .
DELCG (N11) Distance between CG and lower hardpoint measured along the vehicle centerline (feet).

DTP (N24) Time interval for output printing and punching (sec).

```
SIBFTC MAIN M94,XR7
    COMMON/N1/N N,TO,TF,SH,HM,YI(50),YO(50),ERR(50)
    COMMON/NT/ ALPDOT(3). ALPH(3), GAMDOT(3), GAMMA(3), XDOTC, YDOTC,
    I ZDOTC, XC, YC, ZC, OMEG(3), PSI, PHI, XI, PFLAG, KFLAG, PSIO,
    2 PHIO, XIO, THETA(3), THETAS, ALPHAT2I, BETA, XJ(3,3), PI,
    3 DEGRAD, RADDEG
    COMMON/N9/ A1(3), A2(2), A3(2), A4(3,2,3), A5(3,2,3), A6(3), A7,
    1 A8(3.3), D1, D2,D3, D4, D5, D6, D7, D8, D9, D10. D11. D12,
    2 D13,D14,D15,D16,D17,D18,D19,D20, XX, DA(10), W(3,4,6), HPL(3,3)
    COMMON/N12/XDOTOC,YDOTOC,ZDOTOC,TAU(3),ISET(3),XA(3),YA(3),ZA(3)
    COMMON/N14/SLOPE1(3),SLOPE2(3),XCDP(I2),YCOP(12),PSB(3),XHPU(3),
                YHPU(3),ZHPU(3),SINTHS,COSTHS,PSP(3,12),DELEL(3),FIMAX(3),
                ZPREF,SINTH(3),COSTH(3),TZERO,VZERO,ZBO(3)
    COMMON/N15/ B(3,3), XB(3), YB(3), ZB(3), XFP(3), YFP(3), ZFP(3).,
    1 DRS(3,3,3)
    COMMON/N24/IOPT(10):JN, DTP
    CALL TABLIN
    LPRINT = 0
    TF = 0.0
    HM}=0.
    1 TO =0.0
    WRITE (6,20)
20 FORMAT (1HI)
    CALL INPUT
    IF IIOPTI3)I 21,21,22
21
    GO TO }2
    22 N = 39
    2 3 \text { CALL INIT}
    IF (IOPT(4)) 26,26,24
    24 TAMIN = AMINI(TAU(1), TAU(21, TAU(3))
    IF (TAMIN) 26,26,25
    25 SH = TAMIN + HM
    GO TO 27
    26 SH =.0005
    2 7 \mathrm { DO } \quad 1 0 \mathrm { I } = 1 . 3
    YI(I) = ALPDOT(I)
    YI(I+3)= ALPH(I)
    YI(I+6)= GAMDOT(1)
    YI(I+9)= GAMMA(I)
    10YI(I+18) = OMEG(I)
    Y\113)= XDOTC
    YI(14) = YDOTC
    Y1(15)= 2DOTC
    YI(16) = XC
    YI(17)=YC
    YI(18)= ZC
    YI(22)= PSIO
    Yl(23) = PHIO
    YI(24)=XIO
    DO 18 J=25.50
    18 YI(J) = 0.0
    DO 185 J= 4,12
185 ERR(J) = ERR(J)#DEGRAD
    DO 186 J= 19,24
186 ERR(J) = ERR(J) * DEGRAD
    CALL RKP
        GO TO l
        END
```

```
        SUBROUTINE IMPUT
        DIMENSION XMPP(3), ALPHK(2)
        DIMENSION OMEGA(3), THETD(3), ALPHAD(3) ,ERO(50)
        COMMON/N1/ N,TO,TF,SH,HM,YI(50),YO(50),ERR(50)
        COMMON/N7/ ALPDOT(3); ALPH(3),GAMDOT'(3i; GAMMA(3), XDOTC, YDOTC,
    I ZDOTC, XC, YC, ZC, OMEG(3), PSI, PHI, XI, PFLAG, KFLAG, PSIO,
    2 PHIO, XIO, THETA(3). THETAS, ALPHA(2), BETA, XJ(3.3), PI,
