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Abstract 

Three mechanisms which can induce thermo-hydraulic oscilla.tions at 

near-critical and at super-critical pressures are distinguished and dis- i .-

cussed. 

Experiments show that low frequency flow oscillations are most pre-

valent in systems of practical interest. A quantitative formulation and 

analysis is therefore presented concerned with predicting the onset of 

these "chugging" oscillations as function of fluid properties, system 

geometry and operating conditions. 
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The problem is analyzed by perturbing the inlet flow, linearizing 
~ 
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the set of governing equations and integrating them.along the heated duct 
i 

i 
I • to obtain the characteristic equation. The latter is given by a third 
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order exponential polynomial with two time delays • 
) 

Conditions leading to aperiodic as well as to periodic flow 

phenonema. are investigated. The first pertains to the possibility of 

flow excur~ion the latter to the onset of flow oscillation. 

Stability maps and stability criteria are presented which, previously, 

were not available in the literature. They can be used to determine: 

a) The region of stable and unstable operation and 

b) The effects which various parameters have on either promoting 

or preventing the appearance of flow oscillations. 

The effects of various parameters are analyzed and improvements are 

suggested whereby the onset of flow oscillation can be eliminated. 

The similarity between "chu.gging" combustion instabilities and 

thermally induced flow oscillations at near and super-critical pressures 

is pointed out. 

A review of the present understanding of the near-critical thermo-
.-~ 

dynamic region is also presented. 
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1. Research Objectives 

This research was conducted to determine the fundamental nature of 

oscillation, and of instabilities in the flow of cryogenic fluids with heat 

addition. 

The inve.stigation was motivated ,by the f,act that ·severe oscillations 

h.ave been experienced in rocket engines heat exchangers utilizing oxygen 

and hydrogen,at,bothsubcritical and supercritical pressures. 

, The particul.ar ,objectives of this investigation were: 

1. To distinguish a number 'Of mechanisms which may be respon-

sible for thermally induced flow oscillations ~t near cri~ 

tical .and at supercriticalpressures. 

2'0 To present a quantitative formulation of the mechanisms 

which appear. to be m9stsignificant from the point of sys-

tern design and operation. 

3. To predict the ,onset of these oscillations in terms of the 

geometry and of the operating ,c~ondition of the system. 

4. ,To analyze the co~sequences of the theoretical predictions 

and to, suggest improvements whereby the onset of these 

oscillations can be eliminated. 
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2. Summary and Conclusions 

1. Mechanisms Leading to Unstable Operation 

Three mechanisms which can induce thermo-hydraulic oscillations at near 

critical and at supercritical pressures have been distinguished. 

One is caused by the variation of the heat transfer coefficient at the 

transposed i.e., at the pseudo-critical point. 

The second is caused by the effects of large compressibility in the 

c.ritical thermodynamics region. 

Finally, the third mechanism is caused by variations of flow character~ 

istics brought about by variations of fluid density during the heating pro-

cess. The propagations of these variations through the system introduce .. 

various time delays which, under certain conditions, can cause unstable flow. 

This la~t mechanism, which induces low frequency oscillations, was 

investigated in detail because ava.ilable experimental data show that this 

type of flow oscillations is most prevalent in systems of practical interest. 

20 Formulation of the Problem 

The problem was formulated in terms of an equation of state and of 

three fi.eld equations describing the conservation of mass, energy and mo-

mentum. 

The subcritical pressure range of operation was differentiated from the 

superc.ritical one by using the appropriate equation of state. 

The problem was analyzed by perturbing the inlet flow, linearizing the 

set of governing equations and integrating them along the heated duct to 

obtm.n the characteristic equation. 
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3. The Characteristic Equation 

The characteristic equation is given by a third order exponentigl p~ly-

nomial with two time constants, (see Eq. V-IS). It is expressed in terms of 

fluid properties, of system geometry and of operating conditions by means of 

influence coefficients (see·Eq. V-16 through E~. V-22). 

The influence coefficients express the effects of the inlet flow 

perturbation and of the space lag eerturbation on the various pressure drops 

of the system. By introducing various definitions for the average, for the 

log..mean and for the mean densities and velocities:it is shown that each 

pressure drop is wei~hed with respect to a different velocity. This 

result, which follows, from the integration of the governing set of 

equations, i.e., from the distributed parameter analysis, could not have 

been obtained from an analysis, based on·"lumped" parameters. Consequently 

the accuracy of an analysis based on this latter approach can be estimated 

by means of the results obtained in this investigation. 

The characteristic equation was used to obtain stability maps and 

stability criteria which, previously, were not available in the literature. 

The stability maps and criteria can be used to determine' 

" 

a. The region of stable and of unstable operation and 

b. The effects which various parameters may have on either promoting 

or on preventing the appearance of flow oscillations. 

Conditions leading to aperiodic as well as to periodic flow phenomena 

were investigated. The first pertain to the possibility of flow ex~ursion 

whereas the second pertain to the onset of flow oscillation. For this latter 

case the flow stability.in systems wi-th low inlet s!1bc661ing was considered , 

separately from that corresponding to systems with high inlet subcooling. 
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The stability problem at intermediate subcooling will be considered in a 

future report. 

4. Excursive Flow Instability 

It was shown that, at supercritical pressures, a flow system with heat 

addition can undergo flow excursions because the hydraulic characteristics 

of the system are given by a cubic relation between the pressure and the 

mass flow rate (see Eq. VI-20). The latter is a consequence of density 

variations in the system. 

This excursive flow instabilitYJ! at supercritical pressuresJ is the 

equivalent of the "Ledinegg" excursive instability in boiling systems at 

subcritical pressures. This equivalence is supported by experimental data 

(see Figure VI-I) which show:! that in both pressure regions, the flow system 

has similar hydraulic characteristics. 

A stability criterion which predicts the onset of the excursive in-

stability was derived in terms of system geometry, of fluid properties and 

of operating conditions, i.e., of system pressure, flow rate, inlet temp-

erature and power input (see Eq. VI-l3). Various aspects of this type of 
"' .. ;' 

instability are discussed together v.rith provisions required to prevent its 

appearance (see Section VI-2). 

50 Flow Oscillations at-Low Inlet Subcooling 

It was shoyffi that for a system with low inl~ subcooling the character-

istic equation can be reduced to a second order polynomial with one time 

delay.(see Eq. VII-7). For such a system the propensity to flow oscillation 

can be analyzed by means of the stability maps recently presented by Bhatt 
c::'~ 

'ahd -H..su (see Figure VII-l). 
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It was shown further that, when the inertia can be neglected in a system 

with low inlet subcooling then the characteristic equation reduces to a first 

order exponential polynomial'.' with one time delay (see Eq. VII-16). 

For such a system the flow will be unconditionally stable if the 

stability number Ns (defined by Eq. VII-39) is larger than unity. If 

,Ns is smaller than uni ty, stable operation i'fi s till possible if the angular 

frequency,of the inlet perturbation is larger ,than the critical one (given 

in Eq. VII-40) or if the transit time is shorter ~han the critical one 

(given by Eq.'VII-4l). 

The region of stable and of unstable operation are shown in a stability 

map (see figure VII-2) which can be used to' analyze the effects that various 

parameters have on the' propensity to induce or to prevent flow oscillations 

(see 'Section VII.3). 

Although 'i:he ana.lytical predictions have not yet been tested quantita-

tively, ,the trends predicted by this map and by the stability criterion 

(see Eq. VII-22 or Eq. VII .. 29) are in qualitat;ive agreement with experimental 

observations (see Section VII.3). 

6. Flow Oscillation at High Inlet.Subcooling 

It was shown.that when the effects of the two time delays can be 

neglected then the characteristic e'qu'ationreducei"to a""thi~.a',,9rdet" pb.1ynomial 

(see Eq. VIII-2). A stability criterion was also derived (see Eq. VIII-IS) 

which specifies the conditions fOF stable operation. 

Various aspec,ts of this type of oscillations were discussed together 

with provis,ions r~quired to prevent their appearance (see Section VIII-2). 

It ie shown that th~ flow is more stable at high subcoolings than at low. 

Furthermore, it,is concluded that the destabilizing effect of subcooling 
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must go through a maximum at intermediate range, (see Section VIII-2). 

7. Significance of the,Results 

The results of this analysis indicate several improvements in the design 

and/or in the operating conditions which can be made to prevent the onset of 
, 

t 
flow excursions or of flow oscillations. These are discussed in more detail 

I 
! in relation to each type of instability (see Sections VI-2, VII-3, and 

VIII-2) • 

It was shown that the predominance of a particular parameter results 

in a particular wave form and in particular frequency (see Eq. VII~40 and 

Eq~ VIII~l7)o This result indicates that the primary cause of the instability 

can be determined from the trace of flow oscillations. 

Perhaps the result of greatest significance revealed in the present 

investigation is the similarity between the characteristic equation which 

predicts "chugging" combustion instabilities and the characteri.stic equation 

. which predicts the thermally induced flow oscillati.ons for fluids in the 

near crit·ical and in the supercritical thermodynamic region. Since it is 

well known that "chugging" combustion instabilities can be stabilized by an 

appropriate servo-control mechanism, the, resul ts of this investigation 

indicate that low frequen.cy flow oscillations~ at near critical and at 

supercritical pressures may be also stabilized. 

The preceding conclusions have not yet been tested against experimental . 
dataq If confirmed, then the results of this study will provide a method 

whereby stable operation can be insured in an intrinsically unstable region. 
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3. Recommendqtions 

The reconunendations listed in .the four tasks below, define the effort 

needed to complete and to verify the results obtained in this investigation. 

1. Verify the stability criteria based on .the second and first order 

exponential polynomials which hC3,ve been derived in the course of 

these investigations ... For this purpose use 'available experimental 

data .for various fluids at subcritical .and at supercritical pres ~ 

sUI'es. 

2., . From the characteristic equation given by the third order exponential 

polynomial with two time delays (Eq. V-IS) derive .stability maps and 

stability criteria applicable to the ent:t're range of subcoolings. 

Test these results again~d:.: available' experimental data. 

3. ModifY the cha~acteristic equation to t:ake into account 'j::he effects 

of the en.tire flow system i.e., of the flow loop. In particular in~ 

clude the effects of the inertia of the liquid in the storage tank and 

in the supply lines together with the flow and elastic characteristi.cs 

6f these lines. 

4.. B,ased on .the results obtained from the preceding three tasks specify a 

servo-c,ontrol mechanism which could be used to stabilize the flow for 

. a system of practical i.nterest ·and verify the results by experiments to 
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4. Nomenclature 

MLTQ System of Units 

with H defined by H = ML2 T=2 

= cross sectional area of the duct lL2) 

= coefficient defined by'Eqo VII~l6 

= coefficient defined byEq .. VII=10 

= coefficient defined by Eqo VI=21 

= coefficien.t defined byEqo VII~17 

= coefficient defined byEqo VI~4 

= coefficient defined by Eqo VII-ll 

= coefficient defined byEqo VI-23 

= coefficient defined by'Eqo VII-l2 

= coefficient defined byEqo VI-23 
-, 

= specific heat of the,· fluid in the "lig~t" fluid region I mrlQ-l j 

= diameter of the duct( L l 
= friction factor 

= Influence coefficient defined by Eq. V-5 

= n' Eq. V-6 

= " Eq .. V-7 

= " Eqo V-8 

= " Eq. V-9, . 

= tt Eq. V-lO 

= " Eq. V-Il 

= Mass flux density ~ML-2T-l1 
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Mg 

Ns 

P 

~ Pex 

.6 Pol 

= Integrals given by Eq. IV-94, IV-97, IV-lOl, IV-l07, IV-Ill. 

= Enthalpy (HM-ll 

= Latent heat of vaporization [HM-l 1 
= Inlet subcooling [HM-l l 
= coefficient of the inlet flow restriction 

= coefficient of the exit flow restriction 

= Total length of the heated duct eLl 

= Mass in the "heavy" fluid region 

per unit area r M.L -2 I 

= Mass in the "light" fluid region 

per unit area [ML -2 l 
= Stability number defined by·Eq. VII-39 

= system pressure [ML- l T-21 
= Pressure rise of the external system [ML -,1'1'-21 

= 

= 

= 

= 

-

Steady state pressure drop (SSPD) across inlet 

orifice,defined,by'Eq. 111-28 l ML-lT~2l 
SSPD due to friction in the heavy "fluid" region, defined 

by Eq. 111-31 

SSPD due to gravity in the heavy "fluid" region, 

defined by Eq. III-3~ 

SSPD due to acceleration in the "light" fluid region, 

defined byEq. IV-89 

SSPD, due to gravity of the "light" fluj.d region, 

defined by,Eq. IV-I02 
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R 

S 

S 
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1A 

U1 
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g(Z) 
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ltlm 

= SSPD due to friction of the light fluid region, 

defined by Eq. IV-112, 

= SSPD across exit flow restriction defined by Eqo' 1V~122. ( M ) 

= 

= 

= 

h f1 d · \HJ.,- 2T- 1 "\ eat ux ens1ty L ' I 

total heat input rate [ HT- 1 1 
gas constant 

= Exponent of the inlet velocity perturbation 
= 'Stability criterion defined by Eq VI-28 
= Period of the inlet velocity perturbation 

time 

= velocity 

= steady state velocity in the "heavy" fhtid region L'r~l 

= SoS~ velocity of the light fluid region defined byEq. IV~28.(L) 

= So S'o velocity at the exit from the duct 

defined by Eqo IV.;!.'31.· 

= average velocity in the "light" fluid region 

defined by Eq. IV-32. 

= Log mean velocity of the "light" fluid region 

defined by Eq. IV-36 

= mean velocity of the "light" fluid region 

= 

defined b~ Eq. IV-38. 
, 

t • 

inlet velocity perturbation given by-Eq.t 111-7. 
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= velocity perturbation of the "light" fluid region 

given by Eqo IV-30 .. 

= specific volume of the heavy fluid LL~~l I 
= specific volume of the "light" fluid l L~=ll 
= change of specific volume in vaporization r L3M~1 j 
= total steady state mass flow rate 

length 

Green Letters 

Y = heated perimeter l L 1 

-cb 

't'3-1:1 

l:2 

..n 
~f 

~g 
~3 

~t~ 
( ~g) 

~~ 

= 

= 

space lag defined byEqo 111-20 

perturbation of the space lag 

eLl 

[Lj 

amplitude of inlet velocity perturbation 

time lagy defined by" Eq. III-18 [T) 
= tl T = total transit time" defined by' Eqo 111=63 [ T\ 
= critical transit time.9 defined byEqo VII-41o 

= characteristic reaction frequency, defined by' Eqo IV=21o 

.- density of the "eavy" fluid [ ML- 3l 
- density of the light fluid [ ML

w 3 j 

= density at the exi.t from the heated ductJl defined by Eqo IV-72D 

= log mean den.sity in the light fluid regiorLJ defined by·Eqo IV ... 76e 

= average density in the light fluid region defined by Eqo IV ... 73 0 

= mean density in the "light" flui.d region defined by Eq. IV-77o 
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~ = angular frequency of the inlet velocity perturbation 

We = critical angular frequency defined by Eq. VII-40. 

'-S = dimensionless exponent defined by Eq. VII-B. 

Subscripts 

OJ 1, 2, 3, 4 correspond to the locations of the duct 

indicated on Fig. 11-28 
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Io Introduction 

i 
IGl The Problem and Its Significance 

A fluid in the vicinity of the critical, "point is an efficient heat 
1.\ 

; 

transfer medium because of the large specific heat and of the large co-

efficient of thermal expansion. Consequently, the demand for increased 

efficiency of several advanced systems generated an interest in employing 

fluids at critical and supercritical pressures either as cooling or working 

media. For example, nuclear rockets, power reactors, high pressure once-

through boilers, regenerative heat exchangers for rocket engines and a new 

sea water desalinization process are designed to operate in the critical 

and the superc'ritical thermodynamic region. These developments made it 

necess,ary to obtain data on and to improve the understanding of the thermal 

and the flow behavior over a broad range of fluid states. 

A great number of investigations conducted for such a purpose have 

revealed that, in the critical as well as in the supercritical thermo-

dynamic region, flow and pressure oscillations may occur when certain 

operating conditions are reached. These oscillations were observed in , -
systems with forced flow as well as with natur,al circulation. 1 

The occurrence of sustained pressure and flow oscillations and the 

"" 
'attendant temperature oscillations are very'undesirable and detrimental to 

reliable operation of a system. Mechanical vibrations and thermal fatigue 
"-

induced by these oscillations very often result in a rupture of the duct. 

In liquid propellant rocket engines flow and pressure oscillations can also 

induce 'combustion instabilities resulting in a breakdown of the system. 



I 

I 

Furthermore, in nuclear reactor systems flow and pressure oscillations may 

induce divergent power oscillations leading to the destruction of the 

entire system. Consequently, there is considerable practical interest and 

incentive to investjgate, quantitatively, the conditions leading to the 

inception of these oscillations~ 

102 Prey'ious Work 

Severe pressure and flow oscillations were observed in experiments 

performed with various fluid in the supercritical thermodynamic regions 

Such oscillations were reported by Schmidt~ Eckert ~nd'Grigull [11, (ammonia); 

Goldman [2, 31, (water); Firstenberg [41 ' (water); Harden [51, (Freon-114); 

Harden and Boggs (61, (Freon-114); Walker and Harden [7l, (water, Freon-ll(.., 

Freon-12, carbon dioxide); Holman and Boggs lB1, (Freon-12); Hines and 

Wolf [91 (RP-l and diethycyclohexane); Platt and Wood (101 (dxygen); 

Ellenbrook, Livingood and Straight (111, (hydrogen); Thurston [121, (9ydrogen~ 

nitrogen); Shitzman [13, 141 (water); Semenkover [151" (water); Cornelius and 

Parker [161 (Freon-114); Cornelius (171 (Freon-114); and Krasiakova and 

(' 1 Glusker LIB (water) 0 

For a given fluid the characteristics (frequency and amplitude) of 

these oscillations varied with operating conditions. In general, two types 

of oscillations were observed: acoustical and chugging oscillations. For 

example, . Shitzman (131 reports that, for water at 250 atm, the pressure and 

temperature oscillations had a period of 80 sec. and an amplitude of 25 atm., 

and of 1000C res.pectively. Decreasing the ~flow rate and the power density 

resulted in decreasing the period to 15 sec. However, at a pressure of 

5000 psi, Goldman (2, 31reports" pressure o~cillations with frequencies 

from 1400 to 2200 cps. Similar high frequency oscillations (1000-10,000 cps 

-2-
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and 380 psi peak to peak) were reported by Hines and Wolf (91 for RP=l .. 

Three c~asses of pressure oscillations in the supercritical region 

were observed i.n the exper!ments of Thurston [121; these were described as~ 
1) Open~open pipe resonance observed at medium and high flow rateo 

This mode is associated with the fundamental wavelength of an 

open=open pipeo 

2) Helmholtz re~onance!l associated with a resonator composed of a 

ca'!'ity connected to an external atmosphere via an orifice or neck~ 

3) Supercritical oscillations appearing usually at low flow rateso 

Hines and Wolf [ 91, however, report only two general types of oscilla~ 

tions: a high frequency (3000-75000 cps) oscillations audible as a clear 

and steady scream and an oscillation with a lower frequency (600=2400 cps) 

which was audible as a chugging or pulsating noise. The domina~t frequencies 
, 

of these oscillations did nQt correspond to simple acoustic resonant fre a
• 

quencies for the tubes. 

Corneliu.s and Parkerl16 , 171 describe in detail the two types of 

oscillations and note that the frequency of the acoustical oscillations 
.-;, 

decreases with temperature whereas the frequency of the ch~gging oscillati.ons 

increases with temperatureo Occasionally, both types of oscillations occured 

simultaneously. 

A quantitative formulation and explanation of the conditions leading 

to the appearance of the, pressure and flow oscillations has not been reported 

yett although several qualitative explanations have been advanced 0 It is 

~enerally agree~ that the osc+llations are caused by the large variations 

of the thermodynamic and the transport properties of the fluid as it passes 

.through the critical thermodynamic region. 

\ 

--.. 



Several investigators (12, 13, 14) note that the appearance of oscil~ 

lations occurs when the temperature of the heating surf.ace exceeds the 

"pseudo critical" or the "transposed" critical temper~tures, i.e., the tem~ 

. perature where the specific heat reaches its maximum value (see Figure .A1 in 

Append~x A). Oscillations were not observed if the inlet temperature was 
, 

above this temperature. From this it was concluded that the mechanism for 

driving the osc.i1lation occurred only when a "pseudo liquid" state was present 

i.n some parts of the heated duct. 

Firstenberg (4) attributes the oscillations to the variations of the heat 

transfer rates to the fluid, .whereas Goldman (2, 3) explains the oscillations 

as well ·as the steady state heat transfer mechanism in the critical and super= 

critical thermodynamic region as "boiling like" phenomena associated with non~ 

equiliprium conditions. According to Goldman, below the pseudo-critical temper= 

ature the fluid is essen.ti.a1Iy a liquid, above this temperature it behaves as a 

gas 0 At the pseudocritical temperature, the density gr·adient and the specific 

heat reach maximum values giving ,an indication of the energy required to over-

come the m~tuc?l attraction between the molecules. The fluid in the inunediate 

vicinity of the heated wall is in a gas-like state; whereas the bulk fluid may 

still be in the 1iquid ... l:Lke state. If by means of turbulent fluctuations a 

liquid-like cluster is brought into contact with the heating surface·a large a-

mount of energy will flow from the surf.ace to the cluster bec·ause of the ·large 

temperature difference and because of the high conductivity of the liquid-like 

fluid. This energy mpy be large enough ·to "explode" clusters of mplecules from 

the liquid..,like state to the gas-like state. Thus, according to Goldman (2, 3), 

one may visualize the superctiticalregion as a region where explosions of liquid-

-4-
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like clusters into gas-like aggregates take place. Goldman considers this 

process to be similar to the formation of bubbles in liquids during boiling 

at subcritical pressures. 

The conditions under which oscillations occur were summarized by 

Goldman as fol1aNs~ 

1) Heat transfer with IVwhistle H {ioe. ~ 'with oscillations} occurs 

only at high heat flux densities and wit.h bulk t.emperatures lower 

than the pseudocr~tical temperature. 

2) At a given flow rate and inlet temperatu.re:,) whistles occur at 

higher flux densities for nigher pressure levels. 

3) At given flow rate and pressure$ whistles occur at lower heat 

flux densities for higher inlet temperatures. 

4) At a given pressure and inlet temperature~ whistles occur at 

higher heat flux densities for higher flow rates. 

