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Foreword 

The Administrator of the National Aeronautics and Space Administration has established a 
technology utilization program for "the rapid dissemination of information. . . on technological de- 
velopments. . . which appear to be useful for general industrial application. (' From a variety of 
sources, including NASA Research Centers and NASA contractors, space-related technology is 
collected and screened; and that which has potential industrial use is made generally available. 
Information from the Nation's space program is thus made available to American industry, includ- 
ing the latest developments in materials, processes, products, techniques, management systems, 
and analytical and design procedures. 

This publication outlines several mathematical programs and programming techniques for 
digital computers which are available separately or as a collection through the NASA technology 
utilization program. Although the functions which these programs perform are  not new and simi- 
lar programs are  available in many large computer center libraries, this collection of programs 
may be of use to centers with limited systems libraries and for instructional purposes for new 
computer operators. Most of these programs are  part of the operating system at North American 
Aviation, Inc. and were written by W. Kane, S. Kory, W. Vinson, R. Mittleman, S. Deifik, 
T. Highwort, G .  Murine, and R. Wright. The others were written by S. 0. Moy (The Boeing 
Company), D . Franz and H. P. Mitchell (The Chrysler Corporation), William A. Mersman (Ames 
Research Center), and Dr .  Erwin Fehlberg (George C. Marshall Space Flight Center). 

This report was prepared by J. Arnold, J. Simpson, and T. Leth of Illinois Institute of 
Technology Research Institute. 

The Director, 
Technology Utilization Division 
National Aeronautics and 

Space Administration 
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Introduction 

The computer programs described in this publication were, for the most part, run on IBM 
7094 computers. Sufficient information is provided on each program to allow a prospective user 
to assess its usefulness. The. compatibility of these programs with other equipment depends upon 
the programming language and operating system used, as well as  type of machines available. Detailed 
descriptions of individual hrograms are available from the responsible Technology Utilization 
Offices, at the addresses indicated at  the end of each description. 

I 
I 

' 
1 

Programs described are available for purchase at a nominal cost (sufficient to cover 
duplication). Necessary information and forms for purchasing a re  included with responses to 

, requests for detailed descriptions. 
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Section I - Functions 

ARC SINE AND ARC COSINE FUNCTIONS 
I 

I t .Program Description: This is a Fortran IV subroutine which computes either the arc sine 

1 or  the arc  cosine (angle A), a s  desired. 

I Numerical Method: The method of calculation of the a rc  sine and arc  cosine depends on the 
value of the argument (sine or cosine) and is as follows: 

Arc Sine: 

a. 
terminates when the terms become less than sine /20 000 000. 

b. 

I 
I sine I 5 0.27424; arc  sine is computed using the standard infinite series which 

I sine I > 0.27424; arc  sine is computed using Taylor-series expansions. I 

, Arc Cosine: 

, a. I cosine1 > 0.98; arc cosine is computed using a four-term polynomial. 

~ 

b. 
the complement of the angle form n/2.  

IcosineI S 0.98; arc cosine is computed using the arc sine function and subtracting 

I 

I Range of Data: 
Arc Sine: -n/2 S A  S +n/2 

Arc Cosine: 0 5 A 5 n 

I 

Limitations and Problems: 
I 

I 
a. If the sine exceeds 1 .00 ,  the arc  sine is set equal to n/2 and an error  routine is 

b. If the cosine exceeds 1.00,  the arc cosine is set equal to 0 or IT, whichever is appro- 
I called, 

~ priate, and an error  routine is called. 

Accuracy: In the Taylor -series expansion calculations, the accuracy is f 2 in the 8th signif- I 

icant figure. 

Program Storage: 
! 
I 

t Deck Size: (Binary) 43 cards 

Inquiries concerning this program may be directed to: 

Technology Utilization Officar 
Manned Spacecraft Center 

Houston, Texas 77050 
Reference: MSC-340 



Mathematical Computer Programs 

ARC TANGENT FUNCTION 

Program Description: This is a Fortran IV subroutine which computes the arc tangent 
(angle A) given the sine and cosine. The form and range in which the angle is presented may be 
specified. In addition to computing the arc  tangent, the program also computes and prints the 
tangent of the angle. 

Numerical Method: The program computes the arc tangent by first deriving the angle from 
the sine and cosine and then applying the standard library function for the a rc  tangent (Taylor 
series approximation). The program checks the compatibility of the sine and cosine by comparing 
sin' + cos' with 1.0;  if  the error is greater than 0.00001, an e r ror  routine is called. 

Rdge  of Data: The arc tangent may be specified to fall in one of the following ranges: 
0 5 A < 27; T <A < +n; 0' < A  < 360°; or -180' <A +180°. 

Input/Output Format: The input data contains the sine and cosine plus an integer which spe- 
cifies the output format. The program returns the tangent and arc  tangent as  output. 

Limitations and Problems: If the cosine is zero, the tangent is returned as  +los5 

Accuracy: The accuracy of this subroutine is determined by the accuracy of the library arc 
tangent routine. 