    3 DEGRAD, RADDEG
        COMMON/N9/ Al(3), A2(2), A3(2), A4(3,2,3), A5(3,2,3), A6(3), A7,
    l A8(3,3), D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12,
    2 013,014,015,016,017,018,D19,020,XX,DA(10),W(3,4,6), HPL(3,3)
    COMMON/NII/CB(3),XM,XIX,YIY,ZIZ,XIY,XIZ,YIZ,XMPP,XIP,DELCG,XLP,
                        XLL,XLA,G,ALPHK,XLC,HBO,NPHASE,HFO,HFMIN,DF,RC(3),RR(3),
                        XLDOP,XLDO,XKD(3),XKS, XNU,XLDMIN,CC,CF(3),XLAMDA,XMUF,
                        XMUB,RUNNO,SERNO,VV,VH,DB,XIALPH,XIGAM,DELMAX,SRL(3),FP(3)
    COMMON/N12/XDOTOC,YDOTOC,ZDOTOC,TAU(3),ISET(3),XA(3),YA(3),ZA(3)
    COMMON/N23/MISS
    COMMON/N24/IOPT(10): JN. DTP
    COMMON/N25/IWILEY(10)
    COMMON/N30/CRUX
    IOFF=0
        DTP = 0.0
100 DO 101 K=1.5
101 DA(K) = 0.0
    READ (5.900) MM.( DA(J). J=1.5)
    IF (MM)109,200.109
109 GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 1,MM
    1 XM = DA(1)
    XIX=DA(2)
    YIY = OA(3)
    ZIZ=DA(4)
    XIY = DA(5)
    MISS =0
    WRITE 16.9211 MM
    GO TO 100
    2 XIZ = DA(1)
    YIZ = DA(2)
    XMP = DA(3)
    XLDO = DA(4)
    DELCG= DA(5)
    MISS = 0
    WRITE (6.921) MM
    GO TO 100
    3 XLP = DA(1)
    XLL = DA(2)
    XLA = DA(3)
    G DA(4)
    ALPHAD(1)= DA(5)
    WRITE (6.921) MM
    GO TO 100
    4 ALPHAD(2)= DA(1)
        ALPHK(1) = DA(2)
        ALPHK(2) = DA(3)
        BETAD = DA(4)
        XLC = DA(5)
        WRITE (6.921) MM
        GO TO 100
```

```
    5 H8O = DA(1)
    XIALPH= DA(2)
    XIGAM = DA(3)
    HFO = DA(4)
    DB - DA(5)
    WRITE 16.921) MM
    GO TO 100
    6 \mp@code { D F ~ = ~ D A ( 1 ) }
    XDOTOC= DA(2)
    YDOTOC= DA(3)
    ZDOTOC= DA(4)
    CRUX= DA(5)
    WRITE (6.921) mM
    GO TO 100
    7 \text { \XNU = DA(1)}
    XLDMIN= DA(2)
    XKS =DA(3)
    WRITE 16.921) MM
    GO tO 100
    8 THETD(1)= DA(1)
    THETD(2) DA(2)
    THETO(3) = DA(3)
    WRITE (6.921) MM
    GO TO 100
    9 THETSD = DATII
        PSIOD = DA(2)
        PHIOD = DA(3)
        XIOD = DA(4)
        X[AMOD = DA(5)
        WRITE (6.921) MM
        GO to 100
    10 OMEGA(1)= DA(1)
        OMEGA(2)= DA(2)
        OMEGA(3)= DA(3)
        WILEY = OA(4)
        ICODE = IFIX (ABS (WILEY))
        DO 1001 J=1,10
    1001 IWILEY(J) = 0