5) Whistles can be produced with various lengths of the test sections 

but the heat flux or inlet temperature must be increased to bring 

it about if the tube is shortened., 

Visual observaiion that bailing-like phenomena can exist at supercritical 

pressure.s was reported by Griffith and Saberski. [19J in e~'periments corqducted with 

R~114. The photographs of the process revealed a behavior similar to 

that observed in pool boiling at. subcritical pressures. 

Similarly ~ high spee,d movies of hydrogen, at supercritical pressures 

ta~en by Graham!! et al (20 1 reveale.d a phenomenon resembling boiling. Clusters 

of low density fluid were observed rising th.rough a denser fluid+giving 

boiling-like appearanceo 
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Hines and Wolf [91 attribute the appearance of the flow oscillations 
.a 

at supercritical pressures to the variat~ons of liquid viscosity. They 

note that a small change of temperature near the critical point results 

in a large change ~of viscosity. C-onseq~ently, a sudden increase in wall .. 

temperature could cause a thinning of the laminar boundary layer due t9 

variation of the viscosity. Thinning of the boundary layer would result 
. ,;,'~ .. " 

in a drop of the wall temperature and a corresponding increase of viscosity. 

This would cause a thicker boundary layer and produce another rise of tem

perature, thus repeating the cycle. It was shown by Bussard and DeLauer [21J 

and by Harry [ 22] that a viscosity-dependent mechanism can induce an unstable 

flow in single phase flow systems when the absolute gas temperature +s in-
, 

creased by a factor of 3~6 or more.. Such flow oscillations were observed 

by Guevara et al~3Jwith helium flowing through a uniformly heated 

channel. 

Harden and co-workersl5, 6, 71 concluded from their experiments that 

sustained pressure and flow oscillations appeared when the bulk fluid reached 

a temperature at which the product of the density and enthalpy has its maximum 

value 0 'I'his explanation was, however, criticized by Cornelius ( 1701. 
Cornelius and Parker (16, 171 postulate that both acoustical and the 

chugging oscillations originate in the heated boundary layer. When the 

fluid in the heated boundary layer is in a "pseudo vapor" state, a pressure 

wave passing the heated s,urface would tend to compress the boundary layer, 

improve the thermal conductivity and cause an increase of the heat transfer 

coefficient. Ararefraction wave passing over the heated wall would have 

just the opposite effect. Thus, this pressure--dependent--heat-transfer 

rate cC),l,1ld induce and maintain an acoustic oscillation. Cornelius and Parker 
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attribute the appearance of chugging oscillations to "boiling ... like" phenomena 

. and a s~dden improvement of the heat transfer coefficient. An approximate 

numerical solution verified the importance of the heat transfer improvement 

in trigge~ing and maintaining oscillationso 

Of particub,\r interest to the analysis""presented in this paper are the 

experimental results of Semenkover» [15 J and of Krasiakova and Glusker [ 18 J, 
• 

for water at 250 atm. For a constant power ~nput Q to the system their data 

show a pressure versus mass flow relation that is illustrated in Figure 1-1. 

It ~an be seen that for large values of inlet enthalpy 1» there is a monotonic 

increase of pressure drop with flow rateo At a certain lower value of i» 

the curve shows an infl~ction pointo For still lower values of inlet enthalpy~ 

there is a region where the pressure drop decreases with increasing flow rateo 

Such a pressure drop=flow rate relation occurs in boiling systems and gives 

rise to an excursive type of instability which was analyzed first by Ledinegg 

[24J and by numerous investigators since.[25 ... 47Jo Consequently, the data 

of [15» 18 J tend to confi:rrn the similarity between instabilities.) observed 

during subcritical boiling'and those observed at supercritical pressure 

suggesting therefore a common mechanismo 

103 Pu~pose and Outline of the Analysis 

From the preceeding brief review of the present understanding of flow 

.... f""' oscillations at supercritical pressures» it can be concluded that several modes u 

oscillation existo It can be expected» therefore» that several mechanisms can 

be effective in inducing unstable flowo Indeed~ as discussed in the preceeding 

section» several qualitative explanations of the phenomenon bave been already 

advanced. However, a quantitative formulation of the problem is still lacking. 
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The analysis presented in this paper has four objectives: 

1) To distinguish a number of mechanisms which may be responsible for 

thermally induced flow oscillations at nearcritical and at supercritical 

pressures .. 

2) To present a quantitative formulation of the mechanism which appears to 

be most significant from the point of view of system design and operation. 

3) To predIct the onset of these oscillations in terms of the geometry and 

of the operating conditions of the system. 

4) To analyze the consequences of the theoretical predictions and to suggest 

improvements whereby the onset of these oscillations can be eliminated. 

The particular mechanism which is formulated and analyzed in this paper 

is based en the effects of time lag and of density variations. It is well 

known that these effects can induce combustion instabilities in liquid pro~ 

pellantrocket motors as discussed by Crocco and Cheng (48~. It was shown 

by Profos (49~ ,Wallis and Heasley ( SOl and by Bour~ (511 that the effects 

of time lag and of density variations can also induce unstable flow in 

boiling mixtures at subcritical pressures. The.suggested similarity of 

flow oscillations observed at supercritical pressures with those observed in 

two phase" mix:tures at subcritical pressures prompts us to formulate and 

to analyze the problem in terms of this mechanism. In particular, the ex

perimental results of Semenkover L151 and of Krasiakove and Glusker l18~ 

discussed in the preceding section~ together with the chugging oscillations 

described by several authors provide enough evidence to warrant a more de-

tailed analysis of flow oscillations at supercritical pressures in terms 

of the time lag.effect. 

The present analysis' is similar to those. reported by Wallis and Heasley 

-8-
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[soJ and by Bour~ (51J in two respects~ the formulation and the assumptions 

a~e the same. In pa~tic~la~~ it is assumed that the density of the medium 

is a function of enthalpy only. The effects of p~essu'ite vall:'iations arel) 

thell:'efore neglected.* As noted by Wallis and Heasley [jO] this assumption 

results in the decoupling of the momentum equation from the energy and the 

continuity equatioose The momentum equation can be integ~ated then separately 

after the velocity and density variations are obtained from the contin~ity and 

the energy equations. Following Bour~ [51J the problem is formulated in terms 

of an equation of state and of th~ee field eq~ations describing the ~onse'it= 

vati~n of massl) energy and mementum. 

Apatitt f1t'om the fact that the arnalyses of Wallis and Heasley [50] and 

of J.Bour~ [sI] were derived to predict unstable flow in boiling two phase 

mixtu.res th,e present analyses (concerned with flow oscillations at nealr= 

critical and at supercritical pressures) differs f~om tneirs in two respects~ 

1) tne form of the constitutive equation of state is different» 2) the 

cha~acteristic equation describing the onset of oscillations is differente 

F~om tnis characteristic equation 9 we shall derive stability maps an~ 

staDility inertia which~ pl'evio~sly', 'V1ere !1£S. available in' the literature~ 

T~e outline of the paper is as follows. In Chapter II some general 

comments are made regarding 1) the nature of tne tnermal1y induced flow 

oscillations at nearcritical and at supel'critical pressures)) 2) the effect 

IQ)f tne time lagl) 3) tne implication and limitations of tne assumptio~s and 

4) tne general metnod of solution. In Cnapters III and IV tn~ problem is 

formulated and cne set of gove~ning equation is solved. Toe cnaracte~istic 

equation wnicn predicts tne onset of flow oscillation is derived in Chapter V; 

i~ 1s of tne form of a thi~d order exponential polynomial with two time 

delays. From the characteristic equation a criterion is derived in 

*The limitations and implieati,ons of this assumption are discu8sed in Chapter II. 

-9-



, J' 
j; 
1 
J j 

; :/ 
" f] 

• 

Chapter VI which predicts the onset of an excursive type of instability at 

supercritical pressures.* This excursive i~stability at $upercritical 

pressure is the equivalent of the so called Ledinegg excursive instability 

for boiling at subcritical pressures. The effect of time lags in inducing 

flow oscillations is analyzed in Chapters VII and VIII wh~ch consider first 

and second order expotential polynomials., Stability diagrams which predict 

the regions of stable and u~stable flow in terms of the operating parameters 

are given in these two chapters together with suggested improvements whereby 

the onset ofJO>Slcillations can be eliminated. The recqmmendaticms for 

future work and the conclusions are given in Chapters IX. 

The status of the present understanding of thermodynamic phenomena that take 

place in the critical thermodynamic region is discussed in Appendix A. 

1.4 The Significance of the Results 
.f.) 

Three mechanisms whicncan induce thermo-hydraulic oscillations at 

supercritical pressures have been distinguis~ed in this paper. One is 

caused by the variation of the heat transfer coefficient at the transposed~ 

ioe.~ pseudo critical point. The second is caused by the effects of la~ge 

compressibility and the resultant low velocity of sound in the critical 

region. Finally\). the third mechanism is caused by the large variation of flow 

characteristics brought about by density.variations of the fluid during the 

heating process. 'The prnpagations of these variations in particular of ~he 

enthalpy a.nd of the density, through the system introduce delays which, 

*This criterion was first derived by the writer in the Second Quarterly 
Progress Report, "Investigation of the Natufe of Cryogenic Fluid Flow 
Instabilities in Heat Exchangers, II Contract NAS8-:i,,1422, 1 February 1965. 
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under certain conditions, can cause unstable flow. This last mechanism, that 

induces ~ frequency oscillations, i~ investigated in detail because ex-

periment~l data show that this type of oscillation is most p~~!a1ent. 

It is shown that at supercritica1 pressure unsteady flow Qonditions 

both excursive and oscillatory can occur. A characteristic equation is 

derived that predicts the onset of flow instabilities caused by density 

variations in the critical and supercritica1 thermodynamic region. The 

same characteristic equatipn can be used to predict the onset of flow 

instabilities in boiling at subcritical pressure, iJ the effect of the 

relative velocity between the two phases can be neglected. Experimental 

evidence shows that this effect becomes negligible at reduced press~r~s 

above say 0.85. Consequently, at ne ar critical and supercritica1 pressures, 

the characteristic equation, which is expressed in terms of system geometry 

and operative conditions, can be used to determine: 

a) The region of stable and unstable behavior. 

b) The effect which various parameters may have on either promoting 

or on preventing the appeara~ce of flow oscillations. 

From this characteristic'equatio1;l simple "rule of thumbs" criteria are 

also derived based on the assumption that one or the other of the various 

parameters is do~inant. It is shown that the dominance of a particular 

parameter results in a particular frequency and wave form. This results 

permits a diagnosis of the primary cause of the instability from the trace 

of flow oscillations. 

It is 6f particular interest to note that~the characteristic equation 

derived in this paper for predicting flow oscillations at sup~rcritical 

pressure is' of the same form as ~ characterist~c ~quation derived by Crocco 
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and Cheng[4S]to predict combustion instabilities of liquid p~opellant 

rocket motorso* It is well established in the combustion literatu~e that 

a servo~control mechanism can be used to stabilize the low freque~cy com= 

bustion instability.. The si:milarity of the characteristic equations iSl) 

therefo2t'e ll significant because it indicates that stable operation could 

be insured also in the nearcritical and in the s~percriti~al regi@D by 

using an appropriately designed servo-control mechanism .. 

*This similarity between combust:1pn and two phase flow instabilities should 
not come as a surprise if one recalls that the processes of combustion and 
of boiling are both cbeml.cal processes involving large enthalpy and density 
changes. 
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110 General Considerations 

1101 The System and the Thermodynamic Process 

In order to understand the mechanisms of the thermally induced flow 

oscillations at supercritical pressures s it is necessary to examine 

briefly the system and the thermodynamic processo 

The system of interest is shown in Figure 11-10 It consists" of a 

fluid flowi.ng through a heated duct of length 1. Wit.hout loss of 

generalit.y it will be assumed that the du.ct is uniformly heated at a 

rate of Qo Two flow restrictions are located one at the entrance~ the 

other at the "exit of the duct. 

The the,rmodynamic process starts with the fluid at Ii. supercritical 

pressure P s entering the heated duct with velocity tAB' The temperature 

To~ of the fluid at the inlEtt' is well 'below the critical temperature of the 

fluid under considerations. As the energy is being transferred from the 

heated duct to the fluid its temperature T~ speci.fic volume Vs and enthalpy 

i, will increase. Thus~ the temperature T
3

, at the exit may be considerably' 

above the" critical temperature. In a number of systems of practical i:n~erest 

it can be 'assumed that this process takes place at an approximately constant 

pressur.e. 

In orde.r to formulate the problem it is necessary to specify the 

constitutive equation of state which describes the relation between say 

the. specific volume; the pressur(~ 'and the enthalpy for the part.fcular 

f:iuid~ This r.e"qu~t.~s da'ta, o'n t:he thermodynamic, properties of the fluid in 

the region of interest. The 'region of interest-to this study are the 

nearcritical"'and the supercritical regions. 
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The present understanding of the thermodynamic properties and phenomena 

at nearcritica1 and supercritical pressures is. reviewed in Appendi.x A. 

It is shown there that at these pressures the fluid has the characteristics 

of a liquid when the temperature is sufficiently below the critical one. 

However~ if the teIIlperature is increased sufficiently above the critical 

temperature~ the fluid will have the characteristics of a gaso This is 

illustrated in Figure II~2 which is a plot of the specific volume and of 

the temperature versus the enthalpy for oxygen at a reduced pressure of 

It can be seen from this figure that at low enthalpies the specific 

volume is essentially constant~ this is a characteristic of l~quids. As 

the enthalpy increases the specific volume increases approaching values 

predicted by the perfect gas law. It can be seen also that this change 

from a liquid~like state (region CD = @) to a gas=like s,tate (region 

® = 0) ·occurs Over a t.ransition n~gion denoted by' @ = 0 
on Figure II~2. 

It appears~ therefore~ that at supercritica1 pressures the relation 

between the specific volume and the enthalpy can be approximated by con-

sidering three regions: a 1iquid-like~ a t~ansition and a gas like region. 

For oxygen Figure II-2 indicates also. tha't~ as a first approximation~ the 

transition region can be reduced to a transition poipt reducing, therefore, 

,~pe .. ,problem to a "tw9.,;region" approximation. * Since oxygen is the fluid 

of primary interest to this analysis., we shall use the "two-region" 

*The "three region" approximation was first introduced. by the writer in 
analyzing the excursive instability at supercritical pressures (see foot
note on page 10). Following this work Dr. R. Fleming, from the Research 
and Development Center of the GECo o , introduced the "two region" approxi
mation for oxygen. These two approximations are discussed further in 
Appendix B. 
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approximation for describing the relation between the specific volume 

and the enthalpyo It is assumed~ therefore~ that the "heavy" fluid (of 

constant density) persists until the transition point is reached; above 

this point the fluid will have the properties of the Ulight U ph_seo It 

remains now to define this transition pointo 
\ 

In boiling at subcritical pressure the transition from the heavy to 

the light phase corresponds to the onset of boiling. Consequently, it 

will be a.ssumed that in the nearcritical region the tra1l:~sition point 

corresponds to the enthalpy at saturati.on. temperature 0 

At supercritical pressures it will be assumed that the transition point 

corresponds to the transposed critical point~ ioe.~ to the pseudo critical 

pOint which is defined as the point where C reaches its maximum value. 
p 

It is discussed in Appendix A that the locus of pseudo critical points 

can be regarded as the extension of the saturation line in the super-

cri.tical reg.ton. 

II. 2 lime .La~ and S ,Eace Lag 

It is of interest to consider n.ow the timewise and spacewise des~ 

cription of the process.* 

If we follow a particle from the ti.me it enters the heated section 

until it leaves it, we shall observ'e that its properties change from VI 

----------------
*We follow here Crocco and Cheng (481 who gave an equivalent description 
for combustion instabilities. The same con~ent applies to the three 
sec~ions that followo Indeed, this reference proved to be most stimu
lating and useful in. the course of this investigationo 
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and i
l 

at the inlet to v3 and i3 at the exit (see Figure 11-3)0 In 

view of the "two-region" approximatilJ.n we wou.ld note that the transiti.on 

from the "heavy" to the "light!D fluid occurred when the properties (specifically 

the enthalpy) reached values that correspond to the transition pointe The 
1i 
Ij MS- time elapsed between the injection of the heavy particle "in the heated duct 
;j 
:\ 

[I and its transformation to the "light" fluid will be denoted as the tim§., 
:1 

il 
" 
~ !?Z, r~· a UI , 
n 

I It is of interest also to consider the spacewise description of the 

1 process. In 'this case the time lag W'~st be replaced by the space l£g 

I 

I 

, 
1 

" 

which is a vectorial quantity indicating the location in the duct where 

the transformati.on from the HheavyH to the ':light" fluid takes place. 

The space lag is denoted by ~ on Figure 11=3. Of course ~ the space 

la.g can be related to the time lag when the particle velocity is known. 

Like, in combustion~ the location in the duct where the transformation 

II II 
takes place can be regarded as the source of the light fluid. It is 

II " obvious that the flow properties in the region occupied by the light 

fluid will depend UpO'l.1 the intensity of this source. If it is assLmed 

II II 
that the injection' rate of the heavy fluid is constant and that the time 

, and space lags were constant, then the intensity of the sour~e would also 

be independent of time resulting in a .steady flow in the "light" fluid 

region. However s _ this is not the case because fluctuation,s which affect 

. the time lag and/or the injection rate are pr~Lent both at supercritical 

and at subcritical pressures. In the vicinity of the critical thermo~ 

dynamic pOint large fluctuations of properties, in particular of densitv , 

are observed even in non-flow systemso In boiling systems fluctuations 

are always present be'cause of variations of the rate of bubble formation 

'. 
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and population, .of flow regimes, of the heat transfer coefficient~ etc. 

Consequently~ the strength of the source may fluctuate even when the in-

jection rate is kept constant. It is evident also that variations of 

" 
inlet velocity will introduce additional effects. 

;1 

The nucleation and evaporation at subcritical pressures and the 

transformation of "heavy" clusters to "light" clusters at supercritical 

pressures are rate processes that occur during and have an effect upon 

the length of the time lag. Both of these transformation rates are af-

fected by the pressure, temperature and by other rate processes such as 

the rate of energy transfer, flow ~ate, etc. If one of these factors 

changes or fluctuates, the transformation rates will fluctuate also 

resulting in a fluctuation of the time lag, i.e., in the fluctuation· 

of the source. Since the source affects- the flow conditions in the "light" 

fluid region the flow in this region may become oscillatory. 

11.3 Organized Oscillations 

Oscillations of a system can be always produced if properly excited. 

Such oscillations can be distinguished by a characteristic time,. 1. e·. , 
period if the process is periodic or by a relaxation time if it is 

aperiodico 

Like in combustion and fallowing Crocco and_Cheng [481 we shall 

distinguish two cases: random fluctuations and organized or coordinated 

oscillations. 

As random fluctuation we consider those that are Similar: to fluctuations 

observed in ordinary turhulent flow. In this case it can be assumed that 

the transfOrmation process, fer example the rate of evaporation in boiling 

-17- . 



at subcritical pressures, is not excited. The fluctuations at one poin~ 

do not have any effect on other fluctuations somewhere else in the systemo 

Since the integrated effects of these fluctuations vanish they do not pose 

a problemo 

In the case of an organized oscillation the transformation process 

,I 
will be excited by one or more coordinating processes such as the oscillation 

of the inlet flow rate,j) of the heat transfer coefficients etco The exciting 

force for maintaining the oscillation o.f the: coordinating process is in 

turn provided by the transformation process 0 For example~ in boiling sys= 

terns oscillat.ions of pressure will affect the saturation temperature wh!.ch 

may induce oscillations in the rates of evaporationo These in turn may 

, induce flow oscillations and provide the excitation force for maintaining 

the pressure fluctuations. 

The fundamental character of organized oscillations is that a well 

defined correlation exists between fluctuations at two different points 

or instantso In other words that a disturbance is propagated,9 Leo:'J dis= 
~ 

placed in time add space through the systemo When these organized oscil-

lations are present their integrated effect does not vanish whence the interest 

in these oscillationso Furthermore)) an oscillatory system may become unstable., 

ioe.~ it may have the tendency to amplifyo In the example cited above 

pressure fluctuations of an increasing arrlplitude may be generated leading 

to the destruction of the systemo When the effects are proportional to 

the causes the system is defined as 1inearo In this paper we are interested 

in such systemso 

I 
J 

-18- ~ 
I 
f 



11.4 :r.he. Mechanism of IJOW Frequ.ency (Chugging) Oscillation ~ 
Supercritical Pressures 

It was noted in the preceding section that the characteristic of 

organized oscillatio!ls is the propagation of disturbances through one system. 

These disturbances can be variations of density, pressure, enthalpy, entropy, 

etc. In this section we shall examine the effects which these propagations 

may have on the oscillating propensity of the system. In particular, we 

shall consider the propagation of density disturbances and the effect of the 

Lime lag, i.e., of the space lag. The effects of pressure waves are discussed 

together wit.h the other mechanisms which may induce flow 

oscillations in the nearcri.tical and supercritical regions. 

We note that the effect of the time lag in inducing combustion in

stabili.ties was alrea~y analyzed by Summerfeld [521 ' Crocco and Cheng l4~ 
t 

among others. In boiling systems, this effect was already analyzed by 

Profes ( 491 ' Wallis and Heasley [ sOland by Bourt& [5~. In these analyses· 

the flow was assQ~ed to be homogeneous, i.e~~ the effect of the relative 

velocity between the gas the liquid. phase was neglected •. A density propa-

gation equation, applicable to two··phase mixtures, which takes this effect 

into aCCoUlnt was formulated in (531 and solved in [.54, 551 . 
Let UlS examine now the effects of the finite rates of propagation and 

of the resulting time lag and time delays on the flo'w in a system consisting 

of a constant pressure tank connected by a feeding system to the heated duct. 

Consider first t~e tank and the feeding system only and let us perturb 

suddenly the inlet flow. If there is no feedback between the heated unit 

and the '}.pstream part of the system, the steady state conditions will be 

restored •. tn particular, if the variation of the £low rate is small during 

-19-
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the time a, pressure wave propagates back and forth through the tank and 

the·feed system~ then the pressure effects can be neglected. As discussed 

in [ 481 the process can be described then, with sufficient accuracy, by 

an exponentially decaying flow which is characterized by the relaxatidn 

time constant. i.e., by the line relaxation time. Therefore, the system 

is stable becau.se the steady state conditions will be eventually restored.* 

Consider now the effect of a perturbed flow at the inlet of the heated 

d.uct (See Figure 11=4). It is obvious that an oscillatory flow at the inlet 

will induce an osci.l1.atory flow of the fluid in the ducto However~ in 

absence of a driving mechanism these oscillations would also exhibit an ex-

ponential decay. We are looking for a mechanism whereby these flow oscil= 

lations at supercritical pressures can be maintained. Like in boiling and 

in combustion such a mechanism is provided by the propagation phenome.na 

which introduce different d,elay times in the response of the system. This 

is shown in Figure II-4. 

