

COMPONENT MODELING HANDBOOK

R-843

JPL P.O. DB5-337357

June 1966

GPO PRICE \$ \qquad
CFSTI PRICES) \$ \qquad

Hard copy (HC) \qquad
Prepared by
Microfiche (MF) \qquad
Kenneth O. King Kenneth Gillett William Libaw

PLANNING RESEARCH CORPORATION LOS ANGELES. CALIF. WASHINGTON, DC.

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

TABLE OF CONTENTS

I. INTRODUCTION 1-1
II. DIODE MODELS 2-1
A. Model Descriptions 2-1
B. Model Performance 2-16
C. Parameter Eval uation 2-25
D. Diode Subroutine 2-31
III. TRANSISTOR MODELS 3-1
A. Model Description 3-1
B. Model Performance 3-4
C. Parameter Evaluation 3-24
D. Transistor Subroutine 3-33
IV. ZENER DIODE MODEL 4-1
A. Model Description 4-1
B. Model Performance 4-2
C. Parameter Evaluation 4-4
D. Zener Diode Subroutine 4-5
V. TUNNEL DIODE MODEL 5-1
A. Model Description 5-1
B. Model Performance 5-2
C. Parameter Evaluation 5-4
VI. CONTROLLED RECTIFIER MODEL 6-1
A. Model Description 6-1
B. Model Performance 6-5
C. Parameter Evaluation 6-28
VII. P-CHANNEL JUNCTION FIELD EFFECT TRANSISTOR MODEL 7-1
A. Model Description 7-1
B. Model Performance 7-4
C. Parameter Evaluation 7-7
VIII. N-CHANNEL JUNCTION FIELD EFFECT TRANSISTOR MODEL 8-1

1
IX. NON-LINEAR INDUCTOR MODEL
A. Model Description
B. Model Performance
C. Parameter Evaluation
D. Non-Linear Inductor Subroutine
I. INTRODUCTION

This document contains nonlinear mathematical models for a number of electronic components. These models were developed for use with the TAG computer program for static and dynamic circuit analysis. Components modeled herein are the diode,transistor, zener diode, tunnel diode, controlled rectifier, junction field-effect-transistor, and saturating inductor.

In developing each model, consideration of device physics and of numerical circuit analysis have been omitted in the interest of simplicity and brevity. Rather, attention has been concentrated on describing the model and its performance and on evaluating model parameters. This should permit the user to "build" models of particular components and to understand how his models will perform. FORTRAN programs for some of the more widely used components are provided.

This present version of the modeling handbook does not attack certain important modeling problems. These include problems of model accuracy and suitability to different types of circuits, problems of parameter interdependence, temperature dependence and distribution, computer computation of model parameters from device measurement or specifications. As computer analysis of circuits grows in importance and use, these and other modeling problems should be studied and solved.

A. Model Descriptions

1. Classical Model

For a diode symbolized as follows:

we may separate the behavior due to the junction and the diffusion of minoricy carriers from the behavior resulting from other phenomena and draw a model as follows:

Here the block PN symbol represents an idealized junction diode whose mode of conduction is solely diffusion.

The ideal diode may be further broken down into 3 components, a current generator, a junction capacitance and a diffusion capacitance to arrive at the following general model.

a. Static Model

1) Static model for junction (excluding $R_{S E R}$ and $R_{S H}$). The equation for i_{j}, which represents the static portion of the diffusion current, is as follows:
$i_{j}=I_{S}\left(\exp \left(v_{j} / V_{o}\right)-1\right)$
where I_{S} and V_{o} are positive qualities and functions only of temperature; v_{j} is the voltage across the junction depletion region. This equation is plotted in the upper part of Figure 2-1.
I_{S} generally does not correspond to the actual diode leakage current but is often orders of magnitude smaller. I_{s} increases with temperature in such a manner as to

$\longrightarrow レ$

make the voltage at a given current increase with temperature at a rate between 2 and 3 my per degree C.
V_{o} lies between. 026 and .052 volts at $25^{\circ} \mathrm{C}$ and is proportional to temperature in degrees Kelvin.

Solving the i_{j} equation for voltage gives:
$v_{j}=v_{o} \ln \left(1+\frac{i_{i}}{I_{S}}\right)$

It is evident that for $i_{j} \gg I_{S}$,
$i_{j} \cong I_{S} \exp \left(v_{j} / V_{o}\right)$
$v_{j} \cong v_{o} \ln \left(i_{j} / I_{S}\right)$
a) Dependence on I_{S} : At a given temperature, V_{0} can be regarded as having the same value for all diodes of a given type, with different values of I_{S} being responsible for different behavior. Thus, for $V_{o}=.026$ volts, at $i_{j}=1 \mathrm{ma}$, 2 silicon diodes of the same family might have I_{S} of $.1 \times 10^{-12}$ and $.2 \times 10^{-12}$, resulting in a v_{j} of .598 and . 580, respectively. A germanium diode with the same V_{o} and i_{j} might have $I_{S}=.1 \times 10^{-6}$ corresponding to $\mathrm{a} \mathrm{v}_{\mathrm{j}}$ of .239 .

To illustrate the significance of I_{S}, curves for 2 diodes whose I 's are in ratio of 10^{6} are plotted in the bottom of Figure 2-1.
b) Small Signal Conductance: The slope of the $i_{j}-v_{j}$ curve, which represents the small signal conductance, g_{D}, is determined as follows:

$$
\begin{gathered}
g_{D}=\frac{d i_{j}}{d v_{j}}=\frac{I_{S}}{v_{O}} e^{v_{j} / v_{o}}=\frac{i_{j}}{v_{o}} \frac{e^{v_{j} / v_{o}}}{e^{v_{j} / v_{o}}-1} \\
\text { For } i_{j} \gg I_{S}, g_{D}=\frac{i_{i}}{v_{O}}
\end{gathered}
$$

Thus, two vastly different diodes with equal V_{0} will have the same conductance at a civel current. as shown in the bottom of Figure 2-1.
2) Static Additions to Juncticr. Model - In the intrests of more accurate odeling. it is o'fen necessary to add a dall series resistor, significant at : irge forward currents, and a large s: resistor, significant at most reve. " roltages. Thus the model symbols and eciu...ions become:

For positive currents, $\mathbf{v} \cong \mathbf{v}_{j}+i R_{S E R}$
For negative voltages, $i \cong \frac{V}{R_{S H}}-I_{S}$
b. Diode Model, Dynamic Components

1) Junction Capacitance (Barrier Capacitance, Depletion Layer Capacitance) - The junction capacitance is a non-linear function which varies with the junction voltage. Its model equation is as follow:
$c_{j}=\frac{K}{\left(v_{K}-v_{j}\right)^{N}}$
$v_{j}=$ voltage across diocie junction depl. region
$\mathrm{V}_{\mathrm{K}}=$ cortact potential, $\approx .7$ to 1.0 for s_{i} @ $25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{K}}>$ any operating v_{j}, otherwise $\mathrm{C} \longrightarrow \infty$ V_{K} is a function cf doping, etc.
$K=$ proportionality constant thàt determines the magnitude of C
$\mathrm{N}=$ junction grading constant; .5 for abrupt junction, . 33 for uniformly graded junction.

2) Diffusion Time Constant (or Diffusion Capacitance) - In the classical model, the diffusion time constant, \boldsymbol{T}, is used to represent the charge storage behavior of the diode. \mathcal{T} is the proportionality constant between the stored charge and the diffusion current, i_{D}, through the diode.

The effects of the diffusion time constant can be repxesented in the circuit model as a non-linear diffusion capacitance, C_{D}, where
$C_{D}=\tau_{g_{D}}=\tau \frac{d i_{i}}{d v_{j}} \cong \boldsymbol{T} \frac{i_{i}}{v_{o}}$
and g_{D} is the small signal conductance or slope of the i_{j}, v_{j} characteristic.
3) Case Capacitance - There is usually a small fixed capacitance associated with the diode case. This is shown as C_{S} in the model.
2. Piece-wise Linear Classical Model

Linear segmented models are less accurate, but may permit faster computation.
a. Static Model - Here the junction current generator and the series and shunt resistors are replaced by the series combination of a voltage source and a resistor.

1) Linear Models - The limiting case of the piece-wise linear model is the one-piece linear model. Several such models are shown graphically below.

The linsar models may be divided into two groups, the large signal linear models and the sinall signal linear models. For the large signal models, the linear approximation is selected to fit two points on the curve. For the small signal model, the linear approximation is made to fit the slope of the curve at a point.
b. Dynamic Model

1) Viece-wise linear C_{j}

$$
\begin{aligned}
& c_{j 1}=\frac{Q_{01}}{v_{0}-v_{1}} \\
& Q_{01}=\int_{-v_{0}}^{-v_{1}} c d v=k \int_{-v_{0}}^{-v_{1}}\left(v_{K}-v\right)^{-N} d v \\
& Q_{01}=\left.K \frac{\left(v_{K}-v\right)^{-(N-1)}}{1-N}\right|_{-v_{0}} ^{-v_{1}}
\end{aligned}
$$

NOTE: Piece-wise linear (l segment) C can be used with basic non-linear diode, as C_{j} non-linearity is not of first-order importance.
2) Piece-wise linear C_{D}

$$
\begin{array}{ll}
C_{D 1}=\frac{\tau}{R_{1}} & \text { for } v \leq v_{1} \\
C_{D 2}=\frac{\tau}{R_{2}} & \text { for } v_{1}<v \leq v_{2} \\
C_{D 3}=\frac{\tau}{R_{3}} & \text { for } v_{2}<v \leq v_{3}
\end{array}
$$

3. Linvill Lumped Diffusion Model

Here the distributed properties of the semiconductor are lumped for sections and represented by diffusances, combinances, and storances. These elements relate to excess carrier density, p, and current, i.

$p_{0}=p_{s}\left(e^{v / v_{0}}-1\right)$

For a diffusion diode, the continuous properties of recombinaticn, charge storage and diffusion are replaced with lumped elements called combinance, storance, and diffusance respectively. These elements are analagous to conductances and capacitances; they differ from the normal electrical elements in that they relate current and excess minority carrier density rather than current and voltage. The word "carriance" can be coined as an analog for the electrical "admittance".

It is possible to develop a variety of lumped models depending on how many pi, tee, or L sections are used. Here we will describe the simplest lumped model that is significantly different than the classical model. This is a single section, 3 carriance model in the form of an L, here called the "single-L".

In contrast to the non-linear diffusion capacitance of the classical model, the storances and the other carriances are all linear elements:

The schematic diagram for this model is as follows, where p represents excess carrier density

Excess carrier density is related to junction voltage as follows:

$$
p=p_{S}\left(e^{v_{j} / v_{o}}-1\right)
$$

where P_{S} is the saturation excess carrier density. The steady state current,

$$
i_{D C}=p\left(\frac{H_{1} H_{2}}{H_{1}+H_{2}}\right)
$$

thus

$$
i_{D C}=P_{S}\left(\frac{H_{1} H_{2}}{H_{1}+H_{2}}\right)\left(e^{v_{j} / V_{o}}-1\right)
$$

This permits identification of the Linvill model parameters in terms of the Ebers-Moll parameters,

$$
I_{S}=P_{S}\left(\frac{H_{1} H_{2}}{H_{1}+H_{2}}\right)
$$

As the carriance level (similar to admittance or impedance level) is both unknown and unimportant for external purposes, the term

can be arbitrarilly set equal to 1 . This makes P_{S} numerically equal to I_{S}.

The diagram above is not a complete and clear model. Therefore it is replaced by the circuit model below,
which uses R's and C's to model the carriances and uses 2 generators to make explicit the behavior of the junction in converting between voltage and excess carrier density.

The equations for the two generators are:

$$
\begin{aligned}
& v_{p}=v_{p s}\left(e^{v_{j} / v_{o}}-1\right) \\
& i_{D}=\left(v_{p}-v_{1}\right) / R_{1}
\end{aligned}
$$

By setting $R_{1}+R_{2}=1, V_{p s}=I_{S}$. Defining the diffusion time constant, $T=R_{2} C_{D}$.

With one exception, all the parameters are defined similarly to those of the classical model. The exception is the value of R_{2}, which is generally between 0.5 and 1.0 , depending on the diode type.
B. Model Performance

1. Classical Diode

a. Static Forward Current: For forward current, the equations are simplified with very little error by assuming $R_{S H}$ to be infinite.

Then

$$
i \cong i j
$$

and

$$
v \cong v_{O} \ln \left(1+\frac{i}{I_{S}}\right)+i R_{S E R}
$$

b. Static Reverse Current: For reverse voltage, the equations are implied with very little error by assuming $R_{S E R}$ to be zero.

Then

$$
v \cong v_{j}
$$

and

$$
i \cong I_{S}\left(e^{v / V_{0}}-1\right)+\frac{v}{R_{S H}}
$$

c. Dynamic Forward Step Response - The voltage response of the diode to an applied step of forward current can be approximated by considering it to consist of 2 sequencial phases. During the first or delay phase, the voltage rises almost linearly due to the junction and stray capacitance, the time constant or diffusion capacitance having little effect. During the second or charge phase, the voltage rises very little and thus the junction and stray capacitances have little effect, but the diffusion capacitance charges for a period about 2 time constants.
d. Dynamic Reverse Step Response - The voltage response can again be approximated by 2 phases, a storage time and a recovery tıme. During the storage time, the diffusion capacitance is dominant and the time constant governs the response as foliows:

$$
t_{S}=T_{\ln } \frac{i_{F}-i_{R}}{-i_{R}}
$$

During the storage time the voltage changes very little. During the recovery time, the voltage falls almost linearly due to the junction and stray capacitance, the diffusion capacitance playing almost no part.
2. Lumped L Model
a. Static Behavior - The static behavior cf this model is essentially the same as that of the classical model, where

$$
I_{S}=V_{p s} /\left(R_{1}+R_{2}\right)
$$

and

$$
\mathrm{R}_{1}+\mathrm{R}_{2}=1 \mathrm{chm}
$$

b. Dynamic Behavior - The dynamic performance differs from the classical model performance in the relationship between v_{j} and i_{D}. To analyze this relationship, we replace the complete circuit model,

with 2 regional models as follows.
The first model is applicable when v_{j} is positive and uses no approximations.

The second model is applicable when v_{j} is not positive. It approximates a very small negative v_{p} with a short circuit as follows.

The response of the entire model to large steps of input voltage with a series input resistor is approximated analytically by these regional models if it is assumed that the diode forwara voltage drop is small and the junction and stray capacitances are negligable. It is the turn-off response that is of primary interest. Thus we assume the diode to be in steady state with a forward current $i_{D F}$ when the current is step changed to $i_{D R}$. The differential equations for v_{p} and v_{1} can be writcen by inspection from the first or forward model.

$$
\begin{aligned}
& v_{p}=\left(i_{D F}-i_{D R}\right) R_{2} e^{-t / R_{2} c}+i_{D R}\left(R_{1}+p_{2}\right) \\
& v_{1}=v_{p}-i_{D R} R_{1}
\end{aligned}
$$

The v_{p} equation can be solved for the time required to reduce v_{p} to zero, the storage time,

$$
t_{S}=R_{2} C\left[\ln \frac{i_{D F}-i_{D R}}{-i_{D R}}+\ln \frac{R_{2}}{R_{1}+R_{2}}\right] .
$$

Let $R_{1}+R_{2} \equiv 1$ and $R_{2} \mathrm{C} \equiv T$
then

$$
t_{S}=T\left[\ln \frac{i_{D F}-i_{D R}}{-i_{D R}}+\ln R_{2}\right]
$$

$A_{s} v_{p}$ is reduced from a positive value to zero at $t=t_{S}$, and recalling from the model description that

$$
v_{p}=v_{p s}\left(\exp \left(v_{j} / v_{o}\right)-1\right),
$$

it is evident that v_{j} switches from a positive value to a zero vaiue. At this point in time, we switch to the second equivalent circuit.

Here, the diode diffusion current, i_{D}, is no longer a function of the external circuit. Instead it decays to zero strictly as a function of the internal parameters. We determine this current fall time by defining a new time variable, and a new current variable,

$$
t^{\prime}=t-t_{S} ; \text { and } i_{D R R}
$$

and noting that $v_{1}=-i_{D R R} R$ @ $t^{\prime}=0$,
then

$$
i_{D R R}=\frac{-v_{1}}{R_{1}}=i_{D R} e^{-t / R_{1} T}
$$

The time for the current to fall to $-.1 i_{F}$,

$$
\begin{aligned}
& t_{I F l}^{\prime}=R_{1} T \ln \frac{i_{R}}{-. l i_{F}} \\
& t_{I F 1}^{\prime}=\left(1-R_{2}\right) T\left(\ln \frac{-i_{R}}{i_{F}}+2.3\right)
\end{aligned}
$$

The time for the current to fall to . $1 i_{R}$,

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{IF} 2}^{\prime}=\mathrm{R}_{1} \tau \ln \frac{\mathrm{i}_{\mathrm{R}}}{.1 \mathrm{i}_{\mathrm{R}}} \\
& \mathrm{t}_{\mathrm{IF} 2}^{\prime}=2.3\left(1-\mathrm{R}_{2}\right) \tau
\end{aligned}
$$

The general equations for storage time and current fall time for the family of single-L models were developed above. To permit comparison between members of this model family, other models, and actual diodes, it is desirable to normalize the equations. This normalization is best done by equating the storage time, t_{S}, at a particular value of $-i_{D R} / i_{D F}$. For convenience here, we chose $-i_{D R} / i_{D F}=.2$, where $t_{S}=t_{S .2}$ for each of the models.