        60 TO 1101I,1012,1013,1020,1015,1016,1017,1018,1020,10201,ICODE
    1011 IWILEYP1)=1
        GO TO 102O
    1012 IWILEY(2)=1
    GO TO 1020
    1013 IWILEY(3) = 1
    GO TO 102O
    1015 IWILEY(1)=1
        IWILEYT2J=1
        GO TO 1020
    1016 IWILEY(I)=1
        IWILEY(3) = 1
        GO TO 1020
    1017 IWILEY(2):1
        TWILEY(3)=1
    GO TO }102
1018 DO 1014 J=1%3
1014 IWILEY(J) =1
1020 CONTINUE
        WRITE (6,921) mm
        GOTO 100
```

```
    WRITE(6.921) MM
    GO TO 100
    17 DO 171 J=1.2
171RC(J+1)=DA(J)
    DO 172J=1.3
172 XKD(J)=DA(J+2)
    WRITE(6,921) MM
    GO TO 100
    18 DO 181 J=1.3
181 FP(J) E DA(J)
    00 182 J = 1.2
182RR(J)=DA(J+3)
    WRITE (6.921) MM
    GO TO 100
    19 RR(3) = OA(1)
    DO 191 J = 1.3
191 SRL(J)=DA(J+1)
    CB(1) = DA(5)
    WRITE (6.921) MM
    GO TO 100
    20 DO 250 J=1.2
250CB(J+1)=DA(J)
    DO 260 J =IDS
260 CF(J)= OA(J+2)
    WRITE (6.921)MM
    GO TO 100
    21 XMUF = DATII
    XMUB = DA(2)
    OO 290 J = 1.3
290 TAU(J) = DA(J+2)
    WRITE (6.921) WM
    GO TO 100
200 IF (IOFF) 310.310.300
300 DTP = 0.0
    GOTO 320
310 DTP = XDTP
320 WRITE 16.922T SERNO, NPHASE
    MM=1
    WRITE 16.90I) MN, XM, XIX, YIY,ZIZ,XIY
    MM=2
    WRITE (6,902) WM, XIZ. YIZ. XMP. XLOO. DELCG
    MM=3
    WRITE (6,903) MM, XLP, XLL, XLA,G , ALPHAD(1)
    MM=4
    MM=5
    WRITE (6.905) MM, HBO, XIALPH, XIGAM, HFO, DE 
    MM=6
    WRITE {6,906\ MM, DF; XDOTOC, YDOTOC, ZDOTOC,CRUX
    MM=7
    WRITE (6,907) MM: XNU, XLDMIN,XKS
    MM=8
    WRTTE T6.908, MM, THETDTI). THETD(21% THETD(3)
    MMM=9 (16.9091 MM, THETSD, PSIOD, PHIOD; XIOD, XLAMDD
    MM=10 (6,910) MM, (J,OMEGATJT,J=1,3) ,WILEY
    MM=11
```

```
            TF = TFO
            JN = JNO
            IF IIWILEY(1) + IWILEY(2) + IWILEY(3)) 1102.1102.1101
1101 JN = O
1102 CONTINUE
    900 FORMAT(I7.5X.5E12.5)
    901 FORMAT(5H CARD,13.10H XM =9E12.5.10H IXX =,E12.5,10H I
    IYY =.E12.5,10H IZZ m,E12.5,1OH IXY =.E12.5/I
902 FORMATISH CARD,I3.1OH IXZ =.E12.5.10H IYZ =.E12.5.10H X
    IMP =,E12.5.1OH XLDO =,E12.5.1OH DELCG =,E12.5/)
903 FORMAT(5H CARD, [3.1OH XLP =.E12.5,1OH XLL =,E12.5.10H X
    ILA =,E12.5,1OH G =,E12.5.1OH ALPHA(1)=,E12.5/1
904 FORMAT15H CARD,13,10H ALPHA(2)=,E12.5,10H ALPHK(1)=,E12.5.10H ALPH
    IK(2)=,E12.5.1OH BETA =.E12.5.10H XLC =.E12.5/1