It can be seeD on Figure 11-4 that an oscillatory inlet flow can induce 

oscillations of the space lag; this is in accordance with the discussion of 

the preceding section. The onset of these oscillations is delayed however 

by the lag time ~b~ because of the finite rate of propagation of the dis

turbance. An oscillat.oryspace lag, which is equivalent t.o an oscillatory 

source~ will induce flow oscil1ation~ in the "light" fluid region. These 

so~rce=in.duced esc.illations will be present in addition to those already 

induced by the inlet flow. Because of these two oscillat.ory motions there 

will be a delay time 9'\1, in the flow response. Oscillati,ons of. the flo'tll 

*We are assu.ming.here that any servo-cont.rol mechanism in the feeding system 
will not have a destabilizing effect. 
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will induce oscillations of enthalpy and of density both delayed by a 

certain delay time. With flow and density oscillating, the pressure drop 

in the duct will also oscillate. If the conditions are such that the mini= 

mum pressure drop in the duct occurs when the inlet flow is 'maximum, it is 

apparent then that the oscillations can be maintained. It is also obvious 

that whether or not this will occur will depend on the time lag t:b and on 

the delay times , When these delay times do B2t 

depend upon iC b' it can be seen that increasing the lag time 1:b" has a 

destabilizing effect. Since the time lagLl:, (see Figure 11-·4) depends 

upon the enthalpy difference i2 - iI' it can be concluded that, for this 

particular case, a decrease of inlet enthalpy i 1 , i.e., that an increase 

of Ai21 has a destabilizing effect. 

From this qualitative description it can be already seen that at 

supercritical pressures an unstable flow can be induced by the delayed 

response of various perturbations. It remains now to advance a qualitative 

description. We shall do this in the following chapters by modifying and 

applying the method proposed in 150, 511 for boiling at sl1bcritical 

pressur.es. 

11.5 l1~thod of Solution 

In what follows we shall consider the "heavy" and the "light" fluid 

regions separately. Each will be desQ.ribed in terms of three conservation 

equatione and the equation of state. We shall use the one dimensional 

representation and obtain solutions for each region. These solutions will 

be matched at the transition point, i.e., at the end pOint of the space 

lag to provide a solution valid for the entire system. 

i 

-



Following [48, 50, 511 it will be assumed that the variation of 

pressures can be neglected. This is implied by the assumption that the 

density is function of enthalpy onl~. It can be seen that this assumption 

will be valid only if the variations of flow, density, enthalpy, etc. are 

relati.vely small during the total time for propagation of a pressure wave 

back and forth through the duct. Under this condition it can be assumed 

that the various disturbances move through a uniform medium. It is ap-

parent also that this will be true only if the rate of propagation of 

preSSU1-e waves is considerably faster than the rate o£ propagation of the 

disturbances. However, both in boiling systems as well as in the nearcritica1 

region the velocity of sound reaches ve~; low values.* Consequently, it can 

be expected that there will be a range of operating conditions for which 

the assumption that the properties do not depend upon pressure variations 

will not be satisfied. For boiling systems this limitation has been already 

recognized and discussed by Christensen and Solberg [561 0 In general, 

it can he expected that the assumption 'Will be satisfied in the low frequency 

range, L e .. , in fichugging" oscillati.ons. When the effects of pressure vari

ations can be neglected then one can use the formulation put forward in [50l 

and carried out in [511 for boiling systems at subcritical pressures. 

The method of solution used in this paper is as follows. A small per-

turbation is imparted to the inlet velocity. The velocity of the fluid is 

determined then by integrating the divergence of the velocity. With the 

~Indeed, in the critical region some authors reported values approaching a 
zero velocity. At present neither the exact value of the velocity of souq4 
at the critical point is available nor a satisfactory understanding of the 
phenomenon has been attained~ 
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velocity known the energy equation is integrated to obtain the time lag Lb 

as well as the rate of propagation of enthalpy disturbanceso From the 

enthalpy and from the equation of state we then obtain the density of the 

medium. The differentiation between the nearcritical region and the 

supercr.itical region is achieved by assigning the appropriate expression 

to the equation of state. With the velocity and the density known, the 

momentum equation can be integratedo Since the inlet disturbance is small~ 

the momentum equation is first linearized and then integrated to give the 

characteristic equation. 

Because of the linearization of the momentum equation the analysis 

will be applicable only to cases where the effects of the instability are 

not so strong to produce large amplitude oscillations. It can be used the~e-

fore to predict the conditions of incipient instability, i.e., to determine 

stability limits. As discussed in [481 andl50, 511 linear effects and formu-

lations have been successful in predicting certain type of instabilities 

("chugging" instabilities) in combustion and in boiling systems respectively. 

A similar result could be expected, therefore, with the present formulation if 

it is used to predict the onset of "chugging" instabilities at supercritical 

pressures. 

II~6 The Characteristic Equation and Its Applications 

The characteristic equation for this problem is an exponential poly-

nomial, it is therefore of the same form as the characteristic equation for 

combustion instabilities [481 , thus 

11-1 
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where Ll and L2 are polynomials with coefficients independent of the time 

and where s is a root of the characteristic equationw 

In general, the root s is a complex numbe~; the real part gives the 

amplification coefficient of the particular oscillatory mode, whereas the 

imaginary part represents the angular frequency. Since the original per-

i1 

Ii turbation is assumed to be of the form expl st 1 ' a given oscillatory mode 
; 

j 
; 

,1 
j 
l 
i 

, 

I 
-1 

will be stable, neutral or unstable depending upon whether the real part 

of s is less, equal or greater than zero. A sufficient condition for the 

system to be stable is therefore that the characteristic equation (Eqo II-I) 

has no roots in the right half of the complex s plane. 

Let us examine now what information can be obtained from the character-

istic e,,"tuation as well as the type of practical problems where this information 

can be applied most usefully. 
I 

Two such problems were discussed by Crocco and 

Cheng f 481 in connection with the stability analysis of combustion systems .• 

The same discussion can be applied to the present problem. 

In the first class of practical problems one is interested irl~deter-

mining whether a given system with specified characteristics, i.e., with 

specified numerical coefficients is stable or unstable. This is most often 

a situation that arises during the planning period; i·.e., before the system 

is designed and tested. The characteristic equation can be uS'ed to pr~vide 

an answer to this type of problem. In particular, since th~ numerl'cal co

efficients in the characteristic equation are known, Crocco and Cheng (48r1 
note that the use of Satche's [5B~ diagram is most useful for analyzing the 

exponential polinomial obtaining th~reby a solution f~r this type.o~ problem. 

In the second class of practical problems one is interested in the 

qualitative trends of the stability behaviour of a system when various 
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parameters are changed. This is most often a situation that arises during 

the design period because of the designer's need either to design a system 

with sufficient safety margins or to modify a given unstable system in order 

to make it stable. For this kind of problem Crocco and Cheng [48l 
note that it is advantageous to use the characteristic equation for deter-

mining the stabilty boundary of a certain system. On such a boundary, 

expressed in terms of the operating characteri.stics of the system and of 

the process, the oscillatory mode in question is neither stable nor unstable, 

i.e., the real part of s vanishes for that mode. The stability boundary 

divides therefore the space formed by the parametere of a given system into 

different domains in which the system is stable on one side of the boundary 

and unstable on the other. If by varying one parameter of the system the 

stability boundary is shifted in such a way as to decrease the unstable 

domain, the variation of the parameter has a stabilizing effect and vice 

versa o 

Following the standard procedure the stability boundary is obtained 

from the characteristic equation by setting s = i W, where W is the 

frequency of the neutral oscillation. Upon separating the real and imaginary 

parts of the characteristic equation one can eliminate the frequency ~ , 

the resulting equation represents the stability boundary. Two such boundaries, 

obtained from characteristic equations given by first and second order ex- ....... 

ponential polynomials, are shown in subsequent chapterso 

1107 Additional Mechani.sms Leading to Unstable Operation 

Before proceeding with the formulation of the present problem we shall 

note and examine briefly additional mechanisms which can induce flow oscillations 

in the nearcritical and supgrcritical regions. These mechanisms will be 

analyzed in more detail in separate publications. 
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It is instructive to note first a general characteristic of oscillatory 

systems. A necessary condition for maintaining oscillations is that enough 

energy is supplied to the system at the proper frequency and phase relation 

in order to overcome the losses due to various damping effects which are 

ruways present in real systems. When the rate of energy supplied is control-

led by an external source and is independent of the fluctuations inside the 

systems, the oscillations will build up when the energy is released at a 

cha.racteristicfrequency gi.ving rise to the resonance phenomenon. However, 

when the system contains itself an energy sourc~with a property that the 

energy release depends upon a fluctuation inside the system, then an accidental 

small disturbance in the system may interact with the source resulting in 

oscillations of increasing amplitude. For this to take place it is necessary 

that the energy from the source be fed to the disturbance during part of 

the cycle. 

It was discussed in preceding sections that the system which is analyzed 

in this paper has the property that the energy release depends upon fluctu-

ations inside the system. Oscillations of the time lag and of the space lag 

are examples of such fluctuations. We shall examine now other energy sources 

and fluctuations which may be present in the system; 

It was discussed by RaYleigh[591that internally driven pressure 

oscillations can occur in a system consisting of a gas flowing through a 

heated duct. For such oscillations to be maintained Rayleigh notes that 

the energy must be added to the gas during the moment of greatest conden-

sation and removed during the rarefaction period. This le~ds to the Rayleigh's 

criterion which states that a component of the fluctuating heat addition must 

b~ in phase with the pre$8Ure wave if oscillations are to be thermally driven. 

-26-
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The same criterion can be used to explain a type of oscillation ob-

served at critical and supercritical pressures as well as in boiling 

mixtures at subcritical pressures. In both systems the heat transfer CO~ 

efficient is a strong function of pressure. Thus, pressure oscillations 

may interact with the heat transfer coefficient inducing oscillations of 

the latter. If these oscillations are in phase, the system may be thermally 

driven and become oscillatory. 

Another mechanism which may induce oscillations at both subcritical 

and at supercritical pressures is caused by the large compressibility of 

some parts of the system. At high pressures this is the section of the 

system where the properties of the fluid pass through the nearcritical 

region. At pressures below the critical point, this will be the section 

of the system where subcooled boiling takes place. 

Still another mechanism that can induce oscillations at subc,ritical 

pressures is caused by the change of flow regime which can induce large 

fluctuation of the mixtute density. These in turn may induce both os-

cillations of the tlow and of the heat transfer coefficient thus providing 
'" 

the driving force necessary for maintaining the oscillations. 

It can be expected that each of the mechanis~s may be effective'over 

some range of operating conditions. It can be also expected that the 

resulting oscillations are characte~ized by a certain frequency range and 

by particular wave forms. Indeed, several frequency ranges and wave shapes 

have been reported and described in the references discussed in Chapter I. 

The mechanisms just described will be the subject of future investigations; 

in what follows we shall proceed with an analys~s of the "chugging" oscillations. 
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III. The "Heavy" Fluid Region 

111.1 The Governing Equation 

For a "two-region" approximation the "heavy" fluid region extends 

from the entrance of the heated duct to the transition point. Note, 

that for a system with constant energy input, the location of this point 

will move along the duct when the inlet velocity and/or the inlet enthalpy 

vary. 

It will be assumed that the fluid in this region is incompressible 

and that the thermodynamic properties are constant. The problem is formu~ 

1ated by considering the three field equations describing the conservation 

of mass, momentum and of energy in addition to the constitutive equation 

of state describing the properties of the fluid. 

For a one dimensional formulation, used in this analysis, the con-

tinuity, energy and momentum equations are given respectively by: 

111-1 

III-2 

. 
1II-3 

where the· -symbols are defined in the. Nomenclature. 
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The constitutive equation of state is given by: 

-- 111-4 

Equations III-I, 2, 3 and 4 are four equations which specify the four 

variables "P, \ 1A 
I 

and i in the "heavy" fluid region. These four 

equations will be integrated to yield 1, ~,\ 1A and i as function of space , 
and of ,time. These will be then used to determine the time lag and the 

spac.e lag. 

111.2 The Equation of Continuity and the Divergence of the Velocit'y 

In view of the assumption of an incompressible "heavy'" fluid the con-

tinuity equation reduces to the divergence of the velocity 

111-5 

whence upon integration we obtain 

U; ,Vi l t) 111-6 

The velocity in the "heavy" fluid region is therefore independent of 

-
position, it is a fu~ction of time only. 

In order to analyze the ntability problem we shall assume that a small, 

time dependent vel,?city variation 5~, , is 'superimposed on a steady inlet 

-
velocity 'lA 1 ,thus: 

111-7 
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where the bar indicates steady state conditionso 

111-3 The Energy Equation 

With the fluid velocity given by Eq. 111-7, the energy equation becomes~ 

111:-8 

This is a first order partial differential equation whose solution can be 

obtained by meD~3 of characteristics [60, 61l ~ The general solution of 

Eq. 111-8 is of the form: 

111-9 

where 

III-10 

are solutiJ~ns of any two independent diff~rential equations which imply 

the relationships: 

fil df: d~ III-II -. - -
1A(~) ~l 

\fA:c.. 

For example, by ~aking alternately the first and the second equation, the 

first and the third equation we obtain the fofiowing set 

- ~t 
= 'tA, + E e 
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and 

111-13 

In order to solve the problem it is necessary to specify the initial 

and the boundary conditions. These will be specified by letting a particle 

enter the duct with enthalpy i1 at time iCe , (See Figure 11-3) thus, 

• t 

(., -= t... at 111-14 

With this bounda~y and initial condition, on~ obtains after integrating 

Eq. 111-12 a~d III-1~ the following relations: 

111-15 

and 

L 
I 

L, 
111-16 

Upon eliminating the time b-7, ' between these two equations we obtain 

an expression for the enthalpy as function of space and time, thus: 

U7 ~i (l- ~,) At 
'1~ 

+ 
,51::[ ,-S(L-i.')~'-l f.e I-e .tI,.~, 

S . 
; 

. 111-17 
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The first term on the right-hand side is the steady state term, whereas 

the second one is the transient which accounts for the perturbation of the 

inlet velocity. 

111.4 The Time Lag and The Space Lag 

In Section 11- 2 the time lag L
b

, was defined ,as the time required for 

increasing the enthalpy of the fluid from the inlet value i l up to the 

enthalpy at the transition point i2 (See Figure 11-3). Consider now a 

fluid which enters the duct at time Ll and attains the enthalpy i2 at 

time l:2; it follows then from Eq. III-16 that the time lag is given by: 

-- 111-18 

which, in view of Eq. 111-13 can be also expressed as: 

t I 

T~ 
4 L.ll aLll III-19 --- ~ i 0,') -af- -~f~C. 

It can be seen that for a given 'system and at a given pressure the time 

lag depends only upon the enthalpy difference (i 2 - i l = A.i -a., \ ) and the 

heat flux density. 

We shall determine now the space lag. For a "two region" approximation. 

Figure II-3 indicates that the "heavy "fluid region extends up to the transition 

point where the bulk fluid enthalpy reaches the value of i 2• Inserting i2 

in Eq~ 111-17 we obtain the following expression for the space lag: 

~ef ~l11 A" 111-20 

q\ 
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For steady state operation E.= 0, whenc.e we obtain from Eq. 111-20 

the steady state space lag ~, thus: 

A 111-21 

. Several comments are appropriate. 

1) Equations 111-18 and 111-21 indicate that for steady state, i..e., 

when ~ = ° the time lag 1:b corresponds to the transit time.of a fluid 

partic.1e through the "he\avyU.· fluid region. 

2) Equation 111-22 shows that the response of the space lag to a 

variation of the inlet velocity is delayed by a time period equal to the 

time lag L.
b

• 

3) If we interpret the enthalpy i2 as the enthalpy at saturation and 

therefore the difference ~ i
21 

by the subcoo1ing then Eq. 111-22 predicts 

the locatio.n of. t~e boiling boundary, i.e., the location where boiling 

starts in a two-phase mixture at subcri tical pressures. Indeed, such an 

expression was derived previously (in [1+9,.50, 511 among others, usirrg 

somewhat different approaches) for ana1yzipg oscillations in boiling mixtures. 
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The time lag 'tb was called there the "evaporation time constant" [49] 

:.' 

i I , . 111.'5 The Momentum Equation 

The momentum equation can be integrated now since the velocity in 

and the boundaries of the "heavy" fluid region have been determined. With 

the boundary conditions taken as 

111-24 

the integrated momentum equation becomes 

f \] + } + iD lAl d~ 111-25 

o 

where we have taken into account the assumption that the density in the 

r'heavy~tfluid region is constant. In view of Eq$ 111-5, 111-6, 111-7, and 
, 

111-23, the integrated momentum equation yields: 
i 

I , 
~ 

i 

111-26 I 
I 
I 
r 

·fii 

Linearizing Eq. 111-26 and retaining only the terms with the first power 

of we obtain: 
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111-27 

We shall consider now the pressure drop across the inlet orifice. 

Defining by k. a. numerical coefficient that takes into account the effect 
~ 

of the geometry of the restriction and of other losses like vena contracta, 

etco, we can express the inlet pressure drop across the inlet orifice by: 

111-28 

whi~h, upon linearization can be expressed as: 

1II-29 

We define now the steady state values of the pressure drop due to 

body forces (gravity) by: 

III-3D 

due to friction by: 

-
111-31 
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and due to the inlet orifice by~ 

III-32 

In view of these three relations and upon substituting Eqo III-29 

in Eq. III-27, we call express the pressure drop in the "heavy" fluid 

region by: 

where 

III-34 

and 

1II-35 

The fir~t line on the right-hand 'side of Eq ~,' III-33 represents 

the sum of the steady state pressure drops, whereas the second one accounts 

for the transient responseo In particular, the first term is the inertia 

of the "heavy" fluid region; the' second termare the pressur.e losses due to 

variation of inlet velocity whereas the last term shows the effect of the 
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varying space lag. Equation III-35 indicates that this last effect is 

delayed by time lag Lb· We shall proceed now with the analysis of the 
50 

: ·i "light" fluid region. 
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IV The "Light" Fluid Region 

IV.l The Governing Equation 

For a "two region" approximation the "light" fluid region extends 

from the transition point to the exit of the heated duct. The problem 

is formulated again in terms of three field conservation equations and 

of a constitutive equation of state. However, ·in contrast to the "heavy" 

fluid the density in the "light" fluid region is function of enthalpy 

and of pressure. It was discussed in Chapter II that for "chugging" 

oscillations, the effects of pressure variations can be neglected. 

Consequently, the density will be a function of enthalpy only. 

The "light" fluid region is described, therefore, in terms of the 

continuity equation 

of the energy equation 

the momentum equation 

.-J- af +-

and the constitutive equation of state 

-38-
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IV-4 

or 

IV-5 

when expressed in terms of the spec ific volume 'iJ'" 

Equations IV-I, 2, 3 and 4 are four equations in terms of four 

variables 1', ~ ,'\A and i. They are applicable to the "light" fluid 

region at supercritical pressures. They can be also applied to the 

two phase flow region at subcritical pressures if, and only if, the 

relative velocity between the phases can be neglected. 

It is emphasized here that the form of the energy and the form of 

the momentum equation, as given by Eq. IV-2 and Eq. IV-3, are correct 

only if the relative velocity between the phases is either zero or its 

~ffect is negligibly small. If such is not the case, then both Eq. IV-2, 

and Eq. IV-3 !ID:!§t be modified. 

It was discussed in Section 11-5 that at high pressures, say above 

0.85 of the reduced pressures, the effect of the relative velocity is 

so small that it can be neglected. The region of interest to this analysis 

is the high pressure region. It can be expected, therefore, that, in 

this investigation, both Eq. IV-2 and Eq. IV-3 can be used to approximate, 

with sufficient accuracy, the energy and the momentum equation for the 

two phase mixture in the nearcritical region. 

In what follows we shall use, therefore, Eq. IV-I through 4 to des-

. cribe both the "light" fluid at sup~.rcriticalpressures and the two phase 
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mixture in the nearcritica1 region. The differentiation between the 

"light" f1ui~ and the two phase mixture will be realized by assigning 
I 

the appropriate expression to the constitutive equation of state. This 

will be done in the section that follows. 

IV.2 The Equation of State 

For the "light" fluid the relation between the specific volume and 

the enthalpy can be obtained either empirically, i.e., from experimental 

data or it can be approximated by an equation of state such as the per~ 

fect gas or the van der Waals' equation etc. It was noted in Section 11.1 

that for oxygen the perfect gas equation predicts with sufficient accur~cy 

the relation between the specific .volume and the enthalpy. Sin.ce this 

fluid is of primary'interest to this investigation, the perfect gas 

equation will be used as the constitutive equation of state for the "light" 

fluid at supercritica1 pressures. 

Assuming a constant pressure process we have for a perfect gas the 

following relations 

aT IV-6 

and 

IV-7 

whence 

IV-8 

}., 
\.' 



For a "two-region" approximation the boundary condition for the "light' 

fluid region is given by: 

a.r 
IV-9 

We obtain then the equation of state for the "light" fluid 'i'egion by 

integrating Eq. IV-8 subject to the boundary condition given by ·Eq. IV-8, 

thus: 

IV-lO 

J 
~ We shall derive now the equation of state for the two phase mix-
h 
:\ I ture in the nearcritical region. We recall first that the quality x, 
$ 
~ 
R of a two phase mixture is defined by: 
# 
:1 
1& 

x -- IV-II 

where Gg and G
f 

are the mass flow rares of the vapor phase and of the 

liquid phase respectively. We recall also that the specific volume 

and the enthalpy of a two-phase mixture are given by: 

'\r = (I-X)"\T't + X~ IV-12 

and 

, , , IV-13 
l" (l-X)\'t ""1- X (,~ -
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Where ~f~ if and V-g , ig are the specific volume and the enthalpy of 

the liquid and of the vapor respectively. 

We obtain then the equation of state for the two phase mixture by 

eliminating the quality x, between Eqc IV-12 and Eq. IV-13, thus: 

f\l(i) - 11+ + IV-14 

Where 6 'V fg = '\)' g ~ Vf , and where ~ i fg is the latent heat of vapori-

zatiOD. Differentiating Eqc IV-14 we obtain for the two phase mixture: 

IV-15 

which can be compared to Eq. IV- 8 applicable to the "light" fluid at 

supercritical pressures. 