Program Storage: 

Deck Size: (Binary) 32 cards 

4 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-34 I 



~~ 

Functions 

ROOT EXTRACTION 

Program Description: This is a Fortran 11 subroutine which determines the intersection of 
a particular function with the x-axis over a given range (determines the root of the function). 

Numerical Method: The program examines the function starting from the left limit in incre- 
ments determined by the input data. When a change of sign of the ordinate is detected, the pro- 
gram returns to the previous value of x,  divides the increment by 10 ,  and proceeds as before. 
When an exact root is found or one that differs by a specified smallest increment, the value of x 
(the root) and the functional value are  printed. 

Range of Data: Any single-argument function within the range of Fortran 11 variables. 

Input/Output Format: The input data must specify the right and left limits of the range, the 
first search increment, the smallest increment, and the function. 

Limitations and Problems: If the function is periodic and the search increment is chosen 
equal to the period, none of the axis intersections would be apparent. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-472 
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Mathematical Computer Programs 

GAMMA FUNCTION 

Program Description: This is a Fortran II subroutine which evaluates the Gamma function 
a-1 -x (r  (CY) =J," x 

evaluated using the Chebyshev polynomial approximation formula: 

e d ~ ) .  

Numerical Method: If the value of CY is in the interval 2 5 CY < 3) the Gamma function is 

where A are coefficients which are stored within the program. When CY does not lie within this 

interval. the formula: 
V 

is applied to bring the function within the interval. 

Range of Data: The maximum value of CY is determined by the largest number the particular 
machine can store. For the IBM 7090, the maximum word size is los8, which limits the value of 
CY to 34. 

Input/Output Format: The input and output of this program are  single-valued; the argument, 
CY, is supplied as input and the value of the Gamma function is the output. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-338 

6 
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Section I1 - Vector Operations 

VECTOR OPERATIONS 

Program Description: This program consists of four separate mutually independent sub- 
routines which are coded in the MAP language for use on a Fortran IV system. The capabilities of 
the program include the following vector operations : 

a. addition and subtraction of vectors 
b. finding the magnitude of a vector 
c. normalizing a vector 
d. finding dot and cross products of two vectors 
e. finding the cross products of a vector and three column vectors 

Numerical Method: The following operations can be performed by this program: 

1. VC = V A + V B  
2. V C = V A - V B  
3. S = VA * VB 
4. s =  Ivl 

V 

where V, VA, VB, VC are vectors; A, B, are 3 x 3 matrices; 
V is the magnitude of V;.VCl, VC2, VC3 are column 
vectors of C; VB1, VB2, VB3 are column vectors of B; 
VA VB is the dot product of VA and VB, and VA x VB 
is the cross product of VA and VB. 

5. u = j q  

7. VC = VA x VB 
8. VC1 = VA x VB1 

VC2 = VA x VB2 
VC3 = VA X VB3 

Range of Data: This program will accept any data which is compatible with the Fortran IV 

Input/Output Format: For each operation, the input format must be declared. 

Limitations and Problems: One array of Block Common must be set up in the calling pro- 
gram with the name BLOCK 1. The minimum dimension of BLOCK 1 required by this program 
is 1. 

language. 

Accuracy: A11 operations are  performed in  single precision. 

Program Storage: 

Core: DOT PRD 20 decimal 
X PROD 40 
MAG33V 43 
VADSUM 3 
Total 139 decimal 

Inquiries concerning this program may be directed to: 

Technology Uti I i zat ion Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-330 



Mathematical Computer Programs 

RESOLVED VECTOR COMPONENT ARC TANGENT FUNCTION 

Program Description: This is a Fortran II subroutine which computes the arc  tangent (angle 
A) given the x and y components of a vector. The form and range in which the angle is presented 
may be specified. In addition to computing the arc  tangent, the program also computes and prints 
the tangent of the angle. 

Numerical Method: The program computes the arc tangent by first deriving the angle from 
the vector components and then applying the standard library function for the arc tangent (Taylor 
series approximation). If the value of x is 0 and y is non-zero, the a rc  tangent is assigned the 
value of *rr/2, *goo, 3n/2, or 270' and the tangent is assigned the value of For ltan AI s; 

0.00001, values of rr, 180°, 217, or Oo are  assigned depending on the range selected. 

Range of Data: The arc tangent may be specified to fall in one of the following ranges: 
0 s A < 2rr, -rr < A  s +rr, Oo 5 A < 360°, or -180O < A  S 180°. The largest variable used must 
have a magnitude less than lo3*: 

Input/Output Format: The input data contains the x and y components of the vector plus an 
integer which specifies the output format. The program returns the tangent and arc  tangent as 
output. 

Accuracy: The accuracy of this program is determined by the accuracy of the a rc  tangent 
library routine. 

