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Abstract

‘Three mechanisms which can induce thermo-hydraulic oscillations at
near-critical and at super-critical pressures are distinguished and dis-
cussed,

Experiments show that low frequency flow oscillations are most pre-
valent in systems of practical interest. A quantitative formulation and
analysis is therefore presented concerned with predicting the onset of
these '"'chugging' oscillations as function of fluid properties, system
geometry and operating conditions.

The problem is analyzed by perturbing the inlet flow, linearizing
the set of governing equations and integrating them along the heated duct
to obtain the characteristic equation, The latter is given by a third
order exponential polynomial with two time delays.

Conditions leading to aperiodic as well as to periodic flow
phenonema are investigated. The first pertains to the possibility of

flow excursion the latter to the onset of flow oscillation.

Stability maps and stability criteria are presented which, previously,
were not available in the literature. They can be used to determine:
a) The region of stable and unstable operation and
b) The effects which various parameters have on either promoting
or preventing the appearance of flow oscillations.
The effects of various parameters are analyzed and improvements are
suggested whereby the onset of flow oscillation can be eliminated.
The similarity between ''chugging" ccmbustiOn instabilities and
thermally induced flow oscillaticns at near and super-critical pressures
is pointed out,
Avreview of the present understanding of the near-critical thermo-

dynamic region is also presented,
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! ‘ 1. Research Objectives

This research was conducted to determine the fundamental nature of é
i oscillation, and of instabilities in the flow of cryogenic fluids with heat
addition.

The investigation was motivated by the fact that severe oscillations

have been experienced in rocket engines heat exchangers utilizing oxygen

and hydrogen at both subcritical and supercritical pressures. r

. The particular objectives of this investigation were:

1. To distinguish a number of mechanisms which may be respon-

sible for thermally induced flow oscillations at near cri-

¢ : tical .and at supercritical pressures,

. - ’ 2. To present a quantitative formulation of the mechanisms

which appear. to be most significant from the point of sys-

| | tem design and operation.,

3., To predict the onset of these oscillations in terms of the

geometry and of the operating condition of the system.

4. To analyze the consequences of the theoretical predictions

g

and to suggest improvements whereby the onset of these

oscillations can be eliminated.

it




2. Summary and Conclusions

1. Mechanisms Leading to Unstable Operation

‘Three mechanisms which can induce thermo~hydraulic oscillaticns at near
critical and at supercritical pressures have been distingdished.

One is caused by the variation of the heat transfer coefficient at the
transposed i.e., at the pSeudo-critical point,

The second is caused by the effects of large compressibility in the
critical thermodynamics region.

Finally, the third mechanism is caused by variations of flow character-
istics brought about by variations of fluid density during the heating pro-
cess, The propagations of these variations through the system introduce
various time delays which, under certain conditions, can cause unstable flow,

This last mechanism, which induces low frequency oscillations, was
investigated in detail because available experimental data show that this

type of flow oscillations is most prevalent in systems of practical interest,

2, Formulation of the Problem

The problem was formulated in terms of an equation of state and of
three field equaﬁions describipg the conservation of mass, energy and mo-
mentum, |

Thé subéritiéal pressure range of operation was differentiated from the
supercritical oﬁe by using the appfopriate equation of state.

The,prqblémvwas analyzed by perturbing the inlet flow, 1inearizing‘the
set of governing equations and integrating them along the heated duct to

obtain.theFCharacteristiC'equation.

II
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3. The Characteristic Equation

The characteristic equation is given by a third order exponentia¥'pbly-
nomial with two time constants, (see Eq. V-15). .It is expressed in te?ms of
fluid properties, of system geometry and of operating conditions by means of
influence coefficients (see*Eq. V-16 through Eq. vV-22).

The influence coefficients express the effects of the inlet flow

perturbation and of the space lag perturbation on the various pressure drops

of the system. By introducing various definitions for the average, for the
log.mean and for the mean densities and velocities. it is shown that each
pressure drop is weigﬁed"with respect to a different velocity. This
result, which follows, from the integration of the governing set of
equations, i.e., from the distributed parameter analysis, could not have
been obtained from an analysis, based on '"lumped'" parameters. Conseduently
the accuracy of an analysis based on this latter approach can be estimated
by means of the results obtained in this investigation.

The characteristic equation was used to obtain stability maps and
stability criteria which, previously, were not available in the literature.
The stability maps and criteria can be used to determine"

a. The region of stable and of unstable operation and

b. The effectg‘which various.paéameters may have on either promoting

or on preventing the appearance of flow oscillations.

Conditions leading to aperiodic as well as to periodic flow phenomena

were investigated. The first pertain to the possibility of flow excursion

whereas the second pertain to the onset of flow oscillation. For this latter

case the flow stability .in systems with léw inlet subcddling was considered

separately»from that correspondinguto systems with high inlet subcooling-.

III
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The stability problem at intermediate subcooling will be considered in a

future report-

4. Excursive Flow Instability

It was shown that, at supercritical pressures, a flow system with heat
addition can undergo flow excursions because the hydraulic characteristics
of the system are given by a cubic relation between the pressure and the

mass flow rate (see Eq. VI-20). The latter is a cbnsequence of density

-variations in the system.

This excursive flow instability, at supercritical pressures,; is the
equivalent of the "Ledinegg' excursive instability in boiling systems at
subcritical pressuress This equivalence is supported by experimental data
(see Figure VI-1) which show:fthat in both pressure regions, the flow system
has similar hydraulic characteristics.

A stability criterion which predicts the onset of the excursive in-
stébility was derived in terms of system geometry, of fluid properties and
of cperating conditions, i.e., of system pressure, flow rate, inlet temp-
erature and power input (see Eq. VI-13). Various aspects of this type of
instability are discussed together with proviggons required to prevent its

appearance (see Section VI-2).

ng Fléw Oscillations at.Low Inlet Subcooling

k¥rIt was shown that for a system with low inlet subcooling the character-

istic equation can be reduced to a second order polynomial with one time

| deléyg(see EquVTI~7)- For such a system the propensity to flow oscillation

can bé'analyzed by means ofAthe:étability @apS'recentiy-presented by Bhatt

and iisu (See Figure VII-l)u
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It was shown further that, when the inertia can be neglected in a system
with low inlet subcooling then the characteristic equation reduces to a first
order exponeniial polynomialﬂ‘with one time delay (see Eq. VII-16).

For such a system the flow will be unconditionally stable if the

stability number Ng (defined by Eq. VII-39) is = larger than unity. If

'Ng is smaller than unity, stable operation is still possible if the angular

frequency of the inlet perturbation is larger than the critical one (given
in Eq. VII-40) or if the transit time is shortér than the critical one
(given by Eq. VII-4l).

The region of stable and of unstable operation are shown in a stability

map (see figure VII-2) which can be used to analyze the effects that various

pafameterskhave on the'propensitylto.induce or to prevent flow oscillations
(see Section VII.3).

Although the analyiical prédictions have not yet been tested quantita-
tively, the trends predicted by this map and by fhe stability cecriterion
(see Eq. VII-22 or Eq. VIIr29)‘are in qualitative agreement with experimental

observations (see Section VII.3).

- 6. Flow Oscillation at High Inlet Subcooling

- It was shown .that when the effects of the two tiﬁe delays can be

neglected then the characteristic equation redices to a~third.order polynomial

~ (see Eq. VIII-2). A stability criterion was also derived (see Eq. VIII-15)

which specifies the conditions for stable operation.
Various aspects of this type of oscillations were discussed together

with provisions required to prevent their appearance (see Section VIII-2).

‘it is shown thatrthq flow is more stable at high subcoolings than at low. '

" Furthermore, it is cdﬁcluded that the destabilizingfeffect of subcooling
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must go through a maximum at intermediate range, (see Section VIII-2).

7. Significance of the- Results

The resulcs of this énalysis indicate several impfovements in the design
and/of in the operating conditions which can be made to prevent the onset of
flow excursions or cf flow oscillationsor These are discussed in more detail
in relation to each type of instabiiity (see Sections VI-2, VII-3, and
VIII-2).

It was shown that the predominance of a particular parameter results
in a particular wave form and in particular frequency (see Eq. VII-40 and
Eq- VIII=17)- fhis result indicates that the primary cause of the instability
can be determined from the trace of flow oscillations.

 Perhaps the result of greatest significance revealed in the present
investigation is the similarity between the characteristic equation which

predicts "chugging' combustion instabilities and the characteristic equation

‘which predicts the thermally induced flow oscillations for fluids in the

near critical and in the supercritical thermodynamic region. Since it is
well known that "chugging' combustion instabilities can be stabilized by an

appropriate servo-control mechanism, the results of this investigation

~indicate that low frequency flow oscillations; at near critical and at

supercritical pressures may be also stabilized.
- The preceding conclusions have not yet been tested against experimental
data. If confirmed, then the results of this study will provide a method

whereby stable operation can be insured in an intrihﬁcﬂly<unstab1e region.
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3. Recommendations

;; The recommendations listed in the four tasks below, define the effort

ity

needed to complete and to verify the results obtained in this investigation.

1. Verify the stability criteria based on the second and first order

s AN S

exponential polynomials which have been derived in the course of
these investigations. - For this purpose use available experimental
data for various fluids at suberitical .and at supercritical pres-

.sures,

e g s e RS 5 5

PO

2., -From the characteristic equation given by the third order exponential
polynomial with two time delays (Eq. V-15) derive stability maps and
stability criteria applicable to the entire range of subcoolings.

Test these results against available experimental data.

nwmmwmmww s

3. Modify the characteristic equation to take into account the effects

A

of the entire flowvsystem i.e., of the flow loop. .In patrticular in-
clude the effects of the inertia of the liquid in the storage tank and
in the supply lines together with the flow and elastic characteristics

LR | of these lines.

:} 4., Based on the results obtained from the preceding three tasks specify a

servo-control mechanism which could be used to stabilize the flow for

‘a system of practical interest and verify the results by experiments.

et
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4. Nomenclature

MLTO System of Units

FE
i
i
L
,&‘.l

with H defined by H = ML2 T2

E A, = cross sectional area of the duct[le-l
'i A = coefficient_defined by Eq. VII-16
%! a = coefficient defined by Eq. VII-10
a%* = coefficient defined by Eq. VI-21
B = coefficient defined by Eq. VII=17
B¥* = coeffiéient defined by Eq. VI-4
b = coefficient defined by Eq. VII-11
b* = coefficient defined by Eq. VI-23
¢ = coefficient defined by-Eq. VII-12
c* = coefficient defined by Eq. VI-23
cp = specific heat of the fluid in the "light" fluid region [ HM*le-l-]
D = diameter of the duct[ L-]
£ = friction factor
F1 = InfluénéeycoefficientAdefined by Eq. V-5
Fy = " | Eq. V-6
Fq = a Eq. V-7
Fgp = "o G | | Eq. V-8
FS) oo - | ~ Eq. V=9 -
‘§  | Fg = L e Eq. V-10
; Fyp = "o ~ Eq. V-11
, G = Mass flux density LML'ZT"’I\l |

e Tk



| I = Integrals given by Eq. IV-94, IV-97, IV-101, IV-107, IV-111,

Enthalpy (HM‘ 1 -]

i - Aifg = Latent heat of vaporization [HM']-]

Ai = Inlet subcooling \:1-_11\4"1 _\

1 ki = coefficient of the inlet flow restriction -
} ke = coefficient of the exit flow restriction -

(s
]

Total length of the heated duct [L—)

Mg = Mass in the "heavy'" fluid regic;n
per unit area [ ML"2 )
Mg = Mass in the "light" fluid region
per unit area [ML"2 ]
] Ng = Stability number defined by-Eq. VII-39
. P = gystem pressure (ML"]-T'Z]
A Pex - Pressure rise of the external system [Pﬂ.."vl'l'"z-\
A Pol = Steady state pressure drop (SSPD) across inlet
}} A " o - orifice. defined by'Eq. III-28 vLML",'lT.'-Zf] .
AP12 ‘= 8SPD due to friction in the heavy "fluid" region, defined
| by Eq. III-31 [m:lr'z__)
? A'be = SSPD due to gravity in the heavy '"fluid" region,
| defined by Eq. TTII-30 {1\41,'11"2-3
Apr, = SSPD due to acceleration in the "light" fluid region,

defined by Eq. IV-89 [MI.:']-T'Z_}

A'Pb? ». = SSPD due to gravity of the "light" fluid region,

defined by -Eq. IV-102 }[M[..'l'l"'2 ]




[ A P23

SSPD due to friction of the light filuid region,

defined by Eq. Iv-112, [ ML-1172)

SSPD across exit flow restriction defined by Eq. IV-122. (M)
= heat flux density [HL'ZT"]'-\

= total heat input rate [HT'1 —}

gas constant 1 12172071 7

Exponent of the inlet velocity.pértUrbation [ T-1 7
Stability criterion defined by Eq VI-28

Period of the inlet velocity perturbation

time

= yelocity [ LT’lq

steady state velocity in the "heavy" fluid region LT-1

S.S. velocity of the light fluid region defined by Eq. IV-28.(L)

S.5. velocity at the exit from the duct

defined by Eq. IV<3l.. | (L)

average velocity in the "light" fluid region
defined by Eq. IV-32. (L)

‘Log mean velocity of the "light" fluid region

defined by Eq. IV-36 v (L)

mean velocity of the "Light" fluid region

defined by Eq. IV-38. , (L)
= inlet velocity perturbationlgiven‘by“Eqﬁ'fIi-7- , (L)
,_j
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velocity perturbation of the "light'" fluid region
given by Eq. IV-30. :

specific volume of the heavy fluid ('L3M‘”lj
specific volume of the "light" fluid [LB’Mg’lj
change of specific {}olume in vaporization fL3M’1]
total stéady state ma-s,'s” flow #ate (MI-1)

length LL _\

Green Letters

5
A

A

N

heated perimeter {L —1

space lag defined b}.r-Eqa 111-20 (L h
p‘erturbation' of the space lag ty

defined by Eq. III-23. . ,
amplitude of inlet velocity perturbation E LTl —} .,

time lag, defined by Eq. III-18 [ T)

AT = total transit time, defined by Eq. I1I-63 [ T |

critical transit time, defined by-Eq. VII-4l.
characteristic reaction frequency, defined by Eq. IV-21.
density of the "eavy" fluid tML"3—lv

density of the light fluid [ML™3 )

~density at the exit from the heated duct, defined by Eq. IV-72.

log‘,méan den:‘.s:i’.ty: in the light fluid region, defined by Eq. IV=76.

avefage density in the‘,}light fluid region defined by Eq. IV-73-

‘mean density in the "light" fluid region defined by Eq. IV-77.
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W = angular frequency of the inlet velocity perturbation Tm1 .
CUE = critical angular frequency defined by Eq. VII-40.
\S = dimensionless exponent defined by Eq. VII-8.
Subscripts
0, 1, 2, 3, 4 correspond to the locations of the duct g
indicated on Fig. II-2.
i
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I. Introduction

I.1 The Problem and Its Significance

A fluid in the vicinity of the critical point is an efficient heat
transfer medium because of the large specific heat and of the large co-
efficient of thermal expansion. Qonsequently, the}demand for increased
efficiency of several advanced systems generated an interest in employing
fluids at’critical and supercritical pressures either as gooling or working
media. For example, nuclear rockets, power reactors, high pressure once=
through boilers, regenerative heat exchangers for rocket engines and a new

sea water desalinization process are designed to operate in the critical

~and the superciitical thermodynamic region. These developments made it

necessary to obtain data on and to improve the understanding of the thermal
and the flow behavior over a broad range of fluid states.
A great number of investigations conducted for such a purpose have

revealed that, in the critical as well as in the supercritical thermo-

dynamic region, flow and pressure oscillations may occur when certain

operating conditions are reached. These oscillations were observed in
systems with forced flow as well as with natural circulation.

- The occurrence of sustained pressure and flow oscillations and the

‘attendant temperature oscillations are very undesirable and detrimental to

reliable operation of a system. Mechanical vibrations and thermal fatigue
induced by these oscillations very often result in a rupture of the duct.

In liquid propellant rocket engines flow and pressure oscillations can also

induce combustion instabilities reéulting'in a'breakdown of the system.

-1-
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Furthermore, in nuclear reactor systems flow and pressure oscillations may
induce divergent power oscillations leading to the destruction of the
entire system. Consequently, there is comsiderable practical interest and
incentive to investigate, quantitatively, the conditions leading to the

inception of these oscillationms.

I.2 Preyious Work

HeFy

Severe pressure and flow oscillations were obseryed in experiments
performed with various fluid in the supercritical thermodynamic region.
Such oscillations were reported by Schmidt, Eckert and Grigull [1il, (ammonia);
Goldman [2, 3:(,‘(water); Firstenbergljd] , (water); Harden [5~l, (Freon-114);
Harden and Boggsi:él , (Freon-114); Walker and Harden‘:7~], (water, Freon-114,
Freon-12, carbon dioxide); Holman and Boggs [?}, (Freon-12); Hines and
Wolf [9F1(RP51 and diethycyclohexane); Platt and Wood [101 (oxygen);
Ellenbrook, Livingood and Straight (ii\, (hydrggen); Thurston [iZW, (hydrogen,
nitrogen); Shitzman {}3, 14TX(water); Semenkover [ﬁ5$X(water); Cornelius and
Parker Elé& (Freon-114); Cornelius[:l;x (Freon-114); and Krasiékova and
Glusker -{18] (water).

For a given fluid the characteristics (frequency and amplitude) of

théSe,oscillations varied with operating conditions. In general, two types

of oscillations were observed: acoustical and chugging oscillations. For

example, Shitzman [15} reports that, for water at 250 atm, the pressure and
témperatufe oscillations had a period of 80 sec. and an amplitude of 25 atm.,
and of 100°C respectively. Decreasing the flow rate and the power density

resulted in decreasing the period to 15 sec. However, at a pressure of

5000 psi,'Goldman [2, 3—1reports‘pressure'oscillations with frequencies

from 1400 to 2200 c¢ps. Similar high frequency oscillations (1000-10,000 cps

-2
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and 380 psi peak to peak) were reported by Hines and Wolf’[9—1f0r’RP=la
Three classes of pressure oscillatioms in the supercritical region
were observed in the experiments of Thurston [}2]; these were described as:
1) Open-open pipe resonance observed at medium and high flow rate.
This mode is associated with the fundamental wavelength of an
openmopen pipe.
2) Helmholtz resonance, associated with a resonator composed of a
cavity conmected to am external atmosphere via an orifice or neck.
3) Supercritical oscillatidms appearing usually at low flow rates.
‘Hines and Wolf[}é}, however, report only two general types of oscilla-
tions: a high frequency (3000-75000 cps) oscillations audible as a clear
and steady scream an& an oscillation with a lower frequency (600=2400 cps) ’
which was audible as;a chugging or pulsating noise. The dominagt frequencies
of these oscillations did not correspond to simple acoustic resonant fre-
quencies for the tubes.
Cornelius and Parkef[16, li\ describe in detail the two types of
ascillationS‘and note that the frequency of the acoustical oscillatioms
decreases with temperéture whereas the frequency of the chﬁéging oscillations

increases with temperature. Occasionally, both types of ogcillations occured

- simultaneously.

‘A quantitative formulation and explanation of the conditions leading
to the appearance of the pressure and flow oscillations has not been reported

yet;-although several qualitative explanationsfhave been advanced. It is

'generally agreed that the oscillations are caused by the large variations
: ' i the 1

of the thermodynamicvand‘the transport properties of the fluid as it passes

‘through the critical thermodynamic regiom.

‘ e-3-=
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Several investigators (12, 13 14) note that the appearance of oscil-

lations occurs when the temperature of the heating surface exceeds the

"pseudo critical' or the "transposed" critical temperatures, i.e., the tem-

* perature where the specific heat reaches its maximum value (see Figure Al in

Appendix A). Oscillations were not observed if the inlet temperature was
above this temperature. ¥rom this it was concluded that the mechanism for
driving the oscillation occurred only when a '"pseudo liquid" state was present

in some parts of the heated duct,

Firstenberg (4) attributes the oscillations to the variations of the heat
transfer rates to the fluid, whereas Goldman (2, 3) explains the oscillations
as well as the steady state heat transfer mechanism in the critical and super-
critical thermodynamic region as "boiling like" phenomena associated with non-

equilibrium conditions. According to Goldman, below the pseudo=-critical temper-

‘ature the fluid is essentially a liquid, above this temperature it behaves as a

gas, At the pseudocritical temperature, the density gradient and the specific
heat reach maximum values giving an indication of the energy required to over-
come the mutusl attraction between the molecules; The fluid in the immediate
Vicinity of the heated wall is in a gas-like state; whereas the bulk fluid may
still be in the‘liquidwlike state, If by means of turbulent fluctuations a
liquid-like cluster is brought into contact with the heating surfaceaa large a-

mount of energy will flow from the surface to the cluster because of the -large

‘temperature difference and because of the high conductivity of the liquid-like

fluid. This energy may be large enough to "explode'" clusters of molecules from

‘the liquid-like state to the gas-like state. Thus, according to Goldman (2, 3),

one may visualize the supercritical region as a region where explosions of liquid-

-ly-

i
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like clusters imnto gas~like aggregates take place. Goldman comsiders this

process to be similar to‘the formation of bubbles in liquids during boiling

at subcritical pressures.

e RS e e o e

The conditions under which oscillations occur were summarized by

Goldman as follavs:

1) Heat transfer with "whistle" (ioeosiwith oscillations) cccurs
only at high heat flux demsities and with bulk temperatures lower
than the pseudocritical temperature.

2) At a given flow rate and inlet temperature, whistles décur at
higher flux demsities for higher pressure levels.

3) At given flow rate and pressure, whistles occur at lower heat

N flux densities for higher imlet temperatures.
4) At a given pressure and inlet temperature, whistles occur at
higher heat flux densities for higher flow rates.