It is important to note that both, the equations of state for the 

"light" fluid at supercritical pressures, Leo, Eq. IV-IO, and the equation 

of state ~ a two-phase mixture at subcritical pressures, i.e., Eq. IV~14, 

are of the same form, i.e., both can be expressed as: 

IV-16 

We can use, therefore, Eq. IV-16 for the equation of state in the near-

critical as well as in the supercritical region. We shall distinguish 

one region from the other by substituting either Eq. IV-15 or Eq. IV-8 

in Eq. IV-16. 
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IV.3 The Equation of Continuity and the Divergence of Velocity 

Several methods are available [49, 50, 51, 62J for determining the 

velocity in a boiling mixture. Any of these could be mod,ified and used 

to determine the velocity in the "light" fluid region. In what follows 

we shall use the method of Boure (511 . 

As in the "heavy" fluid region we shall determine the velocity by 

integrating the divergence. However, in contrast to the "heavy" fluid 

region where the divergence is given by Eq. 111-5, the divergence in the 

fV1ightH fluid region is not zero but is obtained from Eqo IV-1, thus: 

IV-17 

In order to integrate the divergence it 1s necessary to evaluate 

the right-hand side of Eq. IV-17. Following Boure this can 'be done by 

means of the energy equatio~. 

Since the density is function of' enthalpy only one can write 

cJ~ f'dL - --' -
d t.i fO t IV-18 

Substituting Eq. IV-2 in Eq. IV-l8, it follows that: 

IV-f9 . 

whence from Eq. IV-l9 and IV-l7 we can express the divergence as: 
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IV-20 

We shall define now the reaction frequency* Jl by: I 

It follows then from Eq. IV-8 and Eq. IV-2l that the reaction frequency 

for the ."ligh::" fluid in the supercritical region is given by: 

IV-22 

whereas it follows from ;Eq. IV-·15 aIld Eq. IV-2l that for boiling at sub~ 

critical pressures the reaction frequency is given by: 

IV-23 

With the reaction frequency defined by Eq. IV~2l, it follows then 

fromEq. IV-20 that we can express the divergence as: 

-Sl. IV-24 

*The reasons for using this definition are discussed in Section IV-9 
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The physical sig~ificance of this equation is simple: the divergence 

of the velocity in the "light" fluid region is equal to the volumetric 

rate of formation of the "light" fluid per unit volume of space. 

In order to integrate Eq. IV-24 it is necessary to spe.cify the 

boundary conditions; these are given by considering the velocity in the 

'/, "heavylU fluid region, i.e.~ Eq. 111-7. The boundary condition for 

I 
',I 
] 

I 
I 

Eq. IV-24 is therefore: 

tv-- /\AI + cf 1,1'1 

_ st 
'=. AA, 1" £ e 

IV~25 

'whence upon integration of Eq. IV-24~ we obtain for the velocity in the 

IUlight H fluid region the following expression: 

- Sr 
\( (~ltJ- = \.1\, '\- €. e -;a..n. [ \ - idt-) 1 IV-26 

We note that Eq. IV-26 with JrL given by Eq. IV~23 is the velocity 

in the two phase boiling mixture, as such it was used already in (49"SO,5land 62.) 

It is instructive to examine further Eq. IV-26, which~, by' means of 

Eq. III~23, can be expressed as~ 

IV-27 

~ 

We obtain the. steady state velocity in the "light" fluid region by letting 

E. = 0 in Eq. IV-27 fi thus: 
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IV-28 

We can rewrite then Eq. IV-27 as: 

-LAl~lt) ~ Uti') -t- cfLA~ tt) IV-29 

where the time dependent perturbation of the "light" fluid is given by: 

_ olA, - n d" 

, .. 

l It can be seen from Eq. IV-29 and IV-30 that the flow'in-the "light" 

fluid region is affected by both the inlet perturbation as well as the 

perturbation of the space lag. This last perturbation, is delayed by the 

time lag 1:b (see Figure 11-4). 

We shall define now several steady state relations which shall be 

used in following chapters. 

By letting z = t in Eq. IV-28 we obtain the steady state velocity 

at the exit of the heated duct, ,thus: 

.' -' - IV-31 
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The lengthwise average velocity in the "light" fluid region is defined 

by: 

i-A 

L -A 
f ~1\J~} 
o 

whence from Eq. IV-28 we obtain: 

tAl + 

From Eq. IV-3l we have: 

.n(l-7\) 
2. 

IV-32 

IV-33 

IV-34 

Substituting this relation inEq. IV-33 we have the following expressions 

for the average velocity: 

1. IV-35 
< IA,) _ - ..nIL-X) 'lA, + 

The log mean velocity in the "light" fluid region is defined by: 

1:: 
.n.( t-X) 

IV-36 

where we have taken into account Eq. IV-3l ... 
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A fourth relation of interest to this inveGtigation can be obtained 

from the conservation of momentum G~and the definition of the log mean 

densityo If we denote by ~ 3' the density of the fluid at the exit from 

the heated duct, then the log mean density in the "light" fluid region is 

given by: 

IV-37 

The mean velocity, based on the log mean density, is then obtained by 

considering the mass flux density, i.e., the momentum G, thus: 

IV-38 

which, in view of the preceding relations can be expressed also as: 

- -c. 
-lA, 

--
\.t~ 

IV-39 

We can proceed now with the solution or-the energy equation • 

IV-4 The Energy Egu~tion 
. 

We can solve the ~nergy equation now since the velocity and the equation 

-

of state in the "light" fluid region are specified. By substituting Eq. IV-26 ~ 
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and IV-l6 in Eq. IV-2 we can express the energy equation as: 

IV-40 

~ 

Taking the enthalpy i2 at the transition point for reference and in view 

of the definiti.on of the reaction frequency .J1. ,given by Eq. IV-2l, 

we can rewrite Eqe IV-36 as: 

IV-4l 

The initial and boundary conditions for the energy equation are de-

termined by considering the conditions at the transition point (See Figure 

II~3); they are given therefore by: 

L- t~ - 0 Oft t =: 't'1-
IV-42 

-~t 
I • ~~ ~ '::! "(~Z::L) 

_ sr~ (' -e b 
l- Ll- a - A -to- ee .s) -

IV-43 

Equation IV-4l is again a linear partial differen"tial equation, it 

can be solved therefore by the method used in solving the energy equation 
~ 

for the "heavy" fluid (See Section 111-3). Following this procedure, we 

obtain in place of Eq. III-II the follpwing set: 
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IV-44 

whence: 

and 

IV-46 

Integrating first Eqt IV-46 and taking into account the initial con-

ditions given byEq. IV-42 we obtain: 

IV-47 

whence: 

IV-48 
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In order to integrate Eq. IV-45 we note that it is of the form of: 

. IV-49 

,whose solution is: 

.. ~ - ( P(~) ~ l>i) c.l J - C.o,",st. 
I 

IV-50 

where 
-fA ~'S -.!l t 

e = e 
The integral of Eq. IV-45 is therefore: 

(~-Jl.) t -stb 
. - . .n I: I \A; - .J -1l t f. e . (S -J\ +.Jl. e ) 
~ e '. + - -" e - - C, 

~ S-~ ~ 
IV-51 

,. 

which, in view of Eq. IV-48 , can be expressed as: 

S-Jl. +Jl. e-
SC,!,] = C 

5CS-.n) I IV-52 
...... 

The value of the constant of integration is eva1uatedby means of Eq. IV-42 

and IV-43, thus: 

-S~] S -Jl-tJl..t! '. 

S (.$-~) 
IV-53 
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Substituting Eq. IV-53 in Eq. IV-51 we obtain after some re-

arrangement: . 

.S1. 
s-.n. 

.s t: IV-54 -5 (t-'Z:2.) St( 1- e- 0) -5(t-rt) S~ -S'"C! } 

e-
Jl1:'1. ~ -I 1lA,+ .n..e E.e __ JL e 'Ee [J-Sl(,-e )J 

s S-n ~ 

which, in view of Eq. 111-23 and Eq. IV-3v, can be expressed as 

IV-55 

By substituting Eq. IV-48 in Eq. IV-55 we obtain the solution of the 

energy equation for the specified initial and boundary conditioqs, thus 

I + J'\. ft At. ( L - L).) '==

q~ 

- -
-s(t-'t\.) 

+ e .nol\ 

from which we obtain the enthalpy. for the. "light" fluid region 

... 52.-
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s-.n. -I _ -s(t-r .. ) 

.IA, T e ...n SA 
JL. - S (t-tl,. ) 
-- e (f~1~ 
~ ... .n 

IV-'37 

Expanding and retaining only the first power of ~ we obtain after some 

rearrangement 

'11 (~-A) 
lAl et- Ac. 

I f we let the perturbation go to zero, i. e. , e = 0, we obtain from 

Eq. IV-58 the enthalpy for steady state operat~on, thus 

IV-59 

IV-5 The Residence Time 

It is of interest to evaluate now the steady state residence, i.e., 

the transit time of a particle in the heated duct. Denoting by i3 the 

enthalpy at the e'xit and by 1:' 3 the time when a particle reaches this 

enthalpy we obtain from Eq. IV-47 the residence time in the "light" 

fluid region, thus: 
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which, in view of Eq. IV-2l, can be expressed also as: 

II> 

Denoting by Q =~~t, the rate of energy transfer to the entire 

IV-60 

IV-6l 

duct and by \Ar', the mass flow rate, we can express the total energy 

balance in steady state as: 

• 
IV-62 

Substituting this relation in Eq. IV-6l and in view of Eq. 111-18 we 

obtain the following expression for the residence time in the heated 

duct: 

IV-63 

IV-6 The Density and the Density Perturbation 

The density in the "light" fluid region is given by the equation of 
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state, i.e., by Eq. IV-16, which, in view of the definition of the re-

action frequency Jl.., given by Eq. IV-2l, can be expressed also as: 

IV-64 

Since the enthalpy in the "light" fluid region is given by the 

solution of the energy equation, i.e., by Eq. IV-56 we can express the 

density as function of time or as function of time and space. 

substituting Eq. IV-6+ in Eq. IV-47 we obtain: 

whereas by 

~l~il-J --
e+ 

-Jl(+-"r2.) 
e 

substituting Eq. IV-64 in Eq. 

iX, 
~,s(t-rl.) " 

+e ..n~ 
51. 

s- n.. 

-- JL Vi, ("\) cf lA 1 --s- Jk 

IV-56 we obtain: 

_S(t-'C2.) 
e J' 14, 

Thus by 

IV-65 

IV-66 

which, by means of Eq. IV-30, 111-20 and 111-18, can be expressed also 

as 

e (~,t) 
e~ 

,n 
s -.J1.. 

- s ( t - '!' 2..) (' 
e VIAl 

IV-67 
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or, in view of Eq. IV-65, it can be transformed in 

~r~,t) - ~ l ~ ~:' t ) t!l. -e-S 1: b 614, (AI 
, 

$- .!L 
IV-68 

e'r LA~l,) - St 
eftA" s- .n 

Using again the binomial expansion and retaining only the first power 

of ~ we can express Eq. IV-67 as: 

u, 
+-

S-jl 

Similarly, we can expand Eq. IV-68 and express it as: 

-
U~ l"b I 

n. +--
s-..n.. 

where the steady state velocity fj,(~J is given by Eq. IV-28. 

IV-69 

IV-70 

By letting l:.. = 0 in Eq. IV-66 we can obtain the local steady state 

density in the "light" fluid region, thus: 



,/' 
j 
j , 

We shall define now several steady state relations which will be 

used in the following sections. 

By letting ~ =.L in Eq. 'IV-7l we obtain the density at the exit 

from the heated duct thus: 

~(.l) - ~~ - IV-72 

where we have taken into account Eq. IV-3l. 

We shall define now the average density in the "light" fluid region 
". 

by: 

IV-73 

whence from Eq. IV-7l we obtain: 

Jt (~- A) -lA, 
IV·,74 

In view of the definition of the log mean velocity Ul~ given by Eq. IV-36 

this average density can be expressed as: 

-57-

I 
I 
'1' 

! 

I 
I 
E 

i 
~ I 

~ 

t 

I 



, I 
; ! 

, ,',' ) 
,J 

, , 
! 

.. j 

I 
1 

J i 
! 
I 

I 
'1 

I 

it 

IV-75 

We have already defined the log mean density by: 

IV-76 

where ~~ is given by Eq. IV-72. 

A fourth expression can be obtcHned from the definition of the 

average velocity (IA}/ given by Eq. IV-35 and the momentum Gr . We 

can express therefore a mean density, based on the average velocity, 

by: 

G- 2G-

IV-77 

With the steady state density ,in. the "light" fluid vapor given by 
-" 

Eq. IV-7l, we can express Eq. IV-69 as 

-+ IV-78 

-58-



'I 
J J ~ 

! 

I , . 

where the density perturbation is given by 

n G ~ DI,41 
_S(f-LI) 

~u, 1 ~ ~ (~,t) . e 
i \ - IV-79 r - -; 

,5-j'l lA1(~J lA~ll\ tA, , 
t l , 1 

i 
'i , 

which, in view of Eq. IV-30, can be expressed also as: 

fl. 
S-.n IV-80 

I 

'I 

I 
-'I By letting ~ =.{ in Eq. IV-79 we obtain the density perturbation 

at the exit from the heated duct, thus 

I 
i , 

I IV-8l 
" 

It can be seen from the preceeding equations that in the "light" 

fluid region the density perturbation is affected by both the perturbation 

of the inlet velocity and by the variation of the space lag. Further-

more, the effect of the inlet velocity perturbation is delayed by a 
.. " 

delay time. Equations IV-3~ and IV-80 are the quantitative expressions 

for the flow and density variations in the "light" fluid region whij:h 

were qualitatively described in Section II~*. 
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With the density and the velocity in the "light" fluid region 

given by the expressions derived in this section and in Section IV-3 

respectively, we are in the position to integrate the momentum equation. 

IV.7 The Momentum Equation 

! In order to integrate the momentum equation it is necessary to 

specify the boundary conditions, these are given by: 

j 

1 

IV-82 

whence the in.tegrated momentum equation becomes: 
i_ ... 

r3 ,t 

f JP [r~ ()~ +~~~ ~~ f + 
f ~~).~ ~~ 

~t- tD~ 2.'D IV-B3 

'it ''It \ 

The expressions for the density and the velocity which should be 

substituted in this equation are given by Eq. tV-7B and Eg. IV-27, 

i.e., Eq. IV-29 respectively. We shall consider now each term of Eq. 

IV-B3 separately. 

IV.7.1 The Inertia Term 

The inertia term in the momentum equation is given by: 

L 

[ 
A (t) IV-B4 
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Substituting Eqo IV-78 and Eq. IV-27 in Eq. IV-84 and retaining only 

the first power in £ we get: 

IV-85 

In view of the definition of the average density and of the velocity 

perturbation given by Eq. IV-75 and Eq. IV-30, l-espec tively, the inertia 

term can be expressed as: 

~. 

IV-86 

IV.7.2 The Convective Acceleration Term 

The convective acceleration term in Eq. IV-83 is given by: 

t 

r IV-87 

substituting Eq. IV-78 and Eq. IV-27 in Eq. IV-87 and retaining only the 

first power in ( we obtain upon integration: 
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IV-88 

It is of interest to examine the physical significaJ'!e of the various 

terms. 

If we let ~ = 0 in Eq. IV-8S, we obtain the steady state acceleration 

pressure drop i.l PC! , which, in view of the definitions given in Sections 

IV-3 and IV-6, can be expressed as: 

G n (~ - t\ ) 

IV-89 

The second term in Eq.IV-88 can be expressed by means of the 

Eq. IV-89 and of the space lag variation defined by Eq. 1II-22, thus 
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IV-9D 

It shows, therefore, the influence of the variatLon of the space lag on 

the acceleration pressure drop in the "light" fluid region. 