To do this we solve the storage time equation for the value of \boldsymbol{T} that will result in a
storage time of $t_{S .2}$ at $-i_{R} / i_{F}$ equal to .2 .

$$
\begin{aligned}
\mathrm{t}_{\mathrm{S} .2} & =T \ln \frac{1+.2}{.2}+T \ln \mathrm{R}_{2} \\
\mathrm{t}_{\mathrm{S} .2} & =1.79 \tau+\mathcal{T} \ln \mathrm{R}_{2} \\
: & =\mathrm{t}_{\mathrm{S} .2} /\left(1.79+\ln \mathrm{R}_{2}\right)
\end{aligned}
$$

To obtain the corresponding value of c,

$$
\begin{aligned}
& \mathrm{C}=\frac{\tau}{\mathrm{R}_{2}} \\
& \mathrm{C}=\mathrm{t}_{\mathrm{S} .2} /\left(1.79+\ln \mathrm{R}_{2}\right)\left(\mathrm{R}_{2}\right)
\end{aligned}
$$

Using these equations, we evalue the model parameters for several values of R_{2}

R_{2}	R_{1}	\boldsymbol{T}	c
1.0	0	$.559 \mathrm{t}_{\mathrm{S} .2}$	$.559 \mathrm{t}_{\mathrm{S} .2}$
.9	.1	$.594 \mathrm{t}_{\mathrm{S} .2}$	$.660 \mathrm{t}_{\mathrm{S} .2}$
.8	.2	$.639 \mathrm{t}_{\mathrm{S} .2}$	$.798 \mathrm{t}_{\mathrm{S} .2}$
.7	.3	$.696 \mathrm{t}_{\mathrm{S} .2}$	$.994 \mathrm{t}_{\mathrm{S} .2}$
.6	.4	$.782 \mathrm{t}_{\mathrm{S} .2}$	$1.304 \mathrm{t}_{\mathrm{S} .2}$
.5	.5	$.912 \mathrm{t}_{\mathrm{S} .2}$	$1.82{ }^{\mathrm{t}_{\mathrm{S}} .2}$
.4	.6	$1.292 \mathrm{t}_{\mathrm{S} .2}$	$3.23 \mathrm{t}_{\mathrm{S} .2}$
.3	.7	1.70	$\mathrm{t}_{\mathrm{S} .2}$
	5.52	$\mathrm{t}_{\mathrm{S} .2}$	

Figure 2-2 shows storage time vs. $\left(i_{D F}-i_{D R}\right) /-i_{D R}$ for the above 8 models. As shown, these curves are straight lines on semi-log paper. The time, after t_{S}, for current to fall to $-.1 i_{D F}, t_{I F l}$, may be displayed as straight lines on semi-log paper by plotting against $-i_{D R} / i_{D F}$, as shown in the same figure. The single-L model with $R_{2}=1.0$ has equations and performance that are exactly equivalent to those of the classical model. It is apparent for these models, that increasing R_{1} decreases the storage time for large $i_{D R}$, and increases the time after t_{S} for the current to fall to . $1 i_{D F}$.

C. Parameter Evaluation

The models described are not, in general, accurate over the entire working range of the diodes. Thus, it is usually necessary to generate the parameter values for a specific operating range of voltages and currents. For this reason, and also because of the resultant mathematical problems, the suggested technique for parameter evaluation is not to make N operating point measurements and solve the resultant equations for the N parameter values. Rather it is proposed to make suitable approximations where possible to simplify the equations for the parameters.

1. Classical Model
a. V_{o} : V_{0} should be determined from 2 data points, at forward currents much smaller than $i_{M F}$, the maximum forward current used for the diode. Calling these points i_{1}, v_{1} and i_{2}, v_{2}, and assuming that the voltage drop across $R_{\text {SER }}$ is negligable, then from the junction current equation,

$$
v_{0}=\left(v_{1}-v_{2}\right) / \ln \left(i_{1} / i_{2}\right)
$$

where i_{l} and i_{2} are assumed to be much larger that I_{S}.
b. $I_{S}: I_{S}$ can be obtained from one of the data point equations and checked at the other.

$$
\begin{gathered}
I_{S}=i_{1} \exp \left(-v_{1} / V_{0}\right) \\
\text { check } \quad i_{2}=I_{S} \exp \left(v_{2} / V_{0}\right)
\end{gathered}
$$

c. $R_{S E R}: \quad R_{\text {SER }}$ can now be obtained from the $i_{M F}$, $V_{\text {MF }}$ data point.

$$
R_{S E R}=\frac{1}{i_{M F}}\left(v_{M F}-v_{0} \ln \frac{i_{M F}}{I_{S}}\right)
$$

d. $R_{S H}$: $R_{S H}$ can be obtained from the data point for the maximum reverse voltage used, $i_{M R}$, and V_{MR}.

$$
R_{S H}=\frac{v_{M R}}{I_{S}+i_{M R}}
$$

e. $\quad V_{K}, K, N: T h e s e$ parameters, used in the junction capacitance equation, should be evaluated as follows.
V_{K} : Although V_{K} may vary with the diode type and with temperature, it is suggested that $V_{K}=1.0$ volt be used, for simplicity, for all diodes.

K: Use the measured small-signal capacitance at zero volts, C_{O}, with the junction capacitance equation to obtain $K=C_{o}$.

N: Use the measured small-signal capacitance @ $V_{M R}, C_{M R}$, with the junction capacitance equation to obtain

$$
N=\frac{\ln \left(K / C_{M R}\right)}{\ln \left(V_{K}-v_{M R}\right)}
$$

f. C_{S} : If C_{S} is known, it should be subtracted from the data points used in the previous section to obtain the junction capacitance parameters.
g. $\boldsymbol{T}: \quad \boldsymbol{T}$ is obtained from storage time data. If only a single data point in the range of use, t_{S} at i_{F} and i_{R}, is available, then

$$
\tau=t_{S} / \ln \left(\frac{i_{F}-i_{R}}{-i_{R}}\right)
$$

If it is possible to pick 2 data points in the range of use, then the first, $t_{S l}$ @ $i_{F l}$ and $i_{R 1}$, should be chosen at a small ratio $i_{F 1} / i_{R 1}$, and the second, $t_{S 2} @ i_{F 2}$ and $i_{R 2}$, should be chosen at a large ratio $i_{\mathrm{F} 2} / i_{\mathrm{R} 2}$. Consider the 2 data points plotted an a graph of

$$
t_{S} \operatorname{vs.ln}\left(\frac{i_{F}-i_{R}}{-i_{R}}\right) .
$$

For most diodes, data points will fall on a curve somewhere between a classical model straight line through the origin and an Error Function concave curve. The curves are shown in Figure 2-3.

To fit a classical model \mathcal{T} to the 2 data points, set the positive time error at point $l, t_{E l}$, equal to the negative time error at point 2 , $t_{E 2}$. Thus, the equations for the 2 points are
1.2
1.0
${ }^{\infty}{ }_{2-28}$
\bullet
∇
$\stackrel{\sim}{\sim}+\cos$
$\ln 5$
Classical Model Curve

$\backslash \underset{\sim}{\text { I }}$

$$
\begin{aligned}
& t_{S 1}+t_{E}=\tau \ln \frac{i_{F 1}-i_{R 1}}{-i_{R 1}} \\
& t_{S 2}-t_{E}=\tau_{\ln } \frac{i_{F 2}-i_{R 2}}{-i_{R 2}}
\end{aligned}
$$

Solving for T,

$$
T=\left(t_{S 1}+t_{S 2}\right) /\left(\ln \frac{i_{F 1}-i_{R 1}}{-i_{R 1}}+\ln \frac{i_{F 2}-i_{R 2}}{-i_{R 2}}\right)
$$

The error, ${ }_{E}$, may now be calculated and checked with the above equations.
2. Lumped Single-L Model

With the exception of storage time parameters, the parameters of this model are very similar to those of the classical model.
a. V_{o} : Identical to classical model.
b. $V_{p s}$: Set $V_{p s}$ equal numerically to I_{S} in the classical model.
c. $\mathrm{R}_{\mathrm{SER}}$: Identical to classical model.
d. R_{SH} : Identical to classical model.
e. $\quad V_{K}, K, N:$ Identical to classicai model.
f. C_{S} : Identical to classical model.
g. R_{1}, R_{2}, C_{D} : These parameters control the storage time and current-fall time behavior. Assume 2 data points such as those described for the classical model. The single-L model parameters are evaluated to fit both points exactly as shown in the storage time curve previously described.

To evaluate the parameters, note first that R_{1} and R_{1} are defined such that $R_{1}+R_{2}=1$.

Next, to simplify the nctation, define

$$
x=\ln \frac{i_{F}-i_{R}}{-i_{R}}
$$

Then determine x_{0}, che horizontal axis intercept of the straight line through the points $t_{S 1}, x_{1}$ and $t_{S 2}, x_{2}$. At this point, t_{S} equals zero for the model.

$$
x_{o}=x_{1}-\left(\frac{x_{2}-x_{1}}{t_{s 2}-t_{s 1}}\right) t_{s 1}
$$

Then, from the storage time equation,

$$
t_{S}=R_{2} C\left(x+\ln R_{2}\right),
$$

solve for R_{2} :

$$
\begin{aligned}
& 0=R_{2} C\left(x_{0}+\ln R_{2}\right) \\
& \ln R_{2}=-x_{0} \\
& R_{2}=\exp \left(-x_{0}\right)
\end{aligned}
$$

Next, using the same equation with point 2 , solve for C :

$$
\begin{aligned}
t_{S 2} & =R_{2} c\left(x_{2}-x_{0}\right) \\
c & =\frac{t_{S 2}}{R_{2}\left(x_{2}-x_{0}\right)}
\end{aligned}
$$

Lastly, solve for R_{1} :

$$
R_{1}=1-R_{2}
$$

D. Diode Subroutine

III. TRANSISTGR MODELS
A. Model Description

1. Ebers-Moll Transistor Model

The Ebers-Moll transistor model is strongly based on the diode model. It views the transistor as composed of an emitter diode and a collector diode with current generators across each diode to represent the transportation of current carriers through the base region.

A general schematic of the model is as follows.

The character of the diodes has been described previously. Each of the 2 current generators develops a current proportional to the junction current of the other diode. Thus ${ }^{i} C_{R}=a_{N}{ }^{i} E_{j}$ and $i_{E R}=\alpha_{I} i_{C j}$, where the alphas are proportiorality constants representing the fraction of emitter junction current reaching the collector and vice versa. The detailed model is shown below.

In the original Ebers-Moll formulation, the alphas were regarded as frequency-dependent with singlepole roll-off characteristics. Here, with constant alphas, these diffusion poles result from the presence of the diffusion capacitors.

The model parameter are subject to one additional constraint as follows,

$$
\frac{a_{N}}{a_{I}}=\frac{I_{S C}}{I_{S E}} .
$$

2. Linvill Lumped Transistor Models

A variety of multilumped models can be made for transistcrs as well as for diodes. The simplest model, which is functionally identical to the Ebers-Moli model, is as follows.

In this model, $H_{C l}$ carries the normal region recombination current, S_{1} contains the normal region stored charge and H_{D} carries the diffusion current. $\mathrm{H}_{\mathrm{C} 2}$ and S_{2} are for the inverted recombination current and charge.

B. Model Performance

1. Ebers-Moll Model
a. Analytic Solutions of Static Equations

As the transistor equations are somewhat more complex than those of the diode, we will first develop the equations for the idealized transistor without series and shunt resistors, using a "prime" symbol to denote the idealized terms. The equations in this section are static (D.C.) only.

The basic equations for the "components" of the model are as follows. For the 2 junctions,

$$
\begin{align*}
& i_{D C}=I_{S C}\left(e^{V_{B C}^{\prime} / V_{O}}-1\right) \tag{1}\\
& i_{D E}=I_{S E}\left(e^{V_{B E}^{\prime} / V_{O}}-1\right) \tag{2}
\end{align*}
$$

where V_{O} and I_{S} both are positive for an NPN transistor and bot? negative for a PNP transistor.

For the 2 current generator:

$$
\begin{align*}
& i_{C R}=a_{N} i_{E}^{\prime} \tag{3}\\
& { }^{i_{E R}}=\alpha_{I} i_{C}^{\prime} \tag{4}
\end{align*}
$$

Additionally, the 2 saturation currents and the 2 alphas are related by the following equation:

$$
\begin{equation*}
\frac{I_{S C}}{I_{S E}}=\frac{a_{N}}{a_{I}} \tag{5}
\end{equation*}
$$

It is to be noted that for the model abcve, the alpha current sources generate currents proportional to the external currents, not the internal junction currents. This convention results in the following relationship between external and junction currents.
'umming currents at the nodes,

$$
\begin{align*}
& i_{C}^{\prime}=i_{D C}-i_{C R} ; i_{E}^{\prime}=i_{D E}-i_{E R} \\
& i_{C}^{\prime}=i_{D C}-a_{N} i_{E}^{\prime} ; i_{E}^{\prime}=i_{D E}-a_{I} i_{C}^{\prime} \\
& i_{C}^{\prime}=i_{D C}-a_{N}\left(i_{D E}-a_{I} i_{C}^{\prime}\right) \\
& i_{C}^{\prime}=\frac{i_{D C}-a_{N} i_{D E}}{1-a_{N} a_{I}} \tag{6}\\
& \text { Similarly } \\
& i_{E}^{\prime}=\frac{i_{D E}-a_{I} i_{D C}}{1-a_{N} a_{I}} \tag{7}
\end{align*}
$$

The relationship between base-emitter voltage and base aind sollector currents is developed as follows.

From (2)

$$
v_{\mathrm{BE}}^{\prime}=v_{\mathrm{O}} \ln \left(\frac{I_{\mathrm{SE}}+i_{\mathrm{DE}}}{I_{\mathrm{SE}}}\right)
$$

but

$$
i_{D E}=i_{E}^{\prime}+a_{I}^{i}{ }_{C}^{\prime}
$$

and

$$
i_{E}^{\prime}=-i_{C}^{\prime}-i_{B}^{\prime}
$$

therefore

$$
i_{D E}=-i_{B}^{\prime}-\left(1-\alpha_{I}\right) i_{C}^{\prime}
$$

and
$v_{B E}^{\prime}=v_{o} \ln \left(\frac{I_{S E}-i_{B}^{\prime}-\left(1-a_{I}\right) i_{C}^{\prime}}{I_{S E}}\right)$

In a similar manner, it can be shown that
$v_{B C}^{\prime}=v_{o} \ln \left(\frac{I_{S C}-a_{N} i_{B}^{\prime}+\left(1-a_{N}\right) i_{C}^{\prime}}{I_{S C}}\right)$

The equation for collector-emitter voltage can now be developed,

$$
v_{\mathrm{CE}}^{\prime}=v_{\mathrm{BE}}^{\prime}-v_{\mathrm{BC}}^{\prime}
$$

Substituting (8) and (9),

Under most normal conditions, the base current is much greater than the saturation currents and equation (8) may be simplified.

Thus for $i_{B} \gg I_{S C}$; in terms of i_{B}^{\prime},
$v_{B E}^{\prime} \cong v_{o} \ln \left(\frac{-i_{B}^{\prime}-\left(1-\alpha_{I}\right) i_{C}^{\prime}}{I_{S E}}\right)$
$v_{B E}^{\prime} \cong v_{O} \ln \left(\frac{-i_{B}^{\prime}\left(1+\left(1-a_{I}\right) i_{C}^{\prime} / i_{D}^{\prime}\right)}{I_{S E}}\right)$
$v_{B E}^{\prime} \cong v_{o}\left[\ln \frac{-i_{B}^{\prime}}{I_{S E}}+\ln \left(1+\frac{\left(1-\alpha_{I}\right) i_{C}^{\prime}}{i_{B}^{\prime}}\right)\right]$
in terms of ${ }^{i}{ }^{\prime}$,
$v_{B E}^{\prime} \cong v_{0} \ln \left(\frac{-i_{C}^{\prime}\left(\frac{i_{B}^{\prime}}{i_{C}^{\prime}}+\left(1-a_{I}\right)\right)}{I_{S E}}\right)$
$v_{B E}^{\prime} \cong v_{O}\left[\ln \frac{-i \cdot \cdot}{I_{S E}}+\ln \left(\frac{i_{B}^{\prime}}{i_{C}^{\prime}}+1-Q_{I}\right)\right]$

Equation (10) may also be simplified when the currents are large compared with the saturation currents; using (5),

$$
\begin{equation*}
v_{C E}^{\prime} \cong v_{0} \ln \left[\frac{a_{N}\left(-i_{B}^{\prime}-\left(1-a_{I}\right) i_{C}^{\prime}\right.}{a_{I}\left(-a_{N}^{i_{B}^{\prime}}+\left(1-a_{N}\right) i_{C}^{\prime}\right.}\right] \tag{10a}
\end{equation*}
$$

The following form is also useful:

$$
\begin{equation*}
v_{C E}^{\prime}=v_{o}\left[\ln \left(\frac{-a_{N}}{-a_{N}+\left(1-a_{N}\right) \frac{i_{C}^{\prime}}{i_{B}^{\prime}}}\right)+\ln \left(\frac{1+\left(1-a_{I}\right) \frac{i_{C}^{\prime}}{i_{B}^{\prime}}}{a_{I}}\right)\right] \tag{10b}
\end{equation*}
$$

The equations for $v_{C E}^{\prime}$ are of use primarilly for a sacurated transistor, as $v_{C E}^{\prime}$ is almost independent of the current in the active region. Thus it is also useful to develop an equation for
collector current in the active region. From (10),

$$
\begin{equation*}
i_{C}^{\prime}=\frac{i_{B}^{\prime}\left[\frac{-a_{N}}{a_{I}}+a_{N} \exp \left(v_{C E}^{\prime} / v_{o}\right)\right]+\alpha_{I}{ }_{S C}\left(1-\exp \left(v_{C E}^{\prime} / v_{o}\right)\right)}{\frac{a_{N}}{a_{I}}-a_{N}+\left(1-a_{N}\right) \exp \left(v_{C E}^{\prime} / v_{0}\right)} \tag{11}
\end{equation*}
$$

for $v_{C E} \gg v_{0}$,
${ }_{i}{ }_{C} \cong \frac{i_{B}^{\prime} a_{N}-I_{S C} a_{T}}{1-a_{N}}$
and for $i_{B}^{\prime} \gg I_{S C}$,

$$
\begin{equation*}
i_{C} \cong i_{B}^{\prime}\left(\frac{a_{N}}{1-\alpha_{N}}\right) \tag{lla}
\end{equation*}
$$

The above equations are developed for the "intrinsie" transistor defined by the "primed" currents and voltage. Equations (8), (10), and (11), the equations for base voltage, collector voltage, and ccllector current may now be modified to account for the series and shunt resistors.

For $i_{B} \gg I_{S C}$ and $i_{B} \gg \frac{v_{C B}}{R_{C B}}$,
$v_{B E}=v_{B E}^{\prime}-i_{B} R_{B}-\left(i_{B}+i_{C}\right) R_{E}$
$v_{C E}=v_{C E}^{\prime}-i_{C} R_{C}-\left(i_{B}+i_{C}\right) R_{E}$

$$
\begin{equation*}
i_{C} \cong i_{C}^{\prime}-\frac{v_{C}}{R_{C B}} \frac{a_{N}}{1-\alpha_{N}} \tag{14}
\end{equation*}
$$

b. Analytic Solutions of Transistor Dynaniic Equations Approximate solutions for the current step response of the grounded-emi+ter RC-loaded transistor circuit will be developed. The circuit, with the Ebers-Moll dynamic transistor model, is as sollows (series and shunt resistors are omitted from the model here in the interests of simplicity):

1) Cut-cff Region Solution - The cut-off region is formally defined by both the emitter-base diode and the collector-base diode being reverse biased. However, as our purpose here is to develop an approximate equation for the delay iime of the collector response to a base step of voltage through a source resistance, we will extend the definition. Thus we say the transistor is virtually cutoff until the collector current reaches 1% of its final value, ${ }^{i}{ }_{C F}$.