5) Whistles can be produced with various lengths of the test section,

but the heat flux or inlet temperature must be increased to bring
it about if the tube is shortened,

Visual observation that boiling-like phenomena can exist at supercritical
pressurés was reported by Griffith and Saberski[}é}in €xperiments conducted with
R=114 , The photographs of the process revealed a behavior similar to
that observed in pool boiling at subcritical pressures°

, Similarlys high‘speed movies of hydrogen at supercritical pressures
itaken by Graham, et ai EZOhlrevealed a phenomenon resembling boiling. Clusters
. : | of low demsity fluid were observed rising through a denser fluid=giving

'boiling-like appearance;‘
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Hihes and Wolfl:91 attribute the appearance of the flow oscillations
at supercritical pressures to the variations of liquid viscosity. They
note that a small change of temperature near the critical point results
in a large change .of viscosity. Consquently,:; sudden increase in Wallf
temperature could cause a thinning of the laminar boundary layer due to
variation of the viscosity. Thinning of the boundary layer would result
in.a drop ofdéﬁz ;all temperature and a corresponding increase of viscosity.
This would cause a thicker boundary layer and produce another rise of tem-
perature, thus repeating the cycle. It was shown by Bussard and DeLguer {:2£]
and by Harry[ 2?]\EEat a viscosity-dependent mechanism can induce an unstable
flow in single phase flow systems when the absolute gas temperature is in-
creased by a factor‘of 3.6 or more.. Such flow oscillations were observed
by Guevara et a1<L33j]with helium flowing through a uniformly heated
channel.

Harden and co-workefs{LS, 6, 71 concluded from their}experiments that
sustained pressure and flow oscillations appeared when the bulk fluid reached
a temperature at which the product of the density and enthalpy has its maximum
value. This explanation was, however, criticized by Cornelius[:17l, |

Cornelius and Parker (16, 17] postulate that both acoustical and tﬁé
chugging oscillations originate in the heated boundary layer. When the

fluid in the heated boundary layer is in a 'pseudo vapor" state, a pressure

wave passing the heated surface would tend to compress the boundary layer,

improve the thermal conductivity and cause an increase of the heat transfer

coéfficient. A rarefraction wave passing over the heated wall would have

- just the opposite effect. Thus, this pressure--dependent--heat-transfer

rate could induce and maintain an acoustic oscillation. Cornelius and Parker

-6-
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attribute the appearance of chugging oscillations to "boilingwlike" phenomena
; .and a sudden improvement of the heat transfer coefficient. An approximate
; numerical solution verified the importance of the heat transfer improvement
A in triggering and maintaining oscillations.

Of particular interest to the analysis presented in this paper are the
experimental results of Semenkover, [15] and of Krasiakova and Glusker [18]
for water at 250 atm. For a constant power input é to the system their data

show a pressure versus mass flow relation that is illustrated in Figure I-1,

. It can be seen that for large values of inlet enthalpy i, there is a monotonic
increase of pressure drop with flow rate, At a certain lower value of i,

the curve shows an inflection point. For still lower values of inlet enthalpy,

. there is a region where the pressure drop decreases with increasing flow rate.
Such a pressure drop=fiow rate relation occurs in boiling systems'and gives
rise to an excﬁrsive type of instabiiity which was analyzed first by Ledinsgg
LZ&JYand by numerous investigators since,E25 - 4ZJ° Consequently, the data
of'[ls9 18:]tend to confirm the similarity between instabilities.observed
during subcritical boiling and those observed at supercritical pressure

suggesting therefore a common mechanism.

I.3 Purpose and Outline of the Analysis

From the‘preceeding brief review of the present understanding of flow
qééillatiohs atsupercritiéal pressures, it can be concluded that several modes of
oscillationfexisﬁ, It‘caﬁ be expected, therefore, that severai mechanismé‘can
be effective inAinddcing unstable flow. Indeed, ;s discussed in the preceeding
‘sections several qualiéative explanations of the phenomenon have been already

- adVanced.k However, a quantitative formulation of'the problem is still‘lacking.
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FIGUREI-I HYDRAULIC CHARACTERISTICS FOR WATER AT SUPERCRITICAL
PRESSURE (P =250atm) FLOWING THROUGH A HEATED DUCT.
~ DATA OF SEMENKOVER FOR VARIOUS INLET ENTHALPIES:
|- 400, 2- 350, 3- 300, 4- 200, 5- 100 IN kcal/kg.
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The analysis presented in this paper has four objectives:

l# 1) To distinguish a number of mechanisms which may be responsible for
thermally induced flow oscillations at nearcritical and at supercritical
pressures.

2) To present a quantitative formulation of the mechanism which appears to
be most significant from the point of view of system design and operation.

; 3) To predict the onset of these oscillations in terms of the gecmetry and

of the operating conditions of the system.

p 4) To analyze the consequences of the theoretical predictions and to suggest

4 improvements whereby the onset of these oscillations can be eliminated.

. The particular mechanism which is formulated and analyzed in this paper

is based cn the effects of time lag and of density variations. It is well

known that these effects can induce combustion instabilities in liquid pro-
pellant rocket motors as discussed by Crocco and Cheng [58_\. It was shown

by Profos[49’\ > Wallis and Heasley(SO—X and by Bouréd [5’1-3 that the effects

of time lag and of density variations can also induce unstéble flow in
boiling mixtures at subcritical pressures. The suggested similarity of

flow oscillatiohs observed at supercriticalipressures*with those observed in
two phase mixtures at subcritical pressures prompts us to formulate and

to énalyze thé problem in terms of this mechanism. In particular,‘the ex-

perimental results of Semenkoﬁer [15} and of Krasiakove and Glusker llé}

discussed in the preceding sections,togeﬁher with the chugging»oscillations
described by several aﬁthors provide enocugh evidence to warrantka more de-
tailed analysis of flow oscillationsat supercritical pressures in terms’

of the time 1ag.effect.

The‘presentfanalysiSjis similaf tdvthose reported by Wallis,and~Heésley
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[SOJ and by Bouré [SLJ in two respects: the formulation and the assumptions
are the same. In particular, it is assumed that the density of the medium

is a function of enthalpy only. The effects of pressure variations are,
therefore neglected.* As noted by Wallis and Heasley [50] this assumption
results in the decoupling of the momentum equation from the energy and the
continuity equations. The momentum equation can be integrated then separately
after the velocity and density variations are obtained from the continuity and
the energy equations. Foliowing Bouré [51] the problem is formulated in terms
ofvan equati@ﬁ of state ama of three field equations describing the conser-
vation of mass, energy and mementum.

Apart from the fact that the analyses of Wallis and HeaslevaSQ] and
of Bouré [5%] were derived to pfedict unstable flow in boiling two phase
mixtures the present analyses (concerned with flow oscillations at near-
eritical and at supercritical pressures) differs from theirs in two respects:
1) the form of the constitutive equation of state is different, 2) the
characteristic equation describing the onset of oscillations is different.
From this characteristic equation, we shall derive stability maps and
stability.in@rtia which, previously,were not avéilable in the literature.

Tne outline of the paper is as follows, In Chapter II some“general
comm@hts are made regarding 1) the’nature of the thermally induced flow
oscillati@ns at nearcritical anq at supercritical pressures, 2) the effect
of tne time lag, 3) tne implication and‘limitaﬁions of tne assumptions and

4) tne gemeral metnod of solution. In Chapters III and IV the problem is

formulated and the set of governing equation is solved. Tme characteristic

equation wnicn predicts tne onset of flow oscillacion is derived in Chapter V;

it 1s of Lme'form of a third order exponential polynomial with two time

- delays. From the characteristic equation a criterion is derived in

*The limitations and impliéations of this assumption are discussed in Chapter II,

- »Qe
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Chapter VI which predicts the onset of an excursive type of instability at

L. supercritical pressures.* This excursive instability at supercritical

pressure is the equivalent of the so called Ledinegg excursive instability
<k for boiling at subcritical pressures. The effect of time lags in inducing
flow oscillations is analyzed in Chapters VII and VIII which consider first
s and second order expotentiai polynomials.. Stability diagrams which predict
f% the regions of stable and unstable flow in terms of the operating parameters
are given in these two chapters together with suggested improvements whereby
the onset of opscillations can be eliminated. The recommendations for

future work and the conclusions are given in Chapters IX,

\Q The status of the present understanding of thermodynamic phenomena that take

place in the critical thermodynamic region is discussed in Appendix A.

: g | I.4 The Significance of the Results

ﬁ Three mechanisms which can induce thermo-hydraulic oscfilations at
supercritical pressures have been distinguished in this paper. One is

caused by the variation of the heat transfer coefficient at the transposed,

i.,e., pseudo crifical poiht; The second is caused by the effects of large

compressibility Qnd'thé feéultaﬁt low veiocity of sound in the critical

region., Finally, the third‘mechanism is‘caused by the large variation of flow

characteristics ﬁrought about by density variations qf the fluid during the

heating process. The propagations of these variations in particular of the

enthalpy and of the density; through the system introduce delays which,‘

*This criterion was.first derived by the writer in the Second Quarterly
Progress Report, "Investigation of the Nature of Cryogenic Fluid Flow
Instabilities in Heat Exchangers,' Contract NAS8-i1422, 1 February 1965.

-10-
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under certain conditions, can cause unstable flow, This last mechanism, that
induces low frequency oscillations, is investigated in detail because ex-

perimental data show that this type of oscillation is most prevalent.

It is shown that at supercritical pressure unsteady flow gonditions
both excursive and oscillatpry can occur. A characteristic equation is
derived that predicts the onset of flow instabilities caused by demnsity
variations in the critical and supercritical thermodynamic region., The
same characteristic eduatiﬂn can be ﬁsed to predict the onset of flow
instabilities in boiling at subcritical pressure, if the effect of the
relative velocity between the two phases can be neglected. Expérimental
evidence shows that this effect becomes negligible at reduced pressures
above say 0.85. Consequently,'at ne ar critical and supercritfcal pressures,
the chéracter;sfic equation, which is expressgd in terms of system geometry
and oper;tive cqnditions; can be used to determine:_

a) The region of stable and unstable behavior.

b) The effect which various parameters may have on either promoting

or on preventing the appearaqcé of flow oscillations.

From this characteristié'equati;n simple '"rule of thumbs' criteria are

also derived based on the assumption that one or the other of the various

parameters is dominant. It is shown that the dominance of a particular

parametervresults in a’particulér frequehéy and wavé formn This results
permits a diagnosis of the primary‘caﬁSe of thé iﬁstability from thé trace
of flow oscillations;

it is éprartiéular interest to note that: the characﬁeristic equation -
defiQed in this paper for prgdicting flow oscil}ations at supercritical
préssure is;of;fhgsame:fotm as awcharacteriéticiequation derived by Crocco

- -11-
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and Cheng[&&]to predict combustion instabilities of liquid propellant

et . s m -

rocket motors.* It is well established in the combustion literature that

U S

a servo-control mechanism can be used to stabilize the low frequency com-
bustion imstability, The similarity of the characteristic equations is,
therefore, significant because it indicates that stable operation could 4

be insured also in the nearcritical and in the supercritical region by

using an appropriately designed servo-control mechanism,

not come as a surprise if cne recalls that the processes of combustion and
of boiling are both chemical processes involving large enthalpy and density

1

*This similarity between combusticn and two phase flow instabilities should i
|
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IT. General Considerations .

ITI.1 The System and the Thermodynamic Process

In order to understand the mechanisms of the thermally induced flow
oscillations at supercritical pressures; it is necessary to examine
briefly the system and the thermodynamic process.

The system of interest is shown im Figure II-1. It consists.of a
fluid flowing through a heated duct of length 1., Without loss of
genefality it will be assumed that the duct is uniformly heated ét a
rate of a, Two flow restrictions are located one at the entrance, the
other at the'exit of the duct.

The thermodynamic process starts with the fluid at 4 supercritical
pressure P, entering the heated duct with velocity U, . The‘temperatute
T, of the fluid at.the inlq; is well below the critical temperature of the
fluid under considerations. As the energy is being tramsferred from the
heated duct to the’fluid its temperature T, specific volume v, and enthalpy
i, will indfeaseo Thus, the temperature T3, at the exitvmay be ccnsiderably’

above the critical temperature. In a number of systems of practical interest

it can be -assumed that this process takes place at an approximately comstant

pressure.

In order to formulate the broblem it is necessary to specify the
constitutive equation of state which describes the relation between say

the. specific volume;.the pressure ‘and the enthalpy for the particular

'_fiuid; This.reguirgs data. on the thermodynamic properties of the fluid in

the region of interest. The ‘region of_intérestﬁtovthis1study are the

nearcritical-and the supercritical regions.

513‘} ,
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The present understanding of the thermodynamic properties and phenomena

at nea;critical and supercritical pressures is réviewed in Appendix A.

It is shown there that at these pressures the fluid has the characteristics
of a liquid when the temperature is Sufficiéntly below the critical one.
However, if the'temperature is increased sufficiently above the critical
temperature, the fluid will have the characteristics of a gas. This is
illustrated in Figure II-2 which is a plot of the specific volume and of

the temperature versus the enthalpy for oxygen at a reduced pressure of
Pr = 1.1, |

It can be seen from this figure that at low enthalpies the specific
volume is essentially constant, this is a characﬁeristic of liquids. As
Ehe enthalpy increases the specific Qolume increases approaching values
predicted by the perfect gas law. It caﬁfbe seen also that this change
from a liquid-like state (region () - C)) éo a gas-like state (region

= @) occurs over a t.rapsition region denoted by @ =

on Figure II-2. | | - |

It appears, therefdre9 that at supercritical pressures the relatién
between the specific volume and the enthalpy can be approkimated by con-
sidering three regions: a liquid-like, a transition and a gas like region.

For oxygen Figure II-2 indicates also that, as a first approximation; the-

transition region can be reduced to a transition point reducing, therefore,

the problem to a "two-region'" approximation.* Since oxygen is the fluid

of primary interest to this analysis, we shall use the 'two-region"

*The ''three region' approximation was first introduced.by the writer in
analyzing the excursive instability at supercritical pressures (see foot-
note on page 10). Following this work Dr. R. Fleming, from the Research
and Development Center of the GE Co., introduced the "two region" approxi-
mation for oxygen. These two approximations are discussed further in
Appendix B. - ‘ R ' a

-14-
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approximation for describing the relatiom between the specific volume
and the enthalpy. It is assumed, therefore, that the "heavy" fluid (of
constant density) persists until the tramsition point is reached;‘above
this point the fluid will have the properties of the 'light' phase. It
remains now to define this transition point. .
In boiling at subcritical pfessure the tramsition from the heavy to
the light phase corresponds to the onset of boiling. Consequently, it

will be assumed that in the nearcritical region the tramsition point

corresponds to the enthalpy at saturation temperature.

At supercritical pressures it will be assumed that the transitiom point

corresponds to the transposed criticalrpoint'.9 i.e.,, to the pseudo critical
point which is defined as the point where Cp reaches its méximum value.,
It is discussed in Appendix A that the locus of pseudo critical points
can be régarded as the extension of the saturation line in the super-

critical region.

IT.2 Time .Lag and Spacg Lag

It is of interést to consider now the timewise and spacewise des=«
cription of the process.®

If we follow a particle from the time it enters the heated section

until it leaves it, we shall observe that its properties change from v

»

! e ¥

*We follow here Crocco and Cheng YﬂS] who gave an equivalent description

for combustion instabilities. The same comment applies to the three
sections that follow. Indeed, this reference proved to be most stimu-
lating and useful in the course of this investigation.

=15~
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and il at the inlet to Vq and i3 at the exit (see Figure II-3). In

view of the '"'two-region'" approximatipn we would note that the tramsition

from the "heavy' to the "light" fluid occurred when the properties (specifically

the enthalpy) reached values that correspond to the tramsitiom point. The

time elapsed betweém the injection of the heavy particle 'in the heated duct

and its tramsformation to the "light" fluid will be denoted as the time

L T,

| It is of interest also to consider the spacewise description of the

prdcess° In this case the time lag must be replaced by the space lag

which is a vectoriél quantity indicating the location in the duct where

the tramsformatiéﬁ'from the ”héavy" to the "light" fluid takes place.

The space lag is demoted by )\ on Figure 1I-3. Of course, the space

lag can be related to the time lag wheh‘the particle velocity is known.
Like in combustion, the location in the duct where the transformation

takes place can be regarded as the source of theplighﬁ'fluido It is

. 7 ‘ : f
obvious that the flow properties in the region occupied by the lighg'

fluid will depend upon the intensity of this source. If it is assimed
T , k ”‘ ] " . . N
“that the injection rate of the heavy fluid is constant and that the time

~and space lags were comstant, then the intemsity of the sourge would also

/

be independent of time resulting in a steady flow in the "light” fluid

region. However, this is not the case because fluctuations which affect

~the time lag and/or,the‘injeetiOn rate are praesent both at supercritical

and at subcritical pressures. Tn»the vicinity of the critical thermo=

dynamic point large fluctuations of properties, in particular of densitv,

‘are cbserved even in non-flow systems. 1In boiling systems fluctuations

are always present because of variations of the rate of'bubble formation «

g

«1fe



» <

P <

>t

_l;—tb_'l

» Z

e FIGURE IL- 3 TWO ~-REGION" APPROXIMATION SHOWING THE' |

- TIME LAG AND THE SPA(.E LAG



]
4
§
|
5
i
N
i

. - AT

and population, of flow regimes, of the heat transfer coefficient, etc.
Consequently, the strength of the source may fluctuate even when the in-
jection rate is kept constant. It is evident also that variations of
inlet velocity will introduce additional effects.

The nucleation and evaporation at subcritical pressures and the
transformation of "heavy'" clusters to "'light'" clusters at supercritiéal
pressures are rate processes that occur during gnd have an effect upon
the leﬁgth of the time lag. Both of these transformation rates are af-
fected by the pressure, temperature and by other rate processes such as
the rate of energy transfer, flow rate, etc. If one of these factors
changes or fluctuates, the transformation rates will fluctuate‘aiso
resulting in a fluctuation of the time lag, i.e., in the fluctuation -

"

of the source. Since the source affects the flow conditions in the '"'light

fluid region the flow in this region may become oscillatory.

II.3 Organized Oscillations

Oscillations of a system can be always produced if properly excited.
Such OsEillations can be distinguished by a charaCteristic time, i.é.,
period if the,process‘is periodic or by a relaxation time if it is
aperiodic.,

Like in combuStion and following Crocco and_Cheng;[4é] we shall

distinguish two cases: random fluctuations and organized or coordinated

- oscillations.

As random fluctuation we coasider those that are similar to fluctuations 

observed in ordinary turbulent flow. In this case it can be assumed that

the transformation process, for example the rate of evaporation in boiling

 ”é17;v'
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at subcritical pressures, is not excited. The fluctuations at one point
do not have any effect on other fluctuations somewhefe else in the system.
Since the integr;ted effects of these fluctuations vanish they do not pose
a problem. .

In the case of an organized oscillation the transformation process
will be excited by one or more coordinating processes such as the oscillation
of the inlet flow rate, of the heat transfer coefficient, etc. The exciting
force for maintaining the oscillation of the coordinating process is in
turn provided by the transformation process. For example, in boiling sys=

tems oscillatioms of pressure will affect the saturation temperature which

may induce oscillatioms in the rates of evaporation. These in turn may

‘induce flow oscillations and provide the excitation force for maintaining

the pressure fluctuations.

The fundamental character of organized oscillatiéms‘is that a well
defined correlation exists between fluctuations at two different points
or instants. In other words that a disturbance is propagated, i.e., dis-
blaced in time aéd space‘through the system. When these organized oscil-
lations are present their integrated effect does not vanish whence the interest
in thesevoscillations° Furthermore, am oscillatory system may become unstable,
i.e., it may have the temndency to amplify. In tﬁe example cifed above
pressure fluctuations of an increasing amplitude may be generated leading

to the destruction of the system. When the effects are proportional to

the causes the systém is defined as linear. In this paper we are interested

in such systems.

-18-
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II.4 The Mechanism of Low Frequency (Chugging) Oscillation at
Supercritical Pressures

It was noted in the preceding section that the characteristic of
organized oscillations is the propagation of disturbances through one system.
These disturbances can be variations of density, pressure, enthalpy, entropy,
etc. In this section we shall examine the effects which these propagations
may have on the oscillating propensity df the system. In particular, we
shall consider the pfopagation of density disturbances and the effect of the
time lag, i.e., of the space lag. The effects of pressure waves are discussed
in Secition II-7 together with the other mechanisms which may induce flow
oscillations in the nearcritical and supercritiéal’regions.

We note that the effect of the time lag in inducing combustion in-
stabilities was already analyzed by Summerfeld [521 » Crocco and Cheng‘:4gx

/
among others. In boiling systems, this effect was already analyzed by
Profos [49‘\, Wallis and Heasley[jSO—Xand by Bouré [Sq. In these analyses
the flow was assuﬁed to be hbmogeneou39 i.e., the effect of the relative
velocity between the gas the liquid phéée was neglected. .A density propa-

gation equation, applicable to two"phase'mixtures, which takes this effect

- into account was ermulated in [SB“Xand solved in [5&, SSX .

Let us examine now the effects of the finite rates of propagation and

of the resﬁlting time lag and time delays on the flow in a system consisting

of a constant pressure tank connected by a feeding system to the heated duct.

Consider'fifst’the tank and‘thé feeding system only and let us perturb

Suddenlyvthe inlet flow. If theréiié no feedback between the heated unit

and thé~@pstream part of the system, the steady state conditions will be

a

restorad.»FTn'particular, if the variatiOn‘of'thelfIOW rate is small during

, _ 19~
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the time a pressure wave propagates back and forth through the tank and

the -feed system, then the pressure effects can be neglected. As discussed
n [48} the process can be described then, with sufficient accuracy, by

an exponentially decaying flow which is characterized by the relaxation
time constant i.e., by the line relaxation time. Therefore, the systeﬁ

is stable because the steady state conditions will be eventually restored.*

Consider now the effect of a perturbed flow at the inlet of the heated
duct (See Figure II-4), IE is obvious that an oscillatory flow at the inlet
will induce an oscillatory flow of the fluid in the duct. However, in
absence of a driving mechanism these oscillations would also exhibit an ex-
ponential decay. We are looking for a meéhanism whereby these flow oscil-
lations at supercritical pressures can be maintained. Like in boiling and
in combustion such a mechanism is provided by the propagation phenomena
which intrdduce different delay times in the response of the system. This
is shown in Figure Il-4.