Program Storage: 

Core: 226 decimal positions; 617 decimal positions including auxiliary routines 

Deck Size: (Binary) 13 cards 
(Source) 55 cards 

inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston. Texas 77058 
Reference: MSC-339 
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Section 111 - Matrix Operations 

EVALUATION OF A DETERMINANT I 

Program Description: This is a subroutine to evaluate an N x N determinant by first reduc- 

~ 

ing it to a triangular matrix and then taking the product of the diagonal elements. The subroutine 
is written in Fortran II. 

I Numerical Method: The evaluation procedure is based on the algebraic theorem that 'the de- 
terminant of a triangular matrix is the product of its diagonal entries. I t  

Range of Data: The procedure accepts any single precision numbers compatible with the 
, Fortran XI system. 

1 

1 
Inputbutput Format: The subroutine requires the matrix A ,  and the number of rows, N. 

It returns the value of the determinant, D. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77050 
Reference: MSC-354 



Mathematical Computer Programs 

GENERALIZED DIMENSION MATRIX OPERATIONS 

Program Description: This is a routine for matrices of general (M x N) dimensions which 
is coded in MAP language for the Fortran IV system. The overall routine consists of four mu- 
tually independent subroutines which may be loaded individually or with any combinations. Each 
of the four subroutines has one entry point and performs the operation specified in the setup 
information. 

The four subroutines are: inversion of an N x N matrix QNVNNM); multiplication of an 
M x N matrix by an N x P matrix (MTXMPY); finding the transpose of an N x N matrix (TRNPNN); 
and outputting an M x N matrix according to a format that varies with M (WRIMX). 

Numerical Method: The inversion routine performs column interchanges as a means of im- 
proving accuracy, but the method of finding the inverse is the standard one of performing elemen- 
tary row operations on the original matrix. The inversion subroutine incorporates a simple error  
indicator, IX, which takes on values less than or equal to zero indicating a possible e r ror  in the 
inverse or that any of the N divisors are  zero. 

Range of Data: The system accepts any single precision numbers compatible with the For- 
tran IV system. 

Input/Output Format: The subroutines each require all pertinent dimensions of the input 
matrices and the output matrices created. 

For the matrix output routine a maximum of seven numbers will be printed out per line; an 
E17.8 format is used. 

Limitations and Problems: The inverse subroutine destroys the original matrix, storing the 
inverse in its place. The inverse routine also requires two arrays of block common whose size is 
determined by the size of the input matrix. The other routines require no block common. 

Program Storage: 

Core: INVNNM routine requires 173 decimal locations. 
MTXMPY routine requires 60 decimal locations. 
TRNPNN routine requires 38 decimal locations. 
WRIMX routine requires 47 decimal locations. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 11050 
Reference: MSC-350 

10 



Matrix Operations 

DOUBLE PRECISION MATRIX OPERATIONS 

~ 

~ 

Program Description: This routine consists of two mutually independent subroutines for 
double precision operations on an M x N matrix. It is coded in MAP for the Fortran IV system. 
The two subroutines employed allow for (1) finding the inverse of an N x N matrix, or (2) multiply- 
ing two compatible matrices; the subroutines may be loaded independently or together. 

The double precision format of this subroutine gives extra accuracy in the computed results; 
this is of special importance in the handling of large matrices. 

Numerical Method: The inverse routine performs column interchanges as a means of im- 
proving accuracy. Aside from this, the inverse is found by performing elementary row operations 
on the original matrix. The inversion subroutines also incorporate a simple error  indicator for 
noting either a possible computational e r ror ,  or that any of the N divisors are zero. 

1 ' 
Range of Data: The routine accepts any double precision numbers compatible with the For- 

I tran IV system. 

Input/Output Format: Each subroutine requires pertinent dimensions of the input and output 
subroutines. 

Limitations and Problems: The inverse subroutine destroys the orighal matrix, storing the 
inverse matrix in its place. In addition, the inverse routine requires two arrays of block common 
of a size determined by the input matrix. I 

The multiplication subroutine does not require block common. 

Program Storage: 

Core: Source program storage required: 65 decimal locations for the multiplication 
subroutine, and 190 locations for the inversion routine. 

Miscellaneous: This program is essentially identical to the corresponding two subroutines 
i in the preceding program (UT 307) with the exception that this program uses double instead of 

single precision. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-329 

11 



Mathematical Computer Programs 

SPECIALIZED DIMENSION MATRIX OPERATIONS 

Program Description: This is a multi-purpose routine for 3 X 3 matrices. It is written in 
MAP for the Fortran IV system. This routine is designed to minimize storage space and faster 
routines are available. It is recommended that this program be used when storage is limited. 

The following operations a re  supplied by this routine: (1) finding a matrix inverse, (2) re -  
orthogonalizing a near-orthogonal matrix, (3) transposing a matrix, (4) evaluating the determinant 
of a matrix, (5) moving a matrix from one array to another, (6) multiplying a matrix by another 
matrix or a column vector, and (7) multiplying a transposed matrix by a matrix or a column vec- 
tor. These separate subroutines may be used individually or in combinations. 

Numerical Method: The inverse is calculated by using the formula A 
-1 -1 

= (det A) adj . A .  
3 1 t  
2 An iteration procedure is used to converge the orthogonal matrix by the formula B = A ( - I  - ZA A). 