905 FORMATI5H CARD,I 3.1OH HBO =,EI2.5,1OH XIALPH=.E12.5,10H XI
    IGAM =,E12.5,1OH HFO =,E12.5,10H DB =,E12.5/)
906 FORMAT IIX4HCARDI3.6 \4HDF = E12.5.2X8HXOOTOC = E12.5, 2X8HYDOTOC=
9061 E12.5. 2X8HZDOTOC = E12.5.10H STAB KEYz E12.5/1
907 FORMAT 11X4HCARD 13.5\times5HXNU = E12.5,2\times8HXLDMIN = E12.5.5\times5HXKS =
9071 E12.5 /)
908 FORMATI5H CARD,I3,
                                    1OH THET
    1D(1)=,E12.5,10H THETD(2)=.E12.5,1OH THETD(3)=,E12.5/)
909 FORMATISH CARD,I3,1OH THETAS =, E12.5.10H PSIO m,E12.5.10H P
    1HIO=,E12.5,1OH XIO =,E12.5,1OH XLAMDD =,E12.5/1
910 FORMAT (1X4HCARD I3; 3(IXGHOMEGA(II,2H)=E12.5).3X7HCODE2 = E12.5/1
911 FORMAT 15H CARD,I3,10H CODE =,F12.5.1OH SER NO m,F12.5.10H PHA
91115E NO=,I12 ,10H VH=,EI2.5.1OH VV =,E12.5/)
912 FORMAT (1X4HCARDI 3,5N5HDTP = E12.5,6\times4HTF = E12.5,6\times4HHM = E12.5.
912I 2X8HERR(4)=E12.5; 2XBRERR(5T = E12.5%1
913 FORMAT (1X4HCARDI3, 4(2X4HERR(II,3H)=E12.5), 1X4HERR(I2.3H)= E1
9131 2.5/1
914 FORMAT (2X4HCARDI3, 5(1)4HERR(12.3H)=E12.5)/)
915 FORMAT (IX4HCARDI 3. 5(IX4HERRTI2,3H)=E12.5)/)
916 FORMAT (1X4HCARDI 3.4(1)X4HERR(I2,3H)=E12.5); 3\times7HRC(1) = E12.5/)
917 FORMAT IIX4HCARDI3, 2\3X3HRCIII.3H)=EI2.5); 3(2X4HXKO(II,3H) = E
9171 12.51/1
918 FORMAT (1X4HCARDI3, 3(3X3HFP(11,3H)=E12.5),2(3X3HRR(I1,3H)=E12
9181 -5)/1
919 FORMAT 11X4HCARDI 3.3X7HRR(3) = E12.5,3(2X4HSRL(I1.3H)=E12.5). 3X
9191 7HCB(1) = E12.5 / )
920 FORMAT (IX4HCARDI3, 2(3X3HCB(II,3H)=EI2.5),3(3X3HCF(II,3H)=E12
9201 .51/1
1921 FORMAT IIX4HCARDI 3.4X6HXMUF = E12.5.4X6HXMUB = E12:5, 3(2X4HTAUIII
19211 . 3HI = E12.5)/I
    9 2 1 ~ F O R M A T ( 3 9 H ~ N E W ~ D A T A ~ C A R D ~ F O R ~ T H I S ~ C A S E ~ I S ~ N O . ~ = . I 5 1 )
    922 FORMAT 1//27H THIS CASE IS SERIES NO. = F12.3.
9221 2CH*. AND PHASE NO.E, I4/7% 21H INPUT DATA FOLLOWS. //)
        RETURN
        END
```

```
        SUBROUTINE FEP
        DIMENSION XMPP(3), ALPHK(2),SHKMAX(3)
        DIMENSION A(3), AA(3)
        COMMON/N2/T,Y(50),D(50)
        COMMON/N5/ TALPHA(3), TGAMMAT3),F(3), TO(3)
        COMMON/N6/OMEGDT(3), ALPHDD(3), GAMDO(3), O(3), PSID, PHID, XID.
    l DELWRK
        COMMON/N7/ ALPOOT(3), ALPH(3), GAMDOT(3), GAMMA(3), XDOTC, YDOTC,
    I ZDOTC, XC, YC, ZC, OMEG(3), PSI, PHI, XI, PFLAG, KFLAG, PSIO.