It can be seen on Figure II-4 that aﬁ oscillatory inlet flow can induce
os¢illations of the space lag; this is in accordance with the discussion of
the preceding section;'.The'onset of these oscillations is delayed however
by the lag t.ime"Cb9 beca@se of the finite rate of propagation of the dis-
turbance. An oscillatoryspace lag, which is equivalent to an oscillatofy |
saurce,‘will indude flow oscillation, in‘the,"lighf" fluid region. These
source-induced oscillaticns will be presenﬁ in addition to those already‘

induced by the inlet flow. Because of these two oscillatory motions there

‘will be a delay time Gl‘ in the flow responseo "Oscillations of the flow

~ *e are assuming here that any servo-control mechanism in the feedlng system

will mot have a destabmhzlng effectn
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will induce oscillations of enthalpy and of density both delayed by a
certain delay time. With flow and density dscillating, the pressure drop
in the duct will also oscillate. If the conditions are such that the mini-
mum pressure drop in the duct occurs when the inlet flow is - -maximum, it is
apparent then that the oscillations can be maihtained° It is also obvious
that whether or not this will occur will depend on the time lag z:b and on
the delay times E}M R G% s é%w . When these delay times do not
degend upon C b? it can be seen that increasing the lag time YCb.has a
destabilizing effect. Since the time lag }Zb (see Figure II-4) depends
upon the enthalpy difference 12 - il, it can be concluded that, for this
particular case, a decrease of inlet enthalpy il’ i.e., that an increase
of a 121 has a destabilizing effect.

From this qualitative description it can be already seen that aﬁ
supercritical pressures an unstable flow can be induced by the delayed
response of various perturbations. It remains now to advance a qualitative
description. We éhall do this in the following chapters by modifying and
applying the method proposed in.iSO, 51\ for boiling at subcritical

pressures.

IT.5 Methoed of Solution

 In what follows we shall consider the "heavy'" and the "light" fluid
regions separately. Each will be desgribed in terms of three conservation

equations and the equatioﬁ of state. We shall use the one dimensional

representation and obtain solutions for each region. These solutions will

bekmatched at the transition point, i.e., at the end point of the space

lag to provide a solution valid for the entire system.

X3
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Following [48, 50, 51} it will be assumed that the variation of
pressures can bevneglected° This is implied by the assumption that the
density is function of enthalpy only. It can be seen that this assumption
will be valid only if the variations of flow, demsity, enthalpy, etc. are
relatively small during the total time for propagation of a pressure wave
back and forth through the duct. Under this condition it can be assumed
that the various disturbances move through a uniform medium. It is ap-
parent also that this will be true only if the rate of propagatlon of
pressure waves is considerably faster thén the rate of propagation of the
disturbances. However, both in boiling systems as well as in the nearcritical
region the velocity of sound reaches ve., low values.* Consequently, it can
be expected that there will be a range of operating conditions for which
the assumption that the properties do not’depend upon pressure variations
will not be satisfied. For boiling systems this limitation has been already
recognized and discussed by Christensen and Solberg [561 . In general,
it can be expected that the assumption will be satisfied in the low freqﬁency
range, i.e., ih~”chugging" oscillations. When the effects of pressure ?ari-
ations can be neglected then ome can use the formulation put forward ih.[SOj
and carried out in [51\ for boiling systems at subcritical pressures.

The method of solution used in this paper is as follows. A small per-
turbation is imparted to the inlet velocity. The velocity of the fluid is

determined then by integratfng the divergenée of the velocity. With the

%Indeedg in the critical region some authors reported values approaching a
zero velocity. At present neither the exact value of the velocity of sound
at the eritical point is available nor a satlsfactory understandlng of the
phenomenon has been attalned

-22-

L

et i




i picrs ot

¢!
il
i

¥

I
=t
I3

velocity known the energy equation is integrated to ocbtain the time lag Y:b
as well as the rate of propagation of enthalpy disturbances. From the
enthalpy and from the equation of state we then obtain the density of the
medium. The differentiation between the nearcritical region and the
supercritical region is achieved by assigning the appropriate expression
to the equation of state. With the velocity and the density known, the
momentum equation can be integrated. Since the inlet disturbance is small,
the momentum equation is first linearized and then integrated to give che
characteristic equation.

Because of the linearization of the momentum equation the analysis
will be applicable only to cases where the effects of the instability are
not so strong to produce large amplitude oscillations. It can be used there-
fore to predict the conditions cf incipient instability, i.e., to determine
stability limits. As discussed in EAS] and‘ﬁo, Sf\ linear effects and formu-
lations have been successful in predicting certain type of instabilities

("chugging' instabilities) in combustion and in boiling systems respectively.

A similar result could be expected, therefore, with the present formulation ifﬁ

it is used to predict the onset of "chugging' instabilities at supercritical

pressures.

-

IT.6 The Characteristic Equation and Its Applications
The characteristic equation for this problem is an exponential poly-
nomial, it is therefore cf the same form as the characteristic equation for -

combustion instabilities [481‘,vthu5
) e ST, | | : , .
s Ly —e Ly 20 11-1
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where Ll and L2 are polynomials with coefficients independent of the time
and where s is a root of the characteristic equation.

In general, the root s is a complex number; the real part gives the
amplification coefficient of the particular oscillatory mode, whereas the
imaginary part represents the angular frequency. Since the original per-
turbation is assumed to be of the form exp[_st'],‘a given oscillatory mode
will be stable, neutral or unstable depending upon whether the real part
of s is less, équal or greater than zero. A sufficient conditiomn for the
system to be stable is therefore that the characteristic equation (Eq. II-1)
has no roots in the right half of the complex S plane.

Let us examine now what information can be obtained from the character-
istic equation as well as the type of practical problems where this information
can be applied most usefully. Two such problems were discussed by droccé and
Cheng[\48] in connection with the stability analysis of combustion systems.
The same discussion can be applied to the presént éroblem.

In the first class of practical problems one is interested in-deter-
mininnghether a given system with specified characteristics, i.e., with
specified numerical coefficients is stable or unstable. ihis is most'of§en_
a situation that arises during the planning period; i.e., before the system
is designed and tested; The characteristic equation can be uséd to provide
an answer to this type of problem; In partiéular,(since'thé.numéfTCal co-

efficients in the characteristic equation are known, Crocco and Cheng (487]

‘note that the use of Satche's ESBX diagram is most useful for analyzing the

exponential polinomial obtaining thereby a solution fpr this type of problém.
In the second class of practical problems one is interested in the
qualitative trends of the stability behaviour of a Systém when various
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parameters are changed. This is most often a situation that arises during
the design period because of the designer's need either to design a system
with sufficient safety margins or to modify a given unstable system in order
to make it stable. For this kind of problem Crocco and Cheng[:48-]
note that it is advantageous to use the characteristic equation for deter-
mining the stabi ity boundary of a certain system. On such a boundary,
expressed in terms of the operating characteristics of the system and of
the process, the oscillatory mode in question is neither stable nor unstable,
i.e., the real part of s vanishes for that mcde. The stability boundary
divides therefore the space formed by the parameters of a given system into
different domains in which the system is stable on one side of the boundary
and unstable on the other. If by varying one parameter of the system the
stability boundary is shifted in such a way as to decrease the unstable
domain, the variation of the parameter has a stabilizing effect and vice
versa.

Following the standard procedure the stability boundary is obtained
from the characteristic equation by setting s = i W, where ¢ is the
frequency of the meutral oscillation. Upon sepafating the real and imaginary
parts of the characteristic equation one can eliminate the frequency ¢ ,
the resulting equation represents the stability boundary. Two such boundaries,
obtained from characteristic equations given by first and second order ex-

ponential polynomials, are shown in subsequent chapters.

II.7 Additional Mechanisms Leading to Unstable Operation
Befbre prbceeding With the formulation of the preseﬁt problem we shall
note and examimne briefly additional mechanisms which cén induce flow oscillations
in the nearcritical and supefcriticalkregiéﬁs,‘ These mechanisms will be
analyzed in moré detail in sepératé'publiéations. |
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- It is instructive to note first a general characteristic of oscillatory
systems. A necessary condition for maintaining oscillations is that enough
eneréy is supplied to the system at the proper frequency and phase relation
in order to overcome the losses due to various damping effects which are
always present in real systems, When the rate of energy supplied is control-
led by an external source and is independent of the fluctuations inside the
systems, the oscillations will build up when the energy is released at a
characteristic frequency giving rise to the resonance phenomenon. However,
when the system contains itself an energy source, with a property that the

energy release depends upon a fluctuation inside the system, then an accidental

small disturbance in the system may interact with the source resulting in

osgillations of increasing amplitude. For this to take place it is necessary
that the energy from the source be fed to the disturbance during part of
the cycle.

It was discussed in preceding sections that the system which is analyzed
in this paper has the property that the énergy releése depends upon fluctu-
ations inside the system. 'Oécillations of the éime lag and oﬁ the space lag
are examplés of such fluctuations. We Shall examine now other energy sou:ces,
and fluctuations which may be present in the system.

It was discussed byRayleigh_[59_&that internally driven pressure
OScillationS can occur in a system consisting of a gas‘floWing through a
heated duct, For such oscillations to be méintained Rayleigh notes that
the energy must be addéd to the gas during the moment of greatest conden-
sation and femoved dﬁring’the rarefactiOn period. This leads to the Rayleigh's
criterion Whiéh states that a component of the fluctuating heat addigion must

be in phase with the pressure wave if oscillations are to be thermally driven.

-26-



The same criterion can be used to explain a type of oscillation ob-

served at critical and supercritical pressures as well as in boiling

mixtures at subcritical pressures. In both systems the heat transfer co-

efficient is a strong function of pressure. Thus, pressure oscillations

may interact with the heat transfer coefficient inducing oscillations of
the latter. If these oscillations are in phase, the system may be thermally

driven and become oscillatory.

st e T e e e

Another mechanism which may induce oscillations at both subcritical

R

and at supercritical pressures is caused by the large compressibility of

5 some parts of the system. At high pressures this is the section of the

system where the properties of the fluid pass through the nearcritical
région. At pressures below the critical point, this will be the section
of the system where subcooled boiling takes place.

Still another mechanism that can induce oscillations at subcritical

~ pressures is caused by the change of flow regime which can induce large
fluctuation of the mixtute density. These in turn may induce both os-

cillations of the flow and of the heat transfer coefficient thus providing

the driving forée necessary for maintaining the oscillations.

| It can be expected that each of the mechanistis may‘be effective over
some range of operating c;nditions. It can be also expected that the.
resulting oscillations are chéraéterized by a certain frequency range and
by particular wave forms. Indeed, several frequency ranges and wave shapes
have been reported and deséfibed in the references discussed in Chapter I.

The mechanisms just described will be the subject of future investigations;

in what follows we shall proceed with an analysis of'the "chugging'' oscillations.
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III. The "Heavy' Fluid Region

III.1 The Governing Equation

For a ''two-region' approximation the "heavy'" fluid region extends
from the entrance of the heated duct to the transition point. Note,
that for a system with constant energy input, the location of this point
will move along the duct when the inlet velocity and/or the inlet enthalpy
vary.

It will be assumed that the fluid in this region is incompressible
and that the thermodynamic properties are constant. The problem is formu-
lated by considering the three field equations describing the conservation
of mass, momentum and of energy in addition to the constitutive equation
of state describihg the properties of the fluid.

For a one dimensional formulation, used in this‘énalysis, the con-

tinuity, energy and momentum equations are given respectively by:

- ¢, u PATE | , 2w I1I-1

T 4y T %Ay =0
IS 4+ U i i 13 SR II1-2
it g ¢ |
and , ‘
Tov T oap TWay T 5T

where the symbols are defined in the. Nomenclature.
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The constitutive equation of state is given by:

f} = Cloﬂst.

I1I-4

Equations III~1, 2, 3 and 4 are four equations which specify the four
variables (P'QI M and i in the "heavy'" fluid region. These four
equations will be integrated to yield ’?I€;1A and i as function of space
and of ‘time. These will be then used to determine the time lag and the

space lag,

III.2 The Equation of Continuity and the Divergence of the Velocity

In view of the assumption of an incompressible "heavy" fluid the con-

tinuity equation reduces to the divergence of the velocity

M, |
(K ""‘ ITI-5

whence upon integration we obtain

| (A‘ = u(t) | | I1I-6

The velocity in the "heavy'" fluid region is therefore independent of
position, it is a function of time only.
In order to amalyze the stability problem we shall assume that a small,

time dependent velocity variation 5SM| ’ is,éuperimposed on a steady inlet

~ velocity ;4A| , thus:

st

;141({:») = '7. + 3 “‘l = ’W' Bl ee L .~~_I,]:2’I-7‘
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where the bar indicates steady state conditions.

ITI-3 The Energy Equation

With the fluid velocity given by Eq. III-7, the energy equation becomes:

@—(’—- + M(t) 0 43

e _ . III-8

This is a first order partial differential equation whose solution can be

obtained by mesis of characteristics [60, 611 . The general solution of

Eq. III-8 is of the form:

\.P)_ = F (\e\\) | IT1I-9

where

(ita)=c aa b (Lub) =

I11-10

S
are soluticns of any two independent differential equations which imply

the fgiationships:
dF = £ _ 2 | | IT1-11

For example,'by taking,alternately the first and the second equation, the

first and the third equation we obtain the foIiowing set

e - ' L



‘an expression for the enthalpy as function of space and time, thus:

LI

e iy

Py

and

B NN

di 45 - :

t e(. A o I11-13

In order to solve the problem it is necessary to specify the initial
and the boundary conditioms. These will be specified by letting a particle

enter the duct with enthalpy i; at time T, , (See Figure II-3) thus,

C._.[,' at %:o condd t=_‘:u I1I-14

With this bounda»y and initial condition, one obtains after integrating

Eq. III-12 ard III-13 the following relations: ’
_ St _ 55“'2')],,
3 == /Mg (t—. -Cl) -+ E-e { J I11-15
and > : . %
' L = L‘ +- ‘fi;ji——- ({."1;1) ‘
f‘; A ~ -~ III-16

‘Upon eliminating the time E-I; s between these twoAéquations we obtain

o — C St —S(L-t, S"_AC ‘fIII-17
_ M.Q(t'-—‘u.r)’AL 4 &€ 1—e ( ,)4;, b

v =T 4T
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The first term on the right-hand side is the steady state term, whereas
the second one is the transient which accounts for the perturbation of the

inlet velocity.

I1I.4 The Time Lag and The Space Lag -

In Section II-2 the time lag 7?5, was defined as the time required for
increasing the enthalpy of the fluid from the inlet value il up to the
enthalpy at the transitiom point i, (See Figure II-3). Consider now a

fluid which enters the duct at time 7:1 and attains the enthalpy i2 at

time Yfz; it follows then from Eq. III-16 that the time lag is given by:

which, in view of Eq. III-13 can be also expressed as:
L Al
7 — 4aby . = ITI-19
T %3

It can be seen that for a given 'system and at a given pressure the time

lag depends only upon the enthalpy difference (i2 - i1 = C&iﬁd ) and the

heat flux density.

We shall determine now the space lag. For a '"two region' approximation.
Figure II-3 indicates that the'heavy'fluid region extends up to the transition

point where the bulk fluid enthalpy reaches the value of i Inserting i

9"

in Eq. III-17 we obtain the following expression for the space lag:

2

. medhA ge I S O 111- '.
oSt lnet Ty
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For steady state operation & = 0, whence we obtain from Eq. III-20

————

the steady state space lag A s thus:

—A—- ‘ a: e{- .AL)_\ AL
ari ITI-21

In view of Eq. III-18 and III-21, we can also express Eq. I1II-20 as:

'—S'CA

— i - e )
Alt) = WT, + E.'f g-:s——-—l( ITI-22
' CAE) = A+ &A I

. Several comments are appropriate,v

1) Equatiéns ITI-18 and IITI-21 indicate that'for steady state, i.e.,
‘when & = 0 the time lag T, corresponds to the tranmsit time.of a fluid
particle through the '"heavy' fluid region.

| ~2) Equation III-22 shows that the response of the space lag to a

variation of the inlet velocity is delayed.by a time period equal to the
timéilag [

3) If we interpret the enthalpy i2 as the enthalpy at saturation and

thereforevthe difference 4 i by the subcoollng then Eq. III-22 predicts

the 1ocat10n of the boiling boundary, i.e., the location where boiling

starts in a two-phase mixture at subcritical pressures. Indeed, such an
, expre351on was derived prev1ous1y (in [49 50, Sf] among others, u51ng

somewhat d1fferent approaches) for analyzlpg osclllatlons 1n,b0111ng mixtures.
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The time lag -Cb was called there the '"evaporation time constant" [49] .

III.5 The Momentum Equation

The momentum equation can be integrated now since the velocity in
and the boundaries of the "heavy'" fluid region have been determined. With

the boundary conditions taken as

P= 7 at Z =0

P=TP, at 3= AlY) ITI-24

the integra‘ted momentum equation becomes
% Mt
!
—| dP = [?_"L‘_' u, M + fwla I11-25
i gl T 3 3’ * 2D @

i

where we have taken into account the assumption that the density in the
“"heavy'fluid region is conmstant. In view of Eq. III-5, TII-6, III-7, and

I1I-23, the integrated momentum equation yiéids:

- Ydu Ay S P N o
PR [M g B0

LirneariZing Eq. III-26 and retaining only the terms with the first power

of €. we obtain:

=34~



R SN

ITII-27

We shall consider now the pressure drop across the inlet orifice.
Defining by ki a numerical coefficient that takes into account the effect
of the geometry of the restriction and of other losses like vena contracta,

etc., we can express the inlet pressure drop across the inlet orifice by:

) :
P, —7 = &€ W III-28

which, upon linearization can be expressed as:
| N st
B =P kEW k2T EE rIr-29

We define now the steady state values of the pressure drop due to
body forces (gravity) by:

———

II1-30
- due torfriction_by:
— .F]( ‘EI.I
A = =—CW | SR
2 ZD""‘ i | | SRR R III-31
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and due to the inlet orifice by:

2

AR = & QM' III-32

In view of these three relations and upon substituting Eq., III-29

in Eq. III-27, we can express the pressure drop in the “"heavy" fluid

region by:

—— S——— ——

'?o'——jz =¥_ A:Pp. + A%, + A e + -
;{Q"/\'}ﬂ_‘ﬁ +2§’bafo. . ’)zi?u%gu, +§3@_¢ N a/.«.?.,_} 7.
| At DV, U PN N III-33
where
st
U, = €€ g
III-34
and
e - st -ST,
‘6')\ = éd? (\ — e ') o
| S | | 1TI-35

The first line on the right-hand,éide of Eq., ITI-33 repfegents
~the sum of the steady sta&e pressure drops, whereas the second one aécounts
fdr the transiént response. In particular, the first term is the inertia
 0f‘§hé "héav&“ fluid région;»the'sedond termare the pressure losses due to
variationiof inletyveioéity whéreas>theflast term shows Ehg effect of the
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varying space lag. Equation III-35 indicates that this last effect is

delayed by time lag C We shall proceed now with the analysis of the

b.
"light" fluid region.
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IV The "Light" Fluid Region

IV.1 The Governing Equation

For a "two region'" approximation the "light" fluid region extends

it ) from the transition point to the exit of the heated duct. The problem

AT T

is formulated again in terms of three field conservation equations and

of a constitutive equation of state. However, in contrast to the '"heavy"

v s

fluid the density in the "light" fluid region is function of enthalpy
and of pressure. It was discussed in Chapter II that for ''chugging"

oscillations, the effects of pressure variations can be neglected.

Consequently, the density will be a function of enthalpy only.

The '"light" fluid region is described, therefore, in terms cof the

continuity equation

¢ PL D4
_— U . = | _
"()6 T -+ f 7z @) V-1

of the energy equation

] N ;'/14-1“:__ oo (AT | o Iv-2

0t Y S

the momentum equation

AN +Q’\A — + 40 + ——-—-f’}"‘ s

and the constitutive‘equatiOn of state

2 -38-
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vV = (U'((,\ V-5

when expressed in terms of the specific volume

Equations IV=1, 2, 3 and 4 are four equations in terms of four
variables P, € ,M and i. They are applicable to the "light" fluid
region at supercritical pressures. They can be also applied to the
two phase flow region at subcritical preséures if, and only if, the
relative velocity between the phases can be neglected.

It is emphasized here that the form of the energy and the form of
the momentum equation, as given by Eq. IV~2 and Eq. IV-3, are correct
only if the relative velocity between the phases is either zero or its
effect is negligibly small. If such is not the case, then both Eq. IV-2,

and Eq. IV-3 must be modified.

It was discussed in Séction II-5 that at high pressures, say above
0.85 of the reduced pressures, the effect of the relative velocity is
sb small that it can be neglected. The region of interest to this analysis
is the high pressure region. It can be expected, therefore, that, in
this investigation, both Eq. IV-2 and Eq. IV-3 can be used to approximate,
with,sufficient accuracy, the energy and the momentum équation fof the
two phase mixture in the nearcritical region.

In what follows we shall use, therefore, Eq. IV-1 through 4 to des-

- cribe both the "light" fluid at Supgrcritica1 pressure§ and the two phase

=39-
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mixture in the nearcritical region. The differentiation between the
"light" fluid and the two phase mixture will be realized by assigning
the appropriate expression to the constitutive equation of state. This

will be done in the section that follows.

IV.2 The Equation of State

For the '"light" fluid the relation between the specific volume and
the enthalpy can be obtained either empirically, i.e., from experimental
data or it can be approximated by an equation of state Such as the per-
fect gas or the van der Waals' equation etc. It was noted in Section II.1
that for oxygen the perfect gas equation predicts with sufficient accurdcy
the relation between the specific volume and the enthalpy. Since this
fluid is of primary interest to this investig;tion, the perfect gas
equation will be used as the constitutive equatién'of state for the "light"
fluid at supercritiéél pressures. |

Assuming a constant pressure process we have for a perfect gas the

following relations

| = . B
dv = = . IV-6

IV-7
whence

| —| = - V-8
\di B Pc, " 8 |
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For a "two-region'" approximation the boundary condition for the '"light'

fluid region is given by:

i
— -

v =;’U} ai? “E b | V-9

{ We obtain then the equation of state for the "light'" fluid region by
integrating Eq. IV-8 subject to the boundary condition given by Eq. IV-8,
thus:
o ’ . . R ' '
L V) =V (-0 : IV-10
: " ‘PCP

We shall derive now the equation of state for the two phase mix-
ture in the nearcritical region. We recail first that the quality x,

of a two phase mixture is defined by:

| Gf-'*'é‘t

Iv-11

where Gg and Gf are the mass flow rates of the vapér phase and of the

liquid phase respectively. We recall also that the specific volume

i
#
&
£
4
:
;
¢
&
¥
;
4
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i

and the enthalpy of a two-phase mixtufe are given by:

énd | | | |

1v-13

o= (=0h + Xy
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Where v‘fs if

the liquid and of the wvapor respectively.

and 'U;, ig are the specific volume and the enthalpy of

We obtain then the equation of state for the two phase mixture by

eliminating the quality x, between Eq. IV-12 and Eq. IV-13, thus:
' AV} v
W) =V + = ((—L,) Iv-14

Where A'V‘fg = \?g = Up» and where A i, 1s the latent heat of vapori-

zation. Differentiating Eq. IV-14 we obtain for the two phase mixture:

dv AV,
= 2 7%
(d“' ),P A Lftk IvV-15

which can be compared to Eq. IV-8 appiicable to the "light" fluid at
supercritical pressures.