A and A are the original matrix and its transpose, respectively. A 
nal matrix and B is the next approximation in the orthogonalization, and I is the identity matrix. 

The iteration formula is tested for convergence by checking that the row norms of A A - I 

t -1 
is the inverse of the origi- 

t 

are  less than 1.0,  this condition indicating convergence. 

Range of Data: The routine accepts any single precision numbers compatible with the 
Fortran IV system. 

Limitations and Problems: This routine is limited to use with 3 x 3 matrices. One array of 
Block Common must be set up in the calling routine with the name BLOCK 1; the minimum dimen- 
sion of BLOCK 1 depends on the subroutine being used, but a minimum dimension of 19  will be 
adequate for all subroutines. 

Accuracy: The matrix inverse incorporates an internal error  analysis to determine the num- 
ber of places of significance of the inverse. The orthogonalization iteration proceeds until the row 

t norms of A A-I have converged to . 000001. If this condition does not obtain it is indicated by a 
control variable. 

Program Storage: 

Core: The program requires 356 decimal locations. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-328 

12 



Matrix Operations 

LARGE MATRIX MULTIPLICATION ROUTINE 

i Program Description: This is a special program developed to circumvent core storage 
problems in multiplying conformable matrices of large size. It has been used in the multiplica- 
tion of matrices as large as  100 x 100. This program is written in Fortran 11, and is intended for 
use in situations where limited storage does not allow enough locations to store the product matrix; 
this matrix is then stored into one of the original matrices. Either of the original matrices can be 
chosen by the user as storage locations for the product matrix. 

~ 

I 

I Range of Data: The subroutine accepts all single precision numbers compatible with the 
Fortran I1 system. 

I Input/Output Format: Specifications of size must be made for all matrices involved. 

Limitations and Problems: Given matrix A of size M x N and matrix C of size N x L, then 
if the product matrix is to be stored in A the number of columns in A must be greater than or 
equal to L. Similarly, the number of rows in B must be greater than or equal to M if B is chosen 
as storage for the product matrix. 

, 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77050 
Reference: MSC-335 
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Mathematical Computer Programs 

MATRIX INVERSION ROUTINE (MAINV) 

Program Description: This is a specialized subroutine for finding the inverse of a non- 
singular N x N matrix. The original matrix is not destroyed and its calculated inverse is stored 
in additional locations by the subroutine. The subroutine is written in Fortran 11. 

Numerical Method: The inversion is performed iteratively by reducing the original matrix 
to an identity matrix by a sequence of row operations and then applying the same operations to the 
identity matrix to  generate the inverse. 

Range of Data: This subroutine accepts any single precision numbers compatible with the 
Fortran I1 system. 

I 
Limitations and Problems: The program assumes that the original matrix is non-singular 

and that all of its diagonal elements are non-zero. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-362 

14 
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Matrix Operations 

MATRIX REORTHOGONALIZATION ROUTINE 

Program Description: This is a special purpose subroutine, programmed in Fortran 11, for 
producing an orthogonal 3 x 3 matrix from one which is near orthogonal. 

i 
Numerical Method: The orthogonalization is performed by an iteration process using the - 

3 t t formula V = U (2 I - 1/2 U U). U and U are  the matrix and its transpose, respectively; I is the 
1 

I 
I 

, identity matrix; and V is the next approximation. 

t The process is tested for convergence by checking that the row norms of U U - I are less I 
I than 1 . 0 ,  this condition indicating convergence. 

Range of Data: This subroutine accepts any single precision numbers compatible with the 
Fortran I1 system. 

Limitations and Problems: The original matrix is destroyed and its inverse is stored in its 
, place. 

I Accuracy: The subroutine also supplies a control variable, KOUNT, whose value indicates 
whether the matrix was orthogonalized to the required accuracy, whether it could not be orthog- 

, onalized, or whether the maximum number of iterations was exceeded. 

Inquiries concerning this program may be directed to: 

Technology Uti I ization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-35 I 
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Section IV - Integration 

INTEGRATION ROUTINE 

Program Description: This program provides a small fixed step integration package to per- 
mit the integration of tabular derivatives without a high degree of accuracy. Stops can be made on 
integrated o r  non-integrated variables or on the independent variable. No interpolation is made to 
provide values between interval endpoints. The case ends with the printing of the first interval end- 
point beyond the stop value. 

Subroutines NTEGRT, MOVEX, and MONINT are written in MAP for a Fortran IV system. 
NTEGRT and MOVEX are  essential to the package. NONINT is optional and used only when there 
are stops on non-integrated variables. NTEGRT does the actual integration. MOVEX updates the 
indicators for the next cycle and checks for stops on the independent variable when both corrected 
ordinates and derivatives a re  available. 

Numerical Method: A two-point predictor-corrector system of numerical integration is used 

3 1  by NTEGRT for the actual integration. The predictor equation is Y 

The corrector equation is Y 

= Y +DX (-Yr --Y' ) .  n+l n 2 n 2 n-1 1 1 
= Yn +DX (-Y' +-Y' ). n+l 2 n+l 2 n 

Range of Data: This program will accept any data compatible with the MAP language. 