Within this region, we can simplify the circuit by neglecting the diffusion capacitances. Thus

$$
\mathrm{C}_{\mathrm{DE}} \cong 0
$$

$$
\mathrm{C}_{\mathrm{DC}} \cong \mathrm{c}
$$

Also for $-i_{B} \gg I_{S E}$,

$$
i_{D C} \cong 0
$$

For an initial base voltage, v_{BO}, and a base voltage, $v_{B X}$, corresponding to $.01 i_{C F}$, the charge-equivalent linearized junction capacitances, $\mathrm{C}_{\mathrm{jEL}}$ and $\mathrm{C}_{\mathrm{jCL}}$, may be calculated. By further assuming that the net change of collector voltage during the delay t.ime is zero, we ran write an equation for the base input capacitance, $C_{B I}$:

$$
\begin{equation*}
c_{B I}=c_{j E L}+c_{j C L} \tag{1}
\end{equation*}
$$

Lastly, by assuming negligable base input conductarice during this delay period, the delay equation can be written by inspection:

$$
\begin{equation*}
t_{D}=R_{S} C_{B I} \ln \frac{v_{S}-v_{B O}}{v_{S}-v_{B X}} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{v}_{\mathrm{BX}} \cong \dot{\mathrm{v}}_{0} \ln \frac{-.01 \mathrm{i}_{\mathrm{CF}}}{\mathrm{I}_{\mathrm{SE}}} \tag{3}
\end{equation*}
$$

2) Normal Region Solutions - The normal region is defined by the emitter-base diode being forward biased and the collector-base diode being reverse biased. In this region it is possible to make two simplifying approximations. For $v_{C B} \geq 0$ and $-i_{B} \gg I_{S E}$, $\mathrm{i}_{\mathrm{DC}} \cong 0$ and $\mathrm{C}_{\mathrm{DC}} \cong 0$.

Then, summing currents at the base node, using linearized equivalents for the junction capacitances,

$$
\begin{gather*}
i_{B}+i_{D E}-i_{C R}-i_{E R}+\left(c_{D E}+c_{j E L}\right) \frac{d v_{B E}}{d t}+c_{j C L} \frac{d v_{B C}}{d t}=0 \tag{1}\\
\text { Noting that } i_{C R}=a_{N}\left(i_{D E}-i_{E R}\right) \tag{2}\\
\text { and } \quad i_{E R}=a_{I}\left(i_{D C}-i_{C R}\right)
\end{gather*}
$$

which 2 equations can be reduced to
$i_{C R}=i_{D E} \times \frac{a_{N}}{1-a_{N} a_{I}}$
and
$i_{E R}=i_{D E} \times \frac{-a_{N} a_{I}}{1-a_{N} a_{I}}$

Thus

$$
i_{D E}-i_{C R}-i_{E R}=i_{D E}\left(\frac{1-a_{N}}{1-a_{N} a_{I}}\right)
$$

and

$$
i_{B}+i_{D E}\left(\frac{1-a_{N}}{1-a_{N} a_{I}}\right)+\left(c_{D E}+c_{j E L}+c_{j C L}\right) \frac{d v_{B}}{d t}-c_{j C L} \frac{d v_{C}}{d t}=0
$$

where the single subscript voltages are ground referenced.

Noting that $\quad C_{D E} \cong \boldsymbol{T}_{D E} \frac{{ }^{i_{D E}}}{\mathrm{~V}_{\mathrm{O}}}$
and that

$$
\begin{equation*}
\frac{d v_{E}}{d t} \doteq \frac{d v_{B}}{d i_{D E}} \frac{d i_{D E}}{d t} \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
i_{B}+i_{D E}\left(\frac{1-a_{N}}{1-a_{N} a_{I}}\right)+ \\
\tau_{L E} \frac{d i_{D E}}{d t}+\left(c_{j E L}+C_{j C L}\right) \frac{d v_{B}}{d t}- \tag{lb}\\
\\
c_{j C L} \frac{d v_{C}}{d t}=0
\end{gather*}
$$

Defining the base diffusion current. ${ }^{i} B D$, as the base current exclusive of the junction capacitance currents, then (lb) may be partitioned into

$$
\begin{aligned}
& i_{B D}+i_{D E}\left(\frac{1-a_{N}}{1-a_{N} \alpha_{I}}\right)-\tau_{D E} \frac{d i_{D E}}{d t}=0 \\
& \text { and } \\
& i_{B}-i_{B D}+\left(c_{j E L}+c_{j C L}\right) \frac{d v_{B}}{d t}-c_{j C L} \frac{d v_{C}}{d t}=0 \\
& \text { Solving (7) for } i_{D E} \text {, using the Laplace } \\
& \text { Transform and denoting the initial value } \\
& \text { of } i_{D E} \text { as } i_{D E O} \text {. } \\
& i_{B D}+I_{D E}\left(\frac{1-a_{N}}{1-a_{N} \alpha_{I}}+T_{D E} s\right)-T_{D F} i_{D E O}-0 \\
& I_{D E}=\frac{-I_{B D}+T_{D E}{ }^{i_{D E Q}}}{1-a_{N}+\left(1-a_{N} a_{I}\right) T_{D E} s}\left(1-a_{N} a_{I}\right) \\
& \text { Defining the Normal Region com-base } \\
& \text { shorted-collector time constant. } \\
& \tau_{N}=\left(1-\alpha_{N} a_{I}\right) T_{D E} \\
& \text { and the Normal Region commen=emitter } \\
& \text { shorted collector time constant, }
\end{aligned}
$$

$$
\begin{equation*}
\tau_{\beta N}=\left(\beta_{N}+1\right) \tau_{N} \tag{8}
\end{equation*}
$$

where

$$
\beta_{N}=\frac{C_{N}}{1-a_{N}},
$$

Then from (7b),

$$
\begin{equation*}
I_{D E}=\frac{-\left(\beta_{N}+1\right)\left(1-\alpha_{N} \dot{\alpha}_{I}\right) I_{B D}+\tau_{\beta N}{ }^{i_{D E O}}}{1+\frac{T_{\beta N}}{T_{\beta N}}} \tag{7c}
\end{equation*}
$$

Then from (2a),

$$
\begin{equation*}
I_{\mathrm{CR}}=\frac{-\beta_{\mathrm{N}} I_{\mathrm{BD}}+\tau_{\beta_{\mathrm{N}}}{ }^{{ }^{\mathrm{C}}} \mathrm{CRO}}{}{ }^{1+\tau_{\beta \mathrm{N}}} \mathrm{~S} \tag{9}
\end{equation*}
$$

where

$$
i_{\mathrm{CRO}}=\frac{a_{N}}{1-\alpha_{N} \alpha_{I}} i_{\mathrm{DEO}}
$$

is the initial collector generator current.
Next, summing currents at the collector node,
$i_{C}+i_{C R}+c_{j C L} \frac{d v_{C B}}{d t}=0$

Expanding (6) to include the separate external currents at the collector node,

$$
\begin{equation*}
c_{L} \frac{d v_{C}}{d t}+\frac{v_{C}-v_{C C}}{R_{L}}+i_{C R}+c_{j C L} \frac{d v_{C B}}{d t}=0 \tag{6a}
\end{equation*}
$$

$$
\begin{align*}
& \left(C_{L}+c_{j C L}\right) \frac{d v_{C}}{d t}-c_{j C L} \frac{d v_{B}}{d t}+\frac{v_{C}}{R_{L}}-\frac{v_{C C}}{R_{L}}+i_{C R}=0 \\
& \text { Solving (6b) for } v_{C} \text {, using the Laplace } \\
& \text { Transform, and defining } \\
& c_{p}=C_{L}+C_{j C L} \tag{10}\\
& \text { and } \\
& T_{p}=R_{L} C_{p}, \tag{11}\\
& T_{p} \frac{d v_{C}}{d t}-C_{j C L} R_{L} \frac{d v_{B}}{d t}+v_{C}-v_{C C}+i_{C R} R_{L}=0 \\
& \text { To simplify this equation, assume } \frac{d v_{B}}{d t} \\
& \text { is negligably small compared to } \frac{\mathrm{dv}_{\mathrm{c}}}{\mathrm{dt}} \text {. } \\
& \text { Then } \\
& \tau_{p} \frac{d v_{C}}{d t}+v_{C}-v_{C C}+i_{C R}{ }_{L} \cong 0 \tag{6d}\\
& \text { Trinsforming (6d) and denoting the initial } \\
& \text { collector voltage as } \mathrm{v}_{\mathrm{CO}} \text {, } \\
& T_{p}\left(V_{C} s-v_{C O}\right)+v_{C}-v_{C C}+I_{C R} R_{L}=0 \tag{5e}\\
& \text { Assuming a step for }{ }^{\text {c }} \text {, } \\
& v_{C C}=\frac{v_{C C}}{s} \tag{12}
\end{align*}
$$

I'hen

Returning to the base equation (8), we repeat the simplifying assumption that $\frac{d v_{B}}{d t}$ is negligably smail compared to $\frac{d v_{C}}{d t}$.

Then

$$
\begin{equation*}
i_{B}-i_{B D}-c_{j C L} \frac{d v_{C}}{d t} \cong 0 \tag{8a}
\end{equation*}
$$

Transforming (8a),

$$
I_{B}-I_{B D}-C_{j C L}\left(v_{C} s-v_{C O}\right)=0
$$

Assuming that v_{S} is a step of amplitude large compared to v_{B}, then i_{B} is also a step and

$$
\begin{equation*}
I_{B} \cong \frac{i_{B}}{S} \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{i_{B}}{s}-I_{B D}-c_{j C L}\left(v_{C} s-v_{C O}\right)=0 \tag{8c}\\
& I_{B D}=\frac{i_{B}}{s}-c_{j C L}\left(v_{C} s-v_{C O}\right)=0 \tag{8d}
\end{align*}
$$

$$
\begin{aligned}
& \text { Substituting (8d) in (9a) } \\
& I_{C R}=\frac{1}{1+\tau_{\beta N} S}\left[-\beta_{N}\left(\frac{i_{B}}{S}-c_{j C L}\left(v_{C} S-v_{C O}\right)\right)+\tau_{\beta N}{ }^{i}{ }_{C K O}\right] \\
& \text { Substituting (14) into (6f), } \\
& \mathrm{v}_{\mathrm{C}}=\frac{\tau_{\mathrm{p}} \mathrm{v}_{\mathrm{CO}}}{\tau_{\mathrm{p}} S+1}+\frac{\mathrm{v}_{\mathrm{CC}}}{\mathrm{~S}\left(\tau_{\mathrm{p}} \mathrm{~S}+1\right)}-
\end{aligned}
$$

$$
\begin{align*}
& v_{C}\left(1+\frac{\beta_{N} R_{L} C_{i C L} S}{\left(\tau_{p} S+1\right)\left(\tau_{\beta_{N}} S+1\right)}\right)=\frac{\tau_{p} v_{C O}}{T_{p} S+1}+\frac{v_{C C}}{S\left(\tau_{p} S+1\right)}- \tag{14b}
\end{align*}
$$

$$
\begin{align*}
& v_{C}=\frac{T_{P} T_{\beta N} v_{C O} s+T_{A} v_{C O}+T_{\beta N}\left(v_{C C}-R_{L} i_{C R O}\right)+\frac{v_{C C}+R_{L} \beta_{N} i_{B}}{s}}{T_{p} T_{\beta N} s^{2}+\left(\tau_{A}+T_{f}\right) s+1} \tag{14d}
\end{align*}
$$

where $\quad \tau_{A}=\left((\beta+1) C_{j C L}+C_{L}\right) R_{L}$

Denoting the poles and the driving voltages as

$$
\begin{equation*}
\tau_{1}, \quad \tau_{2} \equiv \frac{1}{2}\left(\tau_{\beta \mathrm{N}}+\tau_{\mathrm{A}} \pm \sqrt{\left(\tau_{\beta \mathrm{N}}+\tau_{A}\right)^{2}-4 \tau_{\beta_{\mathrm{N}}} \tau_{\mathrm{p}}}\right) \tag{16}
\end{equation*}
$$

$$
v_{l} \equiv v_{C C}-v_{C O}+\beta_{\mathrm{N}} R_{\mathrm{L}} \mathrm{i}_{\mathrm{B}}
$$

$$
\begin{equation*}
v_{2} \equiv v_{C C}-v_{C O}-R_{L} \dot{\mathrm{i}}_{\mathrm{CRO}} \tag{18}
\end{equation*}
$$

The Inverse Transform of (14f) is

$$
\begin{align*}
\mathrm{v}_{\mathrm{C}}= & \mathrm{v}_{\mathrm{CO}}+\frac{\tau_{\beta_{\mathrm{N}}} \mathrm{v}_{2}}{\tau_{1}-\tau_{2}}\left(\exp \left(-t / \tau_{1}\right)-\exp \left(-t / \tau_{2}\right)\right)+ \\
& v_{\perp}\left(1-\frac{1 \exp \left(-t / \tau_{1}\right)-\tau_{2} \exp \left(-t / \tau_{2}\right)}{T_{1}-T_{2}}\right) \tag{19}
\end{align*}
$$

Equation (19) is the general response to a step of base current and collector supply voltage with initial conditions $v_{C O}$ and $i_{\text {CRO }}$ (ncte that $i_{\text {CRO }}$ results from an initial base voltage, $v_{B O}$). This voltage response equation is considerably simplified when the initial rates of change of collector and base voltages are zero. Under these conditions it can be seen from (6b) that $v_{2}=0$. Thus v_{2} is zero when the transistor is in an active region steady state when the drive step is applied. Note that v_{2} is, in general, not zero when the transistor is leaving the saturation region and entering the active region in response to a base step. As indicated previously, equation (19) is applicable only within the active region.

This region is defined such that $i_{C R}$ is large compared to $I_{S E}$ and $-i_{E R}$ is smaller than $I_{S C}$. To aid in the use of the collector voltage equation, the equation for $\dot{i}_{C R}$ is developed below.

From (6d)

$$
\begin{equation*}
i_{C R}=\frac{v_{C C}-v_{C}}{R_{L}}-c_{p} \frac{d v_{C}}{d t} \tag{20}
\end{equation*}
$$

$$
\text { where } \quad c_{1} \equiv \frac{\tau_{1}}{R_{L}}-c_{p}
$$

and

$$
c_{2} \equiv \frac{\tau_{2}}{R_{L}}-c_{p}
$$

$$
\begin{aligned}
& { }^{i_{C R}}=\frac{v_{C C}}{R_{L}}-\frac{v_{C O}}{R_{L}}-\frac{T_{\beta_{N}} v_{2}}{\left(T_{1}-T_{2}\right) R_{L}}\left(\exp \left(-t / T_{1}\right)-\exp \left(-t / T_{2}\right)\right)- \\
& \frac{v_{1}}{R_{L}}\left(1-\frac{\tau_{1} \exp \left(-t / T_{1}\right)-T_{2} \exp \left(-t / T_{2}\right)}{\tau_{1}-T_{2}}\right)- \\
& \cdot \frac{c_{\mathrm{p}} \tau_{\beta_{\mathrm{N}}} \mathrm{v}_{2}}{\tau_{1}-T_{2}}\left(\frac{-\exp \left(-t / T_{1}\right)}{T_{1}}+\frac{\exp \left(-t / T_{2}\right)}{T_{2}}\right)- \\
& c_{p} v_{1}\left(\frac{-\exp \left(-t / T_{1}\right)+\exp \left(-t / T_{2}\right)}{T_{2}-T_{1}}\right) \\
& i_{C R}=-\beta_{N} i_{B}+\frac{v_{1}}{T_{1}-\boldsymbol{T}_{2}}\left(c_{1} \exp \left(-t / T_{1}\right)-c_{2} \exp \left(-\Sigma / \boldsymbol{T}_{2}\right)-\right. \\
& \frac{T_{A_{N}} v_{2}}{T_{1}}-T_{2}\left(\frac{c_{1}}{T_{1}} \exp \left(-t / T_{1}\right)-\frac{c_{2}}{T_{2}} \exp \left(-t / T_{2}\right)\right)
\end{aligned}
$$

3) Saturation Region Solutions - The approximate solution to the step response of a saturated transistor was developed by Moll. We described the results here, usir!g notation consistant with that of the previous section.

The saturation region is defined by both the emitter-base diode and the collector base diode being forward biased. In chis region, two simplifying approximations are made, both based on the relatively small variations possible $f:=v_{B}$ and v_{C}. First, the junction capacitance have negligable effect and may be neglected. Second, the base and collector circe its may be regarded as current sources.

Assuming that i_{0} was at is steady state value of ${ }^{i} B l$ prior to zero time, a ad that i_{b} steps to a value of 'bs at zero time, and that $i_{c}=I_{c}$ both prior to zero time and during the storage time. Then for

$$
\tau_{I}=\left(1-a_{N} a_{I}\right) \tau_{D C}
$$

where

$$
\begin{align*}
& \tau_{D C} \cong c_{D C} \frac{v_{O}}{i_{D C}} \\
& i_{e r}= \frac{-\alpha_{I}}{1-\alpha_{N} \alpha_{I}}\left[\alpha_{N} i_{B 2}-\left(1-\alpha_{N}\right) i_{C}-\right. \tag{1}\\
& \frac{a_{N}\left(i_{B 1}-i_{B 2}\right)}{T_{y}-T_{x}}\left(\cdot i_{x} \exp \left(-t / \tau_{x}\right)-\tau_{Y} \exp \left(-t . / \tau_{y}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
i_{C r}= & \frac{-a_{N}}{1-a_{N} a_{I}}\left[i_{B 2}+\left(1-a_{I}\right) i_{C}-\right. \\
& \left.\frac{i_{B 1}-i_{B 2}}{T_{y}-\tau_{x}}\left(\left(\tau_{x}-\tau_{I}\right) \exp \left(-t / \tau_{x}\right)-\left(\tau_{y}-\tau_{I}\right) \exp \left(-t / \tau_{y}\right)\right)\right]
\end{aligned}
$$

where

$$
\begin{align*}
& \boldsymbol{T}_{\mathrm{N}}=1 / \omega_{\mathrm{N}} ; \boldsymbol{T}_{\mathrm{I}}=1 / \omega_{\mathrm{I}} \tag{3}\\
& \boldsymbol{T}_{\mathrm{x}}=1 / \omega_{\mathrm{x}} ; \boldsymbol{T}_{\mathrm{y}}=1 / \omega_{\mathrm{Y}} \tag{4}
\end{align*}
$$

and

$$
\omega_{x}, \omega_{y}=\frac{1}{2}\left(\left(\omega_{N}+\omega_{I}\right) \pm \sqrt{\left(\omega_{N}+\omega_{I}\right)^{2}-4 \omega_{N} \omega_{I}\left(1-a_{N} a_{I}\right)}\right)
$$

The storage time, t_{s}, is the time required for $i_{e r}$ to get to zero. At $t=t_{s}, i_{c r}$ is, in general, not equal to i_{C}. The equations are valici only for times sidch that neither $i_{c r}$ nor $i_{e r}$ change their polarity.
2. Linvill-Lumped Model

As the performance of the simple lumped model described in the previous section is identical with that of the Ebers-Moll model, separate equations for it will not be developed.

It is worth noting here that the Single-L lumped diode model may be used in place of the Ebers-Moll diode model for either or both diodes within the Ebers-Moll transistor model.