It is important to note that both, the equations of state for the
"light" fluid at supercritical pressures, i.e., Eq. IV-10, and the equation
of state for a two-phase mixture at subcritical pressures, i.e., Eq. IV-14,
are of the same form, i.e., both can be expressed as:

Vi) = v + (j—[z-)P (L—L.) IV-16
L L ,

We can use, therefore, Eq. IV-16 for the equation of state in the near-

critical as well as in the supercritical region. We shall distinguish

one region from the other by subétituting either Eq. IV-15 or Eq. IV-8



IV.3 The Equation of Continuity and the Divergence of Velocity

Several methods are available [49, 50, 51, 62] for determining the
velocity in a boiling mixture. Any of these could be modified and‘used
to determine the velocity in the "1light" fluid region. In what follows
we shall use the method of Bouré [511 .

As in the "heavy" fluid region we shall determine the velocity by .
integrating the divergence. However, in contrast to the "heavy'" fluid
region where the divergence is given by Eq. III-5, the divergence in phe
"light" fluid region is not zero but is obtained from Eq. IV-1, thus:

P _ _ 1 K_-.,_M:‘.)_G_' IV-17

‘N e Lo | 7%

In order to integrate the divergence it is necessary to evaluate
the right-hand side of Eq. IV-17. Following Bouré this can'Be done by
means of the energy equation.

Since the density is function of’enthalpy only one can write

00 W de[al 0
—m L _ 9\ L L
At + 2% ‘di*' ot + v 3 ]fV-18

Substituting Eq.’IV-Z in Eq. IV-18, it follows that:

0 W _ 1 de a3
o -\-M,Qs_ ,_ e A A Iv-19

whence from Eq. IV-19 and IV-17 we can express the divergence as:
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We shall define now the reaction frequency* _{]. by:’

A A (R S
AL = (Mi JP A, —‘——-(72 di ) A, -2

It follows then from Eq. IV-8 and Eq. IV-21 that the reaction frequency

for the "1igh:" fluid in the supercritical region is given by:

R = ’R 43’» Iv-22
T’Cf AL

whereas it follows from Eq. IV-15 and Eq. IV-21 thatkfor boiling at sub-

critical pressures the reaction frequency is given by:

’ AV 43
L = == : 1v-23
Mg A B o

With the reaction frequency defined by Eq. IV-21, it follows then

from Eq. IV-20 that we can express the divergence as:

LIS

M-
%

Iv-24

' *The reasons for using this definition are discussed in Section IV-9
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‘:EE,_= 0 in Eq. IV-279 thus:

The physical significance of this equation is simple: the divergence
of the velocity in the '"'light" fluid region is equal to the volumetric
rate of formation of the "light" fluid per unit volume of space.

In order to integrafe Eq. IV-24 it is necessary to specify the
boundary conditions; these are given by considering the velocity in the
"heavy" fluid region, i.e., Eq. III-7. The boundary condition for

Eq. IV=-24 is therefore:

oob

_ - st
M= M +d W o= MrEe at 3= AIE)
A 2 . o e IVm 25

whence upon integration of Eq. IV-24, we obtain for the velocity in the

"light” fluid region the following expression:
w3t = w+ £€ + N[3-ABT IV-26

We note that Eq. IV-26 with _SL given by Eq. IV-23 is the velocity

in the two phase boiling mixture, as suéh it was used already in (49,50,51and 62.)

It is instructive to examine further Eq.’IV-‘269 whichy»by-means of

Eq. III-23, can be ‘expressed as:

: - - st ' St - e
= %) + e S

f1v~27

We obtain the. steady state velocity in the "light" fluid region byilétting
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Iv-28
We can rewrite then Eq. IV-27 as:
Ui t) = _u_;is) + W% () IV-29

where the time dependent perturbation of the "light" fluid is given by:

| St st 5Ty
§ Wy 1) = dW-ndN —fe - ne€ (|-e )IV-3O
S

. It can be seen from Eq. IV-29 and IV-30 that the flow in-the "light"

- fluid regicon is affected by both the inlet perturbation as well as the

perturbation of the space lag. This last perturbation is delayed by the
time lag T, (see Figure II-4).
We shall define now several steady state relations which shall be

used in following chapters.

By 'yletting z = f; in Eq. IV-28 we obtain the steady state velocity

at the exit of the heated duct, -thus:

U?,(l),;,us U+ (L-r) S w3l
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The lengthwise average velocity in the '"light'" fluid region is defined

5 Iv-32
whence from Eq. IV-28 we obtain
{uy = W 4 {1_%:_’12 IV-33
From Eq. IV-31 we have:
A (4-7) = My - | IV-34

Substituting this relation in Eq. IV=-33 we have the following expressions

for the average velocity:

Wy = o - 1A A | |
My = W ) Iv-35

L

The log mean velocity in the "light" fluid region is defined by:

u o - Q-k) |
i by “ . IV-36
Q : V) ,
' n

where we'haVe,taken into account Eq. IV-34.

—47-



S

st nyte

o
mmﬂ:
»

A fourth relation of interest to this investigation can be obtained
from the conservation of momentum G.and the definition of the log mean
density. If we denote by Q 32 the density of the fluid at the exit from

| the heated duct, then the log mean density in the "light" fluid region is

i given by:

€ = $-%

; L in 45

\ - Iv-37
€.

3\ The mean velocity, based on the log mean density, is then obtained by

considering the mass flux density, i.e., the momentum G, thus:

T e | TV-38

- which, in‘view of the preceding relations can be expressed also as:

L J— —

' G‘ M3 Ml M} i) \ | | -
' i‘m Wy =W ' i, ‘ o '

‘We can proceed now with the solution of the energy equation.

IV-4 The‘Epe;gy‘Equatibn‘
We can solve the énergy equatioh now since the velbcity and the equation
~of state in the "light" fluid region are,épecified. By substituting Eq. IV-26
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and IV-16 in Eq. IV-2 we can express the energy equation as:

0L L |m Nk _[_'_ AV (o] A5
ot +['u1“)+6h‘r( )Jfl)} - QF +(‘ﬁ?( L)J Ac IV-40

-~

Taking the enthalpy i2 at the transition point.fo} reference and in view
of the definition of the reactiom frequency (L , given by Eq. IV-21,

we can rewrite Eq., IV=36 as:

’b(!‘,‘h)
"t

+[Gs‘%»+5"af“]3—-‘q"“’= q;’ + [ (i-h)
v G¥ ) Iv-41

The initial and boundary conditions for the energy equation are de-
termined by comnsidering the conditions at the transition point (See Figure

II-3); they are given therefore by:

L_L; = () ot t = T,

Iv-42
. =<7
’ ' - — srl - S
l-t, = 0 al }:Mh) = A+ £C (-‘—-_sf—.)
| Iv-43

Equation IV-41 is again a linear partial differential equation, it
can be solved therefore by the method used in solving the energy equation

for the "heavy'" fluid (See Section III-35. Following this procedure, we

- obtain in;placevof Eq. III-11 the féllpwing setf. N



W)+ w93 e
T ero RO 1V-44
whence:
— -5T,
—éz = H%H) + guq“) — TA-;-(- J)_(%.X) 4 Eest‘ sS=JL+ €
AE S IV=45
and
d(t~c) = ] -\-_fl(i""'z-)
dat €A S IV-46

Integrating first Eq. IV-46 and taking into account the initial con-

ditions given by Eq. IV-42 we obtain:

EAN '4_"_'()’:‘(1,—&;) %J = n(t-7;)

IV-47
whence:
a'? -;'h(f-t;)-*
L-LL Y l 7 *‘ Iv-48
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In order to integrate Eq. IV-45 we note that it is of the form of:

_%{_:L — N3 = ge\“') | © IV-49

.whose solution is:

‘:3 - / p(’g)ﬂli) d¥ = Const Iv-50

e-fn dy e__nt

where P = —

The integral of Eq. IV-45 is therefore:

‘ - (ﬁ-—ﬂ)t -ST,
~nt w =1 -at  ¢e T (S-Rtne
e 4| — —A & - ( = C -
3 [ Y P s ) . 1v-51
which, in view of Eq. IV-41.8, can be expressed as:
-NT, = -ST
e 'i—'_u'- iy QES{: S-n +ne © c |

DA (1-1)
)+ ——f—“ ( |

The value of the constant of integration is evaluated by means of Eq. IV-42

and IV-43, thus:

| v‘ =R v g Q | -€ | , s-—JH_n.e’ : '
‘ o S i e G___ —¢e . _ | ;
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Substituting Eq. IV-53 in Eq. IV-51 we obtain after some re-

arréngement:
-sT
" st )

Sfreacd - & e [1ma(5E ] -

IV-54

-Stb - t

—ﬂt - "‘5 (é-zz) $£ _e "S(t rz) Si ~$-CA
e "§ iy ne £ e (_'___)_ N e e [/_ﬂ(:-e )]}

S S-n S
which, in view of Eq. III-23 and Eq. IV-3U, can be expressed as

at
e | mw- 5“17,
IV-55

| " | ~s(E-Ta)
-ﬂf‘-g— SEEL N L S SV‘&\(

By’substituting Eq. IV-48 in Eq. IV-55 we obtain the solution of the

energy equation for the specified initial and boundary conditions, thus

™ fu
Ug (%) -y 4

%% - S -$(t=Tax) -S(t-Ta) N
e W o+ e ash-e gu MF
~ R S ~

from which we obtain the enthalpy for the "light" fluid region
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L'L _ qf u“m-.sﬁ.é ¢ '
n — -s{t-T. ~S${t-To
e{'AC W + GS( }15 ——ﬁ:—— . J“‘J
S~

IvV-57

Expanding and retaining only the first power of & we obtain after some

rearrangement
X - ~s(b-Tp) _sTs
L= 4X(3-A) 98 | %gu,_‘:&_‘yf e fu,
. i Gf_Ac EQA:. S-n u IV-58

If we let the perturbation go to zero, i.e., & = 0, we obtain from

Eq. IV-58 the enthalpy for steady state operation, thus

L-1, = 13 (3°%) : IV-59
E]G;IAQ

IV-5 The Residence Time

It is of interest to evaluate now the steady state‘residence, i.e.,
thé transit time éf é‘particlefin the heated duct. Deﬁoting by i the
énthalpy at“the exit and by T 3 the time when a particle reaches this
enthalpy we obtain from Eq; IV747‘th¢_residence‘time'invthe "light" A

~ fluid region, thusiy‘
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LTy = o {l + N (lg-1) qg}]

IV-60

which, in view of Eq. IV-21, can be expressed also as:

| diy A '
T,-To = ( d'\:')cf qé X”‘{ ]“‘(&Tl;)‘,e('ui“} IV-61

Denoting by Q =(}'§{, the rate of energy transfer to the entire

duct and by'VV”, the mass flow rate, we can express the total energy

balance in steady state as:
]
(Ls- L) lh-t)= R | IV-62
W |
Substituting this relation in Eq. IV-61 and in view of Eq. III-18 we

obtain the following expression for the residence time in the heated

~duct:

9% Ve 43 di

IV-63

B = A () he 1) 6wt

»IV-6 The Density and the Density Perturbation

| ‘The density in the "light" fluid region is given by the equation of

-5~
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state, i.e., by Eq. IV-16, which, in view of the definition of the re-

action frequency.J\_, given by Eq. IV-21, can be expressed also as:

e N [
— = | +(%'r—}1,ee<"‘l)=l+n€céc(t—tz)

Q(L) a'i IV-64

Since the enthalpy in the "light" fluid region is given by the
solution of the energy equation, i.e., by Eq. IV-56 we can express the
density as function of time or as function of time and space. Thus by
substituting Eq. IV-64 in Eq. IV-47 we obtain:

Q) eﬁﬂ (%) IV-65
G

whereas by substituting Eq. IV-64 in Eq. IV-56 we obtain:

o _ r.-.s.(df-‘zz) PR
KBt W e RN — e JM?
| TR | IV-66
$=3

which, by méans of Eq.:IV-BU, III-20 and’III-18, can be expressed also

: —S(t‘fz)
' - Ay} -
R B el

e ot e
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or, in view of Eq. IV-65, it can be transformed in

_ o[ R(t) S 5T
Qit) W= " [ e, ] < 4
.E;_. _ — S — IV-68
b — 7
u:: Pb) N g ‘?

Using again the binomial expansion and retaining only the first power

of £ we can express Eq. IV-67 as:

~ — e
) _ G o W duy esf *)_(;_ui} | |
IV-69

2 ) S ) ) Gyl 7

Similarly, we can expand Eq. IV-68 and express it as:

Q) U LN n g&ul _(ilsme_snﬂ‘}
G B s Dy Ry LR U 1v-70

where the steady state velocity ﬁs(}) is given by Eq. IV-28.
By letting i; = 0 in Eq. IV-66 we can obtain the local steady state

‘density in the "1ight";f1uid region, thns:

) . w . om

Iv-71
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We shall define now several steady state relations which will be

used in the following sections.

By letting 3 = l_ in Eq. 'IV-71 we obtain the density at the exit

from the heated duct thus:

olt) —

|
|

IV-72

where we have taken into account Eq. IV-31.

We shall define now the average density in the "light" fluid region

by:

I
N
A
S

o

{80

,{ A IvV-73

whence from Eq. IV-71 we obtain:

| Q/V\‘» U |
<<> e *«—;— e

In view of the definition of the log mean velocitybl“,\m given by Eq. IV-36

this aVerage_density can be expressed as:




‘ G u, G
. <Qe‘7 _ ’L"—_}— = — IV-75
M"&_ M' Ui UI(,,,,'
We have already defined the log mean density by:
¢ = _QL:_SE_
- 1 % IV-76
63
- where QS is given by Eq. IV-72.
A fourth expression can be obtained from the definition of the
average velocity (u}\, given by Eq. IV-35 and the momentum G . We
can express therefore a mean density, based on the average velocity,
by:
| Q G G
ma = -\ Y —
(Ug W + _______n(g ) Uyt |
: Iv-77
With the steady state density dn the '"light" fluid vapor given by
Eq.‘IV-Zl, we can express Eq. IV-69 as
eL()(r | e | ..



where the density perturbation is given by

~S(+-T))
8?\’3:“ = = -G | % §UL - € __5:M_L Iv-79
- Uty T we3) U

ok, IR s R
Y

which, in view of Eq. IV-30, can be expressed also as:

5¢(3) = n G % W ndh e—s(t—z,) 5“!]]
IEECIAY Uy gl M)

By letting 3 =4{ in Eq. IV-79 we obtain the density perturbation

at the exit from the heated duct, thus

- ~T))
Fo, - G T Su)

It can be seen from the preceeding equations that in the '"light"

fluid region the densitybperturbation is affected by both the perturbation

‘of the inlet velocity and by the variation of the space lag. Further-
b more, ﬁhe effect of the inlet velocity perturbation is delayed by a
delay‘t;me. Equations IV-30 and IV-80 are the quantitative expressions
for}the“floﬁ and density variations in the "light" fluid région ﬁhiphk

wefe‘qualitatively described‘in,SectionkII;é.
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With the density and the velocity in the "light" fluid region
given by the expressions derived in this section and in Section IV-3
respectively, we are in the position to integrate the momentum equation.

IV.7 The Momentum Equation

In order to integrate the momentum equation it is necessary to

specify the boundary conditions, these are given by:

?: ?1  04{‘_ %" )\H’—)

= ut 3 = L IV-82

whence the integrated momentum equation becomes:
% K
2 DU M f el d
AP = {<"—~— 4—QM'5§ 1‘66'*';3'6M )

Iv-83

Dt
R A

The expressions for the density and the velbcity which should be

substituted in this equation are given by Eq. IV-78 and Eq. IV-27,

~i.e., Eq. IV-29”respective1y. We shall consider now each term of Eq.

IV-83 separately.

Iv.7.1 ’Ihe Inertia Term

The inertia term in the momentum equation is given by:

;A'T:r_ T ( ' Q_G—f:_' d’? i T IV-84
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Substituting Eq. IV-78 and Eq. IV-27 inlEq. IV-84 and retaining only

the first power in g we get:

st ST
te (S-St+n¢

S
n

s«[fl

AP —

IV-85

In view of the definition of the average density and of the velocity

' perturbation given by Eq. IV-75 and Eq. IV-30, respectively, the inertia

term can be expressed as:

— v | U
7y (e 48 L s

IV.7.2 The Convective Acceleration Term

The convective acceleration term in Eq. IV-83 is given by:

A = f 6“%2-"") S | "‘iV-87
A

‘7Substituting Eq. IV-78 and Eq. IV-27 in Eq. IV-87 ahd retaining only the

first power in '?;we obtain upon integration:
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L, 4 ee 2 3
+ C n n < n S
IV-88
-ST 1 -S| Ty=Tr) —
_G‘&e*esg(ﬂ) \——65(3 ___u3>
N =N n

It is of interest to examine thé physical significa::e of the various
terms.

If we let ¢ =0 in Eq. IV-88, we obtain the steady state acceleration
pfessure drop AE; ,,wh;ch, in view of the definitions given in Sections

IV-3 and IV-6, can be expressed as:

—————

A?a\ = G -ﬂ(’("x) —_ G(W}"a)) =<eﬂ> M(w(l‘/a“ub) =

| R S _
L W e'— @5 m , W

——

= Qbh MM,(hs—G])

The second term in Eq. IV-88 can be expressed by means of the

Eq. IV-89 and of'thévspa¢e7lagkvafiation definedrby;Eq;fIII-22,‘thus, '

: -62="
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IV-90

It shows, therefore, the influence of the variation of the space lag on
the acceleration pressure drop in the "light'" fluid region.
In view of Eq. IV~-89 and Eq. IV-30, the third term in Eq. IV-88

can be expressed as

- Sl" sftg, - _ —_—
GA Zoge ZRTE S GlE) gy - Ml gy,
w 5 | UIW Mbw

Iv-91

It expresses, therefore, the influence of the velocity perturbation in
‘the "light" fluid region on the acceleration pressure drop.
The last two terms in Eq. IV-88 stem from the density perturbation

term in Eq. IV-70, i.e., from

8 5 _

, N = ol JsT) - Uy 13)
n (o g (B & T 22y
Fson ) ) G iy b (3) ~ %
At | -
~IV-92
T _ 0@ AT ” sk _$Ty .v_g(’ts-k‘(.)'_;
_ Digl el s gece (B[ _e ok
= ) Ty Y R s-m) &
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The third term in Eq. IV-88, i.e., the first term on the right hand side

of Eq. IV-92 can be expressed in terms of Eq. IV-89 thus

- st ~-STy —
Lo dm W ¢ o Srirne o A, S IV-93
. vt -
S=Nn S S-N u(m

It shows, therefore, the effect of the variation of the velocity in the
"light" fluid region on the density and, therefore, on the acceleration
pressure drop in that region.

The physical meaning of the last term on Eq. IV-88, i.e., Eq. IV-92
An insight can

is not as clear as that of the other terms in Eq. IV-88.

be gained however, by considering the upper and lower limits of the

integral
L ¢ I
| = =l ~STs o — —~
f g (G g s
s W, (3) Uql3) 74 IV-94
M) -

It is‘shown‘in the Appendix‘C that this integral is bounded by:

~$(T-0) | —ST I
....cnc!-Me T g I8 crﬂ(‘-ﬂ “SU s
$= , | ; W, e

cAH

'I

S



which, in view of Eq. IV-89, can be expressed as

‘ — —S('C_a,"t:)a — <T
A P | Ste
AL dlae 5V|<I4< S A% Ju,

We note that a simple expression can be obtained by setting MI/M1l7t)= M'/l?:s
in Eq. IV-94, this approximation results in the following expression for

the integral Iy

‘S(TS'tn)

* _ 0 en(i-Fye LI
-4 T &n U
|

(T ) Iv-97

~  _(Ta-T

_ o A% Su,

s—n W

The physical meaning of the integral 14 is now clear: it expresses the

effect of the perturbation of the inlet vélocity on the density (see
Eq. iV-69) and, therefore, on the acceleration pressure drop in the
"light" fluid region, This éffect is delayed by é delay time equal to
Toor to ( Ty -'T' ) depending on whether we use this upper or 10Wer
bound for the integral L.

'By substituting Eq. IV-89, IV-90, IV-91, IV-93 in Eq. IV-88 and by
expressing the integral 14 in terms of the approXimation giQen by
ﬁé. IV-éf ﬁe obtain for the acceleration préssure drop on the "light"

fluid region the following expression:
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IV-98

1

where the steady state acceleration pressure drop AE: is given by
Eqn IV-89|

IV.7.3 The Gravitational Term

The gravitational term in the momentum equation is given by

L

P

AT)""& = j 1€ 4% — 1V-99
iy

Substituting Eq. IV-78 and retaining only the first order terms of

we obtain after integration:

6 U CSt-e
— £ An — ee
R
- IV-100
e _.nz.ne —
4Ryt e 2 XIS T
: U S"L s
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where . 501 _STy
T - ;EL_ _EL_ e iﬂ\ —
L= m(‘s-ng (u:,m = K =

Alt! “atd -
-ST
= [ 1 K
N g S Uy .\

The physical meaning of the various terms 1is: as follows:
We obtaln the steady state gravitational pressure drop by letting
¢ = M@ in Eq. IV-100, thus in view of the definitions given by

Eq. IV-36 and IV-75 we have:

| "y 6@7. oy 1_—’ G _
8 ?b{a | ("u ) a4-7A) W qr( ) Ui
| IV-102

= 4 U-F)ky

The second term in Eq. IV-102 can be expressed by means of Eq.