Input/Output Format: Input data must include (1) initial value of the independent variable, 
(2) the step size, (3) the print interval, and (4) the initial values of all integrated variables. 

Limitations and Problems: An array of ordinate values obtained by integration and the de- 
rivative which is integrated to give the ordinate values requires a dimension of 7. An array of 
values for the non-integrated variable requires a dimension of 4. A block of labeled common 
must be set up with the name, VARX, and must contain 10 locations. 

should be made only when both corrected ordinates and derivatives are available. If a print is 
made, L(3) should also be tested to see if a stage o r  case ending has been found. NTEGRT should 
be called for each variable integrated with the ordinate as the argument. Following the last "call 
NTEGRT" statement, the program should call MOVEX. The program should then transfer con- 
trol to the derivative section. 

Program Storage: 

The section which evaluates the derivatives must begin with a statement number. A print 

Core: NTEGRT 113 decimal Binary Deck Size: NTEGRT 12 cards 
MOVEX 39 MOVEX 8 
NONINT 28 NONINT 7 

Total 180 decimal Total 27 cards 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-336 
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Mathematical Computer Programs 

INTEGRATION ROUTINE 

Program Description: This program integrates a set of differential equations using Fortran 
I1 language. It consists of the following five subroutines: l 

a .  PRECOR, which merely sets certain constants which are needed by the program but 
which may be altered by input data. 

b. SETUP, which initializes all counters and indicators and determines the minimum com- 
puting interval. 

c .  INTEG, which actually integrates the differential equation and evaluates the error  asso- 
ciated with the integration. 

, d. UPDATE, which updates all variables, keeps track of the print cycle, examines the error  
indicator, and alters the computing interval. 

e.  ENDIT, which checks for stop conditions and interpolates for the final interval of 
I integration. 

Numerical Method: A fourth order Runge-Kutta formula is used to start the integration or to 
calculate a point subsequent to reducing the interval size. An Adams-Moulton Predictor -Corrector 
technique is then used to complete the integration. 

Either a fixed or variable interval mode may be employed. The variable mode is recom- 
mended, since this allows the step size to be decreased, insuring accuracy, or increased, giving 
efficiency. 

I Both multiplicative and additive round down errors  are minimized in this program. 

A cutoff routine allows for a stop on the independent variable, the integrated variable, their 
derivatives, or non-integrated variable computed elsewhere. 

Range of Data: This routine will accept any numbers compatible with the Fortran I1 
language. 

Input/Output Format: Six variables must be declared. 

Accuracy: Integration error  limits: 

minimum error 0.00001 
maximum error  0.001 

Program Storage: 

Core: This program occupies 100 cells of common. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-483 
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INTEGRATION ROUTINE 

Program Description: This is a highly efficient routine for numerical integration written in 
MAP for the Fortran IV system. This program incorporates a set of starter equations of higher 
accuracy than in many integration routines and a highly efficient procedure for meeting specified 
ending conditions. This results in a routine which minimizes computer time while maintaining a 
high degree of accuracy. 

The subroutine has three entry points, any of which may be used in a given program. The 
subroutine also has internal procedures to allow stopping at (1) a value specified for the independ- 
ent variable, (2) a value of any ordinate obtained by the integration, or (3) a specified value of any 
non-integrated variable defined by the main program. A counter shows how many of the stopping 
conditions have been met. 

Numerical Method: The routine has a built-in starting procedure which uses a series of 
predictor-corrector formulas similar to (and in some cases identical to) the Newton-Cotes quad- 
rature formulas. The interval of integration is variable and it is increased or decreased auto- 
matically by the subroutine. The variable step size gives the shortest possible machine time for 
the calculation while the accuracy is maintained at a level compatible with the accuracy specified 
by the input to the routine. The integration can go either forwards or backwards in terms of the 
independent variable, as set by the input data from the calling program. 

Range of Data: This routine will accept any single precision numbers compatible with the 
Fortran IV system. 

Input/Output Format: An array of values for the independent variable, an array of values 
for the ordinate obtained by integration, and an array of values for the derivative which are in- 
tegrated to give the ordinate values must be specified in the calling statement. Additional argu- 
ments required in the calling statement depend on the entry point used. 

Limitations and Problems: Only one of the entry points to the subroutine may be used in any 
one program. 

Program Storage: 

Core: The maximum storage required for the program is 2249 decimal locations, 
which could be reduced to 1982 by removal of one of the subsidiary subrou- 
tines. The complete extra-print deck required 3176 and 2799 decimal locations 
respectively. 

Deck Size: 153 cards for the production deck and 200 for the extra-print deck. 