In view of Eq. IV-89 and Eq. IV-3D, the third term in Eq. IV-88 

can be expressed as 

St -rto!. 
~ e S-ll-t..ll e 

S 
- G ~ lA~,- Ci, ) c>lA, _ l1 r" 5 Lt~ 

~~~ ~(~ 

IV-9l 

M g It expresses, therefore, the 'influence of the velocity perturbation in 
t1 
,·1 

,~ the "light" fluid region on the acceleratIon pressure drop. 
fl 
t! The last two terms in Eq. IV-88 stem from the density perturbation 
H t! 
~'l term in Eq. IV-7D, i.e., from 
:J ,:r 
, ·f .s 

- -;-1 

(
' IAI ).n. 
~~ {\) 

IV-92 

st ..J7L 
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The third term in Eq. IV-88, i.e., the first term on the right hand side 

of Eq. IV-92 can be expressed in terms of Eq. IV-89 thus 

~ 

S-.n.. 

-
IV-93 

It shows, therefore, the effect of the variation of the velocity in the 

"light" fluid region on the density and, therefore, on the acceleration 

pressure drop in that region. 

The physical meaning of the last term on Eq. IV-88, i.e., Eq. IV-92 

is not as clear as that of the other terms in Eq. IV-88. An insight can 

be gained however, by conSidering the upper and lower limits of the 

integral 

( 

Iit = ~~~~~ r f ( 
Altl 

~~I~) '";)!, I11 JJ 
'J~ 

It is shown in the Appendix C that this integral is bounded by: 

--"", 
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which, in view of Eq. IV-89, can be expressed as 

- - s("r~- 1:, ) 

e 8\;4 a <.IJt·< 
5-Jl .. -lA, IV-96 

We note that a simple expression can be obtained by setting;' /IA,l'\) = ~ J ~ 
in Eq. IV-94, this approximation results in the following expression for 

the integral 14: 

T* 
-Lf 

IV-97 

S-J).. LAI 

The physical meaning of the integral 14 is now clear: it expresses the 

effect of the perturbation of the inlet velocity on the density (see 

Eq. IV-69) and, therefore, on the acceleration pressure drop in the 

"light" fluid region~ This effect is delayed by a delay time equal to 

"!b or to ( !\ - "!, ) depending on whether we use this upper or lower 

bound for the integral 14' 

By substituting Eq. IV-89, IV-90, IV-9l, IV-93 in Eq. IV-88 and by 

expressing the integral 14 in terms of the approximation given by 
, . 

Eq. IV-97 we obtain for the acceleration pressure drop on the "light" 

fluid region the following expression: 
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IV-98 

~ 

where the steady state acceleration pressure drop d~ is given by 

Eq. IV-89. 

IV.7.3 The Gravitational Term 

The gravitational term in the momentum equation is given by 

k 

f ~ \ k~ IV-99 

~ It} 

Substi.tuting Eq. IV-78 and retaining only the first order terms of 

we obtain after integration: 

IV-IvO 

s 
T 
.-~ 
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Altl 

IV-IOI 

The physical meaning of the various terms is as follows: 
". 

We obtaln the steady state gravitational pressure drop by letting • ~io' •• t 

<C = tJ in Eq. IV-IOO) thus in view of the definitions given by 

Eq. IV-36 and IV-75 we have.: 

- ~(l-A)_G-.......... 
1,4.(\110 

IV-I02 

The second term in Eq. 1V-I02 can be expressed by means of Eq. 

1V-I02 and Eq. 111-22) thus 

, 

. ~l ( 
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It expresses, therefore, the effect of space lag variation on the 
. 

gravitatLonal pressure drop • 

The third term in Eq. IV-IOO can be expressed by means of Eq. IV-39, 

IV-75 and IV-I03, thus 

f4- CSt- -JT,-
Jl- 1lJ- A) ~ ~ (~-A) (.! ..n- S-ll+.J\e cf~i -

14\ S-/'1... ..5 s-n \4) \.1, 
>lr~~?,"~~<"- .... 

-
A?b~ fL (~t IV-I04 -
~ffl\ S-.n 

·where the mean velocity ~~ is defined by Eq. IV-39. This term then 

represents the effect of velocity perturbation in the "light" fluid 

region on the density and therefore on the gravitational pressure drop 

in. this region. 

The physical meaning of the last term in Eq. IV-IOO can be ex-

plained again by expressing the integral 14 in Eq. IV-IOI by its upper 

and-lower bounds (see Appendix C) 

St 
S-.n 

which in view of Eq. IV-39, IV-75 and IV-I03, can be expressed as 
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IV-106 

A simple expression for the integral 14 can be obtained by using the same 

approximation 'which was used in deriving Eq. IV .. 97. Thus ll if we let 

-IAI/tAa(~)-: ~I /ii:!; in Eq,~ IV-IOI we obtain after integration the following 

appirOlximation ..... -5 ("t!-1:,) 
-~ ~e\- JYI, u:?, 
.itt 

j1... e [~, -
~-S\ .n. \AI 

Ll ?b'd - s (~~--CI) IV .. 107 
fl. ~~, - - e 
~-n \)1 

By comparing Eq. IV=107 with Eq. IV~106 it can be seen that 14* has a value 

which falls petween the two bounds given by Eq~ IV-I06. The last term in 

Eqo IV~lOO expresses therefore, the effect of the inlet velocity perturbation 

cn one density (see Eq. IV-79) and on the gravitatiollal pressure drop in 

the "light" fluid region. Furthermore, this effect is delayed by a time 

de-lay equal to LA.. or"t} -7, depending on w'hether we use the upper or lower bound 

for the integral 140 

By substituting Eq. IV-102l! IV-103l! IV-I04 in Eq. IV-IOO and by 

expressing the integral 14 in terms of the intermediate approximation 

14* given by Eq. IV-107 we obtain for the gravi.tational pressure drop 

in the "light" fluid region the following expression: 
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where the steady state gravitational presure drop is given by Eq. 

IV-102. 

IV.7.4 The Frictional Pressure Drop 

The frictional term in the momentum equation is given by 

l 

I J~ "2.D 
IV-lOg 

Aft) 

Subs-cituting Eq. IV-7B and IV-27 in Eq. IV-lOg and retaining only the 

first order terms in <t. we obtain after integration the following ex-

pression 

f (I-A' >f -St'b 

l P
t 

lA, c. e ~-jH- Jl e IV-110 +- + 2» > , 
: 

f(~-X) ~t- -j"rb I fl., e .. "U, fe S-I) -tJ,le TS': \ 

+ - r 

1 
S-IL 1.~ S 
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The physical meaning of the various terms is as followsc 

We obtain the steady state frictiorial pressure drop by letting 

~ = D in Eq. IV-lID, thus in view of Eq. IV-35 we can write 

11 ?23 = 
tl ~-A ) e, lA, [lA, + ll(:-A ) 1 
l.,b 

IV-112 

f(~ -A) G- (\At) 
21) 

The second term in Eq. IV-lID can be expressed by means of Eq. IV-112 

and Eqc 1II-22 thus: 

-
IV-113 

It expresses therefore the effect of the space lag variation on-the 

frictional pressure drop. 

The third term in Eq. Iv-lID can be expressed in terms of Eq. IV-~O 

.' 
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and Eq. IV-35 thus 

-
2 A~l3 

IV-114 

This term expresses therefore the effect of velocity perturbation in the 

"lightli fluid region on the frictional pressure drop. 

Similarly the fourth term in Eq. IV-lID can be expressed as 

IV-115 

In view of Eq. IV-79 this term shows the effect of the velocity 

perturbation. in the "light" fluid region on the density perturbation and 

therefore on the frictional pressure drop in this region. 

The physical meaning of the last term in Eq. IV-lID can be explained 

again by expressing the integral 15 in Eq. IV-Ill by its upper and lower 

bound (see Appendix C) thus 

-~c[~-r, ) IV-116 

e dIAl < Is < ~ 
s-n 
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which in view of Eq. IV-lIS and IV-3S can be expressed as: 

JL 
s-n ;)1 

IV-117 

A simple expression for the integral IS can be also obtained by using the 

same approximation that was used in deriving Eq. IV-97 and Eq. IV-I07. 

Thus, if we let V.1/IA~n) = L:\, I~!:> in Eq. IV-Ill we obtain after integration 

Sl

S-.llr 
", 

IV-lIB 

The last term in Eq. IV-IIO expresses therefore the effect of the inlet 

velocity perturbation on the density (see Eq. IV-79) and therefore on the 

frictional pressure drop in. the "light" fluid region. Furthermore this 

effect is delayed by a delay time equal to lb or (r,-r, ) depending on 

whether we use the upper or lower bound for the integral. 

By substituting Eq. IV-112, IV-113, IV-114, IV-lIS in Eq. IV-IIO and 

expressing the integral IS in terms of the approximation given by 

Eq. IV-118 we obtain for the frictional pressure drop in the "light" 

fluid region the following expression: 
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-
where the steady state frictional pressure drop ~~11 is given by 

Eq. IV-ll2o 

IV.7.S The Exit Pressure Drop 

IV-ll9 

We can include the effect of the exit pressure drop in the momentum 

equation. For this p~rpose we shall define by ~~ the coefficient for the 

exit losses, then the exit pressure drop can be expressed as 

IV-l20 

By substituting Eq. IV-69 and Eq~ IV-27, both evaluated at ~ = i, and 

by retaining only the first power in <t.. we obtain: 

+ 
IV-l2l 

n 
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We obtain the steady state exit pressure drop by letting ~ = 0 

in Eq. IV-l2l thus 

-
=- IV-l22 

Consequently Eq. IV-l2l can be expressed as 

-
+ 

IV-l23 

- - .. 

+ s- J1.. LA, 

The second term in Eq. IV-l23 represents the effect of velocity 

pertu.rbation in the "l,ight" fluid region on the exit pressure drop • 

The last two terms in Eq. IV-l22 can be expressed as 

IV-l24 
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where we have taken into account Eq. IV-8l. Consequently the last two 

terms express the effect of the density perturbation on the exit pressure 

drop. 

IV.7.6 The Integrated Momentum Equation 

By adding Eq. IV-86, IV-98, IV-lOB, IV-119 and IV-123 we ob~ain the 

integrated momentum equation for the light flui4 region thus 

-
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By adding the momentum equations for the "heavy" and "light" fluids 

we shall obtain the momentum equation for the system whence the characteristic 

equation for predicting the onset of unstable flow. This will be done 

in the chapter that follows. 

IV.8 Comp.arison With Previous Results 

Before we proceed with the derivations of the characteristic 

equation, it is of interest to compare the results derived in this chapter 

with those reported previously in (49, 50, 51, 53, 55). In this section 

: we shall make comparison with the results of (49, 50 and 51] whereas in 

the section that follows we shall compare the present results to those 

: of {53, 55] . 
. j 

I 
I 
I 
j 

I 

n 

I 
I 
I 
I 

It was already discussed in Section 1.3 that the assumptions made 

in the present analysis as well as the general formulation of the problem 

are the same as those reported previously the Wallis and Heasley {50] and 

Boure (5LJ for boiling, two phase system. It was also noted in Section 

1.3 that the present analysis differs from those reported in (49, 50 and 

511 in the following respect: 1) the constitutive equation of state is. 

different and 2) the characteristic equation is different. 

The analyses of {49, 50 and 511 were derived for boiling sy~tems, 

j the present investigation is applicab1.e to bo.th subcritical and supe.r-

critical pressures. It is emphasized here again that neither this in-

vestigation nor those reported in (49, 50 and 511 take into account the 

effect of relative velocity between the two phases in the boiling region 

at subcritical pressure.* If the effects of the relat~ve velocity are 

*The conditions under which the effects of relative velocity can be 
neglected are discussed in more detail in (55J. 

-77-

-... 



.~ 

I 

to be taken into account then the momentum and the energy equation, i.e., 

Eq. IV-2 and IV-3 must b,,~ modified o Furthermore, a diffusion equation 

should be added to the field equations ~escribing the process. An in-

vestigation along these lines will be reported separately. 

If, in the b:oiling region, we express the reaction frequency.ll by 

means of Eq. IV-23, then the density given by Eq. IV-6,5 becomes identical 

to that derived first in (491 and to those in (50, 51, 55) using different 

approaches. We shall examine now Eq. IV-66 which can be expressed also 

as ~ 

- -5(t~L&.) -Sr~ e (~,t) lA, J1- ~(~It) ~ Jt. e e c5U, 
__ oo''''!,", - _.- -t -el- tA1 (~) S-Jl et- lA,I~J S-.l'l ~I1J 

IV-126 

whence, in view of Eq. IV-65, and IV-3D, the perturbation can be written 
\ 

as: 

-s -Co)' 
By adding and subtracting e oS 

~~ 

~\(~It) = te 
u~l~) 

we can express this relation as 

- ~ 't ~ -(S-.J1)( t-- t"1,) } 
e ( \ ._ e ) IV -12 8 

S-Jl 

If we replace now n by Eq. IV-23, then Eqo IV-128 becomes identical 
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to Eq~ 38 in the paper by Wallis and Healsey (50) derived using a different 

approach~ 

We can insert Eq~ IV-65 in Eq~ IV-l26 and express the latter as 

~ (~d) 
-

et- IV-l29 

if the density terms which appear on the right hand side of Eq. IV-129 

8.lr'e .a.pproximated by the stea.dy state relation, i.e .. jI by 

~, 

IV-130 

as was done in (51) we obtain 

~, .. , 

~ (,Ii) s!- [ -s to f - ,1-
- ~ r,. . _ 2. ;. \ } 

. - LA, e lA I .:Sl te· Jl. S- Jl +..Ile VI'_ 
S -Il. (-t; 1 (\) ) IV -131 ft-

-t 
(A. 5 (S-.Il.) M111J lA11bl 

which is equivalent to Eq .. 5, Appendix A of Bourevs report (51). 

Apart from the difference in the equations of state used in this 

analysis, the difference betw,:een the present results and those of (50 ~ 51) 

is in the handling the momentum equatione In (50) the momentum equation 

was n2! integrated along the duct;, it was first integrated by Bour~ (51) 0 

Indeed~ it can be shown!> that after some rearrangement, Eq. IV .. 88, IV-IOO and 
... 

• 
IV-ltO can be put in the form of those given in (51). In (51) the integration 

of the momentum equa.tion lead to a characteristic equation in ,the form of an 

exponential polynomial of the fourth (or higher) order~ 
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In the present analysis we have introduced various definitions for 

the mean, for the average and for the log mean density as well as for the vel= 

OlcitielEl in the "light" fluid region which enabled us to give physical 

interpretation to the various terms in the integrated momentum equation. 

It will be seen in what follows that these relation~ together with the 

approximation used in deriving Eq. IV-97, IV-107 and IV-118)result in a 

characteristic equation given by an exponential polynomial of the third 

order. It will be seen also in what follows that these results will 

enable us to derive stability criteria and stability maps which, 

previously, were ~ available in the literature. 

IV.9 The Density Propagation Equation 

It is of interest to note an alternate way for determining the density 

perturbation. 

If we substitute Eq. IV-2l in Eq. IV-19 we obtain: 

+ IV-132 

This equation was called the energy equation in (51) where it was first 

derived. Several remarks are relevant here. 

We note first that Eq. IV-132 predicts the propagation of the 

density caused by the source term SL. A "void propagation equation" 

was formulated in (53 and 55) in terms of.kinematic waves which predicts 

the pr0pagation of density perturbations through a two-phase system. 
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This void propagation equation takes into account the effect of the 

relative velocity between the two phase as well as the effect of the 

non-uniform velocity and concentration profiles in the two phase mixture. 

It can be easily shown that if these effects are neglected the void 

propagation equation can be reduced to Eq. IV-132. 

We note also that Eq. IV-132 is of the same form as the continuity 

for a given species in a multicomponent, chemical reaction system. In 

chemical kinetics the source term in Eq. IV-132 is referred to as the 

reaction frequency. It is for this reason that in (53, 55J the term 

was called the "characteristic frequency." 

Finally, we note that Eq. IV-132 is a first order partial differential 

equation which can be solved by the standard method used in Sections 111-3 

and IV-4. Indeed following this procedure, used already in [53 and 55), 

one can derive Eq. IV-66 and Eq. IV-68. 
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V. The Characteristic Equation 

V.la !he Momentum Equation for the System 

The momentum for the "heavy" fluid is given by Eq. 111-33, whereas 

that. for the "light" fluid is given by Eq. 1V-125. By adding these two 

equations, we obtain the momentum equation for the system. 

We note that if the downstream pressure P4' is constant we can ex-

press the overall pressure drop, i.e., the external pressure drop of the 
~ .. " 

system as a ~teady state term and a pressure perturbation caused by the 

fnlet flow. Thus 

-
i, 1'0 - itt V-I 

where the aecond term on th~ right hand side is determined by the pump 

characteristics and has a negative value. 

By adding Eq. 111-33, Eq. 1V-125 and Eq. V-I we obtain the integrated 

momentum,equation for the heated duct, thus 

- - - - --
/j PC\ + b.l1L + .d ~bf + A?~ -\- ~ Pb~ + C1 r1-} -r IJ rl'f '-r 

V-2 
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-r\ etA} 
I cl ofA, {<e,.) ( i-A" ) 1 d 0" I,.} ,J -..: 
'\ '-\- -+ 

1 

I I 

:1 de- tAb 1 

I , 
! 

I ! 

....., ---, I I T\ ~6r'l V 6~'l. ~ llf~ 1 OlA, D 
~ • I ij 

I + +-
'V ~I «) 'lo1 , rv~, f 

if • I fI 
" " l' 
.I ......... ......, ---. 

~ 
; 

+~ ~t~ 2l\f· 3 :2 ~r~\, f rLt~ " ) 
11 + + " T 1, 
}! 

fAt.., , l,i~) -
11 lit,. 
JI 

l II ·-82-.1 ~ 

I p 

I 



, ft! 

" ,i 
,'j:1 

\ 
, "J 

~! 

i , 
\ -

I 
'1 

,I '" i 
" ... 
, 
t 

, 

'\'."1
1 

" 

- --
~ 

~ -
~f" ~ f"*t A fl.} ~ p~~ ~ J lA1 

fL 
t + + -r- - -S-Jl 1At~ 1Il~ ~ lA, '> IA~ 

--
I\A , -+-+ 

-- o 

We obtain the stead~ state pressure drop for the system by letting 

the pertutbat"iGRS :~go '"to ,·-zero, thus 

---, - - -
_ d fo. + ~ ~l + .6r" + Af" -t- Afl.a + 6 fz.~ + i ~\'f 

-
V-3 

By subtracting Eq. V-3 from Eq. V-2 we obtain the perturbed form of 

the momentum equation, thus 
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The formulation is now essentially complete because Eq. V-4 is the 

expression which gives the response of the system to the initial flow 

pertubation as function of the influence coefficients defined below. 

The influence coefficients F 1 and F2 represent the mass of the "heavy" 

fluid and of the "light" fluid respectively, thus 

V-5 

and 

V-6 
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The coefficient F3 describes the effect of the inlet flow variation 

on the pressure drops in the "heavy" fluid region, thus 

- --
~-

V-'l 

f, This coefficient, which is well known from studies of the transient 
t 
f~ 
': 

~ response of single phase flow systems, has always a positive value. ,- , 

The coefficient F4 shows the effect of the velocity perturbation in 

the "light" fluid region on the pressure drops in that region, thus 

V-8 
+ + -1,13 

It is of considerable importance to note that each pressure drop i8 

differentiated and is ';.]eighed therefore by a different velocity. This 

important result is a consequence of the integration of the momentum 

equation, i.e., of the distributed parameter analysis. W!i2! note that in 

the "lumped" parameter analysis the three pressure drops in Eq. V-8 would 

have been divided by:the same velocity, say by the velocity u) at the 

exit from the test section as is most often the case for analyses reported 

in the literature. 

The influence coefficien~F5 and F6 are given by 
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and 
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It can be seen from Eq. IV-69 and Eq.V~2 that these two coefficients account 

for the effect of the density perturbation on the various pressure drops in 

\ the ftllight!! fluid region. Note!) that the density perturbation depends on both 

Two observations are noteworthy. First, the coefficient FS 

shows that the effects of the velocity perturbation on the "light" fluid 

region,~' are weighed. by various velocities • This, again, is a consequence of 

'·the distributed parameter approach. Two, the exponential which multiplies 

the coefficient F6 indicates that the effects of the inlet perturbation are 

delayed by the delay time -Z:~-t:t • 

Finally the coefficient F
7

, defined by 

---. 
',' I' i 0 6~1t A~ 

~ - V'!"ll ...n.. 0 (I-A) nl~-A) 

shows the effect,of the space lag perturbation on the acceleration pressure 

drop in the H1ight"fluid region. It is important to notice here that in 

Eq. 111=33 and Eq. IV~l25 all other tenns-which arediffet"entiated with 

respect to the length cancel each other in the momentum equation for 
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the system. This result could not have been anticipated in a "lumped"" 

parameter analysis. Indeed, in several studies of boiling systems using the 

"lumped" parameter approach these terms were introduced and retained in 

the analysis. In view of the foregoing) the results and conclusions based 

I; \\ on such formulations can be considered as spurious. 
:,; 
Ii 
I) By introducing Eq. V-5 through V-II in Eq. V-4 the perturbed momentum 

I 
I 
ij 

l 
I 
I 
! 
I 
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I 
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,equation for the heated duct can be expressed by 

V-12 

-r 
.5- J'1,. 

Before deriving the characteristic equation it will be instructive 

to express the perturbations in Eq. V-12 in terms of the perturbations of 

the inlet flow and of the space lag. Taking into account Eq. IV-30 we can 

express Eq. V~12 as 

V-13 

o 

It can be clearly seen from Eq. V-13 that the dynamic response of the 

heated channel depends upon both the inlet flow perturbation and the 
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variation of the space lag. This latter effect is an example of a 

fluctuation which occurs inside the system. It was discussed in Sections 

11-4 and 11-7 that such fluctuation have a destabilizing effect. The 

destabilizing effect which the space lag variation has in combustion 

systems and in boiling systems has been already demonstrated in (48, 52) 

and (50, 51) among others. Equation V-4 shows that,'at supercritical 

pressures, the space lag variation has a similarly d~stabilizing effect. 

-Furthermore, the negative sign in the third term on the left hand side of 

Eq. V-13 shows the destabilizing effect of the inlet velocity perturbation, 

We have noted already that this effect stems from the density perturbation 

in the "light" fluid region, 

V.2 The Characteristic Equation 

In view of the definitions of the inlet velocity perturbation and'of 

the space lag perturbation given by Eq. 111-7 and Eq. IV-3~ respectively, 

we can express Eq. V-13 as 

s-.n. 
F. s 

+ 

-s (7.~--r,) 
_.1/.... __ fi e 
~- .n... 

V-14 
-SZ 

F.+~).n('-; )}=o 

From this relation we obtain the characteristic equation by noting that 

since E:. '* 0 the sum of the terms within the bracket must be equal to 

zero. Thus, after multiplying by (S-.n..) and after some, rearrangement we 
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obtain the characteristic equation for the heated duct: 

_ sl'J-r:,) 
-5 -a- { F,..,. Fla] + j [ Fi + ~ - .n.. ( F, 't fl.o ) ] - ..!l [ F 3 f F4 - Fs ] -.fL Ii ~ 

V-IS 

- n( }- :-5r
l
) f s""" F". + s r ftt -t F'7 -...!l F~ J - .!l [F., + ~ - F=. J } -=- 0 

It can be seen that the characteristic equation is a third order polynomial 

with two time delays. From the definitions of the influence coefficients 

we have the following relations for the various terms which appear in 

Eq. V-IS. 

R -t F1... =- Nf-t H'J, - ef- 7\ T < e,') (1-1:) V-16 

- - -
I)-t~ 

2~fol l.~f,L i'" r~ t.f~ I .0 PI\. 2Afz3 2..6 ~~ - t +- + +- V-17 
W a- ~1It, /A( "wi (~1) -tA3 

- -- -
Fs-

~f4, 
+ Df .. " /:) G'l} ~~~~ 

-t + V-18 
tA~ , lA~-- (\A~) Ci') 

--. - ---. -
F~ i"F'1-FS-

2~fo, 
~ 

24((',l. \'Jt.f~ I b.f. l ~f~~ ~~l~ V:-19 - + 'T + LA, ~ to !AI <lA~) -IA~ 1-13 
.' 

--- "-

F\f1 F7 
hf~ ·l·~~~l.J l';')11 ;6 f'1 

-t- i- +-
IA I""" < LA~> - ft{ I-~) !Ill 

V-20 

V-21 . 

----- ---. -
f~-tF7 -fs - A 4'" + 

~f~, a.fbl1 ~(J'J It 

< "'~) "r 
.nIL-A) IA~ -1113 V-22 

---, -
Ii Ilf~ 

+ 
~f~~ ~f'"l J a {jj, ~ 

- - + T 
Ci, lAl l-t7 -LfI, 
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It was discussed in Section 11-6 that the characteristic equation 

predicts the value of-S as function of the pressure terms given by Eq. 

I 

V-16 through V-22. In general s is a complex number S = Ct-tl.4) , the real 

part gives the amplification coefficient of the partlcular oscillation 

mode, whereas the imaginary part represents the angular frequency GJ 

Since the original perturbation of the inlet velocity was assumed to be 
!)t" 

of the form alA,: r. e J a given oscillating mode will be stable, metastable 