    2 PHIO, XIO, THETA(3), THETAS, ALPHA(2), BETA, XJ(3,3), PI.
    3 DEGRAD, RADDEG
        COMMON/NB/ LFLAG
        COMMON/N9/ A1(3), A2(2), A3(2), A4(3,2,3), A5(3,2,3), A6(3), A7.
    1 A8(3,3), D1, D2, D3, D4, D5,D6, D7, D8,D9, D10, D11, D12,
    2 D13,D14,D15,D16,D17,D18,D19,020, XX, DA(10), W(3,4,6), HPL(3,3)
    COMMON/NII/CBI 3I,XM,XIX,YIY,ZIZ,XIY,XIZ,YIZ,XMPP,XIP,DELCGOXLP.
    1 XLL,XLA,G,ALPHK,XLC,HBO,NPHASE,HFO,HFMIN,DF,RC(3),RR(3),
                        XLDOP,XLDO,XKD(3),XKS, XNU,XLDMIN,CC,CF(3),XLAMDA,XMUF,
                        XMUB,RUNNO,SERNO,VV,VH,DB,XIALPH,XIGAM,DELMAX,SRL(3),FP(3)
    COMMON/N13/A, AA
    COMMON/N14/SLOPE1(3),SLOPE2(3),XCDP(12),YCDP(12),PSB(3),XHPU(3),
    1 YHPU(3),ZHPU(3),SINTHS,COSTHS,PSP(3,121,OELEL(3),FIMAX(3),
    ZPREF,SINTH(3),COSTHT3T.TZERO,VZERO,2BO(3)
    COMMON/N15/ B(3,3), XB(3), YB(3), ZB(3), XFP(3), YFP(3), ZFP(3),
    1 DRS(3,3.3)
        COMMON/N16/ RN(3), XII(3,2), XLD(3), XLDDOT(3), XDOTP(3,2).
    1 YDOTP(3,2), S(3,2), COSXI (3), HF(3,12), ZDOTP(3,2), H8(3),
    2 GRS(3.3.3), TA
    COMMON/N17/ XFPCT3I% YFPCT3T, ZFPCT3T
    COMMON/N18/ NFLAG
    COMMON/N19/MNFLAG(3),PSBQ(3),PSPO(3,12),IBEEN(6)
    COMMON/N2O/DWORK (15)
    COMMON/N24/IOPT(1O). JN. DTP
    COMMON/N3O/CRUX
    IF lLFLAGI 19,19,10
15 ISTABL=0
    GO TO 70
1 9 ~ I F ~ ( N F L A G ) ~ 2 0 , 2 0 , 2 4
2000 23I= 4.24
    IF-TABSIVTITI-10.EST23.21.21
    DO 22 J= 1,24
22D(J) = 0.0
    D(22) = 10.E6
    GO TO 150
23 CONTINUE
24 DO 30I=I;3
    ALPDOTII) = Y(I)
    ALPH(I) = Y(I+3)
    GAMDOT(I)= Y(1+6)
    GAMMA(I) = Y(I+9)
30 OMEGII) = Y(I+18)
    XDOTC = Y(13)
    YDOTC = Y(14)
    ZDOTC=Y(15)
    XC =Y(16)
    YC = Y(17)
```

```
    78310X4OHOISSIPATED ENERGY TEDIST = = F20.5.7H FT LBS/
    78410\times40HFINAL KINETIC ENERGY (EKF) = F20.5,7H FT LBS//
    78510\times3OHMAXIMUM SHOCK ABSORBER FORCES- /
    78620\times17HLEG NO.1 FA(1) = F20.10/
    78720\times17HLEG NO.2 FA(2) = F20.101
    78820\times17HLEG NO.3 FA(3) = F20.10/1
    78910X51HMINIMUM CLEARANCE BETWEEN GROUND PLANE AND FRAME = F10.4.4H
    781 FT. //
        RETURN
    60 IF (IOPT(4)) 605,605.130
605 IF (T) 61,61.62
    6 1 ~ S I G M I N ~ = ~ 1 0 . E 8 ~
        GCMIN = 10.E8
        DO 611 J=1.3
    611 SHKMAX(J)=0.0