Inquiries concerning this program may be directed to: 

Technology Uti i ization Officer 
Manned Spacecraft Center 

Houston, Texas 77058 
Reference: MSC-479 
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ADAMS-MQULTON INTEGRATION SUBROUTINE (AMINT) 

Program Description: This subroutine will numerically integrate a set of N simultaneous 
first order ordinary differential equations, using either of the three following methods: (1) Adams- 
Moulton method with a fixed step size, (2) Adams-Moulton method with a variable step size, or 
(3) a fourth order Runge-Kutta method with a fixed step size. 

Numerical Method: The system of simultaneous differential equations of the first order must 
be in the following form: 

Y; = fl (t, Y1, . . .YN) 

Y; = f2 (t, Y1, . . .YN) 

Y; = fi (t, Y1, - - .YN) 

Y'  = f  )t,  Y 1 , . . . Y N )  N N  

where t is the independent variable and Y1, . . . Y are the dependent variables. N 

A higher order differential equation, or a system of equations including some high order 
members, may be reduced to a set of first-order equations by making a simple change of variable. 
An nth order equation, 

@-I) ) Y@) = f  (x, Y ,  Y',  Y", . . . , Y 

may be transformed by letting 

y =yo,  y' = y , y" = y' = y2, y'" = yrt = y 
1 1 1 3'"'" 

Such a simultaneous system can be handled by this subroutine. 

Range of Data: This subroutine will accept any single precision numbers compatible with the 
Fortran IV system. 

Input/Output Format: The user must provide the N first order derivatives and the dependent 
variables must be determined for a given t. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Marshall Space Flight Center 

Huntsville, Alabama 35812 
Reference: M-FS465 
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SELF-STARTING METHODS TO NUMERICALLY INTEGRATE 
ORDINARY DIFFERENTIAL EQUATIONS 

Description: These are  methods used to devise a self-starting, multistep procedure for the 
numerical integration of ordinary differential equations. The classical, multistep, predictor- 
corrector procedures for the numerical solution of systems of ordinary differential equations are 
generalized to provide compatible, self-starting methods that produce all the required backward 
differences directly from the initial equations. Explicit algorithms and tables of numerical co- 
efficients a r e  given for starting and continuing the numerical integratidn of the equations. 

Kutta are used to obtain starting values for the integration. This requires nonessential tallying to 
determine whether enough starting values have been obtained. 

Numerical Method: The general problem is to devise algorithms for calculating xn, yn, and 

Most multistep methods are  not self-starting, and single step methods such as that of Runge- 

f rwhere x = x(tn), yn = y en), and fn = f hn,  yn, t ) for n = 1, 2 ,  3 . . . given the differential 
n L  n n l  

equations dx/dt = y and dy/dt = f(x, y, t) and the initial values xo = x (to) and yo = y (to). The theory 

for first order systems is obtained by ignoring x in these equations. The procedure used is the 
conventional one of approximating the function (f)  by a polynomial t of degree q. 

In order to achieve the best compromise between the requirements of speed, accuracy, and 
programming compactness, the following procedures are  used in the integration: 

I. Fourth order methods are used for first order equations (q = 4) and sixth order methods 
are used for second order equations (q = 6). 

11. The iterated starter, which initializes the algorithms and then iterates the single set of 
equations, is used and iterated eight times. The iterated starter is superior to a "bootstrap" 
starter (essentially an efficient way of obtaining first approximations in the right hand side of the 
algorithms) because the bootstrap starter,  although efficient in practice, is awkward and space- 
consuming when programmed for automatic computers due to the multiplicity of algorithms and 
matrices required. 

III. The summed form of the predictor-corrector algorithm is used in backward difference 
form. The effectiveness of the summed form of the predictor-corrector formula has long been 
known to astronomers. The use of backward differences in forward integration is preferable to 
the use of backward ordinates for two reasons: (1) the backward ordinate formula tends to add 
nearly equal quantities of alternating sign, whereas the backward difference formula adds mono- 
tonically decreasing quantities; and (2) the availability of the difference table makes error  esti- 
mation and automatic adjustment of the interval size a straightforward procedure. 

round-off errors. 
IV. Four extra significant decimal digits are carried, in floating-point form, to control 

Miscellaneous: A complete report on the theory and use of the self-starting procedure for 
differential equations is available in NASA Tech Note TN D 2936 entitled "Self-Starting Multistep 
Methods for the Numerical Integration of Ordinary Differential Equations. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Ames Research Center 

Moffett Field, California 94035 
Reference: ARC-50 
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NEW HIGH-ORDER RUNGE~KUTTA FORMULAS WITH STEP SIZE CONTROL FOR SYSTEMS 
OF FIRST- AND SECOND-ORDER DIFFERENTIAL EQUATIONS 

Description: This is a mathematical method to be used when the numerical solution (by 
electronic computer) of a differential equation requires changing the integration step size. This 
method involves the use of a new set of Runge-Kutta type formulas which allows solutions of any 
desired accuracy by repeated differentiation of the equations. The simpler high-accuracy methods 
(e. g. , Gauss) can no longer be used in situations where the step size must be changed, and Runge- 
Kutta type formulas are very convenient since no knowledge of previous steps of the differential 
equation or its solution need be carried forward. However, the widely used Runge-Kutta fourth- 
order method is not of high accuracy and therefore requires small step sizes which increases com- 
puting time greatly. Furthermore, several time-consuming evaluations of the first derivative are 
needed and the method does not provide an estimation of truncation errors .  