IV-102 and Eq. III-22, thus

sk S5y |
96, 2 (l ¢ ) - 4U-N eew W g\ -

s “(J'A) | Mlx W

IvV-103

o M o
R W

| —
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It expresses, therefore, the effect of space lag variation on the

gravitational pressure drop.

The third term in Eq. IV-100 can be expressed by means of Eq. IV-39,

IV-75 and IV-103, thus

¢ st 'JTQ 0
ﬁ“'-'\_) e ¢-N+af _ 6;[/(—/\) G— 5‘“1
Uy =N 5 S-n
A(qu SL (&‘} IV-104
W 5= |

‘where the mean velocity Mqh is defined by Eq. IV-39. This term then

represents the effect of velocity perturbation in the "light" fluid

region on the density and therefore on the gravitational pressure drop

in this region.

The physical meaning of the last term in Eq. IV-100 can be ex-
plained again by expressing the integral 14 in Eq. IV-101 by its upper

and ‘lower bounds (see Appendix C)

-s(t-z) " R —STs

W - Iv-105

'whichVin view of Eq. IV-39, IV-75 and IV-103, can be expressed as
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IV-106

A simple expression for the integral 14 can be obtained by using the same
approximation which was used in deriving Eq. IV~97. Thus, if we let

“‘/"73(5)- w /ﬁ.z | in Eg;.- IV-10lwe obtain after integration the following

approximation = -5 (Ta-1)
-X% e u
i = a 9% }fn 3 e Ch, —
N L. U,
o - IV-107
{ AP"’"@ e"s(tcx-'l T) gu
= =~ \
-0 L

By comparing Eq. IV-107 with Eq. IV-106 it can be seen that 14* has a value

which falls between the two bounds given by Eq. IV-106. The last term in

Eq. IV-100 expresses therefore, the effect of the inlet velocity perturbation

on one density (see Eq., IV-79) and on the gravitational pressure drop in
the "l;ght" fluid region. Furthermore, this effect is delayed by a time
delay equal to T;ort;-z|depending on whether we use the upper or lower bound
for therintegral It

By substituting Eq. IV-102, IV-103, IV-104 in Eq. IV-100 and by
expressing the integral I, in terms of the intermediate approximation
14* given by Eq. IV-107 we obtain for the gravitational pressure drop

in the "light" fluid region the following expression:
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L‘-ﬂ M.
5 T ~5(Ty-T,)
L [N ﬂu& o [P > "
P P — IV-108

where the steady state gravitational presure drop is given by Eq.

1v-102.

IV.7.4 The Frictional Pressure Drop

The frictional term in the momentum equation is given by

L

. 1 '
APy = | £ ¢u d3 | IV-109
2D |
Alt)
Substituting Eq. IV-78 and IV-27 in Eq. IV-109 and retaining only the

first order terms in ¢ we obtain after integration the following ex-

Ny : g -ST
‘pression - . ‘,_7\—) -1 st e b
O LU e 2N € i ee (12€
,APL} = ZD‘ er|[ k;‘] 2D ' ( S )
| _ | st
T R R PV T |
+ 2L 27 G teé - IV-110
_ T
e Hl’/\) e.n ¢ esrl’,s-nwile | g o T.S' %



wvhere the integral I_. is given by

5
L 5 ST

Ts—iﬁ—g _S_L_HG.}’-QQ’AJM ]]um M3_
-2 s- (%) Wy(3)

20 Al¢) e L IV-111

-STy 2-2
F Gm B € A | _( 7 )ﬁ
D s-n 4 5-20 IPIEY

The physical meaning of the various terms is as follows.
We obtain the steady state frictiomnal pressure drop by letting

¢ = 0 in Eq. IV-110, thus in view of Eq. IV-35 we can write

ZI%i} — ._Egﬁjil CJ;'{.a\ -F..{}ié:ZEl-x =
> ' IV-112

i“j) G uy)
2D

The second term in Eq. IV-llO can be expressed by means of Eq., IV-112

and Eq. III-22 thus:

| | 4T o —
Eoited (=0T st b ogp ee
D R . S / (/(-K) <h‘4\7 | ' Iv-113

It expresses therefore the effect of the‘spaCerlag'Variation on - the
trlctlonal pressure drop.

The 1h1rd term in Eq. Iv 110 can be expressed 1n terms of Eq IV-SO
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and Eq. IV-35 thus
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This term expresses therefore the effect of velocity perturbation in the
"light'" fluid region on the frictional pressure drop.

Similarly the fourth term in Eq. IV-110 can be expressed as

| -3t C
fL HI'M ()\,\A\Ee“ g-ﬂfne ’ e APBC' (YL“}

SA LD < D IV-115

In view of Eq. IV-72 this term shows the effect of the velocity

perturbation,in the "light" fluid region on the density perturbation and
therefore on the frictional pressure drop in this region.

VThe physical meaning of the last term in Eq. IV-110 can be explained

vagainAby expressing the integral 15 in Eq. IV-111 by its upper and lower

bound (see Appendix C) thus -

| | o Iv-116
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which in view of Eq. IV-115 and IV-35 can be expressed as:
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A simple expression for the integral I5 can be also obtained by using the
same approximation that was used in deriving Eq. IV-97 and Eq. IV-107.

Thus, if we 1ettM/a%H)= M./ﬁ; in Eq. IV-111 we obtain after integration

: — ~-slITy-1T)
IX— ipA AP13 e &u\

S“-SL a|

I

Iv-118

The last tefm in Eq. IV-110 expresses therefore the effect of the inlet
velocity perturbation on the’density (see Eq. IV-79)’and therefore on the
frictional pressure drop in the "light" fluid region. Furthermore this
effect ié delayed by a delay time equal'to.Z; or (tg—z] ) depending on
,whethei~we use the upper or lower bound for the integral.

| By substituting Eq. IV-112, IV-113; Iv-114, IV-115 in Eq. IV-110 and
expressing the integral I5 in terms of the approximation given by

Eq. IV-118 we obtain for the ffictionai preséure‘drép in the‘"light"

fluid region the following expression:'
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where the steady state frictional pressure drop Aﬁg13 is given by

Eq. IV-112,

IV.7.5 The Exit Pressure Drop
We can include the effect of the exit pressure drop in the momentum
equation. For this purpose we shall define by ée’ the coefficient for the .

exit losses, then the exit pressure drop can be expressed as
T, -7 N¢ X t |
3~y = 3 = Ae € Uy IV-120

By substituting Eq. IV-69 and Eq. IV-27, both evaluated at % = {v and

by retaining only the first power in ¢ we obtain:

| >-N 1v-121
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We obtain the steady state exit pressure drop by letting £

= {
in Eq. IV-121 thus
—— '& -2 —
APy = ¢63 M, = lec G Uy Iv-122
Consequently Eq. IV-121 can be expressed as
A 2 A(Pz,\
A?p‘ = A?B‘l % — l J(Ata + :
3 ) IV-123
— ? —'S(t”;_z!)
4 0 A?;s\, 5(,“% o a A¥zy e JM‘ |
- “Z% s-J'NL J|

The second term in Eq. IV-123 represents the effect of velocity
perturbation in the "light" fluid region on the exit pressure drop.

The last two terms in Eq. IV-122 can be expressed as

: ¢\

e IV-124

I
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—————
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z where we have taken into account Eq. IV-8l. Consequently the last two

; terms express the effect of the density perturbation on the exit pressure
ff drop.

@ IV.7.6 The Integrated Momentum Equation

i

By adding Eq. IV-86, IV-98, IV-108, IV-119 and IV-123 we obtain the

integrated momentum equation for the light fluid region thus

i
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et o e S g S e e ey i

SISO Ay
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By adding the momentum equations for the "heavy" and "light'" fluids
we shall obtain the momentum equation for the system whence the characteristic
equation for predicting the onset of unstable flow. This will be done
in the chapter that follows.

IV.8 Comparison With Previous Results

Before we proceed with the derivations of the characteristic
equation, it is of interest to compare the results derived in this chapter
with those reported previously in {45, 50, 51, 53, 55)}. In this section
we shall make comparison with the results of (49, 50 and 51) whereas in
the section that follows we shall compare the present results tg those
of {53, 55].

It was already discussed in Section I.3 that the assumptions made
in the present analysis as well as the general formulation of the problem
are the same as those reported previously the Wallis and Heasley {50] and
Bouré [51] for boiling, two phase system. It was also noted in Section
I.é that the present analysis differs from those reported in {49, 50 and
51) in the following respect: 1) the constitutive equation of stateis.
different and 2) the characteristic equation is différént.

The analyses of (49, 50 and 51) were derived for boiling systems,
the present investigation is applicable to both subcritical and super-
Critical pressures. It is emphasized here again that neither this in-

vestigation nor those reported in {49, 50 and 51) take into account the

~effect of relative velocity between the two phaseé in the boiling region

at subcritical pressure.* If the effects of the relative velocity are

‘*The conditions under which the effects of relative veloc1ty can be
‘ j‘neglected are - d1scussed in morp deta11 in (55]

ﬂ‘;77_‘



s O S PR

T Y

B e

e R T

to be taken into account then the momentum and the energy equation, i.e.,
Eq. IV-2 and IV-3 must bp modified. Furthermore, a diffusion equation
should be added to the field equations describing the brocess. An in-
vestigation along these lines will be reported separately.

If, in the bioiling region, we express the reaction frequency _{L by
means of Eq. IV-23, then the density given by Eq. IV-6% becomes identical
to that derived first in (49) and to those in (50, 51, 55) using different
approaches. We shall examine now Eq. IV-66 which can be expressed also

as:

- ~s(£-T.) _ .
Ryt _lfh__ 4 N Q“'Uﬁ_hﬁ L eS( )e e SY

mv—————no —— — e ———— a—

€ M s Ry sa Gal3)

IV-126

whence, in view of Eq. IV-65, and IV-30, the perturbation can be written
\ ‘

~ _ ~($~R)[E"T) 57,
§ ) = ge” Hhd o ?\ _ e - = ' IV-127
VA OO e ° oS

| —Sfb/'
By adding and subtracting & S we can express this relation as

; st . -ST, ‘_S'Cb __(s_jl)(t.—rz) |
R ‘ ‘ -128
8€(at) = £& CQGt) n) =€ ¢ (1- ) 19
| Uﬂ%l , S o $-A A

If we replace now () by Eq. IV-23,then Eq, IV-128 becomes identical
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tc Eq. 38 in the paper by Wallis and Healsey (50) derived using a different

approach.

We can insert Eq. IV-65 in Eq. IV-126 and express the latter as

- 7 .
Q())lt) U, i ?(SIt) Juﬁ 3 {(’)l‘l’) ‘n-e—STbJL'
Q_ h:(‘ol - ﬂ. Mﬁ(\) t U‘.(})

if the demsity terms which appear on the right hand side of Eq. IV-129

are apprcximated by the steady state relation, i.e., by

R64)
- - IV-130
el» Us iy
as was done in (51) we obtain
g - sk S S —3Ty, , = 24
ey W R €€ ") s-nvre ‘( U ) € (u. )ﬂ*
= —_— — | — = V-131
b Uy G 5(s-n) Wwl = 150 I

which is equivalent to Eq. 5, Appendix A of Boure's report (51).

Apart ftom the difference in the equations of state used in this
analysis, the difference betwzen the present results énd those of (50, 51)‘
is im the handling the momentum equation. 1In (50) the momentum equation
wasygggyihtegrated aiong the duct, it was fifst integrated by Bouré (51).
‘Indeed; it.éan be shoVna that AEtér some rearrangement, Eq. IV-88, IV—lOO and
IV-110 can béVput in thekfarm of those given in (51). In (51) the integration
of thé momentum equatibn kegéﬁta a characteristic equation in the form of an

exponéntialypolynomiai of.the fou:th_(or higher) order.
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In the present analysis we have introduced various definitions for
the mean, for the average and for the log mean density as well as for the vel-
ocities in the "light'" fluid region which enabled us to give physical
interpretation to the various terms in the integratedAﬁbmentum equation.
It will be seen in what follows that these relationg together with the
approximation used in deriving Eq. IV-97, IV-107 and IV-llS)result in a
characteristic equation given by an exponentiél polynomial of fhe third
order. It will be seen also in what follows that these results will
enable us to derive stability criteria and stability maps which,

previously, were not available in the literature.

IV.9 The Density Propagation Equation
It is of interest to note an alternate way for determining the density
perturbation.

If we Substitute,Eq. IV-21 in Eq. IV-19 we obtain:

IV-132

E__,M_K_:__n_
or Ty TR

This equation was called the energy equation in (51) where it was first
derived. Several remarks are relevant here.
'We note first that Eq. IV-132 predicts the propagation of the

density caused by the source term {L . A "woid propagation equation"

was formulated in (53 and 55) in terms of kinematic waves which predicts

the propagation of density perturbations through a twoéphase system.

-80—,
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This void propagation equation takes into account the effect of the

relative velocity between the two phase as well as the effect of the

non-uniform velocity and concentration profiles in the two phase mixture.
It can be easily shown that if these effects are neglected the void
propagation equation can be reduced to Eq. IV-132,

We note also that Eq. IV-132 is of the same form as the continuity
for a given species in a multicomponent, chemical reaction system. In
chemical kinetics the source term in Eq. IV-132 is referred to as the

.
reaction frequency. It is for this reason that in (53, 55} the term
was called the '"characteristic frequency."

Finally, we note that Eq. IV-132 is a first order partial differential
equation which can be solved by the standard method used in Sections III-3

and IV-4. Indeed following this procedure, used already in [53 and 55},

one can derive Eq. IV-66 and Eq. IV-68.

AR

-81-



V. The Characteristic Equation

- V.1l. The Momentum Equation for the SyStem

- The momentum for the '"heavy'" fluid is given by Eq. III-33, whereas
that for the "light" fluid is given by Eq. IV-125. By adding these two
equations, we obtain the momentum equation for the sYstem.

We note that if the downstream pressure P4, is constant we can ex-
pressvthe overall pressure drop, i.e., the external pressure drop of the
system as a steady state term and a pressure perturbation caused by the

tnlet flow. Thus

AL A RO

- : TS (BA*?Q
ool = O v o= d e

where the second term on the right hand side is determined by the pump
characteristics and has a negative walue.

By adding Eq. III-33, Eq. IV-125 and Eq. V-1 we obtain the integrated

momentum.equation for the heated duct, thus

| ) ~ | V-2
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L=
We obtain the steady state préssure drop for the system by letting
the perturbations ‘go to zero, thus

m———y )
ey —— n——— esmnum—y e———

AQ’Q" = AFOI +A()\1+ A(’g‘(_‘_ qu _\__Afga +~ A?Z-S—*— A?’&\‘

V-3

By ~subtracting Eq. V-3 from Eq. V-2 we obtain the perturbed form of

the momentum equation, thus
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The formulation is now essentially complete becausa Eq. V-4 is the
exbfeésion which gives the response of the system to the initial flow
pertubation as function of the infiuence coefficients defined below.

The influence coefficienh;F and F, represent the mass of the "heavy"

1
fluid and of the "light" fluid réSpeétively, thus

V-6

R =§ EyU-RY - My

, 1,-8§f



The coefficient}F3 describes the effect of the inlet flow variation

on the pressure drops in the "heavy" fluid region, thus

Vb 40,
= +

- Q_A_‘_': _ 2’-‘«?1_ _‘_2______4_9”- %\ V-7

-t
(DM( A W Du,

This coefficient, which is well known from studies of the transient
response of single phase flow systems, has always a positive value.
The coefficient F, shows the effect of the velocity perturbation in

the "light" fluid region on the pressure drops in that region, thus

Fo= Ay 220 2.4::_?3\, v-8
M_ew | 4(“3) Uz

It is of considerable importance to note that each pressure drop is
differentiated and is weighed therefore by a different velocity. This
important result is a consequence of the integration of the momentum

equation, i.e., of the distributed parameter analysis. We note that in

the '"lumped" parameter analysis the three pressure drops in Eq. V-8 would

have been divided by :the same velocity, say by the velocity U3 at the
exit from the test section as is most often the case for analyses reported
’in the literature.

~ The influence‘coefficienbiF5 and F6’are’given by
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It canvbe seen from Eq. IV-69 and Eq.‘V~2 that these two coefficients account
for the effect of the density pertﬁrbatien on the various pressure drops in
the Ylight" fluid region. Note, that the demsity perturbation depends on both
U%l}) and (;} o« TIwo obfervations‘are noteworthy. First, the coefficient F5

shows that the effects of the velocity perturbation on the "light!" fluid

region’are weighed by various velocities. This, again, is a consequence of

" the distributed parameter épproach. Two, the exponential which multiplies

the~coefficient;F6 indicates that the effects of the inlet perturbation are

delayed by the delay time'ZS'tc».>

Finally the coefficient F., defined by

7
Bl _ af, | |
T a9 (#w) ald-ky | v-it

shows the effect of the space lag perturbation on the acceleration pressure

drop in the "light" fluid region. It is important to notice here that in

Eq. III=33 and Eq. IV-125 all other terms which are,differehtiéted with

respect to the lengthrcanCel each other in the momentum equation for

PRI
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the system. This result could not have been anticipated in a “lumped"-
parameter analysis. Indeed, in several studies of boiling systems using the
"lumped" parameter approach these terms were introduced and retained in
the analysis. 1In view of the_foregoing)the results and conclusions based
on such formulations’can be considered as spurious.

By introdﬁcing Eq. V-5 through V-11 in Eq. V-4 the perturbed momentum

equation for the heated duct can be expressed by

,%’-4—5_% +/§J(”r -1—;»55"-&-

—S[f‘g-ta)
L Rodw _ 2 F . _FnfN =
T a Y d s-n ¢ < ad 7 ©

Before deriving the characteristic equation it will be instructive
to'express the perturbations in Eq. V-12 in terms of the perturbations of
the inlet flow and of the space lag. Taking into account Eq. IV-30 we can

express Eq. V-12 as

ﬁ(ﬁ + ,:1]( %_d_;ﬁt_ + §..F3+ F"}Cwi 4 ;Zn, % Fe -_/:;) e“-sm-z.)} Jh, _

V-13

S-n

dt

‘-,—sz—Q AL ‘f—{'/:e + = Fr FJodN 0

It can be clearly seen from Eq. V-13 that the dynamic response of the

. heated‘¢hanne1 dependS‘upon both the inlet flow'perturbation and the
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variation of the space lag. This latter effect is an example of a

fluctuation which occurs inside the system. It was discussed in Sections

II-4 and II-7 that such fluctuation have a destabilizing effect. The
destabilizing. effect which the space lag variation has in combustion
systems and in boiling systems has been already demonstrated in {48, 52)
and {50, 51} among others. Equation V-4 shows that, at supercritical
pressures, the space lag vériation has a similarly destabilizing effect.

-Furthermore, the negative sign in the third term on the left hand $ide of

Eq. V-13 shows the destabilizing effect of the inlet velocity perturbation.

We have noted already that this effect stems from the density perturbation
in the "light" fluid region.

V.2 The Characteristic Equation

In view of the definitions of the inlet velocity perturbation and’ of
the space lag perturbation given by Eq. III-7 and Eq. IV-30 respectively,

we can express Eq. V-13 as

, : i ‘ -—S/ZA‘T:)
st ¢ | - A _
ge.{s[ﬁ-\-ﬂ]-}- Far Py + o f;- s F;v € |
v-14
‘ I e—SZ‘ R N | 'SZ‘
sk n(_Z__ ! F., - = ] ('I-é V(| —
DY WA I Y L

From this relation we obtain the characteristic equation by noting that

since 2.;5C9 the sum of the terms within the bracket must be equal to

zero. Thus, after multiplying by (5-J-) and after some rearrangement we

ee8e
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obtain the characteristic equation for the heated duct:

. — ...S/T_;-—Z',)
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V-15
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It can be seen that the characteristic equation is a third order polynomial
with two time delays. From the definitiéns of the influence coefficients

we have the following relations for the various terms which appear in

Eq. V-15.
Fo+h =Mt N4 = G R (&) ({-A) v-16
‘ Fi""ﬁf _ 2 a6, LAPH. ’96@4 P‘L + 2Aﬁ3 +2.A?3\, Vo1
A?’; A?: 2@, —5’-
F _ N 4 | 23 A3y N
'y . o + e + % v 18
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. ) <"§> Um, h.
FytFy = R ,A“ + 2ebi L
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It was discussed in Section II-6 that the characteristic equation
predicts the value of -§ as function of the pressure terms given by Eq.
V-16 through V-22, 1In general S is a complex number S==51*d‘0, the real
part gives the amplification coefficient of the particular oscillation
mode, whereas the imaginary part represents the angular frequency & .
Since the original perturbation of the inlet velocity was assumed to be
of the form Jh= F_e.SL,— a given oscillating mode will be stable, metastable
or unstable depending on whether the real part of S is less, equal or larger
than zéro, i.e., whether CL(.G, A=0 or @) O.

A general study of the flow behaviour entails an investigation of
conditions leading to aperiodic as well as to periodic phenomena. The
first pertains to the possibility of flow excursion whereas the second

pertains to the onset of flow oscillations. Following the standard pro-

cedure we shall study aperiodic phenomena by considering the case of

S = a with& = 0. Again, following the standard procedure we shall study

periodic phenomena by setting 5=£‘J‘(a = O,OJ#C7) in the characteristic -
equation., Such an approach will enable us to determine the stability
boundary which defines regions of stable and of oscillating behaviour in

a stability map. In the study of the oscillatory phenomena we shall con-
sider separately the case of high subcooling and the case of low subcdoling.

The stability problem at intermediate subcoolings will be considered in a

~ separate- report,
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VI. Excursive Instability

VI.1 Derivation of the Stability Criterion

The study of excursive, i.e., of aperiodic instabilities is con-
ducted by considering the exponent $§ of the velocity perturbation to be
real, i.e., by letting the angular frequency & of the disturbance be zero.