    62 SIGMIN =AMINI (SIGMIN.W(3,4,2))
        GCMIN = AMINITGCMINOWTI.4.2TI
        DO 621 J=1.3
    621SHKMAX(J) = AMAXI(SHKMAX(J),W(J,4,1))
    63 IF ISIGMIN - 0.7854 ) 65,68.68
    65 IF (W(3,4,2) - SIGMIN - 0.874) 68,68,66
    66 IF(CRUX) 666,68,666
666 WRITE (6,67)
    67 FORMAT (42HSSSSS VEHICLE IS STABLE (ROCK-BACK) ss$SS /1
        ISTABL =1
        GO TO 70
    68 IF IZPREF-IYC#SINTHS+ZC*COSTH5)7-75,75,130
    75 IF (2DOTC#2DOTC-4.0) 80.80.130
    80 IF .-TYDOTC=YDOTC-4.05 90,90,130
    90 IF (XDOTC*XDOTC-4.0) 100.100.130
    100 IF (OMEG(1)*OMEG(11)-.01) 110.110.130
    110 IF (OMEG(2)* OMEG(2) - .011120.120.130
    120 1F IOMEG(3)*OMEG(3)-.01) 125,125.130
    125 IF(CRUX) 1025,130,1025
1025 WRITE (6,126)
    126 FORMAT 145H***** VEHICLE IS STABLE ******)
        ISTABL = 1
        GO TO 70
    130 CALL FORCE
        IF (PFLAG) 131,132.132
    131 ISTABL =1
        GO TO 70
    132 CALL INTEOM
        DO 140 I=1.3
        IF (NFLAG) 136,136,134
    134 D(I) = ALPHDD(1)
    136 D(I+3)=ALPDOTTI)
        D(I+3)=AMAXI (-100.0.1 AMIN1 (ALPDOTII), 100.0)))
        D(I+6)=GAM DD(I)
        D(1+9)=GAMDOT(I)
        D(I+12)=Q(I)
        D(I+15)= Y(I+12)
    140 D(I+18)= ONEGDTIT
        D(22) = PSID
        O(23) = PHID
        D(24)= =10
        DO 145 J=1.15
    145D(J+24) = DWORR(J)
    150 RETURN
        END
```

```
2062 16X4HFAZ3,16X4HFBX1,16X4HFBY1,16X4HFBZ1,16X4HFBX2,16X4HFBY21
2063 16\times4HFBZ2, 16X4HFBX3,16\times4HF8Y3,16X4HFB23, 16X4HMBX1, 16\times4HMBY1//
2064 16X4HMBZ1,16X4HMBX2,16X4HMBY2,16X4HMBZ2,16X4HMBX3,16X4HMBY3/
2065 16X4HMBZ3,16X4HFCX1, 16X4HFCY1, 16X4HFC21, 16X4HFCX2,16X4HFCY2/
206616X4HFCZ2,16X4HFCX3,16X4HFCY3,16X4HFCZ3,16X4HFFX1,16X4HFFY1/
2067 16X4HFFZ1,16X4HFFX2,16X4HFFY2,16X4HFFZ2,16X4HFFX3,16X4HFFY3 /
206816\times4HFFZ3,15\times5HPSP11,15\times5HPSP12.15X5HPSP21.15\times5HPSP22.15X5HPSP31/
206915X5HPSP32//1
    DO 207 J= 1.55
207 ODEAR(J)=0.0
    LSET = 1
    GO TO 300
208 IF ITP) 209,209,210
209 WRITE (6,220) (ODEARIJ), J=1,53)
    IF IIWILEY(2) + JN - 1) 300.300.2095
2095 PUNCH 290, (ODEAR(J), J= 1.55)
    GO TO 300
    210 WRITE (6,220) TP, (W(J,4,1), J=1,3), ((W(J,L,1),J=1,3),L=1,3),
2101 ((W(J,L,2),J=1,3).L=1,3), (TWTJ,L,4),J=1,3),L=1,3),
2102 ({W(J,L,3), J=1,3), L=1,3),((W(J,L,5),J=1,3),L=1,3).