C. Parameter Evaluation

The transistor models, even more than the diode models, are accurate over only a limited range of operating points. This is so primarily because the model uses constant alphas, whereas the transistor alphas vary appreciably with current level. The relative complexity of the transistor model makes it highly advisable to select a set of data points such that each parameter is evaluated as independently of the others as possible.

1. Ebers-Molı Model
a. V_{o}

From the model performance section,

$$
v_{B E}^{\prime}=v_{O} \ln \left(\frac{I_{S E}-i_{B}^{\prime}-\left(1-a_{I}\right) i_{C}^{\prime}}{I_{S E}}\right)
$$

For $\left|i_{B}\right| \gg\left|I_{S C}\right|$ and $\alpha_{I} \ll 1, v_{B E}^{\prime} \cong v_{O} \ln \frac{i_{E}^{\prime}}{I_{S E}}$ For 2 data points, $i_{E 1}^{\prime}, v_{B E 1}^{\prime}, ~ a n d ~ i_{E 2}^{\prime} v_{B E 2}^{\prime}$,
$v_{o} \cong\left(v_{B E 1}^{\prime}-v_{B E 2}^{\prime}\right) / \ln \left(i_{E 1}^{\prime} / i_{E 2}^{\prime}\right)$
If the 2 data points are chosen at relatively low currents such that the voltage drops across the bulk emitter and base resistors, $i_{E}^{\prime} R_{E}$ and $i_{B}^{\prime} R_{B}$, are less than a few millivolts, then the same equation is approximately valid for the terminal parameters:

$$
v_{o} \cong\left(v_{B E 1}-v_{B E 2}\right) / \ln \left(i_{E 1} / i_{E 2}\right)
$$

b. $I_{S E}$
$I_{S E}$ can be obtained from 1 of the above data points and checked at the other.
$I_{S E}=-i_{E 1} \exp \left(-v_{B E 1} / V_{O}\right)$
c. α_{N}

Alpha-normal should be determined at a current level in the center of range of use, with a data point $i_{B 3}$, $i_{C 3}$, at a collector-emitter voltage, "CE3' For a transistor used as a switch, $v_{\text {CE } 3}$ sirculd be just outside of saturation; for a iliear application, the middle of the operating region should be used.

If $i_{B 3}$ is much greate:r than the collector-base leakage current, $\mathrm{v}_{\mathrm{CB}} / \mathrm{R}_{\mathrm{CB}}$, then
$a_{N}=\frac{{ }^{i_{C 3} / i_{B 3}}}{\left(i_{C 3} / i_{B 3}\right)+1}$.
If $i_{B 3}$ is not considerably greater thar the leakage current, then an additional data point, $i_{C 4}, i_{B 4}$ is needed, where $i_{C 4} \ll i_{C 3}$.

Letting $i_{C 3}-i_{C 4}=\Delta i_{C}$
and

$$
\begin{aligned}
& i_{B 3}-i_{B 4}=\Delta i_{B}, \\
& a_{N}=\frac{\Delta i_{C} / \Delta i_{B}}{\left(\Delta i_{C} / \Delta i_{B}\right)+l}
\end{aligned}
$$

d. a_{I}

For those very rare applications where a transistor is used in the inverted region, a_{I} can be evaluaced in a manner similar to α_{N}.

For most applications, the primary effect of
α_{I} is on the collector-emitter saturation voltage. This suggests evaluating α_{I} from a deep saturation data point. From the previous section, for $-i_{B} \gg I_{S C}$,

$$
v_{C E}^{\prime}=v_{O} \ln \left[\frac{a_{N}\left(-i_{B}^{\prime}-\left(1-a_{I}\right) i_{C}^{\prime}\right.}{a_{I}} \frac{\left(-a_{N}^{i}{ }_{B}^{\prime}+.\left(1-a_{N}\right) i_{C}^{\prime}\right.}{}\right] \text {. }
$$

For $i_{C}^{\prime}=0$, this equation reduces to

$$
v_{C E}^{\prime}=v_{0} \ln \frac{1}{a_{I}}
$$

Thus

$$
\alpha_{I}=\exp \left(-v_{C E}^{\prime} / v_{0}\right)
$$

The data should be obtained at a base current, $i_{B 5}$, within the range of use but small enough to make $i_{B 5} ._{E}{ }^{n}$ negligable.

Where it is advisable to determine α_{I} at a nonzero $i_{C 5}$, the $v_{C E}^{\prime}$ equation may be maripulated to give
$\frac{1+\left(1-\alpha_{I}\right) i_{C 5} / i_{B 5}}{a_{I}}=\frac{-a_{N}+\left(1-a_{N}\right) i_{C 5} / i_{B 5}}{-\alpha_{N}} \exp \left(\frac{v_{C E}}{v_{O}}\right)$

Calling the right side of this equation " K ", then

$$
a_{I}=\frac{1+i_{C 5} / i_{B 5}}{k+i_{C 5} / i_{B 5}}
$$

e. $I_{S C}$

No new data is needed to evaluate $I_{S C}$:

$$
I_{S C}=\frac{I_{S E} a_{N}}{a_{I}}
$$

f. $\quad R_{E}$
R_{E} can be determined from 2 data-points at a fairly, high current level, such as that used for the α_{N} eval cation. Using $v_{B 3 a}$ @ $i_{B 3}$, ${ }^{i_{C 3}}$, and $v_{C 3}$; and $v_{B 3 b}$ @ $i_{B 3}$, and $i_{C}=0$.

$$
v_{B E 3 a}-v_{B E 3 b}=v_{O} \ln \left(1+\frac{\left(1-a_{I}\right) i_{C 3}}{i_{B 3}}\right)-i_{C 3} R_{E}
$$

$$
R_{E}=\left(v_{B E 3 a}-v_{B E 3 b}-v_{0} \ln \left(1+\frac{\left(1-a_{Y}\right) i_{C 3}}{i_{B 3}}\right)\right) \frac{1}{-i_{C 3}}
$$

g. $\quad R_{B}$
R_{B} can be evaluated from 2 previous measurements, $v_{B E l}$ and $i_{B l} @ i_{C}=0$, and $v_{B E 3 b}$ and $i_{B 3}$ @ $i_{C}=0$.
$v_{B E 3 b}-v_{B E 1}=v_{O} \ln \frac{i_{B 3}}{i_{B l}}-i_{B 3}\left(R_{B}+R_{E}\right)$
$R_{B}=\left(v_{B E 3 b}-v_{B E 1}-v_{o} \ln \frac{i_{B 3}}{i_{B 1}}\right) \frac{1}{-i_{B 3}}-R_{E}$
h. $\quad R_{C}$
K_{c} can be determined from an additional data point in saturation at relatively high currents. Using $v_{\mathrm{CE} 3 \mathrm{C}}{ }^{@} \mathrm{i}_{\mathrm{B} 3}$ and $.5 \mathrm{i}_{\mathrm{C} 3}$.
$v_{C E 3 C}=v_{o} \ln \left(\frac{a_{N}\left(-1-\left(1-a_{I}\right)\right.}{\frac{.5 i_{C 3}}{i_{B 3}}} a_{I\left(-a_{N}+\left(1-a_{N}\right)\right.}^{\left.\frac{.5 i_{C 3}}{i_{B 3}}\right)}\right)-$ $.5 i_{C 3} R_{C}-\left(.5 i_{C 3}+i_{B 3}\right) R_{E}$

$$
\begin{aligned}
R_{C}= & {\left[v_{C E 3 C}-v_{O} \ln \left(\frac{a_{N}\left(-1-\left(1-a_{I}\right) \frac{.5 i_{C 3}}{i_{B 3}}\right.}{a_{I}\left(-a_{N}+\left(1-a_{N}\right) \frac{.5 i_{C 3}}{i_{B 3}}\right)}\right)+\right.} \\
& \left.\left(.5 i_{C 3}+i_{B 3}\right) R_{E}\right] \frac{1}{-.5 i_{C 3}}
\end{aligned}
$$

i. $R_{E B}$

A data point near the maximum reverse emitterbase voltage to be used is required to evaluate $R_{E B}$. Using $i_{B 6}$ @ $v_{B E 6}$ with $i_{C}=0$,

$$
-i_{B}^{\prime}=I_{S E}\left(e^{v_{B E}^{\prime} / V_{O}}-1\right)
$$

For an appreciable reverse voltage, ${ }^{i}{ }_{B}=I_{S E}$.

$$
\begin{aligned}
i_{B} & =i_{B}-v_{B E} / R_{E B} \\
i_{B} & =I_{S E}-v_{B E} / R_{E B} \\
R_{E B} & =\frac{-v_{B E}}{i_{B}-I_{S E}} \\
R_{E B} & =\frac{-v_{B E 6}}{i_{B 6}}-I_{S E}
\end{aligned}
$$

j. $\quad R_{C B}$

Using a data point near the maximum reverse collector-emitter voltage to be used, $i_{B 7}$ @ $v_{B C 7}$ with $i_{E}=0$,

$$
R_{C B}=\frac{-v_{B C 7}}{i_{B 7}-I_{S C}}
$$

k. $C_{j E}$ parameters: $V_{K E}, K_{E}, N_{E}$ In most cases, the arbitrary use of $\mathrm{V}_{\mathrm{KE}}=1.0$ voli should be satisfactory.

From the equation for $C_{j E}$,

$$
c_{j E}=\frac{K_{E}}{\left(v_{K E}-v_{B E}\right)^{N_{E}}}
$$

Using as data \mathfrak{a} small-signal measurement of $C_{B E 1} @ v_{B E}=0$ and $i_{C}=0$ to evaluate K_{E},

$$
K_{E}=C_{B E l}
$$

Using a similar data point, $C_{B E 2} @$ the naximum used reverse base-emitter voltage, $v_{B E R}$, vith $\mathrm{i}_{\mathrm{C}}=0$,

$$
N_{E}=\frac{\ln \left(K_{E} / C_{B E 2}\right)}{\ln \left(V_{K E}-v_{B E R}\right)}
$$

1. C_{jC} parameters: $\mathrm{V}_{\mathrm{KC}}, \mathrm{K}_{\mathrm{C}}, \mathrm{N}_{\mathrm{C}}$ Again, arbitrarily let $V_{K C}=1.0$ volt. Using the small signal $C_{B C l}$ @ $v_{B C}=0$ and $i_{C}=0$ to evaluate K_{C},

$$
K_{C}=C_{B C 1} .
$$

Using $C_{B C 2}$ @ the maximum used reverse basecollector voltage, $v_{B C R}$,

$$
N_{C}=\frac{\ln \left(K_{C} / C_{B C 2}\right)}{\ln \left(V_{K C}-v_{B C R}\right)}
$$

m. $\quad C_{D E}$ parameter: $\boldsymbol{T}_{\mathrm{N}}$
τ_{N} is the effective time constant of the emitter junction. For a transistor that is used as a switch, $\boldsymbol{T}_{\mathrm{N}}$ is best evaluated from current step response data. For an "on" step of base current, ${ }^{i}$ BFl, which is small compared with a collector current, ${ }^{i_{C F l}}$, the collector currert rise time is approximately defined by the following equation which is derived from the general equation in the previous section.
$t_{I R}=\left(\beta_{N}+1\right)\left(c_{j C L} R_{L}+\tau_{N}\right) \ln \frac{\beta_{N} i_{B F l}}{\beta_{N} i_{B F 1}-i_{C F l}}$
where

$$
\beta_{N}=\frac{\alpha_{N}}{1-\alpha_{N}}
$$

and $C_{j C L}$ is the linerrized collector junction capacitance over the collector voltage range from $v_{\mathrm{CB}-\mathrm{OFF}}$ to $\mathrm{v}_{\mathrm{CB}-\mathrm{ON}}$.

$$
c_{j C L}=\frac{Q_{j C}}{v_{C B-O N}-v_{C B-O F F}}
$$

$$
Q_{j C}=\left.K_{C} \frac{\left(v_{K C}-v_{C B}\right)^{1 \cdots N_{C}}}{1-N_{C}}\right|_{-v_{C B-O N}} ^{1-v_{C B-O F F}}
$$

It is apparent from the equation for ${ }^{t}{ }_{I R}$ that a more sensitive evaluation of T_{N} is obtained by using a value for R_{L} sucl! that

$$
\tau_{N} \gg C_{j C L} R_{L}
$$

Thus for $R_{L} \cong 0$,

$$
\tau_{\mathrm{N}}=\mathrm{t}_{\mathrm{IR}} /\left(\left(\beta_{\mathrm{N}}+1\right) \ln \frac{\beta_{\mathrm{N}} \mathrm{i}_{\mathrm{BFl}}}{\beta_{\mathrm{N}}{ }^{\mathrm{BFI}}{ }^{-}{ }^{\mathrm{i}_{\mathrm{CFl}}}}\right)
$$

whereas for $R_{L} \neq 0$,

$$
\tau_{N}=-C_{j C L}{ }^{P_{L}}+t_{I R} /\left(\left(\beta_{N}+1\right) \ln \frac{\beta_{N}^{i}{ }_{B F l}}{\beta_{N}{ }^{i}{ }_{B F l}-{ }^{i} C F 1}\right)
$$

For linear small signal transistor applications, the collector current cut-off frequency, ${ }^{f} \boldsymbol{a}$ or f_{t}, may be useत to obtain τ_{N}. The data should be at a relatively high current level so that error due to $C_{j E}$ is negligable. Here

$$
T_{\mathrm{N}}=\frac{1}{\left(\beta_{\mathrm{N}}+1\right)} \frac{1 \pi}{2 \pi}
$$

or

$$
\tau_{\mathrm{N}}=\frac{1}{\left(\mathcal{\varphi}_{\mathrm{N}}+1\right) 2 \pi \mathrm{f}_{\mathrm{T}}}
$$

n. $C_{D C}$ parameter: \boldsymbol{T}_{I}

$$
C_{D C} \cong \frac{\tau_{I}{ }^{i}{ }_{D C}}{\left(1-a_{N} a_{I}\right) v_{o}}
$$

With the exception of the rare case where a transistor is operated in the inverted region, τ_{I} is of interest for its contribution to the saturation region behavior. As was previously shown, the storage time in rasponse to a step of base current is a function of the several currents, the alphas and 2 time constants, τ_{x} and τ_{y} which in turn are functions of the alphas and of τ_{N} and τ_{I}.

It was shown by " 1011 that a simplifying approxination for the step response storage time may be made as follows,

$$
t_{S} \cong \frac{\tau_{N}+\tau_{I}}{1-\alpha_{N} \alpha_{I}} \ln \frac{i_{B F}-i_{B R}}{\left(i_{C F} / \beta_{N}\right)-i_{B R}}
$$

thus

$$
\tau_{I}=-\tau_{N}+t_{S}\left(1-\alpha_{N} \alpha_{I}\right) / \ln \frac{\dot{i}_{B F}-i_{B R}}{\left(i_{C F} / \beta_{N}\right)-i_{B R}}
$$

Here again the currents should be chosen near the middle of the range of interest.
D. Transistor Subroutine

EMITTER JUNCTION DEPLETIUN CAPACITANCE $C O C=(F I C+S I C) * 1 I / V U$ COLLECTUR JUNCTIUN DEPLETIOM CAPACITANCE Emltien uiffusiun caracitance

11 UE $=$ UATA（y）-VI
$U C=$ UATA（1U）－VZ
CJE $=$ UATA（IS）／DE＊＊DATA！ 111
CUC＝UATA（14）／DC＊＊DATA（1く）
 CUV＝（FIE＋SIE）＊UATA（7）／DATA（17）
$C D C=(F I C+S I C) * D A T A(B) / D A T A(17:$
$C C L=C U t+L U L+U_{A}$ TA（1 5 ）
CCC＝しUC＋UCutuATA（16）
as Cund linut
keTurid

IV. ZENER DIODE MODE'L

A. Model Description

For a Zener diode, normally symbolized as follows,

a model may be developed which consists of the ordinary diode model plus an additional non-linear current generator to represent the Zener or avalanche breakdown at a reverse voltage. This model is as follows.

All the components of the model except the Zener current generator, i_{z}, have been previously described for the diode model. For the Zener current generator, an equation very similar in form to the diode i_{j} generator is suggested as follows:

$$
i_{Z}=-I_{x}\left(\exp \left(-v_{j} / V_{x}\right)-1\right)
$$

where both I_{x} and V_{x} are positive constants.

This model was chosen because it fits the data showing an inverse relationship between current and small signal. resistance in the breakdown region.

The equations for the non-linear componerits of the normal diode are repeated here for convenience:

$$
\begin{aligned}
& i_{j}=I_{S}\left(\exp \left(v_{j} / V_{o}\right)-1\right) \\
& C_{j}=\frac{K}{\left(v_{K}-v_{j}\right)^{N}} \\
& C_{D}=T \frac{d i_{j}}{d v_{j}}
\end{aligned}
$$

B. Model Performance

1. Static Forward Behavior

By neglecting the small forward value of i_{z},

$$
\mathrm{v} \cong \mathrm{v}_{\mathrm{O}} \ln \left(\frac{i}{I_{S}}+1\right)+i R_{S E R}
$$

Note that the forward behavior may be of very little importance in most applications.
2. Static Reverse Behavior

Neglecting the small reverse contribution of i_{j} and R_{SH} at relatively large reverse currents,

$$
\mathrm{v} \cong-\mathrm{V}_{\mathrm{x}}\left(\ln \left(-i / I_{x}\right)+1\right)+i R_{S E R}
$$

also

$$
r_{z}=\frac{d v}{d i} \cong \frac{-v_{x}}{i}+R_{S E R}
$$

3. Dynamic Forward Step Response

The response is similar to that of a normal diode; however, Zener diodes are seldom used in a manner that would elicit this behavior.
4. Dynamic Reverse Step Response

Although normal diode charge storage and reverse recovery are present, they are not brought into play for most applications. The normal capacitive behavior of C_{j} is sometimes of importance.

C. Parameter Evaluation

1. Normal Diode Parameters

The normal diode parameters of a Zener diode are often of very little importance to its in-circuit use. If the zener diode is not, under any conditions, forward biased, the normal diode components can be omitted from the model. If the Zener diode can, on occasion, be forward biased but the exact forward behavior is not of importance, crude guesses can be used for the normal parameter evaluation. It is, of course, also possible to use the procedure previously described to evaluate the normal diode parameters.
2. V_{x}
V_{x} is best determined from a data point i_{1}, v_{1}, within the "Zener breakdown" region. A relatively low current, such that $i, R_{S E R}$ is very small compared to v_{1}, should be used. The small signal resistance at that point, $r_{Z 1}$, should also be determined.