It follows then from Eq. V-15 that for small values of S, we have the

following relation:

SHF +~ sSR(-0T)) 4+ F + Fy (I-07Ts) _

Vi-1
S
——-(H-_;;) Fe (1 —nT) +(l+ )R (I- s Tu)- FollTy =0
whence after rearrangement:
5§ F + R (/-.rzn)..f_( -ngy) 4 (/-.rzr.)';
S V1-2
+%F3+ P (I-nT) - £ (I=NTy)s Fy - /R0 CM] =
which is of the form
. " ' w"
S _A*'\‘B =0 vi-3
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Equation VI-2 predicts the value of the exponent S in terms of the
influence coefficients. Since the inlet velocity perturbation is of the

] st
! form of 5M =&e , and since the coefficient A* is positive and exponent

! S is real, Equation VI-3 indicates that the flow will be stable, i.e.,

the disturbance will decrease with time if B* is positive, thus from

4o AR et 3t

Equation VI-2

% _ e
| ' VI-4

If B is negative then Equation VI-3 indicates that s will be real

and positive, consequently any flow disturbance will be amplified
with time resulting in flow excursions. SuBstituting the definitions
for the influence coefficients given by Equation V-5 through Equation
V-11 we can express Equation VI-4 in terms of steady state pressure

drops, thus

Z:?o, N 2A?n. IP()A??,/ g AP\.5 ' _ A?M + A?Ml\i (l— NTe
a' @u. (‘Ag) (/1.,“ a.b 4
VI-5
N A a L Ajsﬂ T ‘?z} N ﬁ:f_sl _ A?a_‘ T, >/0
7 w, W Wy NA(L-A)

This inequality can be cast in a compact form by means of the

identities listed below:
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 These relations can be easily derived from the definitions of the‘steady’

‘state pressure drops.
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Substituting Eq. VI-6 through V1-12 in Eq. V1-5 we obtain the stability

criterion:

d
c

d AP,

W

2A¢,'+AQ.1+A? w4, +A?\,§+A?zs+APW]7 }ZO v1-13

which can be expressed also in terms of the total mass flow rate W, thus

Jiab | |dste

» Vi-14
aw = 0

For boiling systems, this simple criterion was first derived by
Ledinegg {24} using a different approach, it wa; analyzed further in
{25 through 47} and {51). The results of this analysis show that this
"lLedinegg instability" can occur also at supercritical pressures. The
significance of the stability criterion given by Eq. V1-14, can be 5est

analyzed by considering the steady‘state AP-W relation for the heated

duct. This will be done in the section'that follows.

V1.2 Significance of the Stability Criterion

If, for simplicity, wetneglect the effect of the gravitational force

and if we express the steady state pressure drops in the heated duct in

[}
terms of the total mass flow W, and of the total heat .input Q , we have.

the following relations:
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“94- By



e Lo . M Wais
= LD ¢ - 2 DA e“_ A
V1i-16
B = G(R-) = Ga(LF) = G (97 @ (4-7) ¢
vdi /e AL
» 5 V1-17
Ac <°" hoA, A (477 )PALM
2. PR ((L-R) 1~ Sd-R
bt = 2D Gy = 1D )a[M'T 1)]_ V1-18

A » Ly : '
- LU_ WE,L 13 [A‘tr(’e + 3 (Gh (- ]

8Oy = ke U" = kb, G5 = kﬁw[“nﬂ--ﬂ. (- A)‘_]— vi-19

W ' »
-te g [‘Ab:rq, (jcrﬁﬁ (- %‘L:')]

The total pressure drop for the heated duct is obtained by adding

Eq. V1-15 through V1-19, thus
w3 o« . | L
é.AP a'———— -bW' +°—ij V1-20
A

where the coefficients a, b and ¢ are given by

x
a = — ( )}A v vi-21
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2DAY

o — _(_:_{_ i_Z_D_ N | '+ kcﬂ (0!0") ‘ V1-23

dt jP

t4 2 £4

It should be noted that Eq. V1-20 is applicable to subcritical as

well as to supercritical pressures. By assigning the proper expression

to - (gﬂﬁ“/df ), which we obtain from the equation of state, we can

differentiate the process of boiling at subcritical pressures from the

process of heat transfer at supercritical pressures. Thus, for boiling

at subcritical pressures we have from Eq. IV-15

V- AV
Hos o
whereas at supercritical pressures we obtain from Eq. IV-8
(e{_V:_) _ R o
~ dl P '—PCP- '
When Eq. Vl-24 is substituted in Eq. V1-21, V1-22 and V1-23, then Eq.

becomes the pressure drop relation firSt~dérived and discussed by‘
Schnackenberg (25) and Ledinegg (24) for boiling systems. For super-
critical pressures Eq. V1-20 was derived by’ the writer(63) (see also

~Appendix‘B)m;

Wf96'
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It can be seen from Eq. V1-20 that whether in boiling at subcritical
pressures or in heating at supercritical pressures the steady state
pressure drop in the heated duct has the same cubic dependence upon the
total mass flow rate. This important conclusion from analysis is indeed
supported by the experimental data reported by Krasiakova and Glusker (18)
for water in forced flow through a circular heated duct. Figure V1-1,
which is reproduced from [18)'shows that in boiling at subcritical
pressures (P = 140 bars) as well as in heating at supercritical pressures
(P = 226 bars) the pressure drop in the heated duct has the same cubic
dependence upon thé mass flow réte. It could be anticipated therefore that
the system will have similar dynamic characteristics at these two pressure
levels. This is indeed the case as it will be shown later.

VThe significance of the stability criterion given by Eq. V1-}4 can be
best analyzed by plotting Eq. V1-20 together with the pump characteristic
on thé same graph. Figure V1-2 shows such a plot together with three
ﬁoséible flow delivery characteristics, i.e., 1) constant pressure drop

delivery system, 2) constant flow rate delivery system and 3) delivery

'system specified by the pump characteristics. The intersection of the

pressure drop for the heated duct with the preésure drop curve of the
delivéry»system determineé the operating point of the system. The
stability critepiongiven‘by Eq. Vl-14 indicateé that for some of‘theée
operatihg points'thé system may be unstable with respect to some small
flow perturbations. In ordér;to show this we shall consider each flow

delivery system SEpérately.
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V1.2.1 Constant Pressure Drop Supply System

The operating point for a constant pressure drop delivery system are
indicated by points 1, 2 and 3 in Figure V1-2. The stability criterion
given by Eq. V1-i4 indicates that operation at points 1 and 3 will be
stable whereas that at point 2 will be unstable. For example, if a points
1 and 3 the flow is slightly increased the pressure drop of the heated
duct increases, i.e,, the "demand" curve of the system increases above the
"supply" curve of the delivery, consequently the flow will return to its
original value. Similarly, if at points 1 and 3 the flow is decreased
the pressure drop of the delivéry will ‘be above that required by the
heated duct resulting in an increased flow and return to the original
operating point. However, the operatiod at point 2 will be unstable.with
respect to either a flow increase or a flow decrease. If the flow is
slightly | increased at point 2 the external system supplies more pressure’
drop than that required to maintain the flow., Consequently the flow rate

will increase until the new operating point is reached. Similarly, if the

- flow is decreased at point 2 more pressure drop is required to maintain

the flow than is being supplied by the delivery system. Consequently
the flow will decrease until the new operating point 3 is reached.
The preceeding considerations'can be expressed in a mathematical form

by noting that for a constant pressure drop delivery system Eq. V1-20

~ reduces to

4 % aP

V1-26
~> O | |

,_f981'
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which in view of Eq. V1-20 becomes

d £4P « Wo . v V1-27
— = 361.' —_ 2L:VU- ‘ C ®
AW A + >0

It can be seen from Eq. V1-26 that flow stability requires an in-
creasing pressure drop with flow rate. This is indeed the characteristic
of most flow systems. However, the negative term in Eq. V1-27 indicates
that for boiling syétems as well as for systems at supercritical pressures
the pressure drop may decrease with flow rate resulting in flow excursion.
Instead cof the stability criterion given by Eq. V1-26 one can introduce

the coefficient of stability S, apparently first proposed by Schnackenberg [25]

and defined by

W (dgad |
$ = = (£22),

“'which in view of Eq. V1-20 and V1-27 can be expressed‘as

*('3) 'c_* éz
- = T+  \ Tar
S = Sl a (W) V1-29
| _ b _Q_ ¢ [ Q) |
I W)'

where the coefficients a, b and ¢ are given by Eq. V1-21, V1-22 and V1-23.

As observed by Schneckenberg (25} the stability Cbefficient S, defined

by Eq. Vl-28,represents the per cent change in the pressure drop by a 1%
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variation in the mass flow rate. It can be seen from Eq. VI-28 and VI-26 that

for stable flow S must be positive, thus

ﬁy > 0 VI-30

V1i.2.2 Constant Flow Delivery System

The operating point for a constant flow delivery system is given by the
intersection of the pressure supply with pressure demand curves, It can be

seen f£rom Figure VI-2 that for such a system

JA&@
| —"ZZ];T" = e VI-31

whence Eq. VI-14 indicates that for such a system no flow excursions are possible.

V1.2.3 Delivery Specified by Pump Characteristics

The operating points for a system whose flow delivery is specified by
the characteristics of the pump are shown as points 4, 5 and 6 on Figure VI-2,
Using exactly the same arguments as those used in discussing a constant pressure
drop delivery system, it can be shown that the operating points 4 and 6 are
stable whereas operating point 5 is unstable with respect to small flow
disturbances. . At this latter point any flow perturbation will cause a flow

excursion to either point 4 or to point 6.

- -100-



VL.3  The Effects of Various Parameters and the Methods for Improving Flow Stability

The effects which various parameters have on the propensity for flow
excursions can be evaluated by examing Eq. V1-14, V1-21, V1-22, V1-23 and
Eg. V1-27., It can be seen that the variation of any parameter which tends
to increase the value of the coefficient b given by Eq. V1-22 will have a
destabilizing effect. Consequently, increasing the value of the exit pressure
drop coefficient Jie is destabilizing whereas the flow can be stabilized
by a high inlet pressure'drop, i.e., by appropriate orificing. In view
of Eq. V1-24 and V1-25 it can be also seen that increasing the system
pressure will have stabilizing effect whereas a decrease in system pressure
has the opposite effect. Furthermore, the flow can be also stabilized by
changihg the pump characteristics,

Before closing the discussion of excursive instabilities it will he
instructive to illustrate‘the destabilizing effect of the compressibility
of the fluid in the heated duct. It was diseussed in Section 1.3 that the
instability mechanism which is analyzed in this paper is based on the
effects of time lag and of density variations in the heared duet.

For simplicity we shall consider 6nly the effect of the frictional
pressure drop in a system with zero inlet subcooling, i.e., with Aan:(j

- For sﬁch a system Eq. III-20 shows that the space lag is also zero. The

fric;iénal pressure drop is giVen by

. . » » .
, 1? o ._fig__ (}' Wed = .f:g__ Eg— N, | -
‘A ¥ < D 0 (A..) | V1-32

where the mean speeific volume'ﬂheih the heated duct is obtained from
Eq. IV-77, thus
o Ll \ ; '<:V*>
WAy, = — = r———
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If we insert in Eq. V1-32 the expression for the average velocity <‘h‘> given

by Eq. IV-35 and since the space lag is zero, we can express the mean

specific volume VUm. as

Vn = V& —r-%'i—:é V1-34
or in view of Eq. IV-21 as
Vm = Ve + -%-' (%(T)P —% V1-35
whence
v _ L (z‘_'f) Q
dwr 5 di|p '7}3, . V1-36

Since Eq. V1-32 and Eq. V1-35 show that both Ae and Vm, are

functions of W we can express the stability coefficient defined by

Eq. V1-28 as , .+
S =21+ ———( )
o , | Vo AW a V1-37
whence from Eq. V1-36 we havv-e‘
o -y @ |
s m-t(#) Ly "
| , _ "L { W VU V1-38
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where (dU7%N ) is given by Eq. IV-15 or Eq. IV-8 depending on whether
we are interested in the subcritical or in the supercritical region.

It can be seen from Eq. V1-37 and Eq. V1-30 that for a system where
the mean specific volume does not depend on the mass flow rate the flow
will be stable. For such incompressible flow system the coefficient of
stability S has a value equal to 2. This is also the maximum value of S
because when the fricition factor f in Eq. V1-32 is a function of the
Reynolds number then Eq. V1-28 shows that S will have a value less than
two. For example, for laminar flow it will have a value equal to unity.

For a boiling system at sqbcritical pressures or for a process of
heating at supercritical pressures Eq.'Vl-SS shows that the value of S
can become negative because of the compressibility of the fluid. For
such systems Eq..V1-30 shows that the flow may become unstable.

In closing it should be emphasized that the density effect per se,

can lead to excursive flow instabilities., Oscillatory flow instabilities

results from a combined effect of time lag and of density variation. This

will be analyzed in the two chapters that follow.
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VII. Oscillatory Instability at Low Subcooling

VII.1 The Characteristic Equation andrthe Stability Map

In this chapter, and in the following,one we shall investigate periodic,
i.e,, oscillatory flow phenomena. | For this purpose we shall assume that the
exponent S of the inlet velocity perturbation is given by S =“w}where the
angular frequency (J , is a root of the characteristic equation, i.,e., of Eq, V-15,
In this chapter we shall consider the case of low subcooling, whereas, in the one
that follows we shall consider the case of high subcooling,

For the case of low subcooling the characteristic equation, i.e., Eq. V-15,

can be simplified by recalling that for low subcooling the time lag Ty, given by

vK. III-19 will be short., Note, that the total transit time C3-7T; , which also

appears in Eq. V-15 need,not be short., This can be seen by considering Eq. IV-63,

i.e.,

. . ) ' A;‘ll e(_A‘ (dt' A j d(r e Q‘ ) ¢
T~ = — Sl IR AP _W—A‘z .
TR T s 7 du-), 4% ”{'*(mr (! a‘)} -t

which can be also expressed as:

o o DIV al _ VII-,2
b oene k(S0
or as | o
{ ' a;

aT-T)= o, + W |
' » W, . v R VII‘:B



Consequently, for short a space lagW , and a short time lag Tp , the transit
time may be long for sufficiently long ducts and/or for low inlet velocities.

It can be seen from Eq. VII-3 that the effect of time lag will be small if

DARS - VII-4

which for subcritical pressures implies

| ' , VII-5

v, Al
__Qfs'—_—[‘\ﬂ' * < |
o Ve Alf‘-a

;;;h."e"reas, at supercritical pressure this inequality implies:

% Al VII-6
NT, = =

? Cp '\)f‘_

»When the time lag —}: is short, then in Eq., V-15 the exponentisl term
which ,contsains TL, can be expanded and the characteristic equatior reduces
to , :

S {RAFa = Fa AT} « S { Py Fy- A (FHF) ~RTu( Fy+Fy -0 .=,_)} -

= _ -5(725-'7:.) R \(II'-7

— (P 4Ry R - AT (Fyr F7-|:5)} -anf, e =

'This equation can be cast in 'a dimensionless form by defining a dimensionless

eﬁcponent | |
\6 ol 3 (ts- ti)",: 4% VII-8

[T
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using this new variable, Eq. VII-7 can be expressed as

%m—\— 0%+ b + c_ég:o

where the dimensionless coefficients a, b and c are given by:

a '/_\Z{ Fyby ~SLIFA) - 2T (Fy+Fy

p}+FL- FL .IZ’L;

- F) }

b -_--ILAT-L{

Fit Fu

|

‘and where the total transit time AT

F; '['F;,« —F - ATs (F‘/+E7‘ FS) }
FtF - Fats

is given by Eq., VII-7.

VII-9

VII-10

VII-11

VII-12

The coefficients
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a, b and c can be expressed also in terms of the pressure drops, thus
a = _4¢ 248, 28% 000 ) AR 24, 18R yr1-13
MetMg(l-ar) ] m T R A T T oy T
[ A A @, 2
_51;5[ A% Y + Afav]
RU-F) <ugd Nom 3N
b = AT 209, m?., Doee,,‘ a0 ARy Af_sv ) |
Mg~ Ma(l- DT ol <‘,“¢> Uy, Wy VII-14
_ﬂu( A Ca . A A®s, ]}
Q-R) <\4q> Wom Wy
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Equation VII-9 is a second order exporential polynomial with one time
delay. Stability maps for such polynomials have been recently presented by

Bhatt and Hsu [65, 64). One such map is shown in Figure VII-1, it is in

the c¢~-b plane with the coefficient "a

as a parameter, The lines for which
the coefficient-"a" is constant are stability boundary curves. For example,
for given values of the coefficients éb? and "a'", the stable region of variation
for the coefficient '"c¢" is shown by the line segment AB. The segment CD is another
stable range for constant values of "b" and of "a".

Figure VII-1 is the stability map which can be used to differentiate
the regions of stable operation from the region of unstable, i.e., of oscillatory
flow in the heated duct. Howgver, because of the complicated nature of the
coefficients "a", "b", and "c" which appear on this map, it is rather difficult
to discuss and analyze the effects of the various parameters. It is desirable,
therefore, to simplify the characteristic equation in order to obtain simple

stability criteria. This will be done in the section that follows by neglecting

the inertia terms in Eq. VII-7.

VII.2 Stability Criterion for the Case of Small Inertia

; | VII.2 _The Characteristic Equation
If we neglect the inertia terms Fl and F, in Eq. VII-7, the

characteristic equation reduces to its simplest form given by

 -SAT ' |
5+ A +Be -0 VII-16

'where4the'coefficients A and B are given by

| VII-17

A - _,_n‘_,g P+ Ry=Re - AT (R4 Fy=Fr) }
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- B=-1n E
FatFy- T (Fyrm)

VII-18

It is important to note that a characteristic equation of the form of
i a first order exponential polynomial with one time delay describes the onset

of "chugging" combustion instabilities as shown by Crocco and Cheng Eﬁ&].

e MRS

e

7 Since Eq. VII-16 is of such a form, we can use the results of Crocco and Cheng (48]

to analyze the flow stability in this problem. The difference between the present
problem and that of combustion is the physical meaning of the coefficients A and B.
In this proﬁlem they depend on various pressure drops in the system which were

obtained from the momentum equation, In the combustion problem the coefficients

are obtained from the continuity equation and depend, among others, on the process

of combustion,

We note also that the results of Stenning [62] can be expressed in terms

of a characteristic equation of the form of a first order exponential polynomial
with one time delay. However, since Stenning [62] did not formulate his analysis
L : ] ~ % _
- of boiling instabilities in terms of the momentum equation, the coefiicients in

his characteristic equations do not depend upon the pressure drops.

VII.2.2 Unconditional Flow Stability

It was shown by Crocco and Cheng {48] that no matter what the value of

the time delay AT may be the flow will be unconditionally stéble if the co-

efficients A and B in Eq. VII-16 satisfy the fdllowing inequality

s _/_4_>| , VII-19‘
P | - | s |

PREAT IM Tm L L

% The problem was formulated in terms of the continuity and of the energy equation,
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in the "heavy" fluid region.

‘terms can be neglected, Eq. VII-22 reduces to

Because of its importance, we shall define this ratio as the Stability Numbg;_NS.

In view of Eq. VII-17 and VII-18, it can be expressed as

Ns _ Fy4Fy=Fe - NT(Fy+Fy- F5)
Fe

> l VII-20

M x

This stability criterion can be put also in the form of

Fy +F'1"F.c-—ﬁzs(’:t1""‘:7‘}:—s)—/i 7 o VII-21

whence upon inserting the values for the influence coefficients in Eq, VII-27

we obtain the inequality which must be satisfied for unconditional flow stability.

thus

T Qu

U W, VII-22
__A%(,-_&_"_)_AE(H@)_A}(,_,&7)__

%, )~ T o 2 73 f

AP APy AT, A%)
- QT . S S O
w4 |“(_n;(x—x) L g Mow 0 Z

This criterion clearly 1nd1cates the destabilizing effect of the pressure drops

in the "light" fluld region and the stabilizing effect of the pressure drops

For once-through systems, when the acceleration and the gravitational

7_&:‘ + Zl:én, - %ZFQ,,, - ;TP;}( __D:_!_ _ A73Y(\__E_)_
VTR W ®u, U (“‘a») Gy a§ VII-23
o " A('rn. APM
— Nt —_ e
- b{ (u.p ]> 0
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If we now approximate <M‘1> by —‘:1—3 we can express Eq. VII-23 as

0

26, 28R 180 | A‘ai-w& us=0, 9% (4P 1475,) >
vy v Tu Y Uy Uz
VII-24

Defining by A ?‘ the sum of the pressure drops in the "heavy" fluid region.