2103 (1PSP(J,K), K=1,2), J=1,31
220 FORMAT (/9(6F20.5/), F20.5)
    IF ITWILEYT\TT 270,270,280
270 GO TO (300,280). JN
280 PUNCH 290, TP, (W1J.4,1T, J=1.3)
290 FORMAT (916E12.5.7\times1H2/).E12.5.67X1H2)
300 IF (IOPT(3)) 310,400,304
304 1OPT(3)= -1
    WRITE (6,305)
305 FORMAT (19X1HT, 18\times2HEK, 18\times2HEP,17X3HES1,17\times3HES2,17\times3HES3/
3051 17X3HEF1, 17X3HEF2,17X3HEF3; 17X3HEB1, 17X3HEB2,17X3HEB3/
3052 16X4HEFF1,16X4HEFF2,16X4HEFF3,16X4HEBF1,16X4HEBF2,16X4HEBF3////
    LSET = 1
    GO TO 400
    310 059 =0.0
    069 = 0.0
318 DO 330 K=1.3
    Al(K) = 0.0
    DO 320 J=1.3
320 A1(K) = A1(K) + U(J+18)*XJ(K,J)
    D59 = D59 + N1(K) # U(K+18)
330 D69 = D69 + U(K+6)*U(K+6)
    EK = D59/2.+D69*XIGAM/2.- +XM/2.*(U(13)*U(13)+U(14)*U
    1(14) +U(15) * U(15))
    EP = -(VZERO + DA(7) U(IB))
    M=O
    DO 338 K= 20,24
    DO 338 J=1,3
    L = 5*J+K
    M =M+1
338 ODEAR(M) = U(L)
        WRITE (6,340) TP, EK, EP, (ODEAR(J), J=1,15)
    340 FORMAT (/3(6F20.571)
        IF (IWILEY(3)) 370.370.390
    370 GO TO (400,390),JN
```

Card No.	Parameter	Description
5	HBO	thickness of uncrushed block
	XIALPH	moment of inertia of footpad about pivot
	XIGAM	moment of inertia of lower link about lower hardpoint
	HFO	thickness of uncrushed footpad
	DB	diameter of block
6	DF	diameter of footpad
	XDOTOC	velocity of spacecraft CG in ground coordinates
	YDOTOC	(PHASE NO. $=1$) or in vehicle coordinates (PHASE
	ZDOTOC	NO. = 3). See Card 11 below.
	STAB KEY	$=0$ stability subroutine has essentially no control of program
		$=1$ stability subroutine has partial control of program
7	XNU	mechanical friction coefficient for shock absorber
	XLDMIN	minimum length permitted for shock absorber link
	XKS	spring rate of shock absorber stop
8	THETD (1)	angular orientation of leg sets No. 1, 2, 3 with re-
	THETD (2)	spect yz plane (vehicle coordinates). Angles increase
	THETD (3)	in left-handed sense.
9	THETAS	ground slope
	PSIO	pitch angle)
	PHIO	yaw angle $\}$ relative to ground coordinates
	XIO	roll angle

JPL Change 2 Dec 1966