or unstable depending on whether the real part of S is less, equal or larger 

than zero, i. e ., whether ct.. (0, ~;O or _0) 0 . 

A general study of the flow behaviour entails an investigation of 

conditions leading to aperiodic as well as to periodic phenomena. The 

first pertains to the possibility of flow excursion whereas the second 

pertains to the onset of flow oscillations 0 Following the standard pro-

cedure we shall study aperiodic phenomena by considering the case of 

S = a withGu = 0. Again, following the standard procedure we shall study 

periodic phenomena by setting s=ic.v (a = 0, w#o ) in the characteristic" 

equation. Such an approach will enable us to determine the stability 

boundary which defines regions of stable and of oscillating behaviour in 

a stability map. In the study of the oscill~tory phenomena we shall con-

sider separately the case of high subcooling and the case of low subcooling. 

The stability problem at intermediate subcoolings will be considered in a 

separate· report. 
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VI. Excursive Instability 

VI.l Derivation of the Stability Criterion 

The study of excursive, i.e .. , of aperiodic instabilities is con-

ducted by considering the exponent S of the velocity perturbation to be 

real, i.e., by letting the angular frequency ~ of the disturbance be zero. 

It follows then from Eq. V-lS that for small values of S , we have the 

following relation: 

Vl-l 

whence after rearrangement: 

Vl-2 

which is o·f the form 

~ n'W 
SA;-u=O Vl-3 
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Equation VI-2 predicts the value of the exponent S in terms of the 

influence coefficientse Since the inlet velocity perturbation is of the 
.st"' 

form of J~ = te.. , and since the coefficient A'k is positive and exponent 

S is real, Equation VI-3 indicates that the flow will be stable, i.e., 

the disturbance will decrease with time if B* is positive, thus from 

Equation VI-2 

VI-4 

If B is negative then Equation VI-3 indicates that s will be real 

and positive, consequently any flow disturbance will be amplified 

with time resulting in flow excursions. Substituting the definitions 

for the influence coefficients given by Equation V-5 through Equation 

V-II we can express Equation VI-4 in terms of steady state pressure 

drops, thus - -'- -
Z..6fol 

2~'Y,). -t-/ d de'l + \ II 'i>., .. ~ ~?b~ :I)y i (I-.n. r.J 1--- 4- ;-
Ci, tA, lOlA, t... Vt~) V1''r101 IA;!> 

VI-5 
---. - --. -

-+-
L)?4.. .61b 'J . +- ill..} ~?3'f JrA 

Jl L£. ~ 0 _. +- +-
1-1, i:\, [AI ~I Jt( i-A) I 

1 This inequality can be cast in a compact form by means of the 

identities listed below: 
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Vl-6 

These relations can be easily derived from the definitions of the steady 

state pressure drops. 
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Substituting Eq. VI-6 through VI-12 in Eq. VI-5 we obtain the stability 

criterion: 

-
VI-13 

li 
Ii 
;! which can be expressed also in terms of the total mass 'flow rate W, thus 
il 
h 
fl 

~1 

i 

I 
-

VI-14 

For boiling systems, this simple criterion was first derived by 

Ledinegg (24) using a different approach, it was analyzed further in 

{25 through 47] and t51J. The results of this analysis show that this 

"Ledinegg instability" can occur also at supercritical pressures.. The 

significance of the stability crite~ion given by Eq. VI-14·, can be best 

analyzed by considering the steady etate 1.1?-vr relation fpr the he'ated 

ducto This will be done in the section that follows. 

VI.2 Significance of the Stability Criterion 

If, for simplicity, we neglect the effect of the gravitational force 

and if we express the steady state pressure drops in the heated. ci.uct in 
; 

terms of the total mass flow W, and of the total heat .input a ,we have 

the following relations: 

-- VI-15 
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VI-16 

, VI-17 

_W-(~_Q 
At.. rJi p AI.. 

ffl-it) /'[-
\.A- ~I l' 

l.t> VI-18 

-
l\f~~ = .K~{'~LAl2. = -ke Go';; = k~ ~ r U; -t-.n.(~-A>J = Vl-19 

At . . 

-
The total pressure drop for the heated duct is ohtained by adding 

Eq. VI-IS through VI-19, thus 

VI-20 

where the coefficients a, band c are given by 

VI-21 
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boX- f.t ~ (~)/1i~\ (I +fn - I (, - ~j») - 2 l),\ \.. - '+ f~ + e{-
VI-22 

~e '2.D 
I 

[ (dV- ) , *J1 T 
f-1 fii P A Ll.l -

\. 

c...'i(- ~~ 

~ 
2,D 4tc~ ~ (_~) + VI-23 - +-

2DA'\- t~ L. ~.{ r1 i if> 

It should be noted that Eq. VI-20 is applicable to subcritical as 

well as to supercritical pressures. By assigning the proper expression 

to' (r).tr/r)i ), which we obtaiD: from the equation of state, we can 

differentiate the process of boiling at subcritical pressures from the 

process of heat transfer at supercritical pressures. Thus, for boiling 

at subcritical pressures we have from Eq. IV~15 

VI-24 

whereas at supercritical pressures we obtain from Eq. IV-8 

Vl-25 

When Eq. VI-24 is substituted in Eq. Vl-2l, Vl-22 and Vl-2.3, then Eq. VI-20 

becomes the pressure drop relation first derivecl and discussed by 

Schnackenberg (25) and Ledinegg (24) for boiling systems. For super-

critical pressures Eq. Vl-20 was derived by: the writer(63) (see also 

Appendix B)" 
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It can be seen from Eq. Vl-20 that whether in boiling at subcritical 

pressures or in heating at supercritical pressures the steady state 

press'ure drop in the heated duct has the same cubic dependence upon the 

total mass flow rate. This important conclusion from analysis is indeed 

supported by the experimental data reported by Krasiakova and Glusker (18) 

for water in forced flow through a circular heated duct. Figure VI-I, 

which is reproduced from (18), shows that in boiling at subcritical 

pressures (P = 140 bars) as well as in heating at supercritical pressures 

(P = 226 bars) the pressure drop in the heated duct has the same cubic 

dependence upon the mass flow rate. It could be anticipated therefore that 

the system will have similar dynamic characteristics at these two pressure 

levels. This is indeed the case as it will be shown later. 

The significance of the stability criterion given by Eq. Vl- ,.4 can be 

best analyzed by plotting Eq. Vl-20 together with the pump characteristic 

on the same graph. Figure Vl-2 shows such a plot together with three 
1..:'t .• ~.:~.N.:..t . 

possible flow delivery characteristics, i.e., 1) constant pressure drop 

delivery system, 2) constant flow rate delivery system and 3) delivery 

system specified by the pump characteristics o The intersection of the 

pressure drop for the heated duct with the pressure drop curve of the 

delivery system determines the operating point of the system. The 

stability .criterion given by Eq., Vl-14 indic'ates that for some of these 

operating points the system may be unstable with respect to some small 

flow perturbations. In order to show this we shall consider each flow 

delivery system separatelYe 
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V1.2.1 Constant Pressure Drop Supply System 

The operating point for a constant pressure drop delivery system are 

indicated by points 1, 2 and 3 in Figure Vl-2. The stability criterion 

given by Eq. V1-1~ indicates that operation at points 1 and 3 will be 

stable whereas that at point 2 will be unstable. For example, if a points 

1 and 3 the flow is slightly increased the pressure drop of the heated 

duct increases, i.e.: the "demal'l:d" curve of the system increases above the 

"supply" curve of the del:h;8ry, con.sequent1y the flow will return to its 

original value. Similarly) if at points land 3 the flow is decreased 

the pressure drop of the delivery will-be above that required by the .. 

heated duct resulting in an increased flow and return to the original 

operating point. However, the operation at point 2 will be unstable with 

respect to either a flow increase or a flow decrease. If the flow is 

slightly increased at point 2 the external system supplies more pressure 

drop than that required to maintain the flow. Consequently the flow rate 

will increase until the new operating point is reached. Similarly, if the 

flow is decreased at point 2 more pressure drop is required to maintain 

the flow than is being supplied by the delivery system. Consequently 

the flow will decrease until the new operating point 3 is r~ached. 

The preceeding considerations can be expressed in a mathematical form 

by noting that for a constant pressure drop delivery system Eq. Vl-20 

reduces t.o 

'- Vl-26 

,:,,98-. 



which in view of Eq. Vl-20 becomes 

-- 1. d ~tl:P 3C: (,if' 
- 2 t:W-- r- Vl-27 

• -+ C. Q >0 aw- Q 

It can be seen from Eq. Vl-26 that flow stability requires an in-

creasing pressure drop with flow rate. This is indeed the characteristic 

of most flow systems. However, the negative term in Eq. Vl-27 indicates 

that for boiling systems as well as for systems at supercritical pressures 

the pressure drop may decreas~ with flow rate resulting in flO\\1 excursion. 

Instead of the stability criterion given by Eq. Vl-26 one can introduce 

the coefficient of stabil~ S, apparently first proposed by Schnackenberg (25J 

.,- and defined by 

-
$ Vl-28 

which in view of Eq. Vl-20 and Vl-27 can be expressed as 

Vl-29 , 

\-
Q 

LV 
+ 

where the coefficients a, band c are given by Eq. Vl-2l, Vl-22 and Vl-23. 

As observed by Schneckenberg (25) the stability coefficient S, defined 

by Eq. Vl-28,represents the per cent change in the pressure drop by a 1% 
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variation. in the mass flow rate. It can be seen from Eq. VI-28 and VI-26 that 

fGr stable flow S must be positive, thus 

$1 > 0 VI-30 

VI.2.2 Constant F'low Deliver.y Sys tem 

The operating point for a constant flow delivery system is given by the 

in.tersection of the pressure supply with pressure demand curves o It can be 

seen from Figure VI",,2 that for such a system 

VI-3l 

'whence Eq" Vlr>14 indi.cates that for such a system p.o flow excursions are possible. 

VI.2.3 Deli~ry Specified by Pump Characteristics 

The operating poin.ts for a system whose flow delivery is specified by 

the characteristics of the pump are shown as points 4, 5 and 6 on Figure VI-2. 

Using eX8.ctly the same arguments as those used in discussing a constant pressure 

drop de,livery system:! it can be shown that the operating points 4 and 6 are 

sta.ble whereas operating point 5 is unstable with respect to small flow 

-di.sturba.nces •. A.tthis latter point any flow perturbation will cause a flow 
i 
1 . ! excursion to either point 4 or to point 6. 
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VLe3 The Effects of Various Parameters and the Methods for Improving Flow Stability 

The effects which various pa.rameters ha.ve on the propensity for flow 

excursions can be evaluated by examing Eq. Vl-14, Vl-21, Vl-22, Vl-23 and 

Eq. Vl-27. It can be seen that the variation of any parameter which tends 

to increase the value of the coefficient b given by Eq. Vl-22 will have a 

destabilizing effect. Consequently, increasing the value of the exit pressure 

drop coefficient ~e is destabilizing whereas the flow can be stabilized 

by a high inlet pressure drop, i.e., by appropriate orificing~ In view 

of Eq. Vl-24 and Vl-25 it can be also seen that increasing the system 

pressure will have stabilizing effect whereas a decrease in system pressure 

has the opposite effect. Furthermore, the flow can be also stabilized by 

changing the pump characteristics a 

Before closing the discussion of excursive instabilities it will he 

instructive to illustrate the destabilizing effect of the compressibility 

of the fluid in the heated duct. It was discussed in Section 1.3 that the 

instability mechanism which is analyzed in tqis paper is based on the 

effects of time lag and of density variations in the heated duct. 

For simplicity we shall consider only the effect of the frictional 

I 

pressure drop in a system with zero inlet subcoo1ing, i.e., with AL-.1=o 

For sucli a system Eq. 111-20 shows that the space lag is also zero. The 
, 

frictLona1 pressure drop is given by 

Vl-32 
2"D 

where the mean specific volume ~~in the heated duct is obtained from 

Eq. IV-77, thus 

\ 

e~ Vl-33 
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If We insert in Eq. Vl-32 the expression for the average velocity <lA~) given 

" . 
- · 1 by Eq. IV-35 and since the space lag is zero, we can express the mean 

specific volume 'V"'-.. as 

V1-34 

or in view of Eq. IV-21 as 

f"1J f- + V1-35 

whence 

('~) tAt 'P 

I 

Q - V1-36 

Since Eg.' V1-32 and Eq. V1-35 show that both 6f and '\T~ qre 
. '. 

functions .of W we can express the stability coefficient defined by 

Eq. V1-28 as 

2 -t 
V1-37 

whence from Eq. V1-36 we have 

I 

1- L (t)~~ ~~ V1-38 
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is given by Eq. IV-15 or Eq. IV-8 depending on whether 

we are interested in the subcritical or in the supercritical region. 

It can be seen from Eq. VI-37 and Eq. VI-30 that for a system where 

the me~n specific volume does not depend on the mass flow rate the flow 

will be stable. For such incompressible flow system the coeffi.cient of 

stability S has a value equal to 2. This is also the maximum value of S 

because when the fricition factor f in Eq. VI-32 is a function of the 

Reynolds number then Eq. VI-28 shows that S will have a value less than 

two. For example) for laminar flow it will have a value equal to unity. 

For a boiling system at subcritical pressures or for a process of . . 

heating at supercritical pressures Eq. 'VI-38 shows that the value of S 

can become negative because of the compressibility of the fluid. For 

such systems Eq •. VI-30 shows that the flow may become unstable. 

In closing it should be emphasized that the density effect per se) 

can lead to excursive flow instabilities. Oscillatory flow instabilities 

results from a combined effect of time lag and of density variation. This 

will be analyzed in the two chapters that follow. 
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VII. Oscillatory In~tabil~ty at Low §ubcoolill.g 

VII .. 1 The Characteristic Equat:Jon ang the Stability Map 
) . 

In this chapter, and in the following one we shall investigate periodic, 

i.e", oscillatory f.low phenomena. For this purpose we shall assume that the 

exponent S of the inlet velocity perturbation is given by S = i. f.AJ where the 

angular frequency GJ , is a root of the characteristic equation, i.e., of Eq. V-15. 

In this chapter we shall consider the case of low subcooling, whereas, in the one 

that follows we shall consider the case of high subcooling. 

For the case of low subcooling the characteristic equation, i.e., Eq. V-15, 

can be si.mplified by recalling that for low subcooling the time lag Lb, given by 

Eq. 111-19 will be short.. Note, that the total transit time T~- "t: 1 , which also 

appears in Eq •. V-15 need not be short. This can be seen by considering Eq. IV-63, 

which can be also expressed as: 

VII~2 

.Jl !AI (1- {) 1 !~ -1:, 1+ 

or as 

'\ -
VII-3 

'" 
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Consequently, for short a space lag t:. , and a short time lag !'D, the transit 

time may be long for suft}.ciently long ducts and/or for low inlet velocities. 

It can be seen from Eq. VII-3 that the effect of time lag will be small if 

VII-4' 

which for subcritical pressures implies 

~\ 
VII-5 

~ ¥: . 

Jhereas, at supercritical pressure this inequality 'implies: 

(\ 
VII-6 

When the time lag ~ is short, then in Eq. V-15 the exponential term 

which contains -r b, can be expanded and the charac teris tic equatior reduces 

to 

S ... ~ F,1" F"l, -- F'z rtl:"b) 'T ~ ~ F3'T F't -.11..( r,+Fl..) -.J-l. !;~( 1=4;- r='7 -.sL F"L.) } 

- s tr; ~ - "'C, ) 
- "(l. ~ I=~ + F£t - Fs - n LID (F~ + 1=7 - I::~- ) ) - .!L r ~ e = 0 

VII-7 

This equation can be cast in ~ dimensionless form .by defining a dimensionless 

exponent. 

VII-8 
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using this new variable) Eq. VII~7 can be expressed as 
,.) 

i ~~ 
" .'~ . \..J L. \j - '! 

!) + C4 J .,... b + ce =- 0 VII-9 

• 

where the dimensionless coefficients a) band c are given by: 

Q ;::. L1 [f F'!, .... t=''f -:-.n. ( Pi -f/i ) - 1l rb (F'j + h7 -J].. h. ) 
) 1=/ + I=~ - {:L.n rt:. 

VII-IO 

} 
VII-II 

VII-12 

t 
l-, 

and where the total transit time b. 1: is given by Eqo VII-7. The coefficients 

a) band c can be expressed also in terms of the pressure drops) thus 

-
+ 

1- i ~ ..-, --. ....... 

6 JL ~ 1: 2A~101 lA ~." +\Q~I + .11'" _ AP,,! + 
.6 P3'1 

=- - Mf-i ~'t(I- ,S}"tL) ~ 
t-- -t;;', 1) ~I <L1.~) t.t,., 1.4~ VII-14 

-...., - --m~[ A~ ~ f"3.; Af~" A'?i~ 

J1 + < \.\~> + -..n.l~-A ) 
"''''''' 

\A) 

+ 
VII-15 

, , 
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Equation VII-9 is a second order exponential polynomial with one time 

delay~ Stability maps for such polynomials have been recently presented by 

Bhatt and Hsu [65", 641. One such map is shown in Figure VII-I, it is in 

the c-b plane with the coefficient "a" as a parameter. The lines for which 

the coefficient· "a" is constant are stability boundary curves. For example, 

for given values of the coefficients "ob';' and "a", the stable region of variation 

for the coefficient "c" is shown by the line segment AB. The segment CD is another 

stable range for constant values of "b" and of "a". 

Figure VII-l is the stability map which can be used to differentiate 

the regions of stable operation from the region of unstable, i.e., of oscillatory 

flow in the heated duct. However, because of the complicated nature of the 

coefficients "a", "b", and "c" which appear on this map, it is rather difficult 

to discuss and analyze the effects of the various parameters. It is desirable, 

therefore, to simplify thE'! characteristic equation in order to obtain simple 

stability criteria. This will be done in the section that follows by neglecting 

the inertia terms in Eq. VII-7. 

VII.2 Stability Criterion for the Case of Small Inertia 

VII~2 The Characteristic Equation 

If we neglect the inertia terms Fl and F2 in Eq. VII-7, the 

characteristic equation reduces to its simplest form given by 

where the: coefficients A and B are given by 

F~ ,. F\/ .... r=,s- - . .n.-CJ. ( F" l' F7 -/= r) 1. 
F ~ + F'I - .11"e", (F '1-+ r." 1 ) { 

. o. 
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VII-18 

It is important to note that a characteristic equation of the form of 

a first order exponential polynomial with one time delay describes the onset 

of "chugging" combustion instabilities as shown by Crocco and Cheng (48). 

Since Eq. VII-16 is of such a form, we can use the results of Crocco and Cheng k4~] 

.-' 

to analyze the flow stability in this problem. The difference between the present 

problem and that of combustion is the physical meaning of the coefficients A and Be 

In this proilem they depend on various pressure drops in the system which were 

obtained from the momentum equation. In the combustion problem the coefficients 

are obtained from the continuity equation and depend, among others, on the process 

of combustion. 

We note also that the results of Stenning (62J can be expressed in terms 

of a characteristic equation of the form of a first order exponential polynomial 

with one time delay. However, since Stenning (62) did not formulate his analysis 

., * 
. of boiiinginstabilities in terms of the momentum equation, the coefl.icients in 

his characteristic equations do not depend upon the pressure drops. 

VII.2.2 Unconditional Flow Stability 

It was shown by Crocco and Cheng (48) that no matter what the value of 

the time delay At: may be the flow will be unconditionally stable if the co-

efficients A and B in Eq. VII~16 satisfy the following inequality 

... 

VII-19 

* The problem was formulated in terms of the contin~1ty and of the energy equation. 
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Because of its importance, we shall define this ratio as the Stability Numb~Ns. 

In view of Eqo VII-17 and VII-18, it can be expressed as 

N~ - F ~ -+ F\, - F~- - 11"L", ( F", 1" (:7 - 1="5) 

F~ 
/1 

This stability criterion can be put also in the form of 

VII-20 

VII-21 

whence upon inserting the values for the influence coefficients in Eq,. VII-27 

we obtain the inequality which must be satisfied for unconditional flow stability~ 

thus 

+ +-
VII-22 

- -
Jl f>l.~ (-l- UI) LI ;~~ ( / ~ ~, J /1 r"3 y (/ - ~ ) ttl <IA~) - ~-n, !it, 1.43 

---., 

-.fl"l:b (llt. + 
-. 

.Q 1'11 :~1~) > 0 Af>l> 
-t 

JL (~-i\) (l.i~) ""l'1>l>I "'} 
This criterion clearly indicatesot~e destabilizing effect of the pressure drops 

0' 

in the "light" fluid region and the stabilizing effect of the pressure drops 

in the "heavy" fluid region. 

For once .. through systems, when the acceleration and the g,ravitational 

terms can be neglected, Eq •. VII-22 reduces to 
-~ --. - - lIf3~ (\_~ )_ 16(;" 2 ~q 11- ) 6f4 h!»(I_~)_ t- -\- .-

\AI ~I I() lA, lA, (I-t~) ~I , t.(~ VII-23 
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If we now approximate <l.1~ ') by \..1 3 we can express Eq. V11-23 as 

- ---. 
~~ -t A?lt;. - - -........, 

2~r,l 1AfL, I 1A~-lAl Jlrb ( 1~f'1.3 T~P3'f) > \) 2.1 f", 
T + -- - -iAl !.A, '0 IA I t\i \"f~ U3 

VII-24 

-j ! Defining by A f I- the sum of the pressure drops in the "heavy" fluid region. 

} 

'- i 

j 
I 
i 
I 
I 
i 

I 
j 
1 
j 
I 

I 
I 
I 
! 
I • ~ 

, 

I 

-
VII-25 

-
and by 6"?) the sum of the frictional and of the exit pressure drops in the 

"light ll fluid region 

we can express 

~ 

-U-P+ -
~r~ 

whence 

Eq .. VII~24 

-
lAo!> 

~-iAl 
'-~ 

lA, +Jl{ ~-A) 

n (~-A) 

VI1-26 

as 

VI1-27 tAl ) n '"to, ) - -
tA,!>-LA I 

----...n r~ '\11, VI1-28 

.Il(I-A) 

Inserting now the expressions for the characteristic reaction frequency Jl., 

for the time lag £:&, given by Eqo IV-23 and 111-19, respectively, we obtain 

V11-29 
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This inequality can be expressed also in terms of the total mass flow rate and 
I 

of the total heat flow a • Thus 

, 
Again, we differentiate the process of boiling at subcritical pressure from the 

process of heating at supercritica1 pressures by using the appropriate equation 

of state, thus at subcritica1 pressure we use Eq. IV-lS, ioe., 

VII-31 

whereas at supercritica1 pressures we use Eq. IV-8, i.e., 

VII-32 

The implication of Eq. VII-30 will be discussed in Section-. VII .. 3. 

VII~2.3 Conditional Stability 

Following again Crocco and Cheng [481 we can determine the relation 

between the critical transit time b.-c..t,. and the critical frequencies ''i.Jc,. correspondil l' 

to neutral oscillations. Such a relation is obtained by separating the real and 

imaginary parts of Eq. VII-16, thus 

whence 
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and 

VII-35 

where the coefficient B) given by Eq. VII-18) can be expressed in terms of the 

pressure drops thus 

VII-36 

where 

----- ---, -
Fv 

6f(A t1fbj ~f2.3 AP~~ - -4---. +- + + - tt, lA, ct; ~ VII-37 

and - - -
~ t ;=; - .n t:b ( Fvr F.,) = 2~fdJ l.6f,J, 'l~i.: I ,i" l.il ~j 2~~'f r t- -+ -1- + lA, \.1, 1]1.#1 t~t"" <41,> 1A3 

- -

VII-38 

-

The stability number Ns' given by Eq. VII-2~becomes when expressed in 

terms of the pressure drops: 

--
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The critical frequency We.., is obtained from Equation VII-34 and Equation 

• 
VII-:35, thus 

'. VII-40 

whereas, the critical transit time IJ 1:.. is given by Eq. VII-35 and Eq. VII-40, 

thus 

VII-4l --

As discussed by Crocco and Cheng~ [48\ if the inequality given by 

Eq. VII-19 is not satisfied, then stability is still Eossible if the angular 

frequency of the perturbation and the transit time satisfy the following 

• 1 • t· l.nequac.l. l.es 

VII-42 

and 

VII-43 

The system is intrinsically unstable if the directions of the inequalities 

are reversed. Furthermore, when 

VII-44 

then Eq. VII-16 has an oscillatory solution with an angular freque~cy c,..;,. 
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The preceding results can be plotted against the stability number N , 
s 