m+4 Numerical Method: Solutions which are  correct up to the Taylor series term of order h 
(where h is the integration step size) can be obtained by an m-fold differentiation of a system of 
first- or second-order differential equations, and a very convenient simplified transformation of 
the system. These require three evaluations of the differential equations. Two additional evalua- 
tions yield formulas of the (m+5)th order. The differences between the two formulas can be used 
on a computer to set up a step size control procedure for the (mi-4)th order formulas. For second- 
order systems only one additional evaluation is required for the step size control (instead of two), 
if step s ize  control tests for the first derivatives are  disregarded. 

Miscellaneous: The new Runge-Kutta type formulas, their transformation, and the applica- 
tion of this technique to the solution of a heavy asymmetrical top problem are presented in a 
report entitled "New High-Order Runge-Kutta Formulas with Step Size Control for Systems of 
First- and Second-Order Differential Equations" by Dr .  Erwin Fehlberg. The execution of the 
required differentiations of the differential equations was explained in an earlier paper (entitled 
I'Runge -Kutta Type Formulas of High-Order Accuracy and Their Application to the Numerical 
Integration of the Restricted Problem of Three Bodies"). This paper introduced the system and 
showed that such a differentiation can easily be performed on the computer by means of recur- 
rence formulas if, by introducing auxiliary functions, the differential equations can be transformed 
into an algebraic system of the second degree. 

In addition to the two reports mentioned, several programs are  available which were used to 
test the method on a computer. These formulas required less than 10  percent of the computer 
time necessary for  other Runge-Kutta solutions when tested on an IBM 7090 computer using double 
precision and automatic step size control. 

Inquiries concerning this program may be directed to: 

Technology Uti I i zat i on Officer 
Marshall Space Flight Center 

Huntsville, Alabama 35812 
Reference: M-FS.424 & 412 
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Section V - General 

ANALYTIC NTH ORDER AND PARTIAL DIFFERENTIATION OF ALGEBRAIC 
AND TRANSCENDENTAL EXPRESSIONS 

Program Description: This is a program written in Fortran 11 and F A P  which will generate 
the derivatives of a given class of algebraic and transcendental functions. The elementary func- 
tions are first transformed in such a way that their derivatives can be obtained simply by succes- 
sive applications of the basic rules of differentiation. This program has proven itself useful 
especially where multiple order differentiation and partial differentiation of involved expressions 
are desired, Once the order of differentiation is set  up any given number of expressions may be 
sequentially differentiated. 

Beyond the primary function of performing analytical differentiation of expressions, this 
program has the following features: 

1. The Ershov algorithm on which the program is based can be employed to facilitate many 
types of symbol manipulation processes. 

2. With successive passes over the matrices formed by the transformations, higher deriva- 
tives and partial derivatives of expressions may be obtained. 

3. Chain differentiation of functions such a s  w = f (u, v), where u = g (x, y) and v = h (x, y) 
can be incorporated into the program. 

4. An additional stage can be added which would transform the second set of triples into a 
machine language program which could be executed on the computer and would evaluate the deriva- 
tive for given values. 

5. A differential operator can be added to the algebraic language, thus permitting the trans- 
lator to generate the required expressions for the derivatives and the coding necessary to evaluate 
these derivatives during the evaluation of high-order derivatives of complicated expressions. 

Numerical Method: All  expressions are  assumed to be written in a simplified, algebraic 
compiler-like language such as Fortran. The expressions are augmented with a set of symbols 
used only within the algorithms. These are classed as operators and a r e  assigned a precedence 
level. 

The first step in the differentiation procedure is the transformation of the input expression 
into a table of triples which is equivalent to the Polish-prefix o r  parenthesis-free form of the 
expression. This transformation is accomplished by an algorithm developed by Ershov. The al- 
gorithm scans the expression from right to left. It alternately encounters an operand, then an 
operator. These elements are first transferred to an intermediate list, designated a s  the L-list. 
The entries of this list also alternate between operand and operator. 
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If the precedence of the current operator is less than the precedence of the previous opera- 
tor, then the triple consisting of the last three entries on the L-list (operand-operator-operand) 
are removed from this list and transferred to the table of triples. This table of triples has been 
designated as the M-matrix for notational purposes. At  the same time, an operand which repre- 
sents the triple and specifies its row position in the M-matrix is added to the L-list. This pro- 
cedure is continued until the entire expression has been processed and is transformed into the 
desired table of triples. 