TP o AP 4 APy 4+ AP
/”)4' - AP‘+ ror oTe VII-25

and by'As?B_ the sum of the frictional and of the exit pressure drops in the
"light" fluid region

nmm—

A?& = ATy + AP;V . VII-26

we can express Eq. VIL-24 as

™ | | VII-27 -
B ano
A?g ?3““‘ Uy-U,
whénce
WA uw+n(4-7) At n S | VII-28
P, aU-K)  nl-R) | | |

Inserting now the expressions for the characteristic reaction frequency [) ,

for the time lag 2:5,‘given by Eq. 1IV-23 and III-19, respectively, we obtain

247 (ae) Ao o
Tl

s (1-7)] W Ohcy » 11
Vdvigy u—m[”( d/,A« o = *q§‘>| Ry
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This inequality can be expressed also in terms of the total mass flow rate and

of the total heat flow Q . Thus

20F (diy | W F (A CQ () Wi ],Mfaiu
— (dv} e Al lH(&—‘,) - (1 2 ) T 1*5_2_"”)>| VII-30
Q Q

T

Again, we differentiate the process of boiling at subcritical pressure from the
process of heating at supercritical pressures by using the appropriate equation

of state, thus at subcritical pressure we use Eq., IV-15, i.e.,

(W) _ SV

di .Aaf% VII-31

whereas at supercritical pressures we use Eq, IV-8, i.e.,

(_o'_r_) - X e
ANGLA ?Cb

The implication of Eq. VII-30 will be discussed in Section: VII,3,

VII.2.3 Conditional Stability

Following again Crocco and Cheng [48-\we can determine the relation

betweén_the critical transit time AT and the critical frequencies’4). correspondii -

to neutral oscillations. Such a relation is obtained by separating the real and

imaginary parts of Eq. VII-16, thus

Leo + A+ B Cos e dZ, — ¢ $iv weaT =0 VII-33
‘whence : ‘ W '
Sin WedT, = - = VII-34
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and A
Co = — —
S Wedle = R VII-35

where the coefficient B)given by Eq. VII-l%)can be expressed in terms of the

pressure drops thus

RN

VII-36
F+Fy =0T, (F+F)
where 7
A]; f .AF;3 ‘—?_‘
Foo= 32+ 2281 4 ¢ A0
U, U, &, n, VII-37
. and
240 2sb AL | AR _ @
Fh-nti(Frh)= 20 2 ] 2o 2l
W u, @H‘ ulu\ . <Hﬂ> ;;1'*3

oy

A ,A'P‘_ﬂ, ;-'\._,‘_ZIAV?‘B, A 7“’?"'.‘]
e DAY LY no

- Nt

VII-38

The stability number Ns, given by Eq. VII-20, becomes when expressed ih

terms of the pressure drops:

4 , LVII=39
o Ay 208y ’W«,} . {) aRy _ 4%y o _Psw; (1-27,)- ST AP,
R R T A
Ny = - - - CR _
s LY 4 A0 Afy a8y
@ W & G,

0% B

n



The critical frequency W., is obtained from Equation VII-34 and Equation

VII=-35, thus

Iy W = \) BE-AY | VII-40

whereas, the critical transit time AT is given by Eq. VII-35 and Eq. VII-40,
thus

(t%‘tu)c_ — AT, —= ____l__._.__ i ﬂ-“" ug'(%)]? | VII-41

As discussed by Crocco adeheng;[48\ if the inequality given by

TR

Eq. VII-19 is not satisfied, then stability is still Roésible if the angular

frequency of the perturbation and the transit time satisfy the following

sy oo

and

inequalities

o> VII-42

OSSR Y

and

AT < 4T,

SR for ke SN
¥

. VII-43

The system is intrinsically unstable if the directions of the inequalities

are reversed, Furthermore, when
SR | | AT =T, S |

then Eq. VII-16 has én oscillatory solution with an angular‘fréquency 6&‘,

-113-



The preceding results can be plotted against the stability number N ,
s
given by Eq. VII-20, i.e., by Eq. VIL-34. For this purpose we shall define

also the period of the oscillation by

210
T = VII-45
e

We can form now the ratio of the critical transit time to the period
and express it as function of the stability number Ns’ thus from Eq. VII-45

and Eq. VII-41 we obtain

vzyzc ?Jc(f}luc

_— —

1
T 2T L 20

VII-46

The critical angular frequency can be also expressed as functions of

N_, thus from Eq. VII-40,

Lo

B

= {I-N- o VII-47

Similafly, by means of Eq. VII-41 we can express the critical transit

time as function of N, thus

AT . g ety
; | ""““‘"%"‘“—-WJNs |  VII-48
el T =N 2 2f S ,

i

Eq.vVII—48, VII-47, and VII-46 are plotted versus the stability number NS, in Figure

VII-2. The significance of this map is discussed in the following section.
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VII.3 Effects of Various Parameters and Methods for Improving Flow Stability

The effects which various parameters have on the propensity to induce flow
oscillation at low subcooling can be evaluated by examining Eq. VII-22 or
Eq. VII-30, It can be seen that the variation of any parameter that tends to
decrease the positive value of the left hand side of these equations has a
destabilizing effect. For example, increasing the various pressure drop terms
in the "light" fluid region has a destabilizing effect., Similarly, an increase
cf subcooling tends te desfabilize the flow, Vice versa, an increase of the
inlet pressure drop or a change of the pump characteristics will stabilize the
flow.

Although the preceding results have not yet been tested against experimental
data, the form of the simplified stability criterion given by Eq. VII-29, seems
to be correct, This statement is based on a comparison of Eq. VII-29 with the
empirical criterion for predicting boiling instabilities recently proposed by
Serov and Smirnov (66). In the nomenclature pf this paper, their criterion is

given by

A-?9|+A9n. >a a(('(-m A'\’(j']} _ L{ e{_"l:; VQQ 0{(},/0‘?} ) rrss
40,5 45T, Y DW, Al | °

where a and b are two constants to be determined from experiments, D is the
dismeter of the pipes Vo is the‘volume occupied by the steam and (J%/dP) is
the varlatlon of the spec1f1c volume of the steam with pressure. Consequently,
the second term on the right hand side of Eq. VII- -49 represents the effect of
compressibility. This effect was neglected in the present analysis.

It was reported by Serov and Smirnov {66] that Eq. VII-49 was successful

in correlating data and predicting the onset of flow instabilities in boiling of

‘riwater at ptesSure of 30, 50, 70‘ands100 atmOSpheresg‘
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If we neglect the effects of compressibility in Eq. VII-49 and compare it

T g e

1 to Eq. VII-29 and VII-31, it can be seen that Eq., VII-49 is incorporated in
?a Eq. VII-29, We note also that this latter equation is a simplified form

of Eq. VII-23; i.e. of Eq. VII-S which are therefore more general and

complete.,
Further experimental evidence that gives support to the form of
2 Eq. IV-29 is shown on Figure VII-3 which is reproduced from the paper

by Platt and Wood Li'7. It can be seen from this figure that either

increasing the power input and/or decreasing the mass flow rate has a
destabilizing effect. The same results are predicted by Eq. IV-29,
Perhaps the result of greatest significance revealed in the present

doos investigation is the similarity between the characteristic equations for

predicting "chugging'" combustion oscillations and the characteristic
equation for predicting low frequency flow oscillations in heated ducts
at near critical and at super-critical pressures., Since it is well

known (see for exampleﬂ4é) ) that '"chugging' combustion instabilities can
be stabilized by an appropriate servo-control mechénism, the results of
this investigation indicate that low frequency flow oscillation at near
critical and at supercritical pressures may be also stabilized. This
important conclusion is demonstrated on Figure VII-2 which shows also the
effect of‘vafiouskparameters bn the propensity toward oscillatory flow.

It can be seen on Figure VII-2 that even when the stability number

~ Ng is less than unity, the flow may be stable if the frequency of the

1 - inlet perturbation is higher(than the critical frequency AJL . Similarly,'

%

|

z

! |

g - the flow can be stable if the total transit time is shorter than the critical
1{; "~ one. The values of W _ and of v(Ts-t,)‘: AT, are plotted in Figure VIII-2
L

i ‘ih terms of the stability number Ng and of the coefficient B given by

- Eq. VII-39 Eq. VII-36 respectively.
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The effects which the variations of the various parameters have on
the flow stability can be evaluated from Figure VII-2 by considering
whether the variation results in an jincrease of the stable region, ;;;N
example, it can be seen from Figure VII-2 that for a constant value of Ng
an increase of the delay time has a destabilizing effect because“fgr
sufficiently long delays A will become larger than AT, . We note that
this quantitative conclusion is in agreement with the qualitative des-
cription of the destabilizing effect of the time delay presented in Section
II-4, It can be also seeun from Figure VII-2 that increasing the frequency
of the inlet perturbation at a constant value of Ng, has a stabilizing
effect because for sufficiently high frequency ¢) will become ‘larger
than e, . Furthermore, Figure VII-2 shows that an unstable flow; i.e.,

a flow for which w&w, and AT ) 8T can be stabilized by increasing the
value of the stability number Ng.

We close this section by observing that the foregoing conclusions
and results are new and have not yet been verified against experimental
data. If confirmed, then the results of this study provides a method
whereby stable operation can be insured on an intrinsically unstable

region,
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VIII. Oscillatory Instability at High Subcooling

VIII.1 The Characteristic Equation and the Stability Criterion

We shall consider now the case of high inlet subcooling which implies a
long time lag T;and a long space lag A . TFor such system Eq, VII-3 indicates
that the transit time and the time lag will be of the same order of magnitude.

Since both time delays are long, we shall neglect the exponential terms in the

characteristic equation given by Eq. V-15, which reduces then to

S{Ram 4 s %\:B.‘. Fy - ;L(r:n»r,_)‘& - n§ F o+ I:L,—m? -

VIII-1
Qe Fy 4 F - _
R L R e
wﬁiéh,can be rearranged and expressed as
> FotFy - (F4F ) -nF ,
I"ITF,__ -
Aty 2,
Fit A - Fi+Fo

A

~where the sums of the influence coefficients are related to the ﬁfessure drops

| ‘b§ the following relations
Fit P Mg "LH’); B | VIII-3
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<'A(‘> E-B dl: f3 AL P A(
~ 260 240, Vobe |
Arh - Fg_(r"""%"n"-) = a'.' T ” - Du, ‘ - VIII-5
—-{ AQC\ . _'_ P PA - ?.A?)_z . 2 6?3‘1 } ( ) q xs H
L W AR ) Ty
Fy+ F;’»""FS; _ 2@, + Atas _ | Aq}s‘, N A_WT: VIII-6
D ({-R) Uy W .

It can bé~_s’een that the characteristic equation is a cubic equation of the

form of

3 2 : o
g Lo gf’ll .\_Si%}-y é;’—le =0 . VITI-7

where the coefficiept‘ a;'b, c and d are given by the corres’pondin“g terms of
Eq. VII-ZO
The problem of determining the conditions for neutral stability is solveéd

again by substituting S = (&J in Eq. VII-7.

Thus | | | VIII-8



y
fé whence upon separating the real and the imaginary parts we have
ig . 3
1. C
W™ =- =
g . a VIII-9
xf and
{
A 1
CJ\ Jﬂ—
= . VIII-10
b
Consequently for oscillations to be possible the coefficients a,b,c and
| d in Eq. VII-9 and Eq. VII-10 must satisfy the following relation:

d

VIII-11
k

—
———

_ L
a-

i

;,:whence, the values of the influence coefficients must be such as to satisfy the

F”J'following expression:

e Fth-Fr-(ReFi=aR) Py +F= Fr

= B ' TE VIII-12
< (FitF) Fy1Fy-n(FtAR)-n F

It can be seen from Eq. VIII~4 and Eq. VIII-6 that, unless the effects
of inertia or of gravity become dominant, the rightluuuisidé of Eq. VIII-12
is a positive quéntity,,‘Consequently, Eq. VIII—IZ indiéates that
oscillation can occur'oﬁly if

Fut Fy s~ (RriFy07) ¢ o

Coonnlon '1’20-



e B At e o WSt A - 3 e e s 1 e e e o e b e

The refore, the flow will be stable if

K +F, —rF
> 4 ~re (R +R-0F) >3 VIII-14
In view of Eq. VIII-5, this inequality can be expressed also as:
2‘3?01 2&?.]_ /DAP% i
= Tt = : 1 +~ NF
Uy u, Du, L VIII-15

W A[F) ha D 7
For oscillatory flow, Eq. VIII-13 and Eq. VIII-9 indicate that the angular
frequency will be given by

o }- < ' - 4 | | VIII-16
s b

which, when expressed in terms of the influence coefficients, becomes

Q) ___ ‘>F\/ﬂ-'r:7—nf:t.~ (F—;TRI’F}> L;‘ |
'Q(E—H:“)‘ .  VIII-17

It should be noted, again, that the values of these influence coefficients should

SatiSfy qu VIII-16’ ioeo qu VIII-l.Zo
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VIII.2 Effects of Various Parameters and Methods for Improving Flow Stability

The effects of the various parameters can be evaluated by examining the
inequality given by Eq. VIII-15. It can be seen that any variation which tends
to increase the value of the left hand side of this equation will have a stabilizing
effect. Thus, the flow can be stabilized by increasing the pre;sure drops in
the "heavy" fluid region, whereas it will be destabilized by increasing the
pressure drops in the "1ighﬂ'f1uid region.

The effect of subcooling can be evaluated by compafing.Eq. VIII-14 and

Eq. VIII-15 with Eq. VII-20 and Eq. VII-39. Since the velocities in the "light"

fluid region are higher than the inlet velocity it can be seen from such a

comparison that the inequality applicable at high subcoolings, i.e. Eq. VIII-14

; |
‘is less restrictive than that corresponding to low subcoolings, i.e., than

Eq. VII-20. Consequently, the flow is more stable at high subcoolings.

However, since Eq. VII-20 indicates also that an increase in subcooling destabilizes

the flow, we conclude that this destabilizing effect must go through a maximum

at intermediate subcoolings. For boiling systems, this conclusion is in agree-
ment with the experimental results of Gouse (67) who was apparently the first
to notice this effect. At super critical pressures, experimental data, which

could be used to test this conclusion, are not yet available,
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IX. DISCUSSION

The instability mechanism investigated in this paper was based on the
destabilizing effects of time lags and of density variations in the heated
duct.* It was shown that, in the near critical and in the supercritical
region, these destabilizing effects can induce flow excursions as well as
flow oscillations.

The characteristic equation, i.e., Eq., V-15, which predicts the dnset
of these instabilities is given by a third order exponential polynomial
with two time delays. Because of its complex nature this equation was not
solved at this time. Instead, simplified stability criteria were sought
and derived by assuming that the inlet subcooling was either low or high.
This approach seemed preferable for several reasons.

First, the simple stability criteria are more instrucfive and helpful
for gaining an understanding'of the essential nature of the instability.

Two, the result shows that the dominance of a particular parameter re-
sults in a particulér angular frequency of oscillations (see Eq. VII=40 and
VIII-17). Consequently, the cause of instability can be determined from a

trace of the fiow oscillation.

*¥0ther mechanisms which may induce flow oscillation were discussed in

Section II-7.
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Finally, simplified stability criteria such as Eq. VI-20, VII-22,
VII-42 and VIII-15 are more amenable to a qualitative study of the effects
which variations of the various parameters may have on inducing or on pre-
venting flow excursions and/or flow oscillations. Indeed, only if the
results ffom such a study are in agreement with experimental observations,

a detailed quantitative solution of the more complicated characteristic
equation can be justified.

It was discussed in Sections VI-2, VII-3 and VIII-2 that the pre-
dictions based on the simplified stability criteria are indeed in qualitative
agreement with the experimental data. This agreement warrants therefore a
more complete study of the characteristic equation together with a quantita-
tive comparison with the experimental data.

Last but not 1east the simple criteria are most useful in indicating
the improvements and changes in the design or in the operation of the system
which would insure stable flow. Several such improvements were discussed
in Sections VI-2, VII-3 and VIII-2. It was noted there that the results of

this study indicate that low frequency thermally induced flow oscillations

in the near critical and in the supercritical pressure region, could be

stabilized by an appropriate servo-control mechanism. Whether this important

conclusion is indeed correct remains to be shown by future experiments.
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Appendix A

The Near-Critical Thermodynamic Region

The success of an investigation concerned with predictigg or in-
terpreting the behaviour of 2 thermo-dydraulic system depends on thé
availability and on the accuracy of data giving the values of thermodynamic
and transport properties of the fluid in the region of interest. It is
the purpose of this appendix to summarize, briefly,'the statué of present
understanding of thermodynamic phenomena that take place in a region near
the critical thermodynamic point. For additional discussion, the reader
is referred to the extensive reviews by Rice (Al) and by Hammell (A2).

Consider a fluid at a pressure slightly above the critiqal pressure
flowing through a heat exchanger. If the temperature of the fluid at the
entrance is considerably below the critical temperature, i.e.,'I<3('TC, the
fluid will have a density close to that of a liquid whereas at the exit,
if the fluid temperature is considerably.above Tc, thé density will ap-
proximate that of a perfect gas. Consequently, in passing through the

heat exchanger the fluid will undergo a change of properties from a.liquid-

like fluid at the entrance to a gas-like fluid at the exit. Since the

properties of the fluid will affect the performance of the system is
becomes necessary first :to examine the nature of this chahge and then to
express it quantitatively.

At subcritical pressures the‘presence of two phases is distinguished
by a difference in density and by the existence -of an interface between

the phases. At supercritical pressufes such a distinction cannot be made

‘because at these pfessures as well as at the critical one the interface,

«
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the heat of vaporization, as well as the surface emnergy, all vanish.

There is nc general agreement as to the structure of the medium and
of the mechanism of phase transition in the critical and in the supercritical
region. Different explanations and descriptions are advanced by different
authors.

Some authors like Rosen (A3) aﬁd Semenchenko (A4) analyze the thermo-
dynamic characteristics of a medium in the supercritical region by assuming
an equation of state like ther Van der Waals' or the Dieterici equations.

Hirschfelder, Curtis and Bird (A5) describe the fluid in the neighbor-
hood of the critical poiﬁt as consisting of a large number of clusters of
molecules of various sizes. The system can be idealized by assuming that
the denéity can be described by a distribution function which has for its
two limits the densities of the two phases. The fluctuation.in density,
which can be expected from the theory of fluctuations, becomes veryylarge
in the vicinity of the critical point. These large fluctuations and the
formation of molecular clusters in the neighborhood of this point result
in a large increase of the specific heat at constant volume.

Mayer and co-workers (A6) propose a theory of condensation based on
the cluster theory of imperfect gases from which they predict the existence
of an anomalous region abové the temperature of the usually observed critical
point. | This region extends up to the highest isotherm for which @ P/}V)Ts ,
has anywhere a zero valuem. In this region, isotherms exist having no vari-
atidn in préésure over a finite density range, butkhaving at all densities

continuous derivatives with respect to pressure. Various aspects of this

theory are>discuésed further in (A5).
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A great number of authors distinguish two phases in the supercritical
region: a heavy, liquid-like phase and a light, gas-like phase. The
difference between their results stems'from the different approaches used
to locate the boundary between the two phases and from the different
descriptions of the characteristics of the phase transition.

In a preceeding section we have discussed already Goldman's (A7-A8)
descriptions of the supercritical region and of the similarity between the
heat transfer and flow processes at supercritical pressure and those that
take place at subcritical pressure during the process of boiling. However,
Goldman did not formulate, quantitatively, the problem nor did he say how

and where to locate the boundary or the region between the liquid-like and

 the gas-like phase.

Following Goldman, Hendricks et al (A9) consider '"boiling-like"
phenomena at supercritical pressures and, in analogy with boiling, they

introduce a specific volume for the fluid of the form of Eq. Al.

| X
J,, = U+ - ('u; "0£3 | (A-1)

In place of the quality they introduce a wéighting function for the heavy
and light species. However, no reference is made in their paper as to how
to detérmine, quantitatively, this distribution function. |

In numeraﬁé textbooks (A-10) among others, the boundary between the
liquid and the gas in the supercritical region is taken to be the critical
isothérm; cher authors like Thiesen (A¥11), Trautz and Ader (A-12)
among others take the critical isochor for this boundary and consider it as

the extension of the saturation line into the supercriticél region.
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In the subcritical region various thermodynamic properties such
as the specific heat, the compressibility, the coefficient of thermal ex-
pansion and others change discontinuously or reach a maximum value at the
coexistence, i.e., the ' aturation line. This line can be therefore looked
upon as the locus of points for these discontinuities or maxima. Conse-
quently, numerous authcrs consider the extension of the saturation line
intc the supercritical region to be the livie which is the locus of points

where the thermodynamic properties listed below reach a maximum:

- VT OP 2P <9T2

”)21- =( 7‘1) _ __?_?;v_) -0 (a-2)
T

2. ‘

(g ;J - (_9_22 = 0 (4-3)
T P T P

N2,
(/DPZ)T: 0 (A-4)
q v } - (—/-D—Z—P-) =0 | (A-5)

ﬂT ’DV . /DTZ Y ;
(’D'%u : (/DCV =0 Ry (a6
| @Tz)_’DT) 3 L

' Several authors (A-13 - A-17) assume that one single line represents
the locus of points of all these maxima. This is indeed the case for sub-
critical pressure where the saturation line is the locus for all discontinuities.

However, the experiments of Kaganer (A-18)rand‘bf Sirota and co-workers (A-19)
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%ipow that this is not the case but that for a given supercritical pressure
eifferent thermodynamic properties reach a maximum vaiue at different
temperatures. Thus, for each of the thermodynamic properties, i.e.,
specific heat cp, the coefficient of thermal expansion, etc., there is a
different line which represents the locus'of the maxima. This raises the
question which of these lines can be regarded to be the extension of the
saturation line in tbhe supercritical region, i.e., which of these lines can
be considered as the boundary between the liquid-like and the gas-like
phase.f

Plank (A-20) and Semenchenko (A-21) consider the line along which

22,
-—:5—5 (0] (A-7)
v -
T

to be the extension of the saturation line in the supercfitical region.
Eucken (A-13),,howeve£, takes the curve represented by Eq. A-2 for this
extension; whereas numerous authors (A-8, A-9, A-22 - A-25) take Eq. A-3.
Of particular interest to the analysis of this paper are the results
reported in (A-14, A-17, A-19 and A-16) which will be therefore discussed
in more detail. . |
Sirota and co-workers (A-19) discuss fﬁe transition phenomena at sub-
critical and Supercritical pressures in terms of the Frenkel's‘theory,Of
heterogeneous fluctuations (A-14, A-26). According to this theory in any
gas at subcritical temperature heterogeneous fluetuationS‘resule in the

‘formation of molecular complexes which can;be'regarded as finely dispersed
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nuclei of a phase within a homogeneous phase. 1In approaching the saturation
line the fluctuations increase and "micro-heterogeneities'" appear in the
macroscopic, homogeneoﬁs phase. This marks the beginning of the "pre-transi-
tion region'" which is characterized by the fact that various thermodynamic
properties exhibit variations which become more pronounced as the saturation
line is approached. This accounts for the anomalous effects of the proper-
ties in the vicinity of the saturation line. At the saturation line the
properties change in a discontinuous fashion which is a characteristic of

phase transitioms of the first order. As the pressure is increased the

effect of heterogeneous fluctuations increases whereas the effect of phase
change, i.e., of the discontinuous change of properties becomes less
important and disappears at and above the critical point. Since the change
of phase at subcritical pressure is characterized by an obsorption of energy
and an expansion of volume the transition at supercritical pressuré should

be characterized by the maximum values of ¢_ and of the thermal expansion,

i.e., of ( rD\q/F)'P)pa See Figures A-1 and A-2 which show these properties

for oxygen at supercritical pressures. 'However, the authors of (A-19) show

from experiments that at a given pressure the two maxima do not_occur at

the same temperature. The values of the maxima for Cp are correlated by

= — ' + 1.30 (A-8)
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~critical pressure the transition is characterized by the discontinuities

phase is finely dispersed in the form of clusters. Furthermore, in this

‘region the properties do not change discontinuously but vary in a continuous

'becomes evident in the "pretransition region" as a variation of properties

which is valid for non-polar liquids when P/Pcrit 1.5. 1In the above

equation, R 1is the gas constant whereas cp is the specific heat for an
g .
ideal gas. This equation shows that the value of the maximum cP decreases

as the pressure is increased. The temperatures where these maxima occur

were correlated by

1= oyt te, P
-r'\‘.c Tr.ri.t y Perit (4-9)

This temperature, denoted here by Tpc’ is often referred to in the litera-

ture as either the pseudo=-critical temperature or the transposed critical

temperature,

Both Sirota (A-19) and Kagé;ér (A-18) show that the locus of the maxi-
mum values of cP along isobars, i.e,, Eq. A-3, is the extension of the sat-
uration line in the supercritical region.