given by Eq. VII-20, i.e., by Eq. VII-34. For this purpose we shall define 

also the period of the oscillation by 

T = VII-45 

We can form now the ratio of the critical transit time to the period 

and express it as function of the stability number N , thus from Eq. VII-45 
s 

and Eq. VII-4l we obtain 

L 21i 
VII-46 

The critical angular frequency can be also expressed as functions of 

N , thus from Eq. VII-40, 
s 

VII-47 

Similarly, by means of Eq. VII-4l we can express the critical transit 

time as function of N , thus s 

- I 
VII-48 

Eq. VII-48, VII~47, and VII-46 are plotted versus the stability number N , in Figure 
s 

VII ... 2. The significance of this map is discussed in the following section. 
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\ VII.3 Effects of Various Parameters and Methods for Improving Flow Stability 

The effects which various parameters have on the propensit;:y to induce flow 

oscillation at low subcoo1ing can be evaluated by examining.Eq. VII-22 or 

Eqo VII-30. It can be seen that the variation of any parameter that tends to 

decrease the positive value of the left hand side of these equations has a 

destabilizing effect.. For example, increasing the various pressure drop terms 

in the "light" fluid region has a destabi'lizing effect. Similarly, an increase 

of subcooling tends to destabilize the flow o Vice versa, an increase of the 

inlet pressure drop or a change of the pump characteristics will stabilize the 

flow. 

Although the preceding results have not yet been tested against experimenta.1 

data, the form of the simplified stability criterion given by Eq. VII-29, seems 

to be correct. This statement is based on a comparison of Eq •. VII-29 with the 

empirical criterion for predicting boiling instabilities recently proposed by 

Serov and Smirnov (66). In the nomenclature of this paper, their criterion is 
r: •.• 

given by . 

,'VII-49 

where a and bare two constants to be determined from experiments, D is the 

diameter of the pipe; V 0 is the volume occupied by the stearn and (oI"i I~(p) is 

the varia.tion of the specific volume of the steam with pressure. Consequently, 

the secon4 term on the right hand side of Eq. VII-49 represents the effect of 

compressibility. This effect was neglected in the present :analysis. 

It was reported by Serov and Smirnov(66) that 2q •. VII-49 was successful 

in correlating data and predicting the onset of flow instabilities in boiling of 

water at pressure of 30, 50, 70 a~d 100 atmospheres. 
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If we neglect the effects of compressibility in Eq. VII-49 and compare it 

to Eq. VII-29 and VII-31, it can be seen that Eq. VII-49 is incorporated in 

Eq. VII-29. We note also that this latter equation is a simplified form 

of Eqo VII-23; i.e. of Eq .. VII-9 which are therefore more general and 

complete .. 

Further experimental evidence that gives support to the form of 

Eqo IV-29 is shown on Figure VII-3 which is reproduced from the paper 

by Platt and Wood lio/. It can be seen from this figure tha,t eithet' 

increasing the power input and/or decreasing the mass flow rate has a 

destabilizing effect. The same results are predicted by Eq. IV-29. 

Perhaps the result of greatest significance revealed in the present 

investigation is the similarity between the characteristic equations for 

predicting "chugging" combustion oscillations and the characteristic 

equation for predicting low frequency flow oscillations in heated ducts 

at near critical and at super-critical pressures. Since it is well 

known (see for examp1e[48) ) that "chugging" combustion instabilities can 

be stabilized by an appropriate servo-control mechanism, the results of 

this investigation indicate that low frequency flow oscillation at near 

critical and at supercritica1 pressures may be also stabilized. This 

important conclusion is demonstrated on Figure VII-2 which shows also the 

effect of various parameters on the propensity toward oscillatory flow. 

It can be seen on Figure VII-2 that even when the stability number 

Ns is less than unity, the flow may be stable if the frequency of the 

inlet perturbation is higher than the critical frequency iJ L. Simi1a.r1y, 

the flow can be stable if the total transit time is shorter than the critical 

one. The values of /.J L and of (1:1;)-7:,)" :: ~'!( are plotted in Figure VIII-2 

in terms of the stability number Ns and of the coefficient B given by 

Eq. VII-39 Eq. VII-36 respectively. 
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.. The effects which the variations of the various parameters have on 

the flow stability can be evaluated from Figure VII-2 by considering 
Jr, ." •••. ,~- ........ 

whether the variation results in an increase of the stable region. For 

example, it can be seen from Figure VII-2 that for a constant value of Ns 

an increase of the delay time has a destabilizing effect because for 

sufficiently long delays A 1.. will become larger than h"l t... We note that 

this quantitative conclusion is in agreement with the qualitative des-

cripti.on of the destabilizing effect of the time delay presented in Section 

11-4. It can be also seen from Figure VII-2 that increasing the frequency 

of the inlet perturbation at a constant value of Ns ' has a stabilizing 

" effect because for sufficiently high frequency CJ will become 'larger 

than c.Jc.. 0 Furthermore, Figure VII-2 shows that an unstable flow; i.e., 
• 

a flow for which /,Jt.wc. and ~t ') 6"Cc, can be stabilized by increasing the 

value of the stability number Ns -

We close this section by observing that the foregoing conclusions 

and results are new and have not yet been verified against experimental 

data. If confirmed, then the results of this study provides a method 

whereby stable operation can be insured on an intrinsically unstable 

region. 

« 

.. 
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I VIII. Oscillatory Instability at High Subcooling 
1 

VIII.l The Characteristic Equation and the Stability Criterion 

We shall consider now the case of high inlet subcooltng which implies a 

-long time lag L4and a long space lag A • For such system Eqs VII-3 indicates 

that the transit time and the time lag will be of the same order of magnitude. 

Since both time delays are long, we shall neglect the exponential terms in the 

characteristic equation given by Eq~ V-15, which reduces then to 

VllI-l 

IJ ='0 

• 

which can be rearranged and expressed as 

~ S1- ) 
S + I 1=1 i F~ - Jl ( F,-tF:c ) -It F,.-7 

rl t'FI- 1 VIII-2 

"~'\ 
" - s 1 

.Q [ F,;- F~- Fs:. - ll='I;-F1 -.fl. F~) 1 Jl~ f F.rtF7 -Fr] + =0 
. 1-I-tF~ _ \ 1=, -+ r'L-\: . , 

\ . 
~ 

where the. sums pf the influence coefficients are related to the pressure drops 

by the following relations 

VIII-3 
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-- VIII-4 2or2.") ~~3Y (~~ )f 
q.~ (.J~t t k\) - (;:)p err ~\-;- ;- -

(IA~) c; Al- A( 

-
T 'il.DP~ 1 !=~ + Fy - Fs- - ( f:"y + F7 - J1 ii...) 

2..o~JI 2~~tl 
-

Cij t VIII-5 
LA, '0"', 

- - -
·~r~~: 6 ~t. 2.LI~2..:?> 2 llfS'1 

] + ( cl(T-~ 4l M) '1- -I- ;-

J1tl-A) ( 1.4 1) iA~ (Ji p At... ..... ' 

VIII-6 

It can b~~een that the characteristic equation is a cubic equation of the 

form of 

VIII-7 

where the coefficient" a;, b, c and d are given by the correspondiI'l;g terms of -
Eq. VII-2. 

The problem of determining the conditions for neutral stability is solved 
\. 

again by substituting S = (.. c....J in Eq. VII-7. 

Thus VIII-8 
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whence upon separating the real and the imaginary parts we have 

7 

'l... C. c.v ::-

and 

b 

VIII-9 

VIII-IO 

Con~equentlyfor oscillations to be possible the coefficients a,b,c and 

d in Eq. VII-9 and Eq. VII-IO must satisfy the following r.elation,: 

c d 
-a... b 

VIII-II 

'lwhence, the values of the influence coefficients must be such as to satisfy the 

,following expression: 

F~ -rF'I -Fr - (n,+F7 -.n.~\.) 

$ (F, -tF,..) - VIII-12 

It can be seen from Eq. VIII .. 4 and Eq. VIII-6 that, unless the effects 

of inertia or of gravity become dominant, the right hand side of Eq. VIII-12 

is a positive quantity. Consequently, Eq. VIII ... 12 indicates that 

oscillation can occur only if 

VIII-13 
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The refore, the flow will be stable if 

VIII-14 

In view of Eq. VIII-5, this inequality can be expressed also as: 

2..0"'1-

lAl VIII-15 

--. 
Ll 'Pbj ~Pt\ .6f'~ 

+ -- T 
IA~ Jl((-A) ~~ 

'> 1 

For oscillatory flow, Eg. VIII-13 and Eq. VIII-9 indicate that the angular 

frequency will be given by 

r ,"'-::. 1 c. 
I...N -;:-

cA - VIII-16 
b 

which', when expressed in terms of the influence coefficients, becomes 

/ , 

-. -
VIII-17 

It should be noted, again, that the values of these influence coefficients should 

satisfy Eq. VIII-16, ioe .. Eq. VIII-12. 
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-VIII.2 Effects of Various Parameters and Methods for Improving Flow Stability 

The effects of the various parameters can be evaluated by examining the 

inequality given by Eq. VIII-IS. It can be seen that any variation which tends 

to increase the value of the left hand side of this equation will have a stabilizing 

effect. Thus, the flow can be stabilized by increasing the pressure drops in 

the "heavy" fluid region, whereas it will be destabilized by increasing the 

pressure drops in the "light:!'fluid region. 
. 

The effect of subcooling can be evaluated by comparing.Eq. VIlI-l4 and 

Eq .. VTII=IS with Eq .. VII-20 and Eq .. VII-39. Since the velocities in the "lightU 

fluid region are higher than. the inlet velocity it can be seen from such a 

compar'ison that the inequality applicable at high subcoolings, i.e. Eq. VIII-14 

• . \ 
is less restrictive than that corresponding to ,low subcoolings, i .. e., than 

,Eq. VII-20.. Co~sequently, the flow is more s table at ~igh subcoolings. 

However, sinceEq. VII-20 indicates also' that an increase in subcooling destabilizes 

the flow, we conclude that this destabilizing effect must go through a maximum 

at inte'rmediate subcoolings. For boiling systems, this l'.,onclusion is in agree-

mentwith the experimental results of Gouse (67) who was app~rently the first 

to notice this ~ffect •. At super critical pressures, experimental data,which 

... could be used to test this conclusion, are not yet· available. 
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IX. DISCUSSION 

The instability mechanism investigated in this paper was based on the 

destabilizing effects of time lags and of density variations in the heated 

duct.* It was shown that, in the near critical and in the supercritical 

region, these destabilizing effects can induce flow excursioq.s as well as 
" 

I 

i: flow oscillations. 

The characteristic equation, i .. e., Eq. V-15, which predict~) the onset 

of these instabilities is given bya third order exponential polynomial 

with two time delays. Because of its complex nature this equation was not 

solved at this timeo Instead, simplified stability criteria were sought 

and derived by assuming that the inlet subcooling was either low or high. ,. 

This approach seemed preferable for several reasons. 

j First, the simple stability criteria are more instructive and helpful 

for gaining an understanding of the essential nature of the instability. 

Two, the result shows that the dominance of a particular parameter re-

suIts in a particular angular frequency of oscillations (see Eq. VII~40 and 

VIII-17). Consequently, the cause of instability can be determined from a 

trace of the flow oscillation. 

*Other mechanisms which may induce flow osci,llation were discu~sed in 

1i 
Section 11-7. 

.' I 
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Finally, simplified stability criteria such as Eq. VI-20, VII-22, 

VII-42 and VIII-IS are more amenable to a qualitative study of the effects 

which variations of the various parameters may have on inducing or on pre-

venting flow excursions and/or flow oscillations. Indeed, only if the 

results from such a study are in agreement with experimental observations, 

a detailed quantitative solution of the more complicated characteristic 

equation can be justifiedo 

It was discussed in Sections VI-2, VII-3 and VIII-2 that the pre-

dictions based on the simplified stability criteria are indeed in qualitative 

agreement with the experimental datae This agreement warrants therefore a 

more complete study of the characteristic equation together with a quantita-

tive comparison with the expe~imental data. 

Last but not least the simple criteria are most useful in indicating 

the improvements and changes in the design or in the operation of the system 

in the near critical and in the supercritical pressure region, could be 

stabilized by an appropriate servo-control mechanism. Whether this important 

~ conclusion is indeed correct remains to be shown by future experiments. 
~ 
~ 
~ 
i1 
II 
1\ 
h p 
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Appendix A 

The Near-Critical Thermodynamic Region 

The success of an investigation concerned with predicting or in-

terpreting the behaviour of a thermo-dydraulic system depends on the 

availability and on the accuracy'of data giving the values of thermodynamic 

and transport properties of the fluid in the region of interest. It is 
. . 

the purpose of this appendix to summarize, briefly, the status of present 

understanding of thermodynamic phenomena that take place in a region near 

the critical thermodynamic point. For'additional d.iscussion, the reader 

is referred to the extensive reviews by Rice (AI) and by Hammell (A2). 

Consider a fluid at a pressure slightly above the critical pressure 

flowing through a heat exchanger. If the temperature of the fluid at the 

entrance is considerably below the critical tempera'ture, ,i. e. , T« T , the 
c 

fluid will have a density close to that of a liquid whereas at the exit, 

if the fluid temperature is considerably above T , the density will ap
c 

proximate that of a perfect gas. Consequently, in passing through the 

heat exchanger the fluid will undergo a change of properties from a,· liquid-

like fluid at the entrance to a gas-like fluid at the exit. Since the 

properties. of the fluid will affect the performance of the, system is 

becomes necessary first1to examine the nature of this change and then to 

express it quantitatively. 

At subcritical pressures the presence of two phases is distinguished 

by a difference in density and by the existence-of an interface between 

the phases. At supercritical pressure~ such a distinction cannot be made 

becau'Se at these pressures as well as at the critical one the interface, 
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the heat of vaporization, as well as the surface energy, all vanish. 

There is no general agreement as to the structure of the medium and 

of the mechanism of phase transition in the critical and in the supercritical 

region. Different explanations and descriptions are adv·anced by different 

authors. 

Some authors like Rosen (A3) and Semenchenko (A4) analyze the thermo-

dynamic characteristics· of a medium in the supercritical region by assuming 

an equation of state like th~ Van der Waals' or the Dieterici equations. 

Hirschfelder~ Curtis and Bird (AS) describe the fluid in the neighbor-

hood of the critical point as consisting of a large number of clusters of 

molecules of various sizes. The system can be idealized by assuming that 

the density can be described by a distribution function which has for its 

two limits the densities of the two phases. The fluctuation in density, 

which can be expected from the theory of fluctuations, becomes very large 

in th.e vicinity of the critical point. These large fluctuations and the 

formation of molecular clusters in the neighborhood of this point result 

in a large increase of the specific heat at constant volume. 

Mayer and co-workers (A6) propose a theory of condensation based on 

the cluster theory of imperfect gases from which they predict the existence 

of an anomalous region above the temperature of the usually observed critical 

point. This region extends up to the highest isotherm for which (d P/)v)T' 

has any~lhere a zero value. In this region, isotherms exist having no vari~ 

ation in pressure over a finite density range, but having at all densities 

continuous derivatives with respect to pressure. Various aspects of this 

theory are discussed further in (AS). 

n'va-) t - po.,. S ? t - " f} , F= ~ .' • " 
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A great number of authors distinguish two phases in the supercritica1 

region: a heavy, liquid-like phase and a light, gas-like phase. The 

difference between their results stems from the different approaches used 

to locate the boundary between the two phases and from the different 

descriptions of the characteristics of the phase transition. 

In a preceeding section we have discussed already Goldman's (A7-A8) 

descriptions of the supercritical region and of the similarity between the 

heat transfer and flow processes at supercritica1 pressure and those that 

take place at subcritica1 pressure during the process of boiling. However, 

Goldman did not formulate, quantitatively, the problem nor did he say how 

and where to locate the boundary or the region between the liquid-like and 

the gas-like phase. 

Following Goldman, Hendricks et a1 (A9) consider "boiling-like" 

phenomena at supercritica1 pressures and, in analogy with boiling, they 

introduce a specific volume for the fluid of the form of Eq. A1. 

X 
2 

(A-I) 

In place of the quality they introduce a weighting function for the heavy 

and light species. However, no reference is made in their paper as to how 
;~ 

to determine, quantitatively, this distribution function. 

In numerous textbooks (A-10) among others, the boundary between the 

liquid and the gas in the supercritica1 region is taken to be the critical 

isotherm. Other authors like Thiesen (A-11), Trautz an.d Ader (A-12) 

among others take the critical isochor for this boundary and consider. it as 

the extension of the saturation line into the supercriticeL1 region. 
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In the subcritical region various thermodynamic properties such 

as the specific heat, the compressibili~y, the coefficient of thermal ex~ 

pans ion and others change discontinuously or reach a maximum value at the 

coexi.stence, i.e., the I aturation line. This line can be therefore looked 

upon as the locus of points for these discontinuities or maxima. Conse-

quently, numerous authors consider the extension of the saturation line 

into the supercritical region to be the lirie which is the locus of points 

where the thermodynamic properties listed below reach a maximum: 

')2i =( dCE 
) T =( ;:~ L = 0 

'Or t>1> '0 p 
(A-2) 

( ~2iJ ~ ;TCE)p 0 = = 
OT2 

p 
(A-3) 

C)2 i )= 0 
t"() p2 

'T 

(A-4) 

~2u = (PCv) = ('d2p) 0 = t""()V')T 'I) v ro T2 
T v 

(A-5) 

(tV2U) = (~Cv) = 0 
roT2 "1> T 

v v 

(A-6) 

Several authors (A-13 - A-17) assume that one single line represents 

the locus of points of all these maxima. This is indeed the case for sub-

critical pressure where the saturation line is the locus for all discontinuities. 

However, the experiments of Kaganer (A-IS) and of Sirota and co-workers (A-19) 
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show that this is not the case but that for a given supercritical pressure 
,.~ ~ 

different thermodynamic properties reach a maximum value at different 

temperatures. Thus, for each of the thermodynamic properties, i.e., 

spe~ific heat c , the coefficient of thermal expansion, etc., there is a 
p 

different line which represents the locus of the maxima. This raises the 

question which of these lines can be regarded to be the extension of the 

saturation line in th~ supercritical region, i. e., which of these li.nes can 

be considered as the boundary between the liquid-like and the gas-like 

phase. 

Plank (A-20~ and Semenchenko (A~21) consider the line along which 

(A-7) 

to be the extension of the saturation line in the supercritical region. 

Eucken (A-13),.however, takes the curve represented by Eq. A-2 for this 

extension; whereas numerous authors (A-B, A-9, A-22 - A-25) take Eq. A-3. 

Of particular interest to the analysis of this paper are the results 

reported in (A-14, A-17, A~19 and A-16) which will be therefore discussed 

in more detail. 

Sirota and co-workers (A-19) discuss t;'e transition phenomena at sub-

critical and supercritical pressures in tetms of the Frenkel's theory of 

heterogeneous fluctuations (A-14, A-26). According to this theory in any 

gas at subcritical temperature heterogeneous fluctuations result in the 

formation of molecular complexes which canbe'regarded as finely dispersed 
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nuclei of a phase within a homogeneous phase. In approaching the saturation. 

line the fluctuations increase and "micro-heterogeneities" appear in the 

macroscopic, homogeneous phase. This marks the beginning of the "pre-transi-

tion region" which is characterized by the fact that various thermodynamic 

properties exhibit variations which become more pronounced as the saturation 

line is approached. This accounts for the anomalous effects of the proper-

ties in the vicinity of the saturation line. At the saturation line the 

properties change in a discontinuous fashion which is a characteristic of 

phase transitions of the first order. As the pressure is increased the 

effect of heterogene9us fluctuations increases whereas the effect of phase 

change, i.e., of the discontinuous change of properties becomes less 

important and disappears at and above the critica~ point. Since the change 

of phase at subcritical pressure is characterized by an obsorption of energy 

and an expansion of volume the transition at supercritical pressure should 

be characterized by the maximum values of c and of the thermal expansion, 
p 

i.e., of ( r;;v/ ') T) 0 See Figures A-I and A-2 which show these properties p 

for oxygen at supercritical pressures. However~ the authors of (A-19) show 

from experiments that at a given pressure the two maxima do not occur at 

the same temperature. The values of the maxima for C are correlated by 
p 

c - c 9.05 Pmax Pg _----:= ____ -'"1_.... = ------- + 1. 30 
'R 

• 

P .' 
P . crJ.t 
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which is valid for non-polar liquids when p/pcrit 105. In the above 

equation, R 

ideal gas. 

is the gas constant whereas c is the specific heat for an 
Pg 

This equation shows that the value of the maximum c decreases 
p 

as the pressure is increased. The temperatures where these maxima occur 

were correlated by 

1 
(A-9) 

This temperature, denoted here by T ,is often referred to in the literapc 

ture as either the pseudo-critical temperature or the transposed critical 

temperature 0 

. ~. 
Both Sirota (A-19) and Kaganer (A-18) show that the locus of the maxi-

mum values of c along isobars, 1. e.~, Eq. A-3, is the extension of the sat
p 

uration line in the supercritical region. 

Urbakh (A-17) also considers the effect of heterogeneous fluctuations 

at subcritical and supercritical pressures. He shows that as the temperature 

is increased and the surface tension decreases the heterogeneous fluctuations 

increase and reach a maximum at the critical point. The location of the 

critical point depends on the surface tension; moreover, it can be changed 

by introducing surface active agentso The critical point qivides two regions 

which Cdn be distinguished by the nature of the phase transition. At sub-

critical pressure the transition is characterized by the discontinuities 

of the properties and by the presence of a macroscopic second phase within 

the originally homogeneous phase. At supercritical pressures the second 

phase is finely dispersed in the form of clusters. Furth.ertnore.~ in this 

r~gion the properties do not change discontinuously but vary in a continuous 

way. At subcritical pressures the effect of heterogeneous fluctuations 

becomes evident in the "pre transition region"as a variation of properties 
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in the vicinity of the saturation line. This is shown in Figure A-3 which 