Then, $\quad \mathrm{v}_{\mathrm{x}} \xlongequal{\cong}-\mathrm{r}_{21} \mathrm{i}_{1}$
3. I_{x}
I_{x} can be evaluated from the same data as follows,

$$
I_{x} \cong-i_{1} \exp \left(v_{1} / V_{x}\right)
$$

4. $R_{\text {SER }}$

Although $R_{\text {SER }}$ is part of the normal diode, it is sometimes of importance to Zener diode operation. It can be evaluated from a second data point within the "Zener breakdown" region, i_{2}, v_{2}, and $r_{Z 2}$, at a higher current than the first data point.

$$
R_{S E R}=r_{Z 2}+v_{x} / i_{2}
$$

A check can now be made by calculating

$$
-V_{x}\left(\ln \left(-i_{2} / I_{x}\right)+1\right)+i_{2} R_{S E R}
$$

and comparing with the measured v_{2}.
D. Zener Diode Subroutine

15 CONTINUE
HETURN
END

V. TUNNEL DIODE MODEL
A. Model Description

For a tunnel diode, normally symbolized as follows,

or as follows,

a rodel may be developed which consists of the ordinary diode model plus an additional nonlinear current generator to represent the tunneling behavior at small positive and negative voltages. This model is as follows,

With the exception of the tunnel current generator, i_{T}, the model is identical with that of the normal diode. An empirical equation was developed for ${ }^{i_{T}}$ as follows,

$$
i_{T}=\frac{v_{i}}{R_{T}} \exp \left(-v_{j} / V_{T}\right)
$$

where both R_{T} and V_{T} are positive constants.

The equations for the 3 non-linear normal diode components are repeated here

$$
\begin{aligned}
& i_{j}=I_{S}\left(\exp \left(v_{j} / V_{o}\right)-1\right) \\
& c_{j}=\frac{K}{\left(v_{K}-v_{j}\right)^{N}} \\
& C_{D}=\tau \frac{d i_{j}}{d v_{j}}
\end{aligned}
$$

B. Model Performance

1. Static Forward Behavior

The forward behavior is that of the normal diode in parallel with the tunnel current generator.

By differentiating the tunnel current expression with respect to v_{j}, the slope of the tunnel current characteristic is

$$
\frac{d i_{T}}{d v_{j}}=\frac{1}{R_{T}}\left(1-\frac{v_{i}}{v_{T}}\right) \exp \left(-v_{j} / V_{T}\right)
$$

It is evident that this derivative represents the small signal tunnel conductance, g_{T}. Thus

$$
S_{T}=\frac{d 1_{T}}{d v_{j}}
$$

It can be seen that

$$
\begin{aligned}
& \text { for } v_{j}<v_{T}, g_{T}>0 \\
& \text { for } v_{j}=V_{T}, g_{T}=0 \\
& \text { for } v_{j}>V_{T}, g_{T}<0
\end{aligned}
$$

Thus the tunnel conductance changes from positive to negative polarity at $\mathrm{v}_{\mathrm{j}}=\mathrm{V}_{\mathrm{T}}$. Therefore, V_{T} is the approximate peak point of the diode, as the normal diode current generator, i_{j}, has very little effect at the low V_{T} voltage.

The preserice of the exponential multiplier in the expression for i_{T} makes i_{T} decrease rapidly as the forward voltage increases beyond V_{j}. The decreasing i_{T}, when summed with an increasing i_{j}, results in a valley point of minimum current. At forward voltages greater than this valley point, the normal diode current, i_{j}, increasingly dominates the behavior. Thus the overall small signal conductance becomes positive as the normal diode slope, g_{D}, dominates the decreasing negative g_{T}.
2.

Static Reverse Behavior
The reverse behavior is dominated by the tunnel current generator. The equation for i_{T} may be re-arranged.

$$
\frac{v_{j}}{i_{T}}=R_{T} \exp \left(v_{j} / V_{T}\right)
$$

This ratio may be defined as the large-signal tunnel resistance as it represents a vector from the origin to the operating point. It is evident that, for increasing negative voltages, this largesignal resistance decreases from a value of R_{T} for $\mathrm{v}_{\mathrm{j}}=0$. Thus the reverse current rises ever more steeply for increasing negative voltages.

Accurate modeling of reverse behavior is often of little or no importance in tunnel diode applications.
3. Dynamic Behavior

The dynamic behavior is due primarily to the interaction of the static "N-shaped" i-v characteristic and the junction capacitance.

C. Parameter Evaluation

1. Normal Diode Static Parameters V_{0}, I_{S}, and $R_{S E R}$ are the parameters to be evaluated as R_{SH} can be regarded as infinite in value. The evaluation of these parameters is somewhat more complex than it is for an "ordinary" diode because of the presence of the tunnel current generator.

To simplify the problem somewhat we shall here assume that $R_{S E R}=0$. This, it is necessary to evaluate only the parameters Y_{0} and I_{s}. This may be done from 2 suitable data points.

One such point is $V_{F P}, I_{p}$, the Forward Peak Point. As i_{T}, the tunnel generator current, is virtually zero at this point, the data may be used directly in the di de equation as follows:

$$
I_{p} \cong I_{s} \exp \left(V_{F P} / V_{o}\right)
$$

The second suitable data point is the valley point. However, as both the tunnel generator, i_{T}, and the normal diode generator, i_{j}, contribute currert at the valley point, the following equation is used:

$$
\begin{aligned}
& I_{V} \cdot i_{T V} \cong I_{S} \exp \left(V_{V} / V_{o}\right) \\
& \text { where } i_{T V}=i_{T} \text { at } v=V_{V}
\end{aligned}
$$

These two equations may be solved for V_{0} and I_{s} after $i_{T V}$ is determined from the tunnel current generator equation.
2. V_{T}

A data point at the peak point current and voltage, i_{p} and v_{p}, can $3 e$ used to evaluate V_{T}. Assuming

$$
\mathrm{V}_{\mathrm{T}} \cong \mathrm{v}_{\mathrm{p}}
$$

3. R_{T}
a. Switch Diodes - For tunnel diodes that are used as switches, R_{T} should be evaluated so as to satisfy the peak point data, I_{p}, V_{p}. From the tunnel generator equation,

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{p}}} \exp \left(-\mathrm{v}_{\mathrm{p}} / \mathrm{v}_{\mathrm{T}}\right)
$$

where

$$
\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{p}}
$$

Thus, $\quad R_{T}=.369 \frac{{ }^{V} p}{I_{p}}$
b. Amplifier Diodes - For tunnel diodes that are used as small-signal negative resistance amplifiers, R_{T} should be evaluated to satisfy a negative small signal conductance data point, $g_{\mathrm{N} 1}$ at $\mathrm{i}_{\mathrm{N} 1}, \mathrm{~V}_{\mathrm{N} 1}$. Assuming that i_{j} contributes negligibly.to g_{Nl},

$$
R_{T}=\frac{1}{g_{T 1}}\left(1-\frac{v_{j N 1}}{V_{T}}\right) \exp \left(-v_{j N 1} / V_{T}\right)
$$

where

$$
v_{j N l}=v_{N l}-i_{N l} R_{S E R}
$$

and

$$
g_{T l}=g_{N 1}-\frac{1}{R_{S E R}}
$$

Sometimes the available data takes the form of a maximum negative small-signal conductance, g_{N} MAX, at unspe ifified $i_{N M}$ and $v_{N M}$. By differentiating the equation for g_{T},

$$
\frac{d g_{T}}{d v_{T}}=\left(2-\frac{v_{\dot{j}}}{v_{T}}\right)\left(\frac{-\exp \left(-v_{j} / V_{T}\right)}{R_{T} v_{T}}\right)
$$

it is apparent that the maximum g_{T} occurs at $v_{j}=2 V_{T}$. Thus g_{N} MAX occurs at $\mathrm{V}_{\mathrm{NM}}=2 \mathrm{~V}_{\mathrm{T}}$. Also

$$
\begin{aligned}
& i_{N M}=\frac{v_{N M}}{R_{T}} \exp \left(\frac{-v_{N M}}{v_{T}}\right) \\
& i_{N M}=\frac{2 V_{T}}{R_{T}} \exp (-2)
\end{aligned}
$$

The equation for R_{T} becomes

$$
\begin{aligned}
& R_{T}=\frac{1}{g_{T M}}\left(1-\frac{2 V_{T}}{V_{T}}\right) \exp (-2) \\
& R_{T}=\frac{-.135}{g_{T M}}
\end{aligned}
$$

where

$$
g_{\mathrm{TM}}=g_{\mathrm{NM}}-\frac{1}{\mathrm{R}_{\mathrm{SER}}}
$$

VI. CONTROLLED RECTIFIER MODEL
A. Modeí Description

The controlled rectifier is one member of the family of PNPN 3-junction devices. The distinguishing feature of the controlled rectifier is tinat it is a 3-terminal device. It is usually symbolized as follows,

and sometimes symbolized as follows,

The 2-terminal member of the family is the 4-layer diode, symbolized as

or

The 4-terminal member, sometimes called a controlled switch, is symbolized as
or

The model used here for all of the PNPN devices is an extension of the Ebers-Moll type of diode and transistor model. In terms of a diode sub-model, it appears as follows,

The 3 diodes are representive of the 3 junctions; the 3 upper current generators model the transportation of current carrier through the device. The $i_{C R}$ generator develops a current proportirnal to conductive currents
in each of the end diodes, with $\alpha_{N 1}$ and $\alpha_{N 2}$ as proportionality constants. The $i_{E R 1}$ and $i_{E R 2}$ generators develop currents related by $\alpha_{I 1}$ and $\alpha_{I 2}$ to the center diode current. The shunt resistors $R_{E B}$ and $R_{C A}$ produce the effects of current dependent normal alphas that are vital to the base or collector triggering properties of the model. The zener current generator across the center junction provides an effect similar to the voltage dependency of alpha that results in anode triggering.

Replacing the diode symbols with Ebers-Moll diode models results in a detailed model as follows.

The equations for the model current generator; are as follows.

For the "dicde" current generators:

$$
\begin{aligned}
& i_{D E 1}=I_{S E 1}\left(\exp \left(v_{B E}^{\prime} / v_{0}\right)-1\right) \\
& i_{D C}=I_{S C}\left(\exp \left(v_{B C}^{\prime} / v_{0}\right)-1\right) \\
& i_{D E 2}=I_{S E 2}\left(\exp \left(v_{A C}^{\prime} / V_{0}\right)-1\right)
\end{aligned}
$$

For the "transport" current generators:

$$
\begin{aligned}
& i_{E R 1}=a_{I 1} i_{C J} \\
& { }^{i_{C R}}=a_{N 1} i_{E J 1}+a_{N 2}{ }^{i_{E J 2}} \\
& { }^{i_{E R 2}}=a_{I 2} i_{C J}
\end{aligned}
$$

The alphas and the saturation currents are related by,

$$
\begin{aligned}
& I_{S C} / I_{S E 1}=\alpha_{N 1} / a_{I 1} \\
& I_{S C} / I_{S E 2}=\alpha_{N 2} / \alpha_{I 2}
\end{aligned}
$$

For the "zener" current generators,

$$
i_{z}=-I_{x}\left(\exp \left(-v_{B C} / V_{x}\right)-1\right)
$$

All of the constants above are positive.

B. Model Performance

1. Analytic Solutions of Static Equations

Because of the complexity of the model, equations will be developed initially for a model with no series resistors, shunt resistors, or zener current generators. Also, for static equations, all junction and diffusion capacitors are omitted. The resulting simplified model appears as follows,

The equations for the 3 PN junctions are:

$$
\begin{align*}
& i_{D E 1}=I_{S E 1}\left(\exp \left(v_{B E}^{\prime} / V_{0}\right)-1\right) \tag{1}\\
& i_{D C}=I_{S C}\left(\exp \left(v_{B C}^{\prime} / v_{O}\right)-1\right) \tag{2}\\
& i_{D E 2}=I_{S E 2}\left(\exp \left(v_{A C}^{\prime} / v_{0}\right)-1\right) \tag{3}
\end{align*}
$$

For the 3 current generatcrs,

$$
\begin{align*}
& \dot{i}_{E R 1}=a_{I 1} i_{C}^{\prime} \tag{4}\\
& i_{C R}=a_{N 1}{ }_{E}^{i \prime}-a_{N 2} i_{A}^{\prime} \tag{5}\\
& i_{E R 2}=a_{I 2}{ }^{i} \dot{C} \tag{6}
\end{align*}
$$

The constraints on the alphas are,

$$
\begin{align*}
& I_{S C} / I_{S E 1}=a_{N 1} / a_{I 1} \tag{8}\\
& I_{S C} / I_{S E 2}=a_{N 2} / a_{I 2} \tag{9}
\end{align*}
$$

From the topology,

$$
\begin{align*}
& i_{E}^{\prime}=i_{D E 1}-i_{E R 1} \tag{10}\\
& i_{C}^{\prime}=i_{D C}-i_{C R} \tag{11}\\
& -i_{A}^{\prime}=i_{D E 2}-i_{E R 2} \tag{12}
\end{align*}
$$

Substituting (4), (5), and (6):

$$
\begin{align*}
i_{E}^{\prime} & =i_{D E 1}-a_{I 1} i_{C}^{\prime} \tag{10a}\\
i_{C}^{\prime} & =i_{D C}-a_{N 1} i_{E}^{\prime}+a_{N 2}{ }_{A}^{\prime} \tag{1la}\\
-i_{A}^{\prime} & =i_{D E 2}-a_{I 2} i_{C}^{\prime} \tag{12a}
\end{align*}
$$

Thus the PN junction currents in terms of the external currents are

$$
\begin{align*}
& i_{D E 1}=i_{E}^{\prime}+a_{I 1} i_{C}^{\prime} \tag{lob}\\
& { }^{1} D C=i_{C}^{\prime}+a_{N 1} i_{E}^{\prime}-a_{N 2}{ }_{A}^{\prime} \tag{llb}\\
& i_{D E 2}=-i_{A}^{\prime}+a_{I 2}^{i} \dot{C} \tag{l2b}
\end{align*}
$$

From the topology

$$
\begin{align*}
& i_{B 1}^{\prime}+i_{E}^{\prime}+i_{C}^{\prime}=0 \tag{13}\\
& i_{C}^{\prime}-i_{A}^{\prime}=0 \tag{14}\\
& i_{E}^{\prime}+i_{B 1}^{\prime}+i_{A}^{\prime}=0 \tag{15}
\end{align*}
$$

then

$$
\begin{align*}
& i_{D E 1}=-i_{B 1}^{\prime}-i_{A}^{\prime}+a_{I 1}\left(+i_{A}^{\prime}\right) \tag{10c}\\
& i_{D E 1}=-i_{B 1}^{\prime}-i_{A}^{\prime}\left(1-a_{I 1}\right) \tag{10d}\\
& i_{D C}=+i_{A}^{\prime}+a_{N 1}\left(-i_{B 1}^{\prime}-i_{A}^{\prime}\right)-a_{N 2} i_{A}^{\prime} \\
& i_{D C}=-a_{N 1} i_{B 1}^{\prime}+\left(1-a_{N 1}-a_{N 2}\right) i_{A}^{\prime} \tag{lld}\\
& i_{D E 2}=-i_{A}^{\prime}+a_{I 2}\left(+i_{A}^{\prime}\right) \tag{12c}\\
& i_{D E 2}=-\left(1-a_{I 2}\right) i_{A}^{\prime} \tag{12d}
\end{align*}
$$

Solving (1), (2), and (3) for the voltage across each junction,

$$
\begin{align*}
& v_{B E}^{\prime}=v_{O} \ln \left(1+\left(i_{D E 1} / I_{S E 1}\right)\right) \tag{la}\\
& v_{B E}^{\prime}=v_{O} \ln \left(\frac{I_{S E 1}-i_{B 1}^{\prime}+\left(1-a_{I 1}\right)\left(-i_{A}^{\prime}\right)}{I_{S E 1}}\right) \tag{16}\\
& v_{B C}^{\prime}=v_{O} \ln \left(1+\left(i_{D C} / I_{S C}\right)\right) \tag{2a}\\
& v_{B C}^{\prime}=v_{o} \ln \left(\frac{I_{S C}-a_{N 1} i_{B 1}^{\prime}+\left(1-a_{N 1}-a_{N 2}\right) i_{A}^{\prime}}{I_{S C}}\right) \tag{17}\\
& v_{A C}^{\prime}=v_{O} \ln \left(1+\left(i_{D E 2} / I_{S E 2}\right)\right) \tag{3a}\\
& v_{A C}^{\prime}=v_{O} \ln \left(\frac{I_{S E 2}-\left(1-a_{I 2}\right) i_{A}^{\prime}}{I_{S E}^{\prime}}\right) \tag{18}
\end{align*}
$$

For currents that are large compared to $I_{\text {SEl }}$, the 3 junction voltage equations can be simplified as follows:

$$
\begin{align*}
& v_{B E}^{\prime} \cong v_{O} \ln \left(\frac{-i_{B 1}^{\prime}+\left(1-a_{I 1}\right)\left(-i_{A}^{\prime}\right)}{I_{S E 1}}\right) \tag{l6a}\\
& v_{B E}^{\prime} \cong v_{O} \ln \left(\frac{-\alpha_{N 1} i_{B 1}^{\prime}+\left(1-\alpha_{N 1}-a_{N 2}\right) i_{A}^{\prime}}{I_{S C}}\right) \tag{17a}\\
& v_{A C}^{\prime} \cong v_{O} \ln \left(\frac{\left(1-a_{I 2}\right)\left(-i_{A}^{\prime}\right)}{I_{S E 2}}\right) \tag{18a}
\end{align*}
$$

For very small $\alpha_{I 1}$ and $\alpha_{I 2}$, the above equations may be further simplified.

$$
\begin{align*}
& v_{B E}^{\prime} \cong v_{0} \ln \left(\frac{-i_{B 1}^{\prime}-i_{A}^{\prime}}{I_{S E 1}}\right) \tag{16b}\\
& v_{B C}^{\prime} \cong v_{0} \ln \left(\frac{-a_{N 1} i_{B 1}^{\prime}+\left(1-a_{N 1}-a_{N 2}\right) i_{A}^{\prime}}{I_{S C}}\right) \tag{17b}\\
& v_{A C}^{\prime} \cong v_{o} \ln \left(\frac{-i_{A}^{\prime}}{I_{S E 2}}\right) \tag{18b}
\end{align*}
$$

At this point, we shall add to the basic model above, those components that are needed for a complete model. The most important component to be added is $R_{B E}$, the resistor shunting the base-emitter junction. It will be shown that adaing this resistor produces the effect of an α_{N} that increases with current, which is fundamentally necessary for SCR operation. Additionally R_{E}, a series emitter resistor, is used to provide a saturation anode voltage that increases with high
anode current. The remaining series and shunt resistors are not vital to a model that is not intended to be too precise. Also, as SCR's are seldom anode voltage triggered, the zener current generator that simulates this effect is omitted.

Thus the following complete static model will be used for the SCR.