Urbakh (A-17) also considers the effect of heterogenequs fluctuations %
at subcritical and supercritical pressures. He showsrthat as the temperature |
is increased and the surface tension decreases the heterogeneous fluctuations
increase and reach a maximum at the critical point. The location of the
critical point depends on the surface tension; moreover, it can be changed
by introducing surface active agents, The critical point,divides two‘fegions

which can be distinguished by the nature of the phase transition. At sub-

of the properties and by the presence of a macroscopic second phase within

the originally homogeneous phase. At supercritical pressures the second

way. At subcritical pressures the effect of hetercgeneous fluctuations
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in the vicinity of the saturation line. This is shown in Figure A-3 which

is the volume-temperature plane for oxygen. At a subcritical pressure,

say at Pr = 0.9, the line 1' - 2' is the phase t%ansition of the first

order occurring at a constant temperature. The effect and magnitude of

the fluctuation in specific volume in the two pre-transition regions is

shown as the lines 1 - 1' and 2 - 2'. The fluctuation 1 - 1' is caused by the
formation of vapor nuclei in the pre-transition region of the liquidf
Similarly, 2 -~ 2' are the fluctuations caused by the formation of liquid
nuclei in the pre-transition region of the gas. It can be seen from this
Figure that at low pressures in the subcritical region the effect of
fluctuation is negligible when compared to the phase transition of the

first order. For example, at Pr = 0.5, they are almost absent.  Increas-

ing the pressure increases'the effect of heterogeneous fluctuations which
feach a maximum at the critical point. At this point and above it)the

phase transition of the first order vanishes sc that only the effect of
heterogeneous fluctuations remains. Urbakh notes further than with the

phase transition and the fluctuations are associated energy requirements
which can be determined from the T - s or v - s diagrams shown on Figures A-4
énd A-5. At low pressure the only energy required is heat of vaporization

for the phase transition of the first order, thus

hfg = T (sz' - si') e ‘ | | (A-10)

However, as the pressure is increased the energy associated with the

fluctuation becomes important. At supercfitical pressure it is the only
'which reméins, and it can be determined_either from Figure}A-é or A-5, ‘
thu§‘~ | |

| [ ]

Al  = T (s, - s;) (3 S (a-11)
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Frenkel (A-14, A-26) considers two variations: a transition of the

first order at subcritical pressure and a. transition of the gsecond order at

supercritical pressure. The first, characterized by discontinuities of
properties, is described by Clausius-Clapeyron's equation:
h

dpP . fo | : '
L — (A-12)
dT To (vg vf)

and takes place at a constant temperature To° The phase transition of

~the second order takes place over a temperature interval AT =T, - T

2 1’

in which the properties change continuously. In this temperature interval
beth cp and ("Dv/rDT)p reach a maximum. FiguresAl andA2 show these varia-
tions for oxygen at three supercritical pressures. As a generalization
of the tramsition of the first order Frenkel formulates the equivalent
energy of -transition for the second order transition, thus
l_ » = ' - = . . . .
A 'I’,’tc(s2 ‘ sl) J A cp dT (A-13)
Ty

where this the temperature corresponding to the peak of cp and:;icp is

the value of cy above the '"normal" value, i.e.,.above the dashed line on

Figure 1. Similarly, the change 6f volume is given by

(A-14)
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Eq. A-13 and Eq. A-14 represent the additional increase of volume and the
additional heat absorbed in going from the liquid-like state to the gas-

like state at constant pressure. In place of Clausius Clapeyron's equation
Frenkel uses the equation derived by Ehrenfest (A-27) to describe transiticns
of the second order at the ''lambda point' of helium and at the "Curie point"

of feromagnetic metals, thus

Ac
% = R, - (A*lS)
T A (3..\1
= o > T

where Acm and A (’)v/’)'l')p are the maximum values of cp and of ( v/ T)P

above the dashed lines in FiguresAl andA2. Various criticisms which have

been made with respect to Ehrenfest equation are discussed in (A-28). Also,
various authors (A-18, A-19) criticize the use of Eq. A-15 for the supercritical
region tecause the temperatures where cp and (FDV/fDT)P reach their

respective maximum values are not the same. Consequently, the value of th

in Eq. A-15 is somewhat arbitrary.

Semenchenko (A-4, A-16, A-29) considers the medium in the supercritical
region to consist of two phases which are separated by a region in which the
properties change rapidly but continuously. It was already noted that he
takes the locus of points given by Eq. A-7 to represent the extension of
the saturation line in the supercritical region. He notes that at subcritical

pressures the phase transition is accomplished by absorbing an amount of

energy given by Eq.Al0 and by doing an amount of work given by:

W=P (V2 - Vl) (A‘16)
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However, since in the supercritical region there is no discontinuous change

of volume and of entropy, Semenchenko notes that Eq. A-10 and A-15 must be

modified and replaced by:

and

T,
Al = J c, dT (A-17)
T
V2 /D V
W= p
J (’Dv) dv (A-18)

v T

For additional discussion of critical phenomena the reader is referred

to the extensive reviews by Rice (A-1l) and by Hammell (A-2).

From the preceding review of the present understanding of thermodynamic

phenomena in the supercritical region we can make the following conclusions:

1)

2)

3)

%)

There is no general agreement as to the structure of the medium
and of the mechanism of phase trahsition in the critical and super-
critical region.

There is a general agreement that large'variations’of'density and
of specific heat are présent.

Most of the authbrs consider the supercritical region to consist
of'tWO phases =-- a liquid-like énd a gas-like phase;r

There'is4no general consensus as. to the 1ocation of the boundary

or of the transition region between these two phases, although a .

large number of - investigators consider this demarkation to take
‘place along the line which is the locus of points where the

specific heat at constant pressure reaches a maximum.
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5)

There is no general consensus as to the nature of phase transition

at supercritical pressures and of the energy required to bring it
about. Three different methods for evaluating this energy of
transition have been proposed: 1) the graphical method of

Urbakh (A-17) resulting in Eq. A-1l; 2) the second order transition
proposed by Frenkel (A-14, A-26) given by Eq. A-13, and Eq. A-15; and
3) the pseudo transition region proposed by Semeﬁchenko (A4, A516,
A-29) given by Hi. ‘Ar]5 and Eq. A-17. By examining the proposed methods
and equations, i.e., Eq. A-11, qu A-15 and A-17, it can be seen that
these different methods will yield different values for the transition

energy.

 , It is evident from the preceding results that the success of any analysis

concerned with the mechanism of flow oscillations and of heat transfer at

supercritical pressures will depend to a great extent upon the ability to

describe more accurately the thermodynamic state of a fluid and the transi-

tion phenomena that take place at supercritical pressures.
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of the heated section. A fluid at an initial temperature T

Appendix BW

The Steady State Pressure Drop

In this Appendix we shall derive an expression for the steady state
pressure drop of a fluid whose properties change from a liquid-like at the
entrance to a gas-like at the exit of the heat exchanger; The derivation

and the resulting flow excursion ciiterion applicable to fluids at critical

and supercritical pressures were first derived by the writer in the Second

Quarterly Progress Report. They are reproduced here for reasons of completeness.

The pressure drop across a heéted length L is the sum of the acceleration,
pfessure drop, the frictional pressure d;op and the pressure drops across
the inlet and exit flow restrictions. Since the pressure drop depends on
the fluid, it becomes nécessary to examine first property changes aloug the

heated duct.

B.l1 The System - Three Region Approximation

The system analyzed in this Appendix is shown in the Figure B-1.

L}

A circular duct is uniformly heated at a rate of Q, over a total heated
length L. Two flow restrictions are located at the entrance and at the exit
1’ i.e., with the
enthaipy il’ flows_at a constant mass flow rateibu—.v‘ln passing through the

 heated duct the specific volume and the enthalpy of the fluid increase (See

'EigffB-l).: The fluid undcrgoes3‘theref0re,‘a ffénsfbrmation from a liquid-

like to a gas-like fluid.
Figure B-2 shows the‘U‘-i relation for oxygen at a reduced pressure of

r.

ﬂ'Pf =‘1;1. It can be seen from this figure that the increase of specific
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FIGURE BI THE SYSTEM FOR A THREE-REGION APPROXIMATION




volume from a liquid-like state to a gas-like state occurs gradually over
an enthalpy interval.
In order to simplify the problem, we shall assume that the entire

g transformation can be approximated by considerding three regions. In the

ft first region of length 1f’ between stations (:) and (:) in Figure B-1, the
/ heavy clusters resemble a liquid. In this region the specific volume of

the fluid is constant having a value of v We shall assume that the com-

£
plete transformation, from heavy to light clusters, takes place within the
transition length lt, i.e., between stations (:) and'(:> . In this transition

. region the specific volume of the fluid changes from a value of ve to a value
ofrv' . The enthalpy change associated with this expansion is given by

g2
}A‘:-'Z: i,x-'il . In the third region of length 1g’ the light clusters

resemble a gas. The specific volume of the fluid in this region can be

approximated by that of gas and, in particular, by that of a perfect gas.
It is apparent from the discussion in Appendix A that the initial and
the final conditions of the transition region, i.e., the conditions at stage (j
and (:) respectively, will dépend upon the model selected for describing
the pseudo-phase transition in the supercritical region. This follows from
the fact that the temperature or the enthalpy that marks the start of the
pseudo-phase transition will determine the location of station (:), whereas
the location of station (:) will depend on the energy required to complete
ﬁhe transition from heavy to the light clusters. In this report we shall
denote this energy requirement by Z&Lzz“ which can be determined by the best
three region approximation indidated in Figure B?l.
3 - VVA | As discussed in the preceeding sectioﬁs,>wé are considering in this‘

report only the effects of density variation on the flow stability.
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Consequently, we shall assume that both the friection factor and the heat‘trans-
fer are constant. The first assumption is quite reasonable if the flow remains.
turbulent throughout the duct. The limitation of the second assumption may

% become significant if variations of transport properties in the transition
region have an important effect on the stability. We note, however, that

both assumptions can be removed permitting an extension of the analysis to

consider the effect of variations, other than density, on the initiation of

flow oscillations.

ok B.2 The Frictional Pressure Drop

The frictional pressure drop in the system is given by the sum of the

frictional pressure drops across the segments lf, 1t and 1g and the pressure

drops across the inlet and exit flow restrictions, thus

AP(wW) = AR, (W) + AP, (W) +AP, (W)

For a constant friction factor f, the pressure drop across a segment

of length 1 is given by

I T e R T T

H - B-2
;
where the lengthwise average specific volume is given by
! A T B-3
= o -146-
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Consequently, in order to evaluate the frictional pressure drops for
the three segments it is necessary to evaluate the specific volume for each
segment. This can be done by relating first the specific volume to enthalpy
and then to express the enthalpy in terms of the heated length. This latter
relation can be obtained from energy considerations.

Denoting by é, the total rate of energy addition to the system and by

q, the constant heat flux density, we have for a duct

de _ g%
a2 -f -f ; B-4

where "fb, is the heated perimeter. It follows from Eq. B-4 that

Q < 9 B-5
L | o
where the total length is given by

Furthermore,‘for a system with constant mass flow rate the change of

enthalpy is given by

B-7

- Wdi<=da
where we have neglected the kinetic enérgy of the fluid. It follows4then
from Eq. B-7 and B-4 that
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and in view of Eq. B-5 we obtain

L wdi - d
5 %

Substituting Eq. B-4, B-3 in Eq. B-2, we obtain the pressure drop across
a heated segment where the enthalpy of the fluid changes from i to i +4A1i,

thus .

L+dlt

/
2 '
AP = fz; gf (Y) Vi) du B-10

[}

L
_For a three region approximation the relation between v(i) and i

is shown in Figure B-1l. We shall consider now each region separately.

a) The Liquid-Like Region
In this region the specific volume of the fluid is constant amd equal

to Ve (See Figure B-1). 1In the segment of length lf, the enthalpy of the

fluid increases from ij to i, The frictional pressure drop across 1, be-

comes then

B-11

b) The Transition Region
In the transition region we shall approximate the trelation between the

specific volume v, and the enthalpy i, by a linear equation. The average

specific volume in this region can be written then as:

{“:ﬂxf=='qjk‘ﬂ—

Ve =V

"
T2 2

= a4 Vi, g
| ' . 2 |
fl4:8’f ~




Deroting by AL = L LZ the change in enthalpy, the frictional

pressure drop in the transitional region then becomes

[ L '
N

¢) The Gas-Like Region

g In view of the assumption that in this region the fluid has the prop-
erties of a perfect gas we have, for a constant pressure process, the fol-

lowing expression for the specific volume

W, = Rofiog
? /\7%2‘ + P C—f (L 7’) B-14
Inserting this expression in Eq. B-10 we obtain
(L ( ] L R
A'?'L':b Z.) A"j Q AL (’U%"Z'. { E‘ -PCP A L?ﬂ-') B-15

The change of enthalpyA_i32 , can be expressed also in terms of the total

heat input thus from an energy balance

‘ _ Q _al oAt
Aty = W A ).”Z A 21. B-16
Iuserting this expression in Eq. B-15, we obtain for the frictional

pressure dfdp in the gas-like region the following expression

o= BTG [ st £ (6 0]

B-17
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B.3 The Inlet and Outlet Pressure Drops

Denoting by ki a numerical coefficient that takes into account the

geometry of the restriction and of other losses like vena contracta etc.,

we have the inlet pressure drop

AP, = kv W

B-18 -

Similarly,; we define by ke a numerical coefficient that accounts

for the geometry and the losses at the exit. The exit pressure can be then

expressed as:

Aj?éq = ‘QC ruas'xkf

L

which, in view of‘Eq. B-14 and B-16, can be also written as:

APs\/ = ke wx[ dr?i + ; 'PPC, (3,. “A(:z‘z-l\‘:.m)

B.4 The,AcceleratiQn Pressure Drop

The acceleration pressure drop is given by
dp = guon

as

e
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then

C’1> = EAL dv-

A B-23

i
I
!
4
I
t
i
i

The total acceleration pressure drop required to accelerate a fluid of
5 specific volume Ve at the inlet up to the exit where it attains a specific

volume vg3 is given therefore by

A
W‘ <
Aﬁ = (7;—) (Vas=Vt) B-24
Inserting Eq. B-14 in Eq. 24 we obtain
- y |
AP, = (W) Roalg =] i
(A)[.f\)'wﬁ—?% - 1 B-25
or in view of Eq. B-16 we have
AP ___(X‘L)L[v \-_,__B_(_é_ ~AlY— g )=V
a={al L P \lWw 7 ‘1‘)- {’] B-26

B.5 The Total Pressure Drop

The total pressure drop is obtained by summing Eq. B-26, B-20, B-18,

B~-17 and B-11, thus after some rearrangement

| | \Aig- ~ g} “ o | e o
'AT¢ +~A’P°4 = a — —bw + € QW o B-27
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where the coefficients a, b and ¢ are given by

fL Cap, 4t A, o AV L'y ~+
Q LDA\_% (-A )_\‘Q‘( p = )A 47.7.

- R | N . ' L) -28
- [% e, (ALL\*AL‘-’->‘\5’1-Z‘][A‘L'"'ALU-],,.'T °

+ % (ALL\"‘AH’I)"V‘.;' - EEPL._’*\' Ve + B-29
20A . .
+ % o [_% B_%(AL,_,*AH\Q_—\)‘“-' }
B-30

= fL 2R o ke mat LR
¢ m‘-[ft H "‘]"

‘The form of Eq. B-27 is relevant to the present problem because it shows
that, for some operating conditions, the pressure drop may decrease with
increasing mass flow. This consequence of the negative term on the right-

hand side of Eq. B-27.

B.6 The Two Region Approximation

14

Following the derivaﬁion of the pressure dfdp given in the preceding
section it was observed by Dr. R. Fleming, from the Research and Development

‘Center at G.E., that instead of considering a three region approximation as
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shown in Fig. B-1, the problem can be further simplified by considering a

two-region approximation indicated in the sketch below

v

-
s

Two-Region Approximation

In the two-region approximation the transition region shown in Figi B-1

= 0, i, =1 ;Ugf = ve. It is assumed,

therefore, that the change from a liquid-like to a gas-like fluid occurs in-

and B-2 is neglected, i.e., 1t
stantaneously -in a plane perpendicular to the flow when the enthalpy reaches
a value of 12 indicated on the sketch above.

We can further amplify the preceding - observation. It can be seen

from Fig. B-2 that the enthalpy which corresponds to the transition point

can be approximated by the enthalpy at the :transposed critical temperature

 T » 1.e., by the enthalpy that corresponds to the maximum value of the

te

specific heat at constant pressure cp. Consequently, with a two-region

approximation one can consider that the liquid-like state persists until

the*temperaturé‘of the bulk fluid reaches a value that is equal to the

transposed critical (or pseudo-critical) .temperature. Above that temperature

"1é1535‘
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the fluid behaves as a gas. Therefore, the transposed critical temperature
th, can be regarded as the boundary between the liquid-like and the gas-like
states. It was discussed already in Appendix A, that both Sirota (A-19)
and Kaganer (A-18) have shown that this temperature is the extension of the
saturation line in the supercritical region. Figure A-1 in Appendix A
shows that the transposed critical temperature increases with increasing
values of reduced pressure. It can be concluded therefore that the value
of enthalpy corresponding to this temperature and to thevtransition point
shown in Fig. B-2 will also increase with increasing reduced pressures.

For a two-region approximation the form of Eq. B-27 remains unchanged,

however, the coefficients a, b and ¢ given by Eq. B-28 and B-29 and B-30

reduce to:

a= 5§ L R aly)

fL g 2D R, R | v
Al 2 - q ?__Il_h_ B-32
b ZDP-“‘\ f‘L ‘PLP -+~ R ALLl 'U'('<|'+' fL )-'- (
‘( 7'ML + &
< {.L (l ?Cb}‘A(M -—’U.f_)\(

B-33

w154~




which we obtain by setting Aizoz = 0, A'Yfg =0, V 4, =v_. in Eq. B-28,

g2 f
B-29 and B-30.

As noted by Dr. Fleming the use of the two-region approximation simplifies

considerably the form of the coefficients a, b and ¢. The three region
approximation retains however a closer similarity with phenomena that take
place at subcritical pressure. The transition regiom shown in Fig. B-1 can
be regarded as corresponding to the boiling region at subcritical pressures.
The liquid and the gas region in Fig. B-1 would then correspond to the pre-
heating and to the superheating region in a once-through boiling system
where the liquid at the entrance is subcooled and the steam at the exit is
superheated. We have noted already in Appendix A that the enthalpy change

Al.,zrz may be considered as being equivalent to the heat of vaporization

hfg'

The selection of either the two or three region approximation shoudd

be determined by the desired simplicity and aceuracy. The important result

is however the fact that, because of the negative term on the right-hand side

of Eq. 27, there exist a possibility of a decrease in pressure drop with
increasing flow in the supercritical thermodynamic region. It was shown
in the body of the report that such a pressure drop vs flow relation can

lead either to excursive flow or to oscillatory flow.
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Appendix C

The upper and lower bounds of the integrals

The integrals given by Eq. IV-94 , IV-101 and IV-11l1l can be all

expressed in the form of

us/i |
I -_—.7/\:——‘—— ‘—L d[-aﬁ)] Cc-1
o LU .
U,
I
which integrates in
| | _ = ?
T -X — (2 -1 e
- - M+ :_u;_‘ ‘:13 |
W

where K is a coefficient and m an exponent. For example, the

integral given by Eq. IV-1ll is

L
- 3/n- -STs :
L _ f& ___Q:_.g[__i'_] e &}M;ls)d} c-3
S LD | s-n Uy 3) e 3) :
Aty |
It can be expressed by
| L
RE PPN 5 ¥y oo
[ _Hie s e u o w| [2&] °
'LS W QS-J\— \. §=n Ugta) v
| 17
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However, in view of Eq. IV-34 and IV-28 we have

a(l-F) = Uy A

and

W(3) = M+ (%= A)

fr“;&('SJ = SL 0‘5.

whence we can express Eq. C-3 as

--S'E'v
T _HDen o Chuwu
-s 1D (‘5'5"; w

i

Q)
!

U3 fu

C-4

C-5

C-6

-y

[——J-'-]n d‘(_i‘_%_!}l] o7

Ay

By comparing Eq. C-7 with Eq: C-1 it can be seen that they are

-of the same form.

In view of Eq. C-2, the integration of Eq. C-7 yields:

- -ST,
I '= {'“‘A e(‘ L bmg‘u' ~|‘ ‘
. N G.‘

B R i




which, after some rearrangement, can be expressed in the form of

- Eq. IV-111, thus

; =51, - ¢
.- i o e il- (ﬁx_)"fl} c-9
T 2D $-L s-an N Uy

In order to obtain the upper and lower bound of Eq. IV-94,

IV-101, IV-11l1l we note that Eq. C-1 can be written as

4% ) :i: ~ ~;<: EE; C-10

where F is the mean value of F given by

; 1

— - M- |
F = | F(x) dy o ‘ W 0{(01153 c-11
L-o %, | Wiy 7

W
[/

whence by the mean value thereom

_.:‘._] CF L1 - c-12
Ity | |




which together with Eq. C-10 yields the upper and lower bounds given in

Eq. IV-95, IV-105 and IV-116, thus

K (‘a‘-')w<~ T<X |

hs

For example, from Eq. C-7 and Eq. C-12 we obtain

Y D 3N 7N h\ ) s~ JL
since
(:1‘ S/Q -S ( C-S‘Zl..>
|
— = €& c-15

Us

it can be seen that Eq. C-14 can be put in the form of Eq. IV-116.
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