is the volume-temperature plane for oxygen. At a subcritica1 pressure, 

say at P = 0.9, the line l' - 2' is the phase transition of the first 
r 

order occurring at a constant temperature. The effect and magnitude of 

the fluctuation in specific volume in the two pre-transition regions is 

sho=n as the l1.°nes 1 - l' and 2 - 2'. Th f1uct atl.°on 1 l' Os us d by the w e u .. - 1. cfl e 

" formation of vapor nuclei in the pre-transition region of the liquid. 

Similarly, 2 - 2' are the fluctuations caused by the formation of liquid 

nuclei in the pre-transition region of the gas. It can be seen from this 

Figure that at low pressures in the subcritica1 region the effect of 

fluctuation is negligible when compared to the phase transition of the 

first order. For example, at P = 0.5, they are almost absent. Increas
r 

ing the pressure increases the effect of heterogeneous fluctuations which 

reach a maximum at the critical point. At this point and above it)the 

phase transition of the first order vanishes so that only the effect of 

heterogeneous fluctuations remains. Urbakh notes further than with the 

phase transition and the fluctuations are associated energy requirements 

which can be determined from the T - s or v - s diagrams shown on Figures A-4 

and A-5. At low pressure the only energy required is heat of vaporization 

for the phase transition of the first order, thus 

(A-IO) 

However~ as the pressure is increased the energy associated with the 

fluctuation becomes important. At supercritica1 pressu:re it is the only 

which remains, and it can be determin.ed either from Figure A-4 Or A-5, 

thus 

• 
At. = T (s2 - sl) (A-11) 
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Frenkel (A~l4, J\~26) considers two variations~ a transition of the 

first order at subcritical pr'essu;re and a transition of the gcond order at 

supercritical pressure. The first, ~haracterized by discontinuities of 

properties, is described' by Glaus1us-Ciapeyron's equation~ 

h
f .f!f g 

= " dT T (v v
f

) 
0 g 

(A-l2) 

and takes place at a constant temperature T. The phase transition of 
o 

the s'econd order takes place over a t.emperature interva1 l\T=T =·T 
~ 2 l' 

in which the properties change continuously. In this temperature interval 

both c and (ovldT) reach a maximum. FiguresAl andA2 show these varia·-p , p 

tions for oxygen at three supercritical pressures. As a generalization 

9f the transition of. the first order Frenkel formulates the equivalent 

energy of·· transition for the second order .transition~ thus 

= T (s2 - sl) = -tc A c dT 
P 

(A-13) 

where Ttcis the temperature corresp~nding .to the peak of c p qnd: A cp is 

the value of c above the "normal". value, i. e. , . above the dashed line on p 

Figure 1. Similarly, the change of volume is given by 

dT (A-14) 
p 
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Eq. A-13 and Eq. A-14 represent the adQitional incr ase of volume and the 

additional heat absorbed in going from the liquid-like s t ate to the gas -

like state at constant pressure. In place of Clausius Clapeyron ' s equation 

Frenkel uses the equation derived by Ehrenfest (A-27 ) to descr ibe transitions 

of the second order at the "lambda point" of heliu and at the "Curie point" 

of feromagnetic metals thus 

dP 
dT 

AC = ___ =m:..-... 

Ttcl1 (").Y.) 
'")T 

(A- I S) 

P 

where !!l c and b ( '0 vi; T) are the maximum values of c and of ( vi T) p 
m p p 

above the dashed lines in FiguresAl andA2. Various criticisms which have 

been made with respect to Ehr~nfest ~9uation are di scussed in (A-28 ) . Also, 

various authors (A-18 , A- 19) criticize the use of Eq. A-IS for the supercritical 

region because the temperatures where cp and ( j) vi VT)p reach their 

respective maximum values are not the same . 

in Eq. A- IS i s somewhat arbitrary . 

Consequently ~ the value of T 
tc 

Semenchenko (A-4 , A-16 , A- 29) considers the medium in the supercritical 

region to consist of two phases which are separated by a region in which the 

properties change rapidly but continuously. It was already noted that he 

takes the locus of points given by Eq. A-7 to represent the extension of 

the saturation line in the supercritical region. He notes that at subcri tica l 

pressures the phase transition is accomplished by absorbing an amount of 

energy given by Eq.AlO and by doing an amount of work given by: 

(A- l6 ) 
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However, since in the supercritica1 region there is no discontinuous change ., 1 , 

of volume and of entropy, Semenchenko notes that Eq. A-10 and A-1S must be 

modified and replaced by: 

• /2 ~II = c dT 
P 

(A-17) 

T1 

and 

W = f2 (~) dv 

v T 1 

For additional discussion of critical phenomena the reader is referred 

to the extensive reviews by Rice (A-1) and by Hammell (A-2). 

From the preceding review of the present understanding of thermodynamic 

phenomena in the supercritica1 region we can make the following conclusions: 

1) There is no general ~greement as to the structure of the m~dium 

I and of the mechanism of phase transition in the critical and super-

critical region. 

2) There is a general agreement that large variations of density and 

of specific heat are present. 

3) Most of the authors consider the supercritica1 region to consist 

of two phases -- a liquid-like and a gas-like phase. 

4) There is no general consensus ~s" ~o the location of the boundary 
i, -, 

or of the t·ransition region between these two phases, although a 

large number of·investigato;rs consider this demarkation to take 

place along the line whi.ch is the locus of points where the 

specific heat at constant pressure reaches a m~ximum. 



5) There is no general consensus as to the nature of phase transition 

at supercritica1 pressures and of the energy required to bring it 

about. Three different methods for evaluating this energy of 
if 
<! 

transition have been proposed: 1) the graphical method of 

Urbakh (A-17) resulting in Eq. A-11; 2) the second order transition 

proposed by Frenkel (A~14, A-26) given by Eq. A-13, and Eq. A-1S; and 

3) the pseudo transition region proposed by Semenchenko (A~4, .A~16, 

A-29) given byFq.A-15 and Eq. A-17. By examining the proposed methods 

and equations, i.e., Eq. A-I1, Eq. A-15 and A-17, it can be seen that 

these different methods will yield different values for the transition 
• 

energy. 

It is evident from the preceding results that the success of any analysis 

concerned with the mechanism of flow oscillations and of heat transfer at 

supercritica1 pressures will depend to a great extent upon the ability to 

< ~ 

I 
describe more accurately the thermodynamic state of a fluid and the transi-

tion phenomena that take place at supercritica1 pressures . 

• 

, \ 

-14·0-

• " 



I 
1 -
I 

I 
1 
I 
! 

1 

-j 

REFERENCES Appendix A 

AI) o. K. Ri.ce, Thermodynamics and Physics of Mat~, T. D. Rossini, 
Ed.itor, Princeton Univ. Press, Princeton, N. J., 1955, pg. 419. 

A2) E. F. Hamme11,"Critical Phenomena in Fluids," paper presented at 
the Course on Liquid Hydrogen in Technical and Space Programs, 
CGNoRoS., Grenoble, June, 1965. 

A3) A. A. Rosen, Dok1adi Akademii Nauk SSSR, v. 49, no. 1, pg. 133, 1954. 

A4) V. K. Semenchenko, Dok1adi Akademii Nauk SSSR, v. 49, no. 6, pg. 1045, 
1954. 

A5) J. o. Hirschfe1der, C. F. Curtis~ R. B. ·Bird, Molecular Theory of 
Q..ases and Liquids, John Wiley and Sons, Inc., NoY., 1954, Ch. 5. 

A6) J. E. Mayer and M. G. Mayer, Statistical Mechanics, John Wiley and 
Sons, Inc., NaY., 1954, Ch. 14. 

A7) K. Goldman, Proc. of the 1961 Int. Heat Transfer Conf., pg. 561, 1961. 

A8) K. Goldman, Chern. Progr. Symposium Sere Nuclear Engr. v. 50, no. 11, 
1954. 

A9) R. C. Hendricks, R. W. Graham, Y. Y. Hsu, A. A. Mederios, A.R.So 
Journal, v. 32, pg. 244, 1962. 

A10) M .. W. Zemansky, Heat and Thermodynamics, McGraw-Hill Book Co., Inc., 
N. Y.~ 1951, Ch. XI, Ch. XV. 

All) M. Thiesen, Z. Kompr. f1Uss Gase, v. 1, 86, 1897. 

A12) M. Trautz and H. Ader, Phys. Zs. v. 35, pg. 446, 1934. 

A13) A. Eucken, Phys. Zeitsch. V. 35, pg. 708, 1934. 

A14) J. I. Frenkel, Statistical Physics, Akad. Nauk, SSSR, Moscow, 1948. 

A15) G. M. Bartenev andA. A. Remizov, Zh. Fiz. Khim. V. 31, pg. 341, 1957. 

A16) V. K. Semechenko, Zh. Fiz. Khim. V. 21, pg. 1461, 1947. 

A17) 

A18) 

A19) 

A20) 

I. Urbakh, Zh. Fiz. Khim. V. 33, pg. 515, 1959. 

M. G. Kaganer, Zh. Fiz. Khim, v. 32, pg. 332, 1958. 

A. M. SirOta, B. K. Ma1tzev and P. E. Be1ijakova, Tep1oenergetika, 
V. 7, no. 7, pg. 16, 1960. 

R. Plank, Forschungsarb. Geb. Ingenienrwesens, v. 7, pg. 161, 1936. 

-141 ... 



'" 
t' 

II r 
H ,. 
l: 
Ii 

" 

RE~'ERENCES - Appendix A (Continued) 

A21) V. K. Semenchenko, Dok1. Akad. Nauk SSSR, v. 99, pg. 1045, 1954. 

A22) M. Jakob, Physik. Zeitschr. v. 36, pg. 413, 1935. 

A23) J. Havlicek and L. Mishoysky, He1v. Phys. Acta. v. 2, pg. 161, 1936. 

A24)' T. P. Andrianov, Zh. Tekhnicheskoi Fiziki, v. 23, pg. 1014, 1953. 

A25) A. V. Sheid1in, Tep10energetika, v. 2, no. 3, pg. 26, 1954. 

A26) J. I. Frenkel, Kinetic Theory of Liquids, Dover Pub1ic~tions, Inc., 
No Y., 1955, Ch. II and Ch. VII. 

A27) P. Ehrenfest, Proc. Acad. Sc. Amsterdam, v. 36, pg. 153, 1933. 

A28) P. S. Epstein, Textbook of Thermodynamics, John Wiley and Sons, Inc., 
N. Y .. , 1937,'~h. VII. 

A29) V. K. Semenchenko, Dok1. Akad. Nauk, SSSR, v. 92, pg. 625, 1953. 

-142-

• • 

-

I 
! 
I 
I 
i 

! 
i 
f 

,~ 

j 



il 
'[''','1 

r 
, 
~ ; 

" 

11 
r 
l, 

11 
i! 

tl 
, '~ 

U 

I i 
, ~ 

LIST OF ILLUSTRATIONS - APPENDIX A 

Figure A~l 

Specific Heat versus Temperature for Oxygen ~t Supercritical 
Pressures. 

Figure A~2 

(U~~T)p versus Temperature for Oxygen at Supercritical 
Pressures. 

Figure A-3 

Specific Valume versus Temperature for Oxygen. 

Figure A-4 

Temperature - Entropy Diagram for Oxygen~ 

Figure A-.5 

Specific Volume versus Entropy for Oxygen. 

-143-

.' 

l34-a 

134-b 

l36-a 

f 

In 
l36-b i 

! 
j 
I. 
t 
1 

136-c I 
I 
\ 

I 
I 
I 

I 
I 
I 
I 

I 
; 

I 

i 
! 
J , 
j 

I 
1 

I 
~ I ! 

! i 
I 
I 

I 
I 
t' 

t 
r I: 
j i: t 

I 
I, 

~ .... 
11 

! n 
U 

I 
I r.e: 
, 



, ','I'~, ! ~ 

':,1 
. 0\ 

! ;i 

I ; 
I ' 
\ 

1 
'. ~ 

Appendix B 

The Steady State Pressure Drop 

In this Appendix we shall derive an expre~Bion for the steady state 

pressure drop of a fluid whose properties change fro~ a liquid-like at the 

entrance to a gas-like at the exit of the heat exchanger. The derivation 

and the resulting flow excursion c~iterion applicable to fluids at critical 

and supercritical pressures were first derived. by the writer in the Second 

Quarterly Progress Report. They are reproduced here for reasons of completeness. 

The pressure drop across a heated length L is the sum of the acceleration, 

pressure drop, the frictional pressure drop and the pressure drops across 

the inlet and exit flow restrictions. Since the pressure drop depends on 

the fluid, it becomes necessary to examine first property changes along the 

heated duct. 

B.l The System - Three Region Appr~xtmation 

The system analyzed in this Appendix is shown in the Figure B~l. 
6 

A c.ircular duct .is uniformly heated at a rate of Q, over a total heated 

length L. Two flow restrictions are located' at the entranceapd at the exit 

of the heated section. A fluid at an initial temperature Tl , i.e., with the 

enthalpy iI' flows at a constant mass flow rate 1Ar. In passing through the 

heated dU,ct the specific volume and the enthalpy of the fluid increase (See 

F,ig:,'B-l). The fluid undergoes, therefore, a transformation from a l:i.quid-

like to a gas-like fluid~ 

Figure B-2 shows the V -i relation fOr oxygen at a reduced pressure of 

P = 1.1. It can be seen from this figure that the increase of specific 
r" 
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volume from a liquid-like·state to a gas-like state occurs gradually over 

an enthalpy interval. 

In order to simplify the problem, we shall assume that the entire 

transformation can be approximated by considerding three regions. In the 

first region of length If' between stations CD and CD in Figure B-1, the 

heavy clusters resemble a liquid. In this region the specific volume of 

the fluid is constant having a value of vf~ We shall assume that the com

plete transformation, from heavy to light clusters, takes place within the 

transition length It' i. e., between sfations ® and 0. In this transition 

region the specific volume of the fluid changes from a value of v f to a value 

of v 
g2 

The enthalpy change associated with this expansion is given by . . \ 

~ L2,2, = tl! -12. . 

resemble a gas. 

In the third region of length 1 , the light clusters 
g 

The specific volume of the fluid in this region can be 

approximated by that of gas and, in particular, by that of a perfect gas. 

It is apparent from the discussion in Appendix A that the initial and 

the final conditions of the transition region, i.e., the conditions at stage QD 
and ® respectively, will depend upon the model selected for describing 

the pseudo-phase transition in the supercritical region. This follows from 

the fact ~hat the temperature or the enthalpy that marks the start of the 

pseudo-phase transition will determine the location of station ~, whereas 

the location of station 0 will depend on the energy required to complete 

the transition from heavy to the light clusters. In this report we shall 
I 

denote this energy requirement by ll~i2· which can be determined by the best 

three region approximation indi~ated in Figure B-1. 

As discussed in the preceeding sections,we are considering in this 

report only the effects of density variation on the flow stability. 
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Consequently, we shall assume that both the friction factor and the heat trans-

fer are constant. The first assumption is quite reasonable if the flow remains 

turbulent throughout the duct. The limitation of the second assumption may 

become significant if variations of transport properties in the transition 

ii! region have an important effect on the stability. We note, however, that 
i! 

both assumptions can be removed permitting an extension of the analysis to 

consider the effect of variations, other than density, on the initiation of 

flow oscillations. 

B.2 The Frictional Pressure Drop 

The frictional pressure drop in the system is given by the sum of the 

frictional pressure drops across the segments If' It and 19 and the pressure 

drops across the inlet and exit flow restrictions, thus 

B-1 

For a constant friction fac~or f, the pressure drop across a segment 

of length 1 is given by 

B-2 

where the lengthwise average specific volume is given by 

1 
- I ~ ---

L 
B-3 
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Consequently, in order to evaluate the frictional pressure drops for 

the three segments it is necessary to evaluate the specific volume for each 

segment. This can be done by relating first the specific volume to enthalpy 

and then to express the enthalpy in terms of the heated length. This latter 

relation can be obtained from energy considerations . 
.. 

Denoting by Q, the total rate of energy addition to the system and by 

~ the constant heat flux density, we have for a duct 

-- B-4 

where ); , is the heated perimeter. It follows from Eq. B-4 that 

~ ..... B-5 
L 

where the total length is given by 

B-6 

. 
Furthermore, for a system with constant mass flow rate the change of 

enthalpy is given by 

where we b.;3.ve neglected the kinetic energy of the fluid, It follows then 

from Eq. B-7 and B-4 that 

B-8 
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I , 
! 

X 
and in view of Eq. B-5 we obtain 

".:.I. 9 .... .u-

Substituting Eq. B-4, B-3 in Eq. B-2, we obtain the pressure drop across 

a heated segment where the enthalpy of the fluid ch~nges from i to i +di, 

thus • 
t.-t-li.L 

~ W ( 'j. I t1. ." -= ~) J 'V'!l) 
~t 

• '2.::1) Q 
B-lO 

t 
(.. 

For a three region approximation the relation between v(i) and i 

is shown in Figure B-1. We shall consider now each region separately. 

a) The Liquid-Like Region 

In this region the specific volume of the fluid is constant arrd equal 

to vf (See Figure B-1). In the segment of length If' the enthalpy of ~he 

fluid increases from it to i 2• The frictional pressure drop across If be

comes then 

B-11 

b) The Transition Region 

In the transition region we shall approximate the relation between the 

specific volume v, and the enthalpy i, by a linear equation. The average 

specific volume in this region can be written then as: 

B-12 
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Denoting by L\ i.,lll-=- L
1

:- t..2 the change in enthalpy, the frictional 

pressure drop in the transitional region then becomes 

B-13 

c) The Gas-Like Region 

In view of the assumption that in this reg~on the fluid has the prop-

erties of a perfect gas we have, for a constant pressure process, the fo1-

lowing expression for the specific volume 

B-14 

Inserting this expression in Eq. B-10 we obtain 

B-15 

The change of enthalpy A,i32 ' can be expre,ssed also in terms of the total 

heat input thus from an ene.rgy balance 

.. 

t·:;·· 
B-16 

Inserting this expression in Eq. B-15, we obtain for the frictional 

pressure drop in the gas-like region the fo11owtng expression 

B-17 
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B.3 The Inlet and Outlet Pressure Drops 

Denoting by k. a numerical coefficient that takes into account the 
1. 

geometry of the restriction and of other losses like vena contract a etc., 

we have the inlet pressure drop 

B-18 

Similarly; we define by k a numerical coefficient that accounts 
e 

for the geometry and the losses at the exit. The exit pressure can be then 

expressed as: 

B-19 

which, in view of Eq. B-14 and B-16, can be also written as: 

~ 

1< (Q I ')J - - -ll~ I -AL 2 "PC~ W 22 ., 
B-20 

B.4 I.,he Acce1er'llon Pressure Drop' 

The acceleration pressure drop is given by 

dp z:::... \ ~ olv., 
B-21 

as 

B-22 
':!l ~ ~ itA - ~ 
A V 
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then 

B-23 

The total acceleration pressure drop required to accelerate a fluid of 

specific volume v
f 

at the inlet up to the exit where it attains a specific 

volume Vg3 is given therefore by 

B-24 

Inserting Eq. B-14 in Eq. 24 we obtain 

B-25 

or in view of Eq. B-16 we have 

B-26 

B.5 The Total Pressure Drop 

The total pressure drop is obtained by summing Eq. ·B-26, B-20, B-18, 

B~17 and B-ll, thus after so~ rearrangement 

"2. • - b W- +c Q.VV B-27 
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,ll where the coefficients a, band c are given by 

" rl 
}; 
~. ! 
U 
Ii 
i1 
f"j 
h 
i: 
~l 

fL 

+ ~< 2~\.. 
fL 

B-28 

B-29 

B-30 

-The form of Eq. E-27 is relevant to the present problem because it shows 

that, for some operating conditions, the pressure drop may decrease with 

increasing mass flow. This consequence of the negative term on the right-

hand side of Eq. B-27o 

~f 
ti B.6 The Two Region Approximation 
Ii 
H 

R Following the derivation of the pressure drop given in the precedirtg 
n 
H 
Jl 
ii section it was observed by Dr. R. Fleming, from the Research and Development 
H 
If 
II 'n Center at GoE., that instead of considering a three region approximation as 
\1 
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shown in Fig. B-1, the problem can be further simplified by considering a 

two-region approximation indicated in the sketch below 

I---------~ - - -

~----------------------~--------------------~> . .. 
Two-Region Approximation 

In the two-region approximation the transition region shown in 'Fig'( B-1 

It is assumed, , 

therefore, that the change from a liquid-like to a gas-like fluid occurs in-

stantaneously"in a plane perpendicular to the flow when the enthalpy reaches 

a value of i2 indicated on the sketch above. 

We can further amplify the preceding - observation. It can be seen . 
from Fig. B-2 that the enthalpy which corresponds to the transition point 

can be approximated by the enthalpy at the .-transposed critical temperature 

Tt ' i.e., by the enthalpy that corresponds to the maximum value of the . c 

specific heat at constant pressure c. Consequently, with a two-region 
p 

approximation one can consider that the liquid-like state persists until 

the temperature of the bulk fluid reaches a value that is equal to the 

transposed critica~ (or pseudo-critical) ~temperature. Above that temperature 
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the fluid behaves as a gas. Therefore, the transposed critical temperature 

T ,can be regarded as the boundary between the liquid-like and the gas-like 
tc 

states. It was discussed already in Appendix A, that both Sirota (A-19) 

and Kaganer (A-18) have shown that this temperature is the extension of the 

saturation line in the supercritical region. Figure A-I in Appendix A 

shows that the transposed critical temperature increases with increasing 

values of reduced pressure. It can be concluded therefore that the value 

of enthalpy corresponding to this temperature and to the transition point 

shown in Fig. B-2 will also increase with increasing reduced pressures. 

For a two-region approximation the form of Eq. B-27 remains unchanged, 

however, the coefficients a, band c given by Eq. B-28 and B-29 and B-30 

reduce to: 

B-31 

~t 'lbA"'\...\) 
f
' 1" . 
L . 

B-32 

B-33 
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which we obtain by setting Ai2'2 = 0, ~Jlfg = 0, V
g2

, = vf in Eq. B-28, 

B-29 and B-30; 

As noted by Dr. Fleming the use of the two~region approximation simplifies 

considerably the form of the coefficients a, band c. The three region 

approximation retains however a closer similarity with phenomena that take 

place at subcritica1 pressure. The transition region shown in Fig. B-1 can 

be regarded as corresponding to the boiling region at subcritica1 pressures. 

The liquid and the gas region in Fig. B=l would then correspond to the pre~ 

heating and to the superheating region in. a once-through boiling system 

where the liquid at the entrance is subcoo1ed and the steam at the exit is 

superheated. We have noted already in Appendix A that the enthalpy change 
I 

ll.lt"L may be considered as being equivalent to the heat of vaporization 

h
f 

. 
g 

The selection of either the two or three region approximation shou~d 

be determined by the desired simplicity and accuracy. The important result 

is however the fact that, because of the negative term on the right-hand side, 

of Eq. 27, there exist a possibility of a decrease in pressure drop with 

increasing flow in the supercritical thermodynamic region. It was shown 

in the body of the report that such a .pressure drop vs flow relation can 

lead either to excursive flow or to oscillatory flow. 
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Appendix C 

The upper and lower bounds of the integrals 

The integrals given by Eq. IV-94 ,IV-IOI and IV-Ill can be all 

expressed in the form of 

T -X 

which integrates in 

I l< -
~ -\ 
til 

where K is a coefficient and m an exponent. For example, the 

integral given by Eq. IV-Ill is 

fe~ 
Ll> 

L· 

It can be expressed by 

L 
J1, 'vt, f (~.]~-I J-y 

S--'" IA,(~) 

i\ {t'J 
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However, in view of Eq. IV-34 and IV-28 we have 

and 

whence we can express Eq. C-3 as 

tl{--"A) e n 
- 1]) f S-J\.. 

'U 
~ -\,41 _\ 

~I 

By comparing EC1l. C-7 with Eq. C-l it can be seen that they are 

of the same form. 

In view of Eq. C-2, the integration of Eq. C-7 yields: 

\ 
li~ _I 
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which, after some rearrangement, can be expressed in the form of 

Eq. IV-111, thus 

In order to obtain the upper and lower bound of Eq. IV-94, 

IV-101, IV-Ill we note that Eq. C-I can be written as 

-

where F is the mean value of F given by 

-F --
b --J ~ ()c) oiy -

.b-~ 

PI. 

whence by the mean value thereom 
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which togethet' with Eq. C-IO yields the upper and lower bounds given in 

Eq. IV-95, IV-105 and IV-ll6, thus 

For example, from Eq. C-7 and Eq. C-l2 we obtain 

since 
- SIn. 

[ ~ ] 

' , 
\ 

it can be seen that Eq. C-l4 can be put in the form of Eq. IV-ll6. 
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