The "unprimed" and "primed" currents are related as follows:

$$
\begin{align*}
& i_{E}^{\prime}=i_{E}-i_{R B E} \tag{19}\\
& i_{B l}^{\prime}=i_{B}+i_{R B E} \tag{20}\\
& i_{A}^{\prime}=i_{A} \tag{21}
\end{align*}
$$

where

$$
\begin{equation*}
i_{R B E}=v_{B E}^{\prime} / R_{B E} . \tag{22}
\end{equation*}
$$

The "primed" voltage equations become

$$
\begin{equation*}
v_{B E}^{\prime} \cong v_{o} \ln \left(\frac{-i_{B}-^{-i_{R B E}}{ }^{-i_{A}}}{I_{S E l}}\right) \tag{16c}
\end{equation*}
$$

$$
\begin{align*}
& v_{\mathrm{BC}}^{\prime} \cong v_{\mathrm{O}} \ln \left(\frac{-a_{\mathrm{N} 1}\left(i_{\mathrm{B}}+i_{\mathrm{RBE}}\right)+\left(1-a_{\mathrm{N} 1}-a_{\mathrm{N} 2}\right) i_{\mathrm{A}}}{\mathrm{I}_{\mathrm{SC}}}\right) \tag{17c}\\
& v_{\mathrm{AC}}^{\prime} \cong v_{\mathrm{O}} \ln \left(\frac{-i_{\mathrm{A}}}{I_{\mathrm{SE} 2}}\right) \tag{18c}
\end{align*}
$$

Equations for the 2 important external voltages are:

$$
\begin{align*}
& v_{B E}=v_{B E}^{\prime}+i_{E} \times R_{E} \tag{24}\\
& v_{B E}=v_{B E}^{\prime}-\left(i_{B}+i_{A}\right) R_{E} \tag{24a}\\
& v_{A E}=v_{A C}^{\prime}-v_{B C}^{\prime}+v_{B E}^{\prime}+i_{E} R_{E} \tag{25}\\
& v_{A E}=v_{A C}^{\prime}-v_{B C}^{\prime}+v_{B E}^{\prime}-\left(i_{B}+i_{A}\right) R_{E} \tag{25a}
\end{align*}
$$

Among the 4 terms in the expression for $v_{A E}$, it is $-v_{B C}^{\prime}$, the voltage across the center junction that is of most interest. It is now examined in greaier detail.

a. Saturation Reqion:

The saturation region is distinguished from the normal active region by

$$
\begin{equation*}
v_{B C}^{\prime}>0 \tag{26}
\end{equation*}
$$

Therefore from (17c), $-a_{N 1}\left(i_{B}+i_{R B E}\right)+$ $\left(1-a_{\mathrm{N} 1}-a_{\mathrm{N} 2}\right) i_{\mathrm{A}} \quad>\mathrm{I}_{\mathrm{SC}}$ or, as $\mathrm{I}_{\mathrm{SC}} \ll i_{\mathrm{RBE}}$,
$-\alpha_{N 1}\left(i_{B}+i_{R B E}\right)+\left(1-\alpha_{N 1}-\alpha_{N 2}\right) i_{A}>0$

$$
\begin{equation*}
-i_{\mathrm{A}}>\frac{a_{\mathrm{N} 1} i_{\mathrm{RBE}}-a_{\mathrm{N} 1}\left(-i_{\mathrm{B}}\right)}{a_{\mathrm{N} 1}+a_{\mathrm{N} 2}-1} \tag{27b}
\end{equation*}
$$

The above equation is written in terms of - $_{A}$ and $-i_{B}$, as polarities chosen are such as to make these quantities normally positive.

The shunt resistor current, $i_{\text {RBE }}$, is a function of the junction voltages, which prevents a simple exact explicit solution of the equations. However, useful results may be made by assuming $i_{\text {RBE }}$ to be constant, which is approximately true for all but very small and very large base and anode currents.

Note here that for the model chosen, the alphas are constants. Also to fit SCR performance wherein an anode current greater than some minimum can be supported in saturation with zero base current, it is necessary that

$$
\begin{equation*}
a_{\mathrm{N} 1}+a_{\mathrm{N} 2}>1 \tag{28}
\end{equation*}
$$

From (2%) it is apparent that
for $-i_{\mathrm{B}}=0, \quad-\mathrm{i}_{\mathrm{A}} \sim \frac{a_{\mathrm{N} 1}{ }^{i} \mathrm{RBE}}{a_{\mathrm{Ni}}+a_{\mathrm{N} 2}-1}$
for $-i_{A}=0, \quad-i_{B} \sim i_{R B E}$

Equation (27d) approximately defines the Holding Current, the minimum anode current that will be supported in saturation with no base current. Equation (27e) indicates what is apparent from
the model schematic, that the base current must be greater than the current in the shunt base-emitter resistor to provide saturation with zero anode current.
b. Effective Alpha-normal vs. Actual Alpha-normal: At this point it is of value to examine in greater detail the interaction between the emitter diode shunt resistor, $R_{B E}$, and the constant $a_{N 1}$ that produces an effective alpha normal, $\alpha_{N . l}^{\prime}$, that increases with current. The D.C. base-emitter circuit is as follows:

From (16), for current large compared with $I_{\text {SEl }}$ and for negligably small $\alpha_{\text {Il }}$,

$$
v_{B E}^{\prime}=v_{O} \ln \frac{-i_{B l}^{\prime}-i_{A}^{\prime}}{I_{S E 1}}
$$

From (15)

$$
v_{B E}^{\prime}=v_{0} \ln \frac{i_{E}^{\prime}}{I_{S E l}}
$$

The normal alpha affects model performance through (5)

$$
\begin{equation*}
{ }^{i_{C R}}=a_{N 1} i_{E}^{\prime}-a_{N 2}{ }_{A}^{\prime} \tag{5}
\end{equation*}
$$

We may write an equation similar to (5) using $\alpha_{N 1}^{\prime}$ and i_{E} :

$$
\begin{equation*}
{ }^{i_{C R}}=a_{N 1}^{\prime}{ }_{E}-a_{N 2}{ }_{A}^{i} \tag{5a}
\end{equation*}
$$

thus

$$
a_{N 1}^{i} i_{E}=a_{N 1}^{i}{ }_{E}^{\prime}
$$

and

$$
a_{\mathrm{N} 1}^{\prime}=a_{\mathrm{N} 1} \frac{i_{\mathrm{E}}^{\prime}}{i_{\mathrm{E}}}
$$

From the topology,

$$
\begin{aligned}
& i_{E}=i_{E}^{\prime}+v_{B E}^{\prime} / R_{B E} \\
& i_{E}=i_{E}^{\prime}+\frac{v_{O}}{R_{B E}} \ln \frac{i_{E}^{\prime}}{I_{S E l}}
\end{aligned}
$$

thus,

$$
\alpha_{N 1}^{\prime}=a_{N 1} i_{E}^{\prime} /\left(i_{E}^{\prime}+\frac{v_{O}}{R_{B E}} \ln \frac{i_{E}^{\prime}}{\bar{I}_{S E 1}}\right)
$$

By arbitrarily assuming some values, this expression may be plotted.

Assume $i_{E}^{\prime}=x @ v_{B E}^{\prime}=.500$
and $i_{\text {RAE }}=100 x @ v_{B E}^{\prime}=.500$
and
${ }^{\mathrm{V}}{ }_{0}$ $=.026$

For these values, $a_{N 1}^{\prime} / a_{N 1}$ vs. i_{E} is plotted below on a linear scale

It is evident for the example values that α_{N}^{\prime}, the effective alpha, increases rapidly for emitter currents from 100x to 500x and more gradually thereafter.
c. Normal Active Region:

The normal active region is defined by
$v_{B E}^{\prime}>0, v_{A C}^{\prime}>0$, and

$$
\begin{equation*}
v_{B C}^{\prime}<0 \tag{29}
\end{equation*}
$$

Therefore, similar to (27b),

$$
\begin{equation*}
-i_{\mathrm{A}}<\frac{a_{\mathrm{N} 1} i_{\mathrm{RBE}}-a_{\mathrm{N} 1}\left(-i_{\mathrm{B}}\right)}{a_{\mathrm{N} 1}+a_{\mathrm{N} 2}-1} \tag{30}
\end{equation*}
$$

The Normal Active Region may be further divided into a Forward Blocking Region and a Negative Anode Resistance Region. In the Forward Blocking Region, normal transistor behavior is displayed. As base or anode current is further increased, the small signal resistance, $r_{A}=-d v_{A E} / d i_{A}$, decreases from a large positive value and becomes negative. Once in this Negative Anode Resistance Region, increasing current will drive the device to the Saturation Region.
d. Smail Signal Anode Resistance:

An approximate expression for r_{A}, the small signal anode resistance or slope of the anode V - I characteristic, may be obtained as follows. For the region where currents are large compared to the saturation currents and where $I_{\text {RBE }}$ is reasonably appıoximated as constant, (25a) may be differentiated with respect to i_{A}.

$$
r_{A}=\frac{-d v_{A E}}{d i_{A}}=-\frac{d v_{A C}^{\prime}}{d i_{A}}+\frac{d v_{B C}^{\prime}}{d i_{A}}-\frac{d v_{B E}^{\prime}}{d i_{A}}+R_{E}
$$

where

$$
\frac{-d v_{A C}^{\prime}}{d i_{A}}=v_{0} \frac{1}{-i_{A}}
$$

and

$$
\frac{d v_{R C}^{\prime}}{d i_{A}}=v_{o} \frac{\alpha_{N 1}+C i_{N 2}-1}{\alpha_{N 1}\left(i_{B}+i_{R B E}\right)+\left(\alpha_{N 1}+\alpha_{N 2}-1\right) i_{A}}
$$

and
$-\frac{d v_{B E}^{\prime}}{d i_{A}}=v_{o} \frac{1}{-i_{B}-i_{R B E}{ }^{-i_{A}}}$

It is apparent that the small signal resistances of the emitter and anode diodes are pus 1 iive resistances that decrease with increasing current, and that the center or collector diode develops the negative resistance.
2. Analytic Solutions of SCR Dynamic Equations

The approximate step-response will be developed for the simplified circuit below.

a. Turn-on Step Response:

As the current level is usually quite large, the junction capacitances contribute little and thus will be valued at zero. Also, as the center diode is back biased, $C_{D C}$ is very small during the transient and thus will be valued at zero.

The following equations will develop the collector current response to a base current step.

Summing currents at the base, collector, and anode nodes provides the 3 basic equations.

$$
\begin{align*}
& i_{B}+i_{E J 1}+i_{C J}+c_{D E 1} \frac{d v_{B E}}{d t}=0 \tag{1}\\
& i_{C J}-i_{A}=0 \tag{2}\\
& i_{A}+i_{E J 2}+c_{D E 2} \frac{d v_{A C}}{d t}=0 \tag{3}
\end{align*}
$$

It is desired to solve the above equations for i_{A} in response to a step of i_{B}. To solve, note that from the topology,

$$
\begin{align*}
& i_{E J 1}=i_{D E 1}-i_{E R 1} \tag{4}\\
& i_{C J}=i_{D C}-i_{C R} \tag{5}\\
& i_{E J 2}=i_{D E 2}-i_{E R 2} \tag{6}
\end{align*}
$$

and from tho previous section,

$$
\begin{align*}
& i_{E R 1}=a_{I 1} i_{C J} \tag{7}\\
& { }^{i_{C R}}=a_{N i} i_{E J 1}+a_{N 2} i_{E J 2} \tag{8}\\
& { }^{i_{E R 2}}=a_{I 2} i_{C J} \tag{9}
\end{align*}
$$

the 3 "transportation" current generators may be solved for in terms of the 3 "diode" current generaこors as follows,

Substituting in (4), (5), (6), respectively,

$$
\begin{equation*}
i_{E J 1}=\frac{\left(1-a_{N 2} a_{I 2}\right) i_{D E 1}-a_{I 1} i_{D C}+a_{N 2} a_{I 1} i_{D E 2}}{D} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
i_{C J}=\frac{-a_{N 1} i_{D E 1}+i_{D C}-a_{N 2} i_{D E 2}}{D} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
i_{E J 2}=\frac{a_{N 1} a_{I 2} i_{D E 1}-a_{I 2{ }^{i} D C}+\left(1-a_{N 1} a_{I 1}\right) i_{D E 2}}{D} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{D}=1-a_{\mathrm{N} 2} a_{\mathrm{I} 2}-a_{\mathrm{N} 1} a_{\mathrm{I} 1} \tag{16}
\end{equation*}
$$

At this point, the equations may be simplified a bit by noting that for the turn-on response it is a fair approximation to let $i_{D C}=0$. Substituting (13) into (1),

$$
\begin{align*}
& i_{E R 1}=\frac{-a_{N 1} a_{I 1}{ }^{i}{ }_{D E 1}+a_{I 1}{ }^{i} D C}{}-a_{N 2} a_{I 1}{ }^{i}{ }_{D E 2} \tag{10}\\
& i_{\mathrm{CR}}=\frac{a_{\mathrm{N} 1}{ }^{i_{D E 1}}-\left(a_{\mathrm{N} 1} a_{\mathrm{Il}}+a_{\mathrm{N} 2} a_{\mathrm{I} 2}\right) i_{\mathrm{DC}}+\alpha_{\mathrm{N} 2}{ }^{i_{D E} 2}}{1-a_{\mathrm{N} 2} a_{I 2}}-a_{\mathrm{N} 1} a_{\mathrm{I} 1} \quad \tag{11}\\
& { }^{i_{E R 2}}=\frac{-a_{N 1} a_{I 2}{ }^{i} D E 1+a_{I 2}}{1-a_{N 2} a_{I 2}} \frac{-a_{N 2} a_{I 2}{ }^{i} \alpha_{D E 2}}{-a_{I 1}} \tag{12}
\end{align*}
$$

$$
\begin{equation*}
i_{E}+K_{1} i_{D E 1}+K_{2} i_{D E 2}+c_{1} \frac{d v_{B E}}{d t}=0 \tag{la}
\end{equation*}
$$

and as $\tau_{D E 1}=C_{D E 1} \frac{d v_{B E}}{d i_{D E 1}}$

$$
\begin{equation*}
i_{B}+K_{1} i_{D E 1}+K_{2} i_{D E 2}+\boldsymbol{T}_{D E 1} \frac{d i_{D E 1}}{d t}=0 \tag{lb}
\end{equation*}
$$

Substituting (14) into (2),

$$
\begin{equation*}
{ }^{1}{ }^{1}{ }_{D E 1}+K_{6} i_{D E 2}-i_{A}=0 \tag{2a}
\end{equation*}
$$

Substituting (15) into (3),

$$
\begin{equation*}
i_{A}+K_{3} i_{D E 1}+K_{4} i_{D E 2}+c_{2} \frac{d v_{A C}}{d t}=0 \tag{3a}
\end{equation*}
$$

and as $T_{D E 2}=C_{D E 2} \frac{d v_{A C}}{d i_{D E 2}}$

$$
\begin{equation*}
i_{A}+K_{3} i_{D E 1}+k_{4} i_{D E 2}+\tau_{D E 2} \frac{d i_{D E 2}}{d t}=0 \tag{3b}
\end{equation*}
$$

where

$$
\begin{array}{ll}
K_{1}=\frac{1-a_{N 1}-a_{N 2} a_{I 2}}{D} ; K_{2}=\frac{a_{N 2}\left(a_{I 1}+1\right)}{D} \\
K_{3}=\frac{a_{N 1} a_{I 1}}{D} ; K_{4}=\frac{1-a_{N 1} a_{I 2}}{D} \\
K_{5}=\frac{-a_{N 1}}{D} & ; K_{6}=\frac{-a_{N 2}}{D}
\end{array}
$$

Taking Laplace transforms, from (lb),

$$
\begin{equation*}
I_{B}+K_{1} I_{D E 1}+K_{2} I_{D E 2}+T_{D E 1}\left(I_{D E 1} S-i_{D E 10}\right)=0 \tag{lc}
\end{equation*}
$$

where $i_{\text {DElO }}$ is an initial condition having value of zero for the turn-on step response. Thus

$$
\begin{equation*}
\mathrm{I}_{\mathrm{B}}+\left(\mathrm{K}_{1}+\tau_{\mathrm{DE} 1} \mathrm{~S}\right) \mathrm{I}_{\mathrm{DE} 1}+\mathrm{K}_{2} \mathrm{I}_{\mathrm{DE} 2}=0 \tag{ld}
\end{equation*}
$$

from (3b),

$$
\begin{equation*}
I_{A}+K_{3} I_{D E 1}+K_{4} I_{D E 2}+\tau_{D E 2}\left(I_{D E 2} S-i_{D E 20}\right)=0 \tag{3c}
\end{equation*}
$$

where $i_{\text {DE20 }}$ is an initial condition having value of zero for the turn-on step response. Thus,

$$
\begin{equation*}
I_{A}+K_{3} I_{D E 1}+\left(K_{4}+T_{D E 2} S\right) I_{D E 2}=0 \tag{3d}
\end{equation*}
$$

Substituting (2b) into (ld),

$$
\begin{equation*}
I_{B}+\frac{K_{1}+T_{D E 1} S}{K_{5}} I_{A}+\frac{K_{2} K_{5}-\left(K_{1}+T_{D E 1} S\right) K_{6}}{K_{5}} I_{D E 2}=0 \tag{17}
\end{equation*}
$$

Substituting (2b) into (3d)

$$
\begin{equation*}
\frac{K_{5}+K_{3}}{K_{5}} I_{A}+\frac{K_{4} K_{5}+K_{5} T_{D E 2} S-K_{3} K_{6}}{K_{5}} I_{D E 2}=0 \tag{18}
\end{equation*}
$$

Solving (18) for $I_{D E 2}$ and substituting in (17)
$I_{B}+\left(\frac{K_{1}+\tau_{D E 1} S}{K_{5}}\right) I_{A}+\left(\frac{K_{5} K_{2}-K_{1} K_{6}-K_{6} \tau_{1} S}{K_{5}}\right)\left(\frac{-\left(K_{5}+K_{3}\right)}{K_{4} K_{5}-K_{3} K_{6}+K_{5} \tau_{D E 2} S}\right) I_{A}=0$

$$
\begin{equation*}
I_{A}=-I_{B}\left[\frac{K_{5} K_{5} T_{D E 2}\left(S+\frac{K_{4}}{T_{D E 2}}-\frac{K_{3} K_{6}}{K_{5} T_{\mathrm{DE} 2}}\right)}{\tau_{D E 1}\left(S+\frac{K_{1}}{\tau_{D E 1}}\right) K_{2} \tau_{D E 2}\left(S+\frac{K_{4}}{\tau_{\mathrm{DE} 2}}-\frac{K_{3} K_{6}}{K_{5} T_{D E 2}}\right)-\left(K_{5}+K_{3}\right) \tau_{D E 1} K_{6}\left(S+\frac{K_{5} K_{2}}{K_{6} T_{D E 1}}-\frac{K_{1}}{\tau_{D E 1}}\right)}\right] \tag{19a}
\end{equation*}
$$

As the possibilities of simplifying the algebra for the relatively general case of (19a) seem small, some further simplifying assumptions will now be made.

Assume $\quad a_{N 1}=a_{N 2}=a_{N}$
and $\quad a_{I 1}=a_{I 2}=0$
and $\quad \tau_{D E 1}=\tau_{D E 2}=\tau_{D E}$
These assumptions result in a considerable simplification, as follows:

$$
\begin{equation*}
I_{A}=\frac{a_{N} I_{B}}{\tau_{D E}} \frac{s+1 / \tau_{D E}}{s^{2}+\frac{2}{\tau_{D E}} s+\frac{1-2 a_{N}}{\tau_{D E}^{2}}} \tag{19b}
\end{equation*}
$$

This may factored into

$$
\begin{equation*}
I_{A}=\frac{a_{N} I_{B}}{T_{D E}} \frac{s+1 / T_{D E}}{\left(s+s_{1}\right)\left(s+s_{2}\right)} \tag{19c}
\end{equation*}
$$

$$
\begin{align*}
& s_{1}=\frac{1}{\tau_{\mathrm{DE}}}\left(1+\sqrt{2 a_{\mathrm{N}}}\right) \tag{23}\\
& s_{2}=\frac{1}{\tau_{\mathrm{DE}}}\left(1-\sqrt{2 a_{\mathrm{N}}}\right) \tag{24}
\end{align*}
$$

For a step, $i_{B l}$, of base current,

$$
\begin{align*}
& I_{B}=i_{B 1} / S \tag{25}\\
& I_{A}=\frac{a_{N^{i} B l}}{T_{D E}} \frac{s+1 \prime \tau_{D E}}{S\left(S+i_{1}\right)\left(S+s_{2}\right)} \tag{19d}
\end{align*}
$$

Taking the inverse transform,

$$
i_{A}=\frac{a_{N} i_{B}}{1-2 \alpha_{N}}\left[1-\frac{1-\sqrt{2 a_{N}}}{2} e^{-s_{1} t}-\frac{1+\sqrt{2} \bar{a}_{N}}{2} e^{-s_{2} t}\right]
$$

It is worthy of note that the i_{A} response is quite different in character for $a_{N}<0.5$ than for $\alpha_{N}>0.5$. For the first case, the 2 expontional terms decay with time and i_{A} approaches a constant value. For the second case, one of the exponentials grows with time and i_{A} is limited only by factors external to the equations, such as the device entering the saturation region.

The equations solved were, for simplicity, of a model without a shunt base-emitter resistance. Thus a model with this resistance will not perform exactly like the equations do. This
discrepancy should te small at high currents. The choice of constant equal a_{N} 's and $\tau_{D E}{ }^{\prime}$ s is unlikely to be highly valid for an SCR device, resulting in discrepancies between device and model performance. Should these prove important, it may be necessary $\ddagger 0$ develop solutions of the equations without using these simplifying assumptions.

b. Turn-off Step Response:

The device is assumed to be in saturation with anode current $i_{A l}$ and zero base current when a (reverse) anode current step, $i_{A 2}$, is applied. The relationship between storage time and devire parameters under these conditions will be developed first. Then the relationship between maximum permissible rate of reapplication of anode voltage ana device parameters will be examined.

1) Storage Time - Although the equations could be developed from the model as in the prevous section, a different and simpler approacn will be used. Assuming a symmetrical device, where all "subscript l" parameters are identical to their "subscript 2" counterparts, a "2 transistor" model, as follows, will be used.

As the external base current is zero,

$$
\begin{equation*}
i_{A}=-i_{E} \tag{1}
\end{equation*}
$$

During the storage time, due to the symmetry,

$$
\begin{equation*}
i_{1}=i_{2} \tag{2}
\end{equation*}
$$

thus tife transistors are identical with identical currents (except for polarity) and we may examine the storage time of only one of them.

Ebers-Moll provide the following approximate equation for a transistor with isitial emitter and collector currents, $i_{E l}$ and $i_{C l}$, znd an applied emitter step of $\mathrm{i}_{\mathrm{E} 2}$.
$t_{S}=T_{S} \ln \frac{i_{E 2}-i_{E 1}}{i_{E 2}+i_{C 1} / a_{N}}$
where polarities are as follows,

Also from Ebers-Moll, the approximation

$$
\begin{equation*}
\tau_{\mathrm{S}}=\tau_{\mathrm{N}}+\tau_{\mathrm{I}} \tag{4}
\end{equation*}
$$

These equations permit the evaluation of T_{I} (and $C_{D C}$) from anode turn-off storage time data by substituting in (3)

$$
\begin{equation*}
t_{S}=T_{S} \ln \frac{-i_{A 2}+{ }_{A 1}}{-i_{A 2}+.5 i_{A 1} / a_{N}} \tag{3a}
\end{equation*}
$$

2) Maximum Rate of Reapplication of Anode Voltage

At t_{S}, the storage time ends, effectively all the charge stcred in the model center diode diffusion capacitance is removed and the center diode is no longer forward biased. At this point there still remains charge in the diffusion capacitances of the two end diodes and this there would still be a normally decreasing anode-emitter current if anode voltage were reapplied. When the anode voltage is reapplied it generates a base current through the center diode junction capacitance

$$
\left(c \frac{d v}{d t}\right)
$$

The combination of the existing end diode charges and the "applied" base current can cause the model to re-enter saturation rather than turn-off completeiy.

If it is assumed that this re-saturation results primarily because of the rate of reapplication of anode voltage (i_{B}) and negligibly because of the storage active. region charge, a simple conclusion i،ay be drawn as follows.

$$
\begin{equation*}
i_{\mathrm{BF}}=\mathrm{c}_{\mathrm{JC}} \vec{d}_{\mathrm{d}} \tag{5}
\end{equation*}
$$

where $i_{B F}$ is the base current to trigger the model.

C. Parameter Evaluation

Evaluation of the parametersof the SCR moal poses some unique problems. These result from the contrast between the relative complexity of the model and the relative simplicity of the applications to which the device is put. The device has 3 junctions, compared with 2 for the transistor and 1 for the diode. Further, device operation is strongly dependent on non-linear current-dependent alphanormal plus one or more linear resistors shunting the junctions. The alphas are also voltage dependent providing an anode voltage sensitivity that results in an anode breakover voltage. This latter effect can be modeled with an avalance current generator shunting the center junction while retaining the linear alphas.

The combination of non-linear effective alphas and 3 junctions results in quitc complex device dynamic behavior as well, even if the simple single lump diffusion capacitance concept is used with the normal junction capacitance mode]. .

In contrast to this device and model complexity is the fact that the device s most often used as a triggered power switch in circuits whe:e the exacc detailed static a d aynamic performance are not important. Thus device data sheets generally provide more data about device thermal properties than about electrical properties.

To accommodate to this situation, it is suggested that

1. Unimportant parts of the model should be omitted.
2. Parameters not vital to the gross performance be evaluated arbitrarilly with a "reasonable" value.
3. Symmetrical parts of the model be given identical values where doing so will aid or simplify paraneter evaluation.

These guidelines are used kılow.

1. V_{0}
V_{o} directly, controls direct the small-signal low-current forward resistance of the junctions and indirectly affects the junction reverse leakage currents.

Arbitrarily, let $\mathrm{V}_{\mathrm{o}}=.026$ volts @ $25^{\circ} \mathrm{C}$.
2. $\quad a_{N 1}$ and $a_{N 2}$

An approximate value for the normal alphas may be obtained by first assuming $a_{N 1}=a_{N 2}$, then use (27d) to approximately define the Anode Holding Current,

$$
-I_{H} \stackrel{\sim}{=} \frac{\alpha_{N 1} i_{R B E}}{\alpha_{N 1}+\alpha_{N 2}-1}
$$

'shen use (27e) to approximately define the Gate Current to Fire,

$$
-I_{G F} \cong i_{R B E}
$$

From these, defining $R=I_{H} / I_{G F}$,

$$
a_{\mathrm{N} 1}=a_{\mathrm{N} 2}=\frac{R}{2 R-1}
$$

Note, however, that alpha must be greater than .5 and less than 1.
3. $\boldsymbol{a}_{I 1}$ and $a_{I 2}$

The inverse alphas primarily affect the low-current anode saturation voltage. They are generally quite small, and the low-current saturation voltage is usually not imporcant.

Arbitrarily, let $a_{I 1}=a_{I 2}=.01$
4. $R_{B E}$ and $R_{A C}$

From the Gate Current to Fire and (27e)

$$
i_{\mathrm{RBE}} \cong-I_{\mathrm{GF}}
$$

Arbitrarily assume a base voltage of 0.50 volts for which almost all the input current goes through R_{BE} and almost none through the base-emitter junction.
Then $\quad R_{B E} \cong \frac{.5}{-\mathrm{I}_{\mathrm{GF}}}$
Arbitrarily, let $\mathrm{R}_{\mathrm{AC}}=1000 \mathrm{~K}_{\mathrm{BE}}$
5. $I_{S E 1}, I_{S C}$, and $I_{S E 2}$

From (16), assuming 1% of $I_{G F}$ enters the base at $v_{B E}=.5$ volts,

$$
\begin{aligned}
& .5 \cong .026 \ln \left(1-\frac{.01 I_{\mathrm{GF}}}{I_{\mathrm{SEl}}}\right) \\
& \exp (.5 / .026)=\left(1-\frac{.01 I_{\mathrm{GF}}}{I_{\mathrm{SEl}}}\right)
\end{aligned}
$$

$$
I_{S E 1}=.01 I_{G F} /(1-\exp (.5 / .026))
$$

from (8)

$$
I_{S C}=C_{N 1} I_{G F} /(1-\exp (.5 / .026))
$$

from (9)

$$
I_{S E 2}=.01 I_{G F} /(1-\exp (.5, .026))
$$

6. R_{E}, R_{A}, and R_{B}

Where the SCR is not used at high currents or high dissipation or where the increase in saturation anode voltage with current is not important, R_{E} may be omitted from the model. Otherwise, a low current and a high current point may be used to evaluate R_{E}.

$$
R_{E}=\frac{V_{A H}-V_{A L}}{I_{A L}-I_{A H}}
$$

Arbitrarily, let $R_{A}=R_{B}=0$.
7. i_{z}

Where necessary a zener current generator can be used to simulate the voltage dependence of alpha that results in an ancde breakover voltage. In most application, this generator may be omitted.
8. $C_{J C}, C_{J E 1}, C_{J E 2}$

For each of the three diodes in the model, the junction capacitance should exhibit the usual voltage dependence as follows:

$$
c_{J}=-\frac{K}{\left(v_{K}-v\right)^{N}}
$$

However, it is quite consistant with the lack of precision used this far in parameter evaluation to adopt a linear junction capacitance. Thus

$$
c_{J}=K
$$

$C_{\text {JC }}$ or K_{C} may be evaluated by using the specified maximum rate of reapplication of arode voltage with the Gate Current to Fire spec.

$$
c_{\mathrm{JC}}=-\mathrm{I}_{\mathrm{GF}} /\left(\mathrm{dv}_{\mathrm{A}} / \mathrm{dt}\right)
$$

As neither $C_{\text {JE1 }}$ nor $C_{J E 2}$ are of great importance to normal device operation, it is suggested that they be set equal to $C_{J C}$.

Thus $\quad C_{J E 1}=C_{J E 2}=C_{J C}$.
9. $C_{D E 1}, C_{D E 2}$, and $C_{D C}$
A. s with the diode and transistor models, the diffusion capacitances are represented by the diffusion time constants. For simplicity,
let $\quad \boldsymbol{T}_{\mathrm{DE} 1}=\mathcal{T}_{\mathrm{DE} 2}=\mathcal{T}_{\mathrm{DE}}$

The SCR turn-on time can be used to evalute $\tau_{D E}$.

From the dynamic analytic solutions,

$$
i_{A l}=\frac{a_{N}{ }^{i}{ }_{B l}}{1-2 a_{N}}\left(1-\frac{1-\sqrt{2 a_{N}}}{2} e^{-s_{1} t_{t}}-\frac{1+\sqrt{2 a_{N}}}{2} e^{-s_{2} t_{t}}\right)
$$

where

$$
s_{1}=\frac{1}{T_{D E}}\left(1+\sqrt{2 a_{N}}\right)
$$

and

$$
S_{2}=\frac{1}{T_{D E}}\left(1-\sqrt{2 \boldsymbol{\lambda}_{N}}\right)
$$

This equation cannot be solved explicitly for $\mathcal{T}_{\text {DE }}$ when given $\alpha_{N}, i_{A l}, i_{B l}$, and t_{t}. However, i_{A} vs. t may be plotted for a normalized $T_{D E}$, permitting a graphical solution for $\boldsymbol{T}_{\mathrm{DE}}$.

The total turn-on time t_{t} is composed of a delay, t_{D}, and a rise, t_{r}.

It is noted h_{1} re that, in general, the model will not have the same ratio of t_{D} / t_{r} as does the device. This is so because the current dependence of the device alpha is only roughly modeled with a shunt linear resistor.

The inverted time constant, T_{I}, associated with the base-collector diode of the model may be evaluated from storage time data

$$
\begin{aligned}
& t_{\mathrm{S}} \cong \tau_{\mathrm{S}} \ln \frac{\mathrm{I}_{\mathrm{A} 2}-I_{\mathrm{A} 1}}{\frac{.5 \mathrm{I}_{\mathrm{A} 1}}{a_{\mathrm{N}}}-I_{\mathrm{A} 2}} \\
& \tau_{\mathrm{DC}} \cong \tau_{\mathrm{S}}-\tau_{\mathrm{DE}}
\end{aligned}
$$

VII. P-Channel Junction Field Effect Transistor Model

A. Model Description

For P-channe1 junction FET, device and polarities are symbolized as follows.

A preliminary model for this device has been developed. This model is symbolized as follows.

1. Equation for i_{DS}

The general equation assigned to i_{D} S is as follows:
${ }^{i_{D S}}=I_{D S S}\left(1-\frac{{ }^{v_{G S X}}}{v_{p}}\right)^{K_{1}}\left(1-\exp \left(\frac{\mathrm{K}_{2}{ }^{\mathrm{v}_{\mathrm{DS}}}}{\mathrm{v}_{\mathrm{p}}-\mathrm{v}_{\text {GSX }}}\right)\right)$
where $v_{\text {GSX }}$ is defined for each region in the following paragraphs and the remaining parameter are defined subsequently.

$$
\text { a. Normal Active Region }{ }^{\mathrm{v}} \text { GSX }
$$

In the Normal Active Region, ${ }^{\mathrm{v}} \mathrm{GS}$ is positive and v_{DS}

 is negative.$$
\text { Fr } V_{p}>v_{G S} \geq 0 \text { and } v_{D S} \leq 0, v_{G S X}=v_{G S}
$$

b. Inverted Active Region ${ }^{\text {G }}$ GSX

In the I nverted Active Region, $\mathrm{v}_{\mathrm{GS}}{ }^{-\mathrm{v}} \mathrm{DS}$ is positive and $v_{D S}$ is positive.

$$
\begin{aligned}
& \text { For } v_{p}+v_{D S}>v_{G S} \geqslant v_{D S} \text { and } v_{D S} \geqslant 0, v_{G S X}=v_{G S}-v_{D S} \\
& \text { c. Conducting Gate Region } v_{G S X}
\end{aligned}
$$

Operation with the Gate conaucting is not well defined for the FET. This is handled math'matically by preventing the model from entering this region.

For $\mathrm{v}_{\mathrm{GS}}<0$ and $\mathrm{v}_{\mathrm{DS}} \leq 0$,

$$
v_{\mathrm{GS} X}=0
$$

For $v_{G S}<v_{D S}$ and $v_{D S} \geq 0$

$$
{ }^{v_{G S X}}={ }^{-v_{D S}}
$$

d. Cut-Off Region

For $v_{G S} \geq v_{p}$ and $v_{D S} \leq 0, v_{G S X}=V_{p}$

For $v_{G S} \geq v_{p}+v_{D S}$ and $v_{D S} \geq 0, v_{G S X}=v_{p}$
e. Other Parameters

1. Drain saturation current, $\mathrm{I}_{\mathrm{DSS}}=\mathrm{i}_{\mathrm{DS}}$ at $\mathrm{v}_{\mathrm{GS}}=0$ and ${ }_{\mathrm{v}}^{\mathrm{DS}} \boldsymbol{< - 2 \mathrm { V } _ { \mathrm { p } }}$
2. Gate pinch-off voltage,

$$
\mathrm{v}_{\mathrm{p}}=\mathrm{v}_{\mathrm{GS}} \text { for } \mathrm{i}_{\mathrm{DS}}=-1 \times 10^{-6} \text { and } \mathrm{v}_{\mathrm{DS}}<-\mathrm{v}_{\mathrm{p}}
$$

3. K_{1} is a constant that influences the transconductance. It
is usually given the value 2 for silicon diffused-junction devices.
4. K_{2} is a constant that influences the output conductance at $v_{D S}$ near zerc. It is given the value of 2 in the absence of contrary information.
5. Other Components of Model
a. Fixed Resistors

All the fixed resistors will have large values as they
are intended to simulate the device leakage currents, Even when not important for circuit performance, at least 2 of the 3 shoild be used to provide D.C. "connectivity" for TAG.
b. Capacitors

The drain-gate capacitor, $C_{D G}$, is of primary importance for most dynamic applications. The other 2 capacitors may often be omitted.
B. Model Performanre

1. Large Signal Static Normal Active Region

Ignoring the, "leakage" resistors, the drain source current generator characterizes the output characteristics of the device. These output characteristics are plotted in Exhibit 1 for scveral values of gatesource voltage.

It is to be noted that the model is not "permitted" to perform in the region where the gate is forward biased. Also, the "breakdown" characteristics of the device at high voltages are not present in the model.

2. Static Operation as a Voltage-Variable-Resistor

For this type of operation, $v_{D S}$ is generally within the range of $\pm 0.1 \mathrm{~V}_{\mathrm{p}}$. The performance of the i DS current generator (ignoring the leakage resistors) in this area is shown in Exhibit 2. Note that the output characteristics are only approximately linear. Also note that a gite voltage somewhat greater than $V p$ is required to cut off the current for positive ${ }^{\mathrm{V}} \mathrm{DS}{ }^{\circ}$

$$
\frac{v_{\theta}}{v_{p}}=1.00
$$

C. Parameter Evaluation

Although it is possible to get the constants K_{1} and K_{2} from device data, for simplicity here we assume values of 2 for both of them.

1. Normal Active Pinch-off or Saturation Region Parameters

Very often, specification or test data provides values for both $\mathrm{I}_{\mathrm{DSS}}$ and V_{p}. Sometimes, only one of these two parameters is provided, plus a parameter called $g_{f s}$, the forward incremental transconductance in the pinch-off region. The relationship of $g_{f s}$ to $I_{D S S}$ and V_{p} is as follows. In the Normal Active Region, the expression for ${ }^{i}$ DS becomes:

$$
{ }^{i_{D S}}=I_{D S S}\left(1-\frac{{ }^{v_{G S}}}{v_{p}}\right)^{2}\left(1-\exp \left(\frac{v_{D S}}{v_{p}-v_{G S}}\right)\right)
$$

For $-\mathrm{v}_{\mathrm{DS}}>2 \mathrm{~V}_{\mathrm{p}}$ the exponential term approaches unity and i_{DS} may be approximated as follows.

$$
\mathrm{i}_{\mathrm{DS}} \cong \mathrm{I}_{\mathrm{DSS}}\left(1-\frac{\mathrm{v}_{\mathrm{GS}}}{\mathrm{v}_{\mathrm{p}}}\right)^{2}
$$

Differentiating with respect to ${ }^{\mathbf{V}}{ }_{\mathrm{GS}}$,

$$
\frac{d^{D} S}{d_{\mathrm{V} S}} \cong-\frac{-2 I_{D S S}}{\nabla_{p}}\left(1-\frac{v_{G S}}{V_{p}}\right)
$$

Defining $\left.\quad g_{f s} \approx \frac{{ }^{d i}{ }_{D S}}{d v_{G S}} \quad \right\rvert\,-v_{D S}>2 V_{p} \quad$,

$$
g_{f s} \cong \frac{-2 I_{D S S}}{v_{p}}\left(1-\frac{v_{G S}}{v_{p}}\right)
$$

This equation may be used to relate $g_{f s}, I_{D S S}$ and V_{p} at any point in the Normal Active pinchoff region.

At times the forward transconductance at zero gate voltage, $g_{f s o}$, is given. It is apparent that

$$
\mathrm{g}_{\mathrm{fso}} \cong \frac{-2 \mathrm{I}_{\mathrm{DSS}}}{\mathrm{~V}_{\mathrm{p}}}
$$

2. Pre-pinchoff Region (Voltage variable resistor) Parameter The parameter of primary interest here is r dso the incremental output resistance at $V_{G S}=V_{D S}=0$. The relationship of $r_{d s o}$ to the other parameters is derivedas follows. Starting with the general equation for i_{DS}, for $\mathrm{v}_{\mathrm{GSX}}$ constant, differentiate with respect to v_{DS} :

$$
\begin{aligned}
& \left.\frac{\mathrm{di}_{D S}}{\mathrm{dv}_{\mathrm{DS}}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{\mathrm{v}_{\mathrm{GSX}}}{\mathrm{v}_{\mathrm{p}}}\right) \mathrm{K}_{1} \frac{-\mathrm{K}_{2}}{{\stackrel{V}{V_{p}}}^{-v_{G S X}}}\right) \exp \left(\frac{\mathrm{K}_{2} v_{D S}}{\mathrm{v}_{\mathrm{p}}{ }^{-v_{G S X}}}\right) \\
& @ v_{D S}=0, \frac{d i_{D S}}{d v_{D S}}=I_{D S S}\left(\frac{v_{p}{ }^{-v_{G S X}}}{v_{p}}\right){ }^{K_{1}}\left(\frac{-K_{2}}{V_{p}{ }^{-v_{\operatorname{CSS}}}}\right) \\
& \frac{\mathrm{di}_{D S}}{d v_{D S}}=\frac{-K_{2} I_{D S S}}{v_{p}}\left(\frac{v_{p}{ }^{-v_{G S X}}}{V_{p}}\right)^{K_{1}-1} \\
& \text { For } K_{1}=2, \frac{\operatorname{di}_{D S}}{d v_{D S}}=\frac{-K_{2} L_{D S S}}{V_{p}}\left(\frac{V_{p}-v_{G S X}}{V_{p}}\right) \\
& \text { For } v_{G S X}=0, \frac{d i_{D S}}{d v_{D S}}=\frac{-K_{2} I_{D S S}}{V_{P}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { let } \left.\mathrm{r}_{\mathrm{dsc}}=1 /\left(\frac{\mathrm{di}_{\mathrm{DS}}}{\mathrm{dv}_{\mathrm{DS}}}\right) \right\rvert\, \mathrm{v}_{\mathrm{GS}}=0 \\
& \text { Then } \mathrm{r}_{\mathrm{dso}}=\frac{-\mathrm{v}_{\mathrm{p}}}{\mathrm{~K}_{2} \mathrm{I}_{\mathrm{DSS}}}
\end{aligned}
$$

It is evident that K_{2} can be determined from this equation if the other three quantities are given. On the other hand, using the suggested approximate value of $K_{2}=2$,

$$
r_{\text {dso }}=\frac{-V_{p}}{\frac{1}{2}}
$$

And incidentally $\quad r_{d s n}=\frac{1}{g_{f s o}}$
VIII. N-channel Junction Field Effect Transistor Model.
A. Model Description

For a N-channel junction FET, device and polarities are symbolized as follows:

The model for this device is identical to that for the P-channel junction FET, except for the opposite polarities of $v_{G S}, v_{D S}$, and $i_{D S}$.
IX. NON-LINEAR 1 NDUCTOR MODEL
A. Model Description

Most practical low frequency inductive devices employ as a flux storage media one of the many metallic alloy or ferritic materials characterized by a high flux storage capacity per unit magnetizing force. Typical of the alloys are 4-79 Molybdenum Permalloy, Supermalioy, and 50:50 nickel-iron alloy. These materials generally display a B-H curve similar to that shown in figure 1 below.

Figure 1 Typical B-H curve for high flux density magnetic materials.

This report develops and demonstrates a mathematical model for such magnetic core materials which is composed of three linear segments chosen in such a manner as to form a best fit approximation to such B-H curves. Figure 2 shows the results of fitting such a model to the $B-H$ curve of Figure 1.

Figure 2 Three piece linear approximation to B. $\cdot \mathrm{H}$ curve

Once an inductive device has been built, its terminal properties become the most important characteristics defining its behavior. For this reason the model equations developed here will be in terms of device terminal parameters. These parameters will be related to magnetic core material properties by a set of equations presented a^{+}, the end of this section. As illustrated in figure 3, the terminal properties of an inductive device are the time integral of the terminal voltage Φ_{T} and the magnetization current, $I_{\text {MAG }}$, flowing through the device.

Figure 3 Symbolic representation of device and model terminal variables.

Figure 4 shows an idealized $\$-I_{\text {MAG }}$ curve fitted by the proposed three piece linear segmented model. The salient features of this curve are defined in terms of device terminal variables Φ_{T} and $I_{\text {MAG }}$. The model clearly displays three states lableu the negative saturation, high inductance, and positive saturation regions. Each state corresponds to one of the three segments of the model. If we define a constant S which takes on the value -1 in the negative saturation region, 0 in the high inductance region, and +1 in the positive saturation region, the model may be expressed by the single equation given below. This equation expresses the magnetization current as a function of the time integral of terminal voltage for all three regions of the model.

$$
\begin{aligned}
& I_{\text {MAG }}=\frac{\Phi T}{L}-S^{\prime} I_{S A T} \\
& \text { where: } \begin{aligned}
\Phi_{T} & =\int_{-\infty}^{T} E_{T} d t \\
S= & \text { state constant } \\
= & -1 \text { in the negative saturation region } \\
= & 0 \text { in the high inductance region } \\
= & +1 \text { in 'he positive saturation region } \\
\mathrm{L}= & \text { Terminal inductance } \\
= & L_{U} \text { in the high inductance region } \\
= & L_{S} \text { in both saturation regiors } \\
= & \text { The extrapolated value of the saturation } \\
& \text { region magnetizing current fo: zero } \\
& \text { impressed flux. }
\end{aligned}
\end{aligned}
$$

By making appropriate changes in the values of L and S each time the boundary between two segments is traversed the desired non-linear function is created.

Given the following set of basic inductor parameters the required terminal parameters $I_{S A T}, L_{U}, L_{S}$ and Φ_{M} may be calculated using the formulas given below.

Given: $N=$ Number of turns linking inductor core
1 = Length of magnetic path in inches
$A=$ Cross-sectional area of magnetic path in square inches
$\mathrm{B}_{\mathrm{M}}=$ Magnetic flux-density at the boundary between the high indurtance and saturation regions in gausses.
$\mathrm{U}_{\mathrm{U}}=$ Average permeability in high inductar $=e$ region in gauss/oersted
$U_{S}=$ Average permeability in saturation region in gauss/oersted

$$
\begin{aligned}
& \text { For } \Phi_{T} \text { in volt-secs and } I_{M A G} \text { in amps } \\
& \Phi_{M}=6.4516 \times 10^{-8} \cdot N \cdot A \cdot B_{M} \text { in volt-secs } \\
& L_{U}=N^{2} \frac{U_{U} \cdot A}{3.133 \times 10^{>} \cdot 1} \quad \text { in henry } \\
& L_{S}=I_{U} \cdot \frac{U_{S}}{U_{U}} \quad \text { in henrys } \\
& I_{S A T}=\frac{\Phi M}{L_{U}} \cdot\left(\frac{U_{U}}{U_{S}}-i\right) \text { in ants }
\end{aligned}
$$

B. Model Performance

The performance of the piecewise linear inductor model developed above is now analyzed as it responds within the circult of figure 5. A voltage step of amplitude E is applied to the non-linear L through resistor R.

Figure 5 Non-linear inductor test circuit

The current in a series RL circuit to which a voltage step E has been applied is:

$$
I=\frac{E}{R}\left(1-e^{-\frac{R}{L} t}\right)
$$

In the unsaturated region, $L=L_{\mathrm{IV}^{\prime}}$ and in the saturated region, $L=L_{S}$. A separate equation must therefure be required to define the time response of the circuit in each region.

$$
\begin{aligned}
& I_{U}=I_{M A X}\left(1-e^{-\frac{R}{L}} t\right) \text { for } 0<t<t x \\
& I_{S}=I_{\text {MAX }}\left[1-(1-K) e^{-\frac{R}{L_{S}}(t-t x)}\right] \text { for } t_{x}<t,
\end{aligned}
$$

where t_{x} is the time at which $\Phi_{T}=\Phi_{M^{\prime}}$

$$
K=I_{M} / I_{M A X} \quad I_{M A X}=\frac{E}{R}, \quad \text { and } I_{M}=\frac{\Phi_{M}}{L_{U}}
$$

By using K as an independ at variable, t_{x} may be calculated as a function of K. The effect is equivalent to changing the value of the unsaturated inductance while holding all other parameters constant.

$$
\begin{aligned}
& I_{M}=I_{M A X}\left(1-e^{-\frac{R}{L_{U}} t_{x}}\right) \\
& K=1-e^{-\frac{R}{L_{T J}} t_{x}} \\
& e^{-\frac{R}{L_{U}} t_{x}}=1-K \\
& t_{x}=-\frac{L_{U}}{R} \log _{e}(1-K)
\end{aligned}
$$

$$
\begin{aligned}
& \text { But, } \Phi_{M}=L_{U} I_{M}=L_{S}\left(I_{M}+I_{S A T}\right) . \\
& \text { Sol.ving for } L_{U}, L_{U}=\frac{L_{S} I_{S A T}}{K I_{M A X}}+L_{S}=\frac{\Phi_{M}}{K I_{M A X}} \\
& \text { So } t_{X}=-\frac{L_{S}}{R} \quad \log e^{(1-K)}\left(\frac{I_{S A T}}{K I_{M A X}}+l\right) \\
& = \\
& \text { or } \\
& =-\frac{\Phi_{M}}{R_{K I}}{ }^{l_{M A X}} \log _{e}(1-K)
\end{aligned}
$$

t_{x} is plotted in fig. 6 as a function of K. The limiting value of t_{x} as $r \rightarrow 0$ is derived from:

$$
\begin{aligned}
& e^{-\frac{R}{L_{U}} t_{x}}=1-K \\
& 1-\frac{R}{L_{U}} t_{x} \approx 1-K
\end{aligned}
$$

$$
\because t_{x}=\frac{L_{U}}{R} \quad K=\frac{\Phi_{M}}{I_{M} R} \quad \frac{I_{M}}{I_{M A X}}=\frac{\Phi_{M}}{R I_{M A X}}
$$

This corre_ponds to a value of $L_{U}=\infty$

The equations for I_{U} and I_{S} as functions of time are developed, using values of K from 0 to l, and L_{S} held constant at. iR. Some of these pairs of equations are also plotted in fig. 6, using the time constant $\frac{\Phi_{M}}{R I_{M A X}}=\frac{\Phi_{M}}{E}$ to normalize the time axis.

${ }^{t}$ or ${ }^{\mathrm{t}} \mathrm{x}^{\prime}$ in units of Φ_{M}
$\underset{\text { Inductor Current vs. Time }}{\text { Fig. }}$

9
C. Parameter Evaluation

The mathematical model of the non-linear inductor developed in section A provides an equation for calculating $I_{\text {MAG }}$, the current through the inductor, as a function of Φ_{T}, the time integral of the voltage applied across the inductor. This equation is reproduced helow.

$$
I_{M A G}=L^{-1} \cdot \Phi_{T}-S \cdot I_{S A T}
$$

where, for $\left|\Phi_{T}\right| \leq \Phi_{M^{\prime}} S=0$. and $L=L_{U}$.

$$
\text { for } \Phi_{T} \geq \Phi_{M^{\prime}} S=+1 \text { and } L=L_{S}
$$

arid, for $\Phi_{T} \leq-\Phi_{M^{\prime}} S=-1$ and $L=L_{S}$

Given the inductor core parameters, $N, A \quad 1, B_{M}, U_{U}$ and U_{S}, the required terminal parameters: $\Phi_{M^{\prime}} L_{U}{ }^{\prime}$ L_{S}, and $I_{S A T}$ may be calculated using the formulas provided at the end of section A. Parameters $B_{M^{\prime}} U_{U^{\prime}}$ and U_{S} may be graphically evaluated from a B-H loop by fitting a suitable set of three straight line segments directly to the given curve. This is demonstrated in figure 7.

Evaluation of the terminal parameters of an inductive device which has already been built may be accomplished by by observing the current response of the device to the test voltage wave form shown in figure 8 . The time response of the current may be displayed on an oscilloscope by using either a current probe or a small resistor in series with the inductor. Each voltage pulse should be of sufficient duration to drive the core over the entire region of probable operation. The time between the pulses should be sufficient to insure that the
magnetization current decays to zero between pulses. The current waveform to be expected during each positive pulse is shown in figure 9.

Figure 8 Test voltage wave form.

This will produce a half hysteresis loop from which $\Phi_{M^{\prime}} L_{U}$, and L_{S} may be graphically determined. These may be transformed into normalized core material constants by assuming $\mathrm{N}=1, \mathrm{~A}=1$, and $\mathrm{l}=1$. Under these conditions:

$$
\begin{aligned}
& U_{U}=3.133 \times 10^{>} \times \mathrm{L}_{\mathrm{U}} \\
& \mathrm{U}_{\mathrm{U}} / \mathrm{U}_{\mathrm{S}}=\mathrm{L}_{\mathrm{U}} / \mathrm{L}_{\mathrm{S}} \\
& \mathrm{~B}_{\mathrm{M}}=\frac{\Phi \mathrm{M} \times 10^{8}}{6.4516}
\end{aligned}
$$

$\cdots-$

D. Non-Linear Inductor Subroutines

 1LLC,1•LiLorí1)

(SIAAYY $=$ KLivLI * (SSXAXY + FLXINL) - STATEL * CISATI
L SUSGUUTLive rlani is a PIeCEiwist lintar IINDUCTOR CONTROL SUKROUTINE 6 FOK IHE TAU CIHCUIT MIVALYSIS PROGRAM.

CURALi:Y SUURCE DESCRIPTIUN STATENEINT SHOWN AGOVE BY VARYANG THE
validés of in hui aid statei uepenuing upuid the flux level impressed acriós the vevice.
fur rilux lievels detwecin + and - Fluximx, state = 0. and the core
EXIILSITS A PERMEARILITY OF UNAX YIELUING A RECIPKOCAL TEIMMNAL
inJULTANCE R1NV) = RCPLO.
FLUXiA COKRESPONOS TO A LEVEL OF FLUX UENSITY WITHIN THE CORE OF binfr.
For flux levels amove + Fluxime otatei $=+1$. and the corig exhibits
 TLHELNAL INUUCTANCE KLIND $=$ RCPLI.
foir flux levels below - fluxmx. otatei $=-1$. aind the coke again EXHIOITS A PERMEABILITY EQUAL TO USAT ARJ A RECIPROCAL TERMINAL IidU心TANCE RLiNI) = RCPLI.
ThL TERM - STATEI*CISAT SPECDFIES THE ZERO FLUX LEVEL MAGNITIZING CURGENT INTENGEUT FUK THE THKEE REGIUNS UF OPERATION. THIS INTLRCLEPT CURHENT EUVALS 0 IN STATE U SINCE THIS MOUEL EXHIRITS NO HYSILKESIS AiND -CISAI AIJU + CISAT IIN IHE +1 AIVI -1 STATES RESPCCTIVELY.
 ChOSEN SO THAT $J=1+1$ AINL NO UTHEK STOP FUNCTION IS IUENTIFIEi) BY EDTHER OF THE SAVE NÜMBERS. TinIS ALLOwS THE USER TO UISTINGUISH aLL THE VARIAULES ASSUCIATLU GITIT A GIVEN INDUCTOR BY APPENDING
THL WNTEGER 1 TO THE END OF THE IVANic OF EACH ASSOCIATEU VARIABLLE as shudiv abuve. A secund examile is showd below of the call plind ATNU LUKRENT SUUKCE UESCRIPTION STAIEMENTS AS THEY SHOULU ACUALLY APPEAK IN THE DEVICE UESCRIPTIUN PORIION OF THE TAG DESCRIPTION OECK.
CALL PLIND(SSLIU3.RINU1,STATE1,CDSAT1,\$1FLXST1,\$2FLXST2,FLXIN1.

SIUIUS $=$ RINLI) $*(S S 010 J+F L X 1 N 1)$ - STATE1*CISAT1
ARG(1) $=$ FLUX - TLME INTEGKAL UF VOLTAGE BETWEEIN NOLES $x X$ ANO YY IN VULT-SECS

C AKG($)=$ STATE - STATE FLAG - INUICATES PRESENT STATE OF CORE -
C - -1 FOR NEG SAT - 0 FUR UUUMAX - +1 FUR POS SAT
C
C
C
C
C
C
C
C

- extrapolatlo value of inductur curreint at zeho TERMINAL FLUX FOK STATES +1 AND -1 IN AMPS
$A R G(3)=F L X S T I-L U W E R$ FLUXLIMIT STOP FUNCTIUN
ARG(u) = FLXSTJ - UPHER FLUX LIMIT GTUP FUNCTION
AKG(7) = FLUXIN - INITIAL VALUE OF TERMINAL FLUX IN VOLT-SECS
ARG $(B)=$ DATA - \quad AEMBER ARRAY OF COKE AND WINDING PAPAMETERS
ATRG(y) = LLCINT - STOP FUNCTIOV FLAG-NUMINALLY EQUAL TO -1 Equal to n ar fLxstn $=0$.
ARG(10) $=$ LALGFT - INITIALIZING FLAG - EZQUAL TO 1 ON FIRST PASS EUUAL TO 2 THEREAFTER
ARO(ID) $=$ I \quad - LUWER LIMIT STOP FUNCTION IDENTIFYING INTEGEK
UATA(i) $=$ PTURNS - NUMBER OF TUKNS IN PRIMARY WINDING
OATA (2) = PATHLN - MAGNETIC MEÄT PATH LENOTHIN INCHES
OATA $(3)=$ CSAKEA - MAGNETIC CKOSS SECTIONAL AREA IN SQUARE INCHIES

_ LIJ