The next step in the differentiation is the development of a new table of triples which repre- 
sents the derivative of the original expression in the same manner that the M-matrix represents 
the original expression. This new table is designated as the D-matrix. A set of equations repre- 
senting the differentiation of elementary algebraic and transcendental functions completely deter- 
mines the algorithm for developing thederivative of a single row of the M-matrix. The D-matrix 
can be constructed by beginning at the first row of the M-matrix and working downward, differen- 
tiating each row of the M-matrix order. In order to differentiate rows in the M-matrix that 
contain references to previous rows, information as to which row of the D-matrix represents the 
derivative of the i-th line of the M-matrix must be available. This information is stored in an 
auxiliary table, designated as the Q-table. 

When several rows are added to the D-matrix a s  the parenthesis-free form of a compound 
expression of a given derivative, it is necessary that these rows be added in the same order that 
would occur should the Ershov algorithm be used to transform the derivative expression into the 
tabular form. 
the D-matrix back into a parenthesized expression for output. Redundances which occur in gener- 
ating the D-matrix can be eliminated in two ways. 
D-matrix after it is generated to remove the redundances. Or, secondly, the removal of redun- 
dances can be incorporated into the algorithms for the generation of the D-matrix. 

This process facilitates the formulation of a consistent algorithm for transforming 

First, a special pass may be made over the 

The final step in the differentiation program is the inverse of the initial step. Here, the 
parenthesis-free tabular form of the derivative is transformed into a parenthesized string o r  
expression. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Marshall Space Flight Center 

Huntsville, Alabama 35812 
Reference: M-FS- I40 
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FREQUENCY AND TIME RESPONSE PACKAGE 

Program Description: This program forms a polynomial fraction by multiplying polynomials 
and adding together the products to successively form a numerator and denominator. Either the 
denominator, or both the numerator and denominator roots may be obtained. Frequency response 
may be obtained in any or  all of three options: 

1. for values of j -omega between a lower and upper limit, with phase shift between succes - 
sive points controlled between specified tolerances; 

2. for values of j -omega between a lower and upper limit, with a specified increment of j - 
omega between successive evaluations; and 

3. for particular values of j -omega. 

The polynomial fraction may also be evaluated for specified complex values of the argument. 
The inverse Laplace transformation of the polynomial fraction (time response) may be evaluated 
within a specified interval of time, with a specified increment of time between successive 
evaluations. 

This program has been designed for economy of input and any number of evaluation runs may 
follow a polynomial input run. 

Range of Data: The program will accept any single precision numbers compatible with the 
Fortran 11 system. 

Input/Output Format: The input polynomials must be of degree not greater than 20. The de- 
gree of the computed numerator or  denominator polynomial must not exceed 50. A maximum of 
500 polynomials may be used as input to the program at any one time. 

Limitations and Problems: The number of input points permitted for either the third fre- 
quency response option or complex evaluation option cannot be greater than 400. An algebra can- 
not contain more than 360 characters. A maximum of 500 polynomials may be used as input to the 
program at any one time. 

Miscellaneous: The timing for this program is variable. However, roots and the first 
option of frequency response for 21 successive runs on transfer functions of moderate complexity 
(numerator and denominator of degree about 20) have been obtained in less than five minutes. 

The source languages for this program are Fortran I and FAP for the IBM 7094 computer 
and operated under the IBSYS monitor. 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Marshall Space Flight Center 

Huntsville. Alabama 35812 
Reference: M-FS-508 
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GAIN AND PHASE OF TRANSFER FUNCTION AND MATRIX CURVE FIT 

Program Description: This is a Fortran TV program which computes the transfer function by 
using a complex matrix curve-fit routine. The transfer function is used to compute its Gain and 
Phase in order to check the accuracy of the curve fit. It is also possible to input the transfer func- 
tion and compute the Gain and Phase. The program allows the calculation of proper roots, pure 
real, pure imaginary, o r  complex conjugates.. An additional modification has been made to correct 
shifts caused by unstable, complex roots. 

Numerical Method: If the input is of a form other than root or polynomial, the program will 
compute the transfer function by using a double-precision complex curve fit .  

Originally, the program utilized a single-precision complex curve fit.  This was found un- 
satisfactory for higher order curves due to the existence of comparatively large imaginary portions 
of the calculated transfer function coefficients which, if correctly input, should theoretically have 
been zero. This curve f i t  error  was compounded upon entrance to a routine utilized to determine 
the roots of the curve fitted by the single-precision complex matrix curve f i t .  The roots, instead 
of being pure real, pure imaginary, or complex conjugates, were found to be complex numbers 
and imperfect complex conjugates. These roots were then used to calculate the gain and phase of 
the transfer function. The incorporation of the double-precision complex curve f i t  has greatly in- 
creased the accuracy of the curve fit, and, as an additional precaution, the complex portions of 
the transfer function coefficients have been set to zero on entrance to the root extraction routine. 

Range of Data: This program will  accept any double-precision numbers compatible with the 
Fortran IV system. 

Input/Output Format: The program will accept input data in root or polynomial form, in the 
form of gain and phase, gain d.b. and phase, or GR and GI and w (omega). 

Inquiries concerning this program may be directed to: 

Technology Utilization Officer 
Marshall Space Flight Center 

Huntsville, Alabama 35812 
Reference: M-FS-507 